UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Semantic role-based access control

Alexander William Macfie

Faculty of Science and Technology

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2014.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.

Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-
mail repository@westminster.ac.uk

Semantic Role-Based Access Control

Alexander William Macfie

A thesis submitted in partial fulfilment of the requirements of the
University of Westminster for the degree of Doctor of Philosophy

July 2014

Ontological Role-Based Access Control

Alexander William Macfie

University of Westminster, London, UK
July 2014

Abstract: In this thesis we propose two semantic ontological role-based access control (RBAC) reasoning
processes. These processes infer user authorisations according to a set of role permission and denial
assignments, together with user role assignments. The first process, SO-RBAC (Semantic Ontological Role-Based
Access Control) uses OWL-DL to store the ontology, and SWRL to perform reasoning. It is based mainly on RBAC
models previously described using Prolog. This demonstrates the feasibility of writing an RBAC model in OWL and
performing reasoning inside it, but is still tied closely to descriptive logic concepts, and does not effectively exploit
OWL features such as the class hierarchy. To fully exploit the capabilities of OWL, it was necessary to enhance
the SO-RBAC model by programming it in OWL-Full. The resulting OWL-Full model, ESO-RBAC (Enhanced
Semantic Ontological Role-Based Access Control), uses Jena for performing reasoning, and allows an object-
oriented definition of roles and of data items. The definitions of roles as classes, and users as members of classes
representing roles, allows user-role assignments to be defined in a way that is natural to OWL. All information
relevant to determining authorisations is stored in the ontology. The resulting RBAC model is more flexible than

models based on predicate logic and relational database systems.

There are three motivations for this research. First, we found that relational database systems do not implement all
of the features of RBAC that we modelled in Prolog. Furthermore, implementations of RBAC in database
management systems is always vendor-specific, so the user is dependent on a particular vendor's procedures
when granting permissions and denials. Second, Prolog and relational database systems cannot naturally
represent hierarchical data, which is the backbone of any semantic representation of RBAC models. An RBAC
model should be able to infer user authorisations from a hierarchy of both roles and data types, that is, determine
permission or denial from not just the type of role (which may include sub-roles), but also the type of data (which
may include sub-types). Third, OWL reasoner-enabled ontologies allow us to describe and manipulate the

semantics of RBAC differently, and consequently to address the previous two problems efficiently.

The contribution of this thesis is twofold. First, we propose semantic ontological reasoning processes, which are
domain and implementation independent, and can be run from any distributed computing environment. This can
be developed through integrated development environments such as NetBeans and using OWL APIs. Second, we
have pioneered a way of exploiting OWL and its reasoners for the purpose of defining and manipulating the
semantics of RBAC. Therefore, we automatically infer OWL concepts according to a specific stage that we define
in our proposed reasoning processes. OWL ontologies are not static vocabularies of terms and constraints that
define the semantics of RBAC. They are repositories of concepts that allow ad-hoc inference, with the ultimate

goal in RBAC of granting permissions and denials.

Table of Contents

T INEEOUCEION. 1.ttt ettt ettt e et et e b e e st eb e eb e eb e e bt ke b e b et em b e e emeeaeen e eseebeebeebees bt eabeembeembeenseentes 17
2 The Domain: Access CONtrol IMOAEIS........eouiiuiiiiiieieieiee ettt ettt ettt ettt et et e e eeeeeee e 20
2.1 Database Security and ACCESS COMIOL..........ccueriiriiriiiiieieieerteeeerte sttt ettt ettt s st ettt e eee 20
2.2 Introduction t0 RBAC......c..ciiiiiiiiiiiere ettt ettt ettt ettt ea et b e bbbt b b st 20
2.2.1 SIMPle Static RBACcuioiiiieiieeeieeeete ettt ettt sb e bt e s e e teesbesatesseesaesseessesseessesseessesseessenssensenseenns 22

2.2.2 Extensions t0 Static RBACottt sttt b ettt et e b e et e e 23

2.3 Dynamic and context-aware RBAC..........cocoiriiiiiiiiiiieteeess ettt ettt ettt st e 25

3 RBAC Implementation in Prolog and Relational DBMS.............cccooiiiiiiiiiiicieeeieee ettt 29
3.1 INETOAUCTION. ..ttt ettt ettt sttt e e st e st ea e eb e e bt eh e ek e e bt e b e et e e s et emteneemeeneeseebeebeebeabesbesbeebeanneas 29
3.2 Defining and Implementing Static RBAC in Relational Database.............ccceeoueruieiiinieiiinieiciiec e 31
3.2.1 Representation of Static RBAC Model in Prolog.........cocoveriiriiiiiiiiiiiiieininscseseseseeee e 31

3.2.2 Transformation of Static RBAC Model from Prolog to SQL Database............ccceecververieniecreniieieeierie e 35

3.2.3 Enforcement of Static RBAC in DBMS Meta-data..........ccceouerieieiiiiieieirieriesiesie e 40

3.3 Dynamic RBAC.ottt ettt ettt a et et e h e et e h et e he e bt e h e e be e st e bt en e e bt enteenbeeenbeeenns 41
3.3.1 Representation of Dynamic RBAC Model in Prolog...........cocuieieiiieienieereee et 42

3.3.2 Transformation of Dynamic RBAC Model from Prolog to SQL Database..........c..cceevvrieriiecienreearireenieene 43

3.3.3 Enforcement of Dynamic RBAC in DBMS Meta-data...........c.ccccovieiiiiieiiiieiicieieeeere e svnesee e 45

3.4 Testing the Implementation 0f RBAC i Oracle.........ccoouiiiiiiiiiiieieieeeeee ettt 49
3.4.1 Overview: Parts and CONAIIONS.coovertieieitieieeieieeteteeee st ete st et e et e ae s st eneesseeteeseeseeneesseensesseensesseeseenas 49

3.4.2 Representation Of RBACcooiiiiiiiieiicieieeestete ettt sttt e sta et estaesseessenseessesseennesseensesseenseenns 49

3.0 RESUILS .ttt ettt etttk bt sttt s e a e a e eh e e bt h e bt ekt b e bt ke b et et e n b et e nt e st eb e eheeh e bt e bt eaeeteebeenneas 51
R 031 1e] 1315 T) OO SO PSR SRRPURTRTRN 53

L 3T 24 (o) (<3 ' SRR UPSRRR 54
4.1 Problems with Current RBACcc.coiiiiiiiiiiiiiene ettt sttt sttt sb e sbe e bt e saee e 54
4.2 LILETALUIE REVIEW......iiuiiiiiiiitiitiitiet ittt et h bt h e e bt b e s b et et e b et et et eme e st es e e st e st eueebe e bt sbeebenbesbensesennans 55
4.2.1 RBAC QN XM L.ttt ettt ettt e st e st es e e st eseebeebeeeeeteeteeseesensesanseenseaseanneaaneens 55

4.2.2 RBAC and the Semantic WED............ccooiiiiiiiieieee ettt et s aeesneeesenaeesnneeenne 56

4.3 COMCIUSION. c..c.eatititete sttt ettt et eb bt bttt b e bt sttt ettt e st e st e st e bt eb e ebeeh e eb e e bt e bt bt e bt s b e st et et enb e e bt enbeenbeenbeenne 58

5 The Proposal: Semantic and Ontology-based Role-Based Access Control (SO-RBAC).........ccceeveveeviecieneeieieeie e, 59
ST IIEEOAUCTION. ...ttt ettt b et b e e e b et e e h e et e a e e bt e st e ebeea e e ebeemtesheemaeebeembeestenbeeseenteeneenseenneeenns 59
5.2 Ontological Model and REASOMING........cccouiruiriiriirtirtiteieieteteeetteie sttt sttt ettt ettt et ae bt st saesae s s neenees 62
5.2.1 Definition of SO-RBAC Ontological MOdEL...........cecveiiriieiieieeiieieeieitetesie et sereeetaeesesae s 62

5.2.2 Populating SO-RBAC Classes DY @SSEITION........c.cccueruirveriieiesrieieetieteereesseseesseeseesseessesseessesssessesseessessssesssnes 69

5.2.3 Reasoning in SO-RBAC USIing SWRL.......coouiiiiiii ettt st 70

5.3 SO-RBAQC PIOCESS.....ceouteiuitiiieeiteitte ettt ettt sttt st e bt e st e e bt e st e e bt e sabeesb e e eate e bt e sabe s bt e sabeeabeesabeenbeesateesnbaeeennnee 89
5.4 Contrasting SO-RBAC With ProOlOg.........coeciiiiiiiiiieie ettt et sae st e e sea e beessenseessenseensseenns 93
5.4.1 ProOPerty INNEIILANCE.cvievieiietieiieeieite e st eteste et e bt et e teeabeeteebeeseesseeseesseessesseessesssessesssessenssesssaeessseenssesenses 93

5.4.2 Negation and TTanSIEIVIEY........coeereiieee ettt et ettt et e et e s bt es e b e entesbe et e eseeeeeneeneeeanneeennnes 94

5.5 Implementing SO-RBAC based on a hospital enVIronmMeNnt..........ccceereririrenirinenenientereteeeeteeeeereere e eveenees 95
5.6 ReSults Of IMPLEMENTATION.iiuveiiiieiieeiesiieteettete et ete st etestebesstesbessseseessesseessenseessesseensessaensesssessesnseenssesssseennes 97
5.7 Results of SO-RBAC Process in PTOtEZE..........cccovviiieriiiiiiiiieieeeesie ettt ettt steesae e sessaesaessaesseesnesseennas 100
5.7.1 Classes and INdiVIAUALS..........cccuiruiiiiiiiiie ettt ettt et st e st esnee e e 100

5.7.2 REASOMINEG.eeueieuieneteeeeeteeie et e e st e e s st eateete e teeseenseeseaneeeseenseeneeaseemeesseemsesseenseeseensesseenseeseanseeneenseeneasnseesnseanns 105

5.7.3 SWRL RUIES TaD.....ccuiiiiititiiiititeteet ettt ettt eb e bt sttt ettt ent e s beeabe e s 112

5.8 COMCIUSION. ...ttt ettt a e eb e e bt e bt eb e eb e et et e b e bt ee et e m e e eneemteneeneeseebeebeeheebeebesaeetebe e 113

6 The Proposal (Continued): Enhanced Semantic and Ontology-based RBAC (ESO-RBAC).......cccoviiiiiiiniieniieeen. 115
0.1 INETOAUCLION. ...ttt ettt ettt et e st e e st e e e s st ea e et e en s e es e enseent e st eneesseemseeseensesseensesseenseeneensesnseesnseeanns 115
6.2 Ontological Model and REASONING.........cc.occieriiiieriiiieiieeiecte ettt ettt sseeseeseessessaesseessesseensesseensensseenns 117
6.2.1 Definition of ESO-RBAC Ontological MOdel.........cc.eciiiieieiieieiieieeitete ettt veesvae e sesee e 117

6.2.2 Populating ESO-RBAC Classes DY @SSEITIOMN.cc.eeiuirtieiiiriieiieienie ettt sttt sieeseee e setee e eneeeas 124

6.2.3 Reasoning in ESO-RBAC USING JENA......cc.coiririiriininintiienenteteteteteitetee ettt st st en 125

6.3 ESO-RBAC PIOCESS.....ccueiiiiiiiiiietitieteettete sttt sttt sttt sttt sttt ettt e sbe st sbtess e sbeenaeseteaesaeenbesanebeeanes 145
6.4 Modelling Dynamic RBAC in ESO-RBACc.ocooiiiieieieteee ettt ettt et ess e aae e e ssneeennnas 151
6.5 Contrasting ESO-RBAC with SO-RBAC and with Prolog...........ccooiiiiiiiiiiiiieeee e 160
6.6 Implementing ESO-RBAC based on a hospital environment..............c.ccoeeerenierieienienieineeeneeeseseeeese e 161
6.7 ReSults Of IMPLEMENTATION.eccvertieieeiieieeiet et ete et ettt et et e steebesteesseeseesseeseesseensesseessesseensesssensesssesnseesnsseennses 164
6.8 Results of ESO-RBAC Process i PrOtEEE.........cvevuiiiiiiiiieiiicieiieeeteteett ettt ettt sae b st essessaesneeenneennns 166
6.8.1 Classes and INAIVIAUALS.coiuiiiiiiiiee ettt b ettt se et e e saeeesmeeean 166

6.8.2 REASOMING.......eeteeietieiiete et ettt ettt ettt ettt et e ea et e es e e bt en e e st en s e st enseeaeenseeseenseemeeseeneeseeneeseenseesnseesnneenn 172

6.9 COMNCIUSION. ...ttt ettt e ettt e e e e ettt e e e e e st e e e e e seaaaeeeeseasssaeeeesesaneseeeesantaseeessesatseeesassaaeeaaaaeeneeneeees 180

T COMCIUSION. c.. ettt ettt ee bt e b e bt b e s bbb bttt e e e st es s eme e bt eb e e bt ebeeb e e bt s bt st e b e s b et et et et enbeebeenbeen 181
7.1 SUMMATY OF RESCATCH......cuiiiiiiiieiiiiicic ettt ettt et esbe s st e sseesbesaeessassaenseessesseessenseessessseessseennses 181
7.1.1 Modelling RBAC 110 PrOLOg......coouiiiiiiiiieieeee ettt sttt st s st 181
7.1.2 Modelling RBAC in RDBMS........oiiiiiiiiieieieie ettt ettt sse et tessessessessessasaenseanseanseanneas 182
7.1.3 Modelling RBAC 1N OWL.....oiiiiiiiiiiiiene ettt ettt sttt sttt st sttt e ebeeaees 183
7.2 EVAIUALION. ...ttt ettt eh e bbbt b b e bt e et et e a s e st e st e bt eb e e bt e bt eb e e b e e b ke b et e sh e e ebeeeaeeennean 185
7.2.1 OWL AN ENETAL ...ttt ettt et b et s h et s e et e s a e e bt s et e s b e s et e bt este bt en e ebeeesaneesnneeas 185
7.2.2 SO-RBAC and ESO-RBAC MOGEIS......c.coiruiriiriiriiriiierieesesieieiie et eeeeit et stesse st tessessessessenaenseesseesneas 189
7.2.3 FULUTE WOTKS. ...ceeitiriiitiitiitestesteet ettt ettt ettt ettt et e bt eb e bt sb e e bt b et ea e enbeenbeen 192
A DPCIAICES. ...vevieetieeieteetiete et et e st ettesteesbesteesbe e st esbeeseesseessessease e st esee s e este ke e R se R e es s e st en s et e en s e et e enbeestesbeeReesbaeensaeenneeeanreenn 201
APPENAIX L PUDIICATIONS. ...cevviiiieeiieetiecie et sttt sttt e ettt eeveeteesbeeaeessbeesseeesseessaesssaensaesssessseessseenseenssesnsesansense 202
Appendix II: Prolog Rules in Static RBACcc.ooiiiiiiei ettt ettt et et s te e st eeneeens 203
Appendix III: Prolog Rules in Dynamic RBACcccuoiiiiiiiiieieiieiest ettt sttt ssee e eessseesnsaeenes 204
Appendix IV: Prolog Facts in Static RBACcciiiiriiiieiecieseetesteeteeteet ettt sttt sssesteessessaessessaensenseens 206
Appendix V: Context Constraints in Static RBACc.cooiiiiiiiiieii ettt ettt sve e st sae e esareeeseneaeas 215
Appendix VI: RBAC and database diagrams.ccoeieririeriieieniieieete ettt eee st et st ste e steeseesteeseesseeesnteeenseeesneeeenns 217
Appendix VII: Oracle Database: Data DESCIIPLION.c.ecueruerierieriertieiestieieseeeieeeteseeeeessesaessesssesseensesseensesseessenseens 219
Appendix VIII: SQL Code for Static RBACocciiiiiiiieie ettt ettt ste e sveesaesaeeaessaesesessaeesssaesnsaesnns 223
TADLES. ..ottt bt h et h bt h e bt e a et bt et h e et bt e b eh e e bt et et e en e e bt e st e ebe e et eheeaesaeentas 223
VIS, ettt ettt ettt ettt e et e e et e et e a et e e a e e bt ea e e ea e e a e e Rt ea s e Rt eateeReea ke en e ekt en e e et en e e eaeeneeeheeteene e teene e teenteteeanteeennes 225
L@ OIS ¢ uveteeuteeteeteettete et et et e bt e st e st estesseeseesseensesseenseeseenseeseenseessanseensesseemsesseenseeseenseeseenseessenseensenseenseseenseeneennennes 227
FUINCHIONS. ...ttt bt bttt e st s e e st eb e eb e e bt eh e e bt e bt s bt et e b e s b e s b et e b et enbeenbeenbeenbean 232
Appendix IX: SQL Code for Dynamic RBAC: GENETIC.......cc.eecuirirriiriieieiiieiesiteieetteie ettt et 238
1o (< TSRS 238
VIBWS Lttt e b et e et bttt et et b e bt e bt bbbt bbbttt et ea e a e bt ebe bt beenbeenaees 238
VIBWS 2.ttt ettt ettt ettt et h bt et e bt h e eh ke be 4ot e st et e st eh e e bt e bt ekt bt h e eh bbb et e n b et enten e neeaeeb e bt e nbeenaees 238
L@ OIS ¢ttt ettt ettt ettt ettt et b et s bt ea e e bt em e eh e et e e et e bt e a e e e bt e Rt e eh e et eh e en b e eh e e b ehten bt eb e et e en e e bt e st e ebeeneenee 238
Appendix X: SQL Code for Dynamic RBAC: Hospital Database............cccceeuieriiriereiiee et 240
TADLES. ...ttt bbb b bttt et ea bt h e e bt h e bt bbb ettt ettt ene s 240
VIBWS. ..ttt ettt ettt ettt ettt a bbbt e bt bt eh ke b et et a b et e a e ekt e bt h e ekt e bt bt bt b e b et et en b et enten e heeneeb e bt e nbeeanees 240
L@ OIS ¢ttt ettt ettt ettt ettt et b et e bt ea bt e bt em e eh e et e e et et e ea et eh e e Rt e eh e et eh e en b e bt et ebten bt eh e e bt en e e bt e st e ebeeneenae 242
Appendix XI: Oracle VPD Context for Hospital Database............cceoerieiiiriierieeieieieieeese et 246
HEA. ...ttt h bbbttt a bbbt b e bbbt e bt sate st n 246
B Oy .t b bbbttt a e h e a e h e bt b e h e ekt e bt bttt et et e bt ea b et enbeenbean 246
Appendix XII: Oracle VPD Policy for Hospital Database...........coouererieniirienieieniieiesieeesieee e 248
a1 2SO SRS 248
DD (0]] o) 12 VS0 SRR SRUUTRPPRINE 256
Appendix XIII: Hospital Database CREATE TABLE Statements...........cccccveeueruierieiierieeiesieeeenseeeesseesesseessseessseeenns 259
Appendix XIV: Test Script for RBAC ENfOrCemMENt.........cc.cociieiieiieiiieiiesit et eieesveesvee e eieesveesteessseeseesneennns 261
Appendix XV: Hospital Database RBAC INSERT Statements.c.ceceererieririeiieiesieeie sttt esneeeens 265
Appendix XVI: Hospital Database Data INSERT Statements...........cccecuerierieriesiinienieeiesesieseeeesieeaesseesesseensesseens 274
Appendix XVII: Discussion of Testing and OULPUL...........c.ecueecieriieiierietieiesteeeesteseesaeeeessessaesseessesseessesseessessaessseeans 278
Role Permissions and Denials (rpa and d_1Pa)........coouieeeriiiiniiieneeseee ettt st s 278
Static User Permissions and Authorizations (permittable, authorizable, permitted and authorized).................... 287
Dynamic User Permissions and Authorizations (permittable_cc, authorizable cc, permitted cc and
AULNOTIZEA CC).uviiiiiieiieti ettt ettt ettt et e et e e st e st e esbeeteesseeseesseeseessesseesseessesseessesseessesaesseesaesseassensseesnseesnseens 295
Enforcement of RBAC i MEta-Data.........cc.oeiiriiiiiiiiiiiiee ettt st 297
SEPATATION OF DIULICS. ... eeueieiieiteeieeie ettt ettt ettt et e bt et e s te e st e sseeaeesaeemeesaeemeeeseenseeseenseeseenseeseenseeneesnneeenneeenns 309

Index of Figures

Figure 1: SIMPIe RBACottt ettt ettt ettt ste et e st e estesbeesbesseessaessesseessasseesseseessesseerseasssesansseensseesnsens 22
Figure 2: Path inheritance eXamPIe..........c.ooiiiiiiiiiiiiee ettt ettt sttt a et e s e et e e s tenbeen b e saeenteenbeeebeeesnneeenee 23
Figure 3: EXample 0f 1018 INCIUSION.c.eiiiiiiiiitieie ettt ettt et e st e b e et e st e estesseensesseenseenseeeneeesnneennns 24
Figure 4: ERD of hospital database schema. Arrows show ‘many’ end of 1:many relationships. A simple line represents

A 101 TRIATIOMSIID. . vivieiiieieete ettt ettt et e et et e e st e s beesae b e essesbeesbeeseesbeessenseessesbeess e beeraeeneenteeesbeeentaeeanbaeenteas 30
Figure 5: Role hierarchy in Hospital database, excluding day_duty and night_duty in doctor and nurse roles. Solid lines

show d_s relationships; dotted lines show iS_a relationShips..........cooeiierieiieiieieeee e 30
Figure 6: Graphical illustration of a SO-RBAC model for a hospital domain............ccceeererenenenienieiinnncnccsee e 62
Figure 7: Necessary & Sufficient condition for NOT DENIED..........cccooiieiiiiiieiiiieie ettt sve s sneenne 65
Figure 8: Property map of all SO-RBAC properties except those that have ROLE as both domain and range................ 68
Figure 9: Property map of all SO-RBAC properties with ROLE as both domain and range...........cccccccecevenerinenencnneens 69
Figure 10: Steps and Stages in reasoning SO-RBAC..........cccooieiiiieiiiiee et se e s s ssesnseeenns 70
Figure 11: Key to symbols used in SWRL reasoning dia@ramis............ccceecverreerierieriieienieeienseeeesseeeesseesesseessessesssnseessnes 71
Figure 12: RUIE 1 SENIOT 0 L...iiiiiiiiiieieii ettt a et s a et a et e e st e b e es e bt em b e sbeenteembeeeneeesmneeenee 72
Figure 13: RUIE 1 _SENIOT 0 2....iiiiiiiiiieieeii ettt sttt ettt et et e e s et et s et e be s st e s e essenseensenseenseeseenseenseesnaeesnneennns 72
Figure 14: RUIE 1 _SENIOT 10 4...occviiieiieieiieeieeiteteeteete et et et eteestestesstesseessesseessesseensasssenseassanseassansesssesseansessseensseennseesnsees 73
Figure 15: Rule 1 INCIUd@d N L....ccooiiiiiiiiiiiiicieceeeeeec ettt ettt et e b e et e b e essesbeesaesseesaesaseensseeesseeensnas 73
Figure 16: Rule 1 inCluded TN 3.....c.ooiiiiii ettt sttt b e e e e bt e s e sbe e e embeesbeeesaneeenee 74
Figure 17: Rule 1 INNEIIS PIa_ 1....c.oooiiiiiieiei ettt ettt et ae e e sseene e s seeseeseeseeseeseensasnneesnnneenns 74
Figure 18: RUle 1 INNETItS PrA 3.....ccciiiieiiiiieiieiieieetesteete et et e st et e st e e st essessaessessaesseessesseessesseensenseensesssensesssesseeansseensses 75
Figure 19: Diagram showing movement of individuals in Step 2 of reasoning only..........c.ccocevereneneinininiienieneeneee 76
Figure 20: Rule 2 dra fUll........ooouiiiie ettt ettt b et b et e bt e e b e et e e enteesbeeenaeeeanee 77
Figure 21: RUle 2 pra fUll........ooiiiiieeeee ettt ettt st e st e et e st e e etesbeeneeeseentees e et e e e enteesneeeanneeanne 78
Figure 22: Diagram showing movement of individuals in Step 3 of reasoning only..........ccccoceveveiieneiiiininieneeneeneee 79
Figure 23: RUIE 3 PermiIttable........ccviiiiiiieiiciieiieeeie ettt ettt ettt et sa e s te e b e sseesbesseesaeesaesseesbesseessesseesseensseensnes 80
Figure 24: RUIE 3 dENIEd.......oouiiiiieiiieee ettt ettt st e bt e e st e e et e s bt e st e e bt enteeb e et e e e enteesteeenaeeeanee 81
Figure 25: Diagram showing movement of individuals in Step 4 of reasoning only...........cccceeeververevievinnnieneenieeneeneene 82
Figure 26: RUIE 4 N0t dENIEA.......ccieiiieeieiieiecie ettt ettt et et et esaeesaesseessesseessessaensesssenseesaesnseeansseensseesnsens 83
Figure 27: RUIE 4 PErMUttE......c.ecviiuiiieitieieieeteeteie ettt ettt ettt estesteesaesteesaesseesbessaesbeessesseessessaesseeseessesseessesssessensseensnes 85
Figure 28: Diagram showing movement of individuals in Step 5 of reasoning only..........cccoceviroeneniiniinienieeniee e 86
Figure 29: Rule 5 aUthOriZable..........oouoiiiiiieiieieee ettt ettt e ee st e sse s e e s seenseesnteeeneeeenneennne 87
Figure 30: RUIE 5 QULNOTIZEM.eoieiieieiieieieeee ettt ettt ettt ettt e s te et e et e e s b e eseenseessenseessesseensessneansseennseeensns 88
Figure 31: RBAC process using the SO-RBAC ONtOIOZY.........ccueruiiiiiiieiieiieiieteeieeeete ettt eae s sre s sreesseeaseeenns 89

Figure 32: RBAC Model used to demonstrate SO-RBAC, excluding night and day duties. Solid (black) lines represent
seniority (d_s) relationships. Dashed (purple) lines represent is_a relationships. Arrows show direction of inheritance of

POSitive aUthOTIZAtIONS (PEITNISSIONS).eevertrerertieteeeterteetesteetesseesesseesesseesesssessesssesseesseseessesseessesssesesssessesssesnssesssseeenes 97
Figure 33: The OBJECT INSTANCE hierarchy in our €Xample.........ccccueeieriieeiieieniieieieceesie e sieevesreeneesveesseseesnneens 100
Figure 34: The OBJECT _TYPE ClaSS.....ccoui ittt sttt sttt st sb e et e bt et e st entees e e emteesmneeas 101
FIgure 35: The URA CLaSS....c.eiuiititiieieietetetete ettt ettt ettt et b et sbe st b e b sttt e st e et et et eneennns 101
Figure 36: The USER ClaSS......ccuiiiiiiiieiieiieiieieie ettt ettt sttt e ste et e s teesbesseesse et eessesseenseesaessesssesseansessesssensennsensennsens 102
Figure 37: The USER_PERMISSION_ ASSIGNABLE CLaSS......cctetiiiiriirieiienieierieeiee ettt s 103
Figure 38: The ROLE PERMISSION ASSIGNABLE ClaSS......cctttiiieiiiieieeieee ettt 103
Figure 39: Role r_senior staff doctor before Step 1 1S TUN......c.cccveviiiiiiirinininenecccteeceeee e 104
Figure 40: Role r_senior_staff doctor after Step 1 1S TUN......c.cecierieierieieeieieeeee ettt st ee e e ennee s 105
Figure 41: DRA INAIVIAUALS @t STAZE L...cveiiieiiiiiieiiiiiiciecieetesieete ettt ettt s testeesaesaeessesesesbessaesbeassassesssesseessesssasanssens 105
Figure 42: DRA FULL @t STAZE L.....iiiiiiieiieiieie ettt ettt ettt es ettt e st e et e saeentesaeebesseenbeese e beessenbeeneeeees 106
Figure 43: PRA Individuals @t StAZE L.....c.coeririiririitininicrtetetet ettt ettt sttt sttt ettt ebeebesresae i e 106
Figure 44: PRA FULL @t STAZE L.....iccviiieiieieie ettt ettt ete st etesae e esaesteesseeseessesseessesseassesssessenssesenssassnseesnssessnseenn 107
Figure 45: DENIED @t STAZE 2...c.vicveiiiiieiieeiesieeteeteete et et e et eteeseesteestesteessesaeessesssessaessasseessaseessesseensesssessesssesseesssessnseens 107
Figure 46: DRA FULL at Stage 2, having been populated in SteP 2.......ccceviiiiiiiiiiiieieeieiesie et 108
Figure 47: PRA_FULL at Stage 2, having been populated in Step 2........coceeeverenieiieiienieininenenenesie e 108
Figure 48: DENIED @t STAZE 3......icieiiiierieeieseeteeite et e e e e te et e st estesseessesseessesssenseessenseessanssassesseensesssensesssensessssessnsesas 109
Figure 49: PERMITTABLE At StAZE 3....cuiiiiiiieiieieieeieeit ettt ettt ettt et e b e esseaeessesseesseeseessesseessesssensesssessneesnes 110
Figure 50: NOT _DENIED at STAZE 4......oouieiiiiieiieiieie ettt ettt ettt et eat e ae et e sbeeseesbeemtesbeensesbeenseesaeesaneeenne 110
Figure 51: PERMITTED At STAZE 4......coueouiiiiiiriiniiteteetet ettt st sttt ettt eb et sae bbbt et et naeeneee 111
Figure 52: AUTHORIZABLE @t STAZE 5.....occviiieiieieiieiertt et eee st ete st etesteeteesae e essesseessesseessesssensesssessesssensesssensenssens 111
Figure 53: AUTHORIZED @t STAZE 5.....ccoviiieiiieieiieiesieeteste ettt eteett et et esbesteesseeseesseessesseessesseessasssesseessensesssessesssensennes 112
Figure 54: The SWRL Rules Tab with the Jess PIugin Open.........cccoocoiiiiiiiiiiiieceee e 112
Figure 55: A SWRL rule in @diting MOGAE.....c..ccueiiiiiiiiiiiriinicnesetes ettt ettt sttt ettt ettt e st e saeesaee e 113

Figure 56:

SWRLJessTab in the Jess plugin after OWL+SWRL—Jess button has been clicked for running Step 1 rules.

.. 113
Figure 57: Graphical illustration of ESO-RBAC, including meta-Classes.coevvervirieniieienenienieeienieereeeveeesveesnenns 117
Figure 58: Necessary & Sufficient condition for NOT DENIED.......c..ccccoiiiiiiiiiiiiinieiiiiene et 120
Figure 59: Property map of all ESO-RBAC properties except those that have ROLE as both domain and range.......... 122
Figure 60: Property map of all ESO-RBAC properties with the meta-class ROLE SET as both domain and range.....123
Figure 61: Steps and Stages in reasoning ESO-RBAC..........ccccoiiiiiieiiiieii ettt ettt ste s esaesssaessvaessseesnseeas 125
Figure 62: Key to symbols used in Jena Process diagrams...........ccc.eeierieiinieiiniine ettt 126
Figure 63: Rule 0_inferred SUDCIASSOT 1......cocuiiuiiiiieii ittt ettt sttt esbe e eneeeeneeas 127
Figure 64: Rule 0_inferred SUDCIASSOT 2.......ccoiiiiiiiieiieieie ettt ettt ettt et et este st esesneensessaesseesnsaesnneeas 127
Figure 65: RUle 0 INTEITEA LYPE L.uvicuiiiiiiiiieiecieeie sttt ettt ettt e et e b e eteesbe s st e sseeseesseessesseessessaessessaessaaseensenseens 128
Figure 66: Rule 0 INTEITEA TYPE 2. ..iuiiiiiiiiiiiete ettt ettt ettt st a e et e bt et e s bt et e s bt e st e sbeenteebeenteeaeens 128
Figure 67: RULE 1 _SENIOT 0 L....iiiiiiiiiiiieie ettt ettt ettt et e st e et e st e et emeesbeemeesseemseaseesnseeeaneeeanneenn 129
Figure 68: RUIE 1 _SENIOT 0 2....icciiiiieiieiieiieiieie ettt ettt te sttt et et e st e et e enseeseesseeseesseeseesseenaenseensessesnseseesnsseennseennsennn 129
Figure 69: RUIE 1 _SCNIOT 10 4....ccuiiiiiiieiiiiieiieiieteettesteettesteetesteesaeste e sesseesseessesseessaseessesssessessaessesseessesssesaessssesnsseesnseens 130
Figure 70: RUIE 1 JUNIOT £0..c.iiitiiiiitieieit ettt ettt h et b et e b et e s ae e et satenbeesteembeeesmteesmbeeenaeens 130
Figure 71: Rule 1 INNEIIS Pra 1...cc.ooiiiiiiiiieieei ettt ettt ettt et e e e et et e eseetesneenaeeneenbeesneeeeneeas 131
Figure 72: Rule 1 INNEIIES PIa 3......ccciiiiiieiieieeieie ettt eteste st et sete st e esaesteeste st e essenseensesseensesseensesnsensessseseesnsaesnseens 131
Figure 73: Diagram showing movement of individuals in Step 2 of reasoning only..........ccccoceverereneneiieinncenceneenen, 132
Figure 74: RUle 2 dra fUll........cocooiiii ettt e h ettt e bt st e bt et e st e e et e e sbeeeaaeens 133
FAigure 75: 2 Pra_fUll......oooiieeeee ettt ettt ettt b ettt en ettt e et e et e en e et e eneeateeneenaeententeeenteeeneeas 134
Figure 76: Diagram showing movement of individuals in Step 3 of reasoning only...........cocceevvevenenieiinnnicenecnecnnenen 135
Figure 77: RUIE 3 PerMUttabIC.......cccuiiiieiiiieiecie ettt ettt ettt ettt ettt e et e saeesaesaaesbesseesbasssesseessanseessanseesseassaesnssens 136
FIGUIE 781 3 A@IIEA.eeietieiiitee ettt et b et s b et s bt et e e bt et e et et e e st e sbe et e ebe et e e bt e beeeateeebeeas 138
Figure 79: Diagram showing movement of individuals in Step 4 of reasoning only...........ccccoveeerieieninieniinieeeee e 139
Figure 80: RUle 4 N0t dENICM........couiiieieieieciieie ettt ettt ettt ettt et e st e et e et e e st e eseenseeseesseeseensseesnseeennneennseens 140
Figure 81: RUIE 4 PErMUILtE......c.eevviiieiiiieiieciesieeieste ettt et ete et et et e s e esaesteesbeeseessaesaesseesaeseessesseensesseensesseessessneenssens 142
Figure 82: Diagram showing movement of individuals in Step 5 of reasoning only...........ccccevveeiinieninieniiiiienneenenn 143
Figure 83: Rule 5 authOrizable..........ccoiuiiiiiieeeee ettt ee et e ettt e st e e st eeneeeanaeean 144
Figure 84: RUIE 5 AUtNOTIZEA.cuioiieiieiieeciee ettt et et st esseesee s e enaesseensesseesnsaeennseesnseean 145
Figure 85: RBAC process using the ESO-RBAC ONtOIOZY.......cccecoiiriiiieriieieiiieiesiieie ettt eteereeeesesseessessaessesssessesssesanns 150
Figure 86: Rule context constraint appli€d.........cccueiieiiiiiiiiiei ettt st 152
Figure 87: Rule context CONAItION PASS_ L.....eeiiiuieiiietieiieeieit ettt sttt sttt ee et ese e bt eneesneeesmeeeeneeeanneean 154
Figure 88: Rule conteXt CONAItION PASS 2......ccuerieiiieieiieieiieiesteetesieetesteetesseessesseensesseensesseenseeseessesssessseesnseesnsseesnseens 155
Figure 89: Rule nurse_in_Same ward @S PAtICNt...........cceecvereerieriieriieieriieiesseetesseessesseessesssessesssessesssessesssessesssesssessnsees 157
Figure 90: New 1ule 5 authorizable...........coiiiiiiiiiiiiee ettt sttt sb et e et e s s 159
Figure 91: New 1ule 5 authOriZEd.oiuiiiiiieieetiee ettt et ettt e e et e st e stesneenaeeneesseeenteeeneeas 160
Figure 92: RBAC Model used to demonstrate SO-RBAC, excluding night and day duties. Solid (black) lines represent

seniority (d_s) relationships. Dashed (purple) lines represent is_a relationships. Arrows show direction of inheritance of

POSitive aUthOTIZAtiONS (PEITNISSIONS). .e.uveeurreerieriteerreerteesreesteessreeseessaeesseessseeseessseasseessseaseesssesssessssessseessssessessssseessssssees 163
Figure 93: The ROLE SET MEtA-CIASS......eetiitieiiitieiietieie ettt sttt ettt et et et sae e e eeeeeeeseesaeeseeeaneeesnneean 166
Figure 94: The OBJECT INSTANCE hierarchy in our €Xample..........coocveriieeieriieiienieieseeieseeie e seeseeseeeesneeesnneens 167
Figure 95: The OW1:Class MELa-CLASS.......c.ccieriiiieriiiieite ettt sttt ettt e ete et e eseesseesaesseesaessaessesssesseessenseessesseesseesnssens 168
Figure 96: The USER CLASS... ..ottt b et b et eat et e s et e et s et e sbeeseesbesstenbeensenbeeneens 169
Figure 97: The USER_ PERMISSION ASSIGNABLE Class........ccuvtriitirieiirieiinieiirieierieienieesie sttt 169
Figure 98: The ROLE PERMISSION ASSIGNABLE ClaSS......ccciirtitiieieieieieteteieei ettt 170
Figure 99: Role SENIOR _STAFF DOCTOR before Step 1 1S TUN........ccvieiiriieiieiieiieieieeeerie e sie v sieesveesveesnveesnnee s 171
Figure 100: Role SENIOR_STAFF DOCTOR after Step 1 1S IUMN...cc.cecuirieiiiiieieiienieeiieieeie et 172
Figure 101: Role SENIOR _STAFF DOCTOR DAY after Step 1 iS MU ...cceeiuieuieriieierieeierie e 173
Figure 102: DRA individuals @t StAE L........coiiieiiieieiieieriieiese ettt ettt ae e ea e teensesseensesseensesnsaeenseeas 173
Figure 103: DRA FULL At STAZE L...coviiiiiiiieieeiecieeie sttt ettt ettt esaesseesbesseesaessaesseessasseessesseensesssessesssansenssensenns 174
Figure 104: PRA individuals at StAE 1.......cccuiiiiiiiiiiee ettt ettt st b et eaee s 174
Figure 105: PRA_FULL at Stage 1. This class is empty because it has not yet been populated in Step 2...................... 175
Figure 106: DENIED At StAZE 2.....ccueeveriieieeiieteetieteeterteetestestestesseessessaessessseseassesseensasseensesstessesseensesssessesssessessnsessnseens 175
Figure 107: DRA_FULL at Stage 2, having been populated in Step 2........ccevieriiiiieniirieniieiesieeeeeeeee e eeeeesvee v 176
Figure 108: PRA_FULL at Stage 2, having been populated in Step 2........ccoeoiiiiiiiiiiiieeee e 176
Figure 109: DENIED At STAZE 3.....c.ueiiiiieieetieieett ettt ettt teste st e teseee s bt es e e bt en e et e emeeeseeneeeseeneeeaeeseeneenseeneenseesnseesnneeas 177
Figure 110: PERMITTABLE Qt StAZE 3.....cueitiitiieteieieiieiteieetcetesi sttt ettt ettt ettt ettt be st st be e et ae st e 177
Figure 111: NOT _DENIED At StAZE 4....cc.eevieiieiieieitieiesieetesttete st ete et eteesaesseessesseessesseessesseessesssessesssessesssensseesssessnseens 178
Figure 112: PERMITTED At StA 4.......coouiiiiiiiieitieeit ettt ettt ettt ettt ettt st b e et b et esb e et e sbe et e sbeenteeaeenaeens 178

Figure 113: AUTHORIZABLE At STABE 5.....ooouiiiieiieiieieee ettt ettt et ettt ettt et esae et e sseesneeesmteeeneeeanaeens 179
Figure 114: AUTHORIZED @t StAZE 5....covevtiiiieiiieieieteiteieei ettt sttt ettt et eat et sbe bt besbesae st b st et benaens 179
Figure 115: Role Inclusion in Hospital Database. Solid lines represent d_s relationships; dotted lines represent is_a

10 E: 1 T03 1T 111 1P 217
Figure 116: ERD of RBAC schema: tables only. Blue boxes are tables. Cyan boxes are tables linking pairs of roles. Jade
boxes are tables populated by triggers to form the results of recursive Tules.........ccoovvcverireieniecienieeeee e 217
Figure 117: ERD of RBAC data: tables and views. Blue boxes are tables. Cyan boxes are tables linking pairs of roles.
Jade boxes are tables populated by triggers to form the results of recursive rules. Green boxes are views. An arrow
represents the ‘many’ end of a 1:many relationship. Double-relationships, where an object has two relationships with
another object, are in green; the rest are i DIUC.........cocueiieiiiiieecieeee ettt e e eneees 218
Figure 118: Formation of views from constituent objects, as determined by CREATE VIEW statements. Arrows point to
view formed. All arrows representing objects forming a specific view have the same colour. Some tables do not
participate in any CREATE VIEW Stat@MENLS.cccueeueeiuiruieriieierieeieste e st ete st etesteentesteentesseeneeeneensesseesseeseeeaneeesnseens 218

Index of Tables

Table 1: Tables for hospital database USEd IN tESHING........cceevvieieriieieitieiieeete ettt ettt e e s e sbeesbesreesseeseessessaenseesnnes 29
Table 2: Fact definitions used in RBAC design in Prolog.........ccouiiiiiiiiiiieiiee et 31
Table 3: Rules in Prolog static RBAC dESIZN.......ccuetririririiiirientitenteteteteteteitei ettt sttt sttt ettt st 32
Table 4: Fact definition used in dynamic RBAC design in Prolog........ccccveciirieiiriinie it 42
Table 5: Rules in Prolog dynamic RBAC deSIZN........ccccciiiiriieieiiieieiieeiecteeiee ettt eteeteesseeseesaeesaesaeessesseesseeesseensseesnses 42
Table 6: Necessary & Sufficient conditions imposed on SO-RBAC ClaSses.......cceeruerierieniinienienieniieeeee e 64
Table 7: Object properties in SO-RBAC.........cocooiiiiiiiiieeteteteeeeet ettt ettt ettt st sttt sb e et e b nae 66
Table 8: Numbers of users of each role defined in ONLOLOZIES.ccvevvieierieieiieie ettt eeesbee e 96
Table 9: Numbers of rules, classes, individuals and axioms reported by SWRL for the small ontology.............ccerueenne. 98
Table 10: Numbers of rules, classes, individuals and axioms reported by SWRL for the large ontology..........cccceenee.e. 98
Table 11: Numbers Of triples at SEAGE 1.......oocieriiiiiiieieieee ettt ettt et e st e te st e e s st et e eseenteeneeenseeenneeeenneeennees 99
Table 12: NUMDETS Of trIPIEs @t STAZE 2.....ccveriieieriieieeiieieetieteetteteettete et e st stesseessesseessesseessesseenseesaessesseeseasseeasseennseesnsses 99
Table 13: NUmDbers Of trIPIEs @t STAZE 3......ccvevuieiiiiieieiieieeteet ettt ettt et e steetesteestesteesbesseessasseessaesaesseessesseesseesssesasseeensss 99
Table 14: Numbers Of triples @t STAZE 4........eeruiimiiiiiieitieeet ettt ettt ettt et b et b et e b et e ebe e bt esee bt eaeeeaneeeenbeeennees 99
Table 15: Numbers Of triples @t STAZE S......cveiueeieiiieieeieieet ettt ettt et e s e et e s bt et e st ebesseeneeeseenteeseeseeneeeanseeenneeennees 99
Table 16: Necessary & Sufficient conditions imposed on ESO-RBAC Classes........cccecvvrveriiiienenienieeieneeiesveeevee e 119
Table 17: Object properties in ESO-RBACccciooioiiiiiiiciesiieieeteeteett ettt ettt st et steessestaessessaesbesssesseessesseessesseenssens 120
Table 18: Fact definition used in dynamic RBAC design in Prolog.........cccoceeiiiieiinieiiiieieee e 151
Table 19: Rules in Prolog dynamic RBAC deSIZN.......c.eiieiiiiieiiiiieieeiieie ettt sttt e sneeeeeneeesnnee s 151
Table 20: Correspondences between Prolog functions and ESO-RBAC classes and properties..........ccceeveerveerneveennnnnn. 161
Table 21: Numbers of users in each role defined in the ESO-RBAC ontologies.........cceccvevvieieriieienieiieieie e evee e 163
Table 22: Numbers of rules run and triples obtained by Jena for each ontology...........ccoeeroeriiiiniiiiiniieeeeee 164
Table 23: Numbers Of triples @t STAZE L......ccueiieieeieiieiiete ettt ettt et et et et e et ente e s e eeeeneenseeneesnseeeaneeesnneean 164
Table 24: NUmDbers Of triPles @t STAZE 2......ccveiieriirieieeiieiieieste et e st et e st eae st eaessaesseesaesseessesseessesseessesseensessnessssesnsseesnseenn 165
Table 25: Numbers Of trIPIes @t STAZE 3......ccviiiiiiiiieiicieiieeeste ettt ettt e ae st e b e e e e sbeess e beessesseesseeseessesseessesssesssaeassassnseens 165
Table 26: Numbers of triples N STAZE 4........ccuiiiiiuiiieiieieete ettt sttt sb et eb et e ea e bt e st e steentesbeentesaeesnteesnneeas 165
Table 27: Numbers Of triples N STAZE S.......covuieiieiieieiieieee ettt st et st e e st etesse et e es e e teeneesteensesseensesneesnseesneens 165
Table 28: Roles and permissions in Hospital database...........cccvecverierieiieiiinieiecieieeeee ettt sae s 219
Table 29: Triggers for modelling static RBACc.couiiiiiiiiieiiciecteteeeet ettt ettt sttt b et sbeessesseessesaeensneas 220
Table 30: Triggers for RBAC enforcement MeChaniSIM.coouieiirieiiiiieieiieie ettt ettt s e s 221
Table 31: Number of unique rpa_full TOWS DY TOLE........cciiiiiiieieeieeee et 222

Index of Code Snippets

Code 1: An example of a seniority hierarchy written in Prolog............cceeieviiiieniinieniieiesieeiere et e 23
Code 2: Role inClusions Of FIGUIE 3.......ccuiiiiiiii ettt ettt ettt et s b et b et e e b e s b e e emneeeneas 25
Code 3: Example of a dynamic RBAC TULE........coeririiriiniiieieicieteteteeees sttt ettt st st st e 26
Code 4: Another example of @ dynamic RBAC TULC........cocuiiiiiiieieiieieee ettt ettt eeennaeennnes 27
Code 5: Context clauses and constraints with predicate I0ZIC.........ccveviiriiriiiieriiiieieeiee ettt s 28
LOToT (e T 1 To] 13 1 [T I s OO OO PORSRURPR 33
COdE 72 SENIOT 0 TOLES.....euiuirtititeitiet ettt ettt ettt ettt sttt sttt et et et bt e bt e bt e bt e bt eb et e bt sa e et et et et et ent et eneenbnesunenane 33
LOTaTs (T T3 1T 4 10 o PSSP 33
€A 9: TPA TULL ...ttt ettt e et e et e e teesbeeteesseeseesseesaesseesseseessesseesbeessenseeseesseeseenseeraeseeennneeannes 33
Code 10: definition Of PErMITTADIE.coouiiiiiiie ettt sttt s b et e e et st e bt ene e bt e ntesaeenee e 34
Code 11: definition Of PETMILEEA.cc.eeuiiuiririititeicct ettt ettt ettt sb st s sa et et ne et e e 34
(oY (oI B« o - T 1011 PSPPSR 34
C0AE 137 AEMIEA. ...ttt ettt e bttt ekt e bt s b et e et et entes e e st eh e ebe e bt eb e eb e bt eb e et et e b et entententeneesheesaeenaee 34
(01T (I B 1011 4 1o w221 o) (<O PRSP 35
LO7aT (oI BT 10114 Lo} 5 /T TP 35
Code 16: CREATE TABLE statement for d_s table in SQL........c.ccviiiiiieiiiiieieeieeeee e 35
Code 17: INSERT statement for @ d S FACT.......c.ccieviiiiieiiiieii ettt et s te b ste b e saeesbe st e beessebeesseennes 35
Code 18: CREATE TABLE Statement fOr TOOIMNL.....c..eeutitieiiitieieeieete ettt sttt ettt eateeeeeneesbeetesaeeneesseeaeeneee 36
Code 19: CREATE TABLE statement for usr SesSion table...........coeviriirieiieieieininiienencnceeneseeseeteeeeee et s 36
Code 20: INSERT statement for DUMMY FOL........cc.eecviriiriieeiieieiieiesteie ettt ettt esaesteessesseensesseensessaessessnensennnns 37
Code 21: SQL view for permittable (including the Prolog code on which it is based as a comment)............ccccccvrennrennne. 37
Code 22: SQL VIEW 01 1Pa_ fULL....oiiuiiiiie ettt ettt et b et b et b et e bt et e st e e e enees 37
Code 23: Prolog rule for CUITENLY ACHIVE.....cc.couiiiiiieieiiieiietert sttt ettt ettt st se ettt e saeenae 38
Code 24: SQL VIEW Or 1PA_fULL.....oouiiiiiieiiciee ettt ettt st e st e s e e b e sseessessaesse et aenseesaenseeanseeenneeensns 38
Code 25: row-level post-action trig@er 0N table 1S @.........ccccciivieriiiieriiiiesieeieste ettt ettt steeaeseeessesssesbeesseseesseennns 39
Code 26: SQL statement run by insert_included IN...........oocooiiiiiiiiiii e 39
Code 27: statements run by recourse iNCIUAEd IMN........cccoeririririinininiiieecceteeeee ettt s 39
Code 28: ThiS OGS NOT WOTK......cueiuiiiiriiiiiitietiitert ettt sttt ettt et ebt bbbt ebe s bt s bt st e b st e st et sbeesanenaee 40
Code 29: GRANTS performed through d s and IS @........cccoocieiiiiiiiiiiiiiceeeece ettt ereeeses 41
Code 30: Example of context condition definition............cceoiiiiriiiiiiiiieeeeeeeee et et 42
Code 31: Context constraint testing With applied CC......c.eeviririiriririniinieccteeee ettt s 42
Code 32: Context constraint violation With VIOIAtEd.coevuerieriiiiiiiiiieiiiiceeee ettt s s 43
Code 33: Test for access attempt failing context constraint with fail _context constraint..............cccoceeveerveerveerveenneeennnn. 43
Code 34: Prolog rule permitted in the dynamic RBAC model..........cccooiiiiiiiiiiiiiiieeeeeeeeee e 43
Code 35: CREATE TABLE fOI tBl TOWS.....ceutitiiriiiinintietenie sttt ettt ettt ettt sttt ettt eeae sttt eateeneenne 43
Code 36: Definition of permittable DY TOW........ccoocierierieriiiiesiecieie ettt ettt e st et este e e sessaeseessesseessenseensenseennnes 44
Code 37: Definition Of PErMIttaDIE CC.....c.cciieviiiieriiiieriicierie ettt ettt et te e te e b e e seesbeesaesaeesaesaeessessaessesseessseesnseeensns 44
Code 38: Setting security context for hoSp database.........cccceiuiiiiiiiiiiieee e e e 45
Code 39: An example of @ cONteXt-Setting fUNCHION.ceeuiriririrtirerertetet ettt ettt e saee e 45
Code 40: set_cc procedure to manage setting of the security CONteXt fOr USEIS.........cvevirieriirciereriieneeieseeieeeere e 46
Code 41: is_part_of procedure to determine inheritance of context constraints by roles...........ccoceeevevievieeriieeneeenneeennen. 46
Code 42: set_denials PIOCEAULE.eouiiiieiiitiee ettt ettt et h e ettt ettt e e bt ea e sbesae e beeaeesbeemeesbeenseebeeneeenneeennns 46
C0de 43: COAE FOI CC SELECL. ...ttt ettt ettt sttt st ettt ea et ebeebe e bt bt sttt b sene e 47
Code 44: Code for context nurse_in_same ward as PAtiCNt...........ccerierierierierierieriesieseesseseessessesseessesseessesseesesseessensns 47
Code 45: Actual SQL run as a result of nurse in_same ward as PatieNt.............ccoovevierrirrieieerieneerieseesreeeesseeeeeeseneenenes 47
Code 46: Conditional clause testing for the office hours CONTEXL.........cooiiiiiiiiiiiiiee e 48
Code 47: Procedural code for registering policy fUNCION........cc.coueviririririninineesesteceetet et 48
Code 48: Setting a user’s security context When he 10ZS ON.........cccueviieierieiiiiieeeee e e 48
Code 49: Displaying rpa table and rpa_fUll VIEW........c.covieciirieiiiiieiicieic ettt be st re b eaeesesreesseeesnneeesnes 50
Code 50: Displaying permittable, permitted, authorizable and authorized views for static RBAC..........ccccocceveninncennne. 50
Code 51: Displaying dynamic permissions and authorizations for day duty and night duty roles.........c..ccccceeveneeneenne. 50
Code 52: A sanitized DELETE StAtEIMENL.cc.couirtirtirtinieieieteteiteitet ettt ettt sttt sttt ettt eat et ebe bbb st be e e e 51
Code 53: Prolog rules on which the SO-RBAC model 1S DaSed.........ccoveiiiieiiiiieiicieiieeeeeeeere e 60
Code 54: SWRL RUIES fOI STEP E......oooiiiiiiiee ettt ettt b et e b et e et et e s et e eabeeennneesnteas 90
Code 55: SWRL RUIES fOI SEP Gi....coveveriiriiiinieniitetetetet ettt sttt sttt ettt ettt be bt st sa st et sa et aesbeesenenaee 91
Code 56: SWRL RUIES fOr STEP J...onviiiiiiieiieiieiieiee ettt ettt sttt e s et e eseeseesaesseessesseensesseenseeansseensseesnses 92
Code 57: SENIOT 0 11 PTOLOZ. .. .iciiitiiiiitieie ittt ettt ettt et s et e e te e be e st e s beesaesbeesbesseesbesseessaeseesseessessesseeseeensseensnes 93
Code 58: aUthOTIZEA 10 PrOLOE.......oiuiiiiieiee ettt b et b et e b et eae et satenbeeenneeennns 94
Code 59: Jena RUIES fOT StEP E.....cc.oruiriiiiiiiiiiieeeee ettt ettt ettt st sttt st e s 147

Code 60:
Code 61:
Code 62:
Code 63:
Code 64:
Code 65:
Code 66:
Code 67:

Jena RULES OI SEEP G....eeiiieiiei ettt ettt et e et e et e et s ae e tesme e aees e e beenseebeeneeeseennneeans 148
LS I S TS £ A <) o ISP 149
INSERT statements into rpa for jnr_data MaNA@Er...........ccveeervieierieiieiieieseeteseeieeeeteeeeereessbeeeeseessseennns 279
Some inherits_rpa_path statements that apply to role manager...........cccoeceevieiiniiieniinreieeseeee e 287
Further inherits_rpa_path statements that apply to role manager............ccoeceeeeeeeririeiieere e 287
ssd definition preventing the same user from being both doctor and NUISE...........cceevevieriereiiieriiieeeieee e 310
ssd definition preventing the same user from being both manager and consultant............c.ccecceevveercieeeeneeenen. 310
dsd constraint preventing simultaneous activation of day_duty and night duty roles.........c..ccocccceviennnnnne. 311

Index of Outputs

Output 1: rpa and rpa_full results for day _duty and night duty..........cccoevievieiiiiinieieceeeceeeeee e 278
Output 2: rpa and rpa_full results for data MANAGET.........c.cceiiiiiiiiieee et 278
Output 3: rpa results for Jnr datad MANAZET......c..ccueotiriiiiriiirierer ettt ettt ettt sttt st sttt enb e et eebeenneen 279
Output 4: rpa_full results for Jnr_data MANAZET...........eecverieiieiieieeieieetee ettt ee et e e e e saeesbesseessesseessesseensenseens 279
Output 5: Partial rpa and rpa_full results for snr_data Manaer............cccceeeiiriieriiiieiieieieeeeere et 279
Output 6: rpa and rpa_full reSUlts TOr AOCTOT......couiiuiiiiiiieie ettt ettt e st e e 280
Output 7: rpa results fOr hoUSE OFFICET.......cociiiiiiiiiiiec ettt s et en 280
Output 8: rpa_full results for NOUSE OFfICET......ccuiiieiiiieieiec ettt sbeenbesseensens 280
Output 9: rpa results for hNOUSE OFFICEI d.....ooviiiiiiiiiiiciee ettt b e e saesreesraeenaees 281
Output 10: rpa_full results for house 0ffICer d........ooiiiiiiiiiiii e e 281
Output 11: rpa_full results for ST hoUSE OFFICEI........coiriiriiriiiiicicieeic ettt 281
Output 12: rpa results for ST NOUSE OFFICET........ociiiiiieiicie ettt et aeeneeesnnee s 281
Output 13: rpa and rpa_full results for snr_house OffiCer d........ccooviiiiiiiiieiiiieiee e 282

Output 14:

rpa 1eSults fOr SPECIAliSt TEGISIIAL ... ec.iitiiiiiiieie ettt ettt ettt s sae st esbe et e st entesbeenereeens 282

Output 15: rpa_full results for SPECialist TEZISIIAL.........ccueiririiriririierteee ettt e n 282
Output 16: rpa results fOr CONSUILANL.........c.eiviiiieieiieie ettt et rte st et e st et eesbesseesseeseessesseenssaesnseesnseeennseens 283
Output 17: rpa_full reSults fOr CONSUITANT..........ccviiiiiticiiciciceeec ettt b ettt eseesaeesaesaeesbesreesbessneesneas 283

Output 18:

TPA TESULLS fOr STUACNE IUISE. ... eeuiitiitiitieteet ettt ettt sttt e b et e b et e st et en e e be e st e sbeeneesaeenee 283

Output 19: rpa_full results for STUAENE NMUISE.......ccueiiiiiiririiriieee ettt ettt aen et et enbeenaeen 283
Output 20: rpa and rpa_full T€SUILS fOI NMUISE......ccvieiieiieieii ettt ettt et eseesseesaesseenaesseensesnneens 284
Output 21: rpa results fOr StAfT NMUISE......ccciiiiiiiiiicie ettt re b steebe e e beesa e beessessseesssaesnseeas 284
Output 22: rpa_full results fOr Staff MUISE........cc.ooiiriiiii ettt st 284
OULPUL 237 TPA TESUILS FOT SISTET...c..eueiuiiiieiiiiiitiitirtiet ettt ettt ettt st be et et e et ettt ese s e bt eaeebeebesaeneee 284
Output 24: 1pa_fUll TESUILS fOI SISTET......cvetieieriieieeiieieeiete et ettt et se et e ste e e st e st e esaesteeseeseesseeseensesssensesssenseesssaesnseens 285
Output 25: rpa_full results fOr SPECIAIIST NUISE.cuccvieeierrieieriietesteetesteete st ereseebeeseesseessesseeseeseessesseeseesseessesseessessseens 285
Output 26: rpa results for SPECIALISt MUISE.......eeuieriieieiieiee ettt ettt et st e bt st e beesateeebeeeaneeeas 285
Output 27: 1pa TESUILS FOI TECEPLIOMIST. . .c.vitiutenieiieiteieteiieertt ettt ettt ettt ettt sbe st be st ettt enbe et e enbeenneen 286
Output 28: rpa_full reSUILS fOI TECEPIIOMNIST.ieuvetieierieeieeieeteseete st ete et ettt eteeseeteeseesaeeseesseesaesseessesseessesseessesseensensenns 286
Output 29: rpa and rpa_full results for admMINISIIALOL...........cccviiieriiiieieeeeie ettt e et e e e b esaesbeessbaeessseesnneeas 286
Output 30: 1pa reSUILS FOr MANAZET.........eeiiitieiiitiete ettt ettt ettt et e e bt e et e et e bt s st e nbe e st e nbeesateeeneeeaneeean 286
Output 31: rpa_full 1€SUIS FOr MANAZET.......c.eiiriiririrtitee ettt ettt et ettt et sb s bbb 286
Output 32: permittable, authorizable, permitted and authorized results for NUISE...........cccoeevereeeierircienieee e 288
Output 33: permittable, authorizable, permitted and authorized results for student nurse............ccoevveveerivecieniecreseennen. 288
Output 34: permittable results for StUdent NUISE d........ooviiiiiiiiiiiieee et et e e e e 288
Output 35: authorizable results for student NUISE d........c.ccoeriiriiriiiiiiiiiiir ettt 289
Output 36: permitted and authorized results for student NUISE d.......ceovevieiieiiiiieiiicieeeee e 289
Output 37: permittable results for STUAENT NUISE N..c.iiiiviiiiiiiiiieiieierieeieete ettt ettt eesteesbestaeebeeessseesnseeesseens 289
Output 38: authorizable results for STUAENt NUISE MN......oouiiiiiiiiiiiieieeie ettt e e 289
Output 39: permittable results for staff NUISE d........ccooeviiiiiiiiniiii e 290
Output 40: permittable results for Staff MUISE N........cccoeieiieiiiiieieieeeee et be e sssaesnnaees 290
Output 41: permittable reSults fOr SISTETccviiiiiiiiiiiieiicieece ettt e e b e e e sbe b e sbeessbaeesseesnneeas 291
Output 42: permittable results for STUAENT NUISE MN.....iiiiiiiieiiiiieiieiee ettt ettt et ete st e s bee e ssteesbeeenaeeens 291
Output 43: authorizable results for StUAENt NUISE MN......ceviriiriiriiriiiiieieteeercree ettt ettt 292
Output 44: permitted and authorized results for StUAENt NUISE N..cc.eoveiiieieiieieiieieetee et sre e ene 292
Output 45: permittable reSults fOr TECEPLIONIST.......ccvieiiriieieriieieie ettt ettt e ste et e steeseesreesbesaeebessaesbeesseesssessnseeas 292
Output 46: authorizable results fOr TECEPLIONISE.ccueiuiiiiiieii ettt sttt st ee et esbeeenaeeeas 292
Output 47: permitted reSults fOr TECEPLIONISL........ceiruirtirtirierterteteetet ettt sttt et ettt eae et b e sbeenaees 293
Output 48: authorized results fOr TECEPIONISE.........ccviriiiieriieiertiete et ettt e rte st este st e beeetesteesseeseesseeseenssaessseessseennseens 293
Output 49: permittable results for house OffiCer d........coooiiiiiiiiiciiiiiiiiice et sre e e 293
Output 50: authorizable results for house OffiCer d..........oooiiiiiiiiiii e 294
Output 51: permitted results for house OffiCer d.........ocviiiriiiiiniii e 294
Output 52: authorized results for house OffICEr d........ooiiririiiiiiiiiieece e e e s 294
Output 53: permittable cc, authorizable cc, permitted cc and authorized cc results for nurse.............cccovvveeveerveennnenn. 295
Output 54: Partial permittable cc results for staff nUIse d........occooioiiiiiiiiiie e 296
Output 55: authorized cc 1eSults fOr TECEPLIONIST........couirvirtirierieieieieteietet ettt ettt 297
Output 56: Privileges granted to HOSP1 QOO L.........ccuoiieriieieriieierieeie st sieeiesteeteetaeeeeeessesseesssesaesseessesssensessassnssens 298
Output 57: Tables visible to user HOSP1 UOO02..........c.cccueriieieiieieitieieeteetesteteseesseeesesteesesteessesseessesssessessssessssessseeas 298
Output 58: Privileges granted to HOSP1 TUO002.........ccoooiiiiiieieiiee ettt ettt sttt et st sieeenaeees 298
Output 59: HOSP1 U0002 18ads WAId.........coeeteririiniinienienteteieteteiteiteteet st st s sa ettt et et beebeesaeesaeesanesaneeane s 299

10

Output 60: HOSP1_U0002 fails to aCCESS MUISE WATH........ceeeriieuieieieiesieeiesieeieetceteeteete ettt eneesseeeesseeeesseesteesneeeeneeas 299
Output 61: HOSP1_U0002 updates patient dia@NOSIS.........ecueruereiereerierieeiesieiesseestesseessesseessesseesseesessesssessesssessesssessseens 299
Output 62: HOSP1_U0002 fails t0 NSt iNtO WATM........cceevvieieriieieriieieiteeiesieetesteeseeseeseeeesseeseesseessesseessesseessessesenssens 299
Output 63: HOSP1_UO0002 fails to delete from ae_consultation and authorized.............ccccoeveriiiiniinininciieeeee, 299
Output 64: HOSP1_U0002 inserts into patient did@NOSIS........ceeerueriererierieeiertieiesteeiestee e eeeeneeseeseesseesseesneeeesneeesnneens 300
Output 65: Tables visible to user HOSP1 UO003..........c.ooieiiieieiieieet ettt ee sttt eae st esaesseessesseensesnsaeesnseesnseeas 300
Output 66: Privileges granted to HOSP1 TUQO03..........c.ocoieiiieiieiieierieete st eie st eiesteeseeteeseeeessesseesseessesseessesssessessnssnssens 301
Output 67: Table diagnosis as seen by HOSP1 TUO003.........cccooiiiiiiiiiiieeeteee ettt st 301
Output 68: HOSP1 _U0003 Updates diagNOSIS. . ..ccueeueeruerierieeeertieiesteetesteeteetceteeseesteeseeseeeneesseeaesseensesseensesseensesseensesseens 301
Output 69: HOSP1 _U0004 INSEIS IO WAL,ccuieieiieieriieieeteiestestesteieste e eaesteessesseessesseensesseessesssessessnseesnssessnseens 302
Output 70: HOSP1 _UOO04 TAAS TOOMI.......ccueiteereirieiierieteeteteestesseestesseessessaessesssessesssessesssassesssesseessesssessesssessessssessssees 302
Output 71: HOSP1 U004 1€adS PATIEIL.....ccuirueeiieiierieeierttetest ettt ettt et e e st e et et e bt e tesbeeseesbeesbesbeentesbeenteeaeens 302
Output 72: authorized_cc results for snr_house_officer d concerning patient and u0004..............ccooceririiiiieenieennenn. 302
Output 73: HOSP1 U0004 updates diagnosis, ae_consultation and patient diagnosis..........ccceevevereerveviereeeneniencneene 302
Output 74: Tables visible to user HOSPT UOO17.....c.ooviiieiieiieiieieeieeie ettt ete sttt e sbeeaesteessesseessessaesseessaeesssassnseens 303
Output 75: Privileges granted t0 HOSPL OO 17cc.oiiiiiiiiiiei ettt st st 303
Output 76: AttEMPLING t0 ACIETE @ VIEW......eeitieiietieiietiete ettt ettt ettt et et e st e ese e et eneeseeeneeseeesesaeenaeeseeseenteeaneeesnneeas 303
Output 77: Tables visible to user HOSP1 UOQO18........ccoooiiiiieieiieieet ettt sttt ettt saesseeseensaeennseesnneeas 304
Output 78: HOSP1 U018 fails t0 read Ward.........cceecvieuieriieieiiieiesieeie sttt stteb et ete e esseeseesseessesseesesssesseesssassnseess 304
Output 79: Tables visible to user HOSP1 TUO005........c.oiiiiiiieieeiee ettt ettt sttt sae st ee e eeeee e s 304
Output 80: Privileges granted to HOSP1 TUOO0S.........coi ittt ettt ettt st te e e sseeneeenneeas 305
Output 81: HOSP1 _UQO0S5 1€adS PALICNL......cvieieiieeierieeierieetesteeiesteetesseetesstesseeseessesseesseeseesseessessesssessesssessessessesssenseens 305
Output 82: Tables visible to user HOSP1 UO022........c..ccveriieieiieieeiieieste et eteseesestesbeesesteessesseessessaessessssessssessnseess 305
Output 83: Privileges granted to HOSP1 TUQ022.........ccooiiiiiiiiiiieeeteseee ettt ettt sttt s e st seee e 305
Output 84: HOSP1 U022 1€adS PATICIIL......cuieueereeeuierieeierieetesteete st ete et eteeseeteeseeneeeseeseeemeasseenaesseenseaseensesseenseeseesenneens 306
Output 85: HOSP1_U0022 fails to insert into bed when logged in as receptionist.............ceeeeeeerierieeieniveesiieesneeennenns 306
Output 86: HOSP1_U0022 fails to insert into patient when logged in as receptionist............ccceeveveeerieceereesireeesveennennn 306
Output 87: No tables visible to user HOSP1 U005 after deactivation...........c.ccoceevuerienirienieiinieieeceiee e 307
Output 88: User HOSP1_U0005 has no access to table patient after deactivation..............cocceeeereeieneecenienieesee e 307
Output 89: No privileges granted to HOSP1_UO0005 after deactivation..........c.ccvecuerierierienieeieieeiesieseeseeseeesseeeesneens 307
Output 90: User HOSP1_U0005 has no access to table bed after deactivation.............ceecvevvieceenieeiieniecienee e esvee e 307
Output 91: Tables visible to user HOSP1 U007ccueiiiiiiieiieiee ettt sttt ettt sttt st ee et e s as 308
Output 92: Privileges granted to HOSP1 D007ccuiiiiiieieie ettt ettt et st see et sreeseeneeenneeas 308
Output 93: HOSP1 _UQO07 1€adS PALICIL......cvieeertieierieeierieetesteetesteetesseestesstesseeseessesseesseessessesssessesssessesssessesssesseensensenns 308
Output 94: HOSP1 _UOO07 1€AAS DEA......ccueeiiirieiieiieiieieiieteste et st testeetesteesbestaesbessaesseessesesssesseessesseessesseessesseessessseens 309
Output 95: User u0010 is defined in the role house OffiCer N.........ccoociiiiiiiiiiiiiiiiee e 309
Output 96: Role conflict error when attempting to define user u0010 as a specialiSt NUISE........ccocveveeriererrieieerieenannn 309
Output 97: User u0010 is still defined only as house OffiCer N..........ccooiriiiriiiiiiriieieieeeee e 310
Output 98: Attempt to activate user u0010 in (non-existent) role PAINLET..........ccvecverrieriirierreeierreeceesreeeeseesreeesereesreeas 310
Output 99: Role conflict error when attempting to define user u0010 as @ MANAZET.......cc.eevvireeriireenirienee e eeee e 310
Output 100: Attempt to activate user u0010 in role consultant to which he is not assigned............cceceveeverienenieennnes. 310
Output 101: Assigning user U0010 in 101€ CONSUILANL........cceeriiiieriieieieeiee ettt e s e eneenseesnns 311
Output 102: Activating user 10010 in 101€ CONSUILANL.ccviiieriiiiiiieierieieee ettt a et sa e sseesebeeenenas 311
Output 103: User u0010 now assigned to both consultant and house officer N..........ccccoooeiiiiiiiiiiniiiinc 311
Output 104: Attempt to activate user u0016 in role student nurse n causing a dsd conflict...........ccevveiirieiiniennnnnne. 311

11

Index of Texts

Text 1: Hospital Database SCHEMA.........cc.cccuiriiiiiiieieiieieettet ettt ettt et esae b e steesbesteesbeeseessaeseesseeseesseasseesseeasseeensss 29
Text 2: Row in usr_session corresponding to activate(u0005,house_officer day,date(2006, 8, 23, 12, 39, 0, -3600, 'BST',
true),'mother'). with no corresponding deactivate fACt............coevuiiiiiiriieiicieeeeeeee et et 36
Text 3: Row in usr_session corresponding to activate(u0005,house officer day,date(2006, 8, 23, 12, 39, 0, -3600, 'BST",
true),'mother"). with deactivate(u0005,house_officer day,date(2006, 8, 23, 12, 55, 0, -3600, 'BST', true)........ccccveruveenne 36
Text 4: SO-RBAC Ontology (some classes are COLLapSEd).coouiriiriiiiriiieiiee ettt 67
Text 5: Legend for SO-RBAC OntOlOZY......cc.eoiririiriinieiiieieieteiteieeit ettt sttt ettt ettt et ettt st sae st b b ebeenbeenaeenaee 68
Text 6: SWRL fOr TULE 1 SENIOT £0 L..iiiiiieiiiiieiiieierie ettt ettt et e et e et e seeseesseesaesseensessaensesseensensseeansseensseeenses 72
Text 7: SWRL fO TULE 1 SENIOT T0 2..iiuiiiiieiieiieiiieiesieete st ete st et e st et e e te e b e eteesbeeseeseeseesseesaesseessessaessasssessesssesensseenssessnses 72
Text 8: SWRL fOr 1Ule 1 SENIOT 0 4....iiiiiiiieieie ettt et ettt et sttt e s bt et e sbe e be s bt enbe e bt e ebeeeenaeeennees 73
Text 9: SWRL for rule 1 included 1N 1.....coooiiiiiiiiiiiiii ettt st e e et 73
Text 10: SWRL for rule 1_included I 3.....c.cciiiiiiiieiice ettt st e st e b e esaeesseeensaeensseeennees 74
Text 11: SWRL for rule 1 InheritsS PIa L.....coccicieiiieieiieieriietece ettt b e et eeteesbeestesseesaesseessesseessaeensseensseeensns 74
Text 12: SWRL for rule 1 Inherits Pra_ 3......cc.ooiiiiiiiiiiee ettt ettt ettt ettt et s bt et b e e e e b e s b e e enneeeeeee 75
Text 13: SWRL for rule 2 dra fUll......c.coccoiiiiiiii ettt ettt e st 77
Text 14: SWRL fOr 1ule 2 pra_ fUll........ccieciiiiieieceee ettt ettt ettt s e b e ssa e b e esa e beessenseensenseensesseensennns 78
Text 15: SWRL for rule 3 permittable.........ccviviiiieiiiiiiiiieieeieeteee ettt ettt b et esbeeseesbeeseesseesaesseeennneennns 80
Text 16: SWRL fOr 1Ul€ 3 deNIed......cc.eiiiiiiiieiee ettt sttt et s et et e b e neesaeenee e 81
Text 17: SWRL for rule 4 N0t denied..........coiveiiiiriniiniiieeceetet ettt ettt st st st st et 83
Text 18: SWRL fOr rule 4 permitted.........ccveeierieiieriieieeieie ettt ettt ettt e st e s e sseessesseesesssessesssenseessesseennseennses 85
Text 19: SWRL for rule 5 authorizZable.........ccveiiiiiiiieieiieiesie ettt sttt e b b e e e e beesaesaeesseesssaeensaeensseesnneas 87
Text 20: SWRL fOr rule 5 authOriZEd.oouiiiiiieiee ettt sttt eb et ebe e et e et e e enaeeeanees 88
Text 21: PSEUAOCOAE FOI STEP C.....oveiiiiiiriietieiert ettt ettt sttt ettt ettt ettt b e bt bttt b e bt et e nbeenbeenaee 90
Text 22: Senior 10 I SWRL......oiiiiiiiiieiieee ettt ettt ettt ebe st e sesate s e essesseesbesseessesseenseeseessesseeansseennnes 93
Text 23: NOT _DENIED I SWRL....c.oiiiiiiiieeee ettt ettt ettt e b e bt bbbt e st e et et et eneeenee 94
Text 24: AUTHORIZABLE and AUTHORIZED in SWRL......c.ooiiiiiiiiiietee ettt 95
Text 25: ESO-RBAC Ontology (some classes are collapSed).........occeeeererininineniinienieieieieeeceienesecerese s e 122
Text 26: Legend for ESO-RBAC ONtOlOZY.......cccveiuiiiiriieieriieieeiete ettt ete st eee st eaessaessessaeseesaesseessesseassesseessesssensesnssens 123
Text 27: Jena for rule 0_inferred SUDCIASSOL 1......c.ooiiiiiiiiiieieiieee ettt et e se s reesasaeennaees 127
Text 28: Jena for rule 0_inferred SUDCIaSSOTL 2........oiuiiiiiiiiiie ettt ettt eee e 127
Text 29: Jena for rule 0_inferred t¥Pe ...ttt ettt ettt et ne e 128
Text 30: Jena for rule 0 _Inferred tYPEe 2.....ociiiiiieiciee ettt ettt sttt aa e se e reenaesreensensaensens 128
Text 31: Jena for TUle 1 SENIOT 10 L..iiiiiiiiciiiieie sttt ettt ettt ettt e st e b e e te et e et e b e ess e seesseeseessesseessesssesnsaeensseesnseens 129
Text 32: Jena for TUle 1 SENIOT T0 2....iiiiiiiiiiiieitieie ettt sttt sttt e et e et e st e e bt e teebeetesaee et eseesmteeenneeeanneean 129
Text 33: Jena for TUle 1 SENIOT 10 4.....ooiiiiiiiiieieei ettt ettt ettt e b e e st e st e e et e bt en s e st enseeseenseeneenseeneesnseeeanseeanneean 130
Text 34: Jena fOr TULE 1 JUNIOT £0.....ccuiiieriiiieiieeieieeteste et et et e et etesttesbesse e sessaeseessenseessenseessenssansesssenseenssessnseesnssesnnseens 130
Text 35: Jena for rule 1 INheritsS Pra L......ccoiioiiiiiiiiieieeieiceeet ettt ettt e e st e b e ta e b e ess e beesaesseessesseessesseesssasenseeas 131
Text 36: Jena for rule 1 INherits Pra 3......oooiiiiiiiiiee ettt sttt et a et e s ettt e sae et e saeeenteeenneeas 131
Text 37: Jena for rule 2 dra fUll......ocooieeee ettt ettt ettt et e e et eeneeeenneenn 133
Text 38: Jena for rule 2 Pra fUll......ccooieiiiiee ettt ettt ettt ettt et e ente s e ensaeeenbeeenneeeanneens 134
Text 39: Jena for rule 3 Permittable...........ccveiieciiiiieiicieie ettt ettt te et e e ae e teesaesaeesaesaeessesssesbeessansaeesseas 136
Text 40: Jena for 1Ule 3 deNIeM.c.oooiiiuiiieiiee ettt h et ea et ae et e b e et e e e beeenaeeens 138
Text 41: Jena for 1ule 4 N0t dENIEA.c.eiiiieieie ettt ettt et et e et ete et esse et e beenseesnteeeaneeeanneenn 140
Text 42: Jena for rule 4 PermMItted.........coecviiieriiiieiecieetietee ettt et ettt e e ae st e esbe st e esbeesaesseessesseessesseensesssenseessens 142
Text 43: Jena for rule 5 authOriZable...........coiiiiiiiiiiiicieceece ettt sttt eea et e sbesbeesbesasaessbeeessseesnseeas 144
Text 44: Jena for rule 5 authOTIZEd........oouiiiiiiiiiee ettt ettt a e et st e e eaeeesnaee s 145
Text 45: PSEUAOCOAE FOI STEP C.....veiiiiriiiiietieierteste ettt ettt sttt sttt ettt ettt be bt bttt et e enreenbeen 146
Text 46: Jena rule for context constraint apPlIEd.........c.eecveriieiiieieriieierie ettt ee st esaesseesaesseeseensseas 152
Text 47: Jena for rule context CONAItION PASS L.....c.iivieriiiiiriiiiiitieiesieeieete ettt eae st e sae st e sbeesaesbeessesbeessessseessseesssseennsenns 154
Text 48: Jena for rule context CONAItION PASS 2....c.iiuiiriiiieiiiiiieiteeiieete ettt ettt ettt et st e st e se e bt es e sbeenbeeb e e sateeebeeeanneeas 155
Text 49: Jena for rule nurse in_same Ward S PAtICNL........c.ccierierieiierieieetieie et ce ettt ae st eae st etesneenseeenneeas 157
Text 50: Jena for new rule 5 authOriZabIe...........cveoviiiieiiieieiieiee ettt ettt b e e e s eseesseeseesseenneens 159
Text 51: Jena for new rule 5 aUthOTIZEd..........ccoviiieiiiieie ettt sb e s be e e e sbeesaesbeessesbeessesseessens 159
Text 52: Jena rule for populating NOT DENIED........c.cociiiiiiiiiiiiieieee ettt sttt ee e 161
Text 53: Sub-classes of ROLE defined as individuals in class ROLE SET in the ESO-RBAC model...........c...cccc...... 162
Text 54 Individuals representing permission and denial assertions in the ESO-RBAC model..........c.ccocccuevieviiirnnnnee. 162
Text 55: Seniority relationships in the ESO-RBAC MOAEL.........ccoieiiiieriiiiiiiciesieeeeeet ettt svae e snvee s 162
Text 56: Path inheritance axioms in the ESO-RBAC mMOdel..........cooiiiiiiiiiiiiiieteeee e 163
Text 57: Schema for RBAC model, listing tables..........cccceiiiriiininiiniieeccteeeeeteeeese et 219

12

Text 58: Schema for RBAC model, listing views

13

Index of Formulae

Formula 1: Mathematical definition of context constraints and CONAITIONS.ccviievvriiviiiiiiie et e e e e e 28
Formula 2: Definition of NOT DENIED........coiiiiiiiiiiiiieet ettt sttt et e ae et et e et et e sbeeaesbeenseeeas 83
Formula 3: Matching NOT DENIED......c..ccccotiiitiiiiieiininese sttt ettt sttt et be sttt sa et ease e e sanesaeesane e 84
Formula 4: Simplified matching NOT _DENIED...........cccoccteriiiiieiieeeieieetese ettt et ae e ese e e ssessaessesssenseessesnnns 84
Formula 5: Definition Of AUTHORIZABLEooiioiiiioie ettt ettt eeeaae e s enaeesetaeeeeeseeennnannes 87
Formula 6: Definition of AUTHORIZEDooiiiiiii ettt e ettt eetae e e s s e aae e e e s e s e seeeeeas 88
Formula 7: Inferences from SUD-PIrOPEILIES.c.eeiuiiuieiiiieiiei ettt sttt st e st et e bt ee e st entesaeenseenseeeneeesnneeenns 93
Formula 8: Matching NOT DENIED.........cccooiiioiiiiierieie sttt ettt ettt et e s e esessaesbessaesessseseessenssensaeenssessnseens 141
Formula 9: Simplified matching NOT DENIED...........ccccciiiiiiiiiiiiteieceete sttt sbe et seessesseesaesseesaesseesaessneens 141
Formula 10: Definition of AUTHORIZABLE..........coo ottt e et e e e et e s eeaae e e s e eaneeeeeeeeees 144
Formula 11: Definition 0f AUTHORIZED........cooouuiiiiiieeiee ettt ettt eetee e e s s eenaan e e e e e e e eeeeeeeaaeeeeeeenees 145
Formula 12: Definition of AUTHORIZABLE...........oooiiioiieeeeee et e et eeaaeeeeaaaareeeeeeeeeann 158
Formula 13: Definition Of AUTHORIZED.........cc..ooioiiiiiieeeeee ettt e et eaa e st esenae e s enaaessennaaaaeeeeeeseeens 159

14

List of Abbreviations

Access Control Models

DAC Discretionary Access Control

MAC Mandatory Access Control

RBAC Role-Based Access Control

DRBAC Dynamic RBAC

GRBAC Generalized RBAC

TRBAC Temporal RBAC

GTRBAC Generalized TRBAC

OBAC Ontology-Based Access Control

ABAC Attribute-Based Access Control

SO-RBAC Semantic and Ontology-based Role-Based Access Control
ESO-RBAC Enhanced Semantic and Ontology-based Role-Based Access Control
TBAC Task-Based Access Control

TMAC Team-Based Access Control

ARBAC97 Administrative RBAC 1997

OrBAC Organization Based Access Control

SAC Semantic Access Control

SACE Semantic Access Control Enabler

OASIS Open Architecture for Securely Interworking Services
MOSQUITO Mobile Workers’ Secure Business Applications in Ubiquitous Environments
PERMIS PrivilEge and Role Management Infrastructure Standards
Languages

OWL Web Ontology Language

OWL-DL OWL Description Logics

XML Extensible Markup Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

SQWRL Semantic Query-enhanced Web Rule Language

SPARQL SPARQL Protocol and RDF Query Language

XACL XML Access Control Language

XACML XML Access Control Markup Language

DTD Document Type Definition

15

RBAC Terminology

URA User-Role Assignment

PRA Role-Permission Assignment
SSD Static separation of duties
DSD Dynamic separation of duties

Database Terminology

DBMS Database Management System
VPD Virtual Private Databases
CIM Common Information Model

SWRL Terminology

TBox Terminology Box

ABox Assertion Box

16

1 Introduction

An increasingly important issue in data and application security is the use of security models. This thesis focuses
on data security models for medical data, although the same principles are equally applicable to other fields, such as
banking. The information that medical databases contain is highly sensitive, holding personal data about individuals and
needing a strict way of protecting the privacy of patient personal and medical data [1][2][3]. When referring to the use
of electronic medical records, of utmost concern is the privacy and security of individual patient information in clinical
databases [4]. Measures for protecting medical data are supported by law in the UK by the Data Protection Act 1998 in
the UK [5], in the US by the Fair Health Information Practices Act of 1994 [2], and elsewhere.

Wiederhold et al. [6] proposed Trusted Interoperation of Healthcare Information (TIHI), a centralised solution
for assigning a security officer the responsibility to manage the sharing of sensitive information. However, this
approach may not be appropriate for healthcare environments, as the dynamic and ad hoc nature of sharing healthcare
and medical data would place considerable burdens on the workload of such an officer [7]. Some other works on
security requirements include security policies and policy models [8][9] that put forward the concepts of clinical

governance and availability of clinical knowledge.

The traditional methods of database access control are Mandatory Access Control (MAC) and Discretionary
Access Control (DAC) [10]. In DAC, the owner of the data determines who has access to it. [11] This is a very widely
used security model, and is widely used in operating systems and relational databases, but is rather insecure and hard to
maintain. MAC grants access according to a hierarchical control structure. It is commonly used in the military, but is

generally considered to be too rigid for use in the corporate context. [12]

There has been much interest recently in the development of flexible Role-Based Access Control (RBAC)
models, in which access to data depends on a user’s role. In RBAC, permissions and users are both assigned to roles.
RBAC systems can be divided into two types: static RBAC, in which the permissions assigned to users and roles do not
change, and dynamic RBAC, in which permissions assigned to roles may change according to internal and external
contexts. This is particularly useful in pervasive software applications, which are dependent on changeable context. In

these situations, access control requirements are likely to change constantly [13].

RBAC models have been built in logic programming languages such as Prolog [14] for almost two decades, and
have been implemented in database management systems such as Oracle, Postgres and MySQL. With the
standardisation of Semantic Web Technology [15] and introduction of web languages based on predicate logic such as
OWL (Web Ontology Language) [16] and SWRL [17], we have been able to build RBAC models that are database
independent in their implementations and which can use natural inheritance available in SWRL in order to address

hierarchical nature of RBAC models.

This thesis first examines the modelling of static and dynamic RBAC using predicate logic and its applicability
to relational DBMS (Database Management Systems). The static RBAC elements are those of Barker & Stuckey [18]
[19], and the dynamic elements are devised by Strembeck & Neumann [20][21]. The static and dynamic RBAC are

implemented in Prolog as described by those authors, and then in the Oracle relational DBMS.

We then explore the possibility of developing an RBAC model developed in OWL, and creating a reasoning
process with SWRL upon RBAC concepts codified in OWL. We have used our experiences of defining RBAC model in

Prolog and converting its facts and rules into OWL modelling concepts and reasoning. This new ontological RBAC

17

model is called SO-RBAC (Semantic and Ontology-based Role-Based Access Control). SO-RBAC uses OWL-DL,
with reasoning performed by SWRL, and directly translates the static RBAC model from Prolog.

We then extend SO-RBAC to develop ESO-RBAC (Enhanced Semantic and Ontology-based Role-Based
Access Control). ESO-RBAC uses OWL-Full, with reasoning performed by Jena, and represents a novel method of
modelling a more flexible RBAC by taking advantage of some of the native features of ontologies, such as class

hierarchy.

Early iterations of the systems now known as SO-RBAC and ESO-RBAC were called Dynamic Ontology-based
Role-Based Access Control (DO-RBAC) [22][23].

In the ontological models, the reasoning process upon OWL concepts grants permissions or denials solely within
OWL-enabled ontological environments. Therefore OWL RBAC implementation in any data centric environment,
where RBAC is needed, will be managed by accessing OWL classes though the Protégé OWL-API [24]. Consequently
our reasoning process is application and database independent and the process of reasoning, which results in either

permissions or denials, is being done within OWL/SWRL enabled environment.

This thesis is organised as follows. Chapter 2 presents an overview of the access control models DAC, MAC and
RBAC.

Chapter 3 examines the feasibility of implementing, in a relational database management system (DBMS), a
dynamic RBAC model for a hospital database originally written in Prolog. The static RBAC model is first described,
followed by its implementation in Oracle. The dynamic RBAC is then described in the same way. The dynamic RBAC
is built upon the static RBAC model of Barker & Stuckey [18], and has dynamic constraints separately defined through
their context constraints. Table 2 shows the roles of Hospital staff and the permissions assigned to them as defined in
the static RBAC model. The static RBAC schema is reused from earlier research prototypes where we experimented
with solutions for data sharing across the NHS [25]. The dynamic RBAC design is built upon the semantics of the static
RBAC and extended by Strembeck & Neumann [21].

Chapter 4 describes some of the problems with implementation of RBAC in traditional relational database

systems, and introduces the modelling of RBAC using the XML and the Semantic Web.

Chapter 5 presents SO-RBAC, the first of our proposed ontology-based RBAC models, which was translated
from our traditional RBAC in Prolog as described in Section 3.2.1 into OWL-DL with reasoning performed using
SWRL. It is important to note that the purpose of SO-RBAC was not to create a pure ontological RBAC model, but to
demonstrate the feasibility of mapping an RBAC model based on Prolog facts and rules into an ontology. Therefore, the
proposed SO-RBAC is not designed from ‘scratch’. It is instead based on a set of existing Prolog facts and rules, which
are translated into an ontological schema. Prolog facts are modelled as instances within OWL classes, or as properties of
these classes. RBAC rules are modelled through domain and range constraints, is-a relationships and inheritance, or
using SWRL rules. The model is described, and the results of implementation are shown.

Chapter 6 describes the Enhanced Semantic Ontology-based RBAC (ESO-RBAC). Most previous ontologies for
access control have used OWL-DL. Although this is widely supported and easy to understand, it was found to be
inflexible. ESO-RBAC uses OWL-Full so that classes, as well as instances, can be used as the Domain and Range of
properties. This increases flexibility in defining properties, and allows the use of OWL’s native class hierarchy in

defining roles in an object-oriented fashion. Therefore, roles need to be defined as classes, not as instances. However,

18

some properties in the ontology take roles as their domains and/or ranges. Unlike OWL-DL, OWL-Full permits the use

of classes as property parameters.

Chapter 7 evaluates the work in this thesis on modelling RBAC in Prolog, relational database management
systems and ontologies. It contrasts OWL with description logic, and considers the advantages and disadvantages of

each. the main advantages of OWL over predicate logic in modelling RBAC are as follows:

« the ability to use the ontological class and property hierarchies as part of the model, allowing a natural

representation of hierarchical relationships and eliminating the need for certain computations;
» the ability to query static ontologies quickly without recomputation;
« independence of the querying layer from the ontology;
+ OWL and reasoning languages are not vendor-specific.

However, the ontology needs to be rebuilt every time the data or permissions change, and the reasoning process
is slow and the OWL files are large. Issues are also identified with the ability using currently available tools to perform
reasoning, particularly for the ESO-RBAC model using OWL-FULL.

Further development of ESO-RBAC is also discussed in Chapter 7, in order to refine the dynamic RBAC model

by, for instance, introducing a hierarchy of context constraints.

19

2 The Domain: Access Control Models

2.1 Database Security and Access Control

Database security is mainly concerned with the availability, integrity and confidentiality of data stored and
shared within structured data repositories [1]. We understand availability to mean that authorized access to a database is
never denied, and integrity to mean that database rules (such as integrity constraints and rules defining who is
authorized to access the database) are not breached. Confidentiality refers to the protection of data about individuals.

Security in general has three stages [11]:
1. authentication (are you who you claim to be?),
2. access control (protection from unauthorized access requests), and
3. audit (checking for security breaches as they happen or after they have occurred).

We are concerned with stage 2, access control. Authorizations and access control mechanisms reduce the risk of
confidentiality, integrity and availability of data being breached, and consequently contribute towards secure
mechanisms for data sharing and collaborations in database applications. Access control involves analyzing and
checking each access query against resources [26]. It requires access control rules to define the basis upon which access

is granted or denied, as well as procedures to check requests for access against the rules.

The traditional methods of database access control are Mandatory Access Control (MAC) and Discretionary
Access Control (DAC) [10].

In DAC, the owner of the data determines who has access to it. [11] DAC is a very widely used access control
mechanism. For example, Unix file system permissions and the SQL GRANT/REVOKE model [27] are based on DAC.
DAC is simple to apply and understand, but has two problems in a large corporate context. DAC is not very secure. In
many corporate settings it is inappropriate for any individual user to “own” an object, thus enabling him possibly to
revoke access to it for any other individual in the organization. DAC is also difficult to maintain in an organization with
many users. The same permissions that apply to a number of users performing the same job need to be defined
individually for each user, which is likely to lead to inconsistency in definitions of different users with the same role. If
the access rights for a particular group of users needs to be changed (for example, if the database is restructured, or if
the business rules change), then this change needs to be made not only to new users, but also to every existing user in

that group.

In MAC, users do not own objects, and access is granted according to a hierarchical control structure. A typical
MAC system has four levels of security (‘Top Secret’, ‘Secret’, ‘Confidential’ and ‘Unclassified’), to which both data
and users are assigned. A strict rule of ‘write-up, read-down’ is applied, where users can only write to data in a security
classification above their own, and can only read data assigned to a security classification below their own (anyone can
sign in the President, but no-one can check whether he is signed in). [28]. MAC is commonly used in the military, but is

generally considered to be too rigid for use in the corporate context. [12]

2.2 Introduction to RBAC

Role-Based Access Control (RBAC) [29] is an increasingly popular security mechanism that unlike DAC and

MAC does not directly assign access rights to users. Instead, users are assigned roles, and the roles are assigned access

20

rights. Thus, access rights of users are determined their according to their functions within the organization. “Control is

based on employee functions rather than data ownership.” [27]

RBAC allows a business-oriented and non-technical administration approach to managing access to database
records. The idea is to break the association between database users and their permissions for accessing databases, by
introducing roles authorized to users and permissions authorized for such roles. In other words, access control is being
administered by managing associations between users and roles and between roles and permissions [30][31][32]. Note
that MAC can be regarded as a simple case of RBAC with four roles and a particular set of permissions. Similarly, DAC

can be regarded as a simplified RBAC where each user has his own ‘role’.

A user may have more than one role. RBAC fits in very well with the division of roles in a typical health service,
where doctors, nurses, receptionists, etc. all have particular jobs and thus access particular data. RBAC has been defined
in terms of three factors, namely secrecy (confidentiality), integrity and availability [28]:

“Security is compromised if information is disclosed to users not authorized to access it. Integrity is
compromised if information is improperly modified, deleted or tampered. Availability is compromised if
users are prevented from accessing data for which they have the necessary permissions.”

A fundamental difference between RBAC (and MAC) and DAC is that “users cannot pass access permissions on
to other users at their discretion”. [27] Generally, only the database administrator is given the power to assign roles to
users.

RBAC is seen as the most comprehensive access control method and a powerful concept for addressing security
administration needs in database applications [33]. It was standardized by the National Institute of Standards and
Technology (NIST) [34] and reduces the complexity of authorization management [35]. RBAC controls access to
information based on users’ work activities [12]. It is easy to change users’ permissions without modifying the
underlying access structure by simply adding or removing people from roles [35]. As a result, RBAC is adaptable to any
organizational structure and can evolve over time as the organization changes. This concept has been further developed
to allow roles to be composed of other roles [12] using a role hierarchy, which prevents repetition of role-permission

assignments. It has also been developed for use in networked environments [36].

RBAC can be represented using predicate logic [37], which enables the building of models in logic programming
languages such as Prolog [14]. RBAC has been implemented in a trust infrastructure [38], in order to comply with
wider security and safety requirements in healthcare applications, using the DRIVE RBAC model. They distinguish
between static role assignment to users and dynamic allocation of roles at session time. Zhang et al. [7] proposed a
delegation framework. based on the RDM2000 RBAC model [39], that addresses how to advocate selective information
sharing in role-based systems while minimizing the risks of unauthorized access in healthcare information systems. The
formal specification of access control policies in clinical information systems can be found in [37]. They leverage
characteristics of temporal First-Order Logic to cope with dynamic access control policies and reduce the risks to

confidentiality, integrity and availability of medical data.

RBAC concepts appear to be exploited in many healthcare projects, and it has been accepted that RBAC is more
appropriate than any other approach in the domain of security in medical databases [40][41]. Mavridis [1] developed a
security policy called eMEDAC which was based on DAC, MAC and RBAC, and was able to preserve the availability,
integrity, and confidentiality of a medical records system. In 2000, they extended eMEDAC with the development of
DIMEDAC which incorporated additional features such as the hyper node hierarchies and the three-dimension access

matrix [42]. Another solution that employs role hierarchies was proposed in [43]. It uses digital certificates,

21

cryptography and security policy to control access to clinical intranet applications. Their system consists of two phases:

the ways users gain their security credentials; and how these credentials are used to access medical data.

2.2.1 Simple Static RBAC

Static RBAC consists of a set of fixed rules concerning access to data. In other words, a user in role A can read

and write to object X, while a user in role B can read objects Y and Z. These permissions are determined at compile-

time.
User 1
a
Role 1 User 2
traps_b
User 3

Figure 1: Simple RBAC

Figure 1, redrawn from an image in [27], depicts an example of a simple static RBAC scenario involving a role
with several users and objects assigned to it. Generally, only the database administrator is given the power to assign

roles to users. This figure shows an abstract assignment of a Role to two Objects, and of 3 Users to the Role.

22

2.2.2 Extensions to Static RBAC

Manager
|]

Senior_Software Engineer
A

Software Engineer
A

Programmer

Figure 2: Path inheritance example

d s (programmer, software engineer) .
d s (software engineer,senior software engineer).
d s(senior software engineer,manager) .

Code 1: An example of a seniority hierarchy written in Prolog.

A widely used model for static RBAC based on predicate logic is that of Barker & Stuckey [18]. Their model is
discussed in detail in the next few paragraphs.

Permission refers to a user’s right to perform an action. In a hierarchical RBAC model, permissions are inherited up

the hierarchy. Denial means that a user is prevented from performing an action. Denials override permissions.

Seniority refers to the grouping of roles into a hierarchy. Permissions are inherited up the hierarchy, while denials are

23

inherited down the hierarchy. The RBAC model considers when users are online (‘active’), and only give permissions
to currently active users.

While hierarchy in an RBAC system is useful in determining flow of command, it is not always appropriate that
people higher up in a hierarchy should inherit the permissions of those below. For example, in a software development
setting, managers might not inherit the permissions of senior software engineers to modify programs or technical
settings. A seniority hierarchy representing this scenario can be represented as in Code 1.

A path inheritance rule specifies that a permission can inherit this far, but no further, in this case only as far as
the senior software engineer level, but not beyond into management grades. Figure 2 illustrates this scenario,
where the square arrow pointing to manager indicates that the manager does not inherit any privileges from

senior software engineer.

Equal-status roles with slightly different permissions can be defined using role inclusion. An example of its
application is to define the permissions of employees on different duty rosters (employees on day and night duty have
the same permissions, but are only allowed to access data at particular times). An inclusion relationship can be thought
of as a relationship between an inner role and an outer role. Thus, if is_a (inner role, outer role) definesa

direct inclusion relationship, then inner role inherits the privileges of outer role.

Doctor Nurse
Doctor_day Doctor_night Nurse_day Nurse_night
Day Duty Night Duty
Figure 3: Example of role inclusion

Consider an example of hospital doctors and nurses with day and night duty rosters (Figure 3). Here, the role
doctor day, referring to a doctor on day duty, ‘is a’ doctor, and also ‘is a’ day duty staff member. The role
doctor_ day thus inherits the privileges and constraints of both roles doctor and day duty, but not vice versa.
An inclusion hierarchy can also be created, similar to the seniority hierarchy. Generally, users will be assigned to roles
within the inclusion hierarchy (inner roles). That is, a user will be assigned as a doctor day, rather than to doctor

orday duty.

24

is_a(doctor_day, doctor).
is_a(doctor day, day duty).
is_a(doctor night, night duty).
is_a(nurse_day, nurse).
is_a(nurse day, day duty).
is_a(nurse_night, night duty).

Code 2: Role inclusions of Figure 3

Permissions and denials are both inherited inside inclusion relationships. Thus, if is a (inner role,
outer role),then inner role inherits both the permissions and the denials of outer role. This is in contrast
to the seniority hierarchy, where permissions and denials are inherited in opposite directions. Figure 3 shows an
example of role inclusion to represent day-duty and night-duty doctors and nurses. This figure represents the facts in
Code 2.

Thus, the role doctor day, referring to a doctor on day duty ‘is a’ doctor, and also ‘is a’ day duty staff
member. The role doctor day thus inherits the privileges and constraints of both roles doctor and day duty, but
not vice versa. Generally, users will be assigned to roles inside the inclusion hierarchy (inner roles). That is, a user will

typically be assigned to doctor day, rather than to doctor or day duty.

Separation of duties refers to rules whereby users are restricted in the combinations of roles that they can
possess. Static separation of duties (SSD) means that a user can never be assigned to a particular combination of rules.
The classic example where this is appropriate is that an employee of an organization cannot be both a purchasing
manager and an accounts manager. Dynamic separation of duties (DSD) means that a user can have a combination of
permissions, but cannot be activated for both at the same time. Using the above example, a user might be an accounts
manager for one department, and purchasing manager for another. To prevent conflict, the user cannot be active as both

roles at once.

Static RBAC is easy to implement in most standard off-the-shelf relational DBMSs, including Oracle (version 7
onwards) [44] and Postgres (v8.x onwards) [45], which have native support for roles (CREATE ROLE). However, these

do not implement all the features described above.

2.3 Dynamic and context-aware RBAC
Barker & Douglas [19] have implemented an RBAC system for protecting federated DBMSs. This includes one

context element, namely checking a user’s IP address. However, their system is implemented in Java, which while
having the advantage of being DBMS-independent, is inefficient and has an additional layer between the database and
the application. A more efficient method would be to use the DBMS own features to define the context-aware RBAC
model. These include procedural languages, such as PL/SQL in Oracle. While dynamic RBAC can be implemented in

certain standard off-the-shelf database management systems, the implementation is often complex.

Traditional static RBAC is difficult to apply in context-aware applications, since it fixes a user’s access
privileges when the user logs on. In dynamic RBAC, the access rules are determined at run-time when a user attempts
to access data. These may be based on time of access, or specific values in the data being accessed, or environmental

factors such as ambient temperature or location. [21]

Various alternatives and extensions to RBAC have been proposed to provide context-aware access control, in
which rules are enforced according to runtime parameters. [46] The basic RBAC model can be extended to take account

of contexts, by varying the range of active roles, the roles in which users may be active or assigned, or the permissions

25

that are assigned to roles, according to context. In other words, in which user-role assignments or role-permission
assignments can be changed dynamically during program run-time, rather than statically when a user logs on. This is
called context-aware RBAC, or Dynamic RBAC (DRBAC). Factors that may cause changes in the RBAC assignments
include time of day, ambient temperature and user location. Users may also be restricted to accessing particular rows in
a database table, rather than necessarily being given access to an entire table. These include location-based access
control system such as M-Zones Access Control [47] and GEO-RBAC [48], as well as Temporal RBAC (TRBAC).[49]
TRBAC has been further extended as Generalized T-RBAC (GTRBAC) to incorporate hierarchy and separation of
duties. [50] Another extended RBAC model is the OASIS (Open Architecture for Securely Interworking Services)
model [51][52] for RBAC in heterogeneous data sources. Belokosztololszky et al. [53] propose a mechanism for using

defining parameters used by RBAC models as contexts.

Tolone et al. compared and contrasted the applicability of various access control models for collaborative
systems. [54] These are DAC (called the Access Matrix Model in their paper), static RBAC, TBAC (Task-Based Access
Control), TMAC (Team-Based Access Control), Spatial Access Control and Dynamic RBAC (called Context-Aware
Access Control). They found that context-aware RBAC provides the best support for such applications, but also that it

is the most complex.

Corradi et al. [55] have designed a context-based access control system where “privileges are directly associated
with contexts, and users acquire their proper set of permissions dependently on their current contexts.” This approach

appears to regard context awareness as a substitute for roles.

The proposed RBAC system has dynamic features. The dynamic RBAC features can be divided into two types:
temporal and row-level. In TRBAC, access to a resource depends on the time when it is accessed. In row-level RBAC,
particular staff can only access particular rows in the table depending on some formulation. Context constraints filter
down the seniority hierarchy, and inside the inclusion hierarchy. TRBAC has been successfully implemented in Oracle
8i. [49]

Environment roles have been proposed as a way of modelling environmental factors by specifying each one as a
role [56].

The extension of roles beyond users to environments has been proposed [56]. Roles are used to capture environment
conditions. Whereas a user role is ‘active’ when a user assigned to that role is logged in, an environment role is active
when a particular set of environment conditions are true. For instance, an environment role for of f i ce_hour s can be
set up, which is automatically activated at 09:00 and deactivated at 17:00. Other environment roles can be related to
factors such as ambient temperature and locations. Permissions assigned to user roles may only be valid if particular

environment roles are also active.

rpa(child,use, intercom) «
active (weekday),
active (free time)

active (weekend) .

Code 3: Example of a dynamic RBAC rule.

For example, the predicate logic code in Code 3 can be used to determine whether a child can use an intercom in

a home. The rule states that a user with the role chi | d can use the intercom during their free time at weekdays, and at

26

any time at weekends. In this case, weekday, f r ee_t i nme and weekend are environment roles, which are defined as

active in particular conditions using additional predicates.

From this, it can be noted that a security model can be applied to access control for resources of any kind, such

as access to buildings or rooms, or permission to use particular computers or systems, not only to access to data.

Although this is not specifically mentioned in the paper, environment roles could also be used to capture
environment conditions intrinsic to a particular person. For example, this indicates the validity of the rule

rpa(nurse, read, patient) (auser with role nurse can read a patient’s file).

Here, P is a patient, and the predicate states that the r pa rule is valid for patient P if the hi gh_hear t beat
role is active for P. Additionally, role hierarchies can be applied to environment roles in an analogous fashion to user
roles, as can static and dynamic separation of duties.

Extending this concept further, GRBAC (Generalized RBAC) [57] treats not only environment conditions, but also
objects, as roles. The treatment of objects as roles, when applied to a hierarchical RBAC system, makes sense in object-
oriented databases, but perhaps less applicable to relational database systems, where database objects are not organized

hierarchically.

rpa (nurse, read,patient (P)) «
active (high heartbeat, P).

Code 4: Another example of a dynamic RBAC rule.

An alternative method of modelling contexts is to define context constraints and assigning these to user roles, as

described by Strembeck & Neumann [20][21], who also devised a series of predicates to aid in modelling.
This model can be represented in predicate logic using an example in Code 4, based on the model in [21].

A dynamic RBAC system based on this model has been implemented in Oracle 10g using its row-level access
control feature [58]. We propose to extend this work, to implement more complex context-aware access control models
using DBMSs, so that access to data from database-driven applications can be controlled directly by the database
according to the usernames entered by the application user, without the need for any additional middleware or

application-level access control.

Applying context-aware access control models to DBMSs involves capturing the environmental conditions, and
using the DBMS security features to ensure that only the appropriate level of access is achieved by any user, based on
the rules determined by the environmental conditions. An extension to RBAC is the ARBAC97 (Administrative RBAC
1997) model that brings in the possibility of “using RBAC itself to manage RBAC” [33] by allowing users who are
members of administrative roles to assign (and revoke) users and permissions to (and from) roles. TMAC [59] and
TBAC [60] both model access control from a context-oriented perspective. However, it has been argued that such an
approach does not bring anything new from the RBAC perspectives in medical database security [7]. TRBAC restricts
the roles available to users depending on the time period, by enabling or disabling roles using role triggers at specified

times. TRBAC has been implemented using database triggers on an Oracle database [49].

27

context clause(patient consulted by doctor,Doctor ID,Patient ID) «
ae consultation(, , ,Patient ID,Doctor ID).

context clause(patient diagnosed by doctor,Doctor ID,Patient ID) «
ae consultation (Cons_ Number, , ,Patient ID,),
patient diagnosis(_,Doctor ID, ,Cons_ Number,).

context constraint(patient treated by doctor,Doctor ID,P,
patient (Patient ID,Last Name,First Name,Address,DOB,Bed ID)) «
context clause (patient consulted by doctor,Doctor ID,Patient ID)

context clause(patient diagnosed by doctor,Doctor ID,Patient ID).

Code 5: Context clauses and constraints with predicate logic.

A context hierarchy can be devised by defining context constraints in terms of other context constraints. Hu &
Weaver [46] suggest how this can be done systematically by defining context conditions, clauses and context constraints

as in Code 5.

Context Constraint := Clause1 u Clause2 U ... U Clause3
Clause := Condition1 n Condition2 n ... n Condition3
Condition := <CT> <OP> <VALUE>

Formula 1: Mathematical definition of context constraints and conditions.

In Formula 1, <CT> is a context parameter, <OP> is a comparison operator, and <VALUE> is a parameter value
for comparison. Thus, an example of a context condition might be Temperature = 25.

Bertino ef al. [61] proposed a general framework for reasoning about access control models using C-Datalog
[62], which is an object-oriented extension of Datalog [63]. Their framework is “general enough to model discretionary,
mandatory, and role-based access control models”. It can model static and dynamic RBAC, and the object-oriented
nature of the C-Datalog language allows hierarchical RBAC to be modelled more simply in their model than in models

using traditional predicate logic languages such as Prolog and Datalog.

Seitz et al. [64] proposed an access management system, called Semantic Access Certificates, for use in grid
environments, and illustrate its use in a medical environment. This system extends RBAC by enabling access control
based not only on the role of the users wishing to access the data, but also the semantics of the data. In this sense, it acts

like dynamic RBAC.

28

3 RBAC Implementation in Prolog and Relational DBMS

3.1 Introduction

In this section we examine the feasibility of implementing, in a relational DBMS, a dynamic RBAC model for a
hospital database originally written in Prolog. The static RBAC model is first described, followed by its implementation
in Oracle. The dynamic RBAC is then described in the same way.

The dynamic RBAC is built upon the static RBAC model of Barker & Stuckey [18], and has dynamic constraints
separately defined through their context constraints. Table 28 (Appendix VII, page 219) shows the roles of Hospital
staff and the permissions assigned to them as defined in the static RBAC model. The static RBAC schema is reused
from earlier research prototypes where we experimented with solutions for data sharing across the NHS [25]. The
dynamic RBAC design is built upon the semantics of the static RBAC and extended by Strembeck & Neumann
[21].The DRBAC model was written in SWI-Prolog [14], a free/l/ibre implementation of Prolog using the Edinburgh
syntax. The model requires SWI-Prolog v5.6.17 or above to run, due to the use of date and time handling syntax only
available in the most recent versions. We have implemented a hierarchical DRBAC model in which denials override
permissions. Additionally, the proposed DRBAC model has the following extended features discussed in [18]:

separation of duties, inheritance paths and role inclusion.

Table 1: Tables for hospital database used in testing

Table Description
Ward Hospital wards.
Room Rooms within hospital wards.
Bed Beds within rooms in wards.
Patient Patient demographic details.
Diagnosis List of coded diagnoses.

AE_Consultation Consultations by doctors with patients. Links to RBAC table usr for doctor.

Patient_Diagnosis |Diagnoses given during consultations. Links to RBAC table usr for doctor performing
diagnosis.

Nurse_Ward Assignments of nurses to Wards. Links to RBAC table usr for nurse.

Ward(Ward_ID, Type, Ward_Capacity)

Room(Room_ID, Ward_ID, Type, Bed_Capacity)

Bed(Bed_ID, Room_ID, Type)

Patient(Patient_ID, Last_Name, First_Name, Address, DOB, Bed_ID)

Diagnosis(Diagnosis_code, lllness_name, Usual_Symptoms)

AE_Consultation(Cons_Number, Cons_Date, Cons_Description, Patient_ID, Doctor_ID)

Patient_Diagnosis(Patient_Diagnosis_Number, Diagnosing_Doctor, Diagnosis_Desc, Cons_Number,
Diagnosis_Code)

Nurse_Ward(usr, Ward)

Text 1: Hospital Database Schema

29

Diagnosis |« Patient Bed |= Room |= Ward
Y
Nurse_Ward
A
Y
AE_Consultation » Patient_Diagnosis [« usr
Figure 4: ERD of hospital database schema. Arrows show ‘many’end of 1:many relationships. A simple line represents a
1:1 relationship.

The hierarchical RBAC is modelled in this section using a database and RBAC model that could be applied to a
hospital scenario. The data model includes basic information about Patients hospital Beds. There are a number of beds
in each Room, and a number of Rooms in each Ward. A ward may be looked after by one more Nurses. A Patient may
be diagnosed during a Consultation with a Doctor, according to a specified list of diagnosis. Table 1 shows the database
tables of a hospital database that is used to model RBAC in the system. Note that the information about Doctors and
Nurses is stored in an RBAC table, usr, to which the tables AE_Consultation, Patient_Diagnosis and
Nurse_Ward link. Therefore, no table in Table 1 lists either Doctors or Nurses. Text 2 shows the schema. Figure 4
shows the ERD (Entity Relationship Diagram).

Manager
‘ Specialist_Murse } ‘ Consultant . ‘ Senior_Data_Manager } Ce Receptionist ‘
4 Y .
A A . 4 A -
\ ' . !
0 \ \ A
‘ Sister } R ‘ Specialist_Registrar | ' \
o R 4
A F -
! ! L
\ '\i \ v
‘ Staff_MNurse } : ‘ Senior_House_0Officer . K ‘ Junior_Data_Manager e~ .
v o [.
Y A i . - LN
N ‘.\' | | |

‘ Student_MNurse

I g ' .
o M Y :
i ; i - I)
Sl House_Officer - | Office_Hours
- I - i T !
| R i ! . .
. s K . |I N h
R 1 . :
! s - . .
: s : | !

) /_:,‘_,' T, .
Data_Manager

Figure 5: Role hierarchy in Hospital database, excluding day duty and night duty in doctor and nurse roles. Solid
lines show d_s relationships, dotted lines show is_a relationships.

30

Figure 5 shows the seniority hierarchy of the RBAC model used in this section. This model has four role
hierarchies, for doctors (shown in red), nurses (blue), data managers (green) and administrators (yellow). Figure 115
(Appendix VI, page 217) shows both the seniority and inclusion relationships for doctor and nurse type roles. Table 28
lists the roles in this RBAC model, and permissions assigned to them. The ERD of RBAC tables (relations that are used
to store RBAC meta-data) is shown in Figure 116 (Appendix, page 217) shows both the seniority and inclusion
relationships for doctor and nurse type roles. Table 28 (Appendix, page 217) lists the roles in the model, and the

permissions assigned to them.In the following sections, Prolog code is depicted in a 1ight typewriter font,

while SQL and PL/SQL code is depicted in a heavy typewriter font.

3.2 Defining and Implementing Static RBAC in Relational

Database

3.2.1 Representation of Static RBAC Model in Prolog
Table 2: Fact definitions used in RBAC design in Prolog.

Fact Formula

Description

Example

d s(SeniorRole,
JuniorRole) .

defines a direct seniority
relationship: SeniorRole is
directly senior to JuniorRole

d s (consultant,
specialist registrar)

inherits rpa path(
SeniorRole,
JuniorRole,
Permission,

Object) .

Privileges represented by
Permission for object Object
are inherited up the role hierarchy
from JuniorRole to
SeniorRole, and no further.

inherits rpa path(sen
ior data manager,
junior data manager,

i)

In this example, Permission
and Object are set using the
Prolog anonymous variable ,
meaning that this inheritance
path from
senior data manager to
junior data manager
applies to all values of
Permission and Object.

is_a(InnerRole,
OuterRole) .

Direct inclusion relationships.

is_a(student nurse ni
ght, student nurse).

user (Username,
LastName,
FirstName,
Address, DOB) .

Defines a user’s personal details.

user (u0001, 'Sugar',
'Ed', 'l Montgomery
Ave','12/06/1975") .

password (Username,
Password) .

User passwords. In the Prolog
implementation, the passwords are
unencrypted, but in a real
implementation they would
obviously encrypted.

password (u0001, 'desk’
) .

role (Role) .

Defines the role named Role

role (consultant) .

object (Object) .

Defines the object named Object,
and includes its full data structure.

object (room(Room ID,
Ward ID,Type,Bed
Capacity)) .

rpa (Role,
Permission,
Object) .

Role Permission Assignment: Role
is assigned Permission on
Object.

rpa (house officer,
select,ward(Ward ID,
Type,Ward Capacity)) .

ura (User,Role) .

User Role Assignment: User is
assigned to Role.

ura (u0017,
senior data manager) .

31

Fact Formula

Description

Example

activate (User,
Role, Time,
Password) .

User is activated as Role at Time
with Password.

activate (u0005, house
officer day,

date (2006, 8, 23, 12,
39, 0, -3600, 'BST',
true), 'mother')

This means that user u0005
signed on as role

house officer dayat
12:39:00 BST on 23 August
2006 with password mother.
Note that the date is expressed
using a SWI-Prolog date
constructor.

deactivate (User,
Role, Time)

User is deactivated as Role at
Time.

deactivate (u0005,
house officer day,

date (2006, 8, 23, 12,
50, 0, -3600, 'BST',
true))

Assignments of users to roles, and roles to permissions, are represented as Prolog facts and Prolog rules. Table 2

lists the syntax of the Prolog facts used in this static RBAC model. Notice that an assertion of fact in Prolog takes the

form relation (term;, term,, .., term,) . An initial capital letter means that the term is a variable; otherwise, it is

a constant atom.Appendix IV (page 2006) lists all facts defined in the Scenario used for testing this Prolog model.

Table 3: Rules in Prolog static RBAC design

Rule Name Description
permittable Privileges assigned to users.
authorizable Privileges assigned to users, filtered by denials.
permitted Privileges assigned to currently active users.
authorized Privileges assigned to currently active users, filtered by denials.

included in

All inclusion relationships.

senior to

All seniority relationships.

inherits rpa

All pairs of roles linked by an inheritance path.

rpa_full Explicit and implicit (by seniority) permissions given to roles.
d rpa full Explicit and implicit (by seniority) denials given to roles.
denied Denials assigned to users.

currently active

Users with current open sessions.

dsd conflict

All pairs of roles that produce a DSD conflict.

ssd_conflict

All pairs of roles that produce an SSD conflict.

inconsistent ssd

Whether a role violates an SSD rule.

inconsistent dsd

Whether a role violates a DSD rule.

Prolog rules are used to deduce who can access what. A Prolog rule takes the form result :-

condition, where the result is true if the condition is true. Table 3 lists all rules used in the static RBAC Prolog

model. The complete Prolog code for the Prolog rules describing the full static RBAC meta-model is given in Appendix

II. These are discussed in detail here.

32

% inclusion of equal-status roles
i. included in(R1,R1).
ii. included in(R1,R2) :- is_a(R1,R2).
iii. included in(R1,R3) :- is_a(R1,R2),

included in(R2,R3).

Code 6: included in

Code 6 shows the included in rules, for deducing role inclusions. Predicate i in Code 6 states that any role
is included in itself. Predicate ii states that R1 is included in R2 if R1 is directly defined as a type of R2 by an is_a
fact.

Predicate iii states that R1 is included in R3 ifi—

a) R1 is directly defined as a type of R2, and
b) R2 isincluded in R3.

Note that the comma (,) signifies logical “AND” in Prolog. Predicate iii is recursive, because the condition

clause also contains included in.

Note that the three predicates are independent, so, for example variable R1 in i has no connection with R1 in ii.

i. senior to(R1,R1) :- d s(R1l,).

ii. senior to(R1,R1l) :- d s(,RI1).

iii. senior to(R1,R2) :- d s(R1,R2).

iv. senior to(R1,R2) :- d s(R1,R3), senior to(R3,R2).
Code 7: senior toroles.

The rules for senior to are shown in Code 7. These are defined similarly to included in. However, a role is
automatically considered to be “senior to” itself. For it to be defined as such, it must be either directly senior to another
role (as in Predicate i) or have a role directly senior to it (Predicate ii). If a role participates in a seniority hierarchy, then
it is “senior to” itself. [This means that senior to is really “senior to or equal”.] Predicates iii and iv are analogous to

Predicates ii and iii in Code 6 for included in.

inherits rpa(R1,R1, ,).

inherits rpa(R2,R3,P,0) :- senior to(R1,R2),
senior to(R3,R4),
inherits rpa path(R1,R4,P,0).

Code 8: inherits rpa

Code 8 shows the predicates for inherits rpa, which determines how far along a seniority hierarchy access

privileges can be inherited.

rpa full(R1,P,0) :- included in(R1,R2),
senior to(R2,R3),
rpa (R3,P,0),
inherits rpa(R2,R3,P,0).

Code 9: rpa full

33

Code 9 shows the rule, rpa full, which determines the entire set of permissions that a particular role has,

whether explicit or implicit. It states the R1 has permission P over object O ifi—
a) R1 isatype of (included in) role R2;
b) R2 is senior to R3;
¢) R3 has permission P over object O, and

d) R2 and R3 are part of an inheritance path.

permittable(U,P,0) :- permittable(U,P,O0,R).
permittable(U,P,0,R) :- ura(U,R)
rpa full(R,P,0).

Code 10: definition of permittable.

Code 10 shows the definition of the Prolog rule permittable, which determines whether a user would have

permission to access an object if they were active in their role.

permitted(U,P,0) :- ura (U,R),
permitted(U,P,O,R) .
permitted(U,P,0,R) :- currently active(U,R,),

permittable (U,P,0,R) .

Code 11: definition of permitted.

Code 11 shows the definition of the Prolog rule permitted, which determines whether a user does have
permission to access an object. permitted is true if permittable is true, and the user is currently active

in the role.

d rpa full(R1,P,0) :- included in(R1,R2),
senior to(R3,R2),
d rpa(R3,P,0).

Code 12: d _rpa full

Code 12 shows the definition of the Prolog rule d rpa full, which is analogous to rpa full for denials.

Note the following differences from rpa full.

a) The included in term is the same, but in the arguments of the senior to clause are reversed. All
access control rules, whether permissions or denials, are inherited from an outer (parent) role to an inner
role. However, whereas permissions are inherited up the seniority hierarchy, denials are inherited down
it.

b) the rule for d rpa full does not consider inherits rpa: in this model, denials are always

inherited all the way down a seniority hierarchy.

denied(U,P,0) :- ura(U,R),
d rpa full(R,P,0).

Code 13: denied

Code 13 shows the definition of the Prolog rule, which determines whether a user is denied access. This is

defined simply as a user being a member of a role that it part of a d rpa full. It is analogous to both

34

permittable and permitted: there is no concept of being denied access depending on whether a user is active in

arole. Either the user is denied access to an object, or is not.

authorizable (U,P,0) :- ura (U,R), authorized(U,P,0) :- ura (U,R),
authorizable (U,P,0O,R). authorized(U,P,0O,R).
authorizable(U,P,0,R) :- permittable(U,P,O,R), authorized(U,P,0,R) :- permitted(U,P,O,R),
not (denied (U, P,0)) . not (denied (U, P,0)) .
Code 14: authorizable Code 15: authorized

Code 14 shows the definition of the Prolog rule authorizable, which is defined as “permittable but not

denied”. Code 15 shows the definition of the Prolog rule authorized, which is defined as “permitted but not denied”.

3.2.2 Transformation of Static RBAC Model from Prolog to SQL
Database

The Prolog representation described in Section 3.2.1 above, and in Appendix IV and Appendix III, was transformed
into a representation in an SQL database. That is, a relational database model was created for holding data about
assignments of users to roles and roles to permissions, so that permissions and denials of particular users could be
inferred using SQL queries on this database model. This model was stored in a database schema separate from the main
data tables.

A Prolog fact can be transformed in one of three ways.

(1) Transformation into INSERT statements on database tables (most Prolog facts).

(2) Transformation into CREATE TABLE statements to create tables in the main data schema (Prolog facts
object).

(3) Transformation into rows of table usr_session in the RBAC schema (Prolog facts activate and

deactivate).

CREATE TABLE d_s (
senior_role VARCHAR(64) NOT NULL,
junior_role VARCHAR(64) NOT NULL,
Primary Key (senior_role,junior_role),
FOREIGN KEY (senior_role) REFERENCES role(role),
FOREIGN KEY (junior_role) REFERENCES role(role)

);
Code 16: CREATE TABLE statement for d_s table in SOL.

In general, Prolog facts are transformed into INSERT statements on database tables (method (1)). The conversion
was generally straightforward. For example, Code 16 shows the table definition of the d_s table corresponding to the

d_s Prolog fact.

INSERT INTO d_s(senior_role, junior_role)
VALUES ('consultant','specialist_registrar');

Code 17: INSERT statement for a d_s fact

Code 17 shows the INSERT statement equivalent to d_s (consultant, specialist registrar) .. Like

all d_s facts, this takes the form d_s (Senior role, Junior role) (Table 2, page 31).

In some cases, the transformation is more complex due to the different ways in which SWI-Prolog and Oracle

represent dates and times. Additionally, there are differences in structure between the Prolog facts and Oracle tables.

35

CREATE TABLE room CREATE TABLE usr_session(

(usr VARCHAR(16) NOT NULL,

room_iid VARCHAR(10), role VARCHAR(64) NOT NULL,

ward_id VARCHAR(10), start_time TIMESTAMP NOT NULL,

type VARCHAR(10), end_time TIMESTAMP,

bed_capacity VARCHAR(10), FOREIGN KEY (usr) REFERENCES usr(user_id),
primary key (room_id), FOREIGN KEY (role) REFERENCES role(role)
Foreign Key (ward_id) references ward(ward_id) |);

) Code 19: CREATE TABLE statement for

Code 18: CREATE TABLE statement for room. usr_session table.

The object facts (e.g. object (room (Room ID,Ward ID,Type,Bed Capacity)) .) are represented
as CREATE TABLE statements in the database schema for the main data (not in the RBAC schema) (method (2)). This
is because they define the object types existing in the data model of the data being accessed by RBAC, and thus
represent database tables to which the RBAC model grants access. Therefore, they. For example, this object fact is

represented by the CREATE TABLE statement in Code 18.

Prolog facts activate and deactivate are transformed into rows of table usr_session (method (3)).
This table does not store the password. Code 19 shows the structure of the usr_session table.

Unlike in Prolog, where logging on (activation) and logging off (deactivation) are represented by separate
activate and deactivate Prolog facts, the SQL table represents an activation and corresponding deactivation by
an entry in usr_session. The absence of a value for end_time in usr_session corresponds to the lack of a
deactivate fact corresponding to an activate fact, i.e. a currently active session. Unlike Prolog, SQL can
validate a data record before entering it, and can modify and delete records. Therefore, there is no need to store sessions
with incorrect passwords, only for them to be rejected by the currently active rule. Instead, attempts to INSERT
rows from logins with incorrect passwords can be rejected using a database trigger. Similarly, rather than representing
the end of a session by asserting a deactivate fact, it can be represented by UPDATEing the row in the RBAC

database table usr_session with the end_date.

usr role start_time end_time

u0005 house officer day 2006-08-23 12:23:39 NULL

Text 2: Row in Usr_session corresponding to activate (u0005,house officer day,date (2006, 8,
23, 12, 39, 0, -3600, 'BST', true),'mother') . withno corresponding deactivate fact.

For example, the fact

activate (u0005,house officer day,date(2006, 8, 23, 12, 39, 0, -3600, 'BST', true), 'mother').

is represented in the SQL model as a row in usr_sess1ion, given in Text 2.

usr role start_time end_time

u0005 house officer day 2006-08-23 12:23:39 2006-08-23 12:23:50

Text 3: Row in uSr_session corresponding to activate (u0005,house officer day,date (2006, 8,
23, 12, 39, 0, -3600, 'BST', true),'mother'). with

deactivate (u0005,house officer day,date (2006, 8, 23, 12, 55, 0, -3600, 'BST',
true) .

36

Ifa deactivate fact

deactivate (u0005,house officer day,date (2006, 8, 23, 12, 55, 0, -3600, 'BST', true).
is added, then the equivalent in the SQL model is to update the row in Text 2 with a value for end_time, giving

the row in Text 3.

Text 57 (page 219) shows the RBAC schema. Figure 116 (page 217) shows the ERD of the RBAC schema.

INSERT INTO role(role) VALUES ('_');
Code 20: INSERT statement for Dummy role.

After creating the table role, a dummy record is added to the table, with value _ (Code 20). This is needed as an

equivalent of the Prolog anonymous variable , as used in some Prolog rules.
Prolog rules were transformed in either of two ways:

(1) Non-recursive Prolog rules were transformed into SQL views. However, currently active is a special

case.

(2) Recursive Prolog rules were transformed into SQL tables populated by triggers and stored procedures.

CREATE VIEW permittable AS
-- permittable(U,P,0) :- ura(U,R),
-- permittable(U,P,0,R).
-- permittable(U,P,0,R) :- rpa_full(R,P,0).
SELECT DISTINCT usr, object, action, ura.role AS role FROM ura,
rpa_full
WHERE ura.role = rpa_full.role;

Code 21: SQL view for permittable (including the Prolog code on which it is
based as a comment).

Most Prolog rules were converted into SQL views (method (1)). Code 21 shows an example for inherits_

rpa, including the original code for the Prolog rule as SQL comments.

CREATE VIEW rpa_full AS -- all permissions to all roles, both explicit and implicit (by inheritance)
-- rpa_full(R1,P,0) :- dincluded_in(R1,R2),
-- senior_to(R2,R3),
-- rpa(R3,P,0),
-- inherits_rpa(R2,R3,P,0).
SELECT DISTINCT 1included_in.inner_role AS role, action, object, senior_role, junior_role FROM rpa,
included_in, senior_to
WHERE 1included_in.outer_role = senior_to.senior_role
AND senior_to.junior_role = rpa.role
AND (
(senior_to.senior_role,senior_to.junior_role) IN
(SELECT senior_role,junior_role FROM inherits_rpa WHERE action = '_' AND object = '_")
OR
(senior_to.senior_role,senior_to.junior_role,action) IN

(SELECT senior_role,junior_role,action FROM inherits_rpa WHERE object = '_")
OR
(senior_to.senior_role,senior_to.junior_role,object) IN

(SELECT senior_role,junior_role,object FROM inherits_rpa WHERE action = '_'")
OR

(senior_to.senior_role,senior_to.junior_role,action,object) IN
(SELECT senior_role,junior_role,action,object FROM inherits_rpa)

Code 22: SQL view for rpa_full.

37

Querying permittable involves querying ura and rpa_full. This is represented in SQL by a view joining
the tables ura and rpa_full. However, some transformations are more complex, as shown in Code 22 for

rpa_full.

The view for rpa_full is created by joining rpa, included_in, senior_to and inherits_rpa,
which is itself based on inherits_rpa_path as well as senior_to. The inherits rpa path facts in
Prolog contain anonymous variables, represented by the underscore, which match any value. These were imported

directly into the equivalent SQL table inherits_rpa as columns with the value '_". However, this has no special

meaning in SQL, which has no equivalent concept. Therefore, the meaning of the underscores as ‘match-all’ values has
to be explicitly defined for the columns where they might appear. This technique is also employed in ssd_conflict
and dsd_confl1ict. Due to the use of foreign key references to role in the relevant tables, the dummy record in

role, shown in Code 20, is needed.

currently active(U,R1,Dl) :- activate(U,R1,D1,Password),
password (U, Password),
ura (U,R1),
(
not (deactivate (U,R1,));
deactivate (U,R1,D2),
date time stamp (D1,T1),
date time stamp (D2,T2),
T2 < T1
) -

Code 23: Prolog rule for currently active.

The SQL view currently_active is defined entirely differently from the equivalent Prolog rule, due to the
different representation of the Prolog facts on which it is based (activate and deactivate). Code 23 shows the

currently active Prologrule.
This rule tests whether a user U is currently active in a role R1 at a given date/time D1, in the following steps:
1. Check whether an activate fact activate (U,R1, D1, Password) exists.
2. Verify that user U has password Password.
3. Verify that user U is assigned to role R1.

4. Check that U has not been deactivated before D1 (no corresponding deactivate fact exists for U in role

R1).

CREATE VIEW currently_active AS
-- currently_active(U,R1,D1)
SELECT DISTINCT usr, role, start_time FROM usr_session
WHERE usr_session.start_time < SYSTIMESTAMP
AND (usr_session.end_time > SYSTIMESTAMP or usr_session.end_time is null);

Code 24: SOL view for rpa_full.

The SQL view currently_active (Code 24) is based only on usr_session, and checks whether the
current time is between start_time and end_time. The password, role assignment and DSD checking are

performed by triggers on usr_session.

38

Some rules in the RBAC model are recursive. These cannot be handled by SQL views, since SQL is not Turing-
complete, so cannot handle recursion or iteration. Instead, they are handled by triggers on the underlying tables, which

populate a table with the rows that would be produced by the rule.

CREATE OR REPLACE TRIGGER is_a_after_all_sl
AFTER INSERT OR UPDATE OR DELETE ON is_a
BEGIN

insert_included_inQ);
END;

Code 25: row-level post-action trigger on table 1s_a

The two recursive rules in this RBAC model are included in and senior to, which use classic
parent/ancestor recursion. The following text uses included in as an example of transforming a recursive Prolog
rule to SQL. The transformation of senior to is similar, and is not shown. The Prolog rule included in is shown
in Code 12 (page 34). included in is deduced by querying on is a, and if required by recoursing to
included_in. In the database RBAC model, included_1in is a table, populated by a row-level post-action trigger

on is_a as in Code 25.

INSERT INTO 1included_in(
SELECT DISTINCT 1is_a.inner_role,is_a.outer_role
FROM 1is_a WHERE (inner_role,outer_role) NOT IN
(SELECT 1inner_role,outer_role from included_in)
)H

Code 26: SQL statement run by insert_included_in

This trigger runs a stored procedure insert_included_in, which procedure runs the SQL statement in

Code 26 to insert values into included_1in.

DELETE FROM included_in_staging;
-- included_in(R1,R3) :- dis_a(R1l,R2), 1included_in(R2,R3).
INSERT INTO 1included_in_staging(
(SELECT DISTINCT included_in.inner_role, is_a.outer_role
FROM 1is_a JOIN included_in
ON 1is_a.inner_role = included_in.outer_role)
MINUS
(SELECT -dnner_role,outer_role from included_in)
);

SELECT COUNT(*) INTO v_rows FROM included_in_staging;
IF (v_rows > 0) THEN

INSERT INTO included_in (SELECT * FROM included_in_staging);
END IF;

Code 27: statements run by recourse_included_in

Only records that are not already in included_in are inserted. A row-level post-action trigger on
included_in is thus run, for each row entered into included_in. This runs the procedure recourse_

included_1in in Code 27.

The table included_in_staging is used to temporarily store records for inclusion in included_in.
included_in_staging is cleared, and then populated with records that are to be added to included_1in in this
recursive call, and are not already in included_in. These rows are then inserted into included_iin, recursively

triggering the running of the same procedure.

39

INSERT INTO 1included_in(
(SELECT DISTINCT 1included_in.inner_role, is_a.outer_role
FROM +is_a JOIN included_in
ON 1is_a.inner_role = included_in.outer_role)
MINUS
(SELECT 1inner_role,outer_role from included_in)

);
Code 28: This does not work.

It would look as if the code in Code 28 would accomplish the objective much more simply, dispensing with the
intermediate table. However, this leads to infinite recursion, apparently because the clause following the MINUS
operator uses an out-of-date copy of included_in. Therefore, the same insertions, and consequently the same
recursions, are run over and over. Integrity constraints would theoretically solve this problem, by preventing duplicate
records from being inserted, but their violation causes a program error, preventing the procedure from running to
completion.

The use of a table for temporary storage is certainly not the most elegant or efficient way of solving this
problem. A PL/SQL or equivalent data structure within the procedure could probably be used instead, but this solution
would be more programmatically complex to implement, as well as being DBMS-specific.

The table senior_to is populated by triggers on d_s and senior_to itself in a similar way to

included_1in with is_a.

A pre-action row-level trigger on usr_session performs validity checking in relation to the user’s role
assignment and dynamic separation of duties. Therefore, no records can be inserted into Usr_session that activate a

user for an incorrect role.

A pre-action row-level trigger on ura checks that a role to be assigned to a user does not violate static
separation of duties rules defined in the table ssd, rejecting any record that would violate such conditions. In contrast,
while the Prolog implementation defines ssd facts, it cannot enforce them, because it cannot check facts to be inserted
for validity against a schema or set of rules.

Table 30 (page 221) summarizes the triggers necessary to create the RBAC data (data about users, roles and
assignments of access rights to data tables).

Some tables have integrity constraints to prevent duplicate records from being inserted. Although senior_to
and included_in are intended to have unique records, they do not have integrity constraints because these would
interfere with the running of the triggers that populate them, as explained above.

Data diagrams for the RBAC data model are in Appendix VI (from page 217). Figure 116 (page 217) shows the
ERD of the RBAC data model, showing tables only. Figure 117 (page 218) shows the ERD, showing tables and views.
Figure 118, on page 218, graphically illustrates the CREATE VIEW relationships, linking each view with the objects
involved in creating it. The schema diagrams for the RBAC data model are in Appendix VII (from page 219). Text 57
(page 219) and Text 58 (page 220) show the tables and views in the schema.

3.2.3 Enforcement of Static RBAC in DBMS Meta-data
After modelling the RBAC in a DBMS schema, it was set up in the meta-data of an Oracle DBMS. That is, the

RBAC was set up so that it would be enforced by the built-in access control system of Oracle.

40

Oracle implements hierarchical RBAC in its meta-data. A role is created using CREATE ROLE role_name.
The GRANT ROLE command is used to assign a user to a role, or a role to a role, as: GRANT rolel TO role2]

user:. In this case, ro1e2 would inherit privileges assigned to ro7lel.

Triggers on RBAC tables run the CREATE, GRANT and REVOKE statements necessary to create an enforceable
RBAC model. Table 30 (Appendix VII, page 221) summarizes these triggers. Note that the users are GRANTed roles
through usr_session, not through ura. This is because merely being assigned to a role is not enough to obtain
privileges: the user needs to be active in the role. Some actions on RBAC tables, particularly UPDATE actions, are
prevented, mainly because allowing them would require programmatically complex triggers to ensure that the correct
CREATE, GRANT and REVOKE commands were run following the action. For example, updating a record in ura is
prevented. To change a role assigned to a user, the RBAC administrator is prevented from running an update query such
as UPDATE ura SET role = "house_officer_n" WHERE usr = "u0001" AND role = "house_
officer_n"; instead, the RBAC administrator must DELETE the record in ura and INSERT a new record to

replace it.

d_s(senior_role, junior_role): GRANT junior_role TO senior_role
is_a(inner_role, outer_role): GRANT outer_role TO inner_role

Code 29: GRANT; performed through d_s and is_a

As Table 30 shows, this enforcement mechanism does not handle denials. This is due to the contradictory ways
in which permissions and denials are inherited in the two hierarchies. As far as the enforcement mechanism is
concerned, inheritance of a permission is the same whether it is performed through an is_a relationship or a d_s
relationship: both lead to GRANT rolel TO role2 statements being executed. Permissions filter up the seniority
hierarchy, and inside the inclusion hierarchy, as in Code 29.

Denials filter down the seniority hierarchy: a junior role inherits denials from a senior role. However, denials
filter inside the inclusion hierarchy, in the same way as permissions. Since permissions inherited either way look and act
the same in meta-data, and denials are supposed to over-ride permissions, using REVOKE to enforce denials would be
complex. Therefore, denials are ignored here.

Denials are handled by the RBAC mechanism, in the same way as context constraints. This makes sense,

because denials filter in the same direction as context constraints for both hierarchies.

Inheritance paths are not handled in this implementation, but could be partially handled by appropriate use of

NOINHERIT in GRANT commands.

3.3 Dynamic RBAC
After modelling the static RBAC model described in Sections 2.2.1 and 2.2.2 in Oracle SQL, the dynamic
RBAC model described in Section 2.3 was then modelled.

41

3.3.1 Representation of Dynamic RBAC Model in Prolog
Table 4: Fact definition used in dynamic RBAC design in Prolog

Fact Formula Description

associated cc(Role,Permission, |The context condition ContextConstraint applies when a user

Object, ContextConstraint) . with role Role accesses object Object using Permission.

ssd(Rolel,Role2). A static separation of duties relationship exists between Rolel and
Role2 (i.e. no user can be assigned to both roles using ura).

dsd (Rolel,Role2). A dynamic separation of duties relationship exists between Rolel and
Role?2 (i.e. no user can be active in both roles simultaneously using
activate).

Table 5: Rules in Prolog dynamic RBAC design

Rule Name Description

applied cc Whether a context constraint applies to a user performing an action.

fail context constraint |Whether an action fails a context constraint, considering its applicability.

violated Whether an action would fail a context constraint, irrespective of its applicability.

context condition Defines the circumstances in which a user can perform an action on an object.

Table 4 and Table 5 list the Prolog facts and rules used for dynamic RBAC.

In dynamic RBAC, permissions assigned to users and roles vary dynamically according to “context conditions”.
These are internal (determined by database values) or external (determined by the environment) rules that affect
permissions. A context condition may affect all roles defined in the RBAC model, or only specific rules. It may affect
access to all columns in all tables in the database, or only some of these. When context conditions are applied to the

RBAC model, they become “context constraints”. The rules are defined in context condition predicates.

context condition (
patient treated by doctor, Doctor ID, P,
patient (
Patient ID,Last Name,First Name,Address,DOB,Bed ID
)

) < ae_consultation(_, , ,Patient ID,Doctor ID).

Code 30: Example of context condition definition.

Code 30 gives an example of a context condition predicate called patient treated by doctor.
This defines a condition that is true only if both Doctor ID and Patient ID appear in the same ae
consultation fact. patient treated by doctor is thus a simple row-level internal context condition. The
implementation of context constraints for dynamic RBAC is based on the model of Strembeck & Neumann [2004] [21].

The following paragraphs describe the Prolog rules that are used to apply the context conditions to the RBAC

model, thus making it a dynamic model. These Prolog rules are listed in full in Appendix III.

applied cc(R1,P,0,CC) « associated cc(R3,P,0,CC),
senior to(R3,R2),
included in(R1,R2).

Code 31: Context constraint testing with applied cc.

Code 31 shows Prolog rule applied cc, which determines whether a particular context condition CC applies

to role R1, based on seniority and inclusion rules. In this implementation, Context Constraints filter down a role

42

hierarchy, and inside an inclusion hierarchy. That is, a junior role inherits the context constraints of a senior role, and an

included role inherits context constraints of a role to which it belongs.

violated(CC,U,P,0) « not(context condition(CC,U,P,0)).

Code 32: Context constraint violation with violated.

Code 32 shows Prolog rule violated(CC,U,P,0), from tests whether user U would violate context
condition CC when trying to perform action P on object O, without considering whether the context constraint applies to

the particular user. violated simply negates context condition for CC.

fail context constraint(U,R,P,0) « applied cc(R,P,0,CC),
violated(CC,U,P,0).

Code 33: Test for access attempt failing context constraint with fail context constraint.

Code 33 shows Prolog rule fail context constraint, which determines whether an access P by user U
logged in as role R on object O that violates some context constraint CC that applies to role R. This applies violated

to test whether CC would be violated, and applied cc to determine whether CC is applicable to user U.

permitted(U,P,0,R) « currently active(U,R,),
not (fail context constraint(U,R,P,0)),
permittable (U,P,0,R) .

Code 34: Prolog rule permitted in the dynamic RBAC model.

Finally, permitted is modified from the rule in Code 11 (page 34, Section 3.2.1) to take account of context
constraints. The new Prolog rule permitted is shown in Code 34. For permitted (U, P,0,R) to be true, the

following must be true:
1. User U must be currently active in role R.
2. The combination of U, R, action P and object O must not fail any context constraint.
3. U must have the relevant static potential permission as determined by permittable.

Appendix V lists all the context constraints in the RBAC model used in testing.

3.3.2 Transformation of Dynamic RBAC Model from Prolog to SQL
Database

CREATE TABLE tb1_rows (

row_id VARCHAR(256),

object VARCHAR(64) -- table name
);

Code 35: CREATE TABLE for tb1_rows.

The dynamic RBAC model was implemented in SQL in a similar way to the implementation of static RBAC,
transforming the Prolog rules described in Section 3.3.1 into SQL views and PL/SQL triggers. Additionally, a table
tb1_rows is defined (Code 35), storing all primary keys of all data tables. Triggers are defined on each table to

modify the rows table whenever a data table is modified.

43

row_1id is the primary key for a table row (in composite keys, the columns are separated by tildes), while
object is the name of the table in which the key in row_1id appears.

This table is necessary to uniquely identify each row of each object that may be accessed, and store them in the
same place. Without it, the views discussed below would need to perform Cartesian products on tables affected by a
context constraint.

Each context constraint has three (for temporal constraints) or four (for row-level constraints) associated views:

+ <CC_name>, defining the constraint itself, equivalent to the context condition predicates in Prolog.

- applies_<CC_name>, which specifies the roles, actions and objects to which the context condition

applies;equivalent to the associated cc predicates in Prolog.

- fails_<CC_name>, which determines whether a context constraint is violated; equivalent to the
violated predicate in Prolog. It returns users, actions, objects and rows that would violate the context
constraint, determined by the user, action, object and (if applicable) row not appearing in <CC_name>, and
the role and object appearing in app1ies_<CC_name>. This view uses permittable to obtain the list of
permissions that would apply without the context constraints, and joins it with rows in the rows table
corresponding to the appropriate table object. For example, if the object to which the constraint applies is the
patient table, then each row of rows in rows where object=patient is joined with each row of the

relevant subset of permittable.

CREATE VIEW permittable_by_row AS
SELECT usr, permittable.object as object, action, role, row_id
FROM permittable, tbl_rows
WHERE permittable.object = tbl_rows.object;

Code 36: Definition of permittable_by_row.

The view permittable_by_row, shown in Code 36, shows all rows that each user in each role would be

permitted to access before context constraints are applied. It is a join of permittable and th1_rows.

permitted_by_row, authorizable_by_row and authorized_by_row are defined analogously to

permittable_by_row.

The view fails_context_constraints (not shown)is a UNION of all fails_<CC_name> views, and
thus retrieves all potential attempts by a user to perform an action on a row in an object that would fail a context

constraint.
The view permittable_cc, shown in Code 37, retrieves all rows that do not fail any context constraints. It

selects all rows from permittable_by_row that do not appear in fails_context_constraints, using

MINUS to filter out the unwanted rows.

CREATE VIEW permittable_cc AS
SELECT usr, object, row_id, action, role FROM permittable_by_row
MINUS
SELECT usr, object, row_id, action, role FROM fails_context_constraints

Code 37: Definition of permittable_cc.

44

permitted_cc, authorizable_cc and authorized_cc are defined analogously to

permittable_cc.

3.3.3 Enforcement of Dynamic RBAC in DBMS Meta-data

A feature in Oracle known variously as Row-Level Access Control, Fine-Grained Access Control and VPD
(Virtual Private Databases) [65] was used to implement both row-level and temporal context constraints at the meta-
data level. This means that Oracle's own permission-granting mechanism can be used to allow or deny access

dynamically, rather than using ordinary database tables.

Because denials are inherited in the same way as context constraints (and indeed can be regarded as a type of

context constraint), they are also handled using this feature.

The method for implementing this system is a four-step method described by Finnigan [58]. These four steps are

listed below and each described in turn.
1. Create a security context to manage application sessions.
2. Create a procedure or function to manage setting of the security context for users.
3. Write a package to generate the dynamic access predicates for access to each table.

4. Register the policy function / package with Oracle using the DBMS RLS package.

Step 1: Create a security context to manage application sessions.

CREATE OR REPLACE CONTEXT hosp USING set_context;

Code 38: Setting security context for hosp database.

A security context is a set of name/value pairs that can be used to bind a particular user to named context
constraints. It must be set through a PL/SQL package. Code 38 shows the command for setting the security context for

the hosp database. This command is run from the script that prepares the database for setup.

Step 2: Create a procedure or function to manage setting of the security
context for users.

PROCEDURE set_day_duty
IS
BEGIN
dbms_session.set_context('hosp', 'day_duty', 'y');
END;

Code 39: An example of a context-setting function

Code 39 shows the code for the set_day_duty procedure the function for setting the day_duty context. The
built-in procedure dbms_session.set_context('hosp', 'day_duty', 'y') sets the session context
variable 'day_duty" of the current user in the context NOSP to the value 'y". Of course, this context variable was

previously not set.

45

PROCEDURE set_cc(p_role VARCHAR)
Is
BEGIN
IF(is_part_of(p_role, 'day_duty')) THEN
set_day_duty;
END IF;
IF(C is_part_of(p_role, 'night_duty')) THEN
set_night_duty;
END IF;
IF(is_part_of(p_role, 'sister')) THEN
set_nurse_ward;
END IF;
IF(is_part_of(p_role, 'snr_house_officer')) THEN
set_patient_doctor;
END IF;
IF(is_part_of(p_role, 'jnr_data_manager')
OR 1is_part_of(p_role, 'receptionist')) THEN
set_office_hours;
END IF;
IF(is_part_of(p_role, 'student_nurse')) THEN
set_staff_sister_active_2_h;
END IF;
END;

Code 40: set_cc procedure to manage setting of the security context for users

CREATE OR REPLACE FUNCTION fis_part_of(p_inner_role VARCHAR, p_outer_role VARCHAR)
RETURN BOOLEAN
Is
v_num_rowsl INT;
v_num_rows2 INT;
BEGIN
SELECT COUNT(*) INTO v_num_rowsl FROM included_in, senior_to WHERE
p_inner_role = included_in.inner_role AND
included_in.outer_role = senior_to.junior_role AND
senior_to.senior_role = p_outer_role;
SELECT COUNT(*) INTO v_num_rows2 FROM included_in WHERE
p_inner_role = included_in.inner_role AND
included_in.outer_role = p_outer_role;
RETURN (v_num_rowsl + v_num_rows2 > 0);

Code 41: is_part_of procedure to determine inheritance of context constraints by roles

PROCEDURE set_denials(p_role VARCHAR)
IS
v_action VARCHAR(64);
v_object VARCHAR(64);
CURSOR c_get_denials IS
SELECT action, object FROM d_rpa_full WHERE role = p_role;
BEGIN

OPEN c_get_denials;
LOOP
FETCH c_get_denials INTO v_action, v_object;
EXIT WHEN c_get_denials%NOTFOUND;
-- set context constraints
dbms_session.set_context('hosp', 'denied_' || v_object || '_' || v_action, 'y');
END LOOP;
CLOSE c_get_denials;

END;

Code 42: set_denials procedure

46

Code 40 shows the procedure to manage setting the security context of users, which is called set_cc and is
contained in the PL/SQL package through which the security context is manipulated. The package is called
set_context in this implementation. Set_cc sets the appropriate context constraints for a user depending on his

roles. It calls any (none, one or more than one) of a series of procedures to set context constraints depending on the
user’s role. Denials are then set using the set_denials procedure.

The function is_part_of(rolel, role2), shown in Code 41, uses the seniority and inclusion hierarchies
(as given by senior_to and included_iin) to determine whether rolel inherits constraints from role2.

The procedure set_denials, shown in Code 42, checks whether a denial is applicable to the role, action and
object by querying d_rpa_full. If a row is found in d_rpa_full, then the session context variable

'denied_<object>_<action>" is set.

Step 3: Write a package to generate the dynamic access predicates for
access to each table.

if sys_context('hosp', 'denied_' || object_name || '_select') = 'y' then
return '0 <> 0'; -- return always-false condition and bail out

else
return (cc(schema_name, object_name));

end if;

Code 43: code for cc_select

if object_name = 'PATIENT' AND sys_context('hosp', 'nurse_in_same_ward_as_patient') = 'y' then
if(has_cc) THEN
Tv_predicate:=1v_predicate || ' AND ';
END IF;
1v_predicate:=lv_predicate || ' Patient_id IN (SELECT Patient_id FROM patient_bed, Bed, Room,

Ward, nurse_ward
where get_usr = nurse_ward.usr
AND nurse_ward.Ward = Room.Ward_-id
AND Room.Room_id = Bed.Room_iid
AND Bed.Bed_id = patient_bed.Bed_id)"';

Code 44: Code for context nurse_in_same_ward_as_patient

SELECT * FROM patient WHERE Patient_id IN (SELECT Patient_id FROM patient_bed, Bed, Room, Ward,
nurse_ward

where get_usr = nurse_ward.usr

AND nurse_ward.Ward = Room.Ward_id

AND Room.Room_id = Bed.Room_iid

AND Bed.Bed_id = patient_bed.Bed_id;

Code 45: Actual SQL run as a result of nurse_in_same_ward_as_patient

In this implementation, the package is called policy. It has a series of functions, cc_<action>, where
<action> is SELECT, INSERT etc. These functions test each session context variable to see if it is set, and adds an
appropriate predicate to restrict the rows accessible. In this model, all context constraints apply to all actions in the same
way. Therefore, each cc_<action> function first calls the appropriate denial session context variable. If there are no
denials, then the function cc is called which applies the context constraint. Code 43 shows the code for cc_select.

CC tests each session context variable (other than those related to denials) to see if it is set, and adds an
appropriate predicate to restrict the rows accessible. For example, Code 44 shows the code for the context

nurse_in_same_ward_as_patient.

47

This applies the restrictive SQL in 1v_predicate if the object being accessed is the patient table, and the
session context variable nurse_in_same_ward_as_patient is set to y. The restrictive SQL acts like a WHERE

clause, turning SELECT * FROM patient into the SELECT statement in Code 45.

One might expect the last line of the SQL clause in Code 45 to recad AND Bed.Bed_id =
patient.Bed_iid, since the information about patient beds is stored in the patient table. However, this would
produce an error, since the restrictive predicate is trying to access the very table to which it is being applied, thus
causing infinite recursion. To solve this problem, triggers were defined on any modification of data in the patient
table, to add/modify/delete as appropriate the values for patient_no and bed_1id to a table patient_bed, which

can be read by the predicate without causing errors.

elsif sys_context('hosp', 'office_hours') = 'y' then
Tv_predicate:="TO_CHAR (SYSDATE, ''HH24'') >= 9 AND TO_CHAR (SYSDATE, ''HH24'') < 17 AND
TO_CHAR (SYSDATE, ''D'') >= 2 AND TO_CHAR (SYSDATE, ''D'') <= 6';

Code 46: Conditional clause testing for the oF Fice_hours context

Code 46 shows the conditional clause testing for the office_hours context. Note that Oracle’s date
formatting scheme treats the days of the week as 1-7, Sunday—Saturday, so Monday is 2 and Friday is 6.

Step 4: Register the policy function / package with Oracle using the
DBMS_RLS package.

-- security context
CREATE OR REPLACE TRIGGER cc_logon_trigger
AFTER LOGON ON DATABASE
begin DECLARE
dbms_rls.add_policy(.
object_schema => "HOSP', CURSOR c_get_roles IS
object_name => 'PATIENT', SELECT role FROM currently_active WHERE
policy_name => 'CC_PATIENT', usr = (SELECT get_usr FROM DUAL);
function_schema => 'HOSP', BEGIN
policy_function => 'POLICY.CC_SELECT', -- get user
statement_types => 'select', OPEN c_get_roles;
update_check => TRUE, LOOP
enable => TRUE, FETCH c_get_roles INTO v_role;
static_policy => FALSE); EXIT WHEN c_get_roles%NOTFOUND;
end; -- -- set context constraints
/ set_context.set_cc(v_role);
END LOOP;
Code 47: Procedural code for registering policy function CLOSE c_get_roles;
END;
Code 48: Setting a user’s security context when he logs on

The policy function needs to be registered for each table to which it applies, using procedural code such as that

in Code 47. Additionally, the security context must be set whenever a user logs on. This is achieved using a trigger run
when a user logs onto the database (AFTER LOGON ON DATABASE), as shown in Code 48. This trigger performs
determines the roles in which the user is active, using the user-defined function get_usr to obtain the user name as
stored in usr and password from the DBMS username. Then, for each role, it calls set_context.set_cc to set

appropriate context constraints, if any.

48

3.4 Testing the Implementation of RBAC in Oracle

3.4.1 Overview: Parts and Conditions
The RBAC model described in Sections 3.2 and 3.3 was tested in an Oracle 10i database system by running a

series of SQL batch files (Appendix XIV) on an Oracle database containing the RBAC model and sample data.
Parts
The testing was performed on the RBAC model in the following order.
a) Representation of RBAC in database tables: output the results of querying RBAC views;

b) Enforcement of RBAC in meta-data: attempting to log in and access and manipulate data as different
users to test whether the access control assignments in meta-data gave the correct permissions;
c) Testing whether static and dynamic Separation of duties worked correctly.
Conditions
Users are not supposed to be able to access any data unless they are ‘active’, which would mean that they are
logged in to and using some application that accesses the database. This is represented by the table usr_session in

the RBAC schema. To make sure that user authorizations were correctly applied and revoked when uses were activated

and deactivated, testing in parts a and b was run under four conditions:

1. No users activated: this was to confirm that no users were able to access any part of the database when they

were not activated.

2. Some (17 out of a total 29) users activated: to determine the effects of activating users on their access to data,

and confirming that only activated users could access data. The number of users activated was arbitrary.

3. All users activated: to confirm the system behaviour when all users had access to the system, and ensure that

Representation and Enforcement both produced the same results.

4. Some users deactivated: leaving 21 users active, to confirm that deactivating a user resulted in the withdrawal of

the user's access. The number of users deactivated was arbitrary.

3.4.2 Representation of RBAC

The tables and views were queries in the following order:
1. Role Permissions and Denials (rpa and d_rpa)

2. Static User Permissions and Authorizations (permittable, authorizable, permitted and

authorized)

3. Dynamic User Permissions and Authorizations (permittable_cc, authorizable_cc,

permitted_cc and authorized_cc)

1 Role Permissions and Denials (rpa and d_rpa)
For each of the four test runs, queries on rpa and d_rpa were first displayed, to identify permissions applied to

roles. Then, queries on static and dynamic RBAC views were displayed, identifying permissions assigned to users.

49

select role "Role", action "Action", object "Object" from rpa where

role = 'role_name' order by role, action, object;
select role "Role", action "Action", object "Object" from rpa_full
where role = 'role_name' order by role, action, object;

Code 49: Displaying rpa table and rpa_full view

First, the rpa table and the rpa_full view were displayed for each role (Code 49). The rpa table stores all
permissions explicitly assigned to roles. The rpa_ful1 view returns all permissions available to each role, whether
explicitly assigned or inferred from relationships with other roles.

Results from d_rpa and d_rpa_full were then displayed. These correspond to rpa and rpa_full,

respectively, for denials rather than permissions.

2 Static User Permissions and Authorizations (permittable, authorizable, permitted
and authorized)

Views showing individuals’ permissions and authorizations were displayed, for both static and dynamic RBAC.

select usr "User", object "Object", action "Action", role "Role" from permittable where role =
'role_name' ORDER BY usr, object, action;

select usr "User", object "Object", action "Action", role "Role" from authorizable where role =
'role_name' ORDER BY usr, object, action;

select usr "User", object "Object", action "Action", role "Role" from permitted where role =
'role_name' ORDER BY usr, object, action;

select usr "User", object "Object", action "Action", role "Role" from authorized where role =
'role_name' ORDER BY usr, object, action;

Code 50: Displaying permittable permitted authorizable and authorized views for static RBAC.

The static permissions and authorizations were first displayed. These do not take account of dynamic context
constraints. The permittable, authorizable, permitted and authorized views were displayed for each
role in turn (Code 50). permittable and authorizable respectively display permissions and authorizations that
can be applied to each user and role. permitted and authorized respectively display permissions and
authorizations that currently apply, depending on whether users are logged in. In other words, permittable displays
the permission that a user would have if he had been logged in, while permitted displays it only if the user is
actually logged in. The permittable and permitted views are derived from permissions (rpa assignments) only.
The authorizable and authorized views are derived from permissions filtered by denials (d_rpa

assignments).

3 Dynamic User Permissions and Authorizations (permittable_cc, authorizable_cc,
permitted_cc and authorized_cc)

select distinct usr "User", role "Role", object "Object", action "Action", row_id "Row" from
permittable_cc where role = 'day_duty' ORDER BY usr, object, action;

select distinct usr "User", role "Role", object "Object", action "Action", row_id "Row" from
authorizable_cc where role = 'day_duty' ORDER BY usr, object, action;

select distinct usr "User", role "Role", object "Object", action "Action", row_id "Row" from
permitted_cc where role = 'day_duty' ORDER BY usr, object, action;

select distinct usr "User", role "Role", object "Object", action "Action", row_id "Row" from
authorized_cc where role = 'day_duty' ORDER BY usr, object, action;

Code 51: Displaying dynamic permissions and authorizations for day_duty and night_duty roles.

The dynamic permissions and authorizations were displayed from the permittable_cc,

authorizable_cc, permitted_cc and authorized_cc views were displayed for each role in turn (Code 51,

50

for day_duty and night_duty roles). These show permissions and authorizations by row rather than by object,

because some dynamic constraints mean that only some rows in tables are visible.

Running

DELETE FROM ae_consultation WHERE 0 <> 0;
Code 52: A sanitized DELETE statement.

The script in Appendix XIV was run logged in as each database user in turn to determine whether the RBAC
model translated correctly into user permissions in the meta-data. Data manipulation commands were run for all data,
including RBAC data. However, to ensure that no damage was done to the data, DELETE statements were suffixed with

WHERE 0<>0, as in Code 52.

In this case, the DELETE statement is run, as long as the user has the appropriate permission, thus an appropriate
error results if the user does not have the appropriate permission. However, nothing is actually deleted, because the

WHERE clause always evaluates to FALSE.

Finally, a test was also run to test the enforcement of static and dynamic separation of duties in the ssd and dsd
tables of the RBAC schema. Various users were assigned or activated to various combinations of roles, to discover

whether the static and dynamic separation of duties constraints worked correctly.

3.5 Results

This section summarises the results of testing according to the procedure in Section 3.4, in the following order.
a) Representation of RBAC in database tables: output the results of querying RBAC views;

b) Enforcement of RBAC in meta-data: attempting to log in and access and manipulate data as different

users to test whether the access control assignments in meta-data gave the correct permissions;
¢) Testing whether static and dynamic Separation of duties worked correctly.

The detailed results are given in Appendix XVII. The static and dynamic user permissions and authorisations
were then checked according to the Conditions in Section 3.4.1 relating to the numbers of users who were activated. To

recap, the four conditions were
1. No users activated
2. Some users activated
3. Al users activated
4. Some users deactivated

First, the contents of rpa, rpa_full, d_rpa and d_rpa_ful1 were output to ensure that they contained the

correct role permissions and denials. This was done only for part a. The permissions and denials associated with roles

did not change according to user activity, so were the same for all the above conditions. The output of rpa and d_rpa

is described by type of role, in the following order:
1. Temporal RBAC Roles: day_duty and night_duty
2. Job Roles: Data Managers

3. Job Roles: Doctors

51

4. Job Roles: Nurses
5. Job Roles: Administrators
All role permission and denial assignments were found to be correct. The static and dynamic user permissions

and authorisations were then checked according to the Conditions in Section 3.4.1 for both parts a and b. The results of

these are summarised below.

No Users Activated: Queries on permittable and authorizable correctly retrieved all static permissions
and authorizations allocated to users. Queries on permitted and authoriized correctly produced empty recordsets,
because for users to be actually permitted to perform any actions, they would need to be activated. No users were
activated in this test run. Queries on permittable_cc and authorizable_cc correctly retrieved all dynamic
permissions and authorizations allocated to users and applicable at the time of running. Queries on permitted and
authorized correctly produced empty recordsets, because for users to be actually permitted to perform any actions,
they would need to be activated. No users were activated in this test run. Attempts to log in as each user and manipulate
data were unsuccessful, because none of the users were activated. Therefore, the meta-data correctly recorded that no

users had any permission to change the data.

Some Users Activated: Queries on permittable and authorizable correctly retrieved all static
permissions and authorizations allocated to users. Queries on permitted and authorized correctly produced the
static permissions and authorizations for active users only. Queries on permittable_cc and authorizable_cc
correctly retrieved all dynamic permissions and authorizations allocated to users and applicable at the time of running.
Queries on permitted and authorized correctly retrieved all dynamic permissions and authorizations of active
users only. When users were logged on, active users were able to manipulate data according to their dynamic
authorizations. Non-active users were unable to manipulate data. Thus, the meta-data correctly reflected authorizations
of active users.

All Users Activated: Queries on permittable and authorizable correctly retrieved all static permissions
and authorizations allocated to users. Queries on permitted and authorized retrieved the same results as
permittable and authoriizable, since all users were active on this test run. Queries on permittable_cc and
authorizable_cc correctly retrieved all dynamic permissions and authorizations allocated to users and applicable
at the time of running. Queries on permitted and authorized also retrieved the same results as
permittable_cc and authorizable_cc, since all users were active on this test run. Since all users were active,
they were all able to log on and manipulate data according to their dynamic authorizations. However, the manager
user U0021 was incorrectly given the authorizations of snr_data_manager, specialist_nurse and
consultant. This is because the VPD cannot handle path inheritance, which the RBAC Model uses to prevent users
of role manager from having these authorizations despite being senior_to these roles. Apart from this problem, the
meta-data correctly reflected authorizations of all users.

Some Users Deactivated: Queries on permittable and authorizable correctly retrieved all static
permissions and authorizations allocated to users. Queries on permitted and authorized correctly produced the
static permissions and authorizations for active users only, i.e. only those users who had not been deactivated for this
test run. Queries on permittable_cc and authorizable_cc correctly retrieved all dynamic permissions and

authorizations allocated to users and applicable at the time of running. Queries on permitted and authorized

52

correctly retrieved all dynamic permissions and authorizations of active users only. When users were logged on, active
users were able to manipulate data according to their dynamic authorizations. Non-active users were unable to

manipulate data. Thus, the meta-data correctly reflected authorizations of active users.

Finally, for Separation of Duties, both static and dynamic separation of duty constraints were successful. Users
could not be assigned to roles such as to cause static SSD conflicts, and could not be activated in roles such as to cause
DSD conflicts.

3.6 Conclusion

The dynamic RBAC model was implemented in Oracle, first by transforming the original Prolog rules into
RBAC data tables, then by encoding it in Oracle meta-data using VPD. With various sets of users activated, the RBAC
data tables were queried, and VPD implementation was tested by logging users in and attempting to manipulate data

while logged in. Finally, SSD and DSD constraints were tested.

With one exception, all tests produced the expected results. Querying RBAC data tables and views retrieved the
correct static and dynamic permissions for roles and for both active and inactive users in all cases. When attempting to
manipulate data as logged-in users, inactive users were unable to manipulate data in all cases. Active users were able to
perform data manipulation operations that they were authorized to perform according to the dynamic RBAC rules, and
(with one exception) were unable to perform operations that they were not authorized to perform. The exception relates
to the inability to program selective path inheritance in Oracle VPD: senior roles cannot be prevented from inheriting
permissions from junior roles. Therefore, any user in role manager (u0021 here), being senior to all other roles, was
able to perform all actions, although the inherits_rpa_path rules intended that a manager would only inherit
from receptionist. The permissions and authorizations of user uQ021 were correctly displayed when querying the

RBAC data, but were not reflected correctly in the meta-data enforcement.

Thus, Oracle’s VPD feature can implement most features of the RBAC model discussed in this section.
Specifically, it can implement Seniority, Denials, Activity, Separation of Duties and Context Constraints, but not

selective Role Inclusion or Path Inheritance.

The free-software DBMS, PostgreSQL, has an add-on called Veil that provides row-level access control [66].
This feature might allow dynamic RBAC to be implemented in PostgreSQL. Implementing dynamic RBAC in MySQL
would be tricky, because MySQL does not natively support RBAC.

53

4 The Problem

4.1 Problems with Current RBAC

RBAC has been a much exploited model of access control in database communities for more than a decade. It
has been deployed in numerous applications, and has already been chosen as a mandatory authorization mechanism in
many healthcare systems across the world, including the National Health Service (NHS) in the United Kingdom. From
that perspective, current RBAC models and their implementations in database management systems need improvement.
A currently unresolved issue is the automatic extraction of semantics from a given relational database schema, which
are essential for creating RBAC models. That is, no automated mechanisms are available to help understand the
semantics stored in database schemas. Therefore, systems are needed to automatically ‘read’ and ‘understand’ metadata
before generating RBAC models. There are no commercially available solutions that allow automatic creation of RBAC

models and their implementation, by reading metadata and using semantic web tools to deal with RBAC semantics.

In the experiments in Chapter 3, two different approaches were compared for implementing an RBAC model
based on Prolog facts in a relational database: (1) storing the RBAC-related Prolog facts as records in database tables,

and (2) storing them in the meta-data of the DBMS.

When using method (1), the tables holding RBAC data were stored in the same database as the data over which
the RBAC was run, but (as would be typical for this approach) in a different schema. Using this method, all aspects of
the RBAC models can be implemented, and the RBAC can be determined by issuing standard SQL queries on RBAC
schema tables. This approach can be used to provide access control at the application level. At the database level, the
application always accesses the data using one user ID, which is likely to be locked to accessing data from the
application interfaces. The application would pass the user ID of the person who is logged into it as a parameter to the
database when the user attempts to access data, and this would form part of the query to determine whether the
application-level user gains the access. Furthermore, we can easily program both static and dynamic RBAC at the
application level because the rules for both can easily be translated into either SQL views or PL/SQL (or equivalent)

procedures.

Method (2), of implementing RBAC on a relational database provides access control at the database level by
using the meta-data (or data dictionary) of the RDBMS. In this method, we have to distinguish between static and
dynamic RBAC, which are implemented in different ways. The static RBAC was mostly implemented using standard
SQL CREATE ROLE, CREATE USER and GRANT commands. However, while RBAC permissions can be
implemented this way, denials cannot be so implemented because GRANT is only a positive granting of permission:
there is no negative authorisation in SQL access control syntax. The dynamic RBAC was then implemented using
Oracle's Virtual Private Databases (also called Row-Level Access Control) feature. [58] We found that most, but not all,
of the features of the RBAC model could be implemented. We could not implement path inheritance restrictions.
However, denials can be implemented using this feature, because a rule can be set up such that a role is denied access to
data in a table even if given access to it via a GRANT command. The implementation of dynamic RBAC is product-
specific, as it is not part of the SQL standard. Postgres has a feature called VEIL [66] that also implements dynamic
RBAC, but its syntax is different from that of Oracle VPD. By contrast, the static RBAC implementation uses standard

54

SQL commands, and is likely to be very similar across RDBMSs, although some, such as MySQL, do not support
RBAC in their data dictionary.

Prolog and relational database systems cannot naturally represent hierarchical data, which is the backbone of any
semantic representation of RBAC models. A role being a type of another role is represented as a predicate, such as
is a(rolel, role2). A user’s membership of a role is also represented as a predicate, such as ura (user,
role). These predicates are represented in an RDBMS as either rows in database tables (method (1)) or metadata
(method (2)). This way of representing hierarchical data means that implementation of RBAC in Prolog can be complex
and rigid, due to the need to chain many joins to represent traversing an RBAC hierarchy. This makes predicate logic
and relational database systems especially cumbersome when trying to model dynamic RBAC, in which permissions
may change according to context. An RBAC model should be able to infer user authorisations from a hierarchy of both
roles and data types, that is, determine permission or denial from not just the type of role (which may include sub-

roles), but also the type of data (which may include sub-types).

However, OWL reasoner-enabled ontologies could resolve both these problems by allowing us to describe and
manipulate the semantics of RBAC differently. OWL naturally represents data and concepts in a hierarchical fashion,
and its implementation is not vendor-specific. Therefore, this thesis considers the possibilities offered by OWL for
developing models and reasoning processes for RBAC, which are domain and implementation independent, and can be

run from any distributed computing environment.

4.2 Literature Review

4.2.1 RBAC and XML

XACL (XML Access Control Language), also known as XACML (XML Access Control Markup Language)
[67][68] is the standard representation of access control using XML, and has provision for RBAC. MOSQUITO
(Mobile Workers’ Secure Business Applications in Ubiquitous Environments) [69] is an example of a system based on

XACML for providing dynamic RBAC in a ubiquitous computing environment.
Chandramouli [70] devised an XML/DTD model for determining access control in an XML-based banking

database, in which the record and field types are written in a DTD (Document Type Definition), and the access control
rules and data in XML documents bound by the DTD.

Vuong et al. [71] presented a Java-based system for assigning and applying RBAC permissions to data in XML
documents. Bertino & Ferrari proposed Author-X [72], a Java-based system for securing XML documents on a network.
The access permissions are stored in XML documents, and determine access to parts of documents according to its
DTD or security information held in the document itself. The documents protected by the system are stored in encrypted

form. Bertino et al. also [73] devised an infrastructure for managing secure updates to XML documents.

Bhatti et al. presented X-RBAC [74], an XML-based model for applying RBAC in Web Services. This was then
extended for context-aware RBAC [75] and multi-domain environments [76], thus providing dynamic X-RBAC. The
same authors also proposed X-FEDERATE [77] an XML-based model for managing access control in federated

distributed environments, in which each node has a direct connection to all other nodes in the network.

XML-based RBAC models have also been proposed by He & Wong (RBXAC) [78] and Stoupa & Vakali [79].

Yang & Zhang [80] proposed a similar model for securing web-based applications.

55

GTRBAC [50], from Chapter 2.3, has been implemented in XML as X-GTRBAC [81],and an administration
module, X-GTRBAC Admin, has been built for this [82].

Yang et al. [83] and Warner ef al. [84] proposed XML-based dynamic RBAC models that use semantic matching
in heterogeneous databases to dynamically determine access permissions by linking semantically equivalent but

differently named entities in each of them.

Finance et al. [85] proposed a model for access control in XML documents in which access rules can be set on
any node anywhere in the relational hierarchy of the document (not only leaf nodes), and can be used control access to
ancestor and sibling relationships. This allows the creation of different “authorized views” of an XML document,

depending on the access right of a user.

Bouna et al. [86] proposed an XML-based RBAC model for determining access to multimedia objects based on
the low-level data in these objects. This allows the same access to be given to, for example, any object described as

relating to Charles de Gaulle in the 2™ World War.

Another XML-based access control model is PERMIS (PrivilEge and Role Management Infrastructure
Standards) [87], which uses X.509 attribute certificates [88] to hold user roles. This makes it more than just a policy
language, like XACML, but also an authorization system. The authorization tool is beyond the scope of this thesis,
which is concerned with the access control policy, rather than the methods of authorizing users based on the policy.
PERMIS policies are written in XML, but the syntax is briefer than that of XACML. A Java-based PERMIS policy-

writing tool has also been developed [89].

4.2.2 RBAC and the Semantic Web

Semantic web technologies have been used to represent access control models, thus facilitating the incorporation
of access control systems into software applications using the semantic web. Many RBAC implementations that address
interoperability, or allow automatic creation of RBAC models by reading meta-data using the Semantic Web (OWL
[90], RDF [91] and XML.), have been proposed.

Several previous works on designing ontologies for RBAC have addressed aspects of static and dynamic RBAC.

Pan et al. [92] proposed Semantic Access Control (SAC), an RBAC-based model for access control in
heterogeneous systems, and developed a middleware application, called Semantic Access Control Enabler (SACE), to

implement it on the Web.

Wu et al. [93] modelled RBAC using OWL, with separation of duty and prerequisite constraints, but without
considering constraints typical for dynamic RBAC. Furthermore, their use of ‘constraints’ is not the same as ours,
because we follow the work of [21], where ‘context constraints’ refer to dynamic constraints applied to RBAC rules.
Additionally, they do not use Prolog facts or rules in order to specify the semantics stored within the RBAC. Wu et al.
[94] extends [93] with their OBAC (Ontology-Based Access Control), an RBAC specification for distributed systems
using OWL [90] and SWRL [95]. Roles are modelled using classes in OWL, as in [93], while role constraints are
modelled in SWRL. Their model maps roles, users and objects among different domains. However, while they address
static role constraints of prerequisite (to be assigned to role B, a user must also be assigned to role A) and conflicting

(separation of duties) roles, but they do not consider dynamic RBAC.

Priebe et al. [96] extended XACML to specify ABAC (Attribute-Based Access Control) models, in which user
access rights are determined dynamically from user attributes. They implemented their model using OWL, SWRL and

56

SPARQL [97]. This model considers both static (e.g. name) and dynamic (e.g. age, user location) attributes, and
therefore goes some way towards supporting dynamic access control using Semantic Web. However, it does not
consider attributes other than those of users (thus it neglects, for example, object attributes and environmental

conditions), or the application of dynamic attributes to RBAC models.

Finin et al. [98][99][100] used OWL to model a static RBAC hierarchy with static and dynamic separation of
duties, and positive and negative authorizations (permissions and denials). They also discussed static RBAC constraints
of coupling (where a user must be in both role A and role B, or in neither) and exclusive assignment (where each user
can only be assigned to one role), and used N3Logic to enforce these rules, as well as for enforcing sessions. They
discussed the pros and cons of different approaches to modelling RBAC roles, namely as classes or as values.
Modelling roles as classes means that inheritance is expressed naturally, and reasoning is easy, but the specification is
complex. When modelling roles as values, inheritance is expressed using rules. This makes reasoning difficult, but
simplifies specification. Their work provides an extensive discussion of modelling static RBAC in OWL, and also
considers dynamic access control, discussed as ABAC. Their model is called ROWLBAC. However, they do not discuss

reasoning.

Helili et al. [101] presented an RBAC meta-model with negative authorization (called RBAC(¥)), formalized it
in OWL-DL (with roles as classes), and discussed various cases where conflicts can occur between positive and

negative authorization in a hierarchical RBAC model. However, again, they did not consider dynamic RBAC rules.

Cirio et al. [102] developed a context-aware (dynamic) RBAC model using OWL-DL, queried using SPARQL;
their model is combines RBAC with ABAC, so that users are assigned roles at access time according to their attributes.
This approach contrasts with our favoured approach, which is to assign roles statically to users and dynamically
determine access given to roles according to object attributes and the environment. SPARQL has one major benefit
when reasoning in access control modelling, in that it uses a closed-world assumption, and so can be used to query an
ontology in a similar manner to predicate logic. The authors also provided a proof-of-concept implementation of their
model written in Java. He ef al. [103] also described a dynamic RBAC model, like [102] using a combination of RBAC
and ABAC, and written in OWL-DL, but their model uses SWRL rather than SPARQL as the reasoning language. They
adopted Protégé and Jess rule engine as the ontology processing tool and reasoning system, respectively. They also

wrote a proof-of-concept implementation of their model in Java.

Calero et al. [104] describe the development of an RBAC model from the CIM (Common Information Model)
[105], an open standard for representing managed elements of an IT environment, into OWL-DL for use in distributed
computing systems. They first wrote a representation of CIM in RDF/OWL, then developed an RBAC authorisation
model in OWL and SWRL to be used with it. Their RBAC model supports dynamic RBAC and separation of duties.

Cadenhead et al. [106] proposed a scalable TRBAC model for distributed computing systems, written in OWL-
DL and using SWRL and SPARQL for reasoning. They achieve scalability by partitioning the DL knowledge base a set
of smaller knowledge bases, which have the same TBox (Terminology Box: statements that define terms that model a
domain in an ontology) but a subset of the original ABox (Assertion Box: statements that define instances in an
ontology). This allows reasoning on subsets of the ontology, because in an OWL-DL model, the number of instances
grows in a model while the terms in the ontology largely remain the same. This approach might work for our SO-RBAC
model, which is modelled in OWL-DL, but might not work so well for ESO-RBAC, which is modelled in OWL-FULL,

and which defines roles as classes, and therefore has to define the relationships between roles in TBox statements.

57

Coma et al. [107] modelled OrBAC (Organization Based Access Control) [108] using OWL-DL. OrBAC differs
from RBAC in that it not only abstracts subjects (users) into roles (sets of subjects), but also abstracts actions into
activities (sets of actions) and objects into views (sets of objects). This abstraction is hierarchical, so that roles, views
and activities can all be sub-classed. The hierarchy of roles in OrBAC is an ‘is-a’ hierarchy, rather than a seniority
hierarchy, describing types of roles rather than superordinate and subordinate relationships. OrBAC natively supports
context-aware access control, with a hierarchy of contexts. The hierarchical nature of OrBAC seems to make it naturally
suited to modelling in OWL. The authors of [107] demonstrated their OrBAC model in the peer-to-peer collaboration

environment.

Toninelli et al. [109] developed a dynamic access control model that combines OWL-DL with predicate logic
The DL reasoning is used in static RBAC, with dynamic constraints being programmed using predicate logic. This is an
attempt to combine the best of both worlds, with OWL being used to classify objects and contexts, and predicate logic

being used to determine the results of dynamic querying.

We have already mentioned that traditional static RBAC is difficult to apply in context-aware applications,

which appear in pervasive computing spaces, since it fixes a user’s access privileges when the user logs on.

4.3 Conclusion

The power of OWL reasoner-enabled ontologies allows us to describe and manipulate the semantics of RBAC
differently, and consequently address the previous two problems efficiently. Other works have attempted to use OWL to
model RBAC, but they do not exploit the ability of the OWL hierarchy to model hierarchical relationships that are
naturally part of an RBAC model. This may be due to the inherent limitations of OWL-DL, which those works use for
their models. However, it means that they do not fully exploit the semantics of OWL when modelling RBAC, and retain
some of the drawbacks of RBAC models based on predicate logic.

An approach is needed that uses the natural hierarchy of OWL to model hierarchical relationships in both RBAC
rules and the data on which these rules operate. The proposed SO-RBAC and ESO-RBAC aim to do this. SO-RAC is an
OWL-based RBAC model, written in OWL-DL for ease of translation from Prolog to OWL. As such, it does not
represent a major breakthrough in approach to modelling RBAC, but is done as a stepping stone to prove the feasibility
of modelling RBAC in OWL. ESO-RBAC represents a complete rewrite of the model in OWL-Full. It uses the class-
individual duality of OWL-Full to define RBAC role inclusion using OWL sub-classes, rather than having to define it in
object properties and preform reasoning on them. This represents a novel way of exploiting OWL and its reasoners for
the purpose of defining and manipulating the semantics of RBAC. The semantic ontological reasoning processes
defined in ESO-RBAC, which are domain and implementation independent, can be run from any distributed computing
environment. These can then be developed through integrated development environments such NetBeans and using
OWL APIs.

The following Chapters (5 and 6) describe SO-RBAC and ESO-RBAC, respectively.

58

5 The Proposal: Semantic and Ontology-based Role-
Based Access Control (SO-RBAC)

5.1 Introduction

This chapter describes the proposed Semantic and Ontology-based Role-Based Access Control (SO-RBAC)
process for creating permissions and denials based upon a user’s roles and the activities that the user may perform on a
selection of objects. In other words, the process uses the semantics stored in the SO-RBAC ontology in terms of
manipulating its ontological concepts and their individuals for the purpose of determining if a particular user, who holds
a particular “role” is allowed to access an “object” and perform a particular “activity” upon it and therefore would be

granted permission for the activity denied access to the object.

SO-RBAC is the first step in modelling RBAC using Semantic Web technology, as suggested in Section 4.2.2.
The model is essentially a direct translation of the Prolog rules for static RBAC in Section 3.2.1 into OWL. Permissions
and denials are given similar to traditional RBAC supported by Prolog facts and rules and functionalities of database
management systems in controlling access control in databases. This use of Prolog rules as a basis means that it cannot
address the complexity of traditional RBAC models. In some respects, the differences between ontologies and predicate
logic introduce additional complexity. For this reason, we chose not to model context-aware or dynamic RBAC using
SO-RBAC, although it would be possible to do so.

The purpose of SO-RBAC was not to create a pure ontological RBAC model, but to demonstrate the feasibility
of mapping an RBAC model based on Prolog facts and rules into an ontology. Therefore, the proposed SO-RBAC is not
designed from ‘scratch’. It is instead based on a set of existing Prolog facts and rules, which are translated into an
ontological schema. Prolog facts are modelled as instances within OWL classes, or as properties of these classes. RBAC
rules are modelled through domain and range constraints, is-a relationships and inheritance, or using SWRL [17][95]

rules.

Although SO-RBAC model has its roots in predicate logic, it models RBAC using OWL ontological concepts,
and reasons upon these to strengthen the semantics stored in an ontology, and to manipulate individuals of ontological
concepts for making decisions on denials and permissions. Consequently, the SO-RBAC process and ontological model
are suitable for any repository where a user may have roles and may not necessarily be involved with the manipulation
of database elements. However, the SO-RBAC ontological model is also generic enough to accommodate data
structures from any domain, and our mechanism of reasoning allows successful manipulation of ontological individuals
which characterise a particular instance of SO-RBAC and its process.

Section 5.2 demonstrates the SO-RBAC ontological model and reasoning. The section is divided into three

subsections.
Section 5.2.1 defines the SO-RBAC ontological model through three distinctive steps:
(a) Definition of OWL classes and their hierarchies
(b) Definition of Necessary & Sufficient conditions and

(c) Definitions of object properties.

59

Section 5.2.2 describes the way of populating SO-RBAC classes with individuals by assertion. That section
explains exactly which classes must be populated before the reasoning process starts and why. Consequently, a portion
of SO-RBAC ontological classes will remain ‘empty’ until a reasoning process determines which individuals from the

asserted classes will be ‘moved’ (or copied) into SO-RBAC classes which were empty on SO-RBAC initialisation.

Section 5.2.3 explains the purpose and the outcome of the reasoning process upon SO-RBAC concepts using
SWRL. SO-RBAC has two types of reasoning. The first reasoning step, described in 5.2.3.1, uses SWRL for creating a
set of new object properties which use existing object properties defined in step (c). All of the object properties for
which this is done have ROLE class as both domain and range, as the purpose of this step is to set up all the
relationships between roles in the RBAC model. The second step, described in Section 5.2.3.2, performs reasoning to
move individuals across SO-RBAC in order to determine permission or denials in particular request imposed by a user,

who has a ‘role’ and would like to perform an ‘activity’ upon set of ‘objects’.

o

% inclusion of equal-status roles

included in(R,R) :- role(R).
included in(R1,R2) :- is a(R1,R2).
included in(R1,R3) :- is_a(R1,R2),

included in(R2,R3).

o

% Role hierarchies

senior to(R,R) :- directly senior to(R,).

senior to(R,R) :- directly senior to(_,R).

senior to(R1,R2) :- directly senior to(R1,R2).

senior to(R1,R3) :- directly senior to(R1,R2), senior to(R2,R3).
% Inheritance paths

inherits pra(R,R) :- role(R).

inherits_pra(R2,R3) :- senior to(R1,R2),

senior to(R3,R4),
inherits pra path(R1,R4).

o

% Access control rules structure

pra full(R1,P,0) :- senior to(R1,R2),
pra(R2,P,0),
inherits pra(R1,R2).

permittable (U, P,0 instance) :- ura(U,R1l),
included in(R1,R2)
instance of (O_instance,O),
pra_full(R2,P,0).

permitted(U,P,0) :- active user session(U),
permittable (U, P,0).

dra full(R2,P,0) :- senior to(R1,R2),
dra (R1,P,0).
denied (U, P,0 instance) :- ura(U,R1l),

included in(R1,R2),
instance of (O instance,0),
dra full(R2,P,0).

authorizable (U,P,0) :- permittable(U,P,0),
not (denied (U,P,0)) .

authorized(U,P,0) :- permitted(U,P,0),
not (denied (U, P,0)) .

Code 53: Prolog rules on which the SO-RBAC model is based

Section 5.3 describes the SO-RBAC process and explains its steps, which are based on the model and reasoning

introduced in Section 5.2.

Section 5.4 contrasts the proposed SO-RBAC solution with the traditional RBAC defined in Prolog (Code 53).

60

Section 5.5 gives a particular scenario of RBAC in terms of defining which individuals may populate one of SO-
RBAC instances. The healthcare domain and a medical database is used to demonstrate the implementation of SO-

RBAC.

Section 5.6 describes the implementation of SO-RBAC reasoning and the deployment of the SO-RBAC process.
The SO-RBAC ontology is modelled in OWL-DL. Although OWL-DL is much less flexible than OWL-FULL in
ontological modelling, it has a much wider range of available reasoners. SO-RBAC was modelled using Protégé [24],
with SWRL rules defined using the Protégé SWRLTab [110]. The model was initialized using a Perl script to create the
initial instances.

Section 5.7 shows screen shots from Protégé of the implementation and testing of SO-RBAC.

Section 5.8 draws conclusions.

61

5.2 Ontological Model and Reasoning
This section describes the SO-RBAC in terms of OWL and SWRL.

5.2.1 Definition of SO-RBAC Ontological Model

5.2.1.1 OWL classes and their hierarchies

ac JUNIOR_STAFF_DOCTOR_NIGHT
5 ENIOR_STAFF_DGCTOR_NIGHT
> L 8 Bt
’./'.
54 e
/,/ o bac:STAFF_NURSE_NIGHT
o (Fhac DOCTOR <1 rhac JUNIOR STAFF_DOCTO
ons T =SbbE e
74 4 —
/ /
(thac STAFF_NURSE_DAY
{ rhac:DAY_DUTY STUDENT_NURSE_DAY
“rhac TECHNICIAN <}———— rbac JUNICR_TECHNICIAN >
*rbac SENIOR _TECHNICIAN
/ :.rba:.ADMIN.‘;i‘ZIi_ Thac MANAGER)
/"
/
/
/
/
/
/
4" . —)
/ T e _
Thac PERMISSION_ASSIGN < —* 1ba=ROLE] (rbac DRA FULL
/ - - - = i
CebaeACTION) “(thasPRA_FULL
AT ASSIGNABLE <} ThasNOT DENIED) A .
bac:USER SESSION) i——— R thac PERMITTED }—— rhac AUTHORIZED
R ACTIVE_USER SESSION. rhac PERMITTAB ————_
rhac OBJECT_TYFE) = - SeetD T > - a8 4
£ e i 7 e ~ ~ ‘r!:ra_EVA_UTHnRJ%A}!—L_E
- ___((rhacUSER) " tha= DENIED)
S e (OFFICE_PDA)
_(PaTIENT) (MED_EQUIFMENT _— Ry
S T R DESKTOP
— P_%:REOVN ISPITAL_EQUIPMENT <} 7 Zr
7 o _— e 7 OFFICE LAFTOP
// (EQUIPMENT 51— (COMPUTER | i :
P — — e — _ (HOME_DESKTOP |
///,/' (puty) HOME_EQUIPMENT <}———(HOME_COMFUT!I == oy
el L e e s HOME_LAPTOP)
(owlThing <+ OBJECT_INSTANCE < OS_SESSION) SPITAL_INTERNET_CONNECTION - S s o
2 e T — T HOME_FDA)
\\ ERMET_CONNECTION <} HOME_INTERNET_CONNECTION P
\\\ T N e
B T WITAL SIGN)
S . L .
swrla Entity S —
1 . . .
e ~ Room Egi‘_oPERATING_ROOM)
wrlaRuleGroup 7 NOT_WARD
~———(warD)
Figure 6: Graphical illustration of a SO-RBAC model for a hospital domain.

Figure 6 shows a graphical illustration of SO-RBAC. There are two main super-classes in SO-RBAC:

OBJECT_INSTANCE and RBAC.
The super-class OBJECT_INSTANCE defines objects that may be accessed by users in SO-RBAC; examples

of these include database tables, files and equipment. The RBAC administrator is free to define the sub-classes of

62

OBJECT_INSTANCE according to the domain. We have sub-classed it based on a simplified model of data and

systems in a hospital, which is further explained in the scenario and implementation of SO-RBAC, as mentioned in

Introduction (Section 1).

The super class RBAC defines concepts that are relevant to RBAC, which should be stored in a separate super-class

from OBJECT _INSTANCE because it is conceptually different from other information, and is typically stored

separately in other systems. For example, a relational DBMS would store the RBAC information as meta-data, which is

not usually queried directly by users.
Sub-classes of the OBJECT_INSTANCE class are:

EQUIPMENT: represents all machines, both computers and medical equipment (and possibly others) to which
a user might be logged in. There are various sub-classes of EQUIPMENT, and multiple inheritance is used.
INTERNET_CONNECTION: represents Internet settings of computers. This class is sub-classed into
HOME_INTERNET_CONNECTION and HOSPITAL_INTERNET_CONNECTION.

OS_SESSION represents operating system login settings of computers.

PERSON represents all individuals with information stored about them. This includes users, so the class
USER is a sub-class of this as well as of RBAC. The other sub-class of PERSON in this example is
PATIENT.

ROOM represents all rooms in a hospital, and is sub-classed into OPERATING_ROOM and WARD.
VITAL_SIGNS represents vital signs recorded for patients.

Sub-classes of the RBAC class are:

The USER sub-class defines the set of users of the system. However, USER also inherits from PERSON,
which is a subclass of the OBJECT _INSTANCE class. On a superficial level, this is because user information
might be stored both as ordinary data and as meta-data in a relational database. On a practical level, it is
because the USER class, describing a user, contains information about users that is used in either ordinary
information-retrieval situations or in RBAC processing, or both.

ROLE sub-class contains a complex hierarchy of sub-classes, defining roles to which users and permissions
may be assigned. The hierarchy of classes under ROLE represents sub-divisions of roles by type (not by
seniority). The RBAC administrator is free to sub-class this class according to the domain. In this example, it is
sub-classed according to roles that might be found in a hospital. The main sub-classes of ROLE in this
example are DOCTOR, NURSE, ADMIN, TECHNICIAN, DAY_DUTY and NIGHT_DUTY. These sub-

classes are further sub-classed, including multiple inheritance.

USER_SESSION defines user login sessions. Its sub-class ACTIVE_USER_SESSION defines user login

sessions that are active, and thus give permissions to users.

OBJECT_TYPE defines the types of object that can be manipulated by SO-RBAC (as opposed to the objects
themselves, which are in OBJECT_INSTANCE).

URA sub-class defines user-role assignments.

ACTION class defines actions that can be performed on objects, such as read and write.

PERMISSION_ASSIGN is a sub-class consisting of all classes that relate to permission assignments. However,

it is also an abstract class in SO-RBAC, i.e. it never contains any instances directly assigned to it. It is defined to

63

provide the role and action properties to all permission-assignment classes in SO-RBAC. Its subclasses are
ROLE_PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE. They define permission
assignments between users and objects, and between roles and objects. ROLE_PERMISSION_ASSIGNABLE defines
permissions and denials assigned to roles, either explicitly or computationally by SO-RBAC.
USER_PERMISSION_ASSIGNABLE defines permissions, authorizations and denials assigned to users by SO-
RBAC computations.

The sub-classes of USER_PERMISSION_ASSIGNABLE are DENIED, NOT_DENIED, PERMITTABLE,
AUTHORIZABLE, PERMITTED and AUTHORIZED. All these sub-classes, except NOT_DENIED, are equivalent to
the similarly-named Prolog predicates. NOT_DENIED is the complement of DENIED. PERMITTED is defined as a
sub-class of PERMITTABLE, because it can only contain individuals that are also in this.

The sub-classes of ROLE_PERMISSION_ASSIGNABLE are DRA, DRA_FULL, PRA and PRA_FULL, all
of which are equivalent to the similarly-named Prolog predicates. PRA defines explicit role-permission assignments.
PRA_FULL defines role-permission assignments that are inferred when the SO-RBAC model is run. Similarly, DRA

defines explicit role-denial assignments, and DRA_FULL defines inferred role-denial assignments.

URA sub-class defines user-role assignments, and has two properties, user and role. Since URA is a binary
predicate, it could just as easily be defined as a property. It is defined as a class to maintain the analogy with PRA, in
the Prolog RBAC model. PRA is a ternary predicate, and therefore has to be defined as a class. Additionally, defining
URA as a class mean that user-role assignments can be seen more easily in the model than if it were defined as an
object property.

ACTION class defines actions that can be performed on objects, such as read and write.

5.2.1.2 Necessary & Sufficient conditions
Table 6: Necessary & Sufficient conditions imposed on SO-RBAC classes

Class Necessary & Sufficient condition
NOT_DENIED USER_PERMISSION_ASSIGNABLE n "DENIED
AUTHORIZABLE PERMITTABLE n ~DENIED
AUTHORIZED PERMITTED n ~DENIED

It is important to note that we had to impose a few Necessary & Sufficient conditions upon a selection of SO-RBAC
classes in order to guarantee consistency of SO-RBAC when populating classes with individuals. In other words
Necessary & Sufficient conditions are imposed on NOT_DENIED, AUTHORIZABLE and AUTHORIZED (see Table
6). If a class has a Necessary & Sufficient condition imposed on it, then populating the class in a way that violates this
condition makes the ontology inconsistent. The SO-RBAC reasoning process populates these classes in a way that

would always be consistent with the conditions.

In Figure 6 (page 62), the graphical illustration of SO-RBAC, OWL classes are in yellow, except classes bound

by Necessary & Sufficient conditions, which are in amber.

64

rhac: DEMIED o

rhac: NOT_DEMIED o
¥ (0 rhacPERMITTABLE thac:LISER_PERMISSION_ASSIGNABLE
rhac: AUTHORIZABLE not rhac: DENED

v rhac: PERMITTED MECESGARY

rhac AUTHORIZED

Figure 7: Necessary & Sufficient condition for NOT_DENIED.

Figure 7 shows how a Necessary & Sufficient condition appears in Protégé. As this figure shows, these
Necessary & Sufficient conditions cause AUTHORIZABLE to become a sub-class of PERMITTABLE, and
AUTHORIZED to become a sub-class of PERMITTED.

5.2.1.3 Object property relationships
Object properties between SO-RBAC classes are defined according to two reasons.
(a) Certain SO-RBAC classes rely on object properties to define semantically the individuals that they,

or their sub-classes, may contain.

(b) Certain SO-RBAC classes allow definition of object properties between them to strengthen the
semantics of SO-RBAC, as determined by our OWL modelling principles.

The next three paragraphs cover examples of (a).

We have already mentioned above that PERMISSION_ASSIGN provides the role and action properties to all
permission-assignment classes in SO-RBAC. Therefore its full description must include object properties it holds.
Naturally, PERMISSION_ASSIGN has object properties role and action. Just as all permission assignment predicates
in the Prolog RBAC model described in 3.2.1 have role and action as arguments, so do all analogous classes in SO-
RBAC. However, the hierarchical nature of ontologies makes it much easier to define a series of related classes with the
same properties in an ontology than it is to define predicates with similar arguments in Prolog. In OWL, property
inheritance can be used to define a super-class with certain properties, and define sub-classes representing related
predicates that inherit its object properties. Accordingly, PERMISSION_ASSIGN sub-classes ROLE_
PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE, both inherit properties role and action,
as well as defining other object properties. ROLE_PERMISSION_ASSIGNABLE has the additional property object_
type. Since DRA, DRA_FULL, PRA and PRA_FULL are sub-classes of ROLE_PERMISSION_ASSIGNABLE, all
have the object properties role, action and object_type. role and action are inherited from PERMISSION_ASSIGN
(their grandparent super-class), while object _type is inherited directly from ROLE_PERMISSION_ASSIGNABLE.

USER_PERMISSION_ASSIGNABLE defines permissions, authorizations and denials assigned to users by
SO-RBAC computations. As well as inheriting role and action from PERMISSION_ASSIGN, it also has the object
properties user and object_instance.

URA sub-class has two properties, user and role. Since URA is a binary predicate, it could just as easily be
defined as a property. It is defined as a class to maintain the analogy with PRA, in the Prolog RBAC model. PRA is a
ternary predicate, and therefore has to be defined as a class. Additionally, defining URA as a class mean that user-role
assignments can be seen more easily in the model than if it were defined as an object property.

We have introduced a few object properties in the previous section in order to explain the purpose and existence

of some sub-classes of the RBAC super-class. However, in order to perform and guarantee successful outcome of

65

reasoning, we have strengthened the semantics of SO-RBAC with additional set of object properties imposed on SO-

RBAC classes as highlighted in (b) above.

Table 7: Object properties in SO-RBAC

Domain

Property

Description

Range

rbac:PERMISSION_ASSIGN (sub-classes:
rbac:USER_PERMISSION_ASSIGNABLE and
sub-classes, rbac:ROLE_PERMISSION _
ASSIGNABLE and sub-classes)

rbac:action

Actions involved in role and
user permission assignments.

rbac:ACTION

rbac:PERMISSION_ASSIGN and sub-classes

rbac:role

Roles involved in role and user
permission assignments.

rbac:ROLE and sub-
classes

rbac:USER_PERMISSION_ASSIGNABLE

rbac:object_

Object instance to which a user

OBJECT_INSTANCE

sub-classes

permission/denial/authorization
assignments.

(sub-classes: rbac:DENIED, rbac:NOT _ instance is permitted, authorized or and sub-classes
DENIED, rbac:PERMITTABLE, rbac: denied access.

AUTHORIZABLE, rbac:PERMITTED, rbac:

AUTHORIZED)

rbac:USER_PERMISSION_ASSIGNABLE and | rbac:user Users involved in user rbac:USER

rbac:ROLE_PERMISSION_ASSIGNABLE
(sub-classes: rbac:DRA_FULL, rbac:DRA,
rbac:PRA_FULL, rbac:PRA)

rbac:object_type

Object types associated with
PRA and DRA relationships.

rbac:OBJECT_TYPE

rbac:ROLE_PERMISSION_ASSIGNABLE and
sub-classes

rbac:role

Roles associated with PRA and
DRA relationships.

rbac:ROLE and sub-
classes

OBJECT_INSTANCE and sub-classes

rbac:instance_of

An instance of a type of object,
as defined by a sub-class of
rbac:OBJECT_TYPE.

rbac:OBJECT_TYPE

relationships, inferred from
senior_to.

rbac:URA rbac:role Arole in a URA assignment. rbac:ROLE
rbac:URA rbac:user A user in a URA assignment. rbac:USER
rbac:USER_SESSION rbac:user A user attached to a session. rbac:USER
rbac:ROLE rbac:directly _ Inverse of directly_senior_to. |rbac:ROLE
Junior_to Sub-property of junior_to.
rbac:ROLE rbac:directly Assertions of direct seniority rbac:ROLE
senior_to relationships. Sub-property of
senior _to.
rbac:ROLE rbac:included_in |Direct and indirect inclusion rbac:ROLE
relationships, inferred from
is_a relationships.
rbac:ROLE rbac:inherits_pra |Roles that participate in rbac:ROLE
inheritance paths, inferred from
inherits_pra_path.
rbac:ROLE rbac:inherits _ Assertions of ends of rbac:ROLE
pra_path inheritance paths.
rbac:ROLE rbac:is_a Assertions of direct inclusion | rbac:ROLE
relationships. Sub-property of
senior _to.
rbac:ROLE rbac:junior_to Inverse of senior_to. rbac:ROLE
rbac:ROLE rbac:senior_to Direct and indirect seniority rbac:ROLE

Table 7 lists ALL object properties with their Domains and Ranges, and includes both asserted and inherited object

properties.

66

Most object properties are named after their Ranges. These properties may have different functions depending on the

Domain: each function of a property is listed separately in the table.

Object properties not named after their Ranges are instance_of and the properties that have ROLE as both
Domain and Range (directly_junior_to, directly senior_to, included_in, inherits_pra, inherits_pra_path, is_a,
Junior_to, senior_to).

instance_of, which links object types to instances, is separate from the object type property of
PERMISSION_ASSIGN and its sub-classes, which is involved in role-permission assignments. This is because SO-
RBAC could be used to manage access to classes relating to RBAC. If this is done, then the object type to which
PERMISSION_ASSIGN and its sub-classes belong must be defined; to do so using the same property as is used in

assignment relations would cause confusion.

It is important to note that some object properties from Table 7 are asserted and some of them are inferred. For
example, the object properties action, user, role and object_instance are asserted between USER_PERMISSION _
ASSIGNABLE and OBJECT _INSTANCE, ACTION, USER and ROLE (and its sub-classes), but inferred between
all subclasses of USER_PERMISSION_ASSIGNABLE and these classes.

Similarly, the object properties action, object type and role are asserted between ROLE_PERMISSION _
ASSIGNABLE and ACTION, OBJECT_TYPE and ROLE (with its subclasses) classes, but inferred between all
subclasses of ROLE_PERMISSION_ASSIGNABLE and these classes.

+ OBJECT_INSTANCE
— RBAC
— ACTION
— OBJECT_TYPE
+ ROLE {directly junior_to ROLE, directly senior_to ROLE, junior_to ROLE, senior_to ROLE,
included_in ROLE, inherits_pra ROLE, inherits_pra_path ROLE, is_a ROLE}
— PERMISSTION_ASSICN {action ACTION, role ROLE}
— ROLE_PERMISSION_ASSIGNABLE {object type OBJECT_TYPE}
— DRA
DRA_FULL
- PRA
PRA_FULL
— USER_PERMISSION_ASSIGNABLE {object instance OBJECT_INSTANCE, user USER}
— DENIED
NOT_DENIED
PERMITTABLE
AUTHORIZABLE
PERMITTED
= AUTHORIZED
— URA {role ROLE, user USER}
- USER
— USER_SESSION {user USER}
— ACTIVE_USER_SESSION

Text 4: SO-RBAC Ontology (some classes are collapsed).

67

+ COLLAPSED_CLASS

— CLASS
— SUB-CLASS {object _property 1 CLASS, object property 2 CLASS}
— ABSTRACT_CLASS

= SWRL-INFERRED_CLASS
= N&S_BOUND_CLASS

Text 5: Legend for SO-RBAC Ontology.

Text 4 illustrates a collapsed version of the ontology from Figure 6, and highlights main SO-RBAC classes
involved in ontological reasoning. It is important to note that Text 4 should be read in conjunction with Text 5. Object
properties are listed, with their ranges, in grey text in curly brackets after the classes that have them as their domains.
Classes that contain inferred individuals as the result of our ontological reasoning are listed in blue and preceded by the
= symbol. Classes on which Necessary & Sufficient conditions are imposed are in green and preceded by the = symbol.

The key to the colours and symbols is shown in Text 5.

rbac: ACTION rbac:ROLE OBJECT_INSTANCE rbac:USER

%lc action™ rbac:role ".\rbuc :role® rbac:user*
-

rbac:ROLE_ASSIGN rbac:URA rbac:OBJECT rbac:user® rbac:USER_SESSION

rbac:instance_of* rbac:user*

lisa isa rbac:object*

rbac:ROLE_PERMISSION_ASSIGNABLE rbac:USER_PERMISSION_ASSIGNABLE
isa lisa isa }sa isa
rbac:PRA_FULL rbac:DRA_FULL rbac:PERMITTABLE rbac:DENIED rbac:NOT_DENIED
[
isa isa isa isa isa \isa
rbac:PRA rbac:DRA rbac:PERMITTED rbac: AUTHORIZABLE not rbac: DENIED and rbac:USER_PERMISSION...

/sa %\sa

rbac: AUTHORIZED not rbac:DENIED and rbac:PERMITTABLE

€sa isa
Y

not rbac:DENIED and rbac:PERMITTED

Figure 8: Property map of all SO-RBAC properties except those that have ROLE as both domain and range.

Figure 8 graphically illustrates all object properties defined in Table 7 except those that have ROLE as both
domain and range. The label ‘isa’ in Figure 8 refers to the sub-class—super-class relationship: a sub-class ‘isa’ super-
class. It has nothing to do with the is_a property used in SO-RBAC. In this diagram, each property is distinguished by
colour: where the same property appears several times, it is shown in the same colour. However, these colours are not

used anywhere else.

68

There are several ways in which ROLE individuals can be related affecting user-permission assignment in

RBAC. These need separate attention.

rbac:ROLE
s a > rbac:directly_junior_to | Instance* |rbac:ROLE
I rbac;junior_to Instance* |rbac:ROLE direct/;_;&r;fé;;fa' D
included_in - - i JHRI
——— | rbac:directly_senior_to ||nstance* |rbac:ROLE .

JUHIO@
| rbac:senior_to Instance* | rbac:ROLE -
Cinherits_pra ;

| rbacis_a Instance* |rbac:ROLE
B = ; . .
Cinherits_pra_path rbac:included_in Instance* |rbac:ROLE E—
rbac:inherits_pra_path | Instance* |rbac:ROLE jf{?{?gfof
rbac:inherits_pra Instance* | rbac:ROLE

Figure 9: Property map of all SO-RBAC properties with ROLE as both domain and range.

Figure 9 depicts all object properties in SO-RBAC that have ROLE as both domain and range. These properties
are directly_junior _to, directly_senior_to, included_in, inherits_pra, inherits_pra_path, is_a, junior_to and
senior_to. These separate properties represent different relationships between ROLE instances, as described in Table 7.
Each object property relating instances of the same class is indicated by an arrow from the node representing the ROLE
class and pointing back to this box. For clarity, these object properties are also listed in the node. The box in Figure 9
signifies that a ROLE class instance (represented by the ROLE at the top of the box) has can be linked to any instances
of ROLE via any of the properties listed.

Note that all object properties in Figure 9 apply to the same ROLE class. Therefore, they appear in Figure 9

twice: in the first column of the figure and as coloured labels of arcs which graphically illustrate these object properties

defined upon class ROLE.

5.2.2 Populating SO-RBAC classes by assertion
Classes populated in this stage are classified into two types. Note that ROLE and PERMISSION_ASSIGN are

abstract classes, which contain no asserted individuals.

i. Auto-populated on initialization: ROLE_PERMISSION_ASSIGNABLE and USER_PERMISSION _
ASSIGNABLE are populated on initialization with individuals representing possible role and user permission
assignments. Individuals asserted under these classes are not active: they have to be moved to sub-classes of
these classes to be active in SO-RBAC.

ii. Populated according to RBAC model on initialization: URA, USER, ACTION, ROLE, OBJECT_TYPE,
USER_SESSION, ACTIVE_USER_SESSION, DRA, PRA and all classes under ROLE and OBJECT _
INSTANCE are populated, by the RBAC administrator and application, with individuals that define the RBAC
rules and environment.

Individuals in the OBJECT_TYPE class specify types of object, linked to the appropriate individuals in
OBJECT _INSTANCE as the range of the property instance_of.

Individuals in ROLE specify RBAC roles. In the example RBAC, ROLE is an abstract class, and has a
hierarchy below this indicating types of role such as DOCTOR and NURSE, but this hierarchy is not used by the

69

present implementation of SO-RBAC, because OWL-DL cannot address classes directly. Instead the properties is_a
and included_in represent role inclusion. In the example R BAC, each class has a single individual representing a role;
however, this is not necessary in SO-RBAC. The RBAC roles are defined by the individuals in ROLE and its sub-
classes, not by the classes themselves. The ROLE class hierarchy is defined for illustration only, as it has no semantic
significance in SO-RBAC.

ROLE_PERMISSION_ASSIGNABLE is populated on initialization with individuals representing all possible
relationships between roles, actions and object types. These are then moved in the reasoning step into any of the sub-

classes.

The sub-classes of ROLE_PERMISSION_ASSIGNABLE are DRA, DRA_FULL, PRA and PRA_FULL.
DRA and PRA are populated on initialization with explicit denial and permission assertions, respectively, copied from

the super-class. They are exactly equivalent to dra and pra assertions in the Prolog model.

USER_PERMISSION_ASSIGNABLE is populated on initialization with individuals representing all possible

combinations of user assignments of access to perform actions on object instances.
URA is populated with individuals describing user-role assignments.
The USER class is populated by individuals representing users who may be assigned roles.

The USER_SESSION class is populated with user login sessions. It contains sub-class
ACTIVE_USER_SESSION, which represents active user sessions.

5.2.3 Reasoning in SO-RBAC using SWRL

Stage 0 Step 1-
(I n I%I a I) Madify properties of abied:?n ROLE and s sub-dass=s - Stag E 1
Step 2:
i Populate PRA_FULL from PRA, and DRA_FLULL from DREA
Stage 2 PR PRI e e Stage 3
Step 4
¢ Fopuiats PERMITTED and MOT_DEMIED
. Stage 5
Stage 4 e B - .
g o - (Final)
Figure 10: Steps and Stages in reasoning SO-RBAC

Figure 10 shows the five steps of reasoning. Step 1 significantly differs from the others because it uses SWRL
for inferring more object properties. In other words, Step 1 modifies object properties in individuals in ROLE and its

sub-classes for the purpose of determining all the relationships between roles within RBAC.

70

Steps 2—5 of the reasoning process infer individuals in SO-RBAC classes according to strictly defined matching
of SO-RBAC sub-classes. The final result of our reasoning through SWRL and ontological matching will be shown in
Stage 5, when certain individuals will be moved into SO-RBAC classes AUTHORIZABLE and AUTHORIZED.

Step 1 is shown in Sub-section 5.2.3.1, and Steps 2—5 are shown in Sub-section 5.2.3.2.

The steps are designed such that each stage populated the ontology with all axioms that may be required for the
immediately following stage (except that Step 1 creates all object property relationships).

The reader should be aware that if more than one rule affects the same class or property, then the relationship

between the rules is a logical OR (this cannot be represented any other way in SRWL).
The SWRL rules were named according to the following conventions:
¢ The rules are numbered according to the step in which they are executed when rule chaining. There are five
steps, 1-5 (Figure 10).
« The SWRL rules are named according to the convention s_relation[_n], where s is the step number, relation is

the class or property affected by the rule, and n is a sequence number (if there is more than one rule relating to

the same relation in the same stage).

SQWRL Individual ~ <Zx> OWL Individual

= SQWRL Function FROM Domain TO Range

» OWL Class Membership in Antecedent FROM Member TO Class

» OWL Class Membership in Consequent FROM Member TO Class

. Flow of SWRL rule: FROM Antecedent TO Class,
~ and FROM Class TO Consequent

—is-a—= OWL Property Antecedent FROM Domain TO Range

""""""""""" is-a——== OWL Property Consequent FROM Domain TO Range
Figure 11: Key to symbols used in SWRL reasoning diagrams.

Figure 11 shows the key to the symbols in the diagrams in Figs. 12-29 showing the inference processes for
object properties. The shapes used for OWL individuals and classes are intentionally similar to those used for equivalent
entities in Protégé. In SWRL syntax, variables always begin with a ? symbol, and this convention is followed in the
diagrams.

SQWRL (Semantic Query-enhanced Web Rule Language) [111][112][113] is a SWRL-based query language that
can be used to query OWL ontologies. It is used in Step 4 to provide semantics needed in this step that are not available
in SWRL itself. OWL object properties and SQWRL functions are represented as arrows from the Domain to the Range,
with the name of the property or function (in the legend, is_a and sqwrl:notElement) is used as an example) appearing

over the arrow.

71

5.2.3.1 Defining new object properties
We define new object properties in Step 1, from Figure 10. These definitions are based on previously defined

object properties, where the ROLE class is the Range and Domain. Step 1 consists of 7 SWRL rules, named as
1_senior_to_1, 1_senior_to_2, 1_senior_to_4, 1_included_in_1, 1_included_in_3, 1_inherits_pra_1 and

1_inherits_pra_3.

rbac:ROLE(?r) A rbac:directly_senior_to(?_, ?r) - rbac:senior_to(?r, ?r)

Text 6: SWRL for rule 1_senior_to_1.

drecty’ﬁenorto

©

senior_to

i
____________________________ 4

Figure 12: Rule 1_senior_to_1.

The first rule in Step 1, given in Figure 12, is called 1_senior_to_1. It defines a role as is senior to itself if it has

at least one role directly senior to it. Figure 12 is converted into SWRL syntax in Text 6 above.

rbac:ROLE(?r) A rbac:directly_senior_to(?r, ?_) - rbac:senior_to(?r, ?r)

Text 7: SWRL for rule 1_senior_to_2.

senior_to

) ---h

directly_genior_to

Figure 13: Rule 1_senior_to_2.

The second rule in Step 1, given in Figure 13, is called 1_senior_to_2. It defines a role as senior to itself if it is

directly senior to at least one role. Figure 13 is converted into SWRL syntax in Text 7 above.

72

rbac:directly_senior_to(?r1, ?r2) A rbac:senior_to(?r2, ?r3)

- rbac:senior_to(?r1, ?r3)

Text 8: SWRL for rule 1_senior_to_4.

. . 4
directly_senior_to \
senior_to

senigr_to

Figure 14: Rule
1_senior_to_4.

The third rule in Step 1, given in Figure 14, is called 1_senior_to_4. It defines a seniority of roles as being
transitive. In other words, Role ?r7 is senior to ?2r3 if it is directly senior to another role (?r2) that is senior to 2r3.

Figure 14 is converted into SWRL syntax in Text 8 above.

rbac:ROLE(?r) - rbac:included_in(?r, ?r)

Text 9: SWRL for rule 1_included_in_1.

i
____________________________ 4

Figure 15: Rule
1_included_in_1.

73

The fourth rule in Step 1, given in Figure 15, is called 1_included_in_1. It defines a role as always being
included in itself. Figure 15 is converted into SWRL syntax in Text 9 above.

rbac:is_a(?r1, ?r2) A rbac:included_in(?r2, ?r3)
- rbac:included_in(?r1, ?r3)

Text 10: SWRL for rule 1_included_in_3.

is|a |

included in|
included_in i

Figure 16: Rule 1_included_in_3.

The fifth rule in Step 1, given in Figure 16, is called 1_included_in_3. It defines role inclusion as being

transitive. In other words, Role ?r7 is included in ?r3 if it is directly included in (is_a) another role (?r2) that is
included in ?r3. Figure 16 is converted into SWRL syntax in Text 10 above.

rbac:ROLE(?r) - rbac:inherits_pra(?r, ?r)

Text 11: SWRL for rule 1_inherits_pra_1.

- @B

Figure 17: Rule 1_inherits_pra_1.

The sixth rule in Step 1, given in Figure 17, is called 1_inherits_pra_1. It defines a role as being part of an
inheritance path involving itself. An inheritance path is a path along which permissions can be inherited. This rule is

necessary to set up recursion when defining inheritance paths. Figure 17 is converted into SWRL syntax in Text 11
above.

74

rbac:senior_to(?r1, ?r2) A rbac:senior_to(?r3, ?r4) A
rbac:senior_to(?r3, ?r4) A rbac:inherits_pra_path(?r1, ?r4)

- rbac:inherits_pra(?r2, ?r3)

Text 12: SWRL for rule 1_inherits_pra_3.

inherits_
pra_path seni

inherits_ |
pra

senigr_to

Figure 18: Rule 1_inherits_pra_3.

pr_fo

The seventh rule in Step 1, given in Figure 18, is called 1_inherits_pra_3. It defines that Roles ?r2 and ?r3 are
in an inheritance path, where ?r3 is the senior role, if:
i) ?r2 has a senior role ?r7 that is at the senior end of an inheritance path, and

ii) ?r3 is senior to role ?r4 that is at the junior end of an inheritance path.

Figure 18 is converted into SWRL syntax in Text 12 above.

75

5.2.3.2 Assigning individuals to SO-RBAC classes
Individuals are assigned to SO-RBAC classes by the reasoning rules in Steps 2—5. All rules in Steps 2 and 3, and

rule 2 of Step 4, match individuals according to object properties. Rule 1 of Step 4, and both rules in Step 5, match

individuals by a simple set operation (set difference or intersection).

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGES

® |

ROLE_
PERMISSION_
ASSIGMABLE,

Figure 19: Diagram showing movement of individuals in Step 2 of reasoning only.

Step 2 is shown in Figure 19. It takes class ROLE_PERMISSION_ASSIGNABLE and matches its individuals
with individuals of classes PRA and DRA. If individuals from ROLE_PERMISSION_ASSIGNABLE satisfy the
rules for their matching, then they are moved to PRA_FULL and DRA_FULL. It is important to note that only
individuals from ROLE_PERMISSION_ASSIGNABLE are being moved into PRA_FULL and DRA_FULL,
according to the object properties of these and of the individuals in PRA and DRA.

These two matchings are performed though two different SWRL rules 2_dra_full and 2_pra_full. Both of these
rules are explained separately through written explanations and diagrams which show object properties responsible for

ontological matching and the way we populate classes with inferred individuals.

76

rbac:DRA(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A
rbac:object_type(?x, ?0) A rbac:senior_to(?r1, ?r2) A
rbac:ROLE_PERMISSION_ASSIGNABLE(?z) A

rbac:role(?z, ?r2) A rbac:action(?z, ?a) A rbac:object_type(?z, ?0)

rbac:DRA_FULL(?z)

Text 13: SWRL for rule 2_dra_full

oe ?x » DRA

senipr_to acion objeck type

DRA_FULL

F Y

ROLE_
PERMISSION_
SSIGNABL

Figure 20: Rule 2_dra_full

The first rule in Step 2, given in Figure 20, is called 2_dra_full. This rule moves an individual from
ROLE_PERMISSION_ASSIGNABLE to DRA_FULL if there exists an individual in DRA that has the same action
and object_type properties as that in ROLE_PERMISSION_ASSIGNABLE, and if the role property of the
individual in DRA is senior to that of the individual in ROLE_PERMISSION_ASSIGNABLE.

A formal description of the matching in rule 2_dra_full is below. ROLE_PERMISSION_ASSIGNABLE
instance ?Z represents a potential user-role assignment with the following properties:

e rbac:action ?a;
e rbac:role ?r2, and
* rbac:object_type ?0.
?zis moved to DRA_FULL if:
i) ?zis linked by object property rbac:role to ?r2;
ii) ?r1 is senior to ?r2 (is linked to ?r7 via object property rbac:senior_to);
ii1)DRA instance ?x is linked by object property rbac:role to ?r1, and

iv)both ?z and ?x have rbac:action ?a and rbac:object_type ?o.

Figure 20 is converted into SWRL syntax in Text 13 above.

71

rbac:PRA(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A
rbac:object_type(?x, ?0) A rbac:senior_to(?r2, ?r1) A
rbac:ROLE_PERMISSION_ASSIGNABLE(?z) A
rbac:role(?z, ?r2) A rbac:action(?z, ?a) A
rbac:object_type(?z, ?0) A rbac:inherits_pra(?r2, ?r1) -
rbac:PRA_FULL(?z)

Text 14: SWRL for rule 2_pra_full

v

>€>(w

infjerits_pra senior_to on obje pe

o

i cfion objeg

PRA_FULL

ROLE_
PERMISSION _
A\SSIGNABL

Figure 21: Rule 2_pra_full

The second rule in Step 2, given in Figure 21, is called 2_pra_full. This rule moves an individual from
ROLE_PERMISSION_ASSIGNABLE to PRA_FULL if there exists an individual in PRA that has the same action
and object_type properties as that in ROLE_PERMISSION_ASSIGNABLE, and if the role property of the individual
in PRA is junior to that of the individual in ROLE_PERMISSION_ASSIGNABLE.

A formal description of the matching in rule in 2_dra_full is below. ROLE_PERMISSION_ASSIGNABLE
instance ?z represents a potential user-role assignment with the following properties:

e rbac:action ?a;
e rbac:role ?r2, and
* rbac:object type ?o0.
?z is moved to PRA_FULL if:
i) ?zis linked by object property rbac:role to ?r2;
ii) ?r2 is senior to ?r1 (is linked to ?r7 via object property rbac:senior_to);
iii)?r2 and ?r1 are in an inheritance path (linked via object property rbac:inherits_pra);
iv)PRA instance ?x is linked by object property rbac:role to ?r1, and

v) both ?z and ?x have rbac:action ?a and rbac:object_type ?o.

Figure 21 is converted into SWRL syntax in Text 14 above.

78

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5

USER 9P
PERMISSION_
ASSIGNABL

O PERMITTABLE |

-~
-
-
-
~
|~
-

Figure 22: Diagram showing movement of individuals in Step 3 of reasoning only.

Figure 22 shows the movement of individuals in Step 3, in which PERMITTABLE and DENIED are populated
from individuals in USER_PERMISSION_ASSIGNABLE, as determined by individuals in URA, PRA_FULL and
DRA_FULL, as well as relationships between roles defined by included_in axioms.

79

rbac:PRA_FULL(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A
rbac:object_type(?x, ?0) A rbac:included_in(?r2, ?r1) A
rbac:instance_of(?0i, 70) A
rbac:USER_PERMISSION_ASSIGNABLE(?z) A rbac:action(?
z, ?7a) A rbac:object_instance(?z, ?0i) A rbac:user(?z, ?u) A
rbac:URA(?y) A rbac:role(?y, ?r2) A rbac:user(?y, ?u) -
rbac:PERMITTABLE(?z)

Text 15: SWRL for rule 3_permittable

»PRA_FULL
't

Y

USER_
PERMISSION_
ASSIGNABLE

Figure 23: Rule 3_permittable

The first rule in Step 3, given in Figure 23, is called 3_permittable. This rule moves an individual from
USER_PERMISSION_ASSIGNABLE to PERMITTABLE if that individual is found to represent an actual user-
permission assignment in the RBAC model. That is, if an individual in USER_PERMISSION_ASSIGNABLE has the
same action as an individual in PRA_FULL; has object instance that is linked to an object type in this
USER_PERMISSION_ASSIGNABLE individual, and has a wuser that is assigned to a role in this
USER_PERMISSION_ASSIGNABLE individual, or a role that is included in this role, then it is moved to
PERMITTABLE.

A formal description of the matching in rule in 3_permittable is below. USER_PERMISSION_
ASSIGNABLE instance ?z represents a potential user-permission assignment. It has the following properties:
* rbac:action linked to ?a, representing an action performed by a user;

e rbac:user ?u, and

80

* rbac:object_instance ?0i, representing a specific data object that may be accessed by user ?u.

?x is an instance in PRA_FULL with the following properties:
e rbac:action linked to ?a;
e rbac:role ?r1, and

* rbac:object_type ?0, representing a type of object that may be accessed by users in role 2r1.

?z is moved to PERMITTABLE if it is found to be an actual user-permission assignment in the RBAC model,

according to the following rules:

i) ?zhas user ?u;

ii) ?u is assigned to role ?r2 by URA instance ?y;

iii)?r2 is included in role ?r1 (?r2 is linked to ?r7 via property rbac:included_in);

iv)PRA_FULL instance ?x has role 2r7,;

v) Both ?z and ?x have rbac:action ?a;

vi) 7z has rbac:object_instance ?oi;

vii) ?0i is a data object of type 2?0 (?0i is linked to 70 via rbac:instance_of property), and

viii) ?x has object_type ?0.

Figure 23 is converted into SWRL syntax in Text 15 above.

rbac:DRA_FULL(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A rbac:object_type(?x, ?0) A rbac:included_in(?r2, ?
r1) A rbac:instance_of(?0i, ?0) A rbac:USER_PERMISSION_ASSIGNABLE(?z) A rbac:action(?z, ?7a) A
rbac:object_instance(?z, ?0i) A rbac:user(?z, ?u) A rbac:URA(?y) A rbac:role(?y, ?r2) A rbac:user(?y, ?u) -
rbac:DENIED(?z)

Text 16: SWRL for rule 3_denied

»(DRA FULL
(BRA_FULD)

ncui ed_in

D> i

instar|ce_of

®
®

USER_
PERMISSION_
ASSIGNABLE

Figure 24: Rule 3_denied

81

The second rule in Step 3, given in Figure 24, is called 3_denied. This rule moves an individual from
USER_PERMISSION_ASSIGNABLE is moved to DENIED if it is found to represent an actual user-denial
assignment in the RBAC model. That is, if an individual in USER_PERMISSION_ASSIGNABLE has the same
action as an individual in DRA_FULL; has object instance that is linked to an object type in this
USER_PERMISSION_ASSIGNABLE individual, and has a wuser that is assigned to a role in this
USER_PERMISSION_ASSIGNABLE individual, or a role that is included in this role, then it is moved to DENIED.

A formal description of the matching in rule in 3_denied is below.
USER_PERMISSION_ASSIGNABLE instance ?z is moved to DENIED if:
i) ?zhas rbac:user ?u;
ii) ?u is assigned to rbac:role ?r2 by URA instance ?y;,
iii)?r2 is included in ?r7;
iv)DRA_FULL instance ?x has rbac:role ?r1,
v) Both ?z and ?x have rbac:action ?a;

vi) ?z has rbac:object_instance ?0i,
vii)?0i is a data object of type 70 (?0i is linked to 20 via property rbac:instance_of), and ?x has

rbac:object_type ?o.

Figure 24 is converted into SWRL syntax in Text 16 above.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5

USER_
PERMISSION_ m{ nOT_DENIED
ASSIGNABLE

PERMITTABLE 7§

[IL

ACTIVE_
USER PERMITTED

SESSION

Figure 25: Diagram showing movement of individuals in Step 4 of reasoning only.

82

Figure 25 shows the movement of individuals in Step 4, in which PERMITTED is populated from

PERMITTABLE and ACTIVE_USER_SESSION, and NOT_DENIED from USER_PERMISSION_
ASSIGNABLE and DENIED.

rbac:USER_PERMISSION_ASSIGNABLE(?x) A rbac:DENIED(?y) °
sqwrl:makeSet(?d, ?y) ° sqwrl:notElement(?x, ?d) -
rbac:NOT_DENIED(?x)

Text 17: SWRL for rule 4_not_denied

USER_
PERMISSION_

4 not_denied

NOT_DENIED)=

Figure 26: Rule 4_not_denied

The first rule in Step 4, given in Figure 26, is called 4_not_denied. This rule populates NOT_DENIED as all
individuals in USER_PERMISSION_ASSIGNABLE that are not in DENIED. Mathematically, NOT_DENIED is
defined as the set difference of USER_PERMISSION_ASSIGNABLE and DENIED (Formula 2).

NOT_DENIED = USER_PERMISSION_ASSIGNABLE — DENIED

Formula 2: Definition of NOT_DENIED.

A formal description of the matching in rule in 4 not_denied is below.
USER _PERMISSION_ASSIGNABLE instance ?x is moved to NOT_DENIED if ?x is not in DENIED. This is
determined as follows:

i) ?dis a set of all instances ?y in DENIED, and
i) ?x is not in ?d.

Mathematically, this can be represented as in Formula 3.

83

Vy, Vx,y € DENIED, x € USER_PERMISSION_ASSIGNABLE, x #y
= x € NOT_DENIED

Formula 3: Matching NOT_DENIED.

Or, more simply, as in Formula 4.

Vx, x € DENIED, x € USER_PERMISSION_ASSIGNABLE
= x € NOT_DENIED

Formula 4: Simplified matching NOT_DENIED.

The implementation of this negation formula is quite complex in SWRL, due to the way that OWL handles
negation, which is different from that of languages such as Prolog which are based on predicate logic. Prolog uses
classical negation, also called “negation as failure”. [30] This means that if the truth of a query cannot be inferred, then
the query is assumed to be false (if a query fails, then its negation succeeds). This is also called the ‘closed world
assumption’. In contrast, OWL implements an ‘open world’ assumption: a fact that cannot be inferred is not necessarily
false. Since SWRL is a tool for querying ontologies, it does not have a negation operation. However, it is possible to

simulate classical negation in SWRL using functions in SQWRL, which is discussed at the start of Section 5.2.3. The
SQWRL function makeSet makes a set consisting of a list of previously defined individuals. The SQWRL functions

element and notElement check whether a given individual is a member of a set. notElement enables negation-as-
failure to be used with OWL and SWRL.

Figure 26 is converted into SWRL syntax in Text 17 above.

84

rbac:PERMITTABLE(?x) A rbac:user(?x, ?u) A
rbac:ACTIVE_USER_SESSION(?s) A rbac:user(?
s, ?u)

- rbac:PERMITTED(?x)

Text 18: SWRL for rule 4_permitted

PERMITTABLE

4 _permitted

fy
!
¢
/
;

Figure 27: Rule 4_permitted

The second rule in Step 4, given in Figure 27, is called 4_permitted. This rule moves an individual in
PERMITTABLE to PERMITTED if the individual has a user that is also a user in an active user session, as given by an
individual in the class ACTIVE_USER_SESSION. The difference between PERMITTABLE and PERMITTED is
that PERMITTABLE represents potential permissions, while PERMITTED represents actual permissions, as
determined by active user sessions.

A formal description of the matching in rule in 4_permitted is below. PERMITTABLE instance ?x is moved to

PERMITTED if:
i) ?x has rbac:user ?u, and
ii) ACTIVE_USER_SESSION user ?s has rbac:user ?u.

Figure 27 is converted into SWRL syntax in Text 18 above.

85

STAGE 1

STAGE 2

STAGE 3

STAGE 4

STAGE 5

AUTHORIZABLE

‘ PERMITTABLE !>

AUTHORIZED

Figure 28: Diagram showing movement of individuals in Step 5 of reasoning only.

Figure 28 shows the movement of individuals in Step 5, in which AUTHORIZED is populated from

PERMITTED and NOT_DENIED. AUTHORIZABLE is populated from PERMITTABLE and NOT_DENIED.

86

///

J— _.E{_____H I J— L _L ——
¢ PERMITTABLE > < NOT_DENIED > (AUTHORIZABLE>
e H e

AN
AN
\\
/
\ /
N /

Y

45 authorizable

rbac:PERMITTABLE(?x) A rbac:NOT_DENIED(?x) — rbac:AUTHORIZABLE(?x)

Figure 29: Rule 5_authorizable

Text 19: SWRL for rule 5_authorizable

The first rule in Step 5, given in Figure 29, is called 5_authorizable. AUTHORIZABLE is defined as the
intersection of PERMITTABLE and NOT_DENIED: an individual is in AUTHORIZABLE if it is in both
PERMITTABLE and NOT_DENIED (Formula 5).

AUTHORIZABLE = PERMITTABLE N NOT_DENIED

Formula 5: Definition of AUTHORIZABLE.

PERMITTABLE instance ?x is moved to AUTHORIZABLE if ?x is also in NOT_DENIED. Note that this
means that the same actual instance ?x has to be in both PERMITTABLE and NOT_DENIED (not different instances

with the same object properties).

Figure 29 is converted into SWRL syntax in Text 19 above.

87

rbac:PERMITTED(?x) A rbac:NOT_DENIED(?x) — rbac:AUTHORIZED(?x)

Text 20: SWRL for rule 5_authorized

//
//
X Y A
T T e e 3 s,
<~ PERMITTED > < NOT_DENIED > (AUTHORIZED >

\‘,\ B ,//\\\\

Figure 30: Rule 5_authorized

The second rule in Step 5, given in Figure 30, is called 5_authorized. This defines AUTHORIZED as the
intersection of PERMITTED and NOT_DENIED: an individual is in AUTHORIZED if it is in both PERMITTED and
NOT_DENIED (Formula 6).

AUTHORIZED = PERMITTED N NOT_DENIED

Formula 6. Definition of AUTHORIZED.

PERMITTED instance ?x is moved to AUTHORIZABLE if ?x is also in NOT_DENIED.

Figure 30 is converted into SWRL syntax in Text 20 above.

88

5.3 SO-RBAC Process

89

A Setup ontology, Create Class hierarchy
Stage A
- Empty ontolo o
7 pty ay ~
B1: F'Dpularie COBJECT_TYFE,

1
USER anld ROLE classe s B2: Populate datla classes

\ Stage B /
- Ontology with object types, ’
users, roles and data

C: Populate classes fof assignahble instances
(ROLE_PERMISSION_ASSIGMNABLE and USER_PERMISSION_ASSIGNABLE) using script

Stage C;
Ontology with assignable instances

D: Set up relationships between roles (hierarchy, inclusion etc)

Stage D
Ontology with asserted object properties

E: Reasoning Step 1 (object properties of ROLE individuals)

Stage E
Ontology with inferred object properties

F: Populate RBAC: Setup PRA and DRA

Stage F:
Ontology with asserted role
permissions and denials

G: Reasoning Step 2 (populate PRA_FULL class instances)

Stage G
Ontology with inferred role
permissions and denials

H: Populate RBAC: Set up URA

Y
Stage H:
Ontology with user-role assignments

J: Reasoning Steps 3-5

Y
Stage J:

Final Ontology

Figure 31: RBAC process using the SO-RBAC ontology.

domain = "rbac";
domain_uri = "http://www.cqgce.net/Ontoloqgy/RBAC";

class. = "ROLE_PERMISSION_ASSIGNABLE";
for each role
for each action
for each object_type
id :="role_action_object_type"
print" <domain:class rdf:ID=\"ja\">";
print" <domain:action rdf:resource=\"#action\"/>";
print" <domain:role rdf:resource=\"#r_role\"/>";
print" <domain:object_type rdf:resource=\"#o_$object_type\"/>";
print" </$domain:$class>";
next
next
next

class ;= "USER_PERMISSION_ASSIGNABLE";
for each action
for each object_instance
for each user
id = user_action_object_instance";
print" <domain:class rdf:ID=\"ia\">";
print" <domain:.action rdf:resource=\"#action\"/>";
print" <domain.object_instance rdf:resource=\"#object_instance\"/>";
print" <domain.user rdf:resource=\"#useN"/>";
print" </domain:class>",
next
next
next

Text 21: Pseudocode for step C

rbac:ROLE(?r) A rbac:directly_senior_to(?_, ?r) - rbac:senior_to(?r, ?r)

rbac:ROLE(?r) A rbac:directly_senior_to(?r, ?_) - rbac:senior_to(?r, ?r)

rbac:directly_senior_to(?r1, ?r2) A rbac:senior_to(?r2, ?r3) - rbac:senior_to(?r1, ?r3)

rbac:ROLE(?r) - rbac:included_in(?r, ?r)

rbac:is_a(?r1, ?r2) A rbac:included_in(?r2, ?r3) - rbac:included_in(?r1, ?r3)

rbac:ROLE(?r) - rbac:inherits_pra(?r, ?r)

rbac:senior_to(?r1, ?r2) A rbac:senior_to(?r3, ?r4) A rbac:senior_to(?r3, ?r4) A rbac:inherits_pra_path(?r1, ?

r4) - rbac:inherits_pra(?r2, ?r3)

Code 54: SWRL Rules for Step E.

90

http://www.cgce.net/Ontology/RBAC

rbac:DRA(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A rbac:object_type(?x, ?0) A rbac:senior_to(?r1, ?r2)
A rbac:ROLE_PERMISSION_ASSIGNABLE(?z) A rbac:role(?z, ?r2) A rbac:action(?z, ?a) A
rbac:object_type(?z, ?0) - rbac:DRA_FULL(?z)

rbac:PRA(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A rbac:object_type(?x, ?0) A rbac:senior_to(?r2, ?r1)
A rbac:ROLE_PERMISSION_ASSIGNABLE(?z) A rbac:role(?z, ?r2) A rbac:action(?z, ?a) A
rbac:object_type(?z, ?0) A rbac:inherits_pra(?r2, ?r1) - rbac:PRA_FULL(?z)

Code 55: SWRL Rules for Step G.

Figure 31 (page 89) shows a flowchart of the process for setting up a SO-RBAC and populating it with all the
user permissions and denials on objects on that apply at a point in time.

Each potential role permission or denial to perform an action on an object is represented by an individual in the
SO-RBAC class ROLE_PERMISSION_ASSIGNABLE. The process moves individuals representing role permissions
and denials to the class PRA_FULL (indicating a permission) or DRA_FULL (indicating a denial).

Each potential user permission or denial to perform an action on an object is represented by an individual in the
SO-RBAC class USER_PERMISSION_ASSIGNABLE. The process moves individuals representing role permissions
and denials to the classes PERMITTABLE or PERMITTED (indicating a permission) or DENIED (indicating a
denial). Finally, an individual representing a user permission that is not also a denial is moved to AUTHORIZABLE or
AUTHORIZED. All this is done according to rules in the SO-RBAC process.

The first step, step A, is to set up the class hierarchy in the SO-RBAC ontology. This includes setting up the data
classes under OBJECT_INSTANCE, to which the data that the SO-RBAC model governs access, and the classes
relevant to the SO-RBAC model itself, under RBAC class. OBJECT _INSTANCE hierarchies are always domains
specific, but RBAC sub-hierarchies are likely to remain the same across domains.

Step B populates the ontology with the base information. It has two parts, Bl and B2, which can be run in
parallel. This is because they are independent of each other.

In step B1, the individuals representing types of data (class OBJECT_TYPE), users (class USER) and roles
(sub-classes of class ROLE) are initialised by populating the classes, USER and ROLE (and their sub-classes as
appropriate).

In B2, the data classes (sub-classes of OBJECT_INSTANCE) are populated with individuals representing data
for which access is to be granted by the SO-RBAC model.

In step C, the classes ROLE_PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE are
populated, with all possible combinations of hypothetical role and user permission assignments. Due to the
exponentially increasing number of combinations with increasing size of ontology, this is most likely to be done using a
program or script, according to the pseudocode in Text 21.

In step D, the asserted relationships between ROLE individuals (directly _senior_to, is_a, inherits_pra_path)
are set up, to define the relationships between roles in the RBAC role hierarchy.

In step E, the SWRL rules are run to infer the object properties that depend on the properties asserted in step D,
namely senior_to, included_in and inherits_pra, which are respectively dependent on directly _senior_to, is_a and

inherits_pra_path. The seven SWRL rules are described in Section 5.2.3.1, and are summarised in Code 54.

91

In step F, the PRA and DRA classes are populated to set up role permissions and denials, because the individuals
in these classes are base information for reasoning in the RBAC model. This can be done after step E because the

information about role permissions and denials is not needed for inferring relationships between roles.

In Step G, we populate the PRA_FULL and DRA_FULL classes with individuals through inference by running
the following two SWRL rules in Code 55 (c¢f- Section 5.2.3.2).

In step H, the user-role relationships are set up, i.e. URA is populated with individuals. Again, this is essential
information needed for reasoning in the RBAC model, but it is not needed for inferring either relationships between

roles or assignment of permissions or denials to roles.

rbac:PRA_FULL(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A rbac:object_type(?x, ?0) A
rbac:included_in(?r2, ?r1) A rbac:instance_of(?0i, ?0) A rbac:USER_PERMISSION_ASSIGNABLE(?z) A
rbac:action(?z, ?a) V rbac:object_instance(?z, ?0i) A rbac:user(?z, ?u) A rbac:URA(?y) A rbac:role(?y, ?r2) A
rbac:user(?y, ?u)

- rbac:PERMITTABLE(?z)

rbac:DRA_FULL(?x) A rbac:role(?x, ?r1) A rbac:action(?x, ?a) A rbac:object_type(?x, ?0) A
rbac:included_in(?r2, ?r1) A rbac:instance_of(?0i, ?0) A rbac:USER_PERMISSION_ASSIGNABLE(?z) A
rbac:action(?z, ?a) A rbac:object_instance(?z, ?0i) A rbac:user(?z, ?u) A rbac:URA(?y) A rbac:role(?y, ?r2) A
rbac:user(?y, ?u) - rbac:DENIED(?z)

rbac:USER_PERMISSION_ASSIGNABLE(?x) Arbac:DENIED(?y) ° sqwrl:makeSet(?d, ?y) °
sqwrl:notElement(?x, ?d) - rbac:NOT_DENIED(?x)

rbac:PERMITTABLE(?x) A rbac:user(?x, ?u) A rbac:ACTIVE_USER_SESSION(?s) A rbac:user(?s, ?u)
- rbac:PERMITTED(?x)

rbac:PERMITTABLE(?x) A rbac:NOT_DENIED(?x) - rbac:AUTHORIZABLE(?x)
rbac:PERMITTED(?x) A rbac:NOT_DENIED(?x) - rbac:AUTHORIZED(?x)

Code 56: SWRL Rules for Step J.

Finally, in step J, the remaining reasoning steps (3—5) are performed. We run 6 SWRL rules (Code 56) which
ultimately populated DENIED or AUTHORIZED classes (cf. Section 5.2.3.2).

At each stage the SO-RBAC ontology is in a state where the process can be run from the following step

onwards. In other words, it is not necessary to always re-run the SO-RBAC process from the beginning.

92

5.4 Contrasting SO-RBAC with Prolog
Most SWRL rules in SO-RBAC are directly translated from the Prolog rules in Code 53 (page 60). However,

there are two ways in which some SWRL definitions differ from those in Prolog.

5.4.1 Property inheritance

As noted above, some properties are super-properties of others, and so inherit the relationships defined with

them. This reduces the number of rules that need to be defined in SWRL.

1 senior to(R,R) :- directly senior to(R,).

2 senior to(R,R) :- directly senior to(,R).

3 senior to(R1,R2) :- directly senior to(R1,R2).

4 senior to(R1,R3) :- directly senior to(R1,R2), senior to(R2,R3).
Code 57: senior toin Prolog.

For example, senior to is defined in Prolog using the following 4 rules (Code 57).

Rules 1 and 2 define a role as being senior to itself, but only if it participates in a directly senior to
relationship. Rule 3 states that role R1 is senior to R2 if it is directly senior to R2. Rule 4 creates the
recursion.

In SO-RBAC, Rule 3 is achieved by making directly _senior_to a sub-property of senior_to.

Y a, b; a Q b; Q is sub-property of P
=alPb

Formula 7. Inferences from sub-
\properties.

In OWL, if property P is a sub-property of property Q, then all axioms asserted for Q are inferred for PP. This

means that, given individuals a and b, and properties I’ and Q, Formula 7 applies.

rbac:ROLE(?r) A rbac:directly_senior_to(?_, ?r) - rbac:senior_to(?r, ?r)

rbac:ROLE(?r) A rbac:directly_senior_to(?r, ?_) - rbac:senior_to(?
rbac:directly_senior_to(?r1, ?r2) A rbac:senior_to(?r2, ?r3) -
rbac:senior_to(?r1, ?r3)

Text 22: senior_to in SWRL.

Therefore, any directly _senior_to relationship between any two individuals infers a senior_to relationship
between the same pair of individuals. This eliminates the need for a SWRL for Rule 3. Rules 1, 2 and 4 are defined as in

Text 22.
Note that in Prolog, the consequent appears at the start of a clause, while in SWRL, it appears at the end.

Similarly, making is_a a sub-property of included_in implements the 2" included in definition from

Prolog.

93

In Step 1, object properties senior_to, included_in and inherits_pra are inferred from other object properties
and membership of the class ROLE.

i) senior_to is inferred from membership of ROLE and from directly_senior_to. (Rules: 1_senior_to_1,
1_senior_to_2 and 1_senior_to_4)

ii) included_in is inferred from membership of ROLE and is_a. (Rules: 1_included_in _1, 1_included_in_3)
iii)inherits_pra is inferred from membership of ROLE, inherits_pra_path and senior_to. (Rules:

1_inherits_pra_1, 1_inherits_pra_3)

1_senior_to_3, 1_included_in_2 and 1_inherits_pra_2 do not exist.

5.4.2 Negation and Transitivity

authorized(U,A,0) :- permitted(U,A,0),

not (denied (U,A,0)) .

Code 58: authorizedin Prolog.

authorized (authorizable) are defined as being permitted (permittable) and not denied.

This is simple to express, and quick to run, in Prolog (Code 58).

However, the implementation in SO-RBAC is more complex, because OWL handles negation differently from
Prolog. Prolog uses classical negation, also called “negation as failure”. This means that if the truth of a query cannot be
inferred, then the query is assumed to be false (if a query fails, then its negation succeeds). This is also called the
‘closed wo .Inbrld assumption’. In contrast, OWL implements an ‘open world’ assumption: a fact that cannot be inferred
is not necessarily false. Since SWRL is a tool for querying ontologies, it does not have a negation operation. However,

it is possible to simulate classical negation in SWRL using SQWRL operators.

rbac:USER_PERMISSION_ASSIGNABLE(?x) A rbac:DENIED(?y) °
sqwrl:makeSet(?d, ?y) ° sqwrl:notElement(?x, ?d) - rbac:NOT_DENIED(?x)

Text 23: NOT_DENIED in SWRL.

As noted earlier, SO-RBAC defines a class NOT_DENIED, for USER_PERMISSION_ASSIGNABLE
individuals that do not appear in DENIED. To populate this class, the SQWRL operators makeSet and notElement are
used. makeSet makes a set consisting of a list of previously defined individuals. element and notElement check

whether a given individual is a member of a set. notElement enables negation-as-failure to be used with OWL and

SWRL. Text 23 defines NOT_DENIED.

[In the SWRL syntax used in Protégé, both A and ° mean logical AND.] For this to work, there has to be at least
one individual in DENIED. Therefore, DENIED must be initialized with a dummy individual, with none of its
properties defined.

NOT_DENIED is defined as a class because the above rule takes a long time to run, and its result set is used

more than once. It is much quicker to run this rule once and store its results, than to run it each time it is needed.

94

rbac:PERMITTABLE(?x) A rbac:NOT_DENIED(?x) - rbac:AUTHORIZABLE(?x)
rbac:PERMITTED(?x) A rbac:NOT_DENIED(?x) - rbac:AUTHORIZED(?x)

Text 24: AUTHORIZABLE and AUTHORIZED in SWRL.

AUTHORIZABLE and AUTHORIZED are then defined as in Text 24.

These rules look similar to the equivalent Prolog rules, but they use the class NOT_DENIED rather than a
negation of the DENIED class.

In theory, some of the relationships that are defined using recursive SWRL rules could be defined using
transitivity. senior_to, junior_to and is_a are defined as transitive; however, Protégé does not infer any relationships
from transitivity, so defining it has no effect. Therefore, the recursive rules that are defined in Prolog also have to be
defined in SWRL, despite the transitivity. However, Protégé does infer from inversity: each asserted Senior_to

relationship thus has a corresponding junior_to relationship.

5.5 Implementing SO-RBAC based on a hospital environment

The SO-RBAC implementation is illustrated through a scenario with roles, permissions, denials, seniority

relationships, inclusion relationships and inheritance paths.
The following individuals were defined in class ROLE, reflecting a simplified hospital scenario.
e r_admin, r_clerk, r_manager

- r_doctor, r_specialist_doctor, r_consultant, r_junior_staff _doctor, r_junior_staff doctor _day,
r_junior_staff_doctor_night, r_senior_staff_doctor, r_senior_staff_doctor_day,

r_senior_staff_doctor_night
« r_technician, r_junior_technician, r_senior_technician

s r_nurse, r_senior_nurse, r_specialist_nurse, r_staff nurse, r_staff nurse day, r_staff nurse_night,

r_student_nurse, r_student_nurse_day, r_student_nurse_night
« r_day duty, r_night_duty
The following individuals representing permission and denial assertions were created.

- PRA:junior_staff doctor _read_patient, junior_staff doctor read _room,
junior_staff _doctor_read_vital_sign, junior_staff _doctor _read _ward,
senior_staff _doctor_write_patient, senior_staff _doctor_write_room,
senior_staff _doctor_write_vital_sign, consultant_write_vital_sign, consultant_read _computer,
specialist_doctor_write_computer, student_nurse_read_patient, staff nurse_read_room,
staff_nurse_read ward, staff_nurse_write_patient, senior_nurse_read_vital_sign,
senior_nurse_write_ward, specialist_nurse_read_computer, specialist_nurse_write_room,

specialist_nurse_write_vital_sign, specialist_nurse_write_computer

« DRA: consultant_read_room, consultant_write_ward, senior_nurse_read_ward,

senior_staff _doctor_read _computer, staff_nurse_write_patient

95

Seniority relationships were defined using directly _senior_to axioms to indicate the following hierarchies:

—_

r_doctor: r_junior_staff doctor — r_senior_staff_doctor — r_consultant — r_specialist_doctor

2. r_nurse: r_student nurse — r_staff nurse — r_senior_nurse — r_specialist_nurse

w

r_technician: r_junior_technician — r_senior_technician

>

r_admin: r_clerk — r_manager
5. r_junior_staff _doctor: r_junior_staff doctor _day, r_junior_staff doctor night

r_senior_staff_doctor: r_senior_staff doctor_day, r_senior_staff _doctor_night

NS

r_student _nurse: r_student_nurse_day, r_student_nurse_night
8. r_staff _nurse: r_staff_nurse_day, r_staff_nurse_night
The following path inheritance axioms were defined.

inherits_pra_path(r_specialist_doctor, r_junior_staff_doctor)

inherits_pra_path(r_specialist_nurse, r_student_nurse)

Table 8: Numbers of users of each role defined in ontologies.
Role Small | Large

clerk 1 2
manager 1 1
junior_staff_doctor 3 4
senior_staff_doctor 3 4
consultant 1 2
specialist_doctor 1 1
student _nurse 3 4
staff_nurse 3 4
senior_nurse 1 2
specialist_nurse 1

junior_technician 1 2
senior_technician 1 1

Two ontologies were defined, small and large, varying by the numbers of users and data items defined. Table 8

shows the numbers of users in the small and large ontologies.

One or more USER individuals for each ROLE was created (Table 8), except for the roles r_admin, r_doctor,
r_technician and r_nurse, as these are intended as super-class roles to allow permissions to be defined for a particular

type of user generically.

User individuals are named simply as <role>_<n>, where <n> is a number. The roles with day and night sub-
roles defined each had 3 or 4 users defined, named for the main role. For example, junior_staff doctor 1 was assigned
directly to r_junior_staff_doctor; junior_staff_doctor_2 to r_junior_staff_doctor_day, and junior_staff_doctor 3
to r_junior_staff_doctor_night. No personalized data were defined for any of these users, because they are not

relevant in this static RBAC model.

96

The users were linked to roles using URA individuals, with one URA individual defined for each role in which a

user could be defined.

Instances were created for object types 0_computer, o_patient, o_room, o_vital_sign and o_ward. One
instance of each type was created for the small scenario, and three of each type for the large scenario. The instances

were named <object_name>_n, e.g. patient_1.

| Specialist_MNurse I‘ Specialist_Doctor |1

A A

| Senior_Nurse |‘ } Consultant |1 ; Senior_Techmcwanl-_‘_‘ Manager |‘

L | A A

Staff_Nurse I-q i Senior_Doctor

A A [

| Student_Nurse |~ Staff_Doctor |< j Jumor_Technicianl-q- i Clerk |<

| B

o | §

Figure 32: RBAC Model used to demonstrate SO-RBAC, excluding night and day duties. Solid (black) lines
represent seniority (d_s) relationships. Dashed (purple) lines represent is_a relationships. Arrows show direction
of inheritance of positive authorizations (permissions).

Figure 32 shows the full RBAC hierarchy.

5.6 Results of Implementation

The ontological model was implemented using the Protégé Ontology Editor, using the Protégé-OWL plugin. The
Pellet Reasoner Inspector [114] was used to test the consistency of the ontology’s classes, properties and instances, and
to compute inferred class memberships. The SWRL rules were implemented through the SWRLTab plugin in Protégé
[110], and executed using the Jess Rule Engine [115]. Jess is also built into Protégé via the SWRLJessTab, [116] which
is a plug-in to the SWRLTab.

The classes ROLE_PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE were
populated with individuals representing all possible permutations of roles, users and permissions using a Perl script,
which also added to PRA and DRA the individuals listed above.

The SWRL rules were run using Jess in the SWRLJessTab. The resulting ontology was then saved in a new file.

The output from the SWRL tabs was copied and pasted into plain text files. The same rules and model were run in both
Prolog and OWL+SWRL, and both produced the same results.

The numbers of unique axioms were obtained by copying and pasting the axioms from the SWRLJessTab into plain

text files, and analyzing these using the Unix shell tools sort and unig.

The number of SWRL rules exported is simply the number of SWRL rules that are run (i.e. are ticked in the
SWRL tab). All OWL classes in the ontology are exported when a set of SWRL rules is run. However, only the
individuals in classes and properties mentioned in the exported SWRL rules are exported, along with the axioms that

relate them. The axioms inferred are the results of running the SWRL rules. The same relationship may be inferred

97

many times, resulting in some non-unique axioms, as found in Steps 2 and 4 in this experiment. In Step 2, two
individuals were inferred twice as members of PRA_FULL (consultant write vital _sign and
specialist_nurse_read_computer), resulting in two non-unique inferences. This is the same for both ontologies,
which differ in the numbers of users and user-role assignments, and not in the number of roles or role-permission
assignments. Step 4 produces a very large number of non-unique axioms. This is because sqwrl:notElement compares

each individual ?x with each individual ?y in the set ?d, to check for non-membership of ?x in ?d, resulting in each

NOT_DENIED(?x) axiom being inferred as many times are there are ?y individuals in DENIED.

Table 9: Numbers of rules, classes, individuals and axioms reported by SWRL for the small ontology.

Stepl | Step2 | Step3 | Step4 | Step 5
SWRL rules exported to Jess 7 2 2 2 2
OWL classes exported to Jess 75 75 75 75 75
OWL individuals exported to Jess 24 731 388 232 160
OWL axioms exported to Jess 41 935 937 211 0
OWL axioms inferred 127 64 131 5,350 98
Unique triples created 127 62 131 166 98

Table 10: Numbers of rules, classes, individuals and axioms reported by SWRL for the large ontology.

Stepl | Step2 | Step3 | Step4 | Step 5
SWRL rules exported to Jess 7 2 2 2 2
OWL classes exported to Jess 75 75 75 75 75
OWL individuals exported to Jess 24 731 820 654 528
OWL axioms exported to Jess 31 935| 2,210 633 0
OWL axioms inferred 127 64 423] 59,214 306
Unique triples created 127 62 423 - 30

Table 9 shows the results of running SWRL for the small ontology. The 5,350 axioms inferred in Step 4 include

5,328 NOT_DENIED axioms. As described above, sqwrl:notElement makes 180x37=6,660 comparisons between
individuals in USER_PERMISSION_ASSIGNABLE and DENIED, resulting in 144x37=5,328 inferred NOT_
DENIED axioms. The other 22 inferred axioms were unique PERMITTED axioms.

Table 10 shows the results of running SWRL for the large ontology. In Step 4, it was not possible to paste the
59,214 axioms into a plain text file, due to memory limitations (and this step took an extremely long time to run to

completion).

The numbers of triples of affected classes and properties at each stage were determined by exporting the OWL

files as n-triple files, and analyzing these using the Unix shell tool grep.

These should correspond to the numbers of unique OWL axioms inferred in each step.

98

Table 11: Numbers of triples at stage 1.

Property Small | Large
senior_to 26 26
included_in 61 61
inherits_pra 40 40
Total 127 127

Table 12: Numbers of triples at stage 2. |Table 13: Numbers of triples at stage 3.

Class Small | Large Class Small | Large
PRA_FULL 49 49 PERMITTABLE 95 300
DRA_FULL 13 13 DENIED 37 124
Total 62 62 Total 132 424

Table 14: Numbers of triples at stage 4. |Table 15: Numbers of triples at stage 5.

Class Small | Large Class Small | Large
NOT_DENIED 144 477 AUTHORIZABLE 79 249
PERMITTED 22 66 AUTHORIZED 19 57
Total 166 543 Total 98 306

The same numbers of triples were found for both ontologies, because Step 1 only operates on roles, and both
have the same roles (Table 11). Note that OWL did not infer the 26 junior_to axioms, which were instead inferred in
Protégé as a result of junior_to being defined as inverse to senior_to.

Two individuals were inferred twice as members of PRA_FULL (consultant_write_vital_sign and
specialist_nurse_read_computer), resulting in two non-unique inferences (Table 12). The number of triples in the
affected classes is one more than the number of inferences made in Step 3, due to the dummy individual in DENIED on

initialization (Table 13).

Finding 543 triples and 477 NOT_DENIED triples in the large ontology (Table 14) is consistent with 59,214
axioms inferred by the SWRL rules, as this number is 124x477+66 (DENIED x NOT_DENIED + PERMITTED). The
AUTHORIZABLE and AUTHORIZED classes were populated (Table 15).

99

5.7 Results of SO-RBAC Process in Protégé

This section displays screen shots (Figs. 33—56) captured using the Protégé OWLViz tab [117] at various stages

of reasoning. All screenshots are taken from the small ontology.

5.7.1 Classes and Individuals

5.7.1.1 General

File Edit Project OWL Reasoning Code Tools \Mndow Collaboration Help
DeE £ BE wmea ar <§pm:§gé

| @ Metadata(RBAC_DL owl) | | CVLClasses | WMl Properies | 4 Individuals | = Forms | — SWRL Rules |

INSTANCE BROWSER INDIVIDUAL EDITOR for home_equipment_1 (instance of HOME_EQUIPMENT)

L 5
For Project: @ RBAC_DL For Class: () HOME_EQUIPMENT For Individual: |http:fwww cgee netiOrtology/RBAC_DL owlk TRl
Asserted I Inferred g
Class Hisrarchy [F ¥ * B [} Annotations
ol Thing Asserted Ingtances - ¥ » b4 < Property Walus | Lang |
v QBJECT_INSTANCE @ home_equipment_1 rdfs:comment n
oUTY (19

v (@ EQUPMENT (1)
v @ COMPUTER (1)
¥) HOME_COMPLITER (1)
HOME_DESKTOR (1)
HOME_LAPTOP (1) —
HOME_PD8, (1
¥ @ OFFICE_COMPUTER 1) _
OFFICE_DESKTOP (1) ”“’D;:;;’Z;u”;;‘;m e
OFFICE_LAPTOR 1) e
OFFICE_PDA, (1)
v () HOME _EQUIPMENT (1
¥ () HOME_COMPUTER (1)
HOME_DESKTOP (1]
HOME_L&PTOR (1)
HOME_FDa, (1)
¥ @ HOSPITAL_EQUIPMENT (1)
MED_FGLIPMENT (1)
b @ CFFICE_COMPUTER (1)
¥) NTERNWET COMMECTION (1)
HOME_INTERMET _CONMECTION (1)
HOSPIT.AL_INTERMET _CONMECTION (1))
D5 _SESSION (1)
v @ PERSON (1)
PATIENT (1
s USER (251
v @ RO 1)
HOT_OPERATING _ROOM
T _WARD
GPERATING ROOM (1)
WBRD (11 | |v| &
WITAL SIGH (1)
b @ rimcREAC Asserted Types & B
> (@ swriaEntity HOME_EGUIPMENT

| [»
| Slw ® s @ % @

Figure 33: The OBJECT_INSTANCE hierarchy in our example.

Figure 33 shows the hierarchy of object classes under the OWL class OBJECT_INSTANCE. The cursor is focused
on one class, HOME_EQUIPMENT, which contains one member, home_equipment 1, which is a member of class

and is related to OBJECT_TYPE individual o_home_equipment via property instance_of. This can be expressed as

the triple (home equipment 1) (rbac:instance of) (0 home equipment).

100

File Edit Project OWL FReasoning Code Tools 'Window Collaboration Help

OEE o+ BB e & <€protégé
| @ Metadata(REAC_DLowl) | | OWLClasses | WM Properties | 4 Individusls | = Ferms | — SWRL Rules |
INDIVIDUAL EDITOR for o_hospital_squipment (instance of rbac:OBJECT
b
Far Project: 4 RBAC DL For Class: @ rbac:OBJECT_TYPE For Individual: |http:iwww cace netiontologyRBAC_DL owlto_hospital_scuipment
[Asserted [Inferred
Class Hierarchy ssers st Ij \13 Qa [;] [J Annotations
ol Thing e G - ¥ @ X G Property | Value | Lana
p O ORJECT_INSTANCE @ o_commuler rdfs:comment
v rbacRBAC * o_doctar
rhacACTION (2) @ oty

rhac:OBJECT_TYPE (29)
¥ @ rhac:PERMISSION_ASSIGN
¥ @ thac ROLE_PERMISSION_ASSIGNABLE (50)
rhac:DRA, (5]
thac:DRA_FULL
rhac:PRA (20]
rhac:PRA_FULL
rhac: USER_PERMISSION_ASSIGNABLE (150
rhac:DENIED (1]
Fhac:NOT_DENED
¥ @ rbacPERMITTABLE
rhac: AUTHORIZABLE
¥ @ rhacPERMITTED
rhac: AUTHORIZED

@ o_eauipmert
@ 0_home_computer
@ o_home_desktop
@ o_home _squipment =
@ 0_home_internet_connection
@ o_home_laptop

@ 0_home_pda

@ o_hospital_equipment

@ o_hospital_internet_connection
@ o_internet_connection

@ o_med_sauipment

@ 0_med_staft

@ o_rurse

@ o_oftice_computer

@ 0_office_desktop

@ o_office_laptap

@ o_office_pda

@ o_operating_room

@ o_os_session

@ o_patient

@ o_persen

@ o_room

@ o_user

@ o_user_session

| o_vital_sign

@ o_ward

4

» @ thacROLE
rbacURA (20
rbaciUSER (25)

» @ thac:USER_SESSION

B swriaErtiy

i
Asserted Types o (8
rac: OBJECT_TWPE

a D
| Hw ® & B n &

Figure 34: The OBJECT_TYPE class.

Figure 34 shows the OBJECT_TYPE class, which contains individuals representing types of objects. These are
not the same as the individuals for the objects themselves, which are in the OBJECT_INSTANCE class.

File Edt Project ©WL Reasoning Code Tools Window Collaboration Help

B med &

el

<€pmrégé

| 4 Metadata(REAC_DLowl) | | OVWLClasses | WMl Properties | 4p Individuals | = Forms | — SWRL Rules |

INSTANCE BROWSER INDIVIDUAL EDITOR for junior_technicians (instance of rbac:URA)
¥

For Pro @ RBAC_DL_populated_stage_5 For Class: @ rbacURA

Asserted Inferred .

Class Hierarchy J Annotations
oo Thing Asserted Ingtances -~ ¥ @ X ¢ Froperty [Value | Lang |

> QBJECT_INSTANCE - rdfs:comment -

|4 junior_staff_doctors

’ Junior_staff_doctors_cay
’ junior_staft_doctors_night
|4 junior_technicians

Al rhacRBAC
rhac ACTION (2)
thacOBIECT_TYPE (29)
v thacPERMISSION_ASSIGH

4 managers
v rbac: ROLE_PERMISSION_ASSIGRNABLE (30) 3
pacDRA, (5 4 senior_nurses
rbac:DR N LJLL - |4 senior_statf_doctors . =
rbac.PRAizn senior_staff_doctars_cay
R jior_statf_cocts ol
rbac prs (FU L)L o @ senior_stafi_doctors_night e & * @
thac:
- 0 senior_technicians ’ r_junior_technician

¥ @ rbac USER_PERMISSION_SSSISMABLE (180)
rhac:DENIED (37)
rhacNGT_DENED (1441
¥ O rbac:PERMITTABLE (25
rbac AUTHORIZABLE (79)

4 specialist_doctors
@ specialist_nurses
4 staff_nurses

@ staft_nurses_day
4 staft_nurses_night

4]

¥ @ rbacPERMITTED (22) ¢ e
. rbac:user
— thac: AUTHORIZED (19) | H n & o Tecri T
i = @ junior _technician_2
B () Asserted Types) _ B
thac:USER (25) =Ty
p @ rbacUSER_SESSION
» syerla Ertity
| EERC s 8 % &

Figure 35: The URA class.

Figure 35 shows the URA class, focusing on the individual junior_technicians. junior_technicians is related to
r_junior_technician via role, and to junior_technician_1 and junior_technician_2 via user. This is expressed as the

following triples:

101

junior_technicians rbac:role r_junior_technician
junior _technicians rbac:user junior technician 1
junior_technicians rbac:user junior _technician 2

It expresses the following URA relationships:

ura (junior_technician_1, r_junior_technician)
ura (junior technician 2, r junior technician)

File Edt Project ©WL Reasoning Code Tools Window Collaboration Help

DEE tER md & 4>

| 4 Metadata(REAC_DLowl) | | OVWLClasses | WMl Properties | 4p Individuals | = Forms | — SWRL Rules |

For Project: 4 RBAC_DL_populated_stage 5 For Class: rbac:USER
[“Asserted | Inferred rH
R AC: LY B [Annotations
el Thing Asserted Instances = é . X 6 EDRET | aue | = ‘
> OBJECT_INSTANCE @ clerk_1 = redfs:comment n
v @ rhacRBAC 4 clerk 2 I
rhaz ACTION (7) @ consuttart_1
thoac:OBJECT_TPE (29) @ consuitant 2
¥ thacPERMISSION_ASSIGN 4 junior _staft_octor_1
v @ thac ROLE_PERMISSION_ASSIGNABLE (30) @ Junicr_stat_doctor 2
rhaciDRA (5) 4 iurior_staft_doctor_3 -
rsac.?;:_FzLéLL (4] [junior_technician_1
:b:z PRA, (FUL)L (49) @ junior _technician_2 address £ dR B job_title £ & K hecinstanceor ¥ 4 &
PRA_] manager_1 i dact
v @ thac.USER_PERMISSION_ASSIGNABLE (180) :md et 1 i Voue [Lans vewe | b= 8 o
+hac DENIED. (37) @ serior_nursz_1
rbac:NGT_DENIED (144) @ serior_nurse 2
¥ @ rbacPERMTTABLE (35) |4 senior_stat_octor_1
thac AUTHORIZABLE (79) 4 senior_statt_doctor_2
¥ @ rbacPERMITTED (22 jor_staf_doctor -
rbac'AUTHOREIZEJD . @ sonior_staff_doctor_3 date_of_birth £ 5P R last_name £ d % useros session € & &
haFOLE : @ senior_technician_1 Value [Type Value [Lang
> rbac: @ specialist_doctor_1
rhacURA (207 4 specialist_nurse_1 1
thac:LISER (25) i staff_nurse_1
b @ rhacUSER_SESSION @ stait_nurse_2
B swrlaErtity 4 staft_nurse_3 ||
| H g || first_name £ =P 3 salary £ 2 B
Value | Lang Value [Type
&
Asserted Types it —]
thac:USER
0 Il
| [+ & & B o @

Figure 36: The USER class.

Figure 36 shows the USER class, focusing on the individual senior_staff_doctor_1. Although various properties
that could be relevant to the personal characteristics of users been defined, they have been left empty in this model, as

they are not relevant to the running of this static RBAC model. However, the USER individual represents an object

(USER is also a sub-class of OBJECT_INSTANCE). Therefore, the triple (senior staff doctor 1)

(rbac:instance of) (o0 doctor) is defined. Note that this is not a role membership assertion (0_doctor is not a ROLE,
but an OBJECT_TYPE): that would be in the URA class, as described in Figure 35 above.

102

File Edit Project OWL Reasoning Code Tools ‘Window Collaboration Help
= o BE med ¢ <@prorégé
| @ Metadata(RBAC_DLowl) | | CVWLClasses | WMl Propeties | 4 Individusls | = Forms | — SWRL Rules |
INSTANCE BROWSER INDIVIDUAL EDITOR for consultant read_patient_1 (instance of rbac:USER_PERMISSIO
For Project: 4 RBAC_DL_populated stage 1 For Class rbac:USER_PERMISSION_ASSIGNAE .. vidual
Asserted | Inferred
Class Hierarchy I_j \Eg Q; _g '—ﬁ J.Ann:\tatims
ool Thing Asgerted Instances -~ & @ X ¢ Property I Value | Lang |
») OBJECT INSTANCE @& coruant_1_resd_canpiar T = rdfs: comment -
¥ @ rbacRBAC @ consulant_1_read_patient_1
thac:ACTION (2] 4 consuttant_1_read_room_1 [
rhac:OBJECT_TYPE (22) @ consutant_1_read_vital_sign_1
v thac: PERMISSION_ASSIGH @ consultart_1_reacl_warel_1
¥ @ rthacROLE_PERMISSION_ASSIGNABLE (90) & consuls 1 _wirite_somputer 1
thecDRA (5) @ consuttant_1_write_patient_1 -
thacDRA_FULL @ consultant_1_write_room_1
rhac:PRA (20] @ consuttant_1_write_vital_sign_1 rbac:action & ﬁ £ bacirole & ﬁ *
rbac:PRA_FLLL @ consuttant_1_write_vard_1 @ read
v rbac: USER_PERMISSION_ASSIGNABLE (150] @ consultart_2_reacl_computer 1
thac:DENED (1) 4 consultant_2_read_patient 1
rhac:OT_DENED ‘ consutart_2_read_room_1
A thac:PERMITTABLE ‘ consultant_2_read_vital_sign_1
rhac: AUTHORIZABLE Q consutart_2_read_wward 1
v Vbﬁiz:f’:'ﬂizmzm @ consuttant_2_write_camputer_1 I<1|| rbac:object_instance + ﬂ}_‘ € rbaciuser N Q}J *
> ‘bac:ROLE | |'| ® | patiert_1 4 consuttant_2
rhacURA, (20
rhacUSER (25) £ L
Asserted Types
rhacUSER_SESEION
" - rhacUSER_PERMISSION_ASSIGNABLE
»> syerla Ertity
| Sn = 4 @ @
Figure 37: The USER_PERMISSION_ASSIGNABLE class.

USER_PERMISSION_ASSIGNABLE (Figure 37) is the class containing all potential assignments of

permissions and denials to users.

File Edit Project OWL Reasoning Code Tools ‘Window Collaboration Help
O +tEE wms ¢ 4> ﬁprotégé

| @ Metadata(RBAC_FULLowl) | " OWLClasses | W Properties | 4 Individuals | = Forms |

INSTANCE BROWSER INDIVIDUAL EDITOR for CONSULTAN rite_COMPUTER (instance of rbac:ROLE_PERMISS
L
For Project: # RBAC_FULL_small For Class: rbac:ROLE_PERMISSION_ASSIGNAB For Individual
Asserted | Inferred
Cless Hierarchy & 2 [[J Annotations
i Thing e e - & X G Property I Value [Leng |

b) CBJECT_INSTANCE @ CONSULTANT_1ead_COMPUTER — rdfs-comment -
¥ @ rbecRBAC @ CONSULTANT read_PATENT Il
rhacACTION (2) @ CONSULTANT read_ROOM
P & rhacClass @ CONSULTANT resd_vITAL_SIGN
¥ 0 rhacPERMSSION_ASSIGH

o CONSULTANT resd_WARD ™
v rbac: ROLE_PERMISZION_ASSIGNABLE (50) ‘CONSULTANT ‘write COMPUTER
rhac:DRA (5] - -

’ CONSULTANT write_PATIENT
rhac:DRA_FULL @ CONSULTANT write_ROOM
rhac:PRA [21)

@ CONSULTANT write_VITAL_SIGH rbac:action L4 & racrole & *
thac:PRA_FLLL e —
S @ CONSULTANT write_WARD wirile rbac:CONSLLTANT
v @ thacUSER_PERMISSION_ASSIGNABLE (150) @ JUNOR_STAFF_DOCTOR,_read_COMPUTER * b
rbac:DENIED 3 ¥ resd |

@ JUNIOR_STAFF_DOCTOR_read_PATIENT

JUNIOR_STAFF_DOCTOR_read_ROOM

& JUNIOR_STAFF_DOCTOR read_ITAL_SIGN
@ JUNIOR_STAFF_DOCTOR_read_WARD

’ JUMIOR_STAFF_DOCTOR _write_COMPLTER

rhac:NOT_DENIED
v thac:PERMITTABLE
rbac AUTHORIZABLE
v rhac:PERMITTED
thac: AUTHORIZED

pe ¥ A%

rbac:abje

P @ JUNIOR_STAFF_DOCTOR _write_PATENT = COMPUTER:
b O rbacUSER_SESSION (11 ‘ H 8
»> rif:Property (407
oy
> rofsClass (31) Asserted Types s @
b @ swriaErtty rhac ROLE_PERMISSION_ASSIGNABLE
e
| o = & 8 ¥

Figure 38: The ROLE_PERMISSION_ASSIGNABLE class.

ROLE_PERMISSION_ASSIGNABLE (Figure 38) is the class containing all potential assignments of

permissions and denials to roles.

103

5.7.1.2 Initialization

File Edit Project OWL

el £ BE

Reasoning

od

Code Tools

Window Collaboration

Help

a>

<@prorégé

| @ Wetadata(RBAC_DL owl)

For Project: @ RBAC DL

Class Hierarchy

ol Thing
> OBJECT_INSTANCE
v thac:RBAC
hacACTION (2)
thac:OBJECT_TYPE (23)
v rbac:PERMISSION_ASSIGN
v rhiac:ROLE_PERMISSION_ASSIGNMABLE (50)
rhacDRA (5]
rhac:DRA_FULL
thac:PRA, (20)
rhac:PRA_FULL
» O rbac:USER_PERMISSION_ASSIGNABLE (1201
v rbac:ROLE
» rhac ADMIN (1)
p @ rbacDAY_DUTY
v rhac:DOCTOR (1)
thac: CONSULTANT (1)
» @ rbacJUMICR_STAFF_DOCTOR (1)
v [0 rbac:SENOR_STAFF_DOCTOR (1

rbac: SPECIALIST_DOCTOR (1)
» rhac:MIGHT_DUTY
» @ rbac:NURSE (1)
b @ rbacTECHMICIAN (1)
rhacURA (20)
thacUISER (25
» O rbac:USER_SESSION
B swrlaErtity

thac:SENIOR_STAFF_DOCTOR_DAY (1)
thac:SENIOR_STAFF_DOCTOR_MGHT (1)

‘ "|

For Class:
Asserted | Inferred

Asserted Instances

- ¥ e XG

|7 OwLClasses | WM Properties | 4p Individusls | = Forms | — SWRLRules |

INSTANCE BROWSER

rbac:SENIOR_STAFF_DOCTOR

INDIVIDUAL EDITOR for r_senior_staff_doctor (instance of rbac:SENIOR_STAFF_DOCTOR) + = F T
M
For Individual: |ttp:fwww cgce netiOntology/RBAC_DL owl#r _senior_staff_doctor

B el [E

[J Annotations

Property ‘

Value ‘ Lang

@ r_serior_staff_doctor

rdfs:comment

rbec:direetly_junior, ¥ ¥ 4

¢ & & rhacjunior_to

rbactinherits_pra

Ve

4 r_conzuttant

@ r_consuttant

rhac:dirsclwissnimé Q: %.

rbac:inherits_pra_p & Q’ *

rbac:senior_to

¥ e e

o r_junior_staff_doctor

@ r_junior_staft_doctor

¢ e

rbaciincluded_in

¢ e

rbaciis_a

H 8 | |4 r_doctor

Asserted Types

LG a

rhac: SENIOR_STAFF_DOCTOR

& 1 _octor

s 8 & &

Figure 39: Role r_senior_staff_doctor before Step 1 is run.

Figure 39 shows the role r_senior_staff doctor in the hierarchy under ROLE before Step 1 is run.
r_senior_staff_doctor is a member of SENIOR_STAFF_DOCTOR, and can therefore be inferred to be a member of

ROLE through sub-classing when the SWRL rules in Step 1 are run.

Of the property relationships shown in Figure 39, only two ((r_senior staff doctor) (senior to)

(r_senior staff doctor) and (r senior staff doctor) (is a) (r doctor)) are explicitly asserted in the model. The

remaining relationships are inferred through inversity and sub-properties, as explained earlier.

104

5.7.2 Reasoning

5.7.2.1 Stage 1

Ele Edt Project OWL Beasoning Code Tools Window Collaboration Help
he o B twmedy @9

Metadata(RBAC_DLowl) | ' OWLClasses | Wl Properties | 4 Individuals | = Forms | — SWRL Rules |

CLASS BROWSER INSTANCE BROWSER INDIVIDUAL EDITOR f

For Project: @ RBAC_DL_populated_stage_1 For Class: () rbac:SENIOR_STAFF_DOCTOR For Individual: |http: ihwvww cgce net/Ontology/RBEA

- | Ii &
Class Hierarchy . L] [ferred |j Q; & ”ﬁ DAnnotations

owl Thing T ratancee - ¥ @ X & Froperty [Value [Lang |
» @ OBJECT INSTANCE S SRR relfs:comment
¥ @ rbacRBAC
@ rbac ACTION (2)
@ rbac:OBJECT_TYRE (29)
v @ rhacPERMISSION_ASSIGH
¥ @ rhacROLE_PERMISSION_ASSIGNABLE (20)
@ roacDRA (5) =

@ roacDRA_FULL
rbac:directly_junior rbac:inherits_pra rbac:junior_to
@ rhacPRA_FLLL bac:directly_j ¢ ® & acinnen $ee t ¥ e
_ et tant itart
b @ rhacUSER_FERMISSION_ASSIGNABLE (150 @ 1 consuta 4 1 consuta & consuta
& r_iunior_statt_dactor & r_senior_statt_dactor
@ rhacROLE @ r_senior_statt_doctor @ r_specialist_doctor
> :mac ADMIN (1) @ 1_specialist_doctor
» @ rbacDaY_DUTY
¥ @ rhacDOCTOR (1)
hac COMSULTANT (17
rbac:directly_seniol rbac:inherits_pra_p rbac:senior_to
» :rbac JUNIOR_STAFF_DOCTOR (1) ¢ e ¢ o LK S
v 0 thacSENIOR_STAFF_DOGTOR (1) @ runior_sta_iactar :f:;:;f:;:;";g;
@ rbac:SEMOR_STAFF_DOCTOR_DAY (1) R
@ rac SEMIOR_STAFF_DOCTOR_MIGHT (1)
@ rhac SPECIALIST_DOCTOR (1)
b @ thacMIGHT_DUTY
p @ rhacHURSE (1)
b @ rhacTECHNICIAN (1) rbac:included_in & . ®& pacis_a L3 . &
| r_dactor @ r_doctor

@ rhacURA (207 !
) rbaciUSER (25) |_| 88 @ r_senior_staff_doctar

@ rbacUSER_SESSION
b sty Asserted Types e a
() rhac:SENIOR_STAFF_DOCTOR

<

v

| [[]= = s 8 5 @ b
Figure 40: Role r_senior_staff_doctor after Step 1 is run.

After running Step 1, additional property relationships for individuals in sub-classes of ROLE are inferred,

based on the rules, and are added to the model, as shown in Figure 40).

Fie Edt Project OWL Reasoning Code Tools Window Collaboration Help
bhe A BE mg Y

| @ Metadata(REAC DLowl) | | OWLClasses | WM Properties | 4 Individuals | = Forms | — SWRL Rules |

CLASS BROWSER N INSTANCE BROWSER INDIVIDUAL EDITOR fo

<gprorégé

+=-F T

omputer (instance of rbac:

For Project: 4 RBAC_DL_populsted_stage_1 For Class: @ rbacDRA For Individual |hitp:/www cgce.netiOntology/RBAC_DL owl#senior_staff_doctor_read_computer
O Asserted | Inferred g
Class Hierarchy A | rbac:ROLE_PERMISSION_ASSIGNABLE | rbaciDRA
ow Thing Asserted Instances - ¥ @ X F| (8 ® (s [[Annotations
» () OBUECT_INSTANCE 4 consultart_read_room ERET I Value Lo |
v (@ rbacRBAC @ consuttant_write_ward rdfs-comment Yy
O rhac ATTION (2) @ senior_nurse_read_ward
0 roac OBJECT_TWPE (29) @ serior_staff_doctor_read_computer
¥ @) rbacPERMISSION_ASSIGN @ staft rurse_write_afent

v @ thacROLE_PERMISSION_ASSIGNABLE (50
@ thac:DRA (5)
@ rhacDRA_FULL

@ rbacPRA (20) s
@ rbacPRA_FULL

v) rhacUSER_PERMISSION_ASSIGNABLE (150) rbac:action ¢ ® ® hacrole L3 L
@ thac:DEMED (1) [read [r_senior_stafi_doctor

© rbacNOT_DEMED
¥ () thacPERMTTABLE
©) rbac AUTHORIZABLE
¥ D thac:PERMITTED
© rbac. AUTHORIZED

b @ rhacROLE rbac:abject_type ¢ oo
O rhacURA, (1) |-| 80 || [o_computer
O roacUSER: 125)
ac LISER,_SESSION
P O rosc SR Asserted Types ega
b 0 swriaErtty
) rbac:ROLE_PERMISSION_ASSIGNABLE
@ rbecDRA
| [n = v 8 % 6

Figure 41: DRA individuals at Stage 1.

Figure 41 shows DRA at Stage 1, containing the individuals with which it is initialized.

105

File Edt Project OWL

ODed <+

Reasoning Code Tools

L]

Window Collaboration Help

[ECE S

[|

<§prorégé

| @ Metadata(RBAC DLowl) | | OWWLClasses | WM Properties | 4 individuals | = Forms | = SWRLRules |
CLASS BROWSER

For Project: @ RBAC_DL_populated_stage 1 For Class: @ rbac:DRA_FULL

Asserted Inferred

Asserted Instances

Class Hierarchy A
vl Thing
») OBJECT_NSTANCE
v O rhac:RBAC
@ rbacACTION (2)
@ rhac: OBJECT _TYPE (28)
¥ (@ rhac FERMISSION_ASSIGN
¥ @ rbac:ROLE_PERMISSION_ASSIGNABLE (50)
@ rbacDRA, (5]
10 rbac:DRA_FULL
@ rbaciPRA (20)
1 rbacPRA_FULL
¥ (@ rbac:USER_PERMISSION_ASSIGNABLE (150)
@ rbac:DENED (1)
1) rbac:NOT_DENED
¥ @ rhacFERMITTABLE
1 rbac:AUTHORIZABLE
¥ @ rbac:PERMITTED
1) rhac AUTHORIZED

¥ ¢+ X G

b @ rbacROLE
rhaciURA (20)

@ rhac:USER (25)
» @ rbacUSER_SESSION
B vl Entity

Q&a

Asserted Types

| o ®

INSTANCE BROWSER INDIVIDUAL EDITOR
L Ll

For Individual

+=-FT

Figure 42: DRA_FULL at Stage 1.

Figure 42 shows DRA_FULL at Stage 1. This class is empty because it has not yet been populated in Step 2.

Eile Edit Project OWL

ODer <+

Beasening Code Tools

B wed &9

Window Collaberation Help

<Qprorégé

| @ Meladala(REAC_DLowl) | OWiClasses | W Properties | 4 Individuals | = Forms | — SWRLRules |

CLASS BROWSER INSTANCE BROWSER

For Project: @ RBAC_DL_populsted_stage_1 For Class: @ rbacPRA

Asserted Inferred

Class Hierarchy A
ol Thing Asserted Instances - # e X
b (0 OBJECT_INSTANCE @ consultant_read_computer -

\ A] rn.ac EEAACCTION - @ consultant_write_vital_sign I
rhac:

4 junior_statf_toctor_read_patiert
@ rbacOBJECT_TYPE (29) & junior_staff_doctor_read_room
v (@ rbacPERMISSION_8SSIGN @ Junior_statt_toctor_read_vital_sign

¥ @ rbac:ROLE_PERMISSION_ASSIGNABLE (20) 4 luricr _statt_doctor_resd_ward
O thacDRA (5) 4 senior_nurse_read_vital_sign
@ rhacDRA_FULL 4 senior_nurse_write_ward
@ rbacPRA (20) o senior_statf_doctor_write_patiert
) thacPRA_FULL 4 senior_staff_doctor_write_room

v O rhac:USER_PERMISSION_ASSIGNABLE (150) @ senior_staff_dactor write_vital_sign
@ rbac:DEMED (1) @ specialist_doctor_write_computer
) rhac:NOT_DENED

4 specialist_nurse_reacl_computer ||
ve ”b;': FERMITTABLE & specialist_nurse_write_computer
thac: AUTHORIZABLE

4 specialist_nurse_write_room
. " ;OL: rhac:PERMITTED 0 specialist_nurse_write_vital_sizn —
O rbac

For Individual

INDIVIDUAL EDITOR

nurse_writ

ard

(instance of rbac:PRA, rbac:ROLE_PE
hittp: fhwrww cgce netiOntology RBAC_DL owl#isenior_nurse_write_ward

rbac:PRA

rbac:ROLE_PERMISSI

B ey [

SSIGNABLE

[J Annotations

Property

| Value

| Lang |

rdfs:comment

rbac:action

é ﬁ %. rbac:role

Ve

@ e

@ _senior_nurse

P ol hd
:rzacﬂzgﬁtfgé) \ [] @ || rbaciobiect type ¥ 4.
rhac: & o_ward
> thac:USER_SESSION

iy Avearted Types eda

)) thac:PRA

. rhacROLE_PERMIZSION_ASSIGNABLE

| o = s B &

Figure 43: PRA individuals at Stage 1.

Figure 43 shows PRA at Stage 1, containing the individuals with which it is initialized.

106

Flle Edit

DeE 4 BE ok

Project OWL Reasoning Code Tools

d

Wini

wow Collaboration Help

o ar

| @ Metadzta(RBAC_DLowl) | | OWLClasses | Wl Properties | 4 Individuals | = Forms | — SWWRL Rules |

For Project: @ RBAC_DL_populated_stage 1

Class Hierarchy

5

CLASS BROWSER INSTANCE BROWSER
Li L

ol Thing
») OBJECT_NSTANCE
¥ @ rbacRBAC
0 rhactACTION (2)
@ rbac:OBJECT_TYPE (20)
¥ O rbacPERMISSION_ASSIGN
¥ @ rbacROLE_PERMISSION_ASSIGNABLE (30
@ rbac:DRA (5)
@ rbacDRA_FULL
O rbacPRA (20)
i rbacPRA_FULL
¥ @ rhac:USER_PERMSSION_ASSIGNABLE (100)
@ rbac DENED (11
() rhac:NOT_DEMED
¥ () rbacPERMITTABLE
©) rbac: AUTHORIZABLE
» @ rhac:PERMITTED
p @ rbac:ROLE
O rhaccURS (20)
@ rbacUSER (25)
» O thaciUSER_SESSION
B swrlsEntity

For Class: @ rbac:PRA_FULL
. Asserted | Inferred
.
Asserted Instances - ¥ 4+ X G
|| m
Asserted Types Q; ﬁ L

| Gl om

INDIVIDUAL EDITOR

For Individual:

Figure 44: PRA_FULL at Stage 1.

Figure 44 shows PRA_FULL at Stage 1. This class is empty because it has not yet been populated in Step 2.

5.7.2.2 Stage 2

Figure 45 shows DENIED at Stage 2. The only individual present is the dummy individual DENIED 1, which is

needed for 3_not_denied to work.

Fie Edt Project OWL Reasoning Code Teols
DEeH +BE mybg ¢

Window

H 4

Collaboration Help

<épmtégé

CLASS BROWSER
For Project: @ RBAC_DL_populated_stage_2

Class Hierarchy

| @ Metadata(REAC DL owl) | | OWLClasses | WMl Properties | 4 Individuals | = Forms | — SWRLRules |

INSTA

BROWSER

ol Thing
b @ OBUECT_INSTANCE
¥ @ rhacRBAC
O s ACTION (2)
) rhac:OBJECT_TYPE (29)
¥ O rhacFERMISSION_ASSIGN

© rhacDRA (5)
@ rbacDRA_FULL (13)
O rhacPRa (20)
@ rbac:PRA_FULL (49)

) rbac:DENED (1)
16 rbacNOT_DEMIED
¥ (O rhacPERMTTABLE
© rhac AUTHORIZABLE
v (@ rhacPERMITTED
) rhac: AUTHORIZED
b @ rhacROLE
0 rbacURAS (20)
@ rbacUSER (25)
b rbacUSER_SESSION
B swrlsErtity

¥ @ rhac:ROLE_PERMISSION_ASSIGNABLE (50)

¥ O rbac:USER_PERMISSION_ASSIGNABLE (1501

(Instance of rbac:DENIED)

[J Annotations

| Lara |

| [=

For Class:) rbac:DENED For Individual: |ttp:iwww cgee netiOntology RBAC_DL.owl

[Asserted | Inferred D el [

Assertad In - & @ X G Property

@ DENEDT rdfs.commert:
rbac:action 4 & oo ¥4
Ibaciobject_instance ¥ ¥ €= rbaciuser LI S

N

Asserted Types & & a

@) rhac:DENED
s 8 5 &

Figure 45: DENIED at Stage 2.

107

File Edit
Deld tBE

| @ Metadata(REAC DL owl) | | OWLCiasses | Il Properties | 4 Individuals | = Forms [= SWRLRules |

INSTANCE BROWSER INDIVIDUAL EDITOR for senior_nurse_read_ward (instance of rbac:PRA_FULL, rbac:DRA_FU...
)

ss:) rbac:DRA_FULL i For Individual: |http:ifwww cgee netiOntology/REAC_DL owl#senior_nurse_read_ward

Asserted | Inferred

Project OWL Reasoning Code Tools

[N EIR TS S

Window Collaboration Help

By

@pmlégé

+=—F T

For Project: @ RBAC_DL_populated_stage_2

Class Hierarchy rbacPRA_FULL rbacDRA_FULL | rbac:DRA | rbac:ROLE_PERMISSION_ASSIGNABLE

0w Thiny - -
»> OEIJSCT INSTANCE Asseried Instances U 0 * = [J Annotations
v @ rtac BAC | @ consultant_read_room e ‘ i =]

@ consutiant_write_ward

|4 Iuior_staff_dactor_read_computer

|4 iunior_staff_doclor_read_room

|4 junior_staff_dactar_write_ward

|4 serior_nurse_read_ward

|4 serior_statf_doctor_read_compuier

| serior_staff_dostor_read_room

|4 serior_stati_doctor_wriz_werd hd
Staff_nurse_resd_ward

:slan,nurse,wrnEJanem ¢ & oo e

@ student_nurss_tead_ward 4 r_senior_nurse

| stuient_nurse_write_saliert

rhac: ACTION (2] rdfs:comment

thiac: OBJECT_TPE (25)
¥ @ rhacPERMISSION_ASSIGN
v @ thac:ROLE_PERMISSION_ASSIGNABLE (50)
thac:DRA (5)
thac:bRA_FULL (13)
thac:PRA (20)
thac:PRA_FULL (49)
v @ tbac:USER_PERMISSION_ASSIGNABLE (180
thac:DEMIED (1)
thac:NOT_DENED
v @ rhac:PERMITTABLE
thac:AUTHORIZABLE
v @ rhacFERMTTED
thac: AUTHORIZED

rbac:action

@ read

b @ rEcROLE

¢ ee

rbac:object_type

rhacURA (201 H ® & o_ward
thacUSER (25) =
» rhac: USER_SESSION Asserted Types & L

B (0 swrlsErtity rhac:PRA_FULL
thac:DRA_FULL
rhac:ROLE_PERMISSION_ASSIGNABLE

bac:DRA =3
rhac: & B &

Figure 46: DRA_FULL at Stage 2, having been populated in Step 2.

Figure 46 shows DRA_FULL after it has been populated in Step 2. The individual senior_nurse_read_ward is
highlighted. Notice the entries in Asserted Types, which lists all the classes of which an individual is a member.
Naturally, DRA_FULL appears; so does DRA, as this particular DRA_FULL member is directly inferred to be in
DRA_FULL as a result of being in DRA (see Figure 4). It is also in PRA_FULL: Step 2 infers this individual as
representing a role permission as well as a denial. [This means that USER individuals will be both PERMITTABLE
and DENIED in later steps; this conflict is resolved in AUTHORIZABLE by having denials over-ride permissions.]
Notice also that the individual is a member of ROLE_PERMISSION_ASSIGNABLE; membership of this is essential

for the rules in Step 2 to work.

File Edit Preoject OWL Reasoning Code Tools ‘Window Collaboration Help
Dol $BD e @ ae <g|protégé
| @ Metadata(REAC_DLowl) | | OWLClasses | WMl Propeties | 4 Individuals | = Forms | — SWRL Rules |
INDIVIDUAL EDITOR for junior_staff_doctor_read_room (instance of rbaciDRA_FULL, rbac:PR... + — F T
For Project. 4 RBAC_DL_populated_stage_2 For Class: rbac.PRA_FULL ¥ For Individual: |http:/iwww cgce net/Ontology/RBAC_DL owl#junior_staff_doctor_read_room
Clase Hierarchy Asserted | Inferred |“thaciDRA_FULL | rbacPRA | rbacPRA_FULL | rbacROLE_PERMISSION_ASSIGNAGLE
el Thing Asserted Instances - ¥ e xX$ L5 o o [0 [Annotations
[2 CBIECT_INSTANCE @ consuttart_read_computer - Propert I Val I L\ |
¥ @ rhacRBAC @ consuitant_reac_patient I . m;;‘::mv e e ~
rhas ACTION (7) 4 consuttart_read_room
rhac:OBJECT_TYPE (29) @ consuttart_read_vital_sion
v thacPERMISSION_ASSIGH @ consutart_read_ward
v rbac ROLE_PERMIZZION_ASSIGNABLE (50) 4 consultant_write_patiort
thacDRA (5] 4 consultart_werite_room |
rbac:DRA_FULL (15) |4 consuttant_write_vital_sign
thacPRA (20) 0Jumur_slaﬂ_ductur_readjallsrﬂ hd
(BB AULL (05) @ Junior_staft_doctor_read_room
¥ ac USER_PERMISSION_ASSIGNABLE (100) | ||@0 1o oty cau wtal_sign o ation ¢ &% oo LR S
rhac:DENED (1) 4 Junior_statt_doctor_read_ward 4 read 4 r_iunior_staff_doctor
thac:NOT_DENIED @ senior_nurse_read_patient
v thac:PERMITTABLE ’ FEnior_nurse_read_room
rhac. AUTHORIZABLE @ senior_nurse_read_vital_sign
A rhac:PERMITTED ’ SENIOr_NUrse_read_ward
rhac: AUTHORIZED |4 senior_nurse_write_patient |-
[3 thac:ROLE rbac:object_type ‘} ﬁ *
thacURA (21) | [-] & @ oroom
rhacUSER (25) r
> rbac:ISER_SESSION Asserted Types =
» swrrlaErtity rbac:DRA_FULL
rhacPRA_FULL
rbac:ROLE_PERMISSION_ASSIGHABLE
| |v| 8 thac:PRA, & B = <

Figure 47: PRA_FULL at Stage 2, having been populated in Step 2.

Figure 47 shows PRA_FULL after Step 2 has run. This class is analogous to DRA_FULL.

108

5.7.2.3 Stage 3
Figure 48 shows DENIED after Step 3 has run. Note that the individual highlighted also belongs to

USER_PERMISSION_ASSIGNABLE (as it has to for this step to run) and PERMITTABLE. Thus we have:
PERMITTABLE(staff_nurse_3_read_ward_1)
DENIED(staff_nurse_3_read_ward_1)

File Edit Preject ©OWL Reasoning Code Tocls Window Collaboration Help

OEEH +«BE v <9 PIOE 4>

| 4 Metadata(RBAC DL.owl) | | OWLClasses | WMl Properties | 4 Incividuals | = Forms | — SWRLRules |

A INSTANCE BROWSER A INDIVIDUAL EDITOR for staff_nurse_3_read_ward_1 (instance of rbac:USER_PERMISSI... + — F T

For Project: @ RBAC_DL_populated_stage_3 For Class rhac:DENED For Individual: |http:/iwww cgce netiOntology REAC_DL .owi# SEMGNE TR NEr T TE]
Clase Hisrarchy Asserted | SENEN | thac:USER_PERMISSION_ASSIGNABLE | rbac:PERMITTABLE | rbac:DENIED |

awiThing Asserted Instances - ¥ e XG lj Eg « [[H [Annetations
> OBJECT_INSTANCE @ senior_statt_doctar_1_read_room_1 [~ Property ‘ Value | Lang ‘
¥ @ rbacRBAC @ senior_stalf_sioctor 1 _write_ward_1 dfs: comment =

rhec ACTION (2)
rhac:OBJECT_TYPE (28)
¥ () rbac PERMISSION_ASSIGN
¥ @ rbacROLE_PERMISSION_ASSIGNABLE (50)

thacDRA (5] 4 senior_statf_dactor_3_read_room_1

rhacDRA_FULL (13) ’ senior_staff_doctor_3_wwerite_ward_1
thac:PRA (20) @ statf_nurse_1_read_ward_1 [hd
rhacPRA_FULL (43)

staff_nurse_1_write_patiert_1

¥ @ thacUSER_PERMISSION_ASSIGNABLE (180 : sm,f:nursg;:,gadjam_f rbac:action ¢ & & oo ¢ o e
e BENED (57 @ statf_nurse_2_write_patiert 1 i @ read
thac:NOT_DENED @ staff_nurse_3_resd_ward_1

v thac:PERMITTABLE (55) ‘ staff_nurse_3_write_patient _1
rhac:SUTHORIZABLE @ student_nurse_1 _read_ward_1

v thac:PERMITTED ‘ student_nurse_1 _write_patient_1 1

rhac: AUTHORIZED ’ student_nurse_2_read_ward_1 —

‘ senior_staff_doctor _2_read_computer_1
|4 senior_statf_doctor_2_read _room_1

‘ senior_staff_doctor _2_write_ward_1
@ senior_statf_doctor_3_read_computer 1

» @ rhacROLE pEI e ctios AN et n e 9 b A5 drern ¥ o
rbacURA (20) | |-| 8 || [warat @ stari_nurse_3
rbac:USER (25)
b @ rbac USER_SESSION reeoriod 1 &
» @ swriEriey sserted Types o L
thac:USER_PERMISSION_&SSIGNABLE
rhac: PERMITTABLE
rhac:DENIED

\ ML

Figure 48: DENIED at Stage 3.

&
[
#

L

Given the property relationships of this individual, this is like saying:

permittable(staff nurse 3, read, ward 1).
denied(staff nurse 3, read, ward 1)

In Step 5, this conflict will be resolved by the denial over-riding the permission.

109

Fle Edit Project OWL Reasoning Code Tools Window Collaboration Help
ry g
0Oe ot BE ms <€protégé
[@ Metadata(RBAC_DLowl) | | OWLClasses | Wl Properties | 4 Individuals | = Forms | — SWRL Rules |
INSTANCE BROWSER INDIVIDUAL EDITOR for senior_nurse_1_read_room_1 (instance of rbac:USE
L
For Project: @ RBAC_DL_populated_stage_3 For Class rbac:PERMITTABLE
Asserted | Inferred
Class Hierarchy | hac:USER_PERMISSION_ASSIGNABLE | rbac:PERMITTABLE |
0wl Thing Asserted Instances - ¥ e XG |_ﬁ @ * [[H [[J Annotations
b @ OBJECT_INSTANCE [@ junior _staff_doctor_1 _read_room_1 -
v thac:REAC — Property | Walue | Lang ‘
3 ‘ Junior_staff_doctor_1_read_vital_sign_1 dfs nt =
rhac ACTION (2) ! rdfs:comme
@ junior_staft_doctor_1_read_ward_1
rhac:OBJECT_TYPE (24 ‘Jun\or’_staff_dodor_z_readjﬁlem_ﬂ |
v rhac PERMISSION_ASSIGN ‘jun\or;taffﬁdodorjireadjoomj
v thac:ROLE_PERMISSION _ASSIGNABLE (50) @ junior _staff_dactor_2_read_uital_sign_1
thac:DRA (5) ‘jun\orfstaffﬁdodorjireadfwardj —
thac:DRA_FULL (13) @ junior _staff_doctor_3_read_patient_1
thac:PRA, (20) ‘jun\or;taffﬁdoctorjireacuoomj =
thacPRA_FULL (43) |@ junior _staff_dactor_3_read_uital_sign_1
v thac: | ISER_PERMISSION_ASSIGNABLE (150) 4 Junior_siaft_doctor_9_read_ward_1 rbac:action & Q; 4 1bac:role & ﬁ *
Thac: DENED (37) @ senior_nurse_1_read_patiert_{ @ read
thae:NOT_DEMED ‘ senior_nurse_1_read_room_1
v [PERIEELE (2F) Q seniof_nurse_1_read_vital_sign_1
thac: AUTHORIZABLE 0 senior_nurse_1_read_ward_1
A rhac:PERMITTED @ senior_nurse_1_write_patient_1
rhac: AUTHORIZED | senior_nurse_1_write_ward_1 —
-
b (@ roscROLE P A sasbinnt rbac:object_instance & . ®u rbaciuser ¢ e
rhaciURA (20) | | | 8 || [4room_1 4 senior_nurse_1
rhac:USER (25)
b O rhacUSER_SESSION £
> swrisEntity Asserted Types ah L
rbac:USER_PERMISSION_ASSIGRABLE
rhac:PERMITTABLE
\ cju s 8 & &
Figure 49: PERMITTABLE at Stage 3.

Figure 49 shows the PERMITTABLE class after Step 3 is run. Again, the individual is also a member of
USER_PERMISSION_ASSIGNABLE, but is not a member of DENIED. Thus we only have

permittable (senior nurse_1, read, room 1)

5.7.2.4 Stage 4

File Edt Project QWL Reasoning Code Tools ‘Window Collaboration Help

ODeRE tBE wmg &Y

| @ Metadata(RBAC DLowl) | OWLClasses | WM Properties | 4 Individuals | = Forms | — SWRLRules |

INSTANCE BROWSER INDIVIDUAL EDITOR for consultan atient_1 (instance of rbac:NOT_DENIED, rbac:P
¥
For Project: 4 RBAC_DL_populated_stage_4 For Class: rbac:NOT_DEMIED For Individual: |http:/hiwww cgce netiOntology RBAC_DL owid Sy W Wy W)
Class Hisrarchy Aszerted [N thac:NOT_DENED | rhac:PERMITTABLE | rbac:USER_PERMISSION_ASSIGNABLE
ok Thing Asserted Instances - F @ X G| [T @z [d W onsien
» @ OBJECT_INSTANCE @ consuttart_1_read_computer_1 [] T I Ve [iarg |
¥ @ rhacRBAC @ consuttart_1_read_patiert_1] fecomment =
thac:ACTION (2) @ consuttart_1_read_vital_sion_1 |
Tbac:OBJECT_TYPE (25) @ consuttart_1_read_ward 1
¥ (D rbac:PERMISSION_ASSIGN @ consutart_1_wrke_compiter_1
¥ (@ tbac:ROLE_PERMISSION_ASSIGNABLE (50) @ consutert 1 it nafient 1
rhac:DRA, (5) @ comsuttart_1_write_room_1
rhac:DRA_FULL (13) | consutiant_1_write_vital_sign_1
rhac:PRA (20) @ consutiart_2_read_computer_1 had
rhaciPRA_FULL (45) @ consuttant_2_read_petient_1
v O rbaciUSER_PERMISSION_ASSIGNABLE (150) @ consutant_2_read_vial_sign_t rbac:actien ¥ € heor ¥ * &
rhiac:DENED (37) @ cansultart_2_read_ward_1 @ read

thacMOT_DERIED (144)
¥ O rhacPERMITTABLE (35)
rbac: AUTHORIZABLE
v rbac:PERMITTED (22)
rhac: AUTHORIZED

| consultart_2_write_computer_1
| consultart_2_write_patient _1
| consultart_2_write_room_1

| consultart_2_wwrite_vital_sign_1
| junior_staff_doctor_1_read_patient_1 —
a et s

> rhac:ROLE ol idal 4 Zl|| rbac:object_instance ¢ Q ® rpaciuser L4 ﬁ *
rhacURa (20) ‘ | & patiert 1 [@ consutart_2
rhac:USER [25)
») rbac:USER_SESSION "
> swrlaErtity Asserted Types <h !.
rhac:MOT_DENIED
4] T rhac:USER_PERMISSION_ASSIGNABLE
rhac:PERMITTABLE =
| Hle m & 8 &

Figure 50: NOT_DENIED at Stage 4.

Figure 50 shows the results of populating NOT_DENIED in Step 4. Although each individual’s membership of
this class is defined many times due to the way the populating rule runs (as discussed earlier) each individual still

appears only once in the Protégé window.

110

File Edt Project OWL Reasoning Code Tools Window Collaboration Help
NeR B0 wa @ Qe <G protége

| @ Metadata(RBAC_DL.owl)

For Project: 4 RBAC_DL_populated_stage_4

Class Hierarchy

| 7 omiCiasses | M Properties | @ Individuals | = Forms || = SWRLRules |

INSTANCE BROWSER

For Class: rbac:PERMITTED

DIVIDUAL EDITOR for specialist_doctor _1_write_patient_1
ndividual: |http:/iwww cgee netiOntology RBAC DL 0wl a1 W (o1 G IO o o Ty]

(instance of rbac:PERMITTED, r

+-—F T

Asserted | Inferred

| rbac:PERMITTED | rbacPERMITTABLE | rbac:USER_PERMISSION ASSIGNABLE | rbac:NOT DENED |

ok Thing Asserted Instances - ¥ e XS [o# [t [0 :
b @ OBJECT_NSTANCE [J Annotations
= @ consutiart_1_read_computer_1 -
v O thacREAC [~ Property | Value | Lang |
! @ consutiart_1 _read_patiert_1 =
b ACTION 23 rdfs:comment
- @ consutiart_1 _read_room_1
thac:OBJECT_TYPE (25) | consultart_1_read_vital_sign_1
¥ @ rhac:PERMISSION_ASSIGN @ ceneulart1 resd werd 1
¥ @ thac ROLE_PERMISSION_ASSIGNABLE (50) @ consutert_1 _wnis_patirt_1
rbacDRA (5) | consuttart_1_write_room_1
rbacDRA_FULL (13) | consuttart_1_write_vital_sign_1
rbacPRA (20) @ specialist_doctor_1_read_computer_1 =
thacPRA_FULL (45) @ specialist_soctor_1_read_patient_1
v () rbac:USER_PERMISSION_ASSIGNABLE (150) | specialist_coctor_1 _reac_room 1 =i & Q; S irenn & Q; *
thac:DENED (37) @ specialist_tloctor_1_reac_vial_sign_1 & write
thac:NOT_DENIED (144) @ specialist_doctor_1_read_ward_1 [
¥ @ rbacPERMITTABLE (35) @ specialist_doctor_1 _write_computer_1
thiac: AUTHORIZABLE @ specialist_doctor_1 _write _patient_1
v ’”aC'EER':EI:%éé‘:D @ specialist_doctor_1 _write_room_1
rhae: L
@ specialist_doctor_1_write_vital_sign_1 =
b @ rhacROLE & 4 & hacuer ¢ e
thacURA (20 | H B || (@ potiort_1 @ specicist_docior 1
ThacUSER (25)
») rbac:USER_SESSION Asserted Types P, 5 @
b 0 swrla Ertity Ibac:PERMITTED
thac:NOT_DENIED
« [0 1| @ thacUSER_PERMISSION_ASSIGNABLE
[- B | rhacPERMTTABLE & B & &

Figure 51: PERMITTED at Stage 4.

Figure 51 shows the results of populating PERMITTED in Step 4. As well as being a member of PERMITTABLE
and USER_PERMISSION_ASSIGNABLE (as is necessary for membership of PERMITTED), the highlighted
individual also belongs to NOT_DENIED. At Stage 4, every individual in USER_PERMISSION_ASSIGNABLE,
PERMITTABLE and PERMITTED will belong to either DENIED or NOT_DENIED.

5.7.2.5 Stage 5

Fle Edit Project OWL Reasoning Code Tools Window Collaboration Help
NeH B8 wa ¢ B <ab < protége
| @ Wetadata(RBAC_DLowl) | | OWLClasses | WMl Properties | 4p Individusls | = Forms | — SWRLRules |
INSTANCE BROWSER INDIVIDUAL EDITOR for senior_nurse_2_wiite_patient_1 (Instance of rbac:AUTHORIZAB... + — F T
L L4
For Project: @ RBAC_DL_populated_stage_5 For Class: € rbac:AUTHORIZABLE For Individual: |nttp: fwww cgce netiOntologyRBAC_DL owit ST e k]
Class Hierarchy Asseried |EIIEH [“tbac: AUTHORIZABLE | rbac USER_PERMISSION_ASSIGNABLE | rbac:PERMITTABLE | rbac:NOT DENED | |
et i Asserted Instances ~é¥ex¢ Ij Iﬁ * 5 i} [J Annotations
b @ OBJECT INSTANCE @ Junior _staff_doctor_2_read_patient 1 B Property I ol =
¥ @ rbacRBAC & junior _staff_doctor_2_read_vital_sign_1 .
rhac ACTION (2] rdfs:comment =
@ junior_staff_doctor_2_read_ward_1
rhac:OBJECT_TYPE (29) @ Junior _statf_doctor_3_read_patient_1
¥ @ rbacPERMISSION_ASSIGN @ junior _staff_doctor_3_read_vital_sign_1 =
¥ @ rhacROLE_PERMISSION_ASSIGNABLE (50) @ luricr_staff_doctor_3_read_ward_1
thacDRA (5) 4 seniar_nurse_1_read_patient_1
thacDRA_FULL (131 @ senior_nurse 1 _read_room_1 I~
thacPRA (20) @ senior_nurse_1_read_vital_sion_1 =2
thacPRA_FULL (43) @ seniar_nurse_1_write_patient_1
¥ @ roocUSER_PERWISSION_ASSIGNABLE (150)] @ sricr_rurse_ tte_werd_ RaE ot € & & acroe ¢ e e
thac:DENIED (37) @ senior_nurse_2_read_pstient_1 & wrtts
thiacNOT_DEMED: [144) & senior_nurse_2_read_room_1
v thac PERMITTABLE (35) 4 seniar_nurse_2_read_wital_sign_1
iz AITOHEAEILE () ‘ Fenior_nurse_2_vrite_patient_1
¥ @ rbacPERMITTED (22) @ senior_nurse_2_uwrite_ward_1
rhac: AUTHORIZED (15) @ serior_staff_doctar 1_read_ petient_1 =
» @ hacROLE rbac:object_instance ¢ € . ibeciuser L 4 * &
thecURS, (20) \ =] e || @ paeis @ senor_rures 2
rhacUSER (25
b rbacUSER_SESSION TR W % @
» O swriaEntity thac: AUTHORIZABLE
thiac:PERMITTABLE -
thacISER_PERMISSION_ASSIGNABLE i
| |v| ;] rbac:NOT_DEMED s B 5 @
Figure 52: AUTHORIZABLE at Stage 5.

Figure 52 shows AUTHORIZABLE after Step 5. All individuals belonging to AUTHORIZABLE must by
definition belong to the other three types listed for this individual (PERMITTABLE, USER_PERMISSION_
ASSIGNABLE and NOT_DENIED).

111

File Edt Project OWL Reasoning Code Tools Window Collaboration Help

DeH $E6E wmed ¢

q <€prorégé

| @ Metadata(REAC_DLowl] | | CWLClasses | WMl Properties | 4 individuals | = Forms | = SWRLRules |

INSTANCE BROWSER
»

rbac: AUTHORIZED

+

NDIVIDUAL EDITOR for sta
hitp: fwww cgce.net/Ortology/RBAC_DL .owl

(instance of rbac: AUTHORIZABLE

For Project: @ RBAC_DL_populated_stage 5

Asaeried |RIEIES rhac AUTHORIZED | rhac.PERWITTED | rbac:NOT_DENIED

Class Hierarchy

oo Thing P — - G eXG rbac:AUTHORIZABLE | thac:USER_PERMISSION_ASSIGNABLE | rbacPERMITTABLE |
OBJECT_INSTANCE -
: . @ consulient_1_read_vital_sign 1 = CF o [] [Annotations
IhaciECTION (2) 4 consuttant_1_read_vrard_1 Property I Value [Lang |
- @ consultant_1_vrite_patient_1 = rdts comment =

tbac:OBJECT_TYPE (29)
¥ @ rhac:PERMISSION_ASSIGN
v O rhac:ROLE_PERMISSION_ASSIGNABLE (50)
rbacDRA (5)

@ consuttant_1_write_room_1

4 consuttant_1 _verite_vital_sign_1

@ specialist_doctor_1_read_computer 1
@ specialist_doctor_1_read_patiert_1
rhaeiDRA_FULL (13) @ specialist_doctor_1_read_room_1

bac PRA (20
raciPRA (201 @ specialist_doctor_1_read_wial_sign 1
rhac:PRA_FULL [25) =

@ specialist_doctor_1_read_ward_1
v rhac:USER_PERMISSION_ASSIGNABLE (1600

@ specialist_doctor_1 _write_computer_1
rzac ﬁZTEEEr(jgé " @ specialist_doctor_1_write_patiert_1 tbac:action 4 oo ¢ee
rbac PERI\;ITTABLE(95) & specialist_doctor_1 _write_raom_1 | 4 read

v @ ach ALITHOR\Z/EABL)E o @ specialist_doctor_1_write_vial_sion_1
rhac e @ staff_nurse_2_read_patiert_1 =
¥ @ rbec:PERMITTED (22)
thac:AUTHORIZED (19) | |v| [
b () rbacROLE
' "
thaciURA (20) Asserted Types o . | rbac:object_instance & ® € paciuser L4 * ¢
rhacUSER (29) Thac ALUTHORIZAELE [patizrt_1 @ staft_nurse_2
rbac:USER_SESSION b0 AUTHORIZED
b @ sweraEntity rhacPERMITTABLE
thac USER_PERMISSION_ASSIGNABLE
rbac:NOT_DEMED

‘ -]] thac PERMTTED & 8 & &

1N

Figure 53: AUTHORIZED at Stage 5.

Figure 53 shows AUTHORIZED after Step 5. Again, any individual in AUTHORIZED must be a member of the

other 5 classes listed here.

5.7.3 SWRL Rules Tab

File Edit Project OWL Reasoning Code Tools Window Collaboration Help

Oe & + S < protégé
| @ Metadata(REAC_DLowl) | | OWLClasses | WMl Properties | 4 Individuals | = Forms | = SWRL Rules

SWRL Rules = & o

Enabled | Name Expression

E wmeg ¢

rhas PRA_FULL(%) n thac rols(%, 7r1) n rbac-action(?, ?a) a thac object_type(%, 7a) n thac included_in(2r2, 7r1) n rbac:instance_of(%ai, %) n rba,
rhac: USER_PERMISSION_ASSIGNABLE(%) rbac: DENIED(7) * sqwrl makeSst(?d, %) ° sqwrlnotElement(Z:, 7d) -+ rbac: NOT_DENIED(?)

rbac: FERMITTABLE() # rhacuser(, 1 n rbac:ACTIVE_USER_SESSION(?) # thac-user(?s, 7u) - rbac: PERMITTED(%)

rbac: FERMITTABLE(®) # rhac:NOT DENIED(%) ~ rbac: AUTHORIZABLE(?)

rhac: PERMITTED(?) n rhac:NOT DENIED(?%) - rbac: AUTHORIZED(?)

P3_permittable
P4 not_denied
p4_permitted
P5_authorizable
p5_authorized

pl_inchuded_in_1 = rbac: ROLE(?r) — rhac: included_in(er, 70)
p1_inclided_in_2 | rhaciis_a(?rl, %2 n rbacincluded in(?r2, ?r3) - rbac:included_inf?rl, 7r3)
pl_inherits pra_1 = rhac: ROLE(?) — rhac: inherits pra(?r, 7r)
pl_inherits pra 2 = rhac:senior_to(?rl, ?r2) a rbacsenior_to(?r3, ?r4) n rhaciinherits_pra_path(?rl, ?r4) - rbac:inherits pra(?r2, ?r3)
P1 senior_to 1 = rhac:ROLE(?0) n rbac:dirsctly_senior_to(? , ?r) - rbac:senior_to(?r, 2r)
Pl senior_to 2 = rhac:ROLE(?0) n rbac:dirsctly_senior_to(?r, ?) - rbac:senior_to(?r, #r)
Ppl_senior_to_4 = rbac: directly_senior_to(?rl, ?r2) n rbac:senior_to(?r2, r3) - rbac:senior_to(?rl, r3)
p2_dra_full = rbac:DRA() » rhacrole(?, 7rl) a rbac:action(?s, ?a) a rhac:object type(?s, ?0) o rbac:senior_to(?rl, 7r2) n rbac:ROLE PERMISSION ASSIGMABLEL.|
p2_pra_full = rhac:PRA() rbacrole(?s, ?rl) n rbac:action(?, ?a) » rhac:object type(?« ?d) # rbacsenior to(?r2, ?rl) n rbac:ROLE PERMISSION ASSIGNABLEL..|
p3_denied =3 rbac: DRA FULL(?%) a rbacirole(?, ?rl) » rbacaction(?, ?al a rbacobject type(?x, ?0) a rbaciincluded in(?r2, ?rl) a rbac:instance oft?oi, 20) a rbe. |
-
=
=
=
=

O
O
O
O
]
]
]
O

= SWRILJsssTab | = Rules | — Classss | — Individuals | — Axioms | — Inferred Axioms |

See http //protege.cim3 net/cgi-bin/wiki pl?SWRLJessTab for SWRLJessTab documentation. [=]

Press the "OWL+SWRL->]ess" button to transfer SWRL rules and relevant OWL knowledge to Jess
Press the "Run Jess" button to run the Jess rule engine.
Press the "Jess->OWL" button to transfer the inferred Jess knowledge to OWL knowledge.

IMPORTANT: A significant limitation of the current bridge is that it does not represent all OWL
axioms when transferring knowledge from an OWL ontology to Jess. The exceptions are the basic

class, property and individual axioms, such as, for example, rdfs subClassOf and rdfs subPropertyOf and

OWL axioms owl:sameAs, owl differentFrom, owl: allDifferent, owl equivalentClass, and owl equivalentProperty
As a result, the Jess inferencing mechanisms do not know about the remaining OWL axioms

To ensure consistency, a reasoner should be run on an OWL knowledge base before SWRL rules and OWL
knowledge are transferred to Jess. Also, if inferred knowledge from Jess is inserted back into an OWL
ontology, a reasoner should again be executed to ensure that the new knowledge does not

condlict with OWL axioms in that knowledge base. L

‘ OWL+SWRL->Jess | | Run Jess ‘ | Jess>OWL

Figure 54: The SWRL Rules Tab with the Jess Plugin open.

Figure 54 shows the SWRL Rules Tab with the Jess Plugin open. Note that the seven Step 1 rules are ticked,

indicating that they will be fired when OWL+SWRL—Jess button is clicked.

112

["Name | Comment

Name
[Bttp swvew e net/Ontology/RBAC_DL.owl#p2_dra_full

SWRL Rule

rbac:DRA() A rhac:role(%, 7D A rbac action(%, 7a) A

rhac:object_type(, 2a) A Thac senior_to(?rl, 2r2) A
rbac:ROLE_PERMISSION_ASSIGNABLE(?2) A rhac:role(?z, 7r2) A rbac action(?z, %a)
4 rbac object,_type(?z, %) —

rbac:DRA_FULL(?2)

Figure 55: A SWRL rule in editing mode.

Figure 55 shows a SWRL rule (in this case 2_dra_full) in edit mode.

File Edit Project OWL Reasoning Code Tools Window Collaboration Help

DeE B0 sy ¢ BEE 90 <¢|protége
| @ Metadata(REAC_DLowl) | | OWLClasses | B Properties | @ Individuals | = Forms = SWRL Rules
SWRL Rules = & = R
Enabled | Name I Expression
pl_included_in_1 S rhac ROLE() -+ rhac included in(7r, 1)
pl_included_in 2 —# rbac:is a(?rl, ?r2) a rbacincluded in(?r2, ?r3) - rbac:inchided in(?rl, ?r3)
pl_inherits_pra_1 — rhac: ROLE(?r) - rhacinherits pra(er, o)
pl_inherits_pra 2 — rbac:senior_to(?rl, ?r2) » rbacsenior to(?r3, ?r4) a rbac:inherits pra path(?rl, ?r4) - rbacinherits pral?rz, ?r3)
pl senior to 1 = rbac: ROLE(?r) # rbac:directly_semior_ta(? , ?r) — rbac:senior_te(?r, ?r)
P1_senior_to_2 = rbac: ROLE(?D) # rbac:directly_senior_to(?r,) — rbac senior_to(?r, #r)
pl senior to_4 = rbac: directly_senior_tol?rl, ?r2) a rbac senior_to(?r2, ?r3) - rbac senior_to(?rl, ?r3)
O p2_dra_full =+ rbac: DRA(?x) n rhac:rolel?x ?rl) a rbacaction(?xz, ?4) o rbac:object_type(?, ?0) » rbacsenior_to(?rl, ?r2) a rbac:ROLE_PERMISSION_ASSIGNABLEL
O p2_pra_full — rbac: PRA(?) a rbacirole(?z, ?r1) a rbac action(?, 7a) » rhac:object type(?x, ?0) » rhacsenior_tof?r2, ?rl) a rbac: ROLE_PERMISSION_ASSIGNAELE(
(] p3_denied —# rhac: DRA_FULL(?) a rhac:role(?x, ?r1) a rhac:action(?x, 2a) a rhac:object_typel?x, 7o) a rbacincluded inf?r2, ?rl) a rbacinstance of(?0i, ?0) a rhe
O p3_permittable —# rbac: PRA_FULL(%) n rhacirole(?z, ?rl) a rbac action(?z, ?a) n rbacobject_type(?z, ?0) a rbacincluded in(?r2, ?rl) a rbacinstance of(?oi %0) o rba.|
O p4_not_denied — rbac: USER_PERMISSION_ASSIGNABLE(?) n rbac: DENIED(?Y) " sqwrlmakeSet(?d, %) " sqwrlnotElement(?, ?d) - rbac: NOT_DEMIED(7)
O p4_permitted — rhac: PERMITTABLE(?) # rhaciuser(?x, 7u) a thac:ACTIVE_USER_SESSION(?S) a rhaciuser(?s, 7u) = rhac: PERMITTED(?x)
(] p6_authorizable =+ rbac: PERMITTAELE(?%) # rbac: MOT_DEMIED(?%) — rbac: AUTHORIZABLE(?z)
= pE_authorized =+ rbac: PERMITTED(?%) 4 rbac: MOT DEMNIED(?x) - rbac: AUTHORIZED{?x)

— SWRLJessTab r — Rules r — Classes r = Individuals r — Axioms r — Inferred Axioms |

SWRL rule and relevant OWL knowledge successfully converted to Jess knowledge.
Number of SWRL rules exported to Jess: 7

Number of OWL classes exported to Jess: 75

Number of OWL individuals exported to Jess: 24

Number of OWL axioms exported to Jess: 31

Look at the "Jess Rules" tab for the Jess rules.

Look at the "Imported Jess Classes" tab for the Jess class definitions.

Lock at the "Imported Jess Properties” tab for the Jess property assertions.

Lock at the "Imported Jess Individuals" tab for the Jess individual assertions,
Press the "Run Jess" button to run the Jess rule engine.

‘ OWL+SWRL-=>Jess | | Run Jess ‘ ‘ Jess=OWL ‘

Figure 56: SWRLJessTab in the Jess plugin after OWL+SWRL—Jess button has been clicked for running Step 1
rules.

Figure 56 shows the SWRLJessTab in the Jess plugin after OWL+SWRL—Jess button has been clicked for

running Step 1 rules. This screen shows the numbers of SWRL rules and OWL classes, individuals and axioms exported

to Jess.

5.8 Conclusion

In this chapter we have created and tested SO-RBAC, which is an RBAC ontological model and process written
in OWL-DL and SWRL, based on earlier RBAC access models written in predicate logic. Although OWL-DL is easy to

understand and widely supported, it does not allow a full exploitation of the power of the Semantic Web. Therefore, SO-

RBAC closely follows the semantics of the original Prolog-based RBAC model, and therefore retains many of the

drawbacks and complexity of this model. In particular, it was not possible to make full use of the hierarchical nature of

113

object classes in SO-RBAC, as doing this requires classes to be linked to each other via properties. This requires classes
to be treated as individuals, which is not possible in OWL-DL. Therefore, the predicates defining an is-a hierarchy of
roles in the Prolog implementation were directly imported into SO-RBAC as properties linking objects, when a
representation in terms of the OWL class hierarchy would be more naturally suited to this definition. Another apparent
failure of OWL was that defining a property as transitive did not work. Transitivity should eliminate the need to define
recursive rules in most cases. However, this appears to be a failure in Protégé, and a working environment would run
this properly.

The main differences between the Prolog/relational model and SO-RBAC follow from an important difference
between predicate logic and OWL, namely that OWL is monotonic. This has two major implications for modelling in
SO-RBAC.

The first is in the handling of negation. Predicate logic uses a ‘closed world” assumption, in which a fact that is
not explicitly defined and cannot be inferred from other facts is assumed to be false. This makes negation a very
straightforward operation. However, OWL uses an ‘open world assumption’, in which a fact has to be explicitly defined
as false. Therefore, it was necessary to use a complex series of functions to simulate negation in SO-RBAC, and this
process was very time consuming due to the exponentially large number of individuals that have to be compared to each

other.

Additionally, predicate logic can run a rule on a dataset, and automatically returns all axioms that apply to it
based on the stored facts. In contrast, OWL can only move individuals that already exist. Where possible, facts are
defined in SO-RBAC using object properties, but this is only possible for binary relationships. Other relationships need
to be defined using individuals held in classes, and it is necessary to define an individual for every potential
relationship. This again results in a time-consuming reasoning process due to the need to compare large numbers of
individuals.

Although dynamic RBAC could be implemented using SO-RBAC, we have not attempted to do so. The purpose
of SO-RBAC is to prove the feasibility of the principle of building an RBAC model based on the Semantic Web. The
test results indicate that SO-RBAC successfully does this, producing results that are consistent with the equivalent
model written in predicate logic. The next chapter will consider a purely ontological RBAC model that uses OWL-Full,

and thus fully exploits the power of the Semantic Web in reasoning, giving many advantages over SO-RBAC.

114

6 The Proposal (Continued): Enhanced Semantic and
Ontology-based RBAC (ESO-RBAC)

6.1 Introduction
This chapter discusses Enhanced Semantic and Ontology-based Role-Based Access Control (ESO-RBAC),
which models roles as classes, so that RBAC role hierarchies can be represented naturally using ontological class

hierarchies.

The ESO-RBAC ontology uses OWL-Full. Reasoning is performed using Jena [118], an open source Semantic
Web framework for Java [119], which supports OWL. Jena is used because SWRL cannot handle certain aspects of
OWL-Full semantics used in ESO-RBAC, such as class-individual duality. [120]

Most previous ontologies for access control have used OWL-DL. Although this is widely supported and easy to
understand, it was found to be inflexible. ESO-RBAC uses OWL Full so that classes, as well as instances, can be used
as the Domain and Range of properties. This increases flexibility in defining properties, and allows the use of OWL’s
native class hierarchy in defining roles in an object-oriented fashion. Therefore, roles need to be defined as classes, not
as individuals. However, some properties in the ontology take roles as their domains and/or ranges. Unlike OWL-DL,

OWL Full permits the use of classes as property parameters, allowing properties to be defined this way.

The definition of “roles” as classes also allows users to be defined directly as instances of their roles. Since some
roles have role-specific properties (e.g. only subclasses of DOCTOR would have a consults property), this allows
users to be defined with precisely the properties they need (all users have USER properties, but only doctors have
DOCTOR properties). Note also that the USER class is multiply inherited: it is a subclass not only of RBAC, but also
of PERSON (which is a subclass of data). Another subclass of PERSON is PATIENT. Some properties (those relating
to personal details) apply to any PERSON, but USER and PATIENT classes also have specific properties.
Additionally, permissions may be defined at any level in the RBAC class hierarchy. That is, a permission or context
constraint might apply to any DOCTOR or SPECIALIST role, or it might apply specifically to
SPECIALIST_DOCTOR.

Section 6.2 demonstrates the ESO-RBAC ontological model and reasoning. The section is divided into three

subsections.
Section 6.2.1 defines the ESO-RBAC ontological model through three distinctive steps:
(a) Definition of OWL classes and their hierarchies
(b) Definition of Necessary & Sufficient conditions and
(c) Definitions of object properties.

Step (a) above is not sufficient to mirror the semantic of RBAC within OWL, i.e. the semantics stored in OWL
class hierarchies must be strengthen through object properties and necessary and sufficient conditions to achieve both,

successful reasoning upon OWL individuals and consistency of ESO-RBAC ontology.

Section 6.2.2 describes the way of populating ESO-RBAC classes with individuals by assertion. That section

explains exactly which classes must be populated before the reasoning process starts and why. Consequently, a portion

115

of ESO-RBAC ontological classes will remain ‘empty’ until a reasoning process determines which individuals from the
asserted classes will be ‘moved’ (or copied) into ESO-RBAC classes which were empty on ESO-RBAC initialisation.

Section 6.2.3 explains the purpose and the outcome of the reasoning process upon ESO-RBAC concepts using
Jena. ESO-RBAC has two types of reasoning. The first reasoning step, in described in 6.2.3.1, uses Jena for creating a
set of new object properties which use existing object properties defined in step (c). All of the object properties for
which this is done have ROLE_SET meta-class as both domain and range, as the purpose of this step is to set up all the
relationships between roles in the RBAC model. The second step, described in Section 6.2.3.2, performs reasoning to
move individuals across ESO-RBAC in order to determine permission or denials in particular request imposed by a
user, who has a ‘role’ and would like to perform an ‘activity’ upon set of “objects”.

Section 6.3 describes the ESO-RBAC process and explains its steps, which are based on the model and

reasoning introduced in Section 6.2.
Section 6.4 describes the reasoning rules used for running dynamic RBAC in the ESO-RBAC model.

Section 6.5 contrasts the proposed ESO-RBAC solution with the SO-RBAC model described in the previous
chapter.

Section 6.6 gives a particular scenario of RBAC in terms of defining which individuals may populate one of
ESO-RBAC instances. The healthcare domain and a medical database is used to demonstrate the implementation of
ESO-RBAC.

Section 6.7 describes the implementation of ESO-RBAC reasoning and the deployment of the ESO-RBAC
process. The ESO-RBAC ontology is modelled in OWL-Full using Protégé. The reasoning rules, written in Jena, were

run using a Java command-line tool. The model was initialized using a Perl script to create the initial instances.
Section 6.8 shows screen shots from Protégé of the implementation and testing of ESO-RBAC.

Section 6.9 draws conclusions.

116

6.2 Ontological Model and Reasoning
This section describes the ESO-RBAC model in terms of OWL and Jena.

6.2.1 Definition of ESO-RBAC Ontological Model

6.2.1.1 OWL classes and their hierarchies

(tbac:DENIED)

- e - N
< 1bas:USER_PERMISSION_ASSIGNASLE B CbacPERMITTED Job—————— bas:AUTHORIZED
P o CibasiPeRmITTABLE — —
7 I CibasAUTHORIZABLE

~ (ibac:PRA_FULL

- ~
A

A A _(tbaciora
tbac:PERMISSION_ASSIGN <} ibac:ROLE_PERMISSION_ASSIG|

— _ibac:MANAGER

— — o>

/ ~ (thac:CLERK)
thac:DRA_FULL j I

ibac:NIGHT_DUTY.

/ (bac:ADMIN T Cibac:STAFF_NURSE_NIGHT
P cawer et
yd ; En COVP ORI
[u

< hac:SPECIALIST_NURSE

_SESSION > Cmac: 1
- HEEMER AT A
p AN
. thac:JUNIOR_STAFF_DOCTOR ‘
—

L
b30:USER e WhaciROLE
s —

SENIOR_STAFF_DOCTOR_NIGHT

¢ e oBiEcT sET)
= N Q0IECTSEL

_— N < ibac:STAFF_NURSE_DAY >
c:SENIOR_STAFF_DOCTOR > | -—

——— P v— — — STUDENT_NURSE_DAY
(Pemson H——————pamient acSPESIALIST DOSTOR i

HOS7 ITAL_NTERNET CONNEETION e TEORNICIAN HIOR_STAFF_DOCTOR DAY
— — = % — — -

thac:CONSULTANT

. e
TiacoAY_ouTV B

" CINTERNET_CONNECTION "< HOME_INTERNET_CONNECTION HOME_DESKTOP))

o SENIOR_STAFF_DOCTOR_DAY
bac:SENIOR_TECHNICIAN

——(os_SESSION) ""quPuTER'f;- T HomE_PDA) b ac-JUNIOR_TEGHNICIAN ™

" outy) “THOSPITAL_EQUIPMENT J<h—— OFFICE_COMPUTER 5 OFFIGE_PDA J
g b i il =S S oS

L T room e EEE— U MED_EQUIPMENT OFFICE_LAPTOP
e - ik o -

~CataL_son) R opeRaTING_Ro0N STFIGE_DESKTOR

CsilaRule@roup \ T OPERATING_ROOM

~———{ NOT_WARD

Figure 57: Graphical illustration of ESO-RBAC, including meta-classes.

Figure 57 shows a graphical illustration of ESO-RBAC. At the top level, the ontology is again divided into two
abstract super-classes called OBJECT_INSTANCE and RBAC.

Whereas SO-RBAC represents is-a relationships using object properties, ESO-RBAC represents them directly
using the class hierarchy. For instance, the information represented in Prolog by the fact
is a(senior doctor,doctor) isrepresented in ESO-RBAC by defining SENIOR_ DOCTOR as a subclass of
DOCTOR. Similarly, user-role assignments are handled in ESO-RBAC by directly assigning instances of users to
subclasses of ROLE. For example, ESO-RBAC would represent the information corresponding to the Prolog fact
ura (claire,senior doctor) by assigning the user instance Claire to the role class SENIOR_DOCTOR.

In this ESO-RBAC model, the subclasses in the OBJECT_INSTANCE class are the same as those in SO-
RBAC.

The ontology for ESO-RBAC is given in Text 2, with a graphical illustration in Figure 57. Class RBAC has
mostly the same sub-classes in ESO-RBAC as in SO-RBAC, but ESO-RBAC has the following differences:

« URA is missing, as its semantics are represented by assigning individuals to sub-classes of ROLE.

+ ROLE is modelled as a sub-class of USER.

117

- OBJECT_TYPE is missing, as object types are represented by sub-classes of OBJECT_INSTANCE. The
relationship between object instances and types is represented by assigning individuals representing object

instances to object classes.

ROLE identifies all roles. The is_a (role inclusion) hierarchy is represented through the ontological class
hierarchy. This is because a role defined as an instance of another role is defined as inheriting all the super-role's
permissions and denials. This is the natural behaviour of inheritance in a class hierarchy, making it an intuitive way of

representing is _a relationships.

Thus, as stated earlier, the information represented in Prolog by the fact is a (senior doctor,doctor)
is represented in ESO-RBAC by defining SENIOR_DOCTOR as a subclass of DOCTOR. Inheritance in the seniority
hierarchy is different, since permissions and denials are inherited in opposite directions. Therefore, d_s and
senior to are still represented explicitly by the four object properties senior._to, junior_to, directly senior_to and

directly junior_to.

In an OWL-Full ontology, all classes belong, as individuals, to the meta-class owl:Class. To define a class as a
parameter of a property, the domain or range of the property needs to be set to this meta-class. However, ESO-RBAC
defines an additional meta-class ROLE_SET, containing ROLE and all of its sub-classes as individuals. This allows
properties to be defined that can have only ROLE sub-classes as their domains and ranges. Note that there is no
hierarchy in ROLE_SET: all ROLE-class individuals are asserted directly under ROLE_SET.

The super class RBAC defines concepts that are relevant to RBAC, which should be stored in a separate super-
class from OBJECT_INSTANCE because it is conceptually different from other information, and is typically stored
separately in other systems. For example, a relational DBMS would store the RBAC information as meta-data, which is
not usually queried directly by users.

Sub-classes of the OBJECT _INSTANCE class are:

« EQUIPMENT: represents all machines, both computers and medical equipment (and possibly others) to which
a user might be logged in. There are various sub-classes of EQUIPMENT, and multiple inheritance is used.

« INTERNET_CONNECTION: represents Internet settings of computers. This class is sub-classed into
HOME_INTERNET_CONNECTION and HOSPITAL_INTERNET_CONNECTION.

+ OS_SESSION represents operating system login settings of computers.

« PERSON represents all individuals with information stored about them. This includes users, so the class
USER is a sub-class of this as well as of RBAC. The other sub-class of PERSON in this example is
PATIENT.

+ ROOM represents all rooms in a hospital, and is sub-classed into OPERATING_ROOM and WARD.

« VITAL_SIGNS represents vital signs recorded for patients.

Sub-classes of the RBAC class are as follows.

The USER sub-class defines the set of users of the system. However, USER also inherits from PERSON,
which is a subclass of the OBJECT_INSTANCE class. On a superficial level, this is because user information might be
stored both as ordinary data and as meta-data in a relational database. On a practical level, it is because the USER class,
describing a user, contains information about users that is used in either ordinary information-retrieval situations or in

RBAC processing, or both.

118

ROLE sub-class, as discussed above a sub-class of USER in ESO-RBAC, contains a complex hierarchy of sub-
classes, defining roles to which users and permissions may be assigned. The hierarchy of classes under ROLE
represents sub-divisions of roles by type (not by seniority). The RBAC administrator is free to sub-class this class
according to the domain. In this example, it is sub-classed according to roles that might be found in a hospital. The main
sub-classes of ROLE in this example are DOCTOR, NURSE, ADMIN, TECHNICIAN, DAY_DUTY and
NIGHT_DUTY. These sub-classes are further sub-classed, including multiple inheritance.

USER_SESSION defines user login sessions. Its sub-class ACTIVE_USER_SESSION defines user login

sessions that are active, and thus give permissions to users.
ACTION class defines actions that can be performed on objects, such as read and write.

PERMISSION_ASSIGN is a sub-class consisting of all classes that relate to permission assignments. However,
it is also an abstract class in ESO-RBAC, i.e. it never contains any instances directly assigned to it. It is defined to
provide the role and action properties to all permission-assignment classes in ESO-RBAC. Its sub-classes are ROLE_
PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE. They define permission assignments
between users and objects, and between roles and objects. ROLE_PERMISSION_ASSIGNABLE defines permissions
and denials assigned to roles, either explicitly or computationally by ESO-RBAC. USER_
PERMISSION_ASSIGNABLE defines permissions, authorizations and denials assigned to users by ESO-RBAC
computations.

The sub-classes of USER_PERMISSION_ASSIGNABLE are DENIED, NOT_DENIED, PERMITTABLE,
AUTHORIZABLE, PERMITTED and AUTHORIZED. All these sub-classes, except NOT_DENIED, are equivalent to
the similarly-named Prolog predicates. NOT_DENIED is the complement of DENIED. PERMITTED is defined as a
sub-class of PERMITTABLE, because it can only contain individuals that are also in this.

The sub-classes of ROLE_PERMISSION_ASSIGNABLE are DRA, DRA_FULL, PRA and PRA_FULL, all

of which are equivalent to the similarly-named Prolog predicates. PRA defines explicit role-permission assignments.
PRA_FULL defines role-permission assignments that are inferred when the ESO-RBAC model is run. Similarly, DRA

defines explicit role-denial assignments, and DRA_FULL defines inferred role-denial assignments.

6.2.1.2 Necessary & Sufficient conditions

Table 16: Necessary & Sufficient conditions imposed on ESO-RBAC classes

Class Necessary & Sufficient condition
NOT_DENIED USER_PERMISSION_ASSIGNABLE n "DENIED
AUTHORIZABLE |PERMITTABLE n ~DENIED
AUTHORIZED PERMITTED n ~"DENIED

As with SO-RBAC, a few Necessary & Sufficient conditions were imposed on some ESO-RBAC classes in
order to guarantee consistency of ESO-RBAC when populating classes with individuals. In other words Necessary &
Sufficient conditions are imposed on NOT_DENIED, AUTHORIZABLE and AUTHORIZED (see Table 16). If a class

has a Necessary & Sufficient condition imposed on it, then populating the class in a way that violates this condition

119

makes the ontology inconsistent. The ESO-RBAC reasoning process populates these classes in a way that would always

be consistent with the conditions.

In Figure 57 (page 117), the graphical illustration of ESO-RBAC, OWL classes are in yellow, except classes

bound by Necessary & Sufficient conditions, which are in amber.

rhac: DEMIED e
rhaac: MOT_DEMIED = p— —
¥ @ rhacPERMITTABLE thac: USER_PERMISSION_ASSIGHABLE
rhac: ALTHORIZABLE ot rhac DENED

v rhac:PERMITTED
rhac: AUTHORIZED

Figure 58: Necessary & Sufficient condition for NOT_DENIED.

Figure 58 shows how a Necessary & Sufficient condition appears in Protégé. As this figure shows, these
Necessary & Sufficient conditions cause AUTHORIZABLE to become a sub-class of PERMITTABLE, and
AUTHORIZED to become a sub-class of PERMITTED.

6.2.1.3 Object property relationships
We have already mentioned above that PERMISSION_ASSIGN provides the role and action properties to all

permission-assignment classes in ESO-RBAC. Therefore its full description must include object properties it holds.

Naturally, PERMISSION_ASSIGN has object properties role and action. Just as all permission assignment
predicates in the Prolog RBAC model described in Section 3.2.1 have role and action as arguments, so do all analogous
classes in ESO-RBAC. However, the hierarchical nature of ontologies makes it much easier to define a series of related
classes with the same properties in an ontology than it is to define predicates with similar arguments in Prolog. In OWL,
property inheritance can be used to define a super-class with certain properties, and define sub-classes representing
related predicates that inherit its object properties. Accordingly, PERMISSION_ASSIGN sub-classes ROLE_
PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE, both inherit properties role and action,
as well as defining other object propertics. ROLE_PERMISSION_ASSIGNABLE has the additional property
object _type. Since DRA, DRA_FULL, PRA and PRA _FULL are sub-classes of ROLE_PERMISSION
ASSIGNABLE, all have the object properties role, action and object type. role and action, are inherited from
PERMISSION_ASSIGN (their grandparent super-class), while object type is inherited directly from ROLE_
PERMISSION_ASSIGNABLE.

USER_PERMISSION_ASSIGNABLE defines permissions, authorizations and denials assigned to
users by ESO-RBAC computations. As well as inheriting role and action from PERMISSION_ASSIGN, it also

has the object properties user and object_instance.

Table 17: Object properties in ESO-RBAC.

Domain Property Description Range
rbac:PERMISSION_ASSIGN (sub-classes: rbac:action Actions involved inrole | rbac:ACTION
rbac:USER_PERMISSION_ASSIGNABLE and and user permission
sub-classes, assignments.

rbac:ROLE_PERMISSION_ASSIGNABLE and
sub-classes)

rbac:PERMISSION_ASSIGN and sub-classes | rbac:role Roles involved in role and | rbac:ROLE_SET
user permission
assignments.

120

Domain

Property

Description

Range

rbac:USER_PERMISSION_ASSIGNABLE
(sub-classes: rbac:DENIED,
rbac:NOT_DENIED, rbac:PERMITTABLE,
rbac:AUTHORIZABLE, rbac:PERMITTED,
rbac:AUTHORIZED)

rbac:object _instance

Object instance to which a
user is permitted,
authorized or denied
access.

OBJECT_INSTANCE

and sub-classes

rbac:USER_PERMISSION_ASSIGNABLE
(rbac:DENIED, rbac:NOT_DENIED,
rbac:PERMITTABLE, rbac:AUTHORIZABLE,
rbac:PERMITTED, rbac:AUTHORIZED)

rbac:user

Users involved in user
permission/denial/authoriz
ation assignments.

rbac:USER

rbac:ROLE_PERMISSION_ASSIGNABLE
(rbac:DRA_FULL, rbac:DRA,
rbac:PRA_FULL, rbac:PRA)

rbac:object_type

Object types associated
with PRA and DRA
relationships.

rbac:OBJECT_TYPE

rbac:USER_SESSION

rbac:user

A user attached to a
session.

rbac:USER

rbac:ROLE_SET

rbac:directly junior_to

Inverse of
directly_senior_to. Sub-
property of junior_to.

rbac:ROLE_SET

rbac:ROLE_SET

rbac:directly _senior_to

Assertions of direct
seniority relationships.
Sub-property of
senior_to.

rbac:ROLE_SET

rbac:ROLE_SET

rbac:included_in

Direct and indirect
inclusion relationships,
inferred from OBJECT
sub-classing.

rbac:ROLE_SET

rbac:ROLE_SET

rbac:inherits_pra

Roles that participate in
inheritance paths, inferred
from inherits_pra_path.

rbac:ROLE_SET

rbac:ROLE_SET

rbac:inherits_pra_path

Assertions of ends of
inheritance paths.

rbac:ROLE_SET

rbac:ROLE_SET

rbac:junior_to

Inverse of senior_to.

rbac:ROLE_SET

rbac:ROLE_SET

rbac:senior_to

Direct and indirect
seniority relationships,
inferred from senior_to.

rbac:ROLE_SET

Table 17 lists ALL object properties with their Domains and Ranges, and includes both asserted and inherited
object properties. Most of the same object properties from SO-RBAC are used in ESO-RBAC. The following properties
are not used: rbac:instance_of (represented by OBJECT_INSTANCE subclass membership) and is_a (represented
by ROLE sub-classing). Additionally, the class URA is not defined (as its semantics are represented by ROLE sub-
class membership). Properties that have ROLE as the domain and range in SO-RBAC have ROLE_SET in ESO-
RBAC.

Most object properties are named after their Ranges. These properties may have different functions depending on

the Domain: each function of a property is listed separately in the table.
Object properties not named after their Ranges are the properties that have ROLE_SET as both Domain and
Range (directly junior_to, directly senior_to, included_in, inherits_pra, inherits_pra_path, junior_to, senior_to).

It is important to note that some object properties from Table 17 are asserfed and some of them are inferred. For
example, the object properties action, user, role and object_instance are asserted between USER_PERMISSION_
ASSIGNABLE and OBJECT_INSTANCE, ACTION, USER and ROLE_SET (and its sub-classes), but inferred
between all subclasses of USER_PERMISSION_ASSIGNABLE and these classes.

121

1bac:PERMISSION_ASSIGN

1bac:action®

rbac: ACTION 1bacROLE_PERMISSION _ASSIGNABLE isa

_—
thac mle"/nl'»\' object_type”
1bac:Class rbac] PRA 1bac:USER_SESSION | 1bac:DRA 1bac:DRA_FULL ‘ rbacPRA_FULL ‘ 1bac:USER_PERMISSION_ASSIGNABLE |
‘Me‘ \bacusel‘ _——]’I’r’a‘éT»Irr;el-t;;l;m;n:‘ - - rb;c;;e;' isa fisa isa
rbac ROLE_SET ‘ ’ OBJECT |]NSTAN(E rbac USER 1bac:PERMITTABLE ‘ 1bac:DENIED ‘ 1bac:NOT_DENIED ‘

isa Xsa %a Esa
1bac:ROLE rbac PERMITTED | | 1bac: AUTHORIZABLE | 1bac:USER_PERMISSION_ASSIGNABLE and not ...

%

| 10ac: AUTHORIZED ‘ not tbacDENIED and rbacPERMITTABLE |

(sa 52

not tbac:DENTED and rbac:PERMITTED ‘

Figure 59: Property map of all ESO-RBAC properties except those that have ROLE as both domain and range.

+ OBJECT_INSTANCE
— RBAC
— ACTION
OBJECT_TYPE
ROLE
PERMISSION_ASSIGN {action ACTION, role ROLE_SET}
— ROLE_PERMISSION_ASSIGNABLE {object type owl:Class}
— DRA
DRA_FULL
- PRA
PRA_FULL
= USER_PERMISSION_ASSIGNABLE {object instance OBJECT_INSTANCE, user USER}
DENIED
NOT_DENIED
PERMITTABLE
= AUTHORIZABLE
= PERMITTED
= AUTHORIZED
- USER
— USER_SESSION {user USER}
— ACTIVE_USER_SESSION
+ rdf:Property
- rdfs:Class
- owl:Class
- Class
— ROLE_SET {directly_junior_to ROLE_SET, directly_senior_to ROLE_SET, included_in
ROLE_SET, inherits_pra ROLE_SET, inherits_pra_path ROLE_SET, is_a ROLE_SET}

Text 25: ESO-RBAC Ontology (some classes are collapsed).

n +

Similarly, the object properties action, object_type and role are asserted between ROLE_PERMISSION_
ASSIGNABLE and ACTION, OBJECT_TYPE and ROLE_SET classes, but inferred between all subclasses of
ROLE_PERMISSION_ASSIGNABLE and these classes.

122

COLLAPSED_CLASS

CLASS

— SUB-CLASS {object_property 1 CLASS, object_property 2 CLASS}
— ABSTRACT_CLASS

SWRL-INFERRED_CLASS

= N&S_BOUND_CLASS

Text 26: Legend for ESO-RBAC Ontology.

+

Text 25 (page 122) illustrates a collapsed version of the ontology from Figure 57, and highlights main ESO-
RBAC classes involved in ontological reasoning. It is important to note that Text 25 should be read in conjunction with
Text 26.

Object properties are listed, with their ranges, in grey text in curly brackets after the classes that have them as
their domains. Classes that contain inferred individuals as the result of our ontological reasoning are listed in blue and
preceded by the = symbol. Classes on which Necessary & Sufficient conditions are imposed are in green and preceded
by the = symbol.

Figure 59 (page 122) graphically illustrates all object properties defined in Table 17, except those that have
ROLE as both domain and range. The label ‘isa’ in Figure 59 refers to the sub-class—super-class relationship: a sub-
class ‘isa’ super-class. It has nothing to do with the is_a property used in ESO-RBAC. The label ‘io’ (‘instance of”) is
used to denote a class that belongs, as an individual, to another class (e.g. from ROLE to ROLE_SET). In this diagram,
each property is distinguished by colour: where the same property appears several times, it is shown in the same colour.

However, these colours are not used anywhere else.

rbac:ROLE_SET

__——w{tbac:directly_junior_to |Instance* |rbac:ROLE_SET |
(inherits_pra_ — directly_junior_to >
| rbacjunior_to Instance* |rbac:ROLE_SET=+

rbac:directly_senior_to |Instance* |rbac:ROLE_SET junio@

Cinherits_pra ’pém’ rbac:senior_to Instance* | rbac:ROLE_SET

rbac:included_in Instance* |rbac:ROLE_SET

rbac:inherits_pra_path | Instance* |rbac:ROLE_SET|T—
; ; senior_to)
@ rbac:inherits_pra Instance* |rbac:ROLE_SET«

Figure 60: Property map of all ESO-RBAC properties with the meta-class ROLE_SET as both domain and range.

There are several ways in which instances of the meta-class ROLE_SET can be related affecting user-

permission assignment in RBAC. These need separate attention.

Figure 60 depicts all object properties in ESO-RBAC that have the meta-class ROLE_SET as both domain and
range. These properties are directly junior_to, directly _senior _to, inherits_pra, inherits_pra_path, junior_to,
senior_to and included_in (ESO-RBAC does not have is_a). These separate properties represent different
relationships between ROLE_SET instances (sub-classes of ROLE), as described in Table 20. Each object property
relating instances of the same class is indicated by an arrow from the node representing the ROLE class and pointing
back to this box. For clarity, these object properties are also listed in the node. The box in Figure 60 signifies that a
ROLE class (instance of meta-class ROLE_SET) (represented by the ROLE at the top of the box) has can be linked to
any instances of ROLE_SET via any of the properties listed.

123

Note that all object properties in Figure 60 apply to the same ROLE_SET meta-class. Therefore, they appear in
Figure 60 twice: in the first column of the figure and as coloured labels of arcs which graphically illustrate these object

properties defined upon meta-class ROLE_SET.

6.2.2 Populating ESO-RBAC classes by assertion
Classes populated in this stage are classified into two types. Note that ROLE and PERMISSION_ASSIGN are

abstract classes, which contain no asserted individuals.

i. Auto-populated on initialization: ROLE_PERMISSION_ASSIGNABLE and USER_PERMISSION_
ASSIGNABLE are populated on initialization with individuals representing possible role and user permission
assignments. Individuals asserted under these classes are not active: they have to be moved to sub-classes of
these classes to be active in ESO-RBAC.

ii. Populated according to RBAC model on initialization: USER, ACTION, ROLE, OBJECT_TYPE,
USER_SESSION, ACTIVE_USER_SESSION, DRA, PRA and all classes under ROLE and
OBJECT_INSTANCE are populated, by the RBAC administrator and application, with individuals that define
the RBAC rules and environment.

ESO-RBAC lacks the OBJECT_TYPE class found in SO-RBAC, since it identifies the type of an object

instance by its class.
Classes in the meta-class ROLE_SET specify RBAC roles.

On initialization, it is populated with individuals representing all possible relationships between roles, actions
and object types. These are then moved in the reasoning step into any of the sub-classes.

The sub-classes of ROLE_PERMISSION_ASSIGNABLE are DRA, DRA_FULL, PRA and PRA_FULL.
DRA and PRA are populated on initialization with explicit denial and permission assertions, respectively, copied from

the super-class. They are exactly equivalent to dra and pra assertions in the Prolog model.
USER_PERMISSION_ASSIGNABLE is populated on initialization with individuals representing all possible
combinations of user assignments of access to perform actions on object instances.

The sub-classes of ROLE are populated by individuals representing users who are assigned the roles that they
represent. In the example RBAC, ROLE is an abstract class, and has a hierarchy below this indicating types of role
such as DOCTOR and NURSE. Unlike in SO-RBAC, ESO-RBAC directly uses the position of a sub-class of ROLE
in the class hierarchy to represent role inclusion, eliminating the need for the property is_a.

The USER_SESSION class is populated with wuser login sessions. It contains sub-class
ACTIVE_USER_SESSION, which represents active user sessions.

124

6.2.3 Reasoning in ESO-RBAC using Jena

Step O:

Stage -1
(Initial)

Stage 0

Modity properies to Infer indirec sub-class relationships

Step 1.

M odify objedt properties of classesin ROLE_SET

Step 2

Stage 1

Stage 2

Fopulate FRA_FULL from FEA, and ODFEA_FUULL from DRA

Step 3

Populate PERMITTABLE and DEMIED

Step 4:

Stage 3

Stage 4

Fopulate PERWMITTED and HOT_DENIED

Step 5:

Populate AUTHORIZED and AUTHORIZABLE

Figure 61: Steps and Stages in reasoning ESO-RBAC

Stage 5
(Final)

Figure 61 shows the six steps of reasoning, which in terms of overview are the same as in SO-RBAC, except for

the addition of Step 0. Step | significantly differs from the others because it uses Jena for inferring more object

properties. In other words, Step 1 modifies object properties in sub-classes of ROLE (as instances of ROLE_SET) for

the purpose of determining all the relationships between roles within RBAC.

A new step, Step 0, is added to the beginning of the reasoning process to run reasoning rules that infer indirect

sub-classes and class membership. This is because Jena does not infer these on its own. Step 0 would not be required

when using a fully-functioning OWL-Full reasoner.

Steps 2-5 of the reasoning process infer individuals in ESO-RBAC classes according to strictly defined

matching of SO-RBAC sub-classes. The final result of our reasoning through Jena and ontological matching will be
shown in Stage 5, when certain individuals will be moved into ESO-RBAC classes AUTHORIZABLE and

AUTHORIZED.

Steps 0 and 1 are shown in Sub-section 6.2.3.1, and Steps 2—5 are shown in Sub-section 6.2.3.2.

125

The steps are designed such that each stage populated the ontology with all axioms that may be required for the
immediately following stage (except that Step 1 creates all object property relationships).

The reader should be aware that if more than one rule affects the same class or property, then the relationship
between the rules is a logical OR. Although the syntax of Jena (unlike that of SWRL) does allow representation of
logical OR relationships in a single rule, it was decided to use separate rules in ESO-RBAC, to maintain the link with
the SRWL rules used in SO-RBAC.

The Jena rules were named according to the following conventions:

« The rules are numbered according to the step in which they are executed when rule chaining. There are six
steps, 0-5 (Figure 61).
The Jena rules are named according to the convention s relation[n], where s is the step number,
relation is the class or property affected by the rule, and n is a sequence number (if there is more than one rule
relating to the same relation in the same stage).

Jena can be written either in the standard Prolog syntax, as below, with the consequent at the head (as in Prolog),

or with the consequent at the tail (as in SWRL). In ESO-RBAC, they are written with the consequent at the head.

Jena OWL
- Metaclass
OWL Class used
@ OWL Individual @ as Individual

— — — — — » OWL Class Non-membership in Antecedent

» OWL Class Membership in Antecedent
% QWL Clagss Membership in Consequent

Flow of Jena rule: FROM Antecent TO class,
and FROM class TO consequent

i5—a = OWL Property Antecedent FROM Domain TO Range

................... is-a-——=> QWL Property Consequent FROM Domain TO Range

Figure 62: Key to symbols used in Jena Process diagrams.

Figure 62 shows the key to the symbols used in the diagrams in Figures 63-93 showing the inference processes

for object properties.

126

6.2.3.1 Defining new object properties

We define new object properties in Steps 0 and 1, from Figure 62. These definitions are based on previously
defined object properties, where the ROLE_SET meta-class is the Range and Domain. Step 0 consists of 4 Jena rules,
named as 0 inferred subClassOf 1, 0 inferred subClassOf 2, 0 inferred type 1 and
0 inferred type 2. Step 1 consists of 8 Jena rules, named as 1 senior to 1, 1 senior to 2,
1 senior to 4, 1 junior to 1, 1 junior to 2, 1 junior to 4, 1 inherits pra 1 and
1 inherits pra 3. 1 junior to 1, 1 junior to 2 and 1 junior to_ 4, are the inverse rules to

1 senior to 1,1 senior to 2and1l senior to 4, respectively.

[inferred subClassOf 1: (2cl
rdfs:inferred subClassOf ?c2)

<= rdf_ext:inferred_subClassOf rdfs:subClassOf
(?cl rdfs:subClassOf ?2c2)

]
Text 27: Jena for rule 0_inferred subClassOf 1. | |l

Figure 63: Rule 0 _inferred subClassOf 1.

The first rule in Step 0, given in Figure 63, is called 0 inferred subClassOf 1. It defines a class as

being an inferred sub-class if it is a sub-class of that class. Figure 63 is converted into Jena syntax in Text 27 above.

[inferred subClassOf 2: (2cl rdfs-subfClassOf

rdfs:inferred subClassOf ?c3)

<- rdf_extinferred_
(?cl rdfs:subClassOf ?c2) subClassOf
(?c2 rdf ext:inferred subClassOf ?c3)

] rdf_extinferred_subClassOf

Text 28: Jena for rule 0_inferred subClassOf 2.

Figure 64: Rule
0 inferred subClassOf 2.

The second rule in Step 0, given in Figure 64, is called 0 _inferred subClassOf 2. It defines inferred
sub-classing as transitive. In other words, class ?c7 is an inferred sub-class of class ?¢3 if it is a direct sub-class of

another class (?¢2) that is an inferred sub-class of class 2r3.

Figure 64 is converted into Jena syntax in Text 28 above.

127

[inferred type 1: (2?1
rdf ext:inferred type ?c)
_ o _
(?1i rdf:type ?c)
]

Text 29: Jena for rule 0_inferred type 1.

rdf_extiinferred type rdf type

Figure 65: Rule 0_inferred type 1

The third rule in Step 0, given in Figure 65, is called 0 _inferred type 1. It an individual as being an

inferred type of a class if it is a type (member) of this class. Figure 65 is converted into Jena syntax in Text 29 above.

[inferred type 2: (?1 rdf ext:inferred type ?c)
<-
(?cl rdf ext:inferred subClassOf 2c)
(?1 rdf:type ?cl)

]

Text 30: Jena for rule 0_inferred type 2.

rdi_extinferred
type

rdf_extinferred subClassOf

Figure 66: Rule 0_inferred type 2

The fourth rule in Step 0, given in Figure 66, is called 0 inferred type 2. It defines an individual as an
inferred type of a class if it is a member of an inferred sub-class of this class. In other words, individual ?iis an inferred

type of class ?c if it is a member of class ?c7, which is an inferred sub-class of class ?c.

Figure 66 is converted into Jena syntax in Text 30 above.

128

[1 senior to 1: (?r rbac:senior to ?r)
<_
(?r rdf:type rbac:ROLE SET)
(?r rbac:directly senior to ?rl)

]

Text 31: Jena for rule 1_senior to 1.

directly_senior_to

--------------- ROLE_SET)

The first rule in Step 1, given in Figure 67, is called 1 _senior to 1. It defines a role as is senior to itself if it

has at least one role directly senior to it. Figure 67 is converted into Jena syntax in Text 31 above.

[1 senior to 2: (?r rbac:senior to ?r)
<_
(?r rdf:type rbac:ROLE SET)
(?rl rbac:directly senior to °?r)

]

Text 32: Jena for rule 1_senior to 2.

senior_to

- i (ROLE_SET)

directly_gsenior_to

Figure 68: Rule 1_senior to 2.

The second rule in Step 1, given in Figure 68, is called 1 _senior to_2. It defines a role as senior to itself if

it is directly senior to at least one role. A role class is identified by its membership of the meta-class ROLE_SET. The

syntax ?r rdf:type rbac:ROLE_SET in Jena is equivalent to rbac:ROLE_SET(?r) in SWRL. In other words,

class membership is queried in Jena by querying the RDF property rdf:type.

Figure 68 is converted into Jena syntax in Text 32 above.

129

._‘H_\\

\\.

. . k!

directly $enior_to \
[1 senior to 4: (?rl rbac:senior to ?r3) E
<- II
(?rl rdf:type rbac:ROLE_SET) senior to
(?rl rbac:directly senior to ?r2) I
(?r2 rbac:senior to ?r3)
] |
Text 33: Jena for rule 1_senior_to_4. senior_to
"fl

s

"'/
Figure 69: Rule
1 senior to 4

The third rule in Step 1, given in Figure 69, is called 1 _senior to 4. It defines a seniority of roles as being

transitive. In other words, Role ?r7 is senior to ?r3 if it is directly senior to another role (?r2) that is senior to ?r3.

Figure 69 is converted into Jena syntax in Text 33 above.

[1 junior to: (?rl rbac:junior to ?r2)
<_
(?r rdf:type rbac:ROLE SET)

(?r2 rbac:senior to ?rl)

]

Text 34: Jena for rule 1_junior to.

senior_to

ROLE_SET

juniar_to

4

Figure 70: Rule 1_junior to.

The fourth rule in Step 1, given in Figure 70, is called 1 junior to. It defines axioms for junior_to as the
inverses of senior_to axioms: if role ?r2 is senior to ?r7, then ?r7 is junior to ?r2. This rule is defined because Jena

cannot infer inverse axioms from the axioms that it has inferred, even where properties are defined in the ontology as

being inverses of each other.

Figure 70 is converted into Jena syntax in Text 34 above.

130

The fifth rule in Step 1, given in Figure 71,is called 1 inherits pra 1. It defines arole as being part of an
inheritance path involving itself. An inheritance path is a path along which permissions can be inherited. This rule is

necessary to set up recursion when defining inheritance paths. Figure 71 is converted into Jena syntax in Text 35 below.

[1 inherits pra 1: (?r
rbac:inherits pra ?r)
o _
(?r rdf:type rbac:ROLE SET)
notEqual (?r, rbac:ROLE)
]

Text 35: Jena for rule 1 _inherits pra 1.

_______________ ROLE_SET

inherits_pra

Figure 71: Rule liinHeri ts pra 1

senipr_to
[1 inherits pra 3: (?r2 rbac:inherits pra ?r3) o
<- T
(?rl rbac:senior to ?r2) _ . “_
(?r2 rbac:senior to ?r3) inherits_ _ inherits
(?r3 rbac:senior to ?r4) pra_path senigr_fo pra |
(?rl rbac:inherits pra path ?r4)
J .“-"/
Text 36: Jena for rule 1_inherits pra 3.
senipr_to

Figure 72: Rule 1 _inherits pra 3

The sixth rule in Step 1, given in Figure 72, is called 1 _inherits pra 3. It defines that Roles ?r2 and ?r3
are in an inheritance path, where ?r3 is the senior role, if:
iv) ?r2 has a senior role ?r7 that is at the senior end of an inheritance path, and

v) ?r3is senior to role ?r4 that is at the junior end of an inheritance path

Figure 72 is converted into Jena syntax in Text 36 above.

131

6.2.3.2 Moving individuals across ESO-RBAC classes

Individuals are moved across ESO-RBAC classes according to the reasoning performed in Steps 2—-5. All rules in

Steps 2 and 3, and rule 2 of Step 4, match individuals according to object properties. Rule 1 of Step 4, and both rules in

Step 5, match individuals by a simple set operation (set difference or intersection).

STAGE 1

ROLE_
PERMISSION_
ASSIGHNABLE

STAGE 2

STAGE 3

STAGE 4

Figure 73: Diagram showing movement of individuals in Step 2 of reasoning only.

STAGE S

Step 2 is shown in Figure 73. It takes class ROLE_PERMISSION_ASSIGNABLE and matches its individuals
with individuals of classes PRA and DRA. If individuals from ROLE_PERMISSION_ASSIGNABLE satisfy the
rules for their matching, then they are moved to PRA_FULL and DRA_FULL. It is important to note that only
individuals from ROLE_PERMISSION_ASSIGNABLE are being moved into PRA_FULL and DRA_FULL,

according to the object properties of these and of the individuals in PRA and DRA.

132

<_
(?z

?z
?z
?z

(
(
(
(
(
(
(
(

]

[2 dra

?X
?x
?X
?X

full: (?z rdf:type rbac:DRA FULL)

rdf:type rbac:ROLE PERMISSION ASSIGNABLE)
rbac:role ?r2)

rbac:action ?a)

rbac:object type 20)

?rl rbac:senior to ?r2)

rdf:type rbac:DRA)
rbac:role ?rl)
rbac:action ?a)
rbac:object type 20)

Text 37: Jena for rule 2 _dra full

senipr_to

act

Figure 74: Rule 2 _dr

&

DRA_FULL

rote X »(DRA
Ae
on objecktype
ROLE_
z > PERMISSION_
SSIGNABL
a full

The first rule in Step 2,
ROLE_PERMISSION_ASSIG
and object _type properties as

individual in DRA is senior to th

A formal description of the matching in rule 2 dra full is below. ROLE_PERMISSION_ASSIGNABLE

given in Figure 74, is called 2 _dra full. This rule moves an individual from
NABLE to DRA_FULL if there exists an individual in DRA that has the same action
that in ROLE_PERMISSION_ASSIGNABLE, and if the role property of the

at of the individual in ROLE_PERMISSION_ASSIGNABLE.

instance ?Z represents a potential user role assignment with the following properties:

e rbac:action ?a;

e rbac:role ?r2, and

* rbac:object_type ?0.

?zis moved to DRA_FU

LL if:

i) ?zis linked by object property rbac:role to ?r2;

ii) ?r1 is senior to ?r2 (is linked to ?r7 via object property rbac:senior_to)

>

iii)DRA instance ?x is linked by object property rbac:role to ?r1, and

iv)both ?z and ?x have rbac:action ?a and rbac:object_type ?o.

Figure 74 is converted int

133

o Jena syntax in Text 37 above.

[2 pra full: (?z rdf:type rbac:PRA FULL)
<_
("’Z rdf:type rbac:ROLE_PERMISSION_ASSIGNABLE)
(?z rbac:role ?r2)
(?z rbac:action ?a)
(?z rbac:object type 20)
(°r2 rbac:senior to ?rl)
(7r2 rbac: 1nherlts _pra ?rl)
(?x rdf:type rbac:PRA)
(?x rbac:role ?rl)
(?x rbac:action ?a)
(? rbac:object_type 20)
]

Text 38: Jena for rule 2 _pra full.

=]

erts_pra seni rto on obje pe

@

PRA_FULL

e

ROLE_
PERMISSION_
ASSIGNABL

Figure 75: 2 pra full

The second rule in Step 2, given in Figure 75, is called 2 pra full. This rule moves an individual from
ROLE_PERMISSION_ASSIGNABLE to PRA_FULL if there exists an individual in PRA that has the same action
and object_type properties as that in ROLE_PERMISSION_ASSIGNABLE, and if the role property of the
individual in PRA is junior to that of the individual in ROLE_PERMISSION_ASSIGNABLE.

A formal description of the matching in rule in 2 dra full is given below. ROLE_PERMISSION_
ASSIGNABLE instance ?z represents a potential user-role assignment with the following properties:

e rbac:action ?a;
e rbac:role ?r2, and
* rbac:object_type ?0
?zis moved to PRA_FULL if:
i) ?zis linked by object property rbac:role to ?r2;
ii) ?r2 is senior to ?r1 (is linked to ?r7 via object property rbac:senior_to);
iii)?r2 and ?r1 are in an inheritance path (linked via object property rbac:inherits_pra);
iv)PRA instance ?x is linked by object property rbac:role to ?r1, and

v) both 7z and ?x have rbac:action ?a and rbac:object_type ?0.

Figure 75 is converted into Jena syntax in Text 38 above.

134

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5

I 3
/

it

PERMISSION_
ASSIGMABL

PERMITTABLE

Figure 76: Diagram showing movement of individuals in Step 3 of reasoning only.

Figure 76 shows the movement of individuals in Step 3, in which PERMITTABLE and DENIED are populated
from individuals in USER_PERMISSION_ASSIGNABLE, as determined by individuals in PRA_FULL and
DRA_FULL, as well as relationships between roles defined by included_in axioms.

135

[3 permittable: (?z rdf:type rbac:PERMITTABLE)
<_
(?z rdf:type rbac:USER PERMISSION ASSIGNABLE)
(?x rdf:type rbac:PRA FULL)
(?x rbac:role ?r)
(?x rbac:action ?a)
(?x rbac:object type 20)
(?z rbac:user ?u)
(?z rbac:role ?r)
(?z rbac:action ?a)
(?z rbac:object instance ?oi)
(?01 rdf:type 20)
(?u rdf ext:inferred type ?r)

]
Text 39: Jena for rule 3 _permittable

<>>< o PRA_FULL
rdf_extinferred_type acjon @

+(PERMITTABLE

USER_
PERMISSION_
ASSIGNABLE

Figure 77: Rule 3 _permittable.

The first rule in Step 3, given in Figure 77, is called 3_permittable. This rule moves an individual from
USER _PERMISSION_ASSIGNABLE to PERMITTABLE if that individual is found to represent an actual user-
permission assignment in the RBAC model. That is, if an individual in USER_PERMISSION_ASSIGNABLE has the
same action as an individual in PRA_FULL; has object instance that is linked to an object type in this
USER_PERMISSION_ASSIGNABLE individual, and has a wuser that is assigned to a role in this
USER_PERMISSION_ASSIGNABLE individual, or a role that is included in this role, then it is moved to
PERMITTABLE.

136

A formal description of the matching rule in 3 permittable is below.
USER_PERMISSION_ASSIGNABLE instance 7z represents a potential user-permission assignment. It has the
following properties:

* rbac:action linked to ?a, representing an action performed by a user;
e rbac:user ?u, and

* rbac:object_instance ?0i, representing a specific data object that may be accessed by user ?u.

?x is an instance in PRA_FULL with the following properties:
e rbac:action linked to ?a;
e rbac:role ?r1, and

* rbac:object _type ?0, representing a type of object that may be accessed by users in role ?r7.

7z is moved to PERMITTABLE if it is found to be an actual user-permission assignment in the RBAC model,

according to the following rules:

i) ?zhas user ?u;

i) ?u belongs to role class 2r2;

iii)?r2 is a sub-class of 2r1 (?r2 is linked to ?r1 via property rdf_ext:inferredSubclassOf);

iv)PRA_FULL instance ?x has role 2r7;

v) Both ?z and ?x have rbac:action ?a;

vi) 7z has rbac:object_instance ?oi,

vii)?0i is an individual representing a data object, belonging to class 70 representing an object type, and

viii) ?x has rbac:object _type ?0.

Figure 77 is converted into Jena syntax in Text 39 above.

137

[3_denied: (?z rdf:type rbac:DENIED)
<

(?z rdf:type rbac:USER_PERMISSION_ASSIGNABLE)
(?x rdf:type rbac:DRA FULL)
(?x rbac:role ?r)

(?x rbac:action ?a)

(?x rbac:object type 2?0)
(?z rbac:user ?2u)

(?z rbac:role ?r)

(?z rbac:action ?a)

(?z rbac:object instance ?oi)
(?01 rdf:type 20)

(?u rdf ext:inferred type ?r)

]

Text 40: Jena for rule 3 _denied.

A< —role < 2 »(DRA_FULL

rdf_extinferred type acjion @
2 @ @

5_denied

USER_
PERMISSION_
ASSIGNABLE

Figure 78: 3_denied

The second rule in Step 3, given in Figure 78, is called 3 denied. This rule moves an individual from
USER_PERMISSION_ASSIGNABLE is moved to DENIED if it is found to represent an actual user-denial
assignment in the RBAC model. That is, if an individual in USER_PERMISSION_ASSIGNABLE has the same
action as an individual in DRA_FULL; has object instance that is linked to an object type in this
USER_PERMISSION_ASSIGNABLE individual, and has a wuser that is assigned to a role in this
USER_PERMISSION ASSIGNABLE individual, or a role that is included in this role, then it is moved to DENIED.

A formal description of the matching in rule in 3 _denied is below.

138

USER_PERMISSION_ASSIGNABLE instance ?z is moved to DENIED if:

i) ?zhas rbac:user ?u;

ii) ?u is an inferred member of role class ?r (?u is linked to ?r via property rdf_ext:inferred_type);

iii))DRA_FULL instance ?x has rbac:role ?r1;

iv)both ?z and ?x have rbac:action ?a;

v) ?z has rbac:object_instance ?0i,

vi)?0i is a data object of type 20 (?0i is linked to ?0i is an individual representing a data object, belonging to
class 20 representing an object type, and

vii) ?x has rbac:object_type ?o0.

Figure 78 is converted into Jena syntax in Text 40 above.

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5

USER_
PERMISSION_ m={ NOT_DENIED
ASSIGNABLE A

PERMITTABLE "}

ACTIVE_
USER PERMITTED

SESSION

Figure 79: Diagram showing movement of individuals in Step 4 of reasoning only.

Figure 79 shows the movement of individuals in Step 4, in which PERMITTED is populated from
PERMITTABLE and ACTIVE_USER SESSION, and NOT_DENIED from USER_PERMISSION_
ASSIGNABLE and DENIED.

139

[4 not denied: (?x rdf:type rbac:NOT DENIED)
<-
(?x rdf:type rbac:USER PERMISSION ASSIGNABLE)
noValue (?x rdf:type rbac:DENIED)

]
Text 41: Jena for rule 4 not denied.

USER
PERMISSION
ASSIGNABL

4 not_denied

7
;
;

Figure 80: Rule 4 not denied.

The first rule in Step 4, given in Figure 80, is called 4 not denied. This rule populates NOT_DENIED as all
individuals in USER_PERMISSION_ASSIGNABLE that are not in DENIED. Mathematically, NOT_DENIED is
defined as the set difference of USER_PERMISSION_ASSIGNABLE and DENIED:

NOT_DENIED = USER_PERMISSION_ASSIGNABLE — DENIED

A formal description of the matching in rule in 4 not denied is below.

USER _PERMISSION_ASSIGNABLE instance ?x is moved to NOT_DENIED if ?x is not in DENIED. This is

determined as follows:
i) ?dis a set of all instances ?y in DENIED, and

i) ?X is not in ?d.

140

Vy, Vx,y € DENIED, x € USER_PERMISSION_ASSIGNABLE, x # y
= x € NOT_DENIED

Formula 8: Matching NOT_DENIED.

Mathematically, this can be represented as in Formula 8.

Vx, x ¢ DENIED, x € USER_PERMISSION_ASSIGNABLE
= x € NOT_DENIED

Formula 9: Simplified matching NOT_DENIED.

Or, more simply, as in Formula 9.

The implementation of this negation formula is much simpler in Jena than in SWRL. Instead of using SQWRL,
Jena implements classical negation using the function novalue, which returns true if an RDF triple is not valid for any
individuals in a set. Unlike in SO-RBAC using SWRL, the negation test does not need DENIED to have a dummy

individual.

Figure 80 is converted into Jena syntax in Text 41 above.

141

[4 permitted: (?z rdf:type

<

(?z rdf:type rbac:PERMITTABLE)
(?z rbac:user ?u

(?z rbac:role ?r
(?s rbac:user ?u
(?s rbac:role ?r
(?s rdf:type
rbac:ACTIVE USER SESSION)
]

Text 42: Jena for rule 4 permitted.

— o

PERMITTABLE

4 permitted

Figure 81: Rule 4 permitted.

The second rule in Step 4, given in Figure 81, is called 4 permitted. This rule moves an individual in
PERMITTABLE to PERMITTED if the individual has a user that is also a user in an active user session, as given by an
individual in the class ACTIVE_USER_SESSION. The difference between PERMITTABLE and PERMITTED is
that PERMITTABLE represents potential permissions, while PERMITTED represents actual permissions, as
determined by active user sessions.

A formal description of the matching in rule in 4 permitted is below. PERMITTABLE instance ?x is moved
to PERMITTED if:

i) ?x has rbac:user ?u, and
ii) ACTIVE_USER_SESSION user ?s has rbac:user ?u.

Figure 81 is converted into Jena syntax in Text 42 above.

142

STAGE 1

STAGE 2

STAGE 3

STAGE 4

STAGE 5

AUTHORIZAEBLE

‘ FPERMITT ABLE !5

AUTHORIZED

Figure 82: Diagram showing movement of individuals in Step 5 of reasoning only.

Figure 82 shows the movement of individuals in Step 5, in which AUTHORIZED is populated from

PERMITTED and NOT_DENIED. AUTHORIZABLE is populated from PERMITTABLE and NOT_DENIED.

143

[5 authorizable: (?x rdf:type rbac:AUTHORIZABLE)
<_
(?x rdf:type rbac:PERMITTABLE)
(?x rdf:type rbac:NOT DENIED)

]
Text 43: Jena for rule 5_authorizable.

h 4

NOT_DENIED

AUTHORIZABLE

PERMITTABLE

5_authorizable

Figure 83: Rule 5 _authorizable.

The first rule in Step 5, given in Figure 83, is called 5 authorizable. AUTHORIZABLE is defined as the
intersection of PERMITTABLE and NOT_DENIED: an individual is in AUTHORIZABLE if it is in both
PERMITTABLE and NOT_DENIED (Formula 10).

PERMITTABLE instance ?x is moved to AUTHORIZABLE if ?x is also in NOT_DENIED. Note that this
means that the same actual instance ?x has to be in both PERMITTABLE and NOT_DENIED (not different instances

with the same object properties).

AUTHORIZABLE = PERMITTABLE N NOT_DENIED

Formula 10: Definition of AUTHORIZABLE.

Figure 83 is converted into Jena syntax in Text 43 above.

144

[5 authorized: (?x rdf:type rbac:AUTHORIZED)

<_
(?x rdf:type rbac:PERMITTED)
(?x rdf:type rbac:NOT DENIED)

]
Text 44: Jena for rule 5_authorized.

h 4

Figure 84: Rule 5 _authorized.

NOT_DENIED

5 authorized

AUTHORIZED

The second rule in Step 5, given in Figure 84, is called 5 authorized. This defines AUTHORIZED as the
intersection of PERMITTED and NOT_DENIED: an individual is in AUTHORIZED if it is in both PERMITTED and

NOT_DENIED.

PERMITTED instance ?x is moved to AUTHORIZABLE if ?x is also in NOT_DENIED.

AUTHORIZED = PERMITTED N NOT_DENIED

Formula 11: Definition of AUTHORIZED.

Figure 84 is converted into Jena syntax in Text 44 above.

6.3 ESO-RBAC Process

Figure 85 (on page 150) shows a flowchart of the process in which ESO-RBAC is run. This is very similar to the

process for SO-RBAC.

Each potential role permission or denial to perform an action on an object is represented by an individual in the
ESO-RBAC class ROLE_PERMISSION_ASSIGNABLE. The process moves individuals representing role
permissions and denials to the class PRA_FULL (indicating a permission) or DRA_FULL (indicating a denial).

145

Each potential user permission or denial to perform an action on an object is represented by an individual in the
SO-RBAC class USER_PERMISSION_ASSIGNABLE. The process moves individuals representing role permissions
and denials to the classes PERMITTABLE or PERMITTED (indicating a permission) or DENIED (indicating a
denial). Finally, an individual representing a user permission that is not also a denial is moved to AUTHORIZABLE or

AUTHORIZED. All this is done according to rules in the ESO-RBAC process.

The first step, step A, is to set up the ontology class hierarchy. This includes setting up the data classes under
OBJECT_INSTANCE, to which the data that the ESO-RBAC model governs access, and the classes relevant to the
ESO-RBAC model itself, under RBAC class. OBJECT_INSTANCE hierarchies are always domains specific, but

RBAC sub-hierarchies are likely to remain the same across domains.

Step B populates the ontology with the base information. It has two parts, Bl and B2, which can be run in

parallel. This is because they are independent of each other.

domain = "rbac";
domain_uri := "http.//www.cgce.net/Ontology/RBAC";

class: = "ROLE_PERMISSION_ASSIGNABLE";
for each role
for each action
for each object_type
id :="role_action_object_type"
print" <domain:class rdf:ID=\"ja\">";
print" <domain:action rdf:resource=\"#action\"/>";
print" <domain:role rdf:resource=\"#role\"/>";
print" <domain:object_type rdf:resource=\"#$ object type\"/>";
print" </$domain:$class>";
next
next
next

class := "USER_PERMISSION_ASSIGNABLE";
for each action
for each object_instance
for each user
id = user_action_object_instance";
print" <domain:class rdf:ID=\"ja\">";
print" <domain:action rdf:resource=\"#action\"/>";
print" <domain.object_instance rdf:resource=\"#object_instance\"/>";
print" <domain.user rdf:resource=\"#usen"/>";
print" </domain:class>";
next
next
next

Text 45: Pseudocode for step C

146

http://www.cgce.net/Ontology/RBAC

[inferred subClassOf 1: (?cl rdfs:inferred subClassOf ?c2)
<_
(?cl rdfs:subClassOf ?c2)
]
[inferred subClassOf 2: (?cl rdfs:inferred subClassOf ?c3)
<_
(?cl rdfs:subClassOf ?c2)
(?c2 rdf ext:inferred subClassOf ?c3)
]
[inferred type 1: (?i rdf ext:inferred type ?c)
<_
(?1 rdf:type ?2c)
]
[inferred type 2: (?1 rdf ext:inferred type ?c)
<_
(?cl rdf ext:inferred subClassOf 2c)
(?1 rdf:type 2cl)
]
[1 senior to 1: (?r rbac:senior to ?r)
<_
(?r rdf:type rbac:ROLE SET)
(?r rbac:directly senior to ?rl)
]
[1 senior to 2: (?r rbac:senior to ?r)
<_
(?r rdf:type rbac:ROLE SET)
(?rl rbac:directly senior to ?r)
]
[1 senior to 4: (?rl rbac:senior to ?r3)
<_
(?rl rdf:type rbac:ROLE_SET)
(?rl rbac:directly senior to ?r2)
(?r2 rbac:senior to ?r3)
]
[1 junior to: (?rl rbac:junior to ?r2)
<_
(?r rdf:type rbac:ROLE SET)
(?r2 rbac:senior to ?rl)
]
[1 inherits pra 1: (?r rbac:inherits pra ?r)
<_
(?r rdf:type rbac:ROLE SET)
notEqual (?r, rbac:ROLE)
]

[1 inherits pra 3: (?r2 rbac:inherits pra ?r3)

?rl rbac:senior to ?r2)
?r2 rbac:senior to ?r3)
?r3 rbac:senior to ?r4)
?rl rbac:inherits pra path ?r4)

Code 59: Jena Rules for Step E.
In step B1, the classes OBJECT_TYPE and ROLE_SET (and thus creating the class hierarchy under ROLE),

representing the RBAC object types and roles, are populated. Note that unlike in SO-RBAC, users are not set up until

step H, due to the different way in which the relationship between users and roles is represented. In B2, the data classes
(sub-classes of OBJECT_INSTANCE) are populated. In step C, the classes ROLE_PERMISSION_ASSIGNABLE

147

and USER_PERMISSION_ASSIGNABLE are populated, with all possible combinations of hypothetical role and
user permission assignment. Due to the exponentially increasing number of combinations, this is most likely to be done

using a program or script, according to the pseudocode in Text 45.

In step D, the asserted relationships between members of ROLE_SET (directly _senior _to, is_a,

inherits_pra_path) are set up.

In step E, the Jena rules are run to infer the object properties that depend on the properties asserted in step D,
namely senior_to, included_in and inherits_pra, which are respectively dependent on directly _senior _to, is_a and
inherits_pra_path. The nine Jena rules are described in Section 6.2.3.1, and are summarised in Code 59.

In step F, the PRA and DRA classes are populated to set up role permissions and denials, because the individuals

in these classes are base information for reasoning in the RBAC model. This can be done after step E because the

information about role permissions and denials is not needed for inferring relationships between roles.

[2 dra full: (?z rdf:type rbac:DRA FULL)
<_
(?z rdf:type rbac:ROLE_PERMISSION_ASSIGNABLE)
(?z rbac:role ?r2)
(?z rbac:action ?a)
(?z rbac:object type 20)
(?rl rbac:senior to ?r2)
(?x rdf:type rbac:DRA)
(?x rbac:role ?rl)
(?x rbac:action ?a)
(?x rbac:object type 20)
]
[2 pra full: (?z rdf:type rbac:PRA FULL)
<_
(?z rdf:type rbac:ROLEiPERMISSIONiASSIGNABLE)
(?z rbac:role ?r2)
(?z rbac:action ?a)
(?z rbac:object type 7?0)
(?r2 rbac:senior to ?rl)
(?r2 rbac:inherits pra °?rl)
(?x rdf:type rbac:PRA)
(?x rbac:role ?rl)
(?x rbac:action ?a)
(?x rbac:object type 20)

]

Code 60: Jena Rules for Step G.
In Step G, we populate the PRA_FULL and DRA_FULL classes with individuals through inference by running

the following two Jena rules in Code 60 (cf. Section 6.2.3.2).

In step H, the user-role relationships are set up, i.e. ROLE sub-classes are populated with individuals
representing users. Again, this is essential information needed for reasoning in the RBAC model, but it is not needed for

inferring either relationships between roles or assignment of permissions or denials to roles.

Finally, in step J, the remaining reasoning steps (3—5) are performed. We run 6 Jena rules (Code 61, page 149)
which ultimately populated DENIED or AUTHORIZED classes (cf. Section 6.2.3.2).

At each stage in Figure 85, the ESO-RBAC ontology is in a state where the process can be run from the
following step onwards. In other words, it is not necessary to always re-run the ESO-RBAC process from the

beginning.

148

[3_permittable: (?z rdf:type rbac:PERMITTABLE)

(?z rdf:type rbac:USER PERMISSION ASSIGNABLE)
(?x rdf:type rbac:PRA FULL)

(?x rbac:role ?r)

(?x rbac:action ?a)

(?x rbac:object type 20)

(?z rbac:user ?u)

(?z rbac:role ?r)

(?z rbac:action ?a)

(?z rbac:object instance ?0i)

(?01 rdf:type 20)

(?u rdf ext:inferred type ?r)

]
[3_denied: (?z rdf:type rbac:DENIED)
<_

(?z rdf:type rbac:USER PERMISSION ASSIGNABLE)
(?x rdf:type rbac:DRA FULL)
(?x rbac:role ?r)

(?x rbac:action ?a)

(?x rbac:object type 20)
(?z rbac:user ?u)

(?z rbac:role ?r)

(?z rbac:action ?a)

(?z rbac:object instance ?0i)
(?01 rdf:type 20)

(?u rdf ext:inferred type ?r)

2
2
2
2

]
[4 not denied: (?x rdf:type rbac:NOT DENIED)

<_

(?x rdf:type rbac:USER_PERMISSION_ASSIGNABLE)

noValue (?x rdf:type rbac:DENIED)
]
[4 permitted: (?z rdf:type rbac:PERMITTED)

<_

(?z rdf:type rbac:PERMITTABLE)

(?z rbac:user ?u)

(?z rbac:role ?r)

(?s rbac:user ?u)

(?s rbac:role ?r)

(?s rdf:type rbac:ACTIVE USER SESSION)
]
[5 authorizable: (?x rdf:type rbac:AUTHORIZABLE)

<_

(?x rdf:type rbac:PERMITTABLE)

(?x rdf:type rbac:NOT DENIED)
]
[5 authorized: (?x rdf:type rbac:AUTHORIZED)

<_

(?x rdf:type rbac:PERMITTED)

(?x rdf:type rbac:NOT DENIED)
]

Code 61: Jena Rules for Step J.

149

A Set up ontology, Create Class hierarchy

Stage A;
Empty ontology

Bl:Fopulate OBJECT_TYFE and ROLE_SET classes B2 Populate datp classes

Stage B:
Ontology with object types,
roles and data

C: Populate classes fof assignable instances
(ROLE_PERMISSION_ASSIGMNABLE USER_PERMISSION_ASSIGHMABLE)

Stage C;
Ontology with assignable instances

D Setup relationships between roles (hierarchy, inclusion etc)

Stage D;
Ontology with asserted object properies

E: Reasoning Step 1 (object poperties of ROLE sub-classes)

Stage E.
Ontology with inferred object properties

F: Populate RBAC: Jetup PRA and DRA

Stage F;
Ontology with asserted role
permissions and denials

G:Reasoning Step 2 (populatgk PRA_FULL class instances)

Stage G:
Ontology with inferred role
permissions and denials

H:Populate REAC:
Fopulate ROLE sub-classes|with users assigned to roles

Stage H:
Ontology with user-role assignments

J: Reasoning Steps 3-5

Stage J:

Final Cntology

Figure 85: RBAC process using the ESO-RBAC ontology.

150

6.4 Modelling Dynamic RBAC in ESO-RBAC

Dynamic RBAC was also modelled according to the Strembeck & Neumann [21] model, and an example context

constraint was created and tested.

Table 18: Fact definition used in dynamic RBAC design in Prolog.

Fact Formula Description
associated cc(Role, Permission, The context condition ContextConstraint applies when a
Object, ContextConstraint). user with role Role accesses object Object using Permission.

Table 19: Rules in Prolog dynamic RBAC design.

Rule Name Description

applied cc Whether a context constraint applies to a user performing an action.

fail context constraint |Whether an action fails a context constraint, considering its applicability.

violated Whether an action would fail a context constraint, irrespective of its applicability.

context condition Defines the circumstances in which a user can perform an action on an object.

To recap, dynamic RBAC in predicate logic is based on the Prolog facts in Table 18, and the rules in Table 19.
Note that Separation of Duties was not implemented here.

Dynamic RBAC in ESO-RBAC uses Jena rules context constraint applied,
context condition pass_ 1 and context condition pass_ 2. Dynamic RBAC requires the following

new classes in the ESO-RBAC ontology:
+ CONTEXT_CONSTRAINT directly under RBAC.

« CONTEXT_CONDITION_PASS, CONTEXT_CONDITION_POTENTIAL and CONTEXT_CONDITION
under USER_PERMISSION_ASSIGNABLE. CONTEXT_CONDITION is a sub-class of CONTEXT _
CONDITION_POTENTIAL. These have properties user, action, object and context constraint,
context_constraint has CONTEXT_CONSTRAINT as its range.

« CONTEXT_CONSTRAINT_APPLICABLE, CONTEXT_CONSTRAINT_ASSOCIATED and
CONTEXT_CONSTRAINT_APPLIED, under ROLE_PERMISSION_ASSIGNABLE. CONTEXT_
CONSTRAINT_ASSOCIATED and CONTEXT_CONSTRAINT_APPLIED are sub-classes of
CONTEXT_CONSTRAINT_APPLICABLE.

It should be noted that context conditions apply to combinations of <user, action, object>, while context

constraints apply to combinations of <role, action, object>.

A context constraint is represented as follows:

« An individual in the class CONTEXT_CONSTRAINT, given the canonical name of the context constraint,

but with no other information about it.

« Individuals in the class CONTEXT_CONSTRAINT_APPLICABLE representing all possible combinations

of context constraint, role, action and object. This may be populated using a script. Some individuals in

151

CONTEXT_CONSTRAINT_APPLICABLE are also members of CONTEXT_CONSTRAINT_
ASSOCIATED, which is equivalent to the associated cc facts in the Prolog implementation.

« Individuals in the class CONTEXT_CONDITION_POTENTIAL representing all possible combinations of

context constraint, user, (role), action and object. This may also be populated using a script.

« One or more Jena rules defining the applicability of the context constraint.

[context constraint applied: (?x rdf:type
rbac:CONTEXT CONSTRAINT APPLIED)
<_

(?cc rdf:type rbac:CONTEXT CONSTRAINT)

y rdf:type rbac:CONTEXT CONSTRAINT ASSOCIATED)
y rbac:context constraint ?cc)

y rbac:role ?r3)

?y rbac:action ?2a)
y
r

rbac:object ?0)

?r3 rbac:senior to ?r2)

?rl rdf ext:inferred subClassOf ?r2)

?x rdf:type rbac:CONTEXT CONSTRAINT APPLICABLE)
?x rbac:role ?rl)

?x rbac:action ?2a)

?x rbac:object ?20)

?xX rbac:context constraint ?cc)

ACICEVIRCIC IV IRV K EV]

o e~

]

Text 46. Jena rule for context constraint applied

rdf_extnferred
_subClassOf

CONTEXT_
CONSTRAINT_
APPLICABLE

CONTEXT_
CONSTRAINT
APPLIED

_permittable —

i

CONTEXT_
CONSTRAINT

CONTEXT _
<> { CONSTRAINT_
ASSOCIATED

Figure 86: Rule context constraint applied.

152

The Jena rule context constraint applied, given in Figure 86, is analogous to the Prolog rule
applied cc. It determines whether a context constraint is applicable to a particular combination of role, action and
object, depending on membership of CONTEXT_CONSTRAINT_ASSOCIATED and seniority and inclusion

relationships among roles. As in the Prolog implementation, context constraints filter down the seniority hierarchy. Thus

if a <role, action, object> combination is explicitly associated with a context constraint, via an individual in

CONTEXT_CONSTRAINT_ASSOCIATED, then any <role, action, object> combinations for this role and any

roles junior to and/or inside it have the context constraint applied to it. all individuals linking these <role, action,
object> with the context constraint are moved to CONTEXT_CONSTRAINT_APPLIED.
CONTEXT_CONSTRAINT_APPLICABLE individual ?x is moved to CONTEXT_CONSTRAINT_
APPLIED if:
1. ?xhasrole 2r1,
2. ?r1is an inferred sub-class of ?r2, and ?r3 is senior to ?r2;
3. CONTEXT_CONSTRAINT_ASSOCIATED individual ?y has role ?r3, and
4. ?xand ?y both have action ?a, object 70 and CONTEXT_CONSTRAINT individual ?cc.
Figure 86 is converted into Jena syntax in Text 46 above.
Jena rules context condition pass 1 and context condition pass_ 2 determine whether a

<user, action, object> combination passes a particular context constraint, either because it passes any context

condition (context condition pass_1) or because no context condition applies to it

(context condition pass_2).

153

[context condition pass 1: (?x rdf:type rbac:CONTEXT CONDITION PASS)
<_

rdf:type rbac:CONTEXT CONDITION)

rbac:user ?u)

rbac:action ?a)

cgce:object ?20)

rdf:type rbac:USER _PERMISSION ASSIGNABLE)

rbac:user ?u)

rbac:action ?a)

cgce:object ?0)

XK

b

,\,\,\,\,\,\,\A
RRICEEICENV IO RO RGN
X

b

]

Text 47: Jena for rule context condition pass 1.

- ~ CONTEXT_

""\QON D|T|ON/
 USER s

|: PERMISSION _ ‘. =-'-'?:::;?_(_} Jjass__fil_::;:-«

" ASSIGNABLE

CONTEXT_

| CONDITION_ |
. PASS

A

Figure 87: Rule context condition pass 1.

context condition pass 1, given in Figure 87, moves USER_PERMISSION_ASSIGNABLE
individual ?x to CONTEXT_CONDITION_PASS if ?x has the same values for rbac:user, rbac:action and object as
a CONTEXT_CONDITION individual ?y. Note that ?y also has a context _constraint property, but
context_condition_pass_1 is not concerned about the value of this: it only needs to know that ?y exists, not what

context constraints it is linked to.

Figure 87 is converted into Jena syntax in Text 47 above.

154

[context condition pass 2: (?x rdf:type rbac:CONTEXT CONDITION PASS)
<_
(?y rdf:type rbac:CONTEXT CONSTRAINT APPLICABLE)
(?y rbac:action ?2a)
(?y rbac:object ?0)
(?y rbac:role ?r)
noValue (?y rdf:type rbac:CONTEXT CONSTRAINT APPLIED)
(?x rdf:type rbac:USER PERMISSION ASSIGNABLE)
(?x rbac:user ?u)
(?x rbac:action ?a)
(?x cgce:object ?01)
(?u rdf:type ?r)
(?01 rdf:type 20)
]

Text 48: Jena for rule context condition pass 2

CONTEXT_

f 4

< CONSTRAINT_ |

) " APPLED
<) —{/
S /'{__’____ - "'-q-‘__x‘.\
 CONTEXT_
' CONSTRAINT_ |
\\\APPLlCABLEﬂ/
/ USER_ “ l
| PERMISSION_ | - co_pass 2
" ASSIGNABLE l
'f\ CONDITION_ j‘
N PASS o

Figure 88: Rule context condition pass 2.

context condition pass 2, given in Figure 88, moves USER_PERMISSION_ASSIGNABLE
individual ?x to CONTEXT_CONDITION_PASS if there is no individual in CONTEXT_CONSTRAINT _
APPLIED with the same user, action and object properties as ?x. The rule uses the novValue function to check all
individuals in CONTEXT_CONSTRAINT_APPLICABLE and determine that none of them are in CONTEXT_
CONSTRAINT_APPLIED. An individual would have been moved into CONTEXT_CONSTRAINT_APPLIED by

the rule context constraint applied

Figure 88 is converted into Jena syntax in Text 48 above.

155

Individuals are moved into CONTEXT_CONDITION by the Jena rules relating to the specific context

constraints.

The following is an example of a context constraint, nurse_in_same_ward_as_patient, which tests whether a

nurse is attached to the same ward that a particular patient is in. This context constraint is associated with the role

SENIOR_NURSE, for actions read and write on individuals in the class PATIENT. That is, the <role, action, object>

combinations associated with nurse_in_same_ward_as_patient are <SENIOR NURSE, read, PATIENT> and

<SENIOR NURSE., write, PATIENT>. In other words, a nurse in role SENIOR_NURSE or junior to this can only

read and write information about patient in a ward to which he or she is attached. This context constraint is defined as

follows:

« Individuals in CONTEXT_CONSTRAINT_ APPLICABLE are defined to represent all possible <role

action, object> combinations in the ontology for the context constraint nurse_in_same_ward_as_patient.

The two individuals representing the combinations <SENIOR NURSE, read, PATIENT> and

<SENIOR NURSE, write, PATIENT> are moved to CONTEXT_CONSTRAINT_ASSOCIATED.

« Individuals in CONTEXT_CONDITION_POTENTIAL are defined representing all possible <user, action

object> combinations for the context constraint nurse_in_same_ward_as_patient.

156

[nurse in same ward as patient: (?x rdf:type rbac:CONTEXT CONDITION)
<_
(?x rdf:type rbac:CONTEXT CONDITION POTENTIAL)
(?x rbac:context constraint cgce:nurse in same ward as patient)
(?x rbac:user ?nurse)
(?x cgce:object ?patient)
(?patient rdf:type cgce:PATIENT)
(?nurse cgce:nurse ward ?ward)
(?patient cgce:patient ward ?ward)

]

Text 49: Jena for rule nurse _in same ward as patient

CONTEXT_
CONDITION_
POTENTIAL

nurse_in_
same_ward_

context_constraint @ patienf_ward

nurse ward

nurse_in_
same_ward_
as_patien

Figure 89: Rule nurse _in same ward as patient

The Jena rule nurse in same ward as patient defines the context condition test for the context

constraint nurse_in_same_ward_as_patient.

The rule nurse in same ward as patient moves CONTEXT_CONDITION_POTENTIAL
individual ?x to CONTEXT_CONDITION if:

« ?xhas is linked to the nurse_in_same_ward_as_patient context constraint, i.e., ?x has context_constraint

property nurse_in_same_ward_as_patient,
« ?xhas user ?nurse and object ?patient,
« ?nurse is linked to individual ?ward via property nurse_ward, and
- ?patient is linked to the same individual ?ward via property patient_ward.

Figure 89 is converted into Jena syntax in Text 49 above.

157

When the context constraint nurse_in_same_ward_as_patient is run, the following needs to happen:

l. context constraint applied is run, moving all CONTEXT_CONSTRAINT_APPLICABLE
individuals for the context constraint nurse_in_same_ward_as_patient, representing roles
SENIOR_NURSE and junior roles to read and write to objects in the PATIENT class, to
CONTEXT_CONSTRAINT_APPLIED.

2. The rule nurse in same ward as patient is run, moving all individuals in
CONTEXT_CONDITION_POTENTIAL for the context constraint nurse_in_same_ward_as_patient,
individuals representing users in roles SENIOR_NURSE and junior roles to read and write to objects in the
PATIENT class to CONTEXT_CONDITION.

3. The rule context condition pass_ 1 is run, moving all CONTEXT_CONDITION individuals for the
context constraint nurse_in_same_ward_as_patient to CONTEXT_CONDITION_PASS.

4. The rule context condition pass 2 is run, moving all CONTEXT_CONDITION individuals for
which the context constraint nurse_in_same_ward_as_patient does not apply to CONTEXT_
CONDITION_PASS.

In ESO-RBAC, a context condition rule always applies to an individual ?x in class CONTEXT_CONDITION_
POTENTIAL, and runs a test to determine whether to move ?x to the class CONTEXT _CONDITION, based on ?x
having as its context_constraint property the individual in the class CONTEXT_CONSTRAINT that specifies this
context constraint.

Finally, the Jena rules authorizable and authorized are modified so that an individual must be in
CONTEXT_CONDITION_PASS to be in the AUTHORIZABLE and AUTHORIZED classes. The condition (?x

rdf:type rbac:CONTEXT CONDITION PASS) isadded to both rules.

The new 5 authorizable, given in Figure 90, defines AUTHORIZABLE as the intersection of
PERMITTABLE, NOT_DENIED and CONTEXT_CONDITION_PASS: an individual is moved to
AUTHORIZABLE if it is in all three of PERMITTABLE, NOT_DENIED and CONTEXT_CONDITION_PASS
(Formula 12).

PERMITTABLE individual ?x is moved to AUTHORIZABLE if ?x is also in NOT_DENIED and in
CONTEXT_CONDITION_PASS. Note that this means that the same actual individual ?x has to be in all three of
PERMITTABLE, NOT_DENIED and CONTEXT_CONDITION_PASS (not different individual with the same
object properties).

AUTHORIZABLE = PERMITTABLE N NOT_DENIED
N CONTEXT_CONDITION_PASS

Formula 12: Definition of AUTHORIZABLE.

158

Figure 90 is converted into Jena syntax in Text 50 below.

[5 authorizable: (?x rdf:type rbac:AUTHORIZABLE)

<_
(?x rdf:type rbac:PERMITTABLE)

(?x rdf:type rbac:NOT DENIED)

(?x rdf:type rbac:CONTEXT CONDITION PASS)

]

Text 50: Jena for new rule 5 _authorizable.

CONTEXT_
CONDITION_
PASS

5_authorizable
Figure 90: New rule 5 _authorizable.

The new 5 authorized, given in Figure 91, defines AUTHORIZED as the intersection of PERMITTED,

NOT_DENIED and CONTEXT_CONDITION_PASS: an individual is moved to AUTHORIZED if it is in all three of
PERMITTED, NOT_DENIED and CONTEXT_CONDITION_PASS (Formula 13).
PERMITTED instance ?x is moved to AUTHORIZABLE if ?x is also in NOT_DENIED.

AUTHORIZED = PERMITTED N NOT_DENIED N
CONTEXT_CONDITION_PASS

Formula 13: Definition of AUTHORIZED.

Figure 91 is converted into Jena syntax in Text 51 below.
(?x rdf:type rbac:AUTHORIZED)

[5 authorized:
_ -
(?x

(?x

(?x

rdf:type rbac:PERMITTED)

rdf:type rbac:NOT DENIED)
rdf:type rbac:CONTEXT CONDITION PASS)

]

Text 51: Jena for new rule 5_authorized

159

AUTHORIZED

CONDITION_
PASS

- 5_autho I'IZed

Figure 91: New rule 5_authorized.

Because the context condition rules do not depend on any of the classes populated in steps 2—4, they can be run

at any point after step 1 and before step 5.

6.5 Contrasting ESO-RBAC with SO-RBAC and with Prolog

Due to differences between Jena and SWRL, some rules in Steps 1 and 4 were implemented differently in ESO-
RBAC from in SO-RBAC.

The main advantage of Jena over SWRL in implementing ESO-RBAC is its ability to treat classes as individuals.
However, it has certain flaws. Unlike SWRL, it cannot work on inferred axioms. This means that it cannot identify an
individual as belonging to a sub-class of a class, and nor can it see relationships defined for sub-properties. Therefore,
certain properties have to be defined explicitly in ESO-RBAC, so that it can be run in Jena, when it is unnecessary to do
so for running in SWRL.

Thus, ESO-RBAC does not have the is_a property for roles, as this is represented by sub-classing roles.
Additionally, although Jena cannot natively infer recursive sub-class or super-class relationships, additional rules have
been defined in ESO-RBAC to handle this. Therefore, included _in is also not used.

Most Jena rules in ESO-RBAC are direct transformations of the SWRL rules in SO-RBAC. The major difference
is in the properties that link the individuals, and that ?r is a class, queried as an individual. The antecedent of
1 _included in_ 1, instead of requiring ?rto a member of class ROLE, requires it to be a member of ROLE_SET.
Note that the RDF property rdf:type defines an individual as a member of a class. The syntax ?r rdf:type
rbac:ROLE_SET in Jena is equivalent to rbac:ROLE_SET(?r) in SWRL. 1 included in 1 has an additional
condition, notEqual (?r, rbac:ROLE). ROLE is the top level of the hierarchy of classes representing roles. It is
placed in the meta-class ROLE_SET so that any classes added immediately below ROLE are also added to
ROLE_SET. However, this means that ROLE itself would be treated as a role by Jena. To prevent this, the class

ROLE must be explicitly excluded from the reasoning process.

160

In the recursive rule 1 _included in 3, the is_a condition is replaced by determining whether ?r7 is a sub-

class of ?r2. This is done using the RDF property rdfs:subClassOf.

Jena also does not populate inferences based on inverse relationships. Therefore, an additional rule

1 junior toisdefined in Step 1 to assert junior_to axioms as inverses of corresponding senior_to axiom.

The other difference is in Step 4, with the rule to populate NOT_DENIED. Jena does not use SQWRL

properties, but has different syntax for achieving classical negation, namely the built-in function novalue. The rule is

thus as given in Text 52.

<_

]

[4 not denied: (?x rdf:type rbac:NOT DENIED)

(?x rdf:type rbac:USER PERMISSION ASSIGNABLE)
noValue (?x rdf:type rbac:DENIED)

Text 52: Jena rule for populating NOT_DENIED.

Therefore, Jena rule 4 not denied is, in terms of syntax, similar to an equivalent rule in Prolog, rather than

to the equivalent SWRL rule. Unlike in SO-RBAC using SWRL, the class DENIED does not need a dummy individual.

Table 20 shows the correspondences between Prolog functions and ESO-RBAC classes and properties.

Table 20: Correspondences between Prolog functions and ESO-RBAC classes and properties.

Prolog

ESO-RBAC

Comments

login session(SessionID,User, IP,Start
Date, End Date,Authentication Strength,
LocationType, Computer, IP,0SLogin) .

USER_SESSION

user (Username, LastName, FirstName, Address,
DOB) .

PERSON, USER

ura (User,Role) .

(assignment of instance of

USER to ROLE)

d s (Senior role,Junior role).

senior_to

Junior_to is
inverse property.
Transitive.

is_a(Inner Role,Outer Role).

(assignment of Inner_Role
as a subclass of

Outer_Role)
pra (Role,Action,Object) . PRA
dra (Role,Action,Object) . DRA

associated cc(Role,Permission,Object,
ContextConstraint) .

ASSOCIATED CC

6.6 Implementing ESO-RBAC based on a hospital environment

The ESO-RBAC implementation is illustrated through a scenario with roles, permissions, denials, seniority

relationships, inclusion relationships and inheritance paths.

161

ADMIN, CLERK, MANAGER

DOCTOR, SPECIALIST_DOCTOR, CONSULTANT, JUNIOR_STAFF_DOCTOR, JUNIOR_STAFF_
DOCTOR_DAY, JUNIOR_STAFF_DOCTOR_NIGHT, SENIOR_STAFF_DOCTOR, SENIOR _
STAFF_DOCTOR_DAY, SENIOR_STAFF_DOCTOR_NIGHT

TECHNICIAN, JUNIOR_TECHNICIAN, SENIOR_TECHNICIAN

NURSE, SENIOR_NURSE, SPECIALIST_NURSE, STAFF_NURSE, STAFF_NURSE_DAY,
STAFF_NURSE_NIGHT, STUDENT_NURSE, STUDENT_NURSE_DAY,
STUDENT_NURSE_NIGHT

Text 53: Sub-classes of ROLE defined as individuals in class ROLE_SET in the ESO-RBAC model.
Text 53 lists the classes (sub-classes of ROLE) were defined as individuals in class ROLE_SET, reflecting a

simplified hospital scenario.

PRA: junior_staff doctor_read_patient, junior_staff _doctor_read _room, junior_staff doctor read _
vital_sign, junior_staff_doctor_read_ward, senior_staff_doctor_write_patient, senior_staff_doctor _
write_room, senior_staff _doctor_write_vital_sign, consultant_write_vital _sign, consultant_read
computer, specialist_doctor_write_computer, student_nurse _read_patient, staff nurse_read _room,
staff nurse_read ward, staff_nurse_write_patient, senior_nurse_read_vital_sign, senior_nurse_
write_ward, specialist_nurse_read_computer, specialist_nurse_write_room, specialist_nurse_write_

vital_sign, specialist_nurse_write_computer

- DRA: consultant_read _room, consultant_write_ward, senior_nurse_read_ward, senior_staff _doctor_

read_computer, staff_nurse_write_patient

Text 54 Individuals representing permission and denial assertions in the ESO-RBAC model.

Text 54 lists the individuals representing permission and denial assertions in the ESO-RBAC model.

1. DOCTOR: JUNIOR_STAFF_DOCTOR — SENIOR_STAFF_DOCTOR — CONSULTANT —
SPECIALIST_DOCTOR

2. NURSE: STUDENT_NURSE — STAFF_NURSE — SENIOR_NURSE — SPECIALIST_NURSE

3. TECHNICIAN: JUNIOR_TECHNICIAN — SENIOR_TECHNICIAN

4. ADMIN: CLERK — MANAGER

5. JUNIOR_STAFF_DOCTOR: JUNIOR_STAFF_DOCTOR_DAY, JUNIOR_STAFF_DOCTOR_NIGHT

6. SENIOR_STAFF_DOCTOR: SENIOR_STAFF_DOCTOR_DAY,
SENIOR_STAFF_DOCTOR_NIGHT

7. STUDENT NURSE: STUDENT NURSE DAY, STUDENT NURSE_NIGHT
8. STAFF_NURSE: STAFF_NURSE_DAY, STAFF_NURSE_NIGHT

Text 55: Seniority relationships in the ESO-RBAC model.
Text 55 shows the role hierarchies indicated by the seniority relationships defined using directly _senior_to axioms.

162

1. inherits_pra_path(SPECIALIST_DOCTOR, JUNIOR_STAFF_DOCTOR)

2. inherits_pra_path(SPECIALIST_NURSE, STUDENT_NURSE)

Text 56: Path inheritance axioms in the ESO-RBAC model.
Text 56 shows the path inheritance axioms defined in the ESO-RBAC model.

A A

| Senior_MNurse i‘ Consultant i‘ i SeniorﬁTechmcianiﬂ__‘ Manager i‘

L A A A) A

Staff_Nurse - i Senior_Doctor

L i

| Student_MNurse i‘ -i; Staff_Doctor S Jumor_Techmmaniq- : Clerk iq

| Specialist_MNurse i‘ Specialist_Doctor i‘

i
|

U

Figure 92: RBAC Model used to demonstrate SO-RBAC, excluding night and day duties. Solid (black) lines represent
seniority (d_s) relationships. Dashed (purple) lines represent is_a relationships. Arrows show direction of inheritance
of positive authorizations (permissions).

Figure 92 shows the full RBAC hierarchy.

Table 21: Numbers of users in each role defined in the ESO-RBAC ontologies.
Role Small | Large
CLERK 1 2
MANAGER 1 1
JUNIOR_STAFF_DOCTOR 3 4
SENIOR_STAFF_DOCTOR 3 4
CONSULTANT 1 2
SPECIALIST_DOCTOR 1 1
STUDENT_NURSE 3 4
STAFF_NURSE 3 4
SENIOR_NURSE 1 2
SPECIALIST_NURSE 1
JUNIOR_TECHNICIAN 1 2
SENIOR_TECHNICIAN 1 1

One or more USER individuals for each ROLE was created (Table 21), except for the roles ADMIN, DOCTOR,
TECHNICIAN and NURSE, as these are intended as abstract super-class roles to allow permissions to be defined for a

particular type of user generically.

163

User individuals are named simply as <role>_<n>, where <n> is a number. The roles with day and night sub-
roles defined each had 3 or 4 users defined, named for the main role. For example, junior_staff_doctor_1 was assigned
directly to JUNIOR_STAFF_DOCTOR; junior_staff doctor 2 to JUNIOR_STAFF_DOCTOR_DAY, and
Junior_staff _doctor_3 to JUNIOR_STAFF_DOCTOR_NIGHT. No personalized data were defined for any of these

users, because they are not relevant in this static RBAC model.

The users were linked to roles by assignment of the user individuals as members of the relevant ROLE sub-

classes.

Instances were created for object types (classes) COMPUTER, PATIENT, ROOM, VITAL_SIGN and WARD.
One instance of each type was created for the small scenario, and three of each type for the large scenario. The instances

were named <object_name>_n, e.g. patient_1.

6.7 Results of Implementation
The ontological model was implemented using the Protégé Ontology Editor, using the Protégé-OWL plugin. The

Pellet Reasoner Inspector was used to test the consistency of the ontology’s classes, properties and instances.

The classes ROLE_PERMISSION_ASSIGNABLE and USER_PERMISSION_ASSIGNABLE were
populated with individuals representing all possible permutations of roles, users and permissions using a Perl script,
which also added to PRA and DRA the individuals listed above.

There is no plug-in for Jena in Protégé. Therefore, Jena rules were defined in plain text files, to be run on the
command line using a Jena engine in Java, and running it. The rules for each step were defined in a separate Jena file. A
Unix shell script was written to execute all 5 steps in turn. The resulting OWL files (one for each stage) were then
examined in Protégé, and OWL n-triple files were created from them, to check that they ran correctly. The results of the

examination of the n-triple files are presented. The same models were run in ESO-RBAC as in SO-RBAC.

The numbers of triples of affected classes and properties at each stage were determined by exporting the OWL
files as n-triple files, and analyzing these using the Unix shell tool grep. Jena produces no reports of numbers of

classes, individuals and axioms, so these are not provided.

Table 23: Numbers of triples at

Table 22: Numbers of rules run and triples obtained by Jena for each stage 1.
ontology.
Property Small Large
Step 1 | Step 2 | Step 3 | Step 4 | Step 5 senior _to 26 26
Jena rules exported to Jess 8 2 2 2 2 junior to 26 26
Unique triples created (small 126 62 131 166 98 included_in 62 62
ontology)
Unique triples created (large 126 62 423 477 306 inherits_pra 49 49
ontology) Total 163 163

Table 22 shows the numbers of rules run and triples created by Jena in each step for each ontology. Note that

ESO-RBAC has one more rule than SO-RBAC in Step 1 (1_junior to, described in Section 6.2.3.1, page 127).

The same numbers of triples were found for both ontologies, because Step 1 only operates on roles, and both

have the same roles (Table 23). Unlike in SO-RBAC, a rule for inferring junior_to axioms (as the reverse of senior_to

164

axioms) in rule was defined (1 junior to, described in Section 6.2.3.1, page 127), because Jena does not
automatically create corresponding axioms for inverse properties. The numbers of included_in and inherits_pra
individuals were slightly larger than in SO-RBAC due to differences in the model used (the model used for ESO-RBAC
implemented the DAY_DUTY and NIGHT_DUTY roles, whereas the SO-RBAC model did not).

Table 24: Numbers of triples at stage 2. ||Table 25: Numbers of triples at stage 3.

Class Small | Large Class Small | Large
PRA_FULL 49 49 PERMITTABLE 95 300
DRA_FULL 13 13 DENIED 36 123
Total 62 62 Total 131 423

At Stage 2, the same triples were found in ESO-RBAC as in SO-RBAC (Table 24).
At Stage 3, the numbers of individuals in DENIED are one less than in SO-RBAC, due to the lack of the dummy
individual used in SO-RBAC (Table 25).

Table 26: Numbers of triples in stage 4. ||Table 27: Numbers of triples in stage 5.

Class Small | Large Class Small Large
NOT_DENIED 144 477 AUTHORIZABLE 79 249
PERMITTED 22 66 AUTHORIZED 19 57
Total 166 543 Total 98 306

At Stage 4, the same triples were found in ESO-RBAC as in SO-RBAC (Table 26).
At Stage 5, the AUTHORIZABLE and AUTHORIZED classes were populated (Table 27). The same triples
were found in ESO-RBAC as in SO-RBAC.

165

6.8 Results of ESO-RBAC Process in Protégé

This section displays screen shots captured using the Protégé OWLViz tab [117] at various stages of reasoning

(Figs. 94-114). All screen shots are taken from the small ontology.

6.8.1 Classes and Individuals

6.8.1.1 General

File Edit Projpct OWL Reasoning Code Tools Window Colaboration Help

NDeE B0 ms @9 DEE A <€prol‘égé
f.Met-am(HBAc_FULL.owl} r’ OWLClasses r-Frcpeme: rQInd\wdua\s r’: Forms r’ JoWLviz |
\ INSTANCE BROWSER N INDIVIDUAL EDITCR

For Project: @ RBAC_FULL _small For Class: 2, rbac:ROLE_SET For Individusl N oS X
. N Asserted ' Inferred

lass Hierarchy

owlThing Asserted Instances v ¥ e X G
b @ OBJECT INSTANCE ac BOMIN
v @ rhacRBAC e CLERIC

thacACTION (2)
A thac:Class
thac:ROLE_SET (27)
v rhac PERMISSION _ASSIGHN
v rbac:ROLE_PERMISSION_ASSIGNABLE (500
rhac:DRA (5]
thac:DRA,_FULL
rhac:PRA, (21
rhac:PRA_FULL
v thac USER_PERMISSION_ASSIGNABLE (150)
rhac:DEMED
rhac:MNOT_DEMIED
»> rbac:PERMITTABLE
> rhiac USER
» O thacUSER_SESSION (1]
> rdt-Property (40)
» retsiClass (31)
b O swrlsErtity

rhac: CONSULTANT

thac: DAY _DUTY

thac: DOCTOR

rhac JUNIOR_STAFF_DOCTOR

thac JUNIOR_STAFF_DOCTOR_DAY
rhac JUMIOR _STAFF_DOCTOR_NIGHT
thao: JUMIOR_TECHMICIAMN

thac MANAGER

rhac MIGHT_DUTY

rhac: NURSE

rbac:ROLE

thac SEMOR_MNURSE

thac SEMOR_STAFF_DOCTOR

rhac: SEMIOR_STAFF_DOCTOR_DAY
thac SEMOR_STAFF_DOCTOR_MIGHT
thac SEMIOR_TECHNICIAN

rhac SPECIALIST_DOCTOR

thac SPECIALIST_MURSE

rbac: STAFF_hURSE

thac STAFF_NURSE_DAY

thac STAFF_NURSE_MIGHT

rbac STUDENT _MURSE

thac: STUDENT_MURSE_DAY

rhac: STUDENT _NURSE_MIGHT

thao: TECHMICIAN

Figure 93: The ROLE_SET meta-class.

Figure 93 shows the ROLE_SET meta-class. Meta-classes are represented differently in Protégé from normal
classes (using the set of three small dots (%) rather than the large dot ({)). The asserted instances of ROLE_SET are

the classes under ROLE, these show up as classes rather than as individuals in the Asserted tab. It can be seen from the

figure that ROLE_SET is a member of rbac:Class, which is a member directly of owl:Class as well as of RBAC.

166

File Edit

DeHE «BE

Project OWL Reasoning Code

B9 ed

Tocls

Window Collaboration Help

ae

<éprolégé

Class Hierarchy

For Project. @ RBAC_FULL_small_populated_stage_S_final | For Class

| @ Metadata(RBAC_FULLowl) | OWLClasses | W Properties | 4 Individuals | = Forms |

INSTANCE BROWSER INDIVIDUAL EDITOR for patient_1 (instance of PATIENT)

0l Thing
v OBJECT_INSTANCE
ouTY
v EQUIFMENT
¥) COMPUTER (1)
v HOME_COMPUTER
HOME_DESKTOR
HOME_LARTOP
HOME_PDA
v OFFICE_COMPUTER
OFFICE_DESKTOP
OFFICE_LAFTOR
QOFFICE_PDA
v HOME_EQUIPMENT
v HOME_COMPUTER
HOME_DESKTOR
HOME_LARTOP
HOME_PDIA,
v HOSPITAL _FQUIPMENT
MED_EQUIPMENT
v OFFICE_COMPUTER
QOFFICE_DESKTOR
OFFICE_LAPTOP
OFFICE_PDA
v IMTERMET _COMMECTION
HOME _INTERNET_CONNECTION
HOSPITAL _INTERMET _COMMECTION
OS_SESSION
v PERZON
PATIENT (1)
» rhac SER
v O ROOM (1)
NOT_OPERATING_ROCM
MOT_WWsRD
OPERATING _ROOM
WARD (17
VITAL_SIGN (1)
rhacREAC
roif. Property (400
rdfs Class (317
sl Ertity

YYyYvyvwy

+—F T

PATIENT For Individual: |http:iwww cgce net/Ontology/RBAC_FULL owi# TERI]

(“Asserted [inferred | |_? @ * [(B [J Annotations

Asserted Instances - ¥ eXG Property [Value [Lang |

@ patiert_1 rdfs:.comment =
- @
=

Asserted Types qp !.

PATIEMT
® s 8 5 @

Figure 94: The OBJECT _INSTANCE hierarchy in our example.

Figure 94 shows the OBJECT_INSTANCE hierarchy in ESO-RBAC. The main difference between this and the
equivalent in SO-RBAC is that here there is no object _instance property, because this is represented by class
membership. (Likewise, there is no OBJECT_TYPE class).

167

File Edt Project OWL Reasoning Code Tools Window Collaboration Help
OEE £ BE ma ¢ < @pmtégé

| & Metacata(REAC_FULLowl) | OWLClasses | [l Properties | 4p Individuals | = Forms |

CLASS BROWSER INSTANCE BROWSER
L

CLASS EDITOR for HOSPITAL_INTERNET_CONNECTION
b For Class: |htp/www egce netiOntologyRBAC_FULL owRHOSPITAL _INTERNET_CONNECTION

For Project: @ RBAC_FULL_smal For Class owlClass] Inferred View
<
Asserted | Inferred 7] "
Class Hierarchy |j * (& B [) Annotations
- Property Value Lang
ewkThing Asserted Instances - ¥ e X G - ‘ ‘ |‘
») OBJECT _NSTANCE @ CoMPUTER ~ || [= rars:commert

» O rbacRBAC
» rf:Property (400
¥ o rdisClass (31
v owel:Class (77
2 OBJECT_SET
» O thacClass
protese:ExdernalClass
O swrlaEntity

| HOME_INTERNET_CONNECTION
| HOME_LAPTOR

@ HOME_PDA -
| HOSPITAL_EQUIPMENT :

HOSFITAL_INTERNET_CONNECTION : & @&
| IMTERNET_CONNECTION ee .i\s:enrted foml‘lm.ns
| MED_EQUIPMENT NECESSARY & onnuan
|©) NOT_OPERATING_ROOM NECESSARY

() INTERNET_CONMECTION

) NOT_WARD
| OBUECT_INSTANCE
2 OBJECT_SET

ol AnnotationProperty

owl Class

ol DatatypeProperty

owl FunctionalProperty

ol Inver seFunctionalProperty
owkNathing @ ® R @D Disjoints
ol ObjectProperty
vl Ontolocry

owl SymmetricProperty .
sl Thing

Asserted Types & & a

awlClass

‘ |" Lo & B = Q (@) Logic View () Properties View
Figure 95: The owl:Class meta-class.

Figure 95 shows the owl:Class meta-class, which contains all classes other than those in ROLE_SET.

168

File Edt Project OW. Reasoning Code Tools indow Collaboration Help

e})
Oe of B twed JY <=
| @ Metadata(REAC_FULLowl) | OWLClasses | W Froperties | 4 Individusls | = Forms |
INSTANCE BROWSER INDIVIDUAL EDITOR for senior_staff_doctor_1 (instance of rbac:SENIOR_STAFF

L
For Project: @ RBAC_FULL_small For Class: rbac: SENIOR_STAFF_DOCTOR For Individual: |http:ifiwww cgce netintology REAC_FULL owls ST a il

[“Asserted | Inferred
Class Hisrarchy l_j Iig ﬁ _5:! [H [J Annotations

it Thing Asserted Instances -4 *XC oA [RiRiE |_Leng |

» @ OBJECT_NSTANCE (@ serice sttt sackar T rdfs:comment -

v rhacREAC
Fhac ACTION (2)
B 2 rhacClass
v rhac PERMIZSION_ASSIGN
» O thac:ROLE_PERMISSION_SSSIGNABLE (207
v rbac:USER_PERMISSION_ASSIGMABLE (150
rhac: DEMED
rhac:MOT_DENIED
> rbac:PERMITTABLE
v rhiac USER
v thac:ROLE
b @ rbac:ADMIN
> rhac DAY _DUTY
v thac:DOCTOR
rhac COMSULTANT (2)
thacJUNIOR_STAFF_DOCTOR (1)
thacSEMIOR_STAFF_DOCTOR (1)
rbac SPECIALIST_DOCTOR (1)
> rhacMGHT_DUTY
» rhacMURSE
> rbac: TECHNMCIAN
b O rhacUSER_SESSION (1)
» ridf:Property (40)
B rdisClass (313
» FverlaEntity

Figure 96: The USER class.

Yvw

USER, as shown in Figure 96, is now the super-class of ROLE, and USER instances are defined as members of
the ROLE classes.

File Edit Project OWL Eeasoning Code Jools Window Collaboration Help

OEE £ BE wey o <

| @ Metadata(REAC_FULLowl) | OWLClasses | W Properties | 4 Indivicuals | = Forms |

INSTANCE BROWSER

INDIVIDUAL EDITOR for consultan ONSULTANT _writ

»
For Project: 4 RBAC_FULL_small For Class: rbac:USER_PERMISSION_ASSIGNABLE For Individual: |http:/iwww cgee net/OntologyRBAC_FULL ow!# RGN E
Asserted | Inferred
Class Hierarchy Ij Eﬁ ﬁ Lg’é B [J Annotations
el Thing Asseried Instances -~ & @ b4 G Property | Valug ‘ Lang |

> OBJECT_INSTANCE
v rbac:RBAC
rhac ACTION (2]
p 5 rhac:Class
v rhac:PERMISSION_ASSIGH
v rbac:ROLE_PERMISSION_ASSIGNABLE (307
rhac:DRA (5]

@ consultant_1_COMSULTANT read_pstiert_1 - rdfs:commert &
‘ consultant_1_COMSULTANT read_room_1

Q consultant _1 _CONSULTANT _read_vital_sign_1
‘ consultant_1_COMSULTANT read_ward 1

Q consultant_1 _COMSULTAMT write_computer_1
Q consultant_1_COMSULTANT write_patient 1

@ consultant_1_CONSULTANT write_room_1 h
rbac:DRA_FULL @ consuttant_1_CONSULTANT write_vital_sign_1
thac:PRA (200 @ consultant_1 _CONSULTANT _wirite_ward_1 e artien * * ® rbacrole o4 * ©
rhac:PRA_FULL @ consultnt_2_CONSULTANT read_computer_1 @ write thac:CONSULTANT

v thac: USER_PERMISSION_ASSIGMABLE (120
thac: DEMED
thac:NOT_DENIED
v thac: PERMITTABLE
rbac: AUTHORIZABLE

Q consultant _2_COMNIULTANT reac_patient_1
& consultant_2_CONSULTANT read_room_1

‘ consultant_2_ CONSULTANT read_vital_sign_1
@ consultant_2_CONSULTANT read_ward_1

‘ consultant_2_ COMNSULTANT write_computer 1

¥ () rbac:PERMITTED @ consultant_2_CONSULTANT write_patient_1 rbac:object_instanc ¢ ® baciuser o *
R toac: AUTHORIZED - . | ons cblect + e * ¥}
b @ rbacUSER_SESSION (1) ‘
» rif Property (407
b 2 redfsClass (31) o —
> (0 swrla Entity Thac:USER_PERMISSION_ASSIGNABLE
| | ‘ i) % = ﬁ S

Figure 97: The USER_PERMISSION_ASSIGNABLE class.

USER_PERMISSION_ASSIGNABLE is similar to that in SO-RBAC. However, as shown in Figure 97, the
range of rbac:ROLE is now a class (an instance of ROLE_SET) rather than an individual.

169

File Edt Projct OWL FReasoning Code Tools Window Collaboration Help

Ded 4EBER mead <% [g >

| @ Metadata(RBAC_FULLowl) | OWLClasses | B Properties | @ Individuals | = Forms |

INSTANCE BROWSER NDIVIDUAL EDITOR for CONSULTANT _write_COMPUTER (instance of rbac:ROLE_PERMISSI.
L

For Proj @ RBAC_FULL _small For Class: rbac:ROLE_PERMISSION_ASSIGNAB. .. or Individual: iontologyREAC_FULL owlRCONSULTANT _write_COMPUTER
| Asserted | Inferred
Class Hierarchy Ij Iig Qa LE} B [J Annotations
et Thing Asserted Instances - ¥ e xXG BromETLY [e [Lang |

> OBJECT_INSTAMCE ’ CONSULTANT_read_COMPUTER (=] rdfs: comment |
¥ @ rhacRBAC @ COMSLLTANT_read_PATENT
rhac:ACTION (2) - COMSULTANT read ROOM
[3 rhac Class

4p CONSULTANT read_VITAL_SIGN
v thacPERMISSION_&SSIGN

o COMSULTANT read_WARD Il
v rhacROLE_PERMISSION_ASSIGNABLE (50) @ CONSULTANT _writa_COMPLITER
rhac:DRA (5] - -

@ COMSLLTANT_write_PATIENT
rhac:DRA_FLLL @ CONSULTANT _write_ROOM
rhacPRA (207

b PRS FLLL 4 CONSULTANT wwrite_VITAL_SIGH rbac:action L 4 ﬁ ® rbacirole L 4 Q}, <
rhac "
= A COMSULTANT _write WARD write rhac:CONSULTANT
v rhac:USER_PERMISSION_ASSIGNABLE (1501 @ JUNIOR_STAFF_DOCTOR _read_COMPUTER * b
rhac:DENIED " " o

@ JUNIOR_STAFF_DOCTOR read_PATIENT

4 JUNIOR_STAFF_DOCTOR_read_ROOM

@ JUNIOR_STAFF_DOCTOR read_VITAL_SIGH
@ JUNIOR_STAFF_DOCTOR_read_WWARD

@ JUNIOR_STAFF_DOCTOR _writs_COMPUTER

* rbaciobject_type & Q}, t.
JUNIOR_STAFF_DOCTOR_write PATIEMT [+ COMPUTER:
> rhac:USER

»> rhac:USER_SESSION (1) | "| @
» relf:Property (400
»> rdfs:Class (31)
> swrlaEntity

rhac:NOT_DEMIED
v thac:PERMITTABLE
rbac: AUTHORIZABLE
v thac:PERMITTED
rbac: AUTHORIZED

&
Asserted Types . !.
thac ROLE_PERMISSION_ASSIGNABLE

| e = b B ow &

Figure 98: The ROLE_PERMISSION_ASSIGNABLE class.

ROLE_PERMISSION_ASSIGNABLE is, again, similar to that in SO-RBAC (Figure 98). The object type and
role properties have classes as their ranges. The range of object type is owl:Class; note that as ROLE_SET is a sub-

class of this, role classes can also appear as the range of object_type.

170

6.8.1.2 Initialization

File Edt Project OWL FReasoning Code Tools Window Collaborstion Help
NeR 48R wa @9 av <¢|protége

| @ Metadata(REAC_FULL owl) | ' OWLClasses | I Properties | 4 Individuals | = Forms |
SUBCLASS EXPLORER CLASS EDITOR for rbac:SENIOR_STAFF_DOCTOR (instance of rbac:ROLE_SET)

For Project: @ RBAC_FULL_small For Class: |http:ifwww cgce netiOntology/REACFSEMIOR_STAFF_DOCTOR

] Inferred View

2
Asserted Hierarchy w1 5 B iz [[J Annotations
ol Thing = Property Value | Lang
») OBJECT_NSTANCE] relfs:commert i
v @ thacRBAC
@ rbec.ACTION
b & rhacClass
b) rhacPERMISSION_ASSIGN =
¥ @ rhooUSER
v @ roacROLE ('] L. Asserted Conditions
¥ @ rboc 0NN
NECESSARY & SUFFICIENT
@ rhac.CLERK ErEsanny
0 rbacMANAGER @ rbacDOCTOR

¥ @ rbac:DAY_DUTY
@ thac:JUNIOR_STAFF_DOCTOR DAY
@ thac:SENIOR_STAFF_DOCTOR_DAY
1 thac: STAFF_NURSE_DAY
@ thac:STUDENT_NURSE_DAY
¥ @ rbac:DOCTOR
1 thac: CONSULTANT
v @ rbacJUNIOR_STAFF_DOCTOR
) thac: JUNIOR_STAFF_DOCTOR_DAY
O thac: JUNOR_STAFF_DOCTOR _MIGHT
v | rbacSENIOR_STAFF_DOCTOR
@ rhac:SEMIOR_STAFF_DOCTOR_DAY
@ thac:SENIOR_STAFF_DOCTOR_NIGHT
@ rbac:SPECIALIST_DOCTOR
¥ @ rbac:NIGHT_DUTY
@ thac:JUNIOR_STAFF_DOCTOR_NIGHT
) thac: SENIOR_STAFF_DOCTOR_NIGHT
© thac: STAFF_MURSE_NIGHT
@ thac:STUDENT_NURSE_NIGHT
¥ @ rbac:hURSE
@ rhac:SENIOR_NURSE rbac:directly_junior_to € & & pacinciuded_in & & & pacsenionto ¢ e
) rbac:SPECIALIST_NURSE | rbac:consuLTANT @ rbac JUNIOR_STAFF_DOCTOR
¥ @ rbac:STAFF_NURSE
@ thac:STAFF_NURSE_DAY
) thac:STAFF_NURSE_MIGHT
¥ O rbac:STUDENT_NURSE
@ thac:STUDENT_NURSE_DAY

(L3 @ 2 G @ Disjoints

@ rhac: STUDENT NURSE_NIGHT
v @ thacTECHHICIAN rbac:directly_senior_to + . & pacjunior_to L4 LS
@ rbsc JUMOR_TECHHICIAN [thac: JNIOR_STAFF_DOCTOR [® thec:CONSULTANT
@ rhac SENOR_TECHNICIAN
b @ rhacUSER_SESSION
b rfProperty L
b rdisClass -
[2R + @8 =« o©e ® Logic View) Properties View

Figure 99: Role SENIOR_STAFF_DOCTOR before Step 1 is run.

Figure 99 shows a ROLE class definition in ESO-RBAC. The screenshot is of the role class definition, rather
than that of the canonical individual (which does not exist in ESO-RBAC). (It is also possible to look at a ROLE class
as an individual in the meta-class ROLE_SET). All the properties used in roles in SO-RBAC are here, apart from is_a,

which is represented by super-classing.

171

6.8.2 Reasoning

6.8.2.1 Stage 1

File Edt Project OWL Reasoring Code JTools Window Collaboration Help
Oe of B E wmed U

[@ Metadata(RBAC_FULLowl) | () OWLClasses | Wl Properties | 4 Individuals | = Forms |

SUBCLASS EXPLORER 'm) CLASS EDITOR for rbac:SENIOR_STAFF_DOCTOR (instance of rbac:ROLE_SET)

For Project: @ RBAC_FULL_small_pepulated_stage_1 i For Class: |hitp:/iwww cgce.netiOntology/RBAC#SENIOR_STAFF_DOCTOR [Inferred View
o
Asserted Hisrarchy % 1 & = i U8 [J Annotations
ol Thing Property Valug | Lang

() OBJECT_INSTANCE rdfs.comment

v @ hacRBAC
® rbacACTION
b 2 thacClass
¥ O rhac:PERMISSION_ASSIGN
b @ rhac:ROLE_PERMISSION_ASSIGNABLE

» (O thac:USER_PERMISSION_ASSIGNABLE o & e e Asserted Conditions
rhac:USER

v . NECESSARY & SUFFICIENT

v @ thaciROLE NECESSARY

b @ rbacADMN @ rbacDOCTOR
b @ rhac:DAY_DUTY
¥ @ thac:DOCTOR
@ rhac:CONSULTANT
b thactJUNIOR_STAFF_DOCTOR
v [thac:SENIOR_STAFF_DOCTOR
@ rhac:SENOR_STAFF_DOCTOR_DAY
@ rhac:SENIOR_STAFF_DOCTOR_MIGHT
@ rhac:SPECIALIST_DOCTOR
b @ thac:NIGHT_DUTY
b @ thachURSE
b @ thac:TECHNICIAN
b @ rhac:USER_SESSION (U g &P Disjoints
b rdtProperty
B rdisClass
b (0 swrlaErtiy

rbac:directly_junior_to & & & ocinciuded_in & € & acsenionto LR S
[@ vhac.CONSULTANT (@ thacDOCTOR [@ tbac JUNIOR_STAFF_DOCTOR
@ rbacROLE @ rhac:SENIOR_STAFF_DOCTOR

| rbac: SENIOR_STAFF_DOCTOR

rbac:directly_senior_to ¥ 4 & rhacunior to ¢ o e
| rbac.JUNIOR_STAFF_DOCTOR @ rbac: CONSULTANT

| rbac:SENIOR_STAFF_DOCTOR
| rhac: SPECIALIST_DOCTOR

‘ |" B SRR | & B & ® o ® Logic View () Properties View

Figure 100: Role SENIOR_STAFF_DOCTOR after Step 1 is run.

Figure 100 shows the role SENIOR_STAFF_DOCTOR after Step 1 is run. included_in is now fully
populated, by SENIOR_STAFF_DOCTOR being a sub-class of DOCTOR.

172

File Edt Project OWL Reasoning Code Tools \indow Collaboration Help
NEeH tBE wma ¢ B 4 <€protégé

| @ Metadata(RBAC_FULL.owl) | () OWLClasses | Bl Properties | 4 Individuals | = Forms |
SUBCLASS EXPLORER
For Project. @ RBAC_FULL_small_populated_stage_1

] Inferred View

Asserted Hierarchy w5 f : lj b3 4 (2 LH [J Annotations
Sl Thing Property Value | Leng
p @) OBJECT_INSTANCE rdfs.commert A
v @ rhacRBAC
@ rhac:ACTION
» rhac:Class
¥ rbacPERMISSION_ASSIGN =
» [rbac:ROLE_PERMISSION_ASSIGNABLE
b @ thac:USER_PERMISSION_ASSIGNABLE & & (Y T .

hac USER
M .r Ecb (ROLE NECESSARY & SUFFICIENT
v 0 pectten

b @ rhac: ADMIN @ rbac:DaY_DUTY
p @ rbac:DAY_DUTY @ rbac SEMOR_STAFF_DOCTOR
v @ rhac:DOCTOR

) thac: CONSULTANT

» @ rhacJUNICR_STAFF_DOCTOR
¥ (@ rhac SENIOR_STAFF_DOCTOR
rhac; SENIOR_STAFF_DOCTOR_DAY
@ rhac: SENIOR_STAFF_DOCTOR_MGHT
O thacSPECIALIST_DOCTOR
p @ rbacNIGHT_DUTY
b O rbacNURSE
b O rhac: TECHMICIAN
») rhacUSER_SESSION @ Q, ‘:Q L1 [] @D Disjoints
B rdiPropery
» vz Class
B swrimEntity

rbac:directly_junior_to ¥ € & rbacinciuded_in ¥ 4 % rbacesnior to LR

@ rbac: SENIOR_STAFF_DOCTOR
| rbac: SENIOR_STAFF_DOCTOR_DAY

rbac:directly_senior_to % & bacjunior to ¢ e

| "‘ BRI 2 & o @ Logic View [Froperties View

Figure 101: Role SENIOR_STAFF_DOCTOR_DAY after Step 1 is run.

Figure 101 shows the role SENIOR_STAFF_DOCTOR_DAY after Step 1 is run.

File Edit Project OWL Reasoning Code Tools Windew Collaboration Help

OEE LEB med @9 o <
| @ Metadata(RBAC_FULL.owl) | OWLClasses | [Properties | 4 Individuals | = Forms |
CLASS BROWSER NSTANCE BROWSER /IDUAL EDITOR
¥
Faor Project: 4 RBAC_FULL_small_populated_stage_1 For Class: . rbac:DRA For Individual http:dwww.cgce net/Ontology/RBAC_FULL ow#CONSULTANT _write_VWARD
|| Asserted |SEEENER (thac:ROLE_PERMISSION_ASSIGNABLE | thac:DRA | =
Class Hierarchy . 3 il L .
vl Thing - & @ &
b @ CHUECT ISTANCE Asserted Instances X ﬁ * [[H [J Annotations
- @ CONSULTANT read_ROOM
v .rbac'RBAC Property | Value ‘ Lang ‘
: § CONSULTANT wiits_WARD =
@ rbac:ACTION (2) rdfs:commert
@ SENIOR_MURSE _resd_WARD
b rhaciClass @ SENOR_STAFF_DOCTOR_read_COMPUTER
¥ (@ rbacPERMISSION_ASSICN @ STAFF_NURSE write_PATENT
¥ rbacROLE_PERMISSION_ASSIGNABLE (50) - -
@ rbac:DRA (5
@ thac:DRA_FULL
@ rbac:PRA (207 -
@ rbacPRA_FULL
¥ () rbacUSER_PERMISSION_SSSIGHABLE (180) rbac:action € & pacioe ¢ e
() rhac: DEMIED & e @ rbac:CONSULTANT
&) rhac:MOT_DEMIED
¥ @ rbacPERMITTABLE
© thac: AUTHORIZABLE
¥ @ rbac PERMITTED
© thac:AUTHORIZED
> @ rbacUSER ‘ |- ® || baciobiccttyoe ¥ @ &
b @ rbacUSER_SESSION (1) © verD
> tPropey (40) Asserted Typss e a
B % rofsClass (31) @ rhac ROLE_PERMISSION_ASSIGHABLE
» syvrla Ertity . r—
| ML » @ » €

Figure 102: DRA individuals at Stage 1.

173

Figure 102 shows DRA at Stage 1, containing the individuals with which it is initialized. This is similar to the
DRA of SO-RBAC (Figure 52, page 111). However, the figure shows that for the highlighted individual,
CONSULTANT _write_ WARD (as for all individuals in the class DRA), the individuals linked to it via properties

rbac:object_type and rbac:role are classes, not plain individuals.

File Edt Project OWL Reasonng Code Tools \Window Collaboration Help

DEE $B® mey <Y R @pmrégé
[@ Metadata(RBAC_FULL owl) | | OWLClasses | W Properties | 4 Individusls | = Forms |
INSTANCE BROWSER INDIVIDUAL EDITOR +=F T
»
For Project: 4 RBAC_FULL_small_populated_stage_1 For Class: (0 rbac:DRA_FULL For Individual
[Asserted | Inferred
Class Hierarchy
ewhThing Asserted Instances - # NG
» @ OBJECT_INSTANCE
v @ rbacRBAC
rhaciACTION (2]
B thacCiass
v @ rbacPERMISSION_ASSIGN

v @ rbacROLE_PERMISSION_ASSIGNABLE (50)
tbac:DRA (5)
tbac:DRA_FULL
thac:PRA (20)
rhac:PRA_FULL
¥ (@ rbacUSER_PERMISSION_ASSIGNABLE (150)
thac:DENED
thac:NOT_DENED:
¥ O rhac:PERMTTABLE
thac AUTHORIZABLE
v @ rbacPERMITTED
thac: AUTHORIZED

» @ rhac:USER H B
b rbac:USER_SESSION (1]
-
B rdfPropery (40) Asserted Types _5 L
b rdisClass (31)
b O swnlaErity
| Ja & s s

Figure 103: DRA_FULL at Stage 1.

Figure 103 shows DRA_FULL at Stage 1. This class is empty because it has not yet been populated in Step 2.

File Edit Project OWL Reasoning Code Tools Windew Collaboration Help

DeE £BE myg Y ac <qpmrégé

| @ Metadata(RBAC_FULL.owl) | OWLClasses | [Properties | 4 Individuals | = Forms |

INSTANCE BROWSER INDIVIDUAL EDITOR for CONSULTANT_write_VITAL_SIGN (instance of rbac:ROLE_PERMIS... + — F T

L4 -
For Project: 4 RBAC_FULL_small_populated_stage_1 For Class rbac:PRA For Individual: |Rttp:/iwww cgce netiOntology RBAC_FULL ow#CONSULTANT write_VITAL_SIGN

Clags Hisrarchy Asseried | TENEN | thac:ROLE_PERMISSION_ASSIGNABLE | rhacPRA
e Thing Asserted Instances - ¥ e XG ¥ [o# [[H otatis
OBECT_INSTANCE [Annotations
> E (@ CONSULTANT real_COMPUTER -
v thacRBAC — Property | Walue | Lang |
- ‘ CONSULTANT _write _WITAL_SIGN
rbac ACTION (21 rdfs:comment =
@ JUNIOR_STAFF_DOCTOR read_PATIENT
P &% roaciClass @ JUNIOR_STAFF_DOCTOR _read_ROIOM
¥ @ rbac:PERMISSION_ASSIGN @ JUNOR_STAFF_DOCTOR _reac_VITAL_SIGN
¥ @ thacROLE_PERMISSION_ASSIGNABLE (50) @ JLMOR_STAFF DOCTOR_resd WARD
rhac:DRA, (5] @ SEMOR_NURSE _reac_vITaL_SIGN
rhacDRA_FULL @ SEMOR_NURSE_uwrite_WWARD %
EEFRA (2) @ SEMOR_STAFF_DOCTOR write_PATIENT B2
rhac:PRA_FULL @ SEMIOR_STAFF_DOCTOR_write_ROCM ¢ ¢
> @ rbacUSER_PERMISSION_ASSIGNABLE (150) @ SEMOR_STAFF_DOCTOR write vITAL_SIGN rbaciaction ® & bacirole *
> @ rbacUSER @ SPECIALIST_DOCTOR write_COMPUTER & e rhac:CONSULTANT
b @ rbac:lISER_SESSION (1) | SPECIALIST_MURSE_read_COMPUTER b
B reftProperty (400 @ SPECIALIST_NURSE _write_COMPUITER
b rdfsiClass (31) @ SPECIALIST_NURSE _write_ROOM |
> (0 srla Entity @ SPECIALIST_NURSE _write_VITAL_SIGH
@ STAFF_NURSE read_ROOM ||
TAFE WIS resd inaET ||| roaciobject_type ¢ e
| |v| I VITAL_SIGN
&
Asserted Types qn =
thac:ROLE_PERMISSION_ASSIGNABLE
rhac:PRA
| L s @ » @

Figure 104: PRA individuals at Stage 1.

Figure 104 shows PRA at Stage 1, containing the individuals with which it is initialized.

174

File Edit Project OWL

ODeEE +EB

Reasoning Code

g ed

Tools

Window Collaboration Help

MED ar

ﬁpmrégé

Class Hierarchy

For Project: 4 RBAC_FULL_smal_populated_stage_1

| @ Metadata(REAC_FULLowl) | OWLClasses | BN Properties | 4 Indvidusls | = Forms |

INSTANCE BROWSER

For Class: rbac:PRA_FULL

| Asserted | Inferred

oyl Thing
»> OBJECT_INSTANCE
v rhac RBAC
thac ACTION (2)
[3 rhac: Class
v thac: PERMISSION_ASSIGH

thacDRA (5

rbac:DRA_FULL
rhacPRA (20)
rhac:PRA_FLILL

rhac:DENIED
Fhagc:NOT_DEMIED
v thac:PERMITTABLE
rhac: AUTHORIZABLE
v thac:PERMITTED
rhac AUTHORIZED
»> thac:USER
p O rbacUSER_SESSION (1)
» riff:Property (407
b rdfsClass (51
» syerlacErtity

v rbacROLE_PERMIZZION_ASSIGNABLE (50)

v rthac USER_PERMISSION_ASSIGNABLE (150)

Asserted Instances - ¥ 4 XG
|
Asserted Types L} g a

ML

NDIVIDUAL EDITOR

L]
For Individual

-

+—-F T

&

Figure 105: PRA_FULL at Stage 1. This class is empty because it has not yet been populated in Step 2.

Figure 105 shows DRA_FULL at Stage 1. This class is empty because it has not yet been populated in Step 2.

File Edt Project OWL

Der +BG

Reasoning Code

B pd

Tools

Collaboration

‘Window

Help

< =

Class Hierarchy

For Project @ RBAC_FULL_smal_populated_stage_2

vl Thing
> OBJECT_INSTANCE
v thacRBAC
thac ACTION (2]
»> rhac: Class
v rhac PERMISSION_ASSIGH
> rbac:ROLE_PERMISSION_ASSIGHABLE (;
v thac:USER_PERMISSION_ASSIGHABLE [
rbac:DENIED
rhacNOT_DENIED
v rhac:PERMITTABLE
thac AUTHORIZABLE
v rhac PFERMITTED
thac: AUTHORIZED
v rhacUSER
» @ rbacROLE
v @ rhacUSER_SESSION (1)
rhac: ACTIVE_USER_SESSION (7)

» roif. Property (407
> rdfs:Class (311
» stla Erity

| @ Metadata(REAC_FULL owl) | OV Classes | Wl Properties | 4 hndivisuals | = Forms |

INSTANCE BROWSER
¥ ¥
For Class: rbac:DENIED

Asserted | Inferred

Asserted Instances - # 4 X G
| EE

eda

Asserted Types

{1 [T

| Flm =

INDIVIDUAL EDITOR

For Individual

W

Figure 106: DENIED at Stage 2.

Figure 106 shows DENIED at Stage 2. This does not have the dummy individual that is needed in SO-RBAC

(Figure 45, page 107).

175

6.8.2.2 Stage 2

File Edt Project OWL

DeH +

Reasoning Code

<)

Tools

B i ed

Window Collaboration

I

Help

< =

For Project: @ RBAC_FULL_small_populated_stage_2

Class Hierarchy

[@ WMetadata(REAC_FULLowf) | OWLClasses | BN Properties

ol Thing
»> OBJECT_INSTAMCE
v rhac:RBAC
rhac: ACTION ()
[3 rhac Class
v thacPERMISSION_2SSIGHN
v rthac:ROLE_PERMISZION_ASSIGNABLE (50)
rhacDRA (5)
rhacDRA_FULL (13)
rhacPRA (207
rhac PRA_FULL (49)
rhac:USER_PERMISSION_ASSIGNABLE (150
rbac: DENIED
rhac: NOT_DEMED
rbac: PERMITTABLE
thac: AUTHORIZABLE
v rbac:PERMITTED
rhac AUTHORIZED

v

v

»> thac: ISER

b O thac:USER_SESSION (1)
»> ridf:Property (407
» rdfs:Class (31)
»> syerlacEntity

& Individuals r = Forms |

\ INSTANCE BROWSER

For Class: rbac:DRA_FULL

Asserted | Inferred

Asserted Instances

- ¢ @ X G

OMPUTER

(instance of rbac

Frfeld @

@ CONSULTANT read_ROOM

’ CONSULTAMT write_WWARD

@ JUNIOR_STAFF_DOCTOR read COMPUTER
& JUNIOR_STAFF_DOCTOR _read_ROOM

@ JUNIOR_STAFF_DOCTOR _wite_WARD

& SENIOR_NURSE._read_WWARD

& SEMOR_STAFF_DOCTOR_read_COMPUTER
& SENOR_STAFF_DOCTOR read_ROOM

& SENOR_STAFF_DOCTOR_wiits_yWARD

@ STAFF_NURSE_read_VWARD

@ STAFF_NURSE_write_PATIENT

@ STUDENT_NURSE_recd_VWARD

@ STUDENT_NURSE _write_PATIENT

r rbac:ROLE_PERMISSION_ASSIGNABLE rrblc DRA_FULL

[J Annotations

Property |

Value | Lang |

rdfs:comment

¥ € & pacroie

rbac:action

¢ e

@ read

thac:JUNMIOR_STAFF_DOCTOR

rbac:abject_type LR S
H ® COMPUTER
=
Asserted Types b Q.
rban ROLE_PERMISSION_ASSIGNABLE
rbac DRA,_FULL
s 8 3 @

Figure 107: DRA_FULL at Stage 2, having been populated in Step 2.

Figure 107 shows DRA_FULL after it has been populated in
DOCTOR_read_COMPUTER is highlighted. This individual is in

represents an inferred role-denial assignment.

Step 2. The individual JUNIOR_STAFF_
DRA_FULL, but not in DRA, because it

File Edit Project OWL Reasoning Code Tools
[=2 ot B s

Window Collaboration

T <«

Help

<€pmrégé

For Project: @ RBAC_FULL_smal_populated_stage_2

Class Hierarchy

ol Thing
» QBJECT_INSTANCE
v rhac RBAC
thac ACTION (2)
» rhac: Class
v rbac: PERMISSION_ASSIGN
v rbac ROLE_PERMISSION_ASSIGNABLE (50)
rhac:DRA (5)
rhac:DRA_FULL (15
rhacPRA (207
rhac:PRA_FULL (491
rbac: USER_PERMISSION_ASSIGNABLE (150)
thac: DENIED
rhac:NOT_DENIED
v thac:PERMITTABLE
rbac AUTHORIZABLE
rbac: PERMITTED
rhac AUTHORIZED

v

v

rbac:USER
thacISER_SESSION (1)
> reif:Property (40

> rdfs:Class (317

» syerlacErtity

Yy

| @ Meladala(RBAC_FULL.owl) | | OWLClasses | W Properties | 4 Individuals | = Forms |

Asserted | Inferred
Asserted Instances - ¥ @ X C

INSTANCE BROWSER INDIVIDUAL EDITOR for CONSULTAN ead_ROOM
»
For Class: rbacPRA_FULL Individual

(instance of rbac:ROLE_PERMISSIO

hitp: fiwww cgce net/Ontology REAC_FULL owl#CONSULTANT _read_ROOM

o &g (B

@ CONSULTANT read_COMPUTER -
@ CONSULTANT read_PATENT

@ CONSULTANT read_ROOM

@ CONSULTANT read_VITAL_SIGN

@ CONSULTANT read_VWARD

@ CONSULTANT _write_PATIENT

@ CONSULTANT write_ROOM

@ CONSULTANT _werite_VITAL_SIGN

@ JUNOR_STAFF_DOCTOR _read_PATIENT

@ JUNOR_STAFF_DOCTOR read_ROCM

@ JUNIOR_STAFF_DOCTOR_read_wITAL_SIGN
@ JUNIOR_STAFF_DOCTOR_resd_VWARD

@ SERIOR_NURSE read_PATIENT

4 SENIOR_NURSE_read_ROOM

@ SENIOR_NURSE_resd_VITAL_SIGN

@ SENIOR_NURSE_read_WaRD

[rbac:ROLE_PERMISSION_ASSIGNABLE | rbac:DRA_FULL | rbac:DRA | rbac:PRA_FULL |

[[J Annotations

Property T

Value | Lang |

rdfs:.comment

‘? Q; %. rbacirole

rbac:action

¢ oo

@ read

| |v‘

rhacCOMNSULTAMT

@ SENICOR_NURSE_write_PATENT =]
rbac:object_type ¢ e
‘ | ‘E ROOM
&

Asserted Types @

rhar:ROLE_PERMISSION_ASSICHABLE

rbao:DRA

rhacPRA_FLULL

=
rhac:DRA,_FULL & B

Figure 108: PRA_FULL at Stage 2, having been populated in Step 2.

Figure 108 shows PRA_FULL after Step 2 has run. This class is analogous to DRA_FULL.

176

6.8.2.3 Stage 3

Eile Edit Project OWL Reasoning Code Tools Window Collaboration Help

Ohe of < ﬂpmtégé

B ey

| @ Metadsta(REAC_FULL owl) | OWiClasses | W Properties | 4p Individuals | = Forms |
NDIVIDUAL EDITOR for junio
For Project: @ RBAC_FULL_smal_populated_stage 3 Y For Class: rbac:DENIED r Individual
o . Asacrtcd | RN (Tbac:DENED | rbac:USER_PERMISSION_ASSIGNABLE
Class Hierarchy - !
awi Thing Asserted Instances -4 e xXG j g * [B) Annotations
b @ OBJECT_INSTANCE @ consullant_1_CONSULTANT _read_raom_1 - 5 e
v thacRBAC = roperty | Value | Lang |
Q consultant_1 _CONSULTANT write_ward_1 rdfs.commert —
rhac ACTION (2)
0 consultant_2_ COMSULTANT read_room_1
P &% thacClass @ consultant_2_CONSULTANT _write_ward_1
¥ @ roacPERMISSION_ASSIGN @ juricr_staff_doctor_1_JUNIOR_STAFF_DOCTOR| %
¥ @ rbacROLE_PERMISSION_ASSIGNABLE (50) @ iurior taff octor 1 JNIOR_STAFF DOCTOR|
rhacDRA (5) @ junicr_staff_doctor_1_JUNOR_STAFF_DOCTOR
rbac:DRA_FULL (13) @ iunior_staff_doctor_2_JUNIOR_STAFF_DOCTOR
rhacPRA (20) @ junior_staff_dactor_2_JUNIOR_STAFF_DOCTOR| | B2
rhac:PRA_FULL (49) @ iuricr_staff_doctor_2_JUMIOR_STAFF_DOCTOR,
¥ © roacUSER_PERMISSION_ASSIGNABLE (180) @ iunior_staff_dactor_3_JUNIOR_STAFF_DOCTOR, rbac:action ¢ee o ¢ e
(e EENED () 4 Junior _stalf_toctor_3_JUMIOR_STAFF_DOCTOR & write rhac-JUNIOR_STAFF_DOCTOR
rhac:NOT_DENED @ iunicr_staft_doctor_3_JUMIOR_STAFF_DOCTOR b
¥ @ rhacPERMITTABLE (35) @ senion_nurse_1_SENIOR_NURSE _read_ward_1
thac: AUTHORIZABLE 0 senior_nurse_2_SENIOR_MNURSE _read_ward_1
¥ @ roacPERMITTED @ senior_staff_doctor_1_SENIOR_STAFF_DOCTON
thac: ALUTHORIZED @ senior_staff_doctor_1_SENIOR_STAFF_DOCTOR o |
¥ @ roaclEER 4 7 T¥] ||| reac:obiect.instance ¢ & & pocuser ¢ o
> rhac:ROLE @ ward_1 @ junior_staf?_dactor_1
¥ @ roaciUSER_SESSION (1) ‘
thac: ACTIVE_LISER_SESSION (7)
B refPraperty (40) Asserted Types LG
»> rdfs:Class (51) rhac: DENIED
> swrlaEntity rbac: USER_PERMISSION_ASSIGHNABLE
| EENC T —

Figure 109: DENIED at Stage 3.

Figure 109 shows DENIED after Step 3 has populated it from USER_PERMISSION_ASSIGNABLE and
DRA_FULL. Thus the individual highlighted also belongs to USER_PERMISSION_ASSIGNABLE.

File Edt Projct OWL FReasoning Code Tools Window Collaboration Help

Oe S @pmtégé

[@ Wetadata(REAC_FULLowl) | OWLClasses | BN Properties | 4 Individusls | = Forms |

B twed

INDIVIDUAL EDITOR +=F T
For Proj & RBAC_FULL_small_populated_stage_3 Y For Class: rbac:PERMITTABLE H For Individual
Class Hierarchy ({ Awmerted R
ol Thing Asserted Instances r¥exXE

» OBJECT_IMSTANCE & conzuttant_1_CONSULTANT read_computer_1 = |
¥ () rbacRBAC @ consuttant_1_CONSULTANT read_patient_1
thacACTION (2) & consultant_1_CONSULTANT read_room_1 :
> thaciClass & cansuttant_1_COMSULTANT read_vital_sign_1 ||
¥ (0 rbac:PERMISSION_ASSIGN o consultant_1_CONSULTANT read_ward_1
¥ @ rbac:ROLE_PERMISSION_8SSIGNABLE (50) @ consulant_1_CONSULTANT wrile_patient_1
thaciDRA (5) @ oonsultant_1_COMSULTANT write_room_1
rbacDRA_FULL 13) o consultant_1_CONSULTANT write_vital_sign_1
rhacPRA (20) 4 consultant_2_COMSULTANT read_computer_1
thacPRA_FULL (45) @ oonsultant_2_COMSULTANT read_patient_1
¥ @ rhacUSER_PERMISSION_ASSIGNABLE (180) @ consulant_2_CONSULTANT read_room_1
rhac:DENIED (36) @ cansuttant_2_COMSULTANT read_vital_sign_1 b
thacNOT_DEMED 4 consultant_2_CONSULTANT read_ward_1
¥ [rhaciPERMITTABLE (95) & consultant_2_CONSULTANT _write_patient_1
rbac: AUTHORIZABLE o consultant_2_CONSULTANT _write_room_1
v thac:PERMITTED 4 consultant_2_CONSULTANT write_vital_sign_1
thac AUTHORIZED @ junior_starf_doctor_1_JUNIOR_STAFF_DOCTOR
v O rhacUSER

» @ rbacROLE A1 ‘ I
¥ @ rhacUSER_SESSION (1) ‘ H 8
thac: ACTIVE_UISER_SESSION (7)

a
»> rf:Property (40) Asserted Types &b =
» rifsClass (31)
»> syerlacEntity
| EENL s s

Figure 110: PERMITTABLE at Stage 3.

Figure 110 shows PERMITTABLE after Step 3 has run. Step 3 has populated it from USER_PERMISSION_
ASSIGNABLE and PRA _FULL. Note that no individual is highlighted in this screenshot.

177

6.8.2.4 Stage 4

File Edt Preject OWL Reasoning Code Tools Window Colaboration Help
DeE tBE sa @v 3 ar <G protégé

| @ Metadala(RBAC_FULLowl) | | OWLClasses | B Properties | 4 Individuals | = Forms |

INSTANCE BROWSER
L

INDIVIDUAL EDITOR for consulta

L

For Proje @ RBAC_FULL_small_populated_stage_4 For Class: rbac:NOT_DENIED For Individual: |Htp dwww . cgce netiOntology/RBAC_FULL .owl# ZEREIENR SULTANT read_vital_sign 1
Class Hierarchy Anserted | EIRIER [TbacPERMITTABLE | rhac:USER_PERMISSION_ASSIGNABLE | rbaciNOT_DENED

ol Thing Asserted Instances - ¥ e XG j ﬂ? . [| [J) Annotations
b) OBJECT_IMSTANCE @ consultant_1_CONSULTANT read_computer_1 |~ EomECH [Vale [Long |
¥ @ riacRBAC @ consultant_1_CONSLLTANT read_patiert_{ P —" .

rhac:ACTION (2) @ consultant_1_CONSULTANT read vital_sign 1
b o thaciClass @ consullant_1_CONSLLTANT_read_ward_1
¥ @ rbacPERMISSION_ASSIGN @ consultant_1_CONSULTANT _write_computer_1
v @ rbacROLE_PERMISSION_ASSIGNABLE (50) & consulant_1_CONSLLTANT i satient_{
roac:DRA (5) @ consuttant_1_CONSLLTANT _write_room_1
rhacDRA_FULL (13) @ consultant_1_CONSULTANT _vrite_vital_sign_1
rhac:PRA (20) @ consultant_2_CONSULTANT read_computer_1
roacPRA_FULL (43) @ consultant 2 CONSULTANT read_petiert_1

¥ @ rhacUSER_PERMISSION_ASSIGNABLE (160 @ consullart_2_CONSLLTANT resd_vial_sign_t rbac:action ¥ &€ ook LR S
roacDENED (36) @ consultant_2_CONSULTANT read_ward_1 & read i CONSLLTANT
rbac:NOT_DENED: (144 @ consulant_2_CONSULTANT write_computer_{

¥ (0 rbacPERMITTABLE (25) @ consultant_2_COMSULTANT write_patient_1

rhac: AUTHORIZABLE

4 consultant_2_CONSULTANT _write_room_1
v @ rthacPERMITTED (22

Q consultant_2_CONSULTANT _write_vital_sign_1

rhac AUTHORIZED @ iurior_statf_dactor 1_JUNIOR_STAFF_DOCTOR | b
> thac:USER 4] Tv] ||| rbac:object_instance L3 Q}: * baciuser L 4 Q; <
> (0 rbacUSER_SESSION (1) = @ vita_sion_t @ consutant_2
> rdf-Property (401] H &
> ridfsClass (31) =
»> swerlaEntity Asserted Types Gt)
vbac: PERMITT ABLE
rbac NOT_DENED
rbac: USER_PERMISSION_ASSIGNABLE =
| o = B &

Figure 111: NOT_DENIED at Stage 4.

Figure 111 shows the results of populating NOT_DENIED in Step 4. Although each individual’s membership of
this class is defined many times due to the way the populating rule runs (as discussed earlier) each individual still

appears only once in the Protégé window.

Eile Edit Project OWL Reasoning Code Tools Window Collaboration Help

DM +tEE mdad ¢ ar @protégé

| @ Metadzta(RBAC_FULLowl) | OWLClasses | B Properties | 4 Individuals | = Forms |
N INSTANCE BROWSER
@ RBAC_FULL_small_populated_stage_4 For Class: rbac:PERMITTED For Individual: | w.cgce.net/Ontology/RBAC_FULL .owli# e [l ers tg B g = o LYWy JiwTeTey [T CR e g |
Class Hierarchy Asserted [[inferred [Tbac:PERMITTABLE |/ rbac:NOT_DENED | rbaciPERMITTED | rbac:USER_PERMISSION_ASSIGNABLE |
aw Thing Asserted Instances - ¥ @ XG j ﬂg * [[H .
b @) OBJECT_NSTANCE [J Annotations
- @ consuitant_1_CONSULTANT read_computer_1 |~
¥ @ thacRBAC = Property I Value [Lang |
‘ consutant_1_CONSULTAMT read_patisnt_1 —
thac ACTION (7 rdfs:comment
Q consultant_1_CONSULTANT _read_room_1
B &% rhac.Class @ consuftant_1_CONSULTANT _read _vital_sign_1
¥ @ rbacPERMISSION_ASSIGN @ consultant_1_CONSULTANT resd_ward_1
v @ rbacROLE_PERMISSION_ASSIGNABLE (50) @ consuant_1_CONSULTANT wte_patisrt_1
roacDRA (5) @ consutart_1_CONSULTANT write_room 1 :
rhac:DRA_FULL (13) @ consultant_1_CONSULTANT_write_vital_sign_1 |
rhac:PRA (20) @ specialist_doctor_1_SPECIALIST_DOCTOR read) =
rac PRA_FLLL (45) @ specislist_doctor_1_SPECIALIST_DOCTOR read] P S
¥ @ thacUSER_PERMISSION_ASSIGNABLE (100) @ specislst_daclor_1_SPECIALIST DOCTOR _read rbac:action * & pacrole L
rac:DENED (36) @ specialist_doctor_1_SPECIALIST_DOCTOR read| & write rbac: SPECIALIST_DOCTOR
roac:NGT_DENED (144) @ specialist_doctor_1_SPECIALIST_DOCTOR reac| | b
¥ @ rhacPERMITTABLE (35) @ specislist_doctor_1_SPECIALIST_DOCTOR it
rhac: AUTHORIZABLE @ specialist_doctor_1_SPECIALIST_DOCTOR _writ
hl | CEEFEIED (27 @ specialist_doctor_1_SPECIALIST_DOCTOR _writ
thac: AUTHORIZED @ snecislist_doctor_1_SPECIALIST_DOCTOR _writs =
> rhac:ISER ‘| 3 | rbac:object_instance é Q: t- rbac:user & Q: %-
> thac:USER_SESSION (1) 4 computer_1 4 =pecialist_doctor_1
B rdfProperty (40)
» rifsClass (31)
» @ swraEntity Asserted Types
vhac PERMITT ABLE
rhac NOT_DENED
thac PERMITTED =
| H i} rhac:USER_PERMISSION_ASSIGNABLE b 8 =

Figure 112: PERMITTED at Stage 4.

Figure 112 shows the results of populating PERMITTED in Step 4. As well as being a member of
PERMITTABLE and USER_PERMISSION_ASSIGNABLE (as is necessary for membership of PERMITTED), the
highlighted individual also belongs to NOT_DENIED. At Stage 4, every individual in USER_PERMISSION_
ASSIGNABLE, PERMITTABLE and PERMITTED will belong to either DENIED or NOT_DENIED.

178

6.8.2.5 Stage 5

Eile

DR -+

Edt Project OWL Reasoning Code Tools

@B ey P

Window Collaboration

o[a9

Help

%protégé

| @ Wetadata(REAC_FULLowl) | OWLClasses | I P

For Proje

@ RBAC_FULL_small_populated_stage_5_final

Class Hierarchy

owl Thing
> OBJECT _INSTAMCE
v thac:RBAC
thac ACTION [2)
» rhac:Class
v rbac PERMISSION _ASSIGH
v thac:ROLE_PERMIZSION_ASSIGHNABLE (50)
rhac:DRA [5)
rhac:DRA_FULL (13
rhac:PRA (20)
thac:PRA_FULL (49)
v rhac:USER_PERMIZSION_ASEIGHABLE (1501

roperties r‘ Indivicuals r/ = Forms ‘

INSTANCE BROWSER

For Class:
Asserted | Inferred

Asserted Instances

rbac: AUTHORIZABLE

- ¥ e X ¢

@ consultant_1_CONSULTANT _read_computer_1
‘ consultant_1_COMSULTAMT reac_patient_1
Q consultant_1_COMSULTANT read_wital_sign_1
@ consultant_1_CONSULTANT read_ward_1

0 consultant_1_CONSULTANT write_patient_1
& consultant_1_CONSULTANT write_room_1

‘ consultant_1_COMSULTAMT write_vital_sign_1
4 consultant_2_CONSULTANT read_computer 1
@ consultant_2_CONSULTANT read_patiert_1
0 consultant_2_CONSULTANT _read_vital _sign_1
& consultant_2_CONSULTANT read_ward_1

W

rbac: AUTHORIZED | ri

c:PERMITTABLE | rl

AUTHORIZABLE

rhi IOT_DENIED

FF g [0

|7 rbacPERMITTED i

rbac:USER_PERMISSION_ASSIGNABLE

[*J Annotations

Property

Value

[Leng |

rdfs:comment

-

rac:DEMED (36) @ consulant_2_DOMSULTANT write_patient_1 rbac:action ¢ &% oo A
rbac:NOT_DENED (144) @ consultant_2_CONSULTANT _write_room_1 & e o CONSLLTANT
¥V @ rbacPERMITTABLE (35) @ consultant_2_COMSULTANT _write_vital_sign_{
B AR ELE (7 4 iuniar_staff_cactor 1 _JUNIOR_STAFF_DOCTOR,
V¥ @ rosc PERMITTED (22) 4 junior_staif_doctor_1_JUMIOR_STAFF_DOCTOR
rhac: AUTHORIZED (19) @ iuniar_staff_dactor 1 _JUNIOR_STAFF_DOCTOR |
b @ rbecUSER Al ol
b @ rac USER_SESSION (1) tbacobject instance % . & rbaciuser ¢ e
» rdf:Property (40) ‘ @ vital_sign_1 @ consultant_1
B rdtsclass (31 =
» swrla: Entity Asserted Types Lt -
Yhac:NOT_DENED: -
thac; PERMITTABLE E =
s AUTHORIZABLE | =
‘ || 8 |5 rbac aUTHORIZED Hls B & &

Figure 113: AUTHORIZABLE at Stage 5.

Figure 113 shows AUTHORIZABLE after Step 5. All individuals belonging to AUTHORIZABLE must by

definition belong to

the

other three

types

listed

USER_PERMISSION_ASSIGNABLE and NOT_DENIED).

for

this

individual

(PERMITTABLE,

File

DerE +

Edt Project OWL Reasoning Code Tools

[)
B oedy &

‘Window Collaboration

™ <

Help

<épmrégé

For Proj @ RBAC_FULL_small_populated_stage_5_final

Class Hierarchy
el Thing
> OBJECT_INSTANCE
v rhacRBAC
rhac ACTION [2)
B 2 rhac:Class
v rhac:PERMISSION_ASSIGH
v thac:ROLE_PERMISSION_ASSIGNABLE (50)
rhac:DRA (51
thac:DRA_FULL (131
rhac:PRA, (20
thacPRA_FULL (42)
v thac USER_PERMISSION_ASSIGNABLE (1507

| @ Metadata(RBAC_FULL.owl) | OWLClasses | I Properties | 4 Individuals | = Forms |

INSTANCE BROWSER

For Class
| Asserted | Inferred

Assgerted Instances

rbac: AUTHORIZED

> & @ X ¢

Q consultant_1_CONSULTANT read_computer_1
4 consultant_1_CONSULTANT read_patient 1

Q consultant_1_CONSULTANT _read_vital_sian_1
4 consultant_1_CONSULTANT read _ward_1

@ consultant_1_CONSULTANT write_patient_1

Q consultant_1_CONSULTAMNT _write_room_1

4 consultant_1_CONSULTANT _write_vital_sign_1
Q specialist_doctor_1_SPECIALIST_DOCTOR_read
@ specialist_doctor_1_SPECIALIST_DOCTOR read)
@ specialist_doctor_1_SPECIALIST_DOCTOR read
Q specialist_doctor_1_SPECIALIST_DOCTOR_read

-

F

INDIVIDUAL EDITOR for specialist_doctor
Hitp:itwww . cgce net/Ontology/RBAC_FULL .owld TEEaE E e et

PECIALIST_DOCTOR _writ

rbac:AUTHORIZED | rbac:PERMITTABLE | rbaci AUTHORIZABLE |

rbac:NOT_DENIED

G el [

|7 rbacPERMITTED e

rbac:USER_PERMISSION_ASSIGNABLE

[J Annotations

Property

Value

‘ Lang ‘

rdfs:comment

rbac:DENED (36) 4 spocislist_doctor_{_SPECIALIST_DOCTOR,read rbac:action €&+ oo o
rhac:NOT_DENIED (144) @ specialist_doctor_1_SPECIALIST_DOCTOR _writ & e thac; SPECIALIST_DOCTOR
¥ @ rbac:PERMITTABLE (55) @ specislist_doctor 1_SPECIALIST DOCTOR, wri
s ALTHORIZABLE (79) 4 specisist_doctor_{_SPECIALIST_DOCTOR ity
¥ @ oo PERMITTED [22) 4 specialist_doctor_1_SPECIALIST_DOCTOR i
rha. AUTHERIZED (19) 4 staff_nurse_2_STAFF_MURSE_read_patieni_1 ||
» rhac:USER 7] | | ‘ Y |—
b @ rbacUISER_SESSION (1) rbac:object_instance ¥ 4= rbaciuser ¢ o
[3 relf:Property (4071 | "|] ‘ rootn_1 . specialist_doctor_1
> rdfsiClags (310
> swerla Ertity Asserted Types Gt 5 =
o NOT_DENIED -
rhac:PERMITT ABLE & —
rhac: AUTHORIZABLE 1 & =
| -] ® rbac: AUTHORIZED | & B %

Figure 114: AUTHORIZED at Stage 5.

Figure 114 shows AUTHORIZED after Step 5. Again, any individual in AUTHORIZED must also be a member
of AUTHORIZABLE, PERMITTABLE, USER_PERMISSION_ASSIGNABLE and NOT_DENIED.

179

6.9 Conclusion
In this chapter we have created and tested ESO-RBAC, which builds on SO-RBAC to create a purely ontological

context-aware RBAC model written in OWL-Full. The reasoning is performed using Jena, since SWRL and Protégé

cannot reason on OWL-Full ontologies.

We have proved that it is feasible to move towards semantic modelling of access control in terms of using rules
which control permissions dynamically and take into account context-awareness of software applications which reside
in pervasive computational spaces. However, ESO-RBAC has still not managed to fully address access control that
assigns permissions according to situations created by pervasiveness of environments and computational spaces where

applications and their data reside.

As ESO-RBAC is written in OWL, it has the same issues for negation and axiom reasoning as SO-RBAC, as
described in Section 5.8. That is, negation has to be simulated, and each potential axiom needs to be explicitly defined

as an individual. This means that reasoning is, as with SO-RBAC, a time-consuming process in ESO-RBAC.

However, because ESO-RBAC uses OWL-Full, and so is able to use the OWL class hierarchy in defining
hierarchies of roles in an object-oriented fashion, by exploiting the class-individual duality of OWL-Full. That is, roles
are defined as OWL classes. A role is defined as a ‘type of” another role by sub-classing. A user is defined as being in a
role by the USER individual being a member of the ROLE class. This approach contrasts ESO-RBAC with both
predicate logic and SO-RBAC, and provides the major benefit of implementing RBAC in the Semantic Web, which is
that hierarchies are defined natively in OWL.

However, Jena cannot work on inferred axioms, so it cannot identify an individual as belonging to a sub-class of
a class, and nor can it see relationships defined for sub-properties. This means that in ESO-RBAC certain additional
properties had to be defined to create instances that represent properties that are supposed to be inferred, such as
recursive sub-classing. This is a flaw in the reasoner, rather than in OWL-Full itself, and a properly constituted OWL-

Full reasoner would not have this problem.

Test results indicate that ESO-RBAC was successful in building a purely ontological dynamic RBAC model both
the static and dynamic components of the model produced results that were consistent with the model based on
predicate logic and with SO-RBAC (for the static component, as no dynamic rules were implemented in SO-RBAC). It
is hoped that reasoning tools will be developed for OWL-Full that allow ESO-RBAC to be run without the workarounds
that were found to be necessary in this testing. Beyond this, further work will be to develop the dynamic RBAC features
in the ESO-RBAC model, for instance to introduce a context constraint hierarchy (using the OWL class hierarchy, as
with roles), and to use heuristic rules to generate new context constraints dynamically. These are further discussed in

Section 7.2.3.

180

7 Conclusion

7.1 Summary of Research

Predicate logic is useful for modelling access control to data, using logical rules based on a set of facts, and has
been used to describe various access control models including Role-Based Access Control (RBAC). In this research,
predicate logic is used throughout this research as the basis for implementing an RBAC model, based on the work of
Barker & Stuckey [18] and Strembeck & Neumann [20][21], in Prolog, in a relational database management system
(RDBMS) and in ontologies.

The RBAC model has the following RBAC features discussed by Barker & Stuckey [18]. Static RBAC governs

access to data based only on the type of data (e.g. all data about patients, or about rooms in a hospital).

« User-Role Assignment, Role-Permission Assignment: This is the basic concept of RBAC, in which users are
assigned to roles, and roles are assigned to permissions. In this way, the access that a user has to data is

determined by the roles to which the user is assigned. Users are not assigned permissions directly.

* Role-Denial Assignment: This is the opposite of Role-Permission Assignment: roles are specifically denied
access to data. Denials override permissions, so if a user is both permitted and denied access to data through

different role assignments, then the user cannot access the object.

« Seniority: Roles are related to each other through a seniority hierarchy, and inherit permissions and denials
depending on their position in the hierarchy. Permissions are inherited up the seniority hierarchy, while denials

are inherited down it.

« Role inclusion: This is also a hierarchy of roles, but is separate from the seniority hierarchy. It defines a role as
being a type of another role; for example, defining a 'junior doctor' as a type of 'doctor'. Unlike in the seniority
hierarchy, permissions and denials are both inherited in the same direction in the inclusion hierarchy, towards

included roles.

« Path inheritance: This is used for limiting the inheritance of permissions up the seniority hierarchy above

certain levels.

It is often necessary to give users access to specific data in a data set, or only in specific circumstances; for
example, a doctor only accessing data about patients he consults, or only having access at specific times of the day. This
is known as dynamic RBAC. In this research, dynamic RBAC is implemented using a model devised by Strembeck &
Neumann, [20][21] using context constraints which selectively prevent access to data according to rules. Context

constraints, like denials, are inherited down the seniority hierarchy.

7.1.1 Modelling RBAC in Prolog

The model was first implemented in Prolog facts and rules. The data relating to user-role assignments and role-
permission assignments, and dynamic context constraints, are codified in Prolog facts. Prolog rules are used to
computationally determine whether users have access to data based on the facts. Each time we wish to determine
whether a user should have access to data, a process is run on the base of Prolog facts to determine the permissions or

denials. We used SWI-Prolog to implement and test the RBAC model.

181

7.1.2 Modelling RBAC in RDBMS
The Prolog model of RBAC was then applied to an RDBMS (Oracle 10g) using two different methods. The first

method offers a much simpler way of translating the Prolog facts and rules into RDBMS concepts. The second approach
provides greater security than the first by taking advantage of the inherent security features of the RDBMS. Each of

these is explained in the two paragraphs below.

In the first method, the Prolog facts relating to user access are stored as records in database tables. The tables
holding RBAC data are in the same database as the data over which we run RBAC, but probably in a different schema.
The Prolog rules for RBAC are written either as database views using SQL upon the RBAC schema, or implemented as
triggers on the tables from the RBAC schema, using the PL/SQL procedural database programming language. This is
because some Prolog rules in the RBAC model use recursion, which current SQL does not handle. Using this method,
all aspects of the RBAC models can be implemented, and the RBAC can be determined by issuing standard SQL
queries on RBAC schema tables. This approach can be used to provide access control at the application level. It is
important to note that at the database level, the application always accesses the data using one user ID, which is likely to
be locked to accessing data from the application interfaces. The application would pass the user ID of the person who is
logged into it as a parameter to the database when the user attempts to access data, and this would form part of the
query to determine whether the application-level user gains the access. Furthermore, we can easily program both static
and dynamic RBAC at the application level because the rules for both can easily be translated into either SQL views or

PL/SQL (or equivalent) procedures.

The second method of implementing RBAC on a relational database provides access control at the database
level by using the meta-data (or data dictionary) of the RDBMS. In this method, we have to distinguish between static
and dynamic RBAC. The static RBAC was mostly implemented using standard SQL CREATE ROLE, CREATE USER
and GRANT commands. However, while RBAC permissions can be implemented this way, denials cannot be so
implemented because GRANT is only a positive granting of permission: there is no negative authorisation in SQL access
control syntax. The dynamic RBAC was then implemented using Oracle's Virtual Private Databases (also called Row-
Level Access Control) feature. [S8] We found that most, but not all, of the features of the RBAC model could be
implemented. We could not implement path inheritance restrictions. However, denials can be implemented using this
feature, because a rule can be set up such that a role is denied access to data in a table even if given access to it via a
GRANT command. The implementation of dynamic RBAC is product-specific, as it is not part of the SQL standard.
Postgres has a feature called VEIL [66] that also implements dynamic RBAC, but its syntax is different from that of
Oracle VPD. By contrast, the static RBAC implementation uses standard SQL commands, and is likely to be very
similar across RDBMSs, although some, such as MySQL, do not support RBAC in their data dictionary.

It is not appropriate to compare these two methods and give recommendations that one should be used instead of
another. The first method can implement all aspects of the RBAC model. The second method cannot implement all
features of the model. In particular, it could not implement the path inheritance restrictions, as there is no provision for
limiting preventing privileges from being inherited by roles in the Oracle 10g data dictionary. The implementation using
the second method is specific to the RDBMS, while the first method can be implemented similarly across all DBMSs,

since it uses standard SQL and straightforward trigger procedures.

182

7.1.3 Modelling RBAC in OWL
In OWL/SWRL enabled ontologies we have managed to translate Prolog facts and rules into OWL/SWRL

concepts. It is important to note that there are three versions of OWL. OWL-Lite was considered to be too limited for
use in defining an RBAC model. RBAC models were developed in OWL-DL and OWL-Full. OWL-Full is more
expressive than OWL-DL in that it can fully express RDF syntax; it allows classes to be manipulated as individuals,

which OWL-DL does not.
We started with OWL-DL for two reasons. OWL-DL is better supported by reasoners than OWL-Full, and it is

sufficient to demonstrate the concept of building an RBAC model in OWL. However, if we really wanted to take
advantage of the power of OWL ontologies, we had to move to OWL-Full, which unfortunately is not widely supported
by reasoners. In this research, we have demonstrated how both OWL-DL and OWL-Full can be used for managing
RBAC, and it remains to be seen if future development of reasoners will open more options in RBAC through OWL-
Full.

7.1.3.1 SO-RBAC in OWL-DL

The OWL-DL ontology was programmed using Protégé [24]. Within Protégé, relationships from some logical

characteristics of OWL properties (symmetry and inversity, but not transitivity) can be inferred.

Initially, the Prolog facts and rules for RBAC were translated into OWL individuals, classes and properties with
little change in semantics of the original Prolog RBAC model. We still have facts and rules from Prolog in
OWL/SWRL-enabled ontologies. The Prolog facts became either individuals bound to classes, or object properties, in
the OWL ontology. The Prolog rules were translated into SWRL rules, which were run upon the OWL ontology.
However, a few Prolog rules do not need to be represented as SWRL rules in SO-RBAC, because they can be
represented through the property hierarchy, allowing some object property relationships to be inferred.

Some of the rules in Prolog are recursive. In theory, the need for recursive rules in ontologies, defining
relationships between roles using object properties, should have been climinated by defining object properties as
transitive. However, Protégé does not infer properties based on transitivity. Therefore, these recursive SWRL rules still
have to be defined.

It is important to note that we used SWRL for two separate purposes in SO-RBAC. In principle, every fact in
Prolog can be represented as an individual of a class in OWL. However, facts representing binary relationships between
individuals can be represented using object properties in OWL, which is a natural choice. We give two examples.

(a) The direct seniority fact d s (manager, worker) is represented in OWL using a directly_senior_to
property linking (OWL constraints) the USER individuals manager and worker.

(b) The binary relationship of user-role assignment (ura facts in Prolog, e.g. ura (john, doctor)) is, in
contrast, represented using individuals in a class in OWL (URA) to maintain the analogy with permission-role
assignment (pra facts in Prolog, e.g. pra (doctor, write, patient), which is a ternary relationship
and therefore has to be represented by a class (PRA) in OWL.

All facts represented in the SO-RBAC model by object properties (method (a) above) link one role to another in
the RBAC model. We used SWRL in both cases, because they define constraints upon the OWL model. They are

prerequisites for running reasoning rules that ultimately grant permissions and denials.

183

In this thesis, the implementation in OWL-DL is only shown for static RBAC. Dynamic RBAC can be
implemented in SO-RBAC using OWL-DL, with additional OWL classes and SWRL rules to address the context
constraints. The reasoning process for dynamic RBAC would, like the reasoning process granting permissions and

denials in static RBAC, be a direct translation from the Prolog implementation in Section 3.3.

Many reasoners have been implemented for OWL-DL, making it easy to create and test an ontology in this
version of OWL. However, the OWL-DL implementation of SO-RBAC largely follows the predicate logic
implementation, which was predetermined by the Prolog RBAC model. Therefore, we were unable to take advantage of
the native features of OWL, such as the direct modelling of a role hierarchy using the OWL class hierarchy. This has
been addressed in OWL-Full, which is used for modelling ESO-RBAC.

7.1.3.2 ESO-RBAC in OWL-Full
We have implemented static and dynamic RBAC using OWL-Full. This RBAC model is named ESO-RBAC.

OWL-Full makes it much easier to design an RBAC model natively in OWL. This is because it can take full advantage
of the OWL class hierarchy, so that OWL sub-classes can be used to define RBAC role inclusion, rather than having to

define separate object properties and use SWRL for it as in (b) from the previous section.

OWL-Full has class-individual duality, which means that it allows classes to be manipulated by reasoning rules
as if they were individuals. This is clearly an advantage, because it allows inference at two different levels: at the level
of individuals when copying them through reasoning rules across ontological classes, and at the class level where the
initial hierarchies of OWL classes can be extended through reasoning. However, there was no need to exploit OWL at
this level in ESO-RBAC, but we instead manipulated the object properties of classes as if these were individuals. Thus,
in ESO-RBAC, the relationship between roles and sub-roles, which are OWL classes, can be implemented naturally in
OWL-Full. Additionally, the relationship of a user to a role can be defined simply by defining the user as an individual
that is a type of a particular ROLE class, rather than using a separate URA class. This is also a ‘natural’ OWL-Full

implementation of the relationship between a role and a user, as defined in Prolog.

In ESO-RBAC, unlike in SO-RBAC, there is not a precise relationship between Prolog facts and OWL classes or
properties, or between Prolog rules and reasoning rules. As noted above, some Prolog facts are implemented as class-
individual memberships in OWL-Full, because of class-individual duality. Furthermore, in theory, some rules (for
example, the recursive rules relating to the RBAC concept of Role Inclusion) can be eliminated due to their

representation via the OWL-Full class hierarchy.

ESO-RBAC was tested by running reasoning rules in Jena (we did not use SWRL because it does not support
OWL-Full and cannot deal with class-individual duality). Jena follows the same semantics in terms of creating
reasoning rules as SWRL. It is important to note that we had to write additional reasoning rules when running Jena
compared with running reasoning rules in SWRL. This is because there is no Jena plug-in for Protégé that works on
OWL-Full.

Inverse relationships are used in the (E)SO-RBAC model to define inverse properties to directly_senior_to and
senior_to, respectively called directly junior_to and junior_to. The Protégé environment automatically fills in inverse

object property relationships. Thus, when a senior to relationship is defined between two individuals, the
corresponding inverse junior_to relationship is also defined. If r1 senior to r2 is defined, then because junior_to is

defined as inverse of senior_to, the triple r2 junior to r1 is also filled in.

184

The Jena rules were run outside of Protégé on the command line using a Java program that implements Jena.
Therefore, the Protégé environment was not available to infer the inverse relationships, and so in this ESO-RBAC

implementation using Jena, the properties directly junior_to and junior to have to be defined directly using Jena rules.

Furthermore, the SWRL plug-in for Protégé can identify indirect sub-classes (sub-classes of sub-classes), and
identifies an individual as a membership of a class if it is membership of any sub-class of this class. However, Jena does
not recognise either inferred sub-classing or inferred class membership, but only direct sub-classes and direct
membership of a class. Therefore, it was found to be necessary when using Jena in ESO-RBAC to define additional

rules to infer these relationships.

7.2 Evaluation

7.2.1 OWL in general

7.2.1.1 Concerns with OWL
Monotonicity in OWL

Unlike description logic, OWL is monotonic. This has two meanings in the context of an OWL ontology.

Persistence of Reasoning Results

First, reasoning places individuals into classes. In other words, individuals placed in a class in an OWL ontology
cannot be retracted by the reasoning process. The results of reasoning in OWL are always persistent. Therefore, running
the same reasoning process repeatedly upon the same instance of an ontology, when the data asserted upon initialisation
have changed, does not erase individuals from classes when the reasoning process based on the new data would not
move them there. From that perspective, we cannot expect that our reasoning process, which grants either permissions
or denials, can be re-run without first erasing individuals which had been moved to various classes as a result of
previous reasoning. In SO-RBAC and ESO-RBAC, every class contains either only asserted individuals or only inferred
individuals, thus making it simple to erase individuals where appropriate before any reasoning is performed. Similarly,
reasoning in OWL-Full can define a class (treated as an individual) as a sub-class of another class, but cannot break a

link in the class hierarchy.

Negation in OWL

Second, OWL uses an open-world assumption, in contrast to the closed-world assumption of DL systems. This
has implications for modelling negations in our RBAC models.

Negation is handled differently in predicate logic and OWL. Predicate logic uses closed-world reasoning, i.e.
‘negation as failure’, in which any query not proven to be true is taken to be false. Prolog has a function not, which
negates any predicate that it governs. However, there is no explicit negation function in SWRL, to indicate that an
object-property relationship does not occur between two individuals, or that an individual is not a member of a class.
OWL uses open-world reasoning, where something has to be explicitly asserted as being not true, and reasoning

languages do not have a negation function as such.
However, closed-world reasoning can be simulated in ontological reasoning languages. In SO-RBAC, this is
achieved using SQWRL (Semantic Query-enhanced Web Rule Language) functions makeSet and notElement to test

for the presence or absence of an individual in a set. The SQWRL function makeSet makes a set consisting of a list of

185

previously defined individuals. The SQWRL functions element and notElement respectively check whether a given
individual is, or is not, a member of a set. These two functions, in combination enables negation-as-failure to be used
with OWL and SWRL. This is explained as follows. We want the class NOT_DENIED to contain all elements in the
class USER_PERMISSION_ASSIGNABLE that are not in DENIED. This is done by first using makeSet to create a

set containing all individuals that are in the class DENIED, then using notElement to check that an individual is not a
member of that set.
rbac:USER_PERMISSION_ASSIGNABLE(?x) A rbac:DENIED(?y) °

sgwrl:makeSet(?d, ?y) ° sqwrl:notElement(?x, ?d) -
rbac:NOT_DENIED(?x)

The function notElement(?x, ?d) has to compare an individual ?x with each member of the set ?d to check that
?x is not in set ?d. This may be a time consuming process, if there is a large number of individuals in the set ?d.

Moreover, in this rule, notElement(?x, ?d) has to be run many times, once for each element ?x in the class

USER_PERMISSION_ASSIGNABLE. Therefore, this rule takes a long time to run.

In Jena, for ESO-RBAC, classical negation can achieved using the function novValue. The equivalent to the
above SWRL rule in Jena is as follows.

[4 not denied: (?x rdf:type rbac:NOT DENIED)
<_
(?x rdf:type rbac:USER PERMISSION ASSIGNABLE)
noValue (?x rdf:type rbac:DENIED)
1
This function checks whether individual ?x is in USER_PERMISSION_ASSIGNABLE, and is not in
DENIED, and if both conditions are satisfied, puts ?x in the class NOT_DENIED. The syntax for the negation is

simpler in Jena than in SWRL, because there is only one function (novValue) instead of two (makeSet and

notElement). However, the function novalue still needs to compare every ?x against every individual in the class
DENIED, so the negation process is still slow.

In summary, the lack of explicit classical negation in OWL means that this has to be simulated in the reasoning

languages, and this simulation process is slow.

We take the liberty to interpret the monotonicity of OWL as an advantage from a software engineering
perspective, because our ontologies will never grow as a consequence of repeatedly executed reasoning processes.
Repeated reasoning upon the same ontological model does not make our ontological solutions complex in terms of the
class hierarchy or in terms of the number of individuals. However, re-running the reasoning process on a changed data

set involves erasing the ontology and repopulating (and possibly rebuilding) it.

Populating OWL classes with individuals
In Prolog, a rule can be queried based on a dataset, and all axioms that apply to it are automatically returned.

Consider the following rule
pra_full (R1,A,0) :-
senior to(R1,R2),
pra(R2,A,0) .

This rule rpa full, when run, returns every combination of (R1, P, O) (axiom) identified by the antecedents
senior to and rpa. It should be noted that no new facts are created when a rule such as this is run in Prolog.

Instead, the axioms that meet the conditions of the rule are computed every time it is run. The axioms that meet the

186

antecedent predicates senior to and rpa may themselves be either computed through some other rule, or be stored

as facts.

In contrast, the OWL reasoning process can only move individuals that already exist. While new object property
relationships can be created, new individuals cannot. Each reasoning rule works on a base of individuals that have been
placed in a class, and object property relationships that have been created, and stored in the ontology. For example,
consider the equivalent SWRL rule to the above Prolog rule for rpa full:

PRA(?x) A role(?x, ?r1) A action(?x, ?a) A object_type(?x, ?0) A

senior_to(?r2, ?r1) A ROLE_PERMISSION_ASSIGNABLE(?z) A
role(?z, ?r2) A action(?z, ?a) A object_type(?z, 70) - PRA_FULL(?2)

Note that in SWRL, each of the properties of an individual need to be specified separately: there is no construct
similar to rpa full (R1,A,0) in OWL. In this SWRL rule, PRA, ROLE_PERMISSION_ASSIGNABLE and
PRA_FULL are classes. An individual ?z is added to the PRA_FULL class if it matches the rules in the antecedent.
However, the individual ?z, with the object properties specified in the antecedent, must already exist in the ontology if

it is to be moved to PRA_FULL. It is not created if it does not exist.

Therefore, all individuals representing potential permission states relating to a role, user, class and action need to
be created when setting up and populating the ontology. This can take a long time to do, due to the large number of
individuals that need to be created. In a model with 250 users, 10 roles, 2 actions and 700 objects in 10 object classes,
the numbers are as follows:

« 10x2x10=200 ROLE_PERMISSION_ASSIGNABLE individuals
« 250 x 2 x700=350,000 USER_PERMISSION_ASSIGNABLE individuals

If we add 5 dynamic context conditions, then the numbers of CONTEXT_CONSTRAINT_APPLICABLE and
CONTEXT_CONDITION_POTENTIAL individuals, in addition to those, are as follows:

« 10x2x10x5=1,000 CONTEXT_CONSTRAINT_APPLICABLE individuals
« 250 x2x700x5=1,750,000 CONTEXT_CONDITION_POTENTIAL individuals

It can be seen that the number of individuals that need to be created in the ontology before reasoning grows
quickly with increasing size of model in terms of roles, data and users. Because of this, the reasoning process takes a
long time to run. Even with the small models used in testing, it was necessary to perform chain reasoning, as running all
the reasoning steps at once was found to take far too long, and in some cases crashed. However, chain reasoning leads
to the creation of very large output files that need to be stored temporarily. But in a situation-aware system, where the
permissions depend on factors external to the data (such as time of day, or temperature), the reasoning process would

have to be performed, from some stage, with every query.

OWL Speed and Efficiency

We have identified two ways in which reasoning was slow. The first is in the rules used to perform negation, as
noted above. This problem cannot easily be solved. The second is that processing was found to be slow when running a
rule that reasons on individuals that had been moved in a previous rule, in the same process. To resolve this problem,
the reasoning was broken down into steps, with the ontology saved in a new file after each step, to be reasoned on in the

next step.

187

7.2.1.2 Advantages of OWL

Faster reasoning on persistence
If the permissions and data have not changed since reasoning was performed, then querying permissions

involves simply querying a static ontology, rather than running a computation, i.e. reasoning rules. Therefore, queries
on individuals, once reasoning has been performed, is likely to be faster in OWL than using predicate logic, because

predicate logic may query on views, while OWL always queries on stored data.

In SO-RBAC and ESO-RBAC, we propose performing the reasoning in stages. This is done for two reasons. It is
faster than doing it all at once, as detailed above. But also, it means that changes to the data and permission assignments
do not necessarily require a complete renewal of the ontology. Instead, the ontology can be reset to an earlier stage, and

the reasoning re-run from there.

Use of natural class and property hierarchy in OWL

A very common feature of RBAC, and one used in the model discussed in this thesis, is the use of role
hierarchies. There is no natural way of representing hierarchies in predicate logic. By contrast, the class hierarchy in
OWL means that OWL is naturally suited to representing hierarchies, without the need to define predicates that
explicitly do this.

Similarly, an inherent feature of RBAC is defining a user as a ‘member’ of a role. In predicate logic, this has to
be explicitly expressed using a predicate such as ura (user, role). Due to the limitations of OWL-DL, we also
found this to be necessary for the SO-RBAC model. However, in OWL-Full, it is possible to define users as individuals,
and roles as classes, and assign a user to a role by making the user individual a member of the role class. This means
that the relationship between the user and the role is represented in a way that is natural for OWL. The ability to use
classes and individuals interchangeably, and decide when we need constraints (as opposed to classes and individuals)
when describing a particular domain of interest, is a great advantage. In other words, OWL does not define what needs

to be an individual, class or constraint.

Similarly, the use of hierarchical classes and hierarchical property relationships means that many rules that are
necessary in predicate logic can be omitted from ontological reasoning languages. For example, the following Prolog
rule

senior to(Rl, R2) :- directly senior to(Rl, R2)

can be expressed in OWL by defining senior_to as a sub-property of directly_senior_to, and no reasoning rule

is necessary to define this. In theory, is should also be possible to eliminate all recursive rules in the reasoning language

by defining properties such as senior_to as transitive. However, the ontological building tool that we used (Protégé)
does not infer property relationships transitivity, and nor do either of the reasoning languages SWRL or Jena.
Additionally, Jena does not infer indirect sub-classes, which are used extensively in the OWL-FULL model ESO-
RBAC. The state of the art in ontological reasoning tools needs further development, particularly in OWL-FULL,
before the full power of ontological reasoning can be exploited. However, given the generic nature of the semantic web,

it should be possible to develop such reasoners; this is a matter for further research.

The inference mechanism in OWL and SWRL/Jena is more thus powerful than that of predicate logic. Static
ontologies can be queried quickly; the data obtained by the reasoning process are reusable: they do not have to be
recomputed each time unlike in predicate logic and in RDBMS syntax. The ontologies need to be repopulated whenever

the information that they are modelling changes. However, this need not necessarily mean that the entire ontology needs

188

to be rebuilt from scratch each time the data or the RBAC rules change; SO-RBAC and ESO-RBAC are designed so
that the reasoning is performed in steps, with each step creating a consistent ontology representing a stage in the
reasoning process, and the reasoning process can be partially run from any stage. Alternatively, since the types of
information going into particular parts of the class hierarchy are well defined, a partial reasoning process could be re-
run by clearing and re-populating those classes where information has changed, and re-running whichever steps of the

reasoning process need to be re-run.

Not Vendor Specific
SO-RBAC and ESO-RBAC are not database vendor specific. Section 3 documents a way of implementing some

of the features of dynamic RBAC in an RDBMS. However, the syntax of the dynamic RBAC mechanism in particular
is specific to the RDBMS used. OWL allows the development of a generic, non-vendor-specific syntax for dynamic
RBAC.

SO-RBAC and ESO-RBAC and types of data repositories to which they control access: potentially these can
access any data repository and are particularly suited to accessing data in the semantic web.

Permissions and Denials granted through SWRL and Jena are application-independent. They depend on the
positioning of individuals in classes in the RBAC ontologies, and these can be queried by any reasoning language using

standard reasoning syntax.

Independence of query layer from ontology
The querying layer is also independent of the ontology, which is stored in OWL files. There is no need to load or

link the contents of a data file into a database schema, or to load the data into an application environment such as that of
Prolog. Any reasoning tool can be used to run a query on an OWL file, which is stored as a plain file on a computer

system; there is no requirement to use a specific environment to query an OWL file.
Summary
In summary, the main advantages of OWL over predicate logic in modelling RBAC are as follows:

« the ability to use the ontological class and property hierarchies as part of the model, allowing a natural

representation of hierarchical relationships and eliminating the need for certain computations;
« the ability to query static ontologies quickly without recomputation;
« independence of the querying layer from the ontology;
+ OWL and reasoning languages are not vendor-specific.

However, the ontology needs to be rebuilt every time the data or permissions change, and the reasoning process

is slow and the OWL files are large.

7.2.2 SO-RBAC and ESO-RBAC Models

Our first RBAC model, SO-RBAC, uses OWL-DL, and is based on similar reasoning rules to those used in
predicate logic (Prolog). The purpose of SO-RBAC is to demonstrate the feasibility of writing an RBAC model in
OWL. However, consequently SO-RBAC does not take full advantage of the flexibility offered by OWL, due to
limitations in OWL-DL discussed earlier in this section. Following this proof of concept, we developed ESO-RBAC,
which uses OWL-Full, giving much greater freedom to break away from the confines of DL and create a model that is

naturally suited to OWL.

189

The core ESO-RBAC model is reusable across any domain. There are two main classes at the top level of the
ESO-RBAC hierarchy, called DATA and RBAC. The DATA super-class contains exclusively domain-specific data,
equivalent to the information that might be stored in user-created tables in a relational database. However, because
OWL has a class hierarchy, relationships between information and types of information can be defined in a much more

flexible, ‘object oriented’ fashion than is possible in a relational data model.

The RBAC super-class contains the information defining permissions and denials. The class structure of RBAC
is mostly not domain-specific. The only part that is domain specific is the set of roles, which is defined under the ROLE
class under RBAC. All other classes under the RBAC super-class are directly related to the RBAC model. It is in the
RBAC super-class that individuals representing user permissions and denials are moved by the SO-RBAC or ESO-
RBAC reasoning process. In SO-RBAC these are normal OWL individuals, while in ESO-RBAC they are classes that

are treated as individuals by the reasoner.

The re-usability across domains of the RBAC model in Prolog is similar to that in OWL. As in OWL, Prolog
allows the reuse of the same rules to reason permissions and denials based on whatever roles, permissions and data are
defined by the domain administrator. This is also similar to the separation of user-defined data and meta-data (data
dictionary) in a relational database. Therefore, in principle, it should be possible to define RBAC rules in a relational
database that is independent of the user-manipulated data. However, in section 3.5 we found that RDBMSs do not
implement all of the features of RBAC models discussed in Chapter 2. The only way of implementing certain features,
such as path inheritance restrictions, in the RDBMS that we tested would be to implement the RBAC model as a series
of normal database tables, rather than using the data dictionary. This approach jeopardises the separation between
RBAC data and ordinary data. However, this can be mitigated by defining the RBAC data tables in a separate database

schema from other data.

Implementation of SO-RBAC and ESO-RBAC would use an OWL API to determine who would be permitted
and denied access to certain data from the application layer, completely independent of the structure and type of data
accessed. There are many tools available for populating OWL from any data source, including flat files or a DBMS. In
this thesis, the data model was populated using a script in order to prove the concept that SO-RBAC and ESO-RBAC
provide a mechanism for creating permissions and denial completely independently of the types of data sources on
which we wish to control access. It is very easy to retrieve the content of OWL classes storing individuals relating to
permissions and denials from any type of software applications built in integrated development environments that have
plug-ins to an OWL API.

7.2.2.1 Reasoning processes
Uniquely, both SO-RBAC and ESO-RBAC infer at the OWL level rather than at the application level. ESO-

RBAC exploits the natural hierarchy of OWL and performs all reasoning inside OWL using OWL reasoners. Other
ontological RBAC models leave much of the reasoning process to other layers. Our RBAC model is the only one in
which the ontological reasoning process is completely automated through SWRL or Jena rule chaining. In particular, we
are not aware of any other ontological RBAC model that resolves conflicts between permission and denial by using
negation functionality in OWL reasoners to enforce the standard RBAC rule that ‘denials override permissions’.
Additionally, ESO-RBAC is unique in using the ontological class hierarchy to define some relationships between roles,
and the user-role assignments; this eliminates the need to define them explicitly using OWL properties or reasoner

functions. The use of the class hierarchy to define RBAC relationships natively allows the use of RBAC with object-

190

oriented data modelling. It should also be noted that the data on which the RBAC model operates (in the DATA super-
class in the (E)SO-RBAC models) could also be defined through the class hierarchy; in ESO-RBAC in particular, this
allows for considerable flexibility in defining permission to perform action on object types; for example, defining an
RPA relationship on a class of DATA would implicitly define the same relationship on sub-classes of that class.
Although object-oriented data models could be created in DL or in relational databases, such a representation would be
rather convoluted and unnatural. OWL allows hierarchical relationships among both roles and data to be defined and

related to each other, and ESO-RBAC uniquely performs reasoning on such a model.

Pre-requisites in the Reasoning Process
Our reasoning process, which grants correct permissions or denials requires:
i. An ontological model, which stores the semantic essential in the process of granting permissions and denials.
Therefore (E)SO-RBAC Ontology should be ready to expand its basic structures into hierarchies and accept its

individuals and accommodate required constraints in order to enable the SO-RBAC reasoning process.

ii. Clearly defined steps in the (E)SO-RBAC process which specify which ontological classes and constraints are

involved in the process and what would be the outcome of each of its step.

We would like to draw the reader’s attention to the dual roles of steps in the reasoning process, because we use
reasoning in various stages of the process, but only after pre-conditions for the reasoning have been met, by the same
process. However, “meeting pre-conditions” in the proposed process does not necessarily mean that we must use a

particular reasoning mechanism for it. We give two examples.

We often populate a selection of ontological classes from existing data sources of a particular domain of interest
and use the word “assert” (even if the selection of (E)SO-RBAC classes has to be populated at initialization), but we
also “infer” (as opposed to “assert”) ontological individuals in a selection of ontological classes through the reasoning
process. In both cases these might be pre-conditions for continuing with a particular step of our process of granting

permissions and denials.

The same applies to constraints: we sometimes define them as a part of our ontological model (i.e. manual
assertions, as a part of ontological initialization is expected) or infer constraints through reasoning if they are pre-

conditions in the process of granting permissions or denials.
Therefore, assertions and inference are interwoven in the reasoning process, but in its final stage, after we meet
all pre-conditions, a chain of SWRL or Jena rules is running in one go and securing permissions or denials.
Characteristics of the Reasoning Process
We draw the reader’s attention to a few important characteristics of the (E)SO-RBAC reasoning process.

At each stage the (E)SO-RBAC ontology is in a state where the process can be run from the following step

onwards. In other words, it is not necessary to always re-run the (E)SO-RBAC process from the beginning.

A portion of (E)SO-RBAC ontological classes will remain ‘empty’ until a reasoning process determines which
individuals from the asserted classes will be ‘moved’ (or copied) into (E)SO-RBAC classes which were empty on
(E)SO-RBAC initialisation.

It is evident from the process that we perform initial assertions in steps B, C and D. However, assertions continue

in stages F (we assert role permissions and role denials) and in stage H when we insert individuals into URA class (in

191

SO-RBAC) or assign them to ROLE classes (in ESO-RBAC). Therefore we do not limit assertions to the first few steps

of the process and consequently they are interwoven with inference.

Reasoning in (E)SO-RBAC process, with SWRL or Jena rules, occurs in steps E, G and J. However, In the
(E)SO-RBAC process we perform two types of reasoning.

« The first type is in step E, when we use SWRL or Jena for creating a set of new object properties. All of the
object properties for which this is done have ROLE class as both domain and range, as the purpose of this step

is to set up all the relationships between roles in the RBAC model.

» The second type of reasoning is performed stages G and H, where we run SWRL or Jena rules in order to move
(copy) individuals across (E)SO-RBAC in order to determine permission or denials in particular request,

imposed by a user, who has a ‘role’ and would like to perform an ‘activity’ upon set of “objects”.

Therefore the outcome of our reasoning that a particular user name, which has been moved across the (E)SO-
RBAC ontology according to our reasoning process, can be found as an individual of either PERMITTED or DENIED

ontological class.

7.2.3 Future Works

Future work would be to further develop dynamic RBAC in the ESO-RBAC model. Section 6.4 demonstrates
the use of context constraints, modelled on the system of Strembeck & Neumann [21], in the ESO-RBAC model, and
defines a single context constraint applicable to the healthcare domain considered herein. This context constraint
ensures that junior nurses can only modify the data of patients in their ward, based on data individuals stored in the
DATA super-class as well as user data stored in the RBAC super-class. It would be beneficial to further test the ability
of the model to handle complex context constraints, which may not only be internal (depending on data in the ontology
on which the ESO-RBAC is operating) but also external, that is, depending on external data, such as environmental
factors. This would move towards the goal of creating an ontological RBAC model that could be applied to pervasive,
situation-aware systems. In such a scenario, an application would populate the DATA part of the ontology based on
environmental triggers, such as ambient temperature, or location or other mutable characteristics of a person. For

instance:

» A technician could be permitted to operate a particular equipment depending on the presence of a more senior

technician in the same environment.

« In a hospital ward, an emergency situation involving a patient, as determined by the vital signs stored as
individuals in the ontology, could trigger a relaxation of the usual restriction where only a nurse or doctor in
charge of the patient’s ward can access and modify information about that patient, and allow medical staff with
suitable expertise (also defined in the ontology) who is present in the ward to help the patient.

We would like to refine this system of context constraints, for example by making it hierarchical. Context
constraints are already defined in a particular class in the ESO-RBAC model; making this CONTEXT_CONSTRAINT
class hierarchical would further improve the model.

The main difficulty with defining an ontology in OWL-Full is the lack of fully functioning reasoners for it.
Although Jena does work with the class-individual duality that is used extensively in ESO-RBAC for describing role-
role and user-role relationships, it cannot handle inferred sub-classes or class memberships. That is, Jena can only

recognize direct class memberships and sub-classes in the reasoning process. Therefore, a workaround was necessary in

192

the version of ESO-RBAC presented herein to ensure that indirect sub-classing could be used in reasoning. Hopefully,
reasoners will be developed for OWL-Full that do not require such workarounds and allow the ESO-RBAC process to

be simplified to eliminate the initial step (step 0) that was found to be necessary when running ESO-RBAC with Jena.

We cannot think of any fundamental changes that would be made to the ESO-RBAC model, which does the job
of inferring authorisations of users to perform actions based on user-role and role-permission relationships in an OWL
ontology. The class hierarchy for the RBAC information used in ESO-RBAC is very similar to the one that we
originally envisaged for a hierarchical RBAC model that could be extended to include dynamic features (context
constraints). It evolved as we learnt about how reasoning works in OWL, but the original idea remains intact. We
believe that ESO-RBAC has much more potential for future development than the earlier SO-RBAC. When SO-RBAC
was developed, the concept of ESO-RBAC was already fully formed. SO-RBAC was developed initially because it was
found to be much easier to develop an OWL ontology using OWL-DL, due to the greater capabilities of reasoners such
as SWRL for this flavour of OWL. However, because SO-RBAC is developed in OWL-DL, it is tied to its roots in
descriptive logic, limiting its ability to fully exploit the object-oriented hierarchical data modelling that is possible in
OWL, and thus limiting its usefulness for ontological modelling of RBAC. It was really developed as a proof of
concept, to show that it is possible to develop an RBAC model in which user authorization is inferred entirely by the
OWL reasoner. We would therefore focus on developing ESO-RBAC by improving and refining its modelling of

dynamic and situation-aware access control.

Finally, current context-aware RBAC models, including ESO-RBAC, are based on enumerated contexts. That is,
the contexts are stored in rules based on fixed criteria. The permissions or roles are dynamically assigned according to
rules, but the rules themselves are static. This is a serious limitation, because in many context-aware systems, it is
difficult to know what contexts need to be taken into consideration, or what permissions and roles to assign according to
them. Thus, a security model that changes permissions based on heuristic rules would be of benefit. This would not
only assign the roles and permissions dynamically, but also dynamically generate the rules by which these are assigned
according to context changes. The rules are then meta-programmed. The possibility of unpredictable and very frequent
context changes, and the complexity or rigidity of RBAC models [47], means that some other access control models,
which are not based on roles, have been proposed. These include location (M-ZONES AC [47]) and trust (TRUSTAC
[121], TrustBAC [122]). Therefore, future work should consider the semantic modelling of access control in terms of

using heuristic rules which control permissions:
(a) dynamically,
(b) according to environments where software applications and their data reside, and
(c) according to situations created by pervasiveness of environments and computational spaces.

Tasks (a)—(c) are very challenging, and solutions based on semantic access control mechanisms, which satisfy
(a)—(c) might not be trivial. Therefore in this chapter we start using ontologies and semantic web tools, which could
enrich traditional RBAC, and make it applicable to a variety of situations in pervasive computing environments. The
aim is to assess whether we can create RBAC model through ontologies which address as far as possible the tasks (a)—

(c) above.

193

References

1: Mavridis, I.; Pangalos, G., Determining User Authorizations in Distributed Database Systems, Advances in
Informatics 2001 Proc. PCI Conf, 2001

2: Simpson, R. L., Ensuring Patient Data Privacy, Confidentiality and Security, Nursing Management, 1994 25 7,
pp18-20

3: Huston, T., Security Issues for implementation of E-Medical Records, Communications of ACM, 2001 44 9, pp89-94
4: Adams, T.; Budden, M.; Hoare, C.; Sanderson, H., Lessons from the central Hampshire electronic health record pilot
project: issues of data protection and consent, BMJ, 2004 328 7444, pp871-874

5: Data Protection Act 1998, 1998, hitp.//www.legislation.gov.uk/ukpga/1998/29/contents, accessed 16/01/2011

6: Wiederhold, G.; Biello, M.; Sarathy, V.; Qian, X., Protecting Collaboration, Proceedings of the National Information
Systems Security Conference (NISSC’96), 1996, pp561-569

7: Zhang, L.; Ahn, G. J.; Chu, B. T., 4 Role Based Delegation Framework for Healthcare Information Systems,
Proceedings of the seventh ACM symposium on Access control models and technologies (SACMAT’02), 2002, pp125—
134

8: Anderson, R., 4 Security Policy Model for Clinical Information Systems, Proceedings of the IEEE Symposium on
Security and Privacy, 1996, pp30-45

9: Longstaff, J.; Lockyer, M.; Nicholas, J., 4 Model of Accountability, Confidentiality and Override for Healthcare and
Other Applications, Proceedings of the ACM Workshop on RBAC, 2000, pp71-76

10: Trusted Computer Security Evaluation Criteria, DoD 5200.28-STD, Department of Defense (US), 1985

11: Sandhu, R.; Samarati, P., Authentication, Access Control and Audits, ACM Computing Surveys, 1996 28 1, pp241—
243

12: Campbell, R. H.; Liu, Z.; Mickunas, M. D.; Naldurg, P.; Yi, S., Seraphim: Building Dynamic Interoperable Security
Architecture For Active Networks, Open Architectures and Network Architectures and Network Programming, 2000
(OPENARCH 2000), 2000, pp55-64

13: Chang, W.-L., Yuan, S.-T., Ambient iCare e-Services for Quality Aging: Framework and Roadmap, Proceedings of
the Seventh IEEE International Conference on E-Commerce Technology (CEC’05), 2005, pp467-470

14: SWI Prolog, http://www.swi-prolog.org/, accessed 14/01/2012

15: Description of W3C Technology Stack Illustration, 2005, http.//www.w3.org/Consortium/techstack-desc.html,
accessed 31/03/2012

16: OWL Web Ontology Language Overview, 2004, http-//www.w3.0rg/TR/2004/REC-owl-features-20040210/, accessed
31/03/2012

17: SWRL: A Semantic Web Rule Language Combining OWL and RuleML, 2004, http.//www.w3.org/Submission/SWRL/,
accessed 31/03/2012

18: Barker, S.; Stuckey, P., Flexible Access Control Policy Specification with Constraint Logic Programming, ACM

Information and Systems Security, 2001 6 4, pp501-546

19: Barker, S.; Douglas, P., Protecting Federated Databases Using A Practical Implementation of a formal RBAC
Policy, Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04),
2004, pp523—

20: Strembeck, M.; Neumann, G., An Approach to Engineer and Enforce Context Constraints in an RBAC Environment,
SACMAT ’03, 2003, pp65-79

194

21: Strembeck, M.; Neumann, G., An Integrated Approach to Engineer and Enforce Context Constraints in RBAC,
ACM Informations & Systems Security, 2004 7 3, pp392—427

22: Kataria, P., Macfie, A., Juric, R., Madani, K., Ontology for Supporting Context Aware Applications for the
Intelligent Hospital Ward, Journal of Integrated Design & Process Science, 2008 12 3, pp35—44

23: Macfie, A., Kataria, P., Koay, N., Dagdeviren, H., Juric, R., Madani, K., Ontology Based Access Control Derived
From Dynamic RBAC and its Context Constraints, Proceedings of the 11th International Conference on Integrated
Design and Process Technology (IDPT’08), 2008

24: Protége, hitp://protege.stanford.edu/, accessed 31/01/2012

25: Slevin, L.; Macfie, A., Role Based Access Control for a Medical Database, 11th IASTED International Conference
on Software Engineering and Applications (SEA 2007), 2007, pp226—233

26: Castano, S.; Fugini, M.; Martella, G.; Samarati, P., Database Security, Addison-Wesley, 1995

27: Ferraiolo, D.; Kuhn, R., Role-Based Access Controls, 15th NIST-NCSC National Computer Security Conference,
1992, pp554-563

28: Samarati, P.; Jajodia, S., Data Security, from Webster, J.G., Wiley Encyclopedia of Electrical and Electronics
Engineering, John Wiley & Sons, 1999

29: Sandhu, R.; Coyne, E.; Feinstein, H.; Youman, C., Role Based Access Control Models, IEEE Computer, 1996 29 2,
pp38—47

30: Clark, K., Negation as Failure, from H. Gallaire and J. Minker, Eds., Logic and Databases, New York: Plenum
Press, 1978, pp293-322

31: Ferraiolo, D.; Kuhn, D.; Chandramouli, R., Role-Based Access Control, Artech House, 2003

32: Kern, A.; Walhorn, C., Rule Support for Role Based Access Control, Proc. ACM SACMAT, 2005, pp130-138

33: Sandhu, R.; Bhamidipati, V.; Coyne, R.; Ganta, S.; Youman, C., The ARBAC97 Model for Role-Based
Administration of Roles:Preliminary Description and Outline, IEEE Computer, 1997 29 2, pp38—47

34: Ferraiolo, D. F.; Sandhu, R.; Gavrila, S.; Kyhn, D. R.; Chandramouli, R., Proposed NIST Standard for Role-Based
Access Control, ACM Transactions on Information Systems Security, 2001 4 3, pp224-274

35: Lupu, E. C.; Marriott, D. A.; Sloman, M. S.; Yialelis, N., A Policy-Based Role Framework for Access Control, Proc.
ACM SACMAT Workshop on RBAC, 1996

36: Ferraiolo, D.; Barkley, J.; Kuhn, R., 4 Role-Based Access Control Model and Reference Implementation Within a
Corporate Intranet, ACM Transactions on Information and System Security, 1999 2 I, pp34—64

37: Sohr, K.; Drouineaud, M.; Ahn, G. J., Formal Specification of Role-based Security Policies for Clinical Information
Systems, Proceedings of the 2005 ACM symposium on Applied computing (SAC’05), 2005, pp332-339

38: Wilikens, M.; Feriti, S.; Sanna, A.; Masera, M., 4 Context-Related Authorization and Access Control Method Based
on RBAC: A case study from the health care domain, Proceedings of the seventh ACM symposium on Access control
models and technologies (SACMAT’02), 2002, pp117-124

39: Zhang, L.; Ahn, G. J.; Chu, B. T., 4 rule-based framework for role based delegation, Proceedings of the sixth ACM
symposium on Access control models and technologies (SAMCAT’01), 2001, pp153—-162

40: Potamias, G.; Tsiknakis, M.; Katehakis, D.; Karabela, E.; Moustakis, V.; Orphanoudakis, S., Role-based Access to
Patient Clinical Data: The InterCare Approach in the Region of Crete, Proc. MIE and GMDS, 2000, pp1074-1079

41: Poole, J.; Barkley, J.; Brady, K.; Cincotta, A.; Salamon, W., Distributed Communications methods and Role-Based
Access Control for use in Healthcare Applications, Proc. CHIN Summit., 1995

195

42: Mavridis, I.; Georgiadis, C.; Pangalos, G.; Khair, M., Access Control Based on Attribute Certificates for Medical
Intranet Applications, Journal of Medical Internet Research, 2001 3 7, e9

43: Moftett, J.; Lupu, E. C., The Uses of Role Hierarchies in Access Control, Proc. ACM Workshop on RBAC, 1999,
pp153-160

44: Notargiacomo, L., Role-Based Access Control in ORACLE7 and Trusted ORACLE7, ACM RBAC Workshop, 1996
45: PostgreSQL, hitp://www.postgresql.org/, accessed 01/04/2012

46: Hu, J.; Weaver, A. C., Dynamic, Context-Aware Access Control for Distributed Healthcare Applications,

Proceedings of the First Workshop on Pervasive Security, Privacy and Trust (PSPT2004), 2004

47: White, M.; Jennings, B.; van der Meer, S., User-Centric Adaptive Access Control and Resource Configuration for
Ubiquitous Computing Environments, Proceedings of the 7th International Conference on Enterprise Information
Systems (ICEIS’05), 2005, pp349—

48: Damiani, M. L.; Bertino, E.; Catania, B.; Perlasca, P., GEO-RBAC: A Spatially Aware RBAC, ACM Transactions on
Information and System Security, 2007 10 /, pp29-37

49: Bertino, E.; Bonatti, P. A.; Ferrari, E., TRBAC: A Temporal Role-Based Access Control Model, ACM Transactions
on Information and System Security, 2001 4 3, pp191-223

50: Joshi, J. B. D.; Bertino, E.; Latif, U.; Ghafoor, A., 4 Generalized Temporal Role-Based Access Control Model, IEEE
Transactions on Knowledge and Data Engineering, 2005 17 1, pp4-23

51: Bacon, J.; Moody, K.; Yao, W., Access Control and Trust in the Use of Widely Distributed Services, Software:
Practice and Experience, 2003 33 4, pp375-394

52: Bacon, J.; Moody, K.; Yao, W., A Model of OASIS Role-Based Access Control and Its Support for Active Security,
ACM Transactions on Information and System Security (TISSEC), 2002 5 4, pp492-540

53: Belokosztololszky, A.; Eyers, D. M.; Moody, K., Policy Contexts: Controlling Information Flow in Parameterized
RBAC, Policy 2003: IEEE 4th International Workshop on Policies for Distributed Systems and Networks, 2003, pp4—6
54: Tolone, W.; Ahn, G. J.; Pai, T.; Hong, S. P., Access Control in Collaborative Systems, ACM Computing Surveys,
2005 37 1, pp29-41

55: Corradi, A.; Montanari, R.; Tibaldi, D., Context-based Access Control for Ubiquitous Service Provisioning,
Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04), 2004,
pp444-451

56: Covington, M. J.; Long, W.; Srinivasan, S.; Dey, A. K.; Ahamad, M.; Abowd. G. D., Securing Context-Aware
Applications Using Environment Roles, Proceedings of the sixth ACM symposium on Access control models and
technologies (SACMAT’01), 2001, pp10-20

57: Covington, M. J.; Moyer, M. J.; Ahamad, M., Generalized Role-Based Access Control for Securing Future
Applications, National Information Systems Security Conference (NISSC'00), 2000

58: Finnigan, P., Oracle Row Level Security: Part 1,2003, http.//www.svmantec.com/connect/articles/oracle-row-level-

security-part-1, accessed 14/01/2012

59: Thomas, R. K., Team-Based Access Control: A Primitive for Applying Role-Based Access Controls in Collaborative
Environments, Proceedings of the ACM Workshop on Role-Based Access Control, 1997, pp13-19

60: Thomas, R. K., Sandhu, R. S., Task-Based Authorization Control: A Family of models for Active and Enterprise
Oriented Authorization Management, Proceedings of the IFIP WG11.3 Workshop on Database Security, 1997, ppl166—
181

196

61: Bertino, E.; Catania, B.; Ferrari, E.; Perlasca, P., 4 Logical Framework for Reasoning about Access Control Models,
ACM Transactions on Information and System Security, 2003 6 /, pp71-127

62: Greco, S.; Leone, N.; Rullo, P, COMPLEX: An Object-Oriented Logic Programming System, IEEE Transactions on
Knowledge and Data Engineering, 1992 4 4, pp344-359

63: Datalog, , hitp://en.wikipedia.org/wiki/Datalog, accessed 31/10/2012

64: Seitz, L.; Pierson, J. M.; Brunie, L., Semantic Access Control for Medical Applications in Grid Environments, 2003
65: Feuerstein, S., Oracle PL/SQL Programming: Guide to Oracle8i Features, O'Reilly Media, 1999

66: Veil, http://veil.projects.postgresql.org/curdocs/index.html, accessed 14/01/2012

67: Satoshi, H; Kudo, M., XML Access Control Language: Provisional Authorization for XML Documents, 2002,

http.//www.research.ibm.com/trl/projects/xml/xss4j/docs/xacl-spec.html, accessed 07/02/2012

68: OASIS eXtensible Access Control Markup Language (XACML) TC, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml, accessed 14/01/2012

69: MOSQUITO: Mobile Workers’ Secure Business Applications in Ubiquitous Environments

70: Chandramouli, R., Application of XML Tools for Enterprise-Wide RBAC Implementation Tasks, 5th ACM workshop
on Role-based Access Control (RBAC 2000), 2000, pp11-18

71: Vuong, N.; Smith, G. S.; Deng, Y., Managing Security Policies in a Distributed Environment Using eXtensible
Markup Language (XML), SAC *01 Proceedings of the 2001 ACM symposium on Applied computing (SAC’01), 2001,
pp405-411

72: Bertino, E.; Castano, S.; Ferrari, S., Securing XML Documents with Author-X, IEEE Internet Computing, 2001 5 3,
pp21-31

73: Bertino, E.; Correndo, G.; Ferrari, E.; Mella, G., An Infrastructure for Managing Secure Update Operations on
XML Data, Proceedings of the eighth ACM symposium on Access control models and technologies (SACMAT’03),
2003, pp110-122

74: Bhatti, R.; Joshi, J.; Bertino, E.; Ghafoor, A., Access Control in Dynamic XML-based Web Services with X-RBAC,
Proceedings of the 2003 International Conference on Web Services (ICWM’03), 2003, pp243-249

75: Bhatti, R.; Bertino, E.; Ghafoor, A., 4 Trust-Based Context-Aware Access Control Model for Web Services,
Proceedings of the IEEE International Conference on Web Services (ICWS’04), 2004, pp184—-191

76: Joshi, J. B. D.; Bhatti, R.; Bertino, E.; Ghafoor, A., Access Control Language for Multidomain Environments, IEEE
Internet Computing, 2004 8 6, pp40—50

77: Bhatti, R.; Bertino, E.; Ghafoor, A., X-FEDERATE: A Policy Engineering Framework for Federated Access
Management, IEEE Transactions on Software Engineering, 2006 323 5, pp330-346

78: He, H., Wong, R, 4 Role-Based Access Model for XML Repositories, Proceedings of the First International
Conference on Web Information Systems Engineering, 2000, pp138—145

79: Stoupa, K.; Vakali, A., An XML-Based Language for Access Control Specifications in an RBAC Environment, IEEE,
2003, ppl1717-1722

80: Yang, C.; Zhang, C., Secure Web-based Applications with XML and RBAC, IEEE Systems, Man and Cybernetics
Society Information Assurance Workshop, 2003, pp276-281

81: Bhatti, R.; Ghafoor, A.; Bertino, E., X-GTRBAC: an XML-based policy specification framework and architecture
for enterprise-wide access control, ACM Transactions on Information and System Security, 2005 8 2, pp191-233

82: Bhatti, R.; Shafiq, B.; Bertino, E.; Ghafoor, A.; Joshi, J., X-GTRBAC Admin: A Decentralized Administration Model

197

for Enterprise-Wide Access Control, ACM Transactions on Information and System Security, 2005 8 4, pp388—423

83: Yang, L.; Ege, R., Mediation Security Specification and Enforcement for Heterogeneous Databases, Proceedings of
the ACM symposium on Applied computing (SAC’05), 2005, pp354-358

84: Warner, J.; Atluri, V.; Vaidya, J.; Mukkamala, R., Using Semantics for Automatic Enforcement of Access Control
Policies among Dynamic Coalitions, Proceedings of the twelfth ACM symposium on Access control models and
technologies (SACMAT’07), 2007

85: Finance, B.; Medjdoub, S.; Pucheral, P., The Case for Access Control on XML Relationships, Proceedings of the
14th ACM international conference on Information and knowledge management (CIKM’05), 2005, pp107-114

86: Al-Bouna, B.; Chbeir, R., Multimedia-Based Authorization and Access Control Policy Specification, Proceedings of
the 3rd ACM workshop on Secure web services (SWS’06), 2006, pp61-68

87: Chadwick D.W., Otenko A., Ball E, Implementing role based access controls using X.509 attribute certificates,
IEEE Internet Computing, 2003 7, pp62—69

88: X.509, http://en.wikipedia.org/wiki/X.509, accessed 06/11/2012

89: Brostoff, S.; Sasse, M. A.; Chadwick, D.; Cunningham, J.; Mbanaso, U.; Otenko, S., “R-What?” Development of a
Role-Based Access Control (RBAC) Policy-Writing Tool for e-Scientists, Software: Practice and Experience, 2005 35,
pp835-856

90: McGuiness, D.; Harmelen, F., OWL Web Ontology Overview/Guide, 2004, http.//www.w3.org/TR/owl-features/.
accessed 31/01/2012

91: Beckett D.; Mcbride, B., RDF/XML Syntax Specification (Revised), 2004, http://www.w3.org/TR/REC-rdf-syntax/.
accessed 31/01/2012

92: Pan, C-C.; Mitra, P.; Lui, P., Semantic Access Control for Information Interoperation, Proceedings of the eleventh
ACM symposium on Access control models and technologies (SACMAT’06), 2006, pp237-246

93: Wu, D.; Lin, J.; Dong, Y.; Zhu, M., Using Semantic Web Technologies to Specify Constraints of RBAC, Proceedings
of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT’05), 2005, pp543-545

94: Wu, D.; Chen, X.; Lin, J.; Zhu, M., Ontology-Based RBAC Specification for Interoperation in Distributed
Environment, Proceedings of the Asian Semantic Web Conference (ASWC’06), 2006, pp179-190

95: Horrocks, 1.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M., SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, 2004, http.//www.w3.org/Submission/2004/SUBM-SWRL-20040521/, accessed
31/01/2012

96: Priebe, T.; Dobmeier, W.; Kamprath, N., Supporting Attribute-based Access Control with Ontologies, Proceedings of
the First International Conference on Availability, Reliability and Security (ARES’06), 2006, pp465—472

97: SPARQL Query Language for RDF, http:.//www.w3.org/TR/rdf-sparql-query/, accessed 14/01/2012

98: Finin, T.; Joshi, A.; Kagal, L.; Niu, J.; Sandhu, R.; Winsborough, W.; Thuraisingham, B., Using OWL to Model Role
Based Access Control, Ebiquity Laboratory, University of Maryland, Baltimore, 2008

99: Finin, T.; Joshi, A.; Kagal, L.; Niu, J.; Sandhu, R.; Winsborough, W.; Thuraisingham, B., ROWLBAC —
Representing Role Based Access Control in OWL, SACMAT’08, 2008, pp73-82

100: Finin, T.; Joshi, A.; Kagal, L.; Niu, J.; Sandhu, R.; Winsborough, W.; Thuraisingham, B., Role Based Access
Control and OWL, Proceedings of the fourth OWL: Experiences and Directions Workshop, 2008

101: Heilili, N.; Chen, Y.; Zhao, C.; Luo, Z. X., An OWL-Based Approach for RBAC with Negative Authorization,

198

Knowledge, Science, Engineering and Management: Lecture Notes in Computer Science, 2006 4092 2006, pp164—175
102: Cirio, L.; Cruz, I.; Tamassia, R., 4 Role and Attribute Based Access Control System Using Semantic Web
Technologies, Proceedings of the 2007 OTM Confederated international conference on the move to meaningful internet
systems (OTM’07), 2007, pp1256—1266

103: He, Z.; Wu, L.; Li, H.; Lai, H.; Hong, Z., Semantics-based Access Control Approach for Web Service, Journal of
Computers, 2011 6 6

104: Alcaraz Calero, J.M.; Martinez Pérez, G.; Gomez Skarmeta, A.F., Towards an authorisation model for distributed
systems based on the Semantic Web, IET Information security, 2010 4 4, pp411-421

105: Common Information Model (CIM), http://dmtf.org/standards/cim, accessed 24/01/2012

106: Cadenhead, T.; Kantarcioglu, M.; Thuraisingham, B.M, Scalable and Efficient Reasoning for Enforcing Role-
Based Access Control, Proceedings of the 24th annual IFIP WG 11.3 working conference on Data and applications
security and privacy (DBSec’10), 2010, pp209-224

107: Coma, C.; Cuppens-Boulahia, N.; Cuppens, F.; Cavalli, A.R., Context Ontology for Secure Interoperability, Third
International Conference on Availability, Reliability and Security (ARES’08), 2008, pp821-827

108: Cuppens, F.; Micge, A., Modelling Contexts in the Or-BAC Model, Proceedings of the 19th Computer Security
Applications Conference (ACSAC’03), 2003

109: Toninelli, A; Montanari, R.; Kagal, L.; Lassila, O., 4 Semantic Context-Aware Access Control Framework for
Secure Collaborations in Pervasive Computing Environments, International Semantic Web Conference (ISWC’006),
2006, pp473—486

110: O’Connor, M., Protége: SWRLTab, 2007, http.//protegewiki.stanford.edu/wiki/SWRLTab, accessed 31/01/2012
111: O’Connor, M.; Das, A., SOWRL: a Query Language for OWL, OWL: Experiences and Directions, 6th International
Workshop (OWLED’09), 2009

112: SOWRL, http://protege.cim3.net/cgi-bin/wiki.p]? SOWRL, accessed 01/02/2012

113: Yuhana, U. L., SWRL and SOWRL, 2008, http.//vuhanaresearch.wordpress.com/2008/04/23/swrl-and-sqwrl/,
accessed 14/01/2011

114: Pellet: OWL 2 Reasoner for Java, 2011, http.//clarkparsia.com/pellet/, accessed 01/02/2012

115: Jess, the Rule Engine for the Java Platform, http://www.jessrules.com/, accessed 01/02/2012

116: SWRLJessTab, http://protege.cim3.net/cgi-bin/wiki.pl? SWRLJessTab, accessed 01/02/2012

117: Horridge, M., Protégé: OWLViz, 2010, http://protegewiki.stanford.edu/wiki/OWLViz, accessed 01/04/2012

118: Apache Jena: Welcome to Jena, http.//incubator.apache.org/jena/, accessed 01/02/2012

119: Jena Framework, 2011, http.//en.wikipedia.org/wiki/Jena %28framework%29, accessed 01/02/2012

120: SWRL Language FAQ, 2011, http.//protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ, accessed 01/02/2012
121: Almenarez, F.; Marin, A.; Campo, C.; Garcia, C., TrustAC: Trust-Based Access Control for Pervasive Devices,
SPC 2005, LNCS, 2005, pp225-238

122: Chakraborty, S.; Ray, L., TrustBAC — Integrating Trust Relationships into the RBAC Model for Access Control in

Open Systems, Proceedings of the eleventh ACM symposium on Access control models and technologies
(SACMAT’06), 2006, pp49—58

123: Macfie, A., Juric, R., Madani, K., Research Issues in Access Control for Pervasive Healthcare, Proceedings of the
11th International Conference on Integrated Design and Process Technology (IDPT’08), 2008

124: Macfie, A.; Juric, R., SO-RBAC Reasoning Process, SDPS 2012

199

125: Macfie, A., Juric, R., Slevin, L., Implementing DRBAC for a Medical Database, 2007
126: Macfie, A., Implementing Dynamic RBAC for a Medical Database: Test Results Using Oracle, 2007

200

Appendices

201

Appendix I: Publications

This is a full list of the publications generated from this research.

« Kataria, P.; Macfie, A.; Juric, R.; Madani, K. (2008), Ontology for Supporting Context Aware Applications for
the Intelligent Hospital Ward, in Proceedings of the 11th International Conference on Integrated Design and
Process Technology, IDPT 2007 (Taichung, Taiwan, June 1-6, 2008). [22]

« Macfie, A.; Kataria, P.; Koay, N.; Dagdeviren, H.; Juric, R.; Madani, K. (2008), Ontology Based Access
Control Derived From Dynamic RBAC and its Context Constraints, in Proceedings of the 11th International
Conference on Integrated Design and Process Technology, IDPT 2007 (Taichung, Taiwan, June 1-6, 2008).
(23]

« Macfie, A.; Juric, R.; Madani, K. (2008), Research Issues in Access Control for Pervasive Healthcare, in

Proceedings of the 11th International Conference on Integrated Design and Process Technology, IDPT 2007
(Taichung, Taiwan, June 1-6, 2008). [123]

» Slevin, L.; Macfie, A. (2007), Role Based Access Control for a Medical Database, in Proceedings of the 11th
IASTED Conference on Software Engineering Applications (Cambridge, MA, US, November 19-21, 2007).
[25]

« Macfie, A.; Juric, R. (2012), SO-RBAC Reasoning Process in Proceedings of the SDPS 2012 Conference, June
2012, Berlin Germany [124]

« Macfie, A.; Juric, R. (2014), Modeling Dynamic RBAC with OWL and SWRL, under review for the 47th HICSS

Conference http.//www.hicss.hawaii.edu/hicss_47/apahome47.htm, January 2014

« Macfie, A.; Juric, R.; Paurobally, S. (2014), Semantic Access Control in Medical Databases, to be submitted to
the Journal of Health Systems, Attp./www.palgrave-journals.com/hs/index.html

» Macfie, A.; Juric, R. (2013), Enhanced Semantic and Ontology Based RBAC, under review for the Journal of

SDPS http.//'www.iospress.nl/journal/journal-of-integrated-design-process-science/
» Macfie, A.; Juric, R. (2014), Implementing DRBAC for a Medical Database, 2014 [125] to be submitted to

Advances in Engineering Software, http.//www.sciencedirect.com/science/journal/09659978

Macfie, A. (2014), Implementing Dynamic RBAC for a Medical Database: Test Results Using Oracle_[126] to be

submitted to the Journal of Software Engineering and Practices

202

http://www.iospress.nl/journal/journal-of-integrated-design-process-science/

Appendix lI: Prolog Rules in Static RBAC

203

Appendix lll: Prolog Rules in Dynamic RBAC

205

Appendix IV: Prolog Facts in Static RBAC

214

Appendix V: Context Constraints in Static RBAC

216

Appendix VI: RBAC and database diagrams

e == Day DUty e e Night_Duty met—- .. _-
E R - ‘]': '-?‘_;-_\
S v v T
.| Spedalist_ - /) Ty
. s V. s Consultant [T
. F | PR A oot
v T i .o
' [o .
‘ L T ¥ oo
: : o l ’
.f . . " [| \.‘ N
. N | . | (K .
! jf ! ! Iy | li/' | ,|i ‘.‘]
[. . L pecalist_ | .- !)
= Sister_Day } H Sister)-< { Sister_Night ' ; i Fiaalsizr -' -
. . i L A i .
| n Th 0)
' ; VU t
" ‘. iR 0
2 : L =
j i i
: A : '
! " [Saff_Nurse | . L Staff_ . _ | Staff_Nurse_] - E. ~ Penior_House| _ ._[Senior_House| & _f_. enior_House | .” I
| _Day T Nurse Night P Officer_Day _Officer 1 | Officer_Night !
: ‘ 4 L A : .
i ‘ 1
\ ! P / 1
y ! P ' !
\[Smdem_ | [Student_ [Student_ |/ " [House _ ==lhouse Officerke. — . [Touse_Officer] J
Nurse Day Nurse Murse Night _Officer Day = _Night
Figure 115: Role Inclusion in Hospital Database. Solid lines represent d_s relationships; dotted lines
represent 1s_a relationships.

included_in senior_to

usr_session

password

inherits_rpa_path

Jade boxes are tables populated by triggers to form the results of recursive rules.

Figure 116: ERD of RBAC schema: tables only. Blue boxes are tables. Cyan boxes are tables linking pairs of roles.

217

user_authorization included_in ‘ ‘ senior_to ‘

\’

user_permission

usr inherits_rpa

role

permitted

usr_session

rpa_full dsd_conflict
— ‘d_rpa_full‘ ‘ ssd_conflict ‘

Figure 117: ERD of RBAC data: tables and views. Blue boxes are tables. Cyan boxes are tables linking
\pairs of roles. Jade boxes are tables populated by triggers to form the results of recursive rules. Green
boxes are views. An arrow represents the ‘many’end of a 1:many relationship. Double-relationships,
where an object has two relationships with another object, are in green; the rest are in blue.

‘usr_session‘ ‘ ssd ‘

currently_active

ssd_conflict

dsd_conflict

permitted

‘user_permission

&

‘ user_authorization

denied ‘ inherits_rpa_path ‘

authorized

role

‘d_s‘ ‘ usr ‘ ‘password‘ ‘ is_a ‘

Figure 118: Formation of views from constituent objects, as determined by CREATE VIEW statements.
Arrows point to view formed. All arrows representing objects forming a specific view have the same
colour. Some tables do not participate in any CREATE VIEW statements.

218

Appendix VII: Oracle Database: Data Description

Table 28: Roles and permissions in Hospital database

Role

Directly Senior to
(Inherits from)

Permissions

House_Officer

Read: Ward, Room, Bed, Patient, Diagnosis, User,
AE_Consultation, Patient_Diagnosis

Senior_House_Officer

House_Officer

Update: Diagnosis, AE_Consultation,
Patient_Diagnosis

Specialist_Registrar

Senior_House Officer

Insert: Patient_Diagnosis

Consultant

Specialist_Registrar

Insert: AE_Consultation

Student_Nurse

Read: Ward, Room, Bed, Patient, User

Staff Nurse Student_Nurse Update: Patient
Read Diagnosis, User, AE_Consultation,
Patient_Diagnosis
Sister Staff_Nurse Update: Patient_Diagnosis
Specialist_Nurse Sister Update: AE_Consultation

Junior_Data_Manager

Insert: Ward, Room, Bed, Patient, Diagnosis,
AE_Consultation, Patient_Diagnosis

Senior_Data Manager

Junior_Data_Manager

Complete access to entire database

Receptionist

Read: Patient

Manager

Receptionist

Update: Patient
Insert: Patient

usr(user_id, last_name, first_name, address, date_of_birth)
password(user_id, password)

role(role)
d_s(senior_role, junior_role)

inherits_rpa_path(senior_role, junior_role, action, object)
is_a(inner_role, outer_role)

ura(usr, role)

rpa(role, action, object)
d_rpa(role, action, object)

usr_session(usr, role, start_time, end_time)
dsd(rolel, role2)
ssd(rolel, role2)
senior_to(senior_role, junior_role)
included_in(inner_role, outer_role)

senior_to_staging(senior_role, junior_role)
included_in_staging(inner_role, outer_role)

Text 57: Schema for RBAC model, listing tables.

219

inherits_rpa (senior_role, junior_role, action, object)
rpa_full (role, action, object, senior_role, junior_role)
permittable (usr, object, action, role)
currently_active (usr, role, start_time)

permitted (usr, object, action, role)

d_rpa_full (role, action, object, senior_role, junior_role)
denied (usr, action, object, role)

authorizable (usr, object, action, role)

authorized (usr, object, action, role)
dsd_conflict (rolel, role2)

ssd_conflict (rolel, role2)

Text 58: Schema for RBAC model, listing views.

Table 29: Triggers for modelling static RBAC

Trigger Condition

Action

AFTER INSERT ON role

Apply included in (R1,R1) by inserting the appropriate entry in the
included_:in table.

AFTER INSERT ON d_s

Populate senior_to with any new values to be added as a result of new entry
ind_s.

AFTER UPDATE ON d_s

DELETE FROM senior_to, and repopulate it.

AFTER DELETE ON d_s

DELETE FROM sen+ior_to, and repopulate it.

AFTER INSERT ON is_a

Populate included_iin with any new values to be added as a result of new
entry in is_a.

AFTER UPDATE ON 1is_a

DELETE FROM 1included_1in, and repopulate it.

AFTER DELETE ON 1is_a

DELETE FROM -included_iin, and repopulate it.

BEFORE INSERT ON ura

Prevent insertion if new entry would cause SSD conflict.

BEFORE UPDATE ON ura

Prevent update if it would cause SSD conflict.

BEFORE INSERT ON session

Prevent insertion if new entry would cause DSD conflict.

BEFORE UPDATE ON session

Prevent any such update except one that ends a session (i.e. set end_time to
the current time)

BEFORE INSERT ON
password

220

Encrypt password (in some implementations). The password is stored in the
password table in encrypted form.

Table 30: Triggers for RBAC enforcement mechanism

Trigger Condition Function(s) Action
Called (if any)
AFTER INSERT OR UPDATE ON role |add_role CREATE :new.role
AFTER UPDATE OR DELETE ON role |drop_role DROP :0l1d.role

BEFORE UPDATE ON role

Prevent operation

AFTER INSERT OR UPDATE ON d_s

grant_role

GRANT :new.senior_role TO
:new. junior_role

AFTER UPDATE OR DELETE ON d_s

revoke_role

REVOKE :old.senior_role FROM
:old. junior_role

AFTER INSERT OR UPDATE ON is

grant_role

GRANT new.outer_role TO
new.inner_role

AFTER UPDATE OR DELETE ON 1is_

revoke_role

REVOKE old.outer_role FROM
old.inner_role

AFTER INSERT ON rpa

grant_priv

GRANT privilege ON object TO role

AFTER DELETE ON rpa

revoke_priv

REVOKE privilege ON object FROM
role

BEFORE UPDATE ON rpa

Prevent this operation

AFTER DELETE ON ura

revoke_role

REVOKE role FROM user ifuser is
currently active in it (otherwise, it would not be
assigned)

AFTER INSERT ON ura

grant_role

GRANT role TO userifuser is active in
role (this shouldn't happen)

BEFORE INSERT ON ura

Prevent insertion if SSD conflict exists

BEFORE UPDATE ON ura

Prevent this operation

BEFORE UPDATE ON usr

Prevent operation

BEFORE UPDATE ON usr

Prevent operation

BEFORE UPDATE ON password

Prevent operation if attempting to modify
user_id

AFTER INSERT ON password

create_user

CREATE new.user

AFTER DELETE ON password

drop_user

DROP old.user

AFTER INSERT ON usr_session

grant_role

GRANT role TO user

AFTER UPDATE ON usr_session

revoke_role

REVOKE role FROM user

BEFORE INSERT ON usr_session

1. Query currently_active to
determine whether an active session with
this user and role already exists.

2. Check for DSD violations (user active in
another role that conflicts with this role).

3. Check for user not assigned to role in
ura.

If any of these are true, then prevent insertion.

BEFORE UPDATE ON usr_session

Prevent operation unless it is to deactivate session
by modifying end_time

BEFORE DELETE ON usr_session

221

Prevent operation

Table 31: Number of unique rpa_full rows by role

Role Unique Users Assigned permittable
rpa_full
rows
day_duty 0 0 0
night_duty 0 0 0
nurse 0 0 0
student_nurse 5 0 0
student_nurse_d 5 1 5
student_nurse_n 5 1 5
staff_nurse 9 0 0
staff_nurse_d 9 2 18
staff_nurse_n 9 2 18
sister 10 0 0
sister_d 10 2 20
sister_n 10 2 20
specialist_nurse 13 2 26
doctor 0 0 0
house_officer 8 0 0
house_officer_d 8 2 16
house_officer_n 8 3 24
snr_house_officer 11 0 0
snr_house_officer_d 11 2 22
snr_house_officer_n 11 1 11
specialist_registrar 12 2 24
consultant 13 2 26
administrator 0 0 0
receptionist 1 3 3
manager 8 1 8
data_manager 0 0 0
jnr_data_manager 7 (not tested) (not tested)
snr_data_manager 153 (not tested) (not tested)

222

Appendix VIII: SQL Code for Static RBAC

Tables

CREATE TABLE usr (
user_id VARCHAR(10),
Tast_name VARCHAR(50),
first_name VARCHAR(50),
address VARCHAR(50),
date_of_birth DATE,
Primary Key (user_id)
D)

CREATE TABLE password (
user_id VARCHAR(10),
password VARCHAR(41),
Primary Key (user_id),
FOREIGN KEY (user_id) REFERENCES usr (user_id)
);

CREATE TABLE role (
role VARCHAR(64),
Primary Key (role)
);

INSERT INTO role(role) VALUES ('_');

CREATE TABLE d_s (
senior_role VARCHAR(64) NOT NULL,
junior_role VARCHAR(64) NOT NULL,
Primary Key (senior_role,junior_role),
FOREIGN KEY (senior_role) REFERENCES role(role),
FOREIGN KEY (junior_role) REFERENCES role(role)
);

CREATE TABLE -inherits_rpa_path (
senior_role VARCHAR(64) NOT NULL,
junior_role VARCHAR(64) NOT NULL,
action VARCHAR(64),
object VARCHAR(64),
Primary Key (senior_role,junior_role,action,object),
FOREIGN KEY (senior_role) REFERENCES role(role),
FOREIGN KEY (junior_role) REFERENCES role(role),
CONSTRAINT check_action_inherits_rpa_path
CHECK (action IN ('select', 'insert', 'update', 'delete', 'alter', '_'"))
);

CREATE TABLE is_a (
inner_role VARCHAR(64) NOT NULL,
outer_role VARCHAR(64) NOT NULL,
Primary Key (inner_role,outer_role),
FOREIGN KEY (inner_role) REFERENCES role(role),
FOREIGN KEY (outer_role) REFERENCES role(role)
DH

CREATE TABLE ura(
usr VARCHAR(16) NOT NULL,
role VARCHAR(64) NOT NULL,
PRIMARY KEY (usr, role),
FOREIGN KEY (usr) REFERENCES usr(user_id),
FOREIGN KEY (role) REFERENCES role(role)
D)

CREATE TABLE rpa(
role VARCHAR(64) NOT NULL,

223

action VARCHAR(16) NOT NULL,
object VARCHAR(64) NOT NULL,
PRIMARY KEY (role, object, action),
FOREIGN KEY (role) REFERENCES role(role),
CONSTRAINT check_action_rpa
CHECK (action IN ('select', 'insert', 'update', 'delete', 'alter'))
);

CREATE TABLE d_rpa(
role VARCHAR(64) NOT NULL,
action VARCHAR(16) NOT NULL,
object VARCHAR(64) NOT NULL,
PRIMARY KEY (role, object, action),
FOREIGN KEY (role) REFERENCES role(role),
CONSTRAINT check_action_d_rpa
CHECK (action IN ('select', 'insert', 'update', 'delete', 'alter'))
);

CREATE TABLE usr_session(
usr VARCHAR(16) NOT NULL,
role VARCHAR(64) NOT NULL,
start_time TIMESTAMP NOT NULL,
end_time TIMESTAMP,
FOREIGN KEY (usr) REFERENCES usr(user_id),
FOREIGN KEY (role) REFERENCES role(role)
D

CREATE TABLE dsd(
rolel VARCHAR(64) NOT NULL,
role2 VARCHAR(64) NOT NULL,
PRIMARY KEY (rolel, role2),
FOREIGN KEY (rolel) REFERENCES role(role),
FOREIGN KEY (role2) REFERENCES role(role)
);

CREATE TABLE ssd(
rolel VARCHAR(64) NOT NULL,
role2 VARCHAR(64) NOT NULL,
PRIMARY KEY (rolel, role2),
FOREIGN KEY (rolel) REFERENCES role(role),
FOREIGN KEY (role2) REFERENCES role(role)
);

CREATE TABLE senior_to(
senior_role VARCHAR(64) NOT NULL,
junior_role VARCHAR(64) NOT NULL,
-- Primary Key (senior_role,junior_role),
FOREIGN KEY (senior_role) REFERENCES role(role),
FOREIGN KEY (junior_role) REFERENCES role(role)
);

CREATE TABLE included_in (
inner_role VARCHAR(64) NOT NULL,
outer_role VARCHAR(64) NOT NULL,
Primary Key (inner_role,outer_role),
FOREIGN KEY (inner_role) REFERENCES role(role),
FOREIGN KEY (outer_role) REFERENCES role(role)
DH

CREATE TABLE log (
txt VARCHAR(512)
);

224

CREATE TABLE senior_to_staging(
senior_role VARCHAR(64) NOT NULL,
junior_role VARCHAR(64) NOT NULL

);

CREATE TABLE -included_in_staging(
inner_role VARCHAR(64) NOT NULL,
outer_role VARCHAR(64) NOT NULL

DH

Views

CREATE VIEW inherits_rpa AS

-- 1inherits_rpa(R2,R3,P,0) :- senior_to(R1,R2),

-- senior_to(R3,R4),

-- inherits_rpa_path(R1,R4,P,0).

SELECT DISTINCT sl.junior_role AS senior_role, s2.senior_role AS junior_role, action, object

FROM senior_to sl, senior_to s2, inherits_rpa_path
WHERE sl.senior_role = inherits_rpa_path.senior_role
AND s2.junior_role = inherits_rpa_path.junior_role;

CREATE VIEW rpa_full AS

-- rpa_full1(R1,P,0) :- included_in(R1,R2),
-- senior_to(R2,R3),
-- rpa(R3,P,0),
-- inherits_rpa(R2,R3,P,0).
SELECT DISTINCT dincluded_in.inner_role AS role, action, object, senior_role, junior_role
FROM rpa, included_in, senior_to
WHERE -included_in.outer_role = senior_to.senior_role
AND senior_to.junior_role = rpa.role

AND (
(senior_to.senior_role,senior_to.junior_role) IN
(SELECT senior_role,junior_role FROM inherits_rpa WHERE action = '_' AND object = '_'")
OR

(senior_to.senior_role,senior_to.junior_role,action) IN

(SELECT senior_role, junior_role,action FROM inherits_rpa WHERE object = '_')
OR
(senior_to.senior_role,senior_to.junior_role,object) IN

(SELECT senior_role,junior_role,object FROM inherits_rpa WHERE action = '_'")

OR
(senior_to.senior_role,senior_to.junior_role,action,object) IN
(SELECT senior_role, junior_role,action,object FROM inherits_rpa)

CREATE VIEW permittable AS

SELECT DISTINCT usr, object, action, ura.role AS role FROM ura, rpa_full
WHERE ura.role = rpa_full.role;

CREATE VIEW currently_active AS
-- currently_active(U,R1,D1)
-- This behaves differently from its equivalent in Prolog,
-- hence the full predicate is not shown.
-- Unlike 1in Prolog, it does not test for DSD inconsistency,
-- since this is already done when inserting a row in active.
-- active 1is equivalent to both activate and deactivate in Prolog.
SELECT DISTINCT usr, role, start_time FROM usr_session
WHERE usr_session.start_time < SYSTIMESTAMP
AND (usr_session.end_time > SYSTIMESTAMP or usr_session.end_time is null);

CREATE VIEW permitted AS

225

SELECT DISTINCT permittable.usr AS usr, object, action, permittable.role AS role FROM
permittable, currently_active
WHERE permittable.usr = currently_active.usr and permittable.role = currently_active.role;

CREATE VIEW d_rpa_full AS

SELECT DISTINCT dincluded_in.inner_role AS role, action, object, senior_role, junior_role
FROM d_rpa, included_in, senior_to
WHERE 1included_in.outer_role = senior_to.junior_role
AND d_rpa.role = senior_to.senior_role;

CREATE VIEW denied AS

SELECT DISTINCT usr, action, object, ura.role AS role FROM ura, d_rpa_full
WHERE ura.role = d_rpa_full.role;

CREATE VIEW authorizable AS

SELECT DISTINCT usr, object, action, role FROM permittable
WHERE (usr, object, action, role) NOT IN
(SELECT usr, object, action, role FROM denied);

CREATE VIEW authorized AS

SELECT DISTINCT usr, object, action, role FROM permitted
WHERE (usr, object, action, role) NOT IN
(SELECT usr, object, action, role FROM denied);

CREATE VIEW dsd_conflict AS

SELECT 1il.inner_role AS rolel, i2.inner_role AS role2 FROM dsd, included_in il, included_in
i2
WHERE 1il.outer_role = dsd.rolel AND 1i2.outer_role = dsd.role2
UNION
SELECT 1i2.1inner_role AS rolel,il.inner_role AS role2 FROM dsd, included_in il, included_in
i2
WHERE 1il.outer_role = dsd.rolel AND 1i2.outer_role = dsd.role2
UNION
SELECT 1il.inner_role AS rolel,role AS role2 FROM dsd, role, included_in il
WHERE 1il.outer_role = dsd.rolel AND dsd.rolel <> role.role AND dsd.role2 = '_'
UNION
SELECT role AS rolel,il.inner_role AS role2 FROM dsd, role, included_in il
WHERE 1il.outer_role = dsd.rolel AND dsd.rolel <> role.role AND dsd.role2 = '_'
UNION
SELECT 1i2.1inner_role AS rolel, role AS role2 FROM dsd, role, included_in i2
WHERE 1i2.outer_role = dsd.role2 AND dsd.role2 <> role.role AND dsd.rolel = '_'
UNION
SELECT role AS rolel, i2.inner_role AS role2 FROM dsd, role, included_in i2
WHERE 1i2.outer_role = dsd.role2 AND dsd.role2 <> role.role AND dsd.rolel = '_'

CREATE VIEW ssd_conflict AS

226

SELECT 1il.1inner_role AS rolel, i2.inner_role AS role2 FROM ssd, included_in il, included_in

i2
WHERE 1il.outer_role = ssd.rolel AND i2.outer_role = ssd.role2
UNION

SELECT 1i2.1inner_role AS rolel,il.inner_role AS role2 FROM ssd, included_in il, included_in

i2

WHERE il.outer_role = ssd.rolel AND i2.outer_role = ssd.role2
UNION

SELECT 1il.inner_role AS rolel,role AS role2 FROM ssd, role, included_in il
WHERE 1il.outer_role = ssd.rolel AND ssd.rolel <> role.role AND ssd.role2 =
UNION

SELECT role AS rolel,il.inner_role AS role2 FROM ssd, role, included_in il
WHERE 1il.outer_role = ssd.rolel AND ssd.rolel <> role.role AND ssd.role2 =
UNION

SELECT 1i2.1inner_role AS rolel, role AS role2 FROM ssd, role, included_in i2
WHERE 1i2.outer_role = ssd.role2 AND ssd.role2 <> role.role AND ssd.rolel =
UNION

SELECT role AS rolel, i2.inner_role AS role2 FROM ssd, role, included_in i2
WHERE 1i2.outer_role = ssd.role2 AND ssd.role2 <> role.role AND ssd.rolel =

Triggers
CREATE OR REPLACE TRIGGER role_after_all
AFTER INSERT OR UPDATE OR DELETE ON role
FOR EACH ROW
BEGIN

IF UPDATING OR DELETING THEN
DELETE FROM 1included_in

WHERE 1inner_role = :old.role
AND outer_role = :old.role;
drop_role(full_db_user(:old.role));

END IF;

IF UPDATING OR INSERTING THEN

INSERT INTO 1included_in(inner_role,outer_role)
VALUES (:new.role,:new.role);
create_role(full_db_user(:new.role));

END IF;

END;

CREATE OR REPLACE TRIGGER role_before_update
BEFORE UPDATE ON role
FOR EACH ROW
BEGIN
RAISE_APPLICATION_ERROR(-20000, 'You cannot change the name of a role once
END;

CREATE OR REPLACE TRIGGER d_s_after_all
AFTER INSERT OR UPDATE OR DELETE ON d_s

227

created. ');

IF v_conflicting_roles > 0 THEN

raise_application_error(-20000, 'Conflicting roles: cannot activate ' || :new.usr || '
as ' || :new.role || '.");
END IF;
IF v_conflicting_roles > 0 OR v_ura = 0 THEN
raise_application_error(-20000, 'Not assigned to role: cannot activate ' || :new.usr
Il " as ' || :new.role || '.");
END IF;
END;
/

CREATE OR REPLACE TRIGGER usr_session_before_update
BEFORE UPDATE ON usr_session
FOR EACH ROW
BEGIN

IF :new.usr <> :old.usr OR :new.role <> :old.role OR :new.start_time <> :old.start_time
OR :new.end_time < SYSDATE THEN

RAISE_APPLICATION_ERROR(-20000, 'You cannot update a session once created, except to

end it.');

END IF;
END;

/

CREATE OR REPLACE TRIGGER usr_session_before_delete
BEFORE DELETE ON usr_session
FOR EACH ROW
BEGIN
RAISE_APPLICATION_ERROR(-20000, 'You cannot delete a session once created.');
END;

/

CREATE OR REPLACE TRIGGER password_before_update
BEFORE UPDATE ON password
FOR EACH ROW
BEGIN

IF :new.user_id <> :old.user_id THEN

RAISE_APPLICATION_ERROR(-20000, 'You cannot change a user''s ID once the user has been

created. ');

END IF;
END;

/

CREATE OR REPLACE TRIGGER usr_before_update
BEFORE UPDATE ON usr
FOR EACH ROW
BEGIN

IF :new.user_id <> :old.user_id THEN

RAISE_APPLICATION_ERROR(-20000, 'You cannot change a user''s ID once the user has been

created. ');

END IF;
END;

/

Functions

CREATE OR REPLACE FUNCTION fis_part_of(p_inner_role VARCHAR, p_outer_role VARCHAR)
RETURN BOOLEAN
IS

v_num_rowsl INT;

v_num_rows2 INT;
BEGIN

SELECT COUNT(*) INTO v_num_rowsl FROM included_in, senior_to WHERE

p_inner_role = included_in.inner_role AND

232

CREATE OR REPLACE PROCEDURE revoke_role(rolel VARCHAR, role2 VARCHAR)
IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
EXECUTE IMMEDIATE 'REVOKE ' || rolel
|| * FROM ' || role2;
END;
/

CREATE OR REPLACE PROCEDURE create_user(user_id VARCHAR, password VARCHAR)
IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
EXECUTE IMMEDIATE 'CREATE USER ' || user_id || ' IDENTIFIED BY "' || password || '" DEFAULT
TABLESPACE ' || get_schema(Q);
EXECUTE IMMEDIATE 'GRANT CREATE SESSION TO ' || user_id;
EXECUTE IMMEDIATE 'GRANT EXECUTE ANY PROCEDURE TO ' || user_id;
EXECUTE IMMEDIATE 'GRANT EXECUTE ON DBMS_RLS TO ' || user_id;
EXECUTE IMMEDIATE 'GRANT EXECUTE ON DBMS_SESSION TO ' || user_id;
EXECUTE IMMEDIATE 'GRANT ADMINISTER DATABASE TRIGGER TO ' || user_id;
EXECUTE IMMEDIATE 'GRANT EXECUTE ON "' || get_schema() || '"."SET_CONTEXT" TO ' || user_id;
END;
/
CREATE OR REPLACE PROCEDURE drop_user(user_id VARCHAR)
IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
EXECUTE IMMEDIATE 'DROP USER ' || user_id;
END;
/
CREATE OR REPLACE PROCEDURE create_role(role VARCHAR)
IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
EXECUTE IMMEDIATE 'CREATE ROLE ' || role;
END;
/
CREATE OR REPLACE PROCEDURE drop_role(role VARCHAR)
IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
EXECUTE IMMEDIATE 'DROP ROLE ' || role;
END;
/

CREATE OR REPLACE PROCEDURE grant_priv(action VARCHAR, object VARCHAR, role VARCHAR)
IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
EXECUTE IMMEDIATE 'GRANT ' || action
|| " ON ' ||object
|| " TO " || role;
END;
/

CREATE OR REPLACE PROCEDURE revoke_priv(action VARCHAR, object VARCHAR, role VARCHAR)
IS

236

237

Appendix IX: SQL Code for Dynamic RBAC: Generic

Tables

CREATE TABLE tb1_rows (
row_id VARCHAR(256),
object VARCHAR(64)
);

Views 1
These are run before setting up context constraints for databases to which RBAC model is applied.

CREATE VIEW permittable_by_row AS
SELECT usr, permittable.object as object, action, role, row_id
FROM permittable, tbl_rows
WHERE permittable.object = tb1_rows.object;

CREATE VIEW permitted_by_row AS
SELECT usr, permitted.object as object, action, role, row_id
FROM permitted, tbl1_rows
WHERE permitted.object = tbl_rows.object;

CREATE VIEW authorizable_by_row AS
SELECT usr, authorizable.object as object, action, role, row_id
FROM authorizable, tb1_rows
WHERE authorizable.object = tbl_rows.object;

CREATE VIEW authorized_by_row AS
SELECT usr, authorized.object as object, action, role, row_id
FROM authorized, tbl_rows
WHERE authorized.object = tb1_rows.object;

Views 2

These are run after setting up context constraints for databases to which RBAC model is applied, as this is when

fails_context_constraints is set up.

CREATE VIEW permittable_cc AS
SELECT usr, object, row_id, action, role FROM permittable_by_row
MINUS
SELECT usr, object, row_id, action, role FROM fails_context_constraints

CREATE VIEW permitted_cc AS
SELECT usr, object, row_id, action, role FROM permitted_by_row
MINUS
SELECT usr, object, row_id, action, role FROM fails_context_constraints
CREATE VIEW authorizable_cc AS
SELECT usr, object, row_id, action, role FROM authorizable_by_row
MINUS
SELECT usr, object, row_id, action, role FROM fails_context_constraints
CREATE VIEW authorized_cc AS
SELECT usr, object, row_id, action, role FROM authorized_by_row

MINUS
SELECT usr, object, row_id, action, role FROM fails_context_constraints

Triggers
CREATE OR REPLACE TRIGGER cc_logon_trigger

238

239

Appendix X: SQL Code for Dynamic RBAC: Hospital Database

Tables

CREATE TABLE patient_bed (
patient_id VARCHAR(256),
bed_id VARCHAR(64)

);

Views

These correspond to context constraints.

CREATE VIEW nurse_patient AS
SELECT permittable_by_row.usr as usr, action, object, row_id
FROM permittable_by_row, nurse_ward, room, bed, patient
WHERE object = 'patient'
AND permittable_by_row.usr = nurse_ward.usr
AND nurse_ward.ward = room.ward_id
AND room.room_id = bed.room_id
AND bed.bed_id = patient.bed_id
AND patient.patient_id = permittable_by_row.row_id
ORDER BY usr, action, row_id;

CREATE VIEW patient_doctor AS

SELECT usr, action, object, row_id
FROM permittable_by_row, ae_consultation
WHERE object = 'patient'
AND permittable_by_row.usr = ae_consultation.doctor_id
AND ae_consultation.patient_id = permittable_by_row.row_id

UNION

SELECT usr, action, object, row_id
FROM permittable_by_row, ae_consultation, patient_diagnosis
WHERE object = 'patient'
AND permittable_by_row.usr = patient_diagnosis.diagnosing_doctor
AND patient_diagnosis.cons_number = ae_consultation.cons_number
AND ae_consultation.patient_id = permittable_by_row.row_id;

CREATE VIEW day_duty AS
SELECT usr, action, object, row_id
FROM permittable_by_row
WHERE TO_CHAR (SYSDATE, 'HH24') >= 9 AND TO_CHAR (SYSDATE, 'HH24') < 21;

CREATE VIEW night_duty AS
SELECT usr, action, object, row_id
FROM permittable_by_row
WHERE TO_CHAR (SYSDATE, 'HH24') < 9 OR TO_CHAR (SYSDATE, 'HH24') >= 21;

CREATE VIEW weekend_duty AS
SELECT usr, action, object, row_id
FROM permittable_by_row
WHERE TO_CHAR (SYSDATE, 'D') = 7 OR TO_CHAR (SYSDATE, 'D') = 1;

CREATE VIEW office_hours AS
SELECT usr, action, object, row_id
FROM permittable_by_row

WHERE (

TO_CHAR (SYSDATE, 'D') >= 2 AND TO_CHAR (SYSDATE, 'D') <= 6
) AND (

TO_CHAR (SYSDATE, 'HH24') >= 9 AND TO_CHAR (SYSDATE, 'HH24') < 17
);

CREATE VIEW staff_nurse_sister_2h AS
SELECT DISTINCT permittable_by_row.usr, action, object, row_id
FROM permittable_by_row,included_in,currently_active
WHERE currently_active.role = included_in.inner_role

240

AND (included_in.outer_role = 'sister' OR included_in.outer_role = 'staff_nurse')
AND currently_active.start_time < SYSDATE - 2/24;

-- application
CREATE VIEW applies_nurse_patient AS
SELECT DISTINCT role, object FROM nurse_patient, included_in, senior_to, ura
WHERE object = 'patient'
AND nurse_patient.usr = ura.usr
AND ura.role = included_in.inner_role
AND included_in.outer_role = senior_to.junior_role
AND senior_to.senior_role = 'sister';

CREATE VIEW applies_patient_doctor AS
SELECT DISTINCT role, object FROM patient_doctor, included_in, senior_to, ura
WHERE object = 'patient'
AND patient_doctor.usr = ura.usr
AND ura.role = included_in.inner_role
AND 1included_in.outer_role = senior_to.junior_role
AND senior_to.senior_role = 'snr_house_officer';

CREATE VIEW applies_day_duty AS
SELECT DISTINCT 1inner_role AS role FROM is
WHERE outer_role = 'day_duty';

CREATE VIEW applies_night_duty AS
SELECT DISTINCT 1inner_role AS role FROM is_a
WHERE outer_role = 'night_duty';

CREATE VIEW applies_office_hours AS
SELECT DISTINCT role FROM role
WHERE (

role = 'office_hours'
)H

CREATE VIEW applies_staff_nurse_sister_2h AS
SELECT DISTINCT 1inner_role AS role FROM included_in
WHERE outer_role = 'student_nurse';

CREATE VIEW fails_nurse_patient AS
SELECT DISTINCT ura.usr AS usr, object, row_id, action, ura.role AS role FROM
permittable_by_row, ura
WHERE permittable_by_row.usr = ura.usr
AND (ura.usr, action, object, row_id) NOT IN (
SELECT usr, action, object, row_id FROM nurse_patient
) AND (ura.role, object) IN (
SELECT role, object FROM applies_nurse_patient
);

CREATE VIEW fails_patient_doctor AS
SELECT DISTINCT ura.usr AS usr, object, row_id, action, ura.role AS role FROM
permittable_by_row, ura
WHERE permittable_by_row.usr = ura.usr
AND (ura.usr, action, object, row_id) NOT IN (
SELECT usr, action, object, row_id FROM patient_doctor
) AND (ura.role, object) IN (
SELECT role, object FROM applies_patient_doctor
)H

CREATE VIEW fails_day_duty AS
SELECT DISTINCT wura.usr AS usr, object, row_id, action, ura.role AS role FROM
permittable_by_row, ura
WHERE permittable_by_row.usr = ura.usr
AND (ura.usr, action, object, row_id) NOT IN (
SELECT usr, action, object, row_id FROM day_duty
) AND ura.role IN (
SELECT role FROM applies_day_duty
H

CREATE VIEW fails_night_duty AS
SELECT DISTINCT ura.usr AS usr, object, row_id, action, ura.role AS role FROM
permittable_by_row, ura

241

WHERE permittable_by_row.usr = ura.usr
AND (ura.usr, action, object, row_id) NOT IN (
SELECT usr, action, object, row_id FROM night_duty
) AND ura.role IN (
SELECT role FROM applies_night_duty
);

CREATE VIEW fails_office_hours AS
SELECT DISTINCT ura.usr AS usr, object, row_id, action, ura.role AS role FROM
permittable_by_row, ura
WHERE permittable_by_row.usr = ura.usr
AND (ura.usr, action, object, row_id) NOT IN (
SELECT usr, action, object, row_id FROM office_hours
) AND ura.role IN (
SELECT role FROM applies_office_hours
)N

CREATE VIEW fails_staff_nurse_sister_2h AS
SELECT DISTINCT ura.usr AS usr, object, row_id, action, ura.role AS role FROM
permittable_by_row, ura
WHERE permittable_by_row.usr = ura.usr
AND (ura.usr, action, object, row_id) NOT IN (
SELECT usr, action, object, row_id FROM staff_nurse_sister_2h
) AND ura.role IN (
SELECT role FROM applies_staff_nurse_sister_2h
H

CREATE VIEW fails_context_constraints AS
SELECT usr, object, row_id, action, role FROM fails_nurse_patient
SEEgégNusr, object, row_id, action, role FROM fails_patient_doctor
SEEgégNusr, object, row_id, action, role FROM fails_day_duty
SEEgégNusr, object, row_id, action, role FROM fails_night_duty
SEEgégNusr, object, row_id, action, role FROM fails_office_hours
SEEgégNusr, object, row_id, action, role FROM fails_staff_nurse_sister_2h

Triggers
CREATE OR REPLACE TRIGGER patient_insert
AFTER INSERT ON patient
FOR EACH ROW
BEGIN

INSERT INTO patient_bed(patient_id, bed_id) values(:new.patient_id, :new.bed_id);
INSERT INTO tb1_rows(row_id, object) values(:new.patient_id, 'patient');

END;
/
CREATE OR REPLACE TRIGGER patient_update
AFTER UPDATE ON patient
FOR EACH ROW
BEGIN
UPDATE patient_bed SET patient_id = :new.patient_id, bed_id = :new.bed_id WHERE patient_id =
:old.patient_id AND bed_id = :old.bed_id;
UPDATE tb1_rows SET row_id = :new.patient_id WHERE row_id = :old.patient_id AND object =
'patient’;
END;
/

CREATE OR REPLACE TRIGGER patient_delete

242

Appendix Xl: Oracle VPD Context for Hospital Database

Head

247

Appendix XIllI: Oracle VPD Policy for Hospital Database

Addin

258

Appendix Xlll: Hospital Database CREATE TABLE statements

CREATE TABLE ward

(
ward_id VARCHAR(10),
type VARCHAR(10),

ward_capacity VARCHAR(10),
primary key (ward_id)

CREATE TABLE room

(

room_-id VARCHAR(10),
ward_id VARCHAR(10),
type VARCHAR(10) ,

bed_capacity VARCHAR(10),
primary key (room_id),
Foreign Key (ward_id) references ward(ward_id)

CREATE TABLE bed

(

bed_id VARCHAR(10),
room_-id VARCHAR(10),
type VARCHAR(10),

primary key (bed_id),
Foreign Key (room_id) references room(room_id)
);

CREATE TABLE patient

(

patient_id VARCHAR(50),

last_name VARCHAR(50),
first_name VARCHAR(50),

address VARCHAR(50),
date_of_birth VARCHAR(10),
bed_id Varchar(10),

Primary Key (patient_id),

Foreign key (bed_id) references bed(bed_id)
);

CREATE TABLE diagnosis

(
diagnosis_code VARCHAR(10),
illness_name VARCHAR(50) ,

usual_symptoms Varchar(200),
Primary Key (diagnosis_code)

CREATE TABLE ae_consultation

(

cons_number VARCHAR(10),
cons_date VARCHAR(10),
cons_description VARCHAR(100),
patient_id VARCHAR(50) ,
doctor_id VARCHAR(16) ,

Primary Key (cons_number),
Foreign Key (patient_id) references patient(patient_id),
Foreign Key (doctor_id) references usr(user_id)

CREATE TABLE patient_diagnosis

(

patient_diagnosis_number VARCHAR(10),
diagnosing_doctor VARCHAR(16),
diagnosis_desc VARCHAR(100),

259

260

Appendix XIV: Test Script for RBAC Enforcement

ALTER SESSION SET CURRENT_SCHEMA="HOSP";
@format
select REGEXP_SUBSTR(user, 'U[0-9]+') "User" FROM DUAL;

SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';

SELECT * FROM all_users WHERE username LIKE 'HOSP1_%' ORDER BY USERNAME;

SELECT grantor "Grantor'", grantee "Grantee", privilege "Privilege", table_name "Table" FROM
ALL_TAB_PRIVS WHERE TABLE_SCHEMA = 'HOSP';

SELECT user_id "User_ID", last_name "Last_Name", first_name "First_Name", address "Address",
date_of_birth FROM usr;

SELECT * FROM ward;

SELECT * FROM room;

SELECT * FROM bed;

SELECT patient_id "Patient_ID", last_name '"Last_Name'", first_name "First_Name", address
"Address", date_of_birth FROM patient;

SELECT diagnosis_code "Diag_Code", illness_name "I1lness_Name", usual_symptoms
"Usual_Symptoms" FROM diagnosis;

SELECT cons_number '"Cons_Num", cons_date, cons_description "Cons_Description", patient_id
"Patient_ID", doctor_id "Doctor_ID" FROM ae_consultation;

SELECT patient_diagnosis_number "PD_Num", diagnosing_doctor "Doctor_ID", diagnosis_desc
"Diagnosis_Desc", cons_number "Cons_Num", diagnosis_code "Diag_Code" FROM patient_diagnosis;
SELECT * FROM nurse_ward;

SELECT * FROM password;

SELECT * FROM role;

SELECT * FROM d_s;

SELECT * FROM senior_to;

SELECT * FROM ura;

SELECT * FROM rpa;

SELECT role "Role", action "Action", object "Object", senior_role "Senior Role", junior_role
"Junior Role" FROM rpa_full;

SELECT * FROM d_rpa;

SELECT role "Role", action "Action", object "Object", senior_role "Senior Role'", junior_role
"Junior Role" FROM d_rpa_full;

SELECT * FROM denied;

SELECT * FROM dsd;

SELECT * FROM dsd_conflict;

SELECT * FROM ssd;

SELECT * FROM ssd_conflict;

SELECT * FROM 1is_a;

SELECT * FROM -included_in;

SELECT senior_role "Senior Role", junior_role "Junior Role", action "Action", object "Object"
FROM -inherits_rpa;

SELECT senior_role "Senior Role'", junior_role "Junior Role", action "Action", object "Object"
FROM -inherits_rpa_path;

SELECT usr "User_ID", role "Role'", start_time "Start_Time", end_time "End_Time" FROM
usr_session;

SELECT * FROM currently_active;

SELECT * FROM authorizable;

SELECT * FROM permittable;

SELECT * FROM permitted;

SELECT * FROM authorized;

UPDATE patient SET date_of_birth = TO_DATE('1979-12-12', 'YYYY-MM-DD') WHERE patient_id =
12345;

UPDATE ward SET ward_capacity = 15 WHERE ward_id = 'ward2';

UPDATE room SET bed_capacity = 3 WHERE room_id = 'RoomlH';

UPDATE bed SET type='Electric' WHERE bed_id = 'Bed001';

UPDATE usr SET date_of_birth = ('1976-06-15', 'YYYY-MM-DD') WHERE user_id = 'u0019';

UPDATE diagnosis SET usual_symptoms = usual_symptoms ||
diagnosis_code = 'diag003';

', with foaming at the mouth.' WHERE

261

264

Appendix XV: Hospital Database RBAC INSERT Statements

connect hosp/hosp

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0001', 'Sugar','Ed','l Montgomery Ave',TO_DATE('12/06/1975', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0002', 'Python', 'Adam','45 Escort Road',TO_DATE('24/01/1950', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0003', 'Edmonds', 'Sophie', '49 Convent Gardens',TO_DATE('10/10/1968', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0004', 'Bowie', 'Diane','253 Kings Road',TO_DATE('02/03/1962', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

C 'u0005', 'Peters', 'Peter', '59 Monkety Crescent',TO_DATE('19/01/1980', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0006','Davies’', 'Sheena', '10 Auchtermuchty Way',TO_DATE('15/02/1979', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

C 'u0007', 'Williams', 'Lucie','23 Monkswood Drive',TO_DATE('15/07/1977', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0008','Jones’', 'John', 'The Manse, Church Lane',TO_DATE('18/07/1977', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

C 'u0009','Evans', 'Renate', '3 Geering Road',TO_DATE('12/03/1970', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0010','Fish', 'Michael', 'The Vane, Weatherby', TO_DATE('28/12/1955', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0011', 'Ghosh', 'Chandra','10 Kennington Road',TO_DATE('11/07/1959', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

C 'u0012', 'Kellett', 'James','104 The Vale',TO_DATE('15/02/1959', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0013','Jacobson', 'Lucinda', '14 The Mansion',TO_DATE('01/02/1969', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0014','Jones’', 'Hannah','13 Consort Road',TO_DATE('15/05/1955', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0015', 'Kenning', 'Stephen', '10 Roadrunner Crescent',TO_DATE('13/01/1977', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0016','Strand', 'Jasmine', 'The Lodge, Linden Avenue',TO_DATE('15/06/1987',

'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0017','Canning', 'Elizabeth', '100 Western Road',TO_DATE('22/03/1969', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0018','Clarkson', 'Jeremy', '43 Vroom Vroom Road',TO_DATE('30/09/1962', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0019','Lewis', 'Christine','16 Trent Drive',TO_DATE('13/05/1980', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0020', 'Jackson', 'Lisa', '56 Restorick Road',TO_DATE('12/09/1975', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0021','James’', 'Wendy', '40 Transvision Road',TO_DATE('07/05/1966', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0022','Darch','Ruth', '31 Finstock Street',TO_DATE('21/06/1979', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0023','Lewis', 'Donald','1l5 Montana Lane',TO_DATE('29/12/1980', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0024','Davies', 'Caroline', '10 The Avenue',TO_DATE('17/09/1971', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0025', 'Lewis', 'Charlotte', '20 High Road',TO_DATE('06/07/1974', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

C 'u0026', 'Davies’', 'Jonathan','15 Low Road',TO_DATE('14/07/1959', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0027','Minnow’', 'Robert','5 Montrose Place',TO_DATE('08/07/0966', 'DD/MM/YYYY'));
INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0028','Avery', 'Caspar','13 Cod Street',TO_DATE('15/08/1981', 'DD/MM/YYYY'));

INSERT INTO usr(user_id, last_name, first_name, address, date_of_birth) VALUES

('u0029', 'McTaggart','James','10 Fortean Street',TO_DATE('21/02/1977', 'DD/MM/YYYY'));

265

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT

INSERT

INSERT
INSERT

266

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO

INTO
INTO
INTO

password(
password(
password(
password(
password(
password(
password(
password(
password(
password(
password(
password(

password(
password(
password(
password(
password(
password(
password(

password(
password(
password(
password(
password(

password(
password(
password(
password(
password(

role(role
role(role
role(role
role(role

role(role
role(role
role(role
role(role
role(role
role(role
role(role
role(role

role(role
role(role
role(role
role(role
role(role
role(role
role(role
role(role
role(role
role(role

role(role
role(role
role(role
role(role

role(role
role(role
role(role

user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,

user_id,
user_id,
user_id,
user_id,
user_id,
user_id,
user_id,

user_id,
user_id,
user_id,
user_id,
user_id,

user_id,
user_id,
user_id,
user_id,
user_id,

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
)

VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES

password)
password)
password)
password)
password)
password)
password)
password)
password)
password)
password)
password)

password)
password)
password)
password)
password)
password)
password)

password)
password)
password)
password)
password)

password)
password)
password)
password)
password)

laYaYa) NN laYaYatatatataltatate) laYatatataltalale) NN

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

'nurse');
'doctor');
'data_manager');
'administrator');

'day_duty');
'night_duty');
'office_hours');

laYatateatatatalatatatata)

laYaYaYale) laYaYaYale) laYaYatatatate)

'consultant');
'specialist_registrar');
'snr_house_officer');
'snr_house_officer_d');
'snr_house_officer_n');
'house_officer');
'house_officer_d');
'house_officer_n');

'u0001', 'desk');
'u0002', 'chair');
'u0003"', 'window');
'u0004', 'brick');
'u0005"', "mother');
'u0006', 'tennis');
'u0007', 'file');
'u0008', 'cricket');
'u0009', 'dragon');
'u0010', 'cock');
'u0011', 'onion');
'u0012', 'thadeus');

'u0013', 're$t’);

'u0014', 'carlena');
'u0015', 'walnut');
'u0016', 'c00lie');
'u0017', 'compile');
'u0018', 'wheeler');
'u0019', 'mcginty');

'u0020', 'queen');
'u0021', 'vamp');
'u0022', 'woodstock');
'u0023', 'bronze');
'u0024', 'cruise');

'u0025', '"cream’);
'u0026', 'rookie');
'u0027', 'little_fish');
'u0028', 'fern');
'u0029', 'jimmy');

'specialist_nurse');
'sister');
'sister_d');
'sister_n');
'staff_nurse');
'staff_nurse_d');
'staff_nurse_n');
'student_nurse');
'student_nurse_d');
'student_nurse_n');

'snr_data_manager');
'jnr_data_manager');
'receptionist');

'manager’');

INSERT INTO d_s(senior_role, junior_role) VALUES ('consultant', 'specialist_registrar');
INSERT INTO d_s(senior_role, junior_role) VALUES

('specialist_registrar', 'snr_house_officer');

INSERT INTO d_s(senior_role, junior_role) VALUES ('snr_house_officer', "house_officer');
INSERT INTO d_s(senior_role, junior_role) VALUES ('specialist_nurse','sister');

INSERT INTO d_s(senior_role, junior_role) VALUES ('sister','staff_nurse');

INSERT INTO d_s(senior_role, junior_role) VALUES ('staff_nurse', 'student_nurse');
INSERT INTO d_s(senior_role, junior_role) VALUES ('snr_data_manager', 'jnr_data_manager');
INSERT INTO d_s(senior_role, junior_role) VALUES ('manager', 'receptionist');

INSERT INTO d_s(senior_role, junior_role) VALUES ('manager', 'consultant');

INSERT INTO d_s(senior_role, junior_role) VALUES ('manager', 'snr_data_manager');

INSERT INTO d_s(senior_role, junior_role) VALUES ('manager', 'specialist_nurse');

INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object) VALUES

('consultant', "house_officer','_
INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object
('specialist_nurse', 'student_nurse','_
INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object

')

('snr_data_manager', 'jnr_data_manager','_

INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object
('manager', 'receptionist’','_

INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object

)

D H
')

)
)

VALUES
VALUES

VALUES

VALUES

("manager', "house_officer', 'select', 'ae_consultation');

INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object

("manager', 'staff_nurse','_', 'patient_diagnosis');

INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object

('manager','staff_nurse','select','_");

-- s/junior/jnr, s/senior/snr, s/night/n, s/day/d

in Orac
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
("snr_|

INSERT
INSERT
INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT

INSERT
INSERT

267

le

INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO

INTO
INTO
INTO

is_a(
is_a(
is_a(
is_a(
is_a(
is_a(

is_a(
is_a(
is_a(
is_a(

is_a(
is_a(
is_a(

inner_role,
inner_role,
inner_role,
inner_role,
inner_role,
inner_role,

inner_role,
inner_role,
inner_role,
inner_role,

inner_role,
inner_role,
inner_role,

outer_role
outer_role
outer_role
outer_role
outer_role
outer_role

outer_role
outer_role
outer_role
outer_role

outer_role
outer_role
outer_role

)
)
)
)
)
)
)
)
)
)
)
)

)

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES

house_officer_d', 'snr_house_officer');
INSERT INTO is_a(inner_role, outer_role) VALUES
('snr_house_officer_n', 'snr_house_officer');

INTO
INTO
INTO
INTO

INTO
INTO

INTO
INTO

INTO
INTO
INTO

is_a(
is_a(
is_a(
is_a(

is_a(
is_a(

is_a(
is_a(

is_a(
is_a(
is_a(

inner_role,
inner_role,
inner_role,
inner_role,

inner_role,
inner_role,

inner_role,
inner_role,

inner_role,
inner_role,
inner_role,

outer_role
outer_role
outer_role
outer_role

outer_role
outer_role

outer_role
outer_role

outer_role
outer_role
outer_role

)
)
)
)
)
)
)
)
)
)
)

VALUES
VALUES
VALUES
VALUES

VALUES
VALUES

VALUES
VALUES

VALUES
VALUES
VALUES

due to restriction in length of role names

(
(
(
(
(
(
(
(
(
(
(
(

VALUES

VALUES

'student_nurse_d', 'student_nurse');
'student_nurse_n', 'student_nurse');

'staff_nurse_d', 'staff_nurse');
'staff_nurse_n', 'staff_nurse');
'sister_d', 'sister');
'sister_n', 'sister');

'student_nurse', 'nurse');
'staff_nurse', 'nurse');
'sister', 'nurse');
'specialist_nurse', 'nurse');

'house_officer_d', 'house_officer'
'house_officer_n', 'house_officer'

'house_officer', 'doctor');
'snr_house_officer', 'doctor');
'specialist_registrar', 'doctor');
'consultant', 'doctor');

'jnr_data_manager', 'data_manager'
'snr_data_manager', 'data_manager'

'receptionist', 'administrator');
'manager', 'administrator');

'student_nurse_d', 'day_duty');
'staff_nurse_d', 'day_duty');
'sister_d', 'day_duty');

o/

o/

INSERT INTO is_a(inner_role,
INSERT INTO 1is_a(inner_role,

INSERT INTO 1is_a(inner_role,
INSERT INTO is_a(inner_role,
INSERT INTO 1is_a(inner_role,
INSERT INTO is_a(inner_role,
INSERT INTO 1is_a(inner_role,

INSERT INTO 1is_a(inner_role,
INSERT INTO is_a(inner_role,

INSERT INTO dsd(rolel,
INSERT INTO dsd(rolel,
INSERT INTO dsd(rolel,
INSERT INTO dsd(rolel,

INSERT INTO ssd(rolel,
INSERT INTO ssd(rolel,
INSERT INTO ssd(rolel,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
'ae_consultation');
INSERT INTO rpa(role,
D)

INSERT INTO rpa(role,
INSERT INTO rpa(role,
'ae_consultation');

INSERT INTO rpa(role,
'patient_diagnosis');

INSERT INTO rpa(role,
'patient_diagnosis');

INSERT INTO rpa(role,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
'patient_diagnosis');

INSERT INTO rpa(role,
INSERT INTO rpa(role,
'ae_consultation');

INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,

268

role2
role2
role2
role2

role2
role2
role2

action,
action,
action,
action,
action,
action,
action,

action,
action,
action,

action,

action,

action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,
action,
action,
action,

action,

action,

outer_role
outer_role

outer_role
outer_role
outer_role
outer_role
outer_role

outer_role
outer_role

VALUES (
VALUES (
VALUES (
VALUES (

o/ /S

) VALUES (
) VALUES (
) VALUES (

object
object
object
object
object
object
object

o/ N/

object

object)
object)

object)

object)

object)

object
object
object
object
object

object
object
object
object
object

LA AN A o/

object

object

)
object)
)
object)

object)

) VALUES ('house_officer_d', 'day_duty');

) VALUES ('snr_house_officer_d', 'day_duty');

) VALUES ('student_nurse_n', 'night_duty');

) VALUES ('staff_nurse_n', 'night_duty');

) VALUES ('sister_n', 'night_duty');

) VALUES ('house_officer_n', 'night_duty');

) VALUES ('snr_house_officer_n', 'night_duty');

) VALUES ('receptionist', 'office_hours');

) VALUES ('jnr_data_manager', 'office_hours');

'jnr_data_manager', '_');

'receptionist', 'nurse');

'administrator', 'doctor');

'day_duty', 'night_duty');

'snr_data_manager', '_');

'manager', 'consultant');

'doctor', 'nurse');
VALUES ('house_off-icer', 'select', 'ward');
VALUES ('house_officer','select', 'room');
VALUES ('house_officer','select', 'bed');
VALUES ('house_officer','select', 'patient');
VALUES ('house_officer','select', 'diagnosis');
VALUES ('house_officer', 'select', 'usr');
VALUES ('house_officer', 'select',
VALUES ('house_officer','select', 'patient_diagnosis'
VALUES ('snr_house_officer', 'update', 'diagnosis');
VALUES ('snr_house_officer', 'update',
VALUES ('snr_house_officer', 'update',
VALUES ('specialist_registrar', 'insert',
VALUES ('consultant', 'insert', 'ae_consultation');
VALUES ('student_nurse', 'select', 'ward');
VALUES ('student_nurse','select', 'room');
VALUES ('student_nurse','select', 'bed');
VALUES ('student_nurse','select', 'patient');
VALUES ('student_nurse','select', 'usr');
VALUES ('staff_nurse','update', 'patient');
VALUES ('staff_nurse','select', 'diagnosis');
VALUES ('staff_nurse','select', 'usr');
VALUES ('staff_nurse','select', 'ae_consultation');
VALUES ('staff_nurse', 'select',
VALUES ('sister','update', 'patient_diagnosis');
VALUES ('specialist_nurse', 'update',
VALUES ('specialist_nurse','update', 'diagnosis');
VALUES ('specialist_nurse','insert', 'diagnosis');
VALUES ('receptionist','select', 'patient');

INSERT INTO rpa(role, action, object) VALUES ('manager','insert', 'patient');

INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager','insert', 'ward');
INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager', 'insert', 'room');
INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager', 'insert', 'bed');
INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager','insert', 'patient');
INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager', 'insert', 'diagnosis');
INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager', 'insert',
'ae_consultation');

INSERT INTO rpa(role, action, object) VALUES ('jnr_data_manager', 'insert',

'patient_diagnosis');

INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object

VALUES
VALUES
VALUES
VALUES

'snr_data_manager', 'select’', 'ward');
'snr_data_manager', 'update', 'ward');
'snr_data_manager', 'delete', 'ward');
'snr_data_manager', 'alter', 'ward');

VALUES
VALUES
VALUES
VALUES

INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object

) (
) (
) (
) (
) ('"snr_data_manager', 'select', 'room');
) ('"snr_data_manager', 'update', 'room');
) ('"snr_data_manager', 'delete', 'room');
) ('snr_data_manager','alter', 'room');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'select', 'bed');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'update', 'bed');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager','delete', 'bed');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager','alter', 'bed');
INSERT INTO rpa(role, action, object) (¢
INSERT INTO rpa(role, action, object) (C
INSERT INTO rpa(role, action, object) (¢
INSERT INTO rpa(role, action, object) (
) (
) (
) (
) (
) (
) (
) (
) (

VALUES
VALUES
VALUES
VALUES

'snr_data_manager', 'select', 'patient');
'snr_data_manager', 'update’', 'patient');
'snr_data_manager', 'delete’', 'patient');

'snr_data_manager', 'alter', 'patient');
VALUES
VALUES
VALUES
VALUES

INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object

'snr_data_manager', 'select’', 'diagnosis');
'snr_data_manager', 'update’', 'diagnosis');
'snr_data_manager', 'delete’', 'diagnosis');
'snr_data_manager', 'alter', 'diagnosis');
INSERT INTO rpa(role, action, object) VALUES
'ae_consultation');

INSERT INTO rpa(role, action, object
'ae_consultation');

INSERT INTO rpa(role, action, object
'ae_consultation');

INSERT INTO rpa(role, action, object
);

'snr_data_manager', 'select’,

VALUES 'snr_data_manager', 'update’,

VALUES 'snr_data_manager', 'delete’,

VALUES 'snr_data_manager', 'alter', 'ae_consultation'

INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'select’',
'patient_diagnosis');

INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'update',
'patient_diagnosis');

INSERT INTO rpa(role, action, object) (¢

'patient_diagnosis');

INSERT INTO rpa(role, action, object) (C

'patient_diagnosis');

VALUES 'snr_data_manager', 'delete’,

VALUES 'snr_data_manager', 'alter’,

INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'select', 'nurse_ward');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager','insert', 'nurse_ward');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'update', 'nurse_ward');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'delete', 'nurse_ward');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager','alter', 'nurse_ward');

INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'select', 'usr');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'update', 'usr');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager', 'delete', 'usr');
INSERT INTO rpa(role, action, object) VALUES ('snr_data_manager','alter', 'usr');
) VALUES (
) VALUES (
) VALUES (

INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object

'snr_data_manager', 'select', 'password');
'snr_data_manager', 'insert', 'password');
'snr_data_manager', 'update', 'password');

269

INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO

rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(

role,
role,

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,

"inherits_rpa_path');
INSERT INTO rpa(role,
"inherits_rpa_path');
INSERT INTO rpa(role,
'inherits_rpa_path');
INSERT INTO rpa(role,
"inherits_rpa_path');
INSERT INTO rpa(role,
"inherits_rpa_path');

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

INSERT
INSERT

270

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(
rpa(
rpa(

rpa(
rpa(
rpa(

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,
role,
role,
role,
role,

role,
role,
role,

action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,

action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,
action,
action,

action,
action,
action,

object
object

object
object
object
object
object

object
object
object
object
object

object
object
object
object

object

object
object
object
object
object

object
object
object
object
object

object
object
object
object
object

object
object
object
object
object

object
object
object
object
object

object
object
object
object
object

object
object
object
object
object

object
object
object

VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES

VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES

laYaYa) laYaYaYate) NN laYaYaYaYe) laYaYaYate) NN NN laYaYaYaYe)

'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,

'snr_data_manager', 'alter’,

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,

'password’');
password');

'role’
'role’
'role’
'role');
role');

U\

'd_s');
'd_s');
'd_s');
'd_s');
d_s');

'is_a');
'is_a');
"is_a');

3

'rpa’);
'rpa’);
‘rpa’);
‘rpa’);
rpa');

'ssd'’
'ssd'’
'ssd’
'ssd’
ssd');

I\

'dsd');
'dsd');

d_rpa')
'usr_session');
'usr_session');
'usr_session');
'usr_session');
usr_session');

'senior_to');
'senior_to');
'senior_to');

INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
'currently_active');
INSERT INTO rpa(role,
'currently_active');
INSERT INTO rpa(role,
'currently_active');
INSERT INTO rpa(role,
'currently_active');

INSERT INTO rpa(role,
'authorizable');
INSERT INTO rpa(role,
'authorizable');
INSERT INTO rpa(role,
'authorizable');
INSERT INTO rpa(role,
'authorizable');

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

INSERT INTO rpa(role,
'dsd_conflict');
INSERT INTO rpa(role,
'dsd_conflict');
INSERT INTO rpa(role,
'dsd_conflict');
INSERT INTO rpa(role,
'dsd_conflict');

INSERT INTO rpa(role,
'ssd_conflict');
INSERT INTO rpa(role,
'ssd_conflict');
INSERT INTO rpa(role,
'ssd_conflict');
INSERT INTO rpa(role,
'ssd_conflict');

INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,
INSERT INTO rpa(role,

271

action,
action,

action,
action,
action,
action,
action,
action,
action,

action,

action,

action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,
action,

action,

action,

action,
action,
action,
action,
action,
action,

action,
action,

object
object

object
object
object
object
object
object
object
object

object

object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object

object

object
object
object
object
object
object

object
object

VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES

'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'alter’',
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',

'snr_data_manager', 'update’,

'snr_data_manager', 'delete’,

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',

'snr_data_manager', 'update’,

'snr_data_manager', 'delete’,

'snr_data_manager', 'select’,
'snr_data_manager', 'insert',
'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,
'snr_data_manager', 'select’,
'snr_data_manager', 'insert',

'snr_data_manager', 'update’,
'snr_data_manager', 'delete’,

'senior_to');
'senior_to');

'included_in');
"included_in');
'included_in');
'included_in');
'included_1in');

'permittable’
'permittable’
'permittable’
'permittable’

s S\

'authorized'
'authorized'
'authorized'
'authorized'

o/ /S

'permitted’
'permitted’
'permitted’
'permitted’

/S

'denied');
'denied')
'denied')
'denied')

'd_rpa_full');
'd_rpa_full');
'd_rpa_full');
'd_rpa_full');

INSERT
INSERT
INSERT
INSERT

INSERT

INTO
INTO
INTO
INTO

INTO

rpa(role,
rpa(role,
rpa(role,
rpa(role,

rpa(role,

"inherits_rpa');
INSERT INTO rpa(role,
'inherits_rpa');
INSERT INTO rpa(role,
"inherits_rpa');
INSERT INTO rpa(role,
"inherits_rpa');

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INSERT

INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

insert
insert
insert

insert
insert

insert

272

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO

INTO
INTO

INTO
INTO

INTO
INTO

INTO
INTO

INTO
INTO

INTO
INTO

INTO

INTO
INTO

INTO
INTO

INTO
INTO

into
into
into

into
into

into

action, object
action, object
action, object

action, object

action, object

action, object

)
)
)
action, object)
)
)
)
)

action, object

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES

'snr_data_manager', 'select', 'rpa_full');
'snr_data_manager', 'insert', 'rpa_full');
'snr_data_manager', 'update', 'rpa_full');

(
(
(
('snr_data_manager', 'delete', 'rpa_full')
('snr_data_manager', 'select’',

('snr_data_manager', 'insert',

('snr_data_manager', 'update’,

(

'snr_data_manager', 'delete’,

ura(usr, role) VALUES ('u0005', 'house_officer_d');

ura(usr, role) VALUES ('u0006', 'house_officer_n');

ura(usr, role) VALUES ('u0007', 'house_officer_d');

ura(usr, role) VALUES ('u0008', 'house_officer_n');

ura(usr, role) VALUES ('u0010', 'house_officer_n');

ura(usr, role) VALUES ('u0011', 'snr_house_officer_d');

ura(usr, role) VALUES ('u0003', 'snr_house_officer_n');

ura(usr, role) VALUES ('u0004', 'snr_house_officer_d');

ura(usr, role) VALUES ('u0002', 'specialist_registrar');

ura(usr, role) VALUES ('u0012', 'specialist_registrar');

ura(usr, role) VALUES ('u0001', 'consultant');

ura(usr, role) VALUES ('u0009', 'consultant');

ura(usr, role) VALUES ('u0016', 'student_nurse_d');

ura(usr, role) VALUES ('u0016', 'student_nurse_n');

ura(usr, role) VALUES ('u0025','staff_nurse_d');

ura(usr, role) VALUES ('u0026','staff_nurse_d');

ura(usr, role) VALUES ('u0015', 'staff_nurse_n');

ura(usr, role) VALUES ('u0027','staff_nurse_n');

ura(usr, role) VALUES ('u0028','sister_d');

ura(usr, role) VALUES ('u0014','sister_d');

ura(usr, role) VALUES ('u0020','sister_n');

ura(usr, role) VALUES ('u0014','sister_n');

ura(usr, role) VALUES ('u0013', 'specialist_nurse');

ura(usr, role) VALUES ('u0029', 'specialist_nurse');

ura(usr, role) VALUES ('u0018','jnr_data_manager');

ura(usr, role) VALUES ('u0019', 'jnr_data_manager');

ura(usr, role) VALUES ('u0017','snr_data_manager');

ura(usr, role) VALUES ('u0022', 'receptionist');

ura(usr, role) VALUES ('u0021', 'manager');

ura(usr, role) VALUES ('u0016','jnr_data_manager');

ura(usr, role) VALUES ('u0022','jnr_data_manager');

ura(usr, role) VALUES ('u0005', 'receptionist');

ura(usr, role) VALUES ('u0009', 'receptionist');

d_rpa(role, action, object) VALUES ('snr_house_officer', 'select', 'ward');
d_rpa(role, action, object) VALUES ('sister','select', 'usr');

d_rpa(role, action, object) VALUES ('staff_nurse','select', 'usr');
d_rpa(role, action, object) VALUES ('snr_house_officer', 'select', 'bed');
d_rpa(role, action, object) VALUES ('house_officer','select', 'usr');
d_rpa(role, action, object) VALUES ('night_duty', 'select', 'patient');

insert

insert
insert

insert
insert

insert

into d_rpa(

into d_rpa(
into d_rpa(

into d_rpa(
into d_rpa(

into d_rpa(

'ae_consultation');

insert into d_rpa(role,

-- permissions

insert
insert
insert
insert
insert
insert

273

into
into
into
into
into
into

rpa(
rpa(
rpa(
rpa(
rpa(
rpa(

role,
role,
role,
role,
role,
role,

role,

role,
role,

role,
role,

role,

action,
action,
action,
action,
action,
action,

action,

action,
action,

action,
action,

action,

action,

object
object
object
object
object
object

object

object
object

object
object

object

object

I\

VALUES

VALUES
VALUES

VALUES
VALUES

A 7\ o -/

VALUES
) VALUES

VALUES (
VALUES (
VALUES (
VALUES (
VALUES (
VALUES (

'administrator', 'update', 'patient');
'nurse', 'update', 'patient');
'nurse', 'update', 'ward');

(

(

(

('office_hours', 'insert', 'ward');
('office_hours', 'update', 'bed');
(

'snr_house_officer_d', 'update',
('house_officer_n', 'select', 'diagnosis');

'day_duty', 'select', 'usr');

'doctor', 'select', 'patient');
'administrator', 'insert', 'patient');
'administrator’', "insert', 'usr');
'data_manager', 'insert', 'usr');
'administrator', 'update', 'patient');

Appendix XVI: Hospital Database Data INSERT Statements

connect hosp/hosp

INSERT INTO ward(ward_id, type, ward_capacity) VALUES ('wardl', 'Operating', '10');
INSERT INTO ward(ward_id, type, ward_capacity) VALUES ('ward2', 'Hemotology', '12');

INSERT INTO room(room_id, ward_id, type, bed_capacity) VALUES ('Rooml0', 'wardl', 'Public’,
4);

INSERT INTO room(room_id, ward_id, type, bed_capacity) VALUES ('Room20', 'wardl', 'Public’,
4);

INSERT INTO room(room_id, ward_id, type, bed_capacity) VALUES ('Room30', 'wardl',
'Private', '2');

INSERT INTO room(room_id, ward_id, type, bed_capacity) VALUES ('RoomlH', 'ward2', 'Public’,
4);

INSERT INTO room(room_id, ward_id, type, bed_capacity) VALUES ('Room2H', 'ward2', 'Public',
4

INSERT INTO room(room_id, ward_id, type, bed_capacity) VALUES ('Room3H', 'ward2',
'Private', '4');

INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed001', 'RoomlO', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed002', 'RoomlQO', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed003', 'RoomlQO', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed004', 'RoomlQ', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed005', 'Room20', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed006', 'Room20', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed007', 'Room20', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed008', 'Room20', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed009', 'Room30', 'Electric');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed010', 'Room30', 'Electric');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed011', 'RoomlH', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed012', 'RoomlH', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed013', 'RoomlH', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed014', 'RoomlH', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed015', 'Room2H', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed016', 'Room2H', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed017', 'Room2H', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed018', 'Room2H', 'Normal');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed019', 'Room3H', 'Electric');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed020', 'Room3H', 'Electric');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed021', 'Room3H', 'Electric');
INSERT INTO bed(bed_id, room_id, type) VALUES ('Bed022', 'Room3H', 'Electric');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12345', 'Smith', 'John', '33 Oak Street', TO_DATE(C '12/12/1970', 'DD/MM/YYYY'),
'Bed001');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12354', 'Davies', 'Kenneth', '405 Kingston Road', TO_DATE('13/03/1980',
'DD/MM/YYYY'), 'Bed002');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12353', 'Williams', 'Louise', '1l5 Wellstone Street', TO_DATE('31/05/1955',
'DD/MM/YYYY'), 'Bed003');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12352', 'McDonald', 'Ronald', '23 Portobello Road', TO_DATE('15/06/1977',
'DD/MM/YYYY'), 'Bed004');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12355', 'Wilkinson', 'Matthew', '15 Touchwood Lane', TO_DATE('15/02/1950',
'DD/MM/YYYY'), 'Bed005');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12356', 'Matthewman', 'Wendy', '23a Tisbury Road', TO_DATE('12/12/1990',
'DD/MM/YYYY'), 'Bed006');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12357', 'Kenwood', 'Robert', 'l4 Minster Lane', TO_DATE('15/09/1966',
'DD/MM/YYYY'), 'Bed007');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)

274

VALUES ('12358', 'Constantine', 'Frederick', 'l The Avenue', TO_DATE(C '14/03/1933',
'DD/MM/YYYY'), 'Bed008');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12347', 'Fowler', 'Robert', '443 Sidney Gardens', TO_DATE('11/10/1984',
'DD/MM/YYYY'), 'Bed009');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12359', 'Kelly', 'Yasmin', '14 Crusader Road', TO_DATE('15/02/1982',
'DD/MM/YYYY'), 'Bed010');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12349', 'Jones', 'Julia', 'l12 Oakley Road', TO_DATE(C '11/11/1971', 'DD/MM/YYYY'),
'Bed011');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12346', 'King', 'Steve', '44 Fulham Broadway', TO_DATE('11/02/1945',
'DD/MM/YYYY'), 'Bed012');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12350', 'Cole', 'Katherine', '22 Bridge Road', TO_DATE('09/08/1950',
'DD/MM/YYYY'), 'Bed013');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12351', 'Robinson', 'Tim', 'll Horsenden Lane', TO_DATE('08/07/1960',
'DD/MM/YYYY'), 'Bed014');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12360', 'James', 'Timothy', '16 Bender Lane', TO_DATE('01/06/1944', 'DD/MM/YYYY'),
'Bed015');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12361', 'David', 'Frances', '177 Calder Pass', TO_DATE('02/07/1966',
'DD/MM/YYYY'), 'Bed016');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12362', 'Treville', 'Marcus', '103 Stanford Drive', TO_DATE('22/01/1988',
'DD/MM/YYYY'), 'Bed017');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12363', 'Mckenzie', 'Angus', '100 Creswood Road', TO_DATE('21/03/1969',
'DD/MM/YYYY'), 'Bed018');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12348', 'Philips', 'Cindy', '10 Brentworth Road', TO_DATE('04/03/1977',
'DD/MM/YYYY'), 'Bed019');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12364', 'Churchill', 'Winston', '88 Kenwood Drive', TO_DATE('13/05/1966',
'DD/MM/YYYY'), 'Bed020');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12365', 'Bhatti', 'Salima', '10 Firewood Lane', TO_DATE('12/06/1979',
'DD/MM/YYYY'), 'Bed021');

INSERT INTO patient(patient_id, last_name, first_name, address, date_of_birth, bed_id)
VALUES ('12366', 'Dijkstra', 'Ravi', 'l17 Strongwood Close', TO_DATE('14/08/1955',
'DD/MM/YYYY'), 'Bed022');

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag001',
'Appendicitis', 'Pain in the iliac fossa on the right side. Loss of appetite and sometimes
vomiting occur,although this is rarely severe. There may be constipation or diarrhoea.');
INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag002',
'Food Poisoning', 'Nausea,vomiting,diarrhoea and stomach pain');

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag003',
'Epilepsy’', 'Recurrent fits or seizures');

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag004',
'Heart Attack', 'Extreme pain in the left hand side of the chest');

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag005',
'Gastroesophageal reflux disease', 'burning pain behind the breastbone,a taste of acid in the
back of the throat or mouth');

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag006',
'Pubic Lice', 'Intense itching in the affected area,black powder in underwear,brown eggs on
the hair');

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag007',
'Dementia’', 'Memory loss is a very common symptom,in particular,short-term memory loss');
INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag008', 'Sun
Allergy', 'Painful skin when outside in the sun');

275

INSERT INTO diagnosis(diagnosis_code, illness_name, usual_symptoms) VALUES ('diag009',

'Eczema'’, 'Itchy skin');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00001', TO_DATE(C '01/02/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00002', TO_DATE(C '24/01/2006',
'u0002');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00003', TO_DATE(C '14/12/2005',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00004', TO_DATE(C '03/04/2006',
'12348', 'u0004');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00005', TO_DATE(C '20/01/2006',
used to remember', '12349', 'u0005');
INSERT INTO ae_consultation(cons_number,
VALUES ('c00006', TO_DATE(C '26/11/2005',
'12350', 'u0001');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00007', TO_DATE(C '30/04/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00008', TO_DATE(C '30/04/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00009', TO_DATE(C '01/09/2005',
'12353', 'u0008');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00010', TO_DATE(C '15/06/2006',
'12354', 'u0010');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00011', TO_DATE(C '25/07/2005',
'u0011');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00012', TO_DATE(C '20/08/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00013', TO_DATE(C '21/09/2005',
'12357', 'u0009');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00014', TO_DATE(C '22/03/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00015', TO_DATE(C '29/07/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00016', TO_DATE(C '12/01/2006',
'12360', 'u0003');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00017', TO_DATE(C '28/02/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00018', TO_DATE(C '10/03/2006',
INSERT INTO ae_consultation(cons_number,
VALUES ('c00019', TO_DATE(C '15/04/2006',
'u0009');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00020', TO_DATE(C '12/05/2006',
'u0007');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00021', TO_DATE(C '05/02/2006',
'u0011');

INSERT INTO ae_consultation(cons_number,
VALUES ('c00022', TO_DATE(C '16/08/2006',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Stomach pains', '12345', 'u0001');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Extreme case of diarrhea', '12346',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Faints a lot', '12347', 'u0003');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Itching on and around groin',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Forgetting things that he always

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Extreme pain in left side',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Chest pains', '12351', 'u0002');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Chest pains', '12352', 'u0007');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Extreme pain in left side',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'In pain when steps outside',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Itching all over body', '12355',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Chest pains', '12356', 'u0012');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Itching in left lower leg',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Memory loss', '12358', 'u000l1');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Regular fits', '12359', 'u0002');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Itching on and around groin',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Stomach pains', '12361', 'u0004');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Chest pains', '12362', 'u0012');
cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Occasional fits', '12363',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Extreme stomach pains', '12364',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Severe memory loss', '12365',

cons_date, cons_description, patient_id, doctor_id)
'DD/MM/YYYY'), 'Diarrhea', '12366', 'u0010');

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,

cons_number, diagnosis_code) VALUES ('pd00001',

Appendicitis', 'c00001', 'diag00l1');

'u0001', 'Patient has been diagnosed with

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,

cons_number, diagnosis_code) VALUES ('pd00002',

food poisoning', 'c00002', 'diag002');

'u0002', 'Patient has been diagnosed with

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,

cons_number, diagnosis_code) VALUES ('pd00003',

epilepsy', 'c00003', 'diag003');

276

'u0003', 'Patient has been diagnosed with

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00004', 'u0004', 'Patient has been diagnosed with
pubic lice', 'c00004', 'diag006');

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00005', 'u0005', 'Patient has been diagnosed with
dementia', 'c00005', 'diag007');

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00006', 'u0001', 'Patient has had a heart attack'
'c00006', 'diag004');

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00007', 'u0002', 'patient has been diagnosed with
gastroesophageal reflux disease', 'c00007', 'diag005');

INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00008', 'u0007', '', 'c00008', 'diag005');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00009', 'u0001', '', 'c00009', 'diag004');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00010', 'u0010', '', 'c00010', 'diag008');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00011', 'uw0O11l', '', 'c00011', 'diag009');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00012', 'u0012', '', 'c00012', 'diag005');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00013', 'u0009', '', 'c00013', 'diag009');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00014', 'u0001', '', 'c00014', 'diag007');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00015', 'u0011', '', 'c00015', 'diag003');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00016', 'u0003', '', 'c00016', 'diag006');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00017', 'u0004', '', 'c00017', 'diag00l1l');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00018', 'u0012', '', 'c00018', 'diag005');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00019', 'u0009', '', 'c00019', 'diag003');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00020', 'u0007', '', 'c00020', 'diag00l1l');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00021', 'u0011', '', 'c00021', 'diag007');
INSERT INTO patient_diagnosis(patient_diagnosis_number, diagnosing_doctor, diagnosis_desc,
cons_number, diagnosis_code) VALUES ('pd00022', 'u0010', '', 'c00022', 'diag002');

INSERT INTO nurse_ward(usr, ward
INSERT INTO nurse_ward(usr, ward

VALUES
VALUES

'u0016', 'wardl'
'u0016', 'ward2'

INSERT INTO nurse_ward(usr, ward
INSERT INTO nurse_ward(usr, ward

VALUES
VALUES

'u0025', 'wardl'
'u0026', 'ward2'

INSERT INTO nurse_ward(usr, ward VALUES 'u0027', 'wardl'

INSERT INTO nurse_ward(usr, ward
INSERT INTO nurse_ward(usr, ward

VALUES
VALUES

'u0028', 'wardl'
'u0014', 'ward2'

) (¢
) (¢
) (
) (
INSERT INTO nurse_ward(usr, ward) VALUES ('u0015', 'wardl'
) (¢
) (
) (
) (¢

o/ s\ o/ /7 o/

INSERT INTO nurse_ward(usr, ward) VALUES 'u0020', 'wardl'

277

Appendix XVII: Discussion of Testing and Output

Role Permissions and Denials (rpa and d_rpa)

These produced the same data for each Condition, as expected. The permissions and denials associated with
roles do not change according to user activity. The output of rpa and d_rpa is described by type of role, in the

following order:
1. Temporal RBAC Roles: day_duty and night_duty
2. Job Roles: Data Managers
3. Job Roles: Doctors
4. Job Roles: Nurses

5. Job Roles: Administrators

1 Temporal RBAC Roles: day_duty and night_duty

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'day_duty' order by role, action, object;

no rows selected

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'day_duty' order by role, action, object;

no rows selected

Output 1: rpa and rpa_Ffull results for day_duty and night_duty.

No rows were produced, as would be expected (Output 1). day_duty has no permissions assigned to it.
Additionally, it is not inside any other role, either via a hierarchy or inclusion, so has no implicit role assignments either.
It is a container role for all day-duty roles, such as house_officer_dand staff_nurse_d, so that the temporal
context constraints associated with day-duty roles can be applied easily, The role night_duty works analogously for

night-duty roles.

2 Job Roles: Data Managers

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'data_manager' order by role, action, object;

no rows selected

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'data_manager' order by role, action, object;

no rows selected

Output 2: rpa and rpa_Ffull results for data_manager.

Again, data_manager is a container role, with no permissions directly assigned (Output 2). All roles assigned
to users are within one of data_manager, doctor, nurse and administrator. These specify the type of
role, but do not have any users directly assigned to them. Permissions could be assigned to these roles as a way of

saying “all users of this type can do X”, but the model implemented does not use this facility.

278

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'jnr_data_manager' order by role, action, object;
Role |Action |Object
______________________________ [
jnr_data_manager |insert |ae_consultation
jnr_data_manager |insert |bed
jnr_data_manager |insert |diagnosis
jnr_data_manager |insert |patient
jnr_data_manager |insert |patient_diagnosis
jnr_data_manager |insert | room
jnr_data_manager |insert |ward

7 rows selected.

Output 3: rpa results for jnr_data_manager.

INSERT INTO rpa(role, action, object
INSERT INTO rpa(role, action, object VALUES
INSERT INTO rpa(role, action, object VALUES

) VALUES
)
)
INSERT INTO rpa(role, action, object) VALUES
)
)
)

'jnr_data_manager', 'insert', 'ward');
'jnr_data_manager', 'insert', 'room');
'jnr_data_manager', 'insert', 'bed');
'jnr_data_manager', 'insert', 'patient');

INSERT INTO rpa(role, action, object) VALUES ;

INSERT INTO rpa(role, action, object) VALUES s

INSERT INTO rpa(role, action, object VALUES

'jnr_data_manager', 'insert', 'diagnosis');
'jnr_data_manager', 'insert', 'ae_consultation');
'jnr_data_manager', 'insert', 'patient_diagnosis');

laYatatatalala)

Code 62: INSERT statements into rpa for jnr_data_manager.

The role jnr_data_manager has permissions directly assigned to it, as shown by Output 3. These can be

inferred from the appropriate INSERT INTO rpa statements (Code 62).

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'jnr_data_manager' order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
jnr_data_manager |insert |ae_consultation
jnr_data_manager |insert |bed

jnr_data_manager |insert |diagnosis
jnr_data_manager |insert |patient
jnr_data_manager |insert |patient_diagnosis
jnr_data_manager |insert | room

jnr_data_manager |insert |ward

7 rows selected.

Output 4: rpa_full results for jnr_data_manager.

The query on rpa_full produced the same data rows as the rpa query (Output 4). This is because although
jnr_data_manager is contained within data_manager via an is_a (inclusion) relationship, data_manager

has no rows in rpa.

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'snr_data_manager' order by role, action, object;

Role |Action |Object
______________________________ e
snr_data_manager |alter |ae_consultation

i4é rows selected.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'snr_data_manager' order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
snr_data_manager |alter |ae_consultation

153 rows selected.

Output 5: Partial rpa and rpa_full results for snr_data_manager.

279

The queries on rpa and rpa_full for the role snr_data_manager produced different results (Output 5).
This is because snr_data_manager is contained within jnr_data_manager via a d_s (directly senior)
relationship (as well as being contained within data_manager). Most rows returned are omitted in Output 5 to save
space. The query on rpa_full for snr_data_manager returns 153 roles: the 146 directly assigned to
snr_data_manager in rpa, and the 7 inherited from jnr_data_manager.

The large number of rows involved mean that this is perhaps not the best example. For a better example of static

permission inheritance, consider roles of type doctor.

3 Job Roles: Doctors

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'doctor' order by role, action, object;

no rows selected

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'doctor' order by role, action, object;

no rows selected

Output 6: rpa and rpa_full results for doctor.

The doctor role has no permissions assigned to it (Output 6). However, if it did have any, then they would be
inherited directly by all roles contained within it by an is_a relationship, which are house_officer,

senior_house_officer, specialist_registrarand consultant.

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'house_officer' order by role, action, object;

Role |Action |[Object
______________________________ e
house_officer |select |ae_consultation
house_officer |select | bed

house_officer |select |diagnosis
house_officer |select |patient
house_officer |select |patient_diagnosis
house_officer |select | room
house_officer |select |usr
house_officer |select |ward

8 rows selected.

Output 7: rpa results for house_officer.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'house_officer' order by role, action, object;

Role |Action |Object
______________________________ e
house_officer |select |ae_consultation
house_officer |select |bed

house_officer |select |diagnosis
house_officer |select |patient
house_officer |select |patient_diagnosis
house_officer |select | room
house_officer |select |usr
house_officer |select |ward

8 rows selected.

Output 8: rpa_full results for house_officer.

For house_officer, rpa returns the 8 permissions directly assigned to it (Output 7). rpa_ful1 returns the

same 8 permissions (Output 8), since house_off1icer does not inherit any permissions from elsewhere.

280

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'house_officer_d' order by role, action, object;

no rows selected

Output 9: rparesults for house_officer_d.

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'house_officer_d' order by role, action, object;

Role |Action |Object
______________________________ e
house_officer_d |select |ae_consultation
house_officer_d |select |bed

house_officer_d |select |diagnosis
house_officer_d |select |patient

house_officer_d |select |patient_diagnosis
house_officer_d |select | room

house_officer_d |select |usr

house_officer_d |select |ward

8 rows selected.

Output 10: rpa_full results for house_officer_d.

house_officer_d refers to a “house officer on day duty”. The role thus inherits permissions from both
house_officer and day_duty. The rpa query on house_officer_d produces no rows, since no permissions
are directly assigned to it (Output 9). However, rpa_ful] retrieves the 8 permissions that house_officer_d

inherits from house_officer (it inherits none from day_duty) (Output 10).

house_officer_n refers to a “house officer on night duty”, and thus inherits permissions from both

house_officerand night_duty, analogously to house_officer_d (data not shown).

The role snr_house_officer inherits permissions from house officer via a d_s assignment.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'snr_house_officer' order by role, action, object;
Role |Action |Object
______________________________ [= mmmmmmm e e |
snr_house_officer |select |ae_consultation
snr_house_officer |select |bed
snr_house_officer |select |diagnosis
snr_house_officer |select |patient
snr_house_officer |select |patient_diagnosis
snr_house_officer |select | room
snr_house_officer |select |usr
snr_house_officer |select |ward
snr_house_officer |update |ae_consultation
snr_house_officer |update |diagnosis
snr_house_officer |update |patient_diagnosis

11 rows selected.

Output 11: rpa_full results for snr_house_officer.

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'snr_house_officer' order by role, action, object;

RoTe |Action |[Object
______________________________ e
snr_house_officer |update |ae_consultation
snr_house_officer |update |diagnosis

snr_house_officer |update |patient_diagnosis

Output 12: rpa results for snr_house_officer.

281

snr_house_officer has 3 permissions directly assigned to it, as given by the 3 rows returned from rpa

(Output 11). rpa_full returns these 3 rows, plus the 8 representing permissions inherited from

(Output 12). Like house_officer, snr_house_officer also inherits from doctor.

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'snr_house_officer_d' order by role, action, object;

no rows selected

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'snr_house_officer_d' order by role, action, object;

Role |Action |Object
______________________________ e
snr_house_officer_d |select |ae_consultation

11 rows selected.

Output 13: rpa and rpa_full results for snr_house_officer_d.

house_officer

snr_house_officer_d inherits from snr_house_officer as house_officer_d inherits from

house_officer, and again has no permissions directly assigned to it (Output 13). The rows returned by rpa_full

for snr_house_officer_d are not all shown in Output 13, since they are exactly the same as the ones returned for

snr_house_officer.

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'specialist_registrar' order by role, action, object;

RoTe |Action |[Object
______________________________ |________________ | o

specialist_registrar |insert |patient_diagnosis

Output 14: rpa results for specialist_registrar.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'specialist_registrar' order by role, action, object;
Role |Action |Object
______________________________ e
specialist_registrar |insert |patient_diagnosis
specialist_registrar |select |ae_consultation
specialist_registrar |select |bed
specialist_registrar |select |diagnosis
specialist_registrar |select |patient
specialist_registrar |select |patient_diagnosis
specialist_registrar |select | room
specialist_registrar |select |usr
specialist_registrar |select |ward
specialist_registrar |update |ae_consultation
specialist_registrar |update |diagnosis
specialist_registrar |update |patient_diagnosis

12 rows selected.

Output 15: rpa_full results for specialist_registrar.

specialist_registrar inherits from snr_house_officer, and also has 1 permission assigned

directly. Thus rpa retrieves 1 row (Output 14), and rpa_full retrieves 1+11=12 rows. (Output 15) Unlike

house_officerand senior_ house_officer, this role has no day_duty or night_duty divisions.

282

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'consultant' order by role, action, object;

Role |Action |Object
______________________________ [
consultant |insert |ae_consultation

Output 16: rpa results for consultant.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'consultant' order by role, action, object;

Role |Action |Object
______________________________ e
consultant |insert |ae_consultation
consultant |insert |patient_diagnosis
consultant |select |ae_consultation
consultant |select |bed

consultant |select |diagnosis
consultant |select |patient
consultant |select |patient_diagnosis
consultant |select | room

consultant |select |usr

consultant |select |ward

consultant |update |ae_consultation
consultant |update |diagnosis
consultant |update |patient_diagnosis

13 rows selected.

Output 17: rpa_full results for consultant.

consultant inherits from specialist_registrar, and has one permission directly assigned, as again

indicated by the rows retrived by rpa (Output 16) and rpa_full (Output 17).

4 Job Roles: Nurses

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'student_nurse' order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
student_nurse |select |bed

student_nurse |select |patient

student_nurse |select | room

student_nurse |select |usr

student_nurse |select |ward

Output 18: rpa results for student_nurse.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'student_nurse' order by role, action, object;

Role |Action |Object
______________________________ e
student_nurse |select |bed

student_nurse |select |patient

student_nurse |select | room

student_nurse |select |usr

student_nurse |select |ward

Output 19: rpa_full results for student_nurse.

283

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'nurse' order by role, action, object;

no rows selected

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'nurse' order by role, action, object;

no rows selected

Output 20: rpa and rpa_Ffull results for nurse.

student_nurse has 5 permissions directly assigned (Output 18 and Output 19). Although it inherits directly
from nurse, this has no permissions assigned to it (Output 20). student_nurse_d and student_nurse_n
inherit directly from student_nurse via is_a relationships. They also respectively inherit from day_duty and

night_duty (data not shown).

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'staff_nurse' order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
staff_nurse |select |ae_consultation

staff_nurse |select |diagnosis

staff_nurse |select |patient_diagnosis

staff_nurse |select |usr

staff_nurse |update |patient

Output 21: rpa results for staff_nurse.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'staff_nurse' order by role, action, object;

Role |Action |Object
______________________________ e
staff_nurse |select |ae_consultation
staff_nurse |select | bed

staff_nurse |select |diagnosis
staff_nurse |select |patient
staff_nurse |select |patient_diagnosis
staff_nurse |select | room

staff_nurse |select |usr

staff_nurse |select |usr

staff_nurse |select |ward

staff_nurse |update |patient

10 rows selected.

Output 22: rpa_full results for staff_nurse.

As shown in Output 21 and Output 22, staff_nurse inherits directly from student_nurse (as well as
from nurse). Day-duty and night-duty roles staff_nurse_d and staff_nurse_n also exist (not shown). Note
that because USr is defined as selectable for both student_nurse and staff_nurse, the query on rpa_full in
Output 22 displays it twice (once for student_nurse, and once for staff_nurse). Using select distinct

would prevent this duplication.

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'sister' order by role, action, object;

Role |Action |[Object
______________________________ [
sister |update |patient_diagnosis

Output 23: rpa results for sister.

284

sister inherits directly from staff_nurse (Output 23 and Output 24). Day-duty and night-duty roles

11 rows selected.

Output 24: rpa_full results for sister.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'sister' order by role, action, object;

Role |Action |Object
______________________________ [
sister |select |ae_consultation
sister |select |bed

sister |select |diagnosis

sister |select |patient

sister |select |patient_diagnosis
sister |select | room

sister |select |usr

sister |select |usr

sister |select |ward

sister |update |patient

sister |update |patient_diagnosis

sister_dand sister_n also exist (not shown).

Output 25 and Output 26 show how specialist_nurse inherits directly from s7ster. There are no day-

SQL> select role

"Role", action "Action", object

"Object" from rpa_full

where role = 'specialist_nurse' order by role, action, object;
Role |Action |Object
______________________________ |________________|______________________________
specialist_nurse |insert |diagnosis
specialist_nurse |select |ae_consultation
specialist_nurse |select |bed
specialist_nurse |select |diagnosis
specialist_nurse |select |patient
specialist_nurse |seTect |patient_diagnosis
specialist_nurse |select | room
specialist_nurse |select |usr
specialist_nurse |select |usr
specialist_nurse |select |ward
specialist_nurse |update |ae_consultation
specialist_nurse |update |diagnosis
specialist_nurse |update |patient
specialist_nurse |update |patient_diagnosis

14 rows selected.

Output 25: rpa_full results for specialist_nurse.

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'specialist_nurse' order by role, action, object;

Role |Action |Object
______________________________ [
specialist_nurse |insert |diagnosis

specialist_nurse |update |ae_consultation
specialist_nurse |update |diagnosis

Output 26: rpa results for specialist_nurse.

duty or night-duty roles for specialist_nurse.

285

5 Job Roles: Administrators

SQL> select role "Role", action "Action", object "Object" from rpa

where role = 'receptionist' order by role, action, object;

Role |Action |Object
______________________________ e
receptionist |select |patient

Output 27: rpa results for receptionist.

SQL> select role "Role", action "Action", object "Object" from rpa_full

where role = 'receptionist' order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
receptionist |select |patient

Output 28: rpa_full results for receptionist.

SQL> select role "Role", action "Action", object "Object" from rpa
where role = 'administrator' order by role, action, object;

no rows selected

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'administrator'

order by role, action, object;

no rows selected

Output 29: rpa and rpa_Ffull results for administrator.

Output 27 and Output 28 show the rpa and rpa_full results for receptionist. This is the most junior

role in the administrator hierarchy, inheriting only from the (empty) role administrator (Output 29).

SQL> select role "Role", action "Action", object "Object" from rpa_full
where role = 'manager'
order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
manager |insert |patient
manager |update |patient

Output 30: rpa results for manager.

SQL> select role "Role", action "Action", object "Object"
from rpa_full where role = 'manager'
order by role, action, object;

Role |Action |Object
______________________________ |________________|______________________________
manager |insert |patient

manager |select |ae_consultation
manager |select |ae_consultation
manager |select |diagnosis

manager |select |patient

manager |select |patient_diagnosis
manager |select |usr

manager |update |patient

manager |update |patient_diagnosis

9 rows selected.

Output 31: rpa_fFfull results for manager.

286

INSERT INTO inherits_rpa_path(senior_role,junior_role,action,object) VALUES
('consultant', 'house_officer','_"','_");

INSERT INTO inherits_rpa_path(senior_role, junior_role,action,object) VALUES
('specialist_nurse', 'student_nurse','_","'_");

INSERT INTO <inherits_rpa_path(senior_role,junior_role,action,object) VALUES
('snr_data_manager','jnr_data_manager','_','_"');

INSERT INTO inherits_rpa_path(senior_role,junior_role,action,object) VALUES
('manager', 'receptionist','_"','_");

Code 63: Some inherits_rpa_path statements that apply to role manager.

manager has two permissions directly assigned to it (Output 30). However, its inheritance situation is complex.
manager inherits not only from receptionist, but also from the most senior roles of the other hierarchies, namely
snr_data_manager, consultant and specialist_nurse. However, it does not inherit all of the

permissions of these roles, due to path inheritance rules defined in Code 63. See Output 31.

INSERT INTO inherits_rpa_path(senior_role,junior_role,action,object) VALUES
("manager', 'house_officer', 'select', 'ae_consultation');
INSERT INTO <inherits_rpa_path(senior_role,junior_role,action,object) VALUES

('"manager', 'staff_nurse','_','patient_diagnosis');
INSERT INTO <inherits_rpa_path(senior_role,junior_role,action,object) VALUES
("manager', 'staff_nurse','select','_"');

Code 64: Further inherits_rpa_path statements that apply to role manager.

These statements mean that permissions are inherited from house_officer as far as consultant; from
student_nurse up to specialist_nurse; from jnr_data_manager up to snr_data_manager, and
from receptionist up to manager. Therefore, the role manager inherits permissions only from
receptionist, and does not inherit from any permissions from the other hierarchies. However, exceptions to this
are also defined in Code 64.

Thus, the role manager inherits select permission on ae_consultation from the role
house_officer. It also inherits all permissions related to the table patient_diagnosis, as well as all select
permissions, from staff_nurse. These, together with the roles directly assigned and inherited from
receptionist, yield the 9 rows (8 unique) returned by rpa_full for manager.

Queries on d_rpa and d_rpa_full returned no rows (not shown), because no denials were assigned in this

model.

Static User Permissions and Authorizations (permittable, authorizable,
permitted and authorized)

The results of these tests are given in terms of the Conditions in 3.4.1, with output explained only for some roles,

rather than for all roles, to avoid repetition.

287

No Users Activated

SQL> select usr "User", object "Object", action "Action", role "Role"
from permittable where role = 'nurse'
ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorizable where role = 'nurse'

ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from permitted where role = 'nurse'’

ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorized where role = 'nurse'

ORDER BY usr, object, action;

no rows selected

Output 32: permittable authorizable permitted and
authorizedresults for nurse.

As explained previously, nurse is a container role. Since it has neither users nor permissions assigned to it,

queries on permission and authorization views for it return no rows (Output 32).

SQL> select usr "User", object "Object", action "Action", role "Role"
from permittable where role = 'student_nurse' ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorizable where role = 'student_nurse' ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from permitted where role = 'student_nurse' ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorized where role = 'student_nurse' ORDER BY usr, object, action;

no rows selected

Output 33: permittable, authorizable, permittedand authorized
results for student_nurse.

Again, no rows are returned. This is because although permissions are assigned to student_nurse, no users

are directly assigned (Output 33).

SQL> select usr "User", object "Object", action "Action", role "Role"

from permittable where role = 'student_nurse_d' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e L B
u0016 |bed |select | student_nurse_d

u0016 |patient |select | student_nurse_d

u0016 | room |select | student_nurse_d

u0016 |usr |select | student_nurse_d

u0016 |ward |select | student_nurse_d

Output 34: permittable results for student_nurse_d.

288

permittable returns 5 rows (Output 34). This is because 1 user (U0016) is assigned to the role

student_nurse_d, which has 5 permissions assigned to it: 1x5=5.

SQL> select usr "User", object "Object", action "Action", role "Role"

from authorizable where role = 'student_nurse_d' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e L B
u0016 |bed |select | student_nurse_d

u0016 |patient |select | student_nurse_d

u0016 | room |select | student_nurse_d

u0016 |usr |select | student_nurse_d

u0016 |ward |select | student_nurse_d

Output 35: authorizable results for student_nurse_d.

authorizable returns the same rows as permittable (Output 35). This is the case throughout the test,

because no denials are assigned.

SQL> select usr "User", object "Object", action "Action", role "Role"
from permitted where role = 'student_nurse_d' ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorized where role = 'student_nurse_d' ORDER BY usr, object, action;

no rows selected

Output 36: permitted and authorized results for student_nurse_d.

permitted and authoriized return no rows for this role (Output 36). This is because the user is not active.

This is the case throughout this part of the test, because no users are yet active.

SQL> select usr "User", object "Object", action "Action", role "Role"

from permittable where role = 'student_nurse_n'

ORDER BY usr, object, action;

User |Object |Action |RoTe

---------------- it [l
u0016 |bed |select | student_nurse_n

u0016 |patient |select | student_nurse_n

u0016 | room |select | student_nurse_n

u0016 |usr |select | student_nurse_n

u0016 |ward |select | student_nurse_n

Output 37: permittable results for student_nurse_n.

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorizable where role = 'student_nurse_n'
ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e L e e e
u0016 |bed |select | student_nurse_n

u0016 |patient |select | student_nurse_n

u0016 | room |select | student_nurse_n

u0016 |usr |select | student_nurse_n

u0016 |ward |select | student_nurse_n

Output 38: authorizable results for student_nurse_n.

permittable (Output 37) and authorizable (Output 38) return the same rows for role

student_nurse_n as for student_nurse_d, because the same user (U0016) is assigned to both.

289

SQL> select usr "User", object "Object", action "Action", role "Role"

from permittable where role = 'staff_nurse_d'

ORDER BY usr, object, action;

User |Object |Action |RoTe
---------------- il [l it
u0025 |ae_consultation |select |staff_nurse_d
u0025 |bed |select |staff_nurse_d
u0025 |diagnosis |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient_diagnosis |select | staff_nurse_d
u0025 | room |select |staff_nurse_d
u0025 |usr |select |staff_nurse_d
u0025 |ward |select |staff_nurse_d
u0026 |ae_consultation |select |staff_nurse_d
u0026 |bed |select |staff_nurse_d
u0026 |diagnosis |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |update | staff_nurse_d
u0026 |patient_diagnosis |select |staff_nurse_d
u0026 | room |select |staff_nurse_d
u0026 |usr |select |staff_nurse_d
u0026 |ward |select |staff_nurse_d
18 rows selected.

Output 39: permittab]le results for staff_nurse_d.

SQL> select usr "User", object "Object", action "Action", role "Role"

from permittable where role = 'staff_nurse_n' ORDER BY usr, object, action;
User |Object |Action |RoTe
---------------- [=== e e
u0015 |ae_consultation |select | staff_nurse_n
u0015 |bed |select |staff_nurse_n
u0015 |diagnosis |select |staff_nurse_n
u0015 |patient |select |staff_nurse_n
u0015 |patient |update |staff_nurse_n
u0015 |patient_diagnosis |select |staff_nurse_n
u0015 | room |select |staff_nurse_n
u0015 |usr |select |staff_nurse_n
u0015 |ward |select | staff_nurse_n
u0027 |ae_consultation |select |staff_nurse_n
u0027 |bed |select |staff_nurse_n
u0027 |diagnosis |select |staff_nurse_n
u0027 |patient |select |staff_nurse_n
u0027 |patient |update | staff_nurse_n
u0027 |patient_diagnosis |select |staff_nurse_n
u0027 | room |select |staff_nurse_n
u0027 |usr |select | staff_nurse_n
u0027 |ward |select |staff_nurse_n
18 rows selected.

Output 40: permittable results for staff_nurse_n.

As with student_nurse, permittable for staff_nurse returns no rows. However, for staff_
nurse_d (Output 39), it returns 9x2=18 rows: 2 users (U0025 and u0026) are assigned to this role, which (as shown
earlier) has 9 permissions associated with it (remembering that 2 of the 10 rows were the same). Again 2x9=18 rows are

returned, for the 2 users (UO0L15 and u0027) assigned to student_nurse_n (Output 40).

290

SQL> select usr "User", object "Object", action "Action", role "Role" from authorizable where role = 'sister_d'
ORDER BY usr, object, action;

User |Object |Action |RoTe
———————————————— Rt B T
u0014 |ae_consuTltation |select |sister_d
u0014 |bed |select |sister_d
u0014 |diagnosis |select |sister_d
u0014 |patient |select |sister_d
u0014 |patient |update |sister_d
u0014 |patient_diagnosis |select |sister_d
u0014 |patient_diagnosis |update |sister_d
u0014 | room |select |sister_d
u0014 |usr |select |sister_d
u0014 |ward |select |sister_d
u0028 |ae_consuTltation |select |sister_d
u0028 |bed |select |sister_d
u0028 |diagnosis |select |sister_d
u0028 |patient |select |sister_d
u0028 |patient |update |sister_d
u0028 |patient_diagnosis |select |sister_d
u0028 |patient_diagnosis |update |sister_d
u0028 | room |select |sister_d
u0028 |usr |select |sister_d
u0028 |ward |select |sister_d

20 rows selected.

Output 41: permittable results for sister_d.

permittable on sister_d (Output 41) and s7ster_n (not shown) each yield 2x10=20 rows (as before,
11 rows were returned in rpa_fulT, but only 10 were unique).
permittable on specialist_nurse (not shown) returns 2x13=26 rows.

The expected results were obtained for other roles (see Table 31).

Some Users Activated
The queries on permittable and authorizable produced the same results as for when no users were

activated. This is as expected. However, permitted and authorized returned some rows, relating to users who
had been activated. This is elaborated in further detail in Static User Permissions and Authorizations (permittable,
authorizable, permitted and authorized) (page 295), since the principle is the same: permitted and authorized

only return rows for active users.

All Users Activated

SQL> select usr "User", object "Object", action "Action", role "Role"

from permittable where role = 'student_nurse_n' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e B e e e
u0016 |bed |select | student_nurse_n

u0016 |patient |select | student_nurse_n

u0016 | room |select | student_nurse_n

u0016 |usr |select | student_nurse_n

u0016 |ward |select | student_nurse_n

Output 42: permittable results for student_nurse_n.

Since all users were active, permitted and authorized mostly, but not always, produced the same results
as permittable and authorizable. Where the results were different, this was because some users were defined
with more than one role in ura; however, a user can only be active in one role at a time. Where this is the case,

permittable and authorizable returned all permissions and authorizations that the user has in whatever role

291

the user is defined as, while permitted and authorized returned only those relating to the role for which the user

is active.

For example, consider the rows returned for the role sStudent_nurse_n.

SQL> select usr "User", object "Object", action "Action", role "Role"

from authorizable where role = 'student_nurse_n' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e [
u0016 |bed |select | student_nurse_n

u0016 |patient |select | student_nurse_n

u0016 | room |select | student_nurse_n

u0016 |usr |select | student_nurse_n

u0016 |ward |select | student_nurse_n

Output 43: authorizable results for student_nurse_n.

SQL> select usr "User", object "Object", action "Action", role "Role"
from permitted where role = 'student_nurse_n' ORDER BY usr, object, action;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role"
from authorized where role = 'student_nurse_n' ORDER BY usr, object, action;

no rows selected

Output 44: permitted and authorized results for student_nurse_n

permittable (Output 42) and authorizable (Output 43) return the rows relating to the user, u0016,
defined as student_nurse_n. However, u0016 is not active here as student_nurse_n, but as the other role
for which it is defined, student_nurse_d. Since no user is active as student_nurse_n, permitted and
authoriized both return empty sets (Output 44). As before, the equivalent dynamic (_CC) queries return no rows,

due to the constraint requiring a Sister or staff_nurse to have been logged on for 2 hours not being fulfilled.

SQL> select usr "User", object "Object", action "Action", role "Role" from permittable

where role = 'receptionist' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— R] e L L
u0005 |patient |select | receptionist

u0009 |patient |select | receptionist

u0022 |patient |select | receptionist

Output 45: permittable results for receptionist.

SQL> select usr "User", object "Object", action "Action", role "Role" from authorizable

where role = 'receptionist' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e [
u0005 |patient |select | receptionist

u0009 |patient |select | receptionist

u0022 |patient |select | receptionist

Output 46: authorizable results for receptionist.

292

SQL> select usr "User", object "Object", action "Action", role "Role" from permitted

where role = 'receptionist' ORDER BY usr, object, action;

User |Object |Action |RoTe

---------------- il el I
u0022 |patient |select | receptionist

Output 47: perm1itted results for receptionist.

SQL> select usr "User", object "Object", action "Action", role "Role" from authorized

where role = 'receptionist' ORDER BY usr, object, action;

User |Object |Action |RoTe

———————————————— e Do B
u0022 |patient |select | receptionist

Output 48: authorized results for receptionist.

Similar behaviour can be seen from the role receptionist, where 3 users are defined as having this role, but

only one of these is active in it (Output 45-48).

Some Users Deactivated

SQL> select usr "User", object "Object", action "Action", role "Role" from permittable
where role = "house_officer_d' ORDER BY usr, object, action;

User |Object |Action |RoTe
———————————————— T L P
u0005 |ae_consultation |select | house_officer_d
u0005 |bed |select | house_officer_d
u0005 |diagnosis |select |house_officer_d
u0005 |patient |select | house_officer_d
u0005 |patient_diagnosis |select | house_officer_d
u0005 | room |select |house_officer_d
u0005 |usr |select |house_officer_d
u0005 |ward |select | house_officer_d
u0007 |ae_consultation |select | house_officer_d
u0007 |bed |select | house_officer_d
u0007 |diagnosis |select |house_officer_d
u0007 |patient |select | house_officer_d
u0007 |patient_diagnosis |select | house_officer_d
u0007 | room |select |house_officer_d
u0007 |usr |select |house_officer_d
u0007 |ward |select | house_officer_d
16 rows selected.

Output 49: permittable results for house_officer_d.

293

SQL> select usr "User", object "Object", action "Action", role "Role" from authorizable
where role = "house_officer_d' ORDER BY usr, object, action;

User |Object |Action |RoTe
———————————————— T L e
u0005 |ae_consultation |select |house_officer_d
u0005 |bed |select | house_officer_d
u0005 |diagnosis |select | house_officer_d
u0005 |patient |select | house_officer_d
u0005 |patient_diagnosis |select | house_officer_d
u0005 | room |select |house_officer_d
u0005 |usr |select | house_officer_d
u0005 |ward |select | house_officer_d
u0007 |ae_consultation |select |house_officer_d
u0007 |bed |select | house_officer_d
u0007 |diagnosis |select | house_officer_d
u0007 |patient |select | house_officer_d
u0007 |patient_diagnosis |select | house_officer_d
u0007 | room |select |house_officer_d
u0007 |usr |select | house_officer_d
u0007 |ward |select | house_officer_d
16 rows selected.

Output 50: authorizable results for house_officer_d.

For role house_officer_d, permittable and authorizable output rows relating to both users
defined for this role, namely u0005 and u0007 (Output 49-50).

SQL> select usr "User", object "Object", action "Action", role "Role" from permitted

where role = '"house_officer_d' ORDER BY usr, object, action;

User |Object |Action |RoTe
---------------- il el I
u0007 |ae_consultation |select | house_officer_d
u0007 |bed |select | house_officer_d
u0007 |diagnosis |select |house_officer_d
u0007 |patient |select | house_officer_d
u0007 |patient_diagnosis |select | house_officer_d
u0007 | room |select | house_officer_d
u0007 |usr |select | house_officer_d
u0007 |ward |select |house_officer_d

8 rows selected.

Output 51: permitted results for house_officer_d.

SQL> select usr "User", object "Object", action "Action", role "Role" from authorized

where role = 'house_officer_d' ORDER BY usr, object, action;

User |Object |Action |RoTe
———————————————— I D B
u0007 |ae_consultation |select | house_officer_d
u0007 |bed |select |house_officer_d
u0007 |diagnosis |select | house_officer_d
u0007 |patient |select | house_officer_d
u0007 |patient_diagnosis |select |house_officer_d
u0007 | room |select | house_officer_d
u0007 |usr |select | house_officer_d
u0007 |ward |select | house_officer_d

8 rows selected.

Output 52: authorized results for house_officer_d.

However, since U0005 is no longer active, permitted and authorized only return rows relating to
u0007 (Output 51-52).

294

Dynamic User Permissions and Authorizations (permittable_cc,
authorizable_cc, permitted_cc and authorized_cc)

No Users Activated

SQL> select usr "User", object "Object", action "Action", role "Role", row_id "Row" from permittable_cc
where role = 'nurse' ORDER BY usr, object, action, row_id;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role", row_id "Row" from authorizable_cc
where role = 'nurse' ORDER BY usr, object, action, row_id;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role", row_id "Row" from permitted_cc
where role = 'nurse' ORDER BY usr, object, action, row_id;

no rows selected

SQL> select usr "User", object "Object", action "Action", role "Role", row_id "Row" from authorized_cc
where role = 'nurse' ORDER BY usr, object, action, row_id;

no rows selected

Output 53: permittable_cc, authorizable_cc, permitted_cc and authorized_cc results for nurse.

As before, the queries on the container role nurse retrieved no rows (Output 53). The same is true of the role
student_nurse (not shown). Furthermore, all queries on both student_nurse_d and student_nurse_n
also return empty sets (not shown), although queries on static permission views for both these roles returned rows. The
dynamic constraints that apply to roles contained by student_nurse mean that users with such roles have no access
rights at this time: users with role student_nurse have no permissions unless a user of a role contained within

staff_nurse has been logged on for at least 2 hours.

295

SQL> select usr "User", object "Object", action "Action", role "Role",

from permittable_cc where role = 'staff_nurse_d' ORDER BY usr, object, action, row_id;
User |Object |Action |Role
________________ [y

u0025 |ae_consultation |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |seTect |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |select |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0025 |patient |update |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |select |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
u0026 |patient |update |staff_nurse_d
Output 54: Partial permittable_cc results for staff_nurse_d.

row_id "Row"

[c00001

112345
112347
[12352
112353
112354
112355
112356
112357
112358
112359
[12345
112347
112352
112353
112354
[12355
112356
112357
112358
112359

112346
112348
112349
112350
|12351
112360
112361
112362
112363
112364
112365
112366
112346
112348
|12349
112350
|12351
112360
|12361
112362
112363
112364
112365
112366. . .

The queries on container role staff_nurse also return an empty set, as expected. However, 210 rows are
returned by permittable_cc for staff_nurse_d. This is because a row is returned for every user, action and
database tuple for which access is granted. For most tables, a row representing every row in the table is returned,
because there are no row-level context constraints. However, permittable_cc returns the following rows for the
table patient (Output 54).The same users, U0025 and u0026, occur as in the static queries on staff_nurse_d.
However, while the table patient contains 21 rows, it is clear from the above query results that specific users only
have access to some of these rows in the table. The Row column holds the primary keys of rows in a table to which
access is granted. permittable_cc returns 11 rows each for select and update (the same rows for each action)
for user u0025. It also returns 11 rows for each of these two actions for u0026. However, the rows are different from
those returned for u0025, as is shown by the values of Row. This is because of a context constraint limiting access by

users of role student_nurse and staff_nurse to data of patients in wards to which they are assigned: these

users are assigned to different wards.

296

permitted_cc and authorized_cc, as before, returned no rows anywhere because no users have been
activated.
All queries on staff_nurse_n returned empty sets. This is because the test was run during the day, outside

the hours during which users in roles contained by night_duty are permitted to access data.

Some Users Activated
The queries on permittable_cc and authorizable_cc produced the same results as for when no users

were activated. This is as expected. However, permitted_cc and authorized_cc returned some rows in this test
run. For example, permitted_cc on staff_nurse_d returned 103 rows (compared to 0 rows when no users were
activated, and 210 rows returned by permittable_cc). permitted_cc returns all rows relevant to user u0025.
This is because in this test run, u0025 was activated, while u0026, the other user assigned to staff_nurse_d, was

not.

All Users Activated

SQL> select usr "User", object "Object", action "Action", role "Role", row_id "Row"

from authorized_cc where role = 'receptionist' ORDER BY usr, object, action, row_id;

User |Object |Action |RoTe | Row
———————————————— e B L P
u0022 |patient |select |receptionist 112345
u0022 |patient |select |receptionist 112346
u0022 |patient |select |receptionist 112347
u0022 |patient |select |receptionist 112348
u0022 |patient |select | receptionist 112349
u0022 |patient |select |receptionist 112350
u0022 |patient |select |receptionist 112351
u0022 |patient |select |receptionist 112352
u0022 |patient |select |receptionist 112353
u0022 |patient |select |receptionist 112354
u0022 |patient |select |receptionist 112355
u0022 |patient |select |receptionist 112356
u0022 |patient |select | receptionist 112357
u0022 |patient |select |receptionist 112358
u0022 |patient |select |receptionist 112359
u0022 |patient |select |receptionist 112360
u0022 |patient |select |receptionist 112361
u0022 |patient |select |receptionist 112362
u0022 |patient |select |receptionist 112363
u0022 |patient |select |receptionist 112364
u0022 |patient |select | receptionist 112365
u0022 |patient |select |receptionist 112366
u0022 |patient |select |receptionist 112367
23 rows selected.

Output 55: authorized_cc results for receptionist.

As with static permissions, Since all users were active, permitted_cc and authorized_cc (Output 55)
produced the same results as permittable_cc and authorizable_cc, except in the case of users defined with

more than one role in ura.

Enforcement of RBAC in Meta-Data

As before, the test results of this section are described according to Conditions.

297

No Users Activated

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table"
FROM ALL_TAB_PRIVS WHERE TABLE_SCHEMA = 'HOSP';

Grantor |Grantee |Privilege | Table

HOSP |HOSP1_U0001 | EXECUTE | SET_CONTEXT

Output 56. Privileges granted to HOSP1_U0001.

All attempts to access or manipulate data failed, as expected. Queries on the meta-data also showed that no
permissions were granted. Output 56 shows an example for user u0001.
This shows that the database user HOSP_UOO0O01 (corresponding to user u0001 in the RBAC data) only has

permission on one meta-data table, which is necessary for logging in. The user has no permissions on any data tables.

The same is true for all users in this test, since no users are active.

Some Users Activated
No data access or manipulation could be performed when logged in as any inactive users. Active users could

perform actions that they were authorized to do by the RBAC rules.

Consider user u0002, active as role specialist_registrar.

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';
OWNER | TABLE_NAME

HOSP | WARD

HOSP | ROOM

HOSP |BED

HOSP | PATIENT

HOSP | DIAGNOSIS

HOSP | AE_CONSULTATION
HOSP | PATIENT_DIAGNOSIS
HOSP |USR

Output 57: Tables visible to user HOSP1_U0002.

The SELECT statement in Output 57 retrieves all tables that are visible to the user (the WHERE clause prevents
tables from other irrelevant schemas, especially meta-data, from being returned). Note that if the user has no access
privileges on a table, then it does not appear in the results of this query. Effectively, the table does not exist for the user.

For inactive users, the query returns an empty set.

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table"

FROM ALL_TAB_PRIVS WHERE TABLE_SCHEMA = 'HOSP';

Grantor |Grantee |Privilege |Table
—————————————————————————————— Rt e T e e
HOSP |HOSP1_U0002 | EXECUTE | SET_CONTEXT

HOSP |HOSP1_HOUSE_OFFICER | SELECT |WARD

HOSP |HOSP1_HOUSE_OFFICER | SELECT | ROOM

HOSP |HOSP1_HOUSE_OFFICER | SELECT |BED

HOSP |HOSP1_HOUSE_OFFICER | SELECT | PATIENT

HOSP |HOSP1_HOUSE_OFFICER | SELECT |DIAGNOSIS

HOSP |HOSP1_HOUSE_OFFICER | SELECT |USR

HOSP |HOSP1_HOUSE_OFFICER | SELECT | AE_CONSULTATION
HOSP |HOSP1_HOUSE_OFFICER | SELECT | PATIENT_DIAGNOSIS
HOSP |HOSP1_SNR_HOUSE_OFFICER | UPDATE |DIAGNOSIS

HOSP |HOSP1_SNR_HOUSE_OFFICER | UPDATE | AE_CONSULTATION
HOSP |HOSP1_SNR_HOUSE_OFFICER | UPDATE | PATIENT_DIAGNOSIS
HOSP |HOSP1_SPECIALIST_REGISTRAR | INSERT | PATIENT_DIAGNOSIS
13 rows selected.

Output 58: Privileges granted to HOSP1_U0002.

298

The query in Output 58 returns the table-level static permissions granted to a user. Note the Grantee column

above, indicating the role through which the user obtains a particular access right. The Grantor is always HOSP, the

database user under which the database was set up. As before, the WHERE clause excludes irrelevant privileges, such as

those on meta-data.

SQL> SELECT * FROM ward;

WARD_ID | TYPE | WARD_CAPAC
__________ [P
wardl |Operating |10
ward2 |Hemotology|12

Output 59: HOSP1_U0002 reads ward.

Since no dynamic constraints apply to this user, SELECT queries on the tables named in the query on

sys.all_tables return all rows, as shown in Output 59 for user u0002.

SELECT * FROM nurse_ward

*

ERROR at Tine 1:

SQL> SELECT * FROM nurse_ward;

ORA-00942: table or view does not exist

Output 60: HOSP1_U0002 fails to access nurse_ward..

However, when the user attempts to SELECT from a table to which he does not have access rights, the system

behaves as though the table does not exist, as shown in Output 60.

1 row updated.

SQL> UPDATE patient_diagnosis SET diagnosis_desc = 'Coronary Heart Disease'’
WHERE patient_diagnosis_number = 'pd00008';

Output 61: HOSP1_U0002 updates patient_diagnosis.

UPDATE and INSERT statements that the user has the right to run are performed normally (Output 61).

SQL> UPDATE ward SET ward_capacity = 15 WHERE ward_id
= 'wardl';

UPDATE ward SET ward_capacity = 15 WHERE ward_id =
'wardl'

ERROR at Tine 1:
ORA-01031: insufficient privileges
SQL> INSERT INTO ward (
ward_id,
type,
ward_capacity
) VALUES (
'ward3"',
'Operating’',
12

WoNOUTA WN

)
INSERT INTO ward (

ERROR at Tline 1:
ORA-01031: insufficient privileges

Output 62: HOSP1_U0002 fails to insert into ward.

SQL> DELETE FROM ae_consultation WHERE 0 <> O0;
DELETE FROM ae_consultation WHERE 0 <> O

ERROR at Tine 1:
ORA-01031: insufficient privileges

SQL> DELETE FROM authorized WHERE 0 <> 0;
DELETE FROM authorized WHERE 0 <> 0

ERROR at Tine 1:
ORA-00942: table or view does not exist

Output 63: HOSP1_U0002 fails to delete from
ae_consultation and authorized.

If an attempt is made to DELETE, INSERT or UPDATE a row in a table to which the user does not have the

appropriate privilege, but does have some privileges on it, then an Insufficient Privileges error is returned

(Output 62).

299

If the user does not have any privileges at all on the table, then as before the table does not exist for the user, as
can be shown by the different behaviour of the two DELETE statements in Output 63. Note the WHERE clause that

always fails. Deleting rows during the test run would make the database unusable for testing, so it is not done.

SQL> INSERT INTO patient_diagnosis (

2 patient_diagnosis_number,
3 diagnosing_doctor,

4 diagnosis_desc,
cons_number,

5

6
diagnosis_code

7

8

) VALUES (
'pd00023",
9 'u0010"',
10 'Stomach infection',
11 'c00023",
12 'diag002'

13);
INSERT INTO patient_diagnosis (

ERROR at Tine 1:

ORA-02291: 1integrity constraint (HOSP.SYS_C009415)
violated - parent key not found

Output 64. HOSP1_U0002 inserts into
patient_diagnosis.

Indeed, for this test, what matters when attempting to INSERT, UPDATE or DELETE is not whether the
transaction was ultimately successful, but whether it could be performed. For example, consider the INSERT on the
table patient_diagnosis in Output 64.

The INSERT fails because of an integrity constraint: the value '€00023" is a foreign key that does not exist in
the referencing table. However, the fact that the statement was executed shows that (as expected) this user has the right

to insert rows into the table patient_diagnosis.

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';

OWNER | TABLE_NAME
______________________________ S
HOSP | WARD

HOSP |ROOM

HOSP |BED

HOSP | PATIENT

HOSP | DIAGNOSIS

HOSP | AE_CONSULTATION

HOSP | PATIENT_DIAGNOSIS

HOSP |USR

8 rows selected.

Output 65: Tables visible to user HOSP1_U0003.

300

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = 'HOSP';

Grantor |Grantee |Privilege | Table
—————————————————————————————— T L] L SR
HOSP |HOSP1_U0003 | EXECUTE | SET_CONTEXT

HOSP |HOSP1_HOUSE_OFFICER | SELECT | WARD

HOSP |HOSP1_HOUSE_OFFICER | SELECT | ROOM

HOSP |HOSP1_HOUSE_OFFICER | SELECT | BED

HOSP |HOSP1_HOUSE_OFFICER | SELECT | PATIENT

HOSP |HOSP1_HOUSE_OFFICER | SELECT |[DIAGNOSIS

HOSP |HOSP1_HOUSE_OFFICER | SELECT |[USR

HOSP |HOSP1_HOUSE_OFFICER | SELECT | AE_CONSULTATION
HOSP |HOSP1_HOUSE_OFFICER | SELECT | PATIENT_DIAGNOSIS
HOSP |HOSP1_SNR_HOUSE_OFFICER | UPDATE | DIAGNOSIS

HOSP |HOSP1_SNR_HOUSE_OFFICER | UPDATE | AE_CONSULTATION
HOSP |HOSP1_SNR_HOUSE_OFFICER | UPDATE | PATIENT_DIAGNOSIS

12 rows selected.

Output 66. Privileges granted to HOSP1_U0003.

SQL> SELECT diagnosis_code "Diag_Code", illness_name "I1lness_Name", usual_symptoms "Usual_Symptoms" FROM
diagnosis;

no rows selected

Output 67: Table diagnosis as seen by HOSP1_U0003.

User u0003 is activated here in the role snr_house_officer_n. Since this a n7ght_duty role, and the
test was performed during day_duty hours, this user should have no access. The user can see tables, and is shown as
having privileges granted. This is because the rows returned by the meta-data views sys.all_tables (Output 65)
and sys.all_tab_privs (Output 66) are determined by static privileges.

Therefore, it looks as if the user can SELECT and UPDATE data from various tables. Yet, an attempt to read any
such table produces an empty set (Output 67).

These results are due to the way dynamic RBAC is handled in Oracle VPD. Dynamic context constraints are
implemented internally by adding WHERE clauses to statements before they are run. For a user in a n7ght_duty role
running a query during day_duty hours (or vice-versa), the WHERE clause always evaluates to FALSE (it compares

the current time with SYSDATE), thus causing an empty set to be returned for all SELECT queries. The mechanism is

called Fine-Grained Access Control, and was originally introduced in Oracle 8.

SQL> UPDATE diagnosis SET usual_symptoms = usual_symptoms ||
WHERE diagnosis_code = 'diag003';

, with foaming at the mouth.'

0 rows updated.

Output 68: HOSP1_U0003 updates diagnosis.

When a user is prevented by a context constraint from performing an UPDATE or DELETE statement, the

database cannot find the row to modify, as shown in Output 68.

A row in diagnosis does exist for diagnosis_code = 'diag003'. However, when logged in as
u0003 at this time the system cannot see the row, as it cannot see any rows in any table for which the temporal

constraint is defined. Therefore, no update is run.

301

SQL> SELECT * FROM room;

ROOM_ID |WARD_ID | TYPE | BED_CAPACI
SQL> SELECT * FROM ward; ||====mmmmm- [— [— [——
Room10 |wardl |Pub1ic | 4
WARD_ID | TYPE |WARD_CAPAC Room20 |wardl |PubTic | 4
—————————— [I Room30 |wardl |Private |2
wardl |Operating |10 Room1H |ward2 |Pub1ic | 4
ward2 |Hemotology| 12 Room2H |ward2 |PubTic |4
Room3H |ward2 |Private |4
Output 69: HOSP1_U0004 inserts into ward..

6 rows selected.

Output 70: HOSP1_U0004 reads room.

User u0004 is active as snr_house_officer_d. This is a day_duty role, and so the user should have
access to the data as the test is run during day_duty hours. Queries on all_tables and sys.al1_tab_privs thus

produce similar results to those for uO003. However, accesses to data tables are successful, as shown in Output 69—70.

SQL> SELECT patient_id "Patient_ID", Tast_name "Last_Name", first_name "First_Name", address "Address",
date_of_birth FROM patient;

Patient_ID|Last_Name | First_Name |Address | DATE_OF_BI
—————————— e L B P
12348 |PhiTips | Cindy |10 Brentworth Road |04-MAR-77
12361 |David |Frances |177 Calder Pass |02-JUL-66

Output 71: HOSP1_U0004 reads patient.

The query on patient returns only two rows out of the 22 actually in the table, as shown in Output 71.

SQL> select usr "User", object "Object", action "Action", role "Role", row_id "Row" from authorized_cc

where role = 'snr_house_officer_d' ORDER BY usr, object, action, row_id;

User |Object |Action |RoTe | Row
————————————————] e B E
u0004 |patient |select | snr_house_officer_d 12348

u0004 |patient |select | snr_house_officer_d |12361

138 rows selected.

Output 72: authorized_cc results for snr_house_officer_d concerning patient and u0004.

Compare this to the rows produced by authorized_cc for this user and the patient table (Output 72).

SQL> UPDATE diagnosis SET usual_symptoms = usual_symptoms || ', with foaming at the mouth.' WHERE diagnosis_code =
'diag003';

1 row updated.
SQL> UPDATE ae_consultation SET cons_description = 'Diarrhea and Vomiting' WHERE cons_number = 'c00022';
1 row updated.

SQL> UPDATE patient_diagnosis SET diagnosis_desc = 'Coronary Heart Disease' WHERE patient_diagnosis_number =
'pd00008" ;

1 row updated.

Output 73: HOSP1_U0004 updates diagnosis, ae_consultationand patient_diagnosis.

Updates on tables for which this is permitted by the static rules were also run. Output 73 shows user u0004
successfully updating tables diagnosis, ae_consultation and patient_diagnosiis, as the user should be

able to do when active in role snr_house_officer_d.

302

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';
OWNER | TABLE_NAME
______________________________ [
HOSP |URA

HOSP | SENIOR_TO

HOSP | INCLUDED_IN

HOSP | INHERITS_RPA_PATH
HOSP |IS_A

HOSP | RPA

HOSP | D_RPA

HOSP |USR_SESSION

HOSP |DSD

HOSP | SSD

HOSP | WARD

HOSP | ROOM

HOSP |BED

HOSP | PATIENT

HOSP | DIAGNOSIS

HOSP | AE_CONSULTATION
HOSP | PATIENT_DIAGNOSIS
HOSP | NURSE_WARD

HOSP |USR

HOSP | PASSWORD

HOSP |ROLE

HOSP |D_S

22 rows selected.

Output 74. Tables visible to user HOSP1_U0017.

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = 'HOSP';

Grantor |Grantee |Privilege |Table

HOSP |HOSP1_U0017 | EXECUTE | SET_CONTEXT

HOSP |HOSP1_JINR_DATA_MANAGER | INSERT | WARD

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | ROOM

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT |BED

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | PATIENT

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT |DIAGNOSIS

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | AE_CONSULTATION
HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | PATIENT_DIAGNOSIS
HOSP |HOSP1_SNR_DATA_MANAGER | SELECT | WARD

HOSP |HOSP1_SNR_DATA_MANAGER | UPDATE | WARD

HOSP |HOSP1_SNR_DATA_MANAGER |DELETE | WARD

HOSP |HOSP1_SNR_DATA_MANAGER |ALTER | WARD

154 rows selected.

Output 75: Privileges granted to HOSP1_U0017.

User u0017 is active as role snr_data_manager, and so has all privileges across all tables (Output 74).

The last row listed in Output 75 is for an ALTER privilege, allowing the user to modify the table structure (not
tested).

All statements in the test run were executed, and ran on all rows. This includes DELETE statements, which in
this model can only be run by users active as role snr_data_manager. However, the always-FALSE WHERE clause

prevented the DELETE statements from having any effect (not shown).

SQL> DELETE FROM currently_active WHERE 0 <> 0;
DELETE FROM currently_active WHERE 0 <> 0

ERROR at Tine 1:
ORA-01732: data manipulation operation not Tegal on this view

Output 76: Attempting to delete a view.

Some DELETE statements could not be run because they were operating on views, not tables (Output 76).

303

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = 'HOSP';

Grantor |Grantee |Privilege | Table

HOSP [HOSP1_U0018 | EXECUTE | SET_CONTEXT

HOSP |HOSP1_JINR_DATA_MANAGER | INSERT | WARD

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | ROOM

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | BED

HOSP |HOSP1_JINR_DATA_MANAGER | INSERT | PATIENT

HOSP |HOSP1_JINR_DATA_MANAGER | INSERT |[DIAGNOSIS

HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | AE_CONSULTATION
HOSP |HOSP1_JNR_DATA_MANAGER | INSERT | PATIENT_DIAGNOSIS

Output 77 Tables visible to user HOSP1_U0018.

User u0018 is activated in the role jnr_data_manager. Users in this role have only INSERT privileges on
specific tables (think of this role as being a data entry clerk) (Output 77).

This user has no SELECT privileges. However, attempts to SELECT the tables listed in sys.all_tables

(not shown) and sys.al1_tab_priivs produce different results from those found previously.

SQL> SELECT * FROM ward;
SELECT * FROM ward

%

ERROR at Tline 1:
ORA-01031: insufficient privileges

Output 78: HOSP1_U0018 fails to read ward.

An insufficient privileges error is returned instead of the previous ORA-00942: table or
view does not exist. The table is known to the user (because of an INSERT privilege on it), but its contents

cannot be viewed (Output 78).

All Users Activated

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';

OWNER | TABLE_NAME
______________________________ | = mm e
HOSP | WARD

HOSP |ROOM

HOSP | BED

HOSP | PATIENT

HOSP | DIAGNOSIS

HOSP | AE_CONSULTATION

HOSP | PATIENT_DIAGNOSIS

HOSP |USR

8 rows selected.

Output 79: Tables visible to user HOSP1_U00OS5.

304

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = 'HOSP';

Grantor |Grantee |Privilege | Table
—————————————————————————————— R] L SR
HOSP |HOSP1_U0005 | EXECUTE | SET_CONTEXT

HOSP |HOSP1_HOUSE_OFFICER | SELECT | WARD

HOSP |HOSP1_HOUSE_OFFICER | SELECT | ROOM

HOSP |HOSP1_HOUSE_OFFICER | SELECT | BED

HOSP |HOSP1_HOUSE_OFFICER | SELECT | PATIENT

HOSP |HOSP1_HOUSE_OFFICER | SELECT |[DIAGNOSIS

HOSP |HOSP1_HOUSE_OFFICER | SELECT |[USR

HOSP |HOSP1_HOUSE_OFFICER | SELECT | AE_CONSULTATION
HOSP |HOSP1_HOUSE_OFFICER | SELECT | PATIENT_DIAGNOSIS

Output 80: Privileges granted to HOSP1_U0005.

User u0005 is defined as a receptionist, but is active here as house_officer_d. As such, the only

privileges given to this user are those of a house_officer (Output 79-80).

SQL> SELECT patient_id "Patient_ID", Tast_name "Last_Name", first_name "First_Name", address "Address",
date_of_birth FROM patient;

Patient_ID|Last_Name | First_Name |Address |DATE_OF_BI
—————————— I] D
12349 | Jones |Julia |12 Oakley Road 112/12/1979

Output 81: HOSP1_U00O05 reads patient.

This can be shown by the query on table patient (Output 81) (the output is as it is without formatting
commands).

If u0005 were active as a receptionist, then this query should return all 22 rows of the patient table.
However, since u0005 is active as house_officer_d, the query returns the one row that satisfies the context
constraint attached to the role house_officer. User u0009, the other inactive receptionist, is active as a

consultant, and so can see all rows of the patient table anyway.

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';
OWNER | TABLE_NAME

HOSP | PATIENT
Output 82: Tables visible to user HOSP1_U0022.

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = '"HOSP';

Grantor |Grantee |Privilege |Table
——————————————————————————————] [
HOSP [HOSP1_U0022 | EXECUTE | SET_CONTEXT

HOSP |HOSP1_RECEPTIONIST | SELECT | PATIENT

Output 83: Privileges granted to HOSP1_U0022.

User u0022, being active as a receptionist, has only a SELECT privilege on the patient table (Output
82-83), but with no row-level constraints. [There is, however, a temporal constraint, restricting receptionist users to

accessing data during the hours 0900—1700, Monday to Friday; this is defined in the office_hours role.]

305

SQL> SELECT patient_id "Patient_ID", Tast_name

date_of_birth FROM patient;

Patient_ID|Last_Name
__________ | mmmmmmmmmm e
12345 | Smith
12354 |Davies
12353 |[Williams
12352 |McDonald
12355 |WiTkinson
12356 |Matthewman
12357 | Kenwood
12358 |Constantine
12347 |Fowler
12359 |Kelly
12349 | Jones
12346 [King

12350 |Cole

12351 |Robinson
12360 | James
12361 |David
12362 |Treville
12363 |Mckenzie
12348 |PhiTlips
12364 |Churchill
12365 |Bhatti
12366 |Dijkstra
12367 |Christ

23 rows selected.

|First_Name
| mmmmmmmmmmm e
| John
|Kenneth
|Louise
|Ronald
|Matthew
|Wendy
|Robert
|Frederick
|Robert
|Yasmin
|Julia
|Steve
|Katherine
| Tim

| Timothy
|Frances
|Marcus
|Angus

| Cindy
|Winston
|Salima
|Ravi
|Jesus H.

Output 84: HOSP1_U0022 reads patient.

"Last_Name", first_name "First_Name", address "Address",

|Address

| = mm m
[33 Oak Street

|405 Kingston Road
|15 Wellstone Street
|23 Portobello Road
|15 Touchwood Lane
|23a Tisbury Road
|14 Minster Lane

|1 The Avenue

|443 Sidney Gardens
|14 Crusader Road
|12 Oakley Road

|44 Fulham Broadway
|22 Bridge Road

|11 Horsenden Lane
|16 Bender Lane

|177 Calder Pass
|103 Stanford Drive
|100 Creswood Road
|10 Brentworth Road
|88 Kenwood Drive
|10 Firewood Lane
|17 Strongwood Close
|The Stables, The Inn, Bethlehem

| DATE_OF_BI
| __________
112/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
|12/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
112/12/1979
|12/12/1979
112/12/1979
112/12/1979
|12/12/1979
112/12/1979
112/12/1979
112/12/1979
|0000-12-25

Therefore, u0022 can see the whole patient table (Output 84). [The final row, Patient_ID=12367, was

added during the test by user u0017.]

bed_id,
room_id,
type

) VALUES (
'Bed023",
'RoomlG"',
'Electric’

LoNOUVTA WN

)
INSERT INTO bed (

ERROR at Tine 1:

SQL> INSERT INTO bed (

ORA-00942: table or view does not exist

Output 85: HOSP1_U0022 fails to insert into bed when logged in as receptionist.

The Inn, Bethlehem',

(

SQL> INSERT INTO patient (
2 patient_id,
3 Tlast_name,
4 first_name,
5 address,
6 date_of_birth,
7 bed_id
8) VALUES (
9 12367,
10 'Christ"',
11 'Jesus H.',
12 'The Stables,
13 '0000-12-25",
14 'Bed023'
15);
INSERT INTO patient
ERROR at Tine 1:

ORA-01031: insufficient privileges

Output 86: HOSP1_U0022 fails to insert into patient when logged in as receptionist.

306

User u0022 is also defined in the role jnr_data_manager. However, since the user is not active in this role,
he has none of the privileges associated with it (Output 85-86).

If u0022 were active as jnr_data_manager, these INSERT statements would be run. Note, again, the
difference in behaviour between the two statements. This user has no access at all to table bed, so the session behaves
as if this table does not exist at all. However, the session does know about the table patient, due to the user's

SELECT privilege. Therefore, the insufficient privileges error results.
Conversely, u0022 would not be able to SELECT the patient table if active as jnr_data_manager.

The results for u0021 show a shortcoming in Oracle implementation of this DRBAC: this user (active as
manager) can do everything through permissions inherited from the snr_data_manager. This is not supposed to

happen due to inherits_rpa_path definitions.

Some Users Deactivated

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';

no rows selected

Output 87: No tables visible to user HOSP1_UOO0O0S after deactivation.

SQL> SELECT patient_id "Patient_ID", Tast_name "Last_Name", first_name "First_Name", address "Address",
date_of_birth FROM patient;

SELECT patient_id "Patient_ID", last_name "Last_Name", first_name "First_Name", address "Address", date_of_birth
FROM patient

¥*

ERROR at line 1:
ORA-00942: table or view does not exist

Output 88: User HOSP1_UO0O0OS5 has no access to table patient afier deactivation.

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = '"HOSP';

Grantor |Grantee |Privilege |Table

HOSP [HOSP1_U0005 | EXECUTE | SET_CONTEXT
Output 89: No privileges granted to HOSP1_UO0O00S5 after deactivation.

SQL> SELECT * FROM bed;
SELECT * FROM bed

ERROR at Tine 1:
ORA-00942: table or view does not exist

Output 90: User HOSP1_UO0O5 has no access to table bed after deactivation.

User u0005 is one of the users that is deactivated. Therefore, this user now has no access privileges, and cannot
see any tables (Output 87-90).

307

8 rows selected.

Output 91: Tables visible to user HOSP1_U0007.

SQL> SELECT owner, table_name FROM sys.all_tables WHERE owner = "HOSP';

| TABLE_NAME

| DIAGNOSIS

| AE_CONSULTATION
| PATIENT_DIAGNOSIS

|USR

SQL> SELECT grantor "Grantor", grantee "Grantee", privilege "Privilege", table_name "Table" FROM ALL_TAB_PRIVS

WHERE TABLE_SCHEMA = "HOSP';

Grantor

9 rows selected.

|Grantee

|HOSP1_U0007

|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER
|HOSP1_HOUSE_OFFICER

Output 92: Privileges granted to HOSP1_U0007.

|Privilege

| EXECUTE
| SELECT
| SELECT
| SELECT
| SELECT
| SELECT
| SELECT
| SELECT
| SELECT

| SET_CONTEXT

| WARD

| ROOM

| BED

| PATIENT

| DIAGNOSIS

[USR

| AE_CONSULTATION

| PATIENT_DIAGNOSIS

SQL> SELECT patient_id "Patient_ID", Tast_name "Last_Name", first_name "First_Name", address "Address",

date_of_birth FROM patient;

Patient_ID|Last_Name

12352 |McDonald
12364 |Churchill

| First_Name

|Ronald
|Winston

Output 93: HOSP1_U00O07 reads patient.

|Address

|23 Portobello Road
|88 Kenwood Drive

| DATE_OF_BI

[12/12/1979
[12/12/1979

308

SQL> SELECT * FROM bed;

BED_ID I[ROOM_ID |TYPE
__________ S
Bed001 |Room10 | Bunk
Bed002 |Room10 | Bunk
Bed003 |Room10 |Bunk
Bed004 |Room10 | Bunk
Bed005 |Room20 | Bunk
Bed006 |Room20 | Bunk
Bed007 |Room20 | Bunk
Bed008 |Room20 |Bunk
Bed009 |Room30 | Bunk
Bed010 |Room30 | Bunk
Bed011 |Room1H |Bunk
Bed012 |Room1H | Bunk
Bed013 |Room1H | Bunk
Bed014 |Room1H | Bunk
Bed015 |Room2H | Bunk
Bed016 |Room2H |Bunk
Bed017 |Room2H | Bunk
Bed018 | Room2H | Bunk
Bed019 |Room3H |Bunk
Bed020 |Room3H | Bunk
Bed021 |Room3H | Bunk
Bed022 | Room3H | Bunk
Bed023 |Room1G |Electric
23 rows selected.

Output 94: HOSP1_U0007 reads bed.

In contrast, user U0007 is still active, in the same role as u0005 (house_officer_d) (Output 91-94).

Separation of Duties

Tests were performed to determine whether the records in ssd and dsd correctly enforced separation of duties.

SQL> start ssd_dsd.sql

SQL> CONNECT hosp/hosp

Connected.

SQL>

SQL> SET ECHO ON;

SQL>

SQL> SELECT * FROM ura WHERE usr = 'u0010';

u0010 |house_officer_n

Output 95: User u0010 is defined in the role house_officer_n.

Output 95 confirms that user u0010 is defined in the role house_officer_n.

SQL> INSERT INTO ura(usr, role) VALUES ('u0010', 'specialist_nurse');
INSERT INTO ura(usr, role) VALUES ('u0010', 'specialist_nurse')
*

ERROR at line 1:

ORA-20000: Conflicting roles: cannot assign u0010 to specialist_nurse.
ORA-06512: at "HOSP.URA_BEFORE_INSERT", Tine 23

ORA-04088: error during execution of trigger 'HOSP.URA_BEFORE_INSERT'

Output 96: Role conflict error when attempting to define user u0010 as a specialist_nurse.

309

SQL> SELECT * FROM ura WHERE usr = 'u0010';

u0010 |house_officer_n

Output 97: User u0010 is still defined only as house_officer_n.

INSERT INTO ssd(rolel, role2) VALUES ('doctor', 'nurse');

Code 65: ssd definition preventing the same user from being both doctor and nurse.

As expected, u0010 could not be additionally defined as specialist_nurse: the attempt returned a
programmer-defined error ORA-20000: Conflicting roles (Output 96), and the role assignment failed
(Output 97). This because of a static ssd preventing the same user from being defined in both a doctor role and a

nurse role (Code 65).

Repeating the previous SELECT query confirms that the attempted INSERT was unsuccessful.

SQL> INSERT INTO usr_session(usr, role) VALUES ('u0010', 'painter');
INSERT INTO usr_session(usr, role) VALUES ('u0010', 'painter')

ERROR at Tine 1:

ORA-20000: Not assigned to role: cannot activate u0010 as painter.

ORA-06512: at "HOSP.USR_SESSION_BEFORE_INSERT", T1ine 56

ORA-04088: error during execution of trigger 'HOSP.USR_SESSION_BEFORE_INSERT'

Output 98: Attempt to activate user U0010 in (non-existent) role painter.

Here, u0010 could not be activated in the role painter, because the user is not assigned to this role in ura
(Output 98). Indeed, the role does not exist.

SQL> INSERT INTO usr_session(usr, role) VALUES ('u0010', 'manager');
INSERT INTO usr_session(usr, role) VALUES ('u0010', 'manager')

ERROR at Tine 1:

ORA-20000: Conflicting roles: cannot activate u0010 as manager.

ORA-06512: at "HOSP.USR_SESSION_BEFORE_INSERT", 1line 52

ORA-04088: error during execution of trigger 'HOSP.USR_SESSION_BEFORE_INSERT'

Output 99: Role conflict error when attempting to define user u0010 as a
manager.

INSERT INTO ssd(rolel, role2) VALUES ('manager', 'consultant');

Code 66: ssd definition preventing the same user from being both manager and
consultant.

The attempt to activate u0010 as a manager also fails (Output 99), because of another ssd definition (Code

66). In any case, U0010 is not defined as a manager, so this attempt would fail anyway.

SQL> INSERT INTO usr_session(usr, role) VALUES ('u0010', 'consultant');
INSERT INTO usr_session(usr, role) VALUES ('u0010', 'consultant')
*

ERROR at Tine 1:

ORA-20000: Not assigned to role: cannot activate u0010 as consultant.
ORA-06512: at "HOSP.USR_SESSION_BEFORE_INSERT", Tine 56

ORA-04088: error during execution of trigger 'HOSP.USR_SESSION_BEFORE_INSERT'

Output 100: Attempt to activate user u0010 in role consultant to which he is not assigned.

310

Again, an attempt to activate u0010 as a role to which he is not assigned is unsuccessful. This time, the role is

consultant, which does exist (Output 100).

SQL> INSERT INTO ura(usr, role) VALUES ('u0010', 'consultant');

1 row created.

Output 101: Assigning user u0010 in role consultant.

The ura assignment in Output 101 is successful, since it is not prevented by any ssd entries.

SQL> INSERT INTO usr_session(usr, role)
VALUES ('u0010', 'consultant');

1 row created.

Output 102: Activating user u0010 in role
consultant.

SQL> SELECT * FROM ura WHERE usr = 'u0010';

USR |ROLE

_________________ |______________________________
u0010 | consultant

u0010 |house_officer_n

Output 103: User u0010 now assigned to both
consultant and house_officer_n.

The user can now be activated as a consultant (Output 102). Output 103 confirms that u0010 is now

assigned to two roles.

SQL> INSERT INTO usr_session(usr, role) VALUES ('u0016', 'student_nurse_n');
INSERT INTO usr_session(usr, role) VALUES ('u0016', 'student_nurse_n')

ERROR at Tine 1:

ORA-20000: Conflicting roles: cannot activate u0016 as student_nurse_n.
ORA-06512: at "HOSP.USR_SESSION_BEFORE_INSERT", 1ine 52

ORA-04088: error during execution of trigger "HOSP.USR_SESSION_BEFORE_INSERT'

Output 104: Attempt to activate user U0016 in role student_nurse_n causing a dsd conflict.

INSERT INTO dsd(rolel, role2) VALUES ('day_duty', 'night_duty');

Code 67: dsd constraint preventing simultaneous activation of day_duty and night_duty roles.

Output 104 shows that an attempt to activate u0016 in the role student_nurse_n is unsuccessful because
u0016 is already active as student_nurse_d. A user cannot be simultaneously active in both a day_duty and a
night_duty role. This is due to a dsd constraint (Code 67).

311

	1 Introduction
	2 The Domain: Access Control Models
	2.1 Database Security and Access Control
	2.2 Introduction to RBAC
	2.2.1 Simple Static RBAC
	2.2.2 Extensions to Static RBAC

	2.3 Dynamic and context-aware RBAC

	3 RBAC Implementation in Prolog and Relational DBMS
	3.1 Introduction
	3.2 Defining and Implementing Static RBAC in Relational Database
	3.2.1 Representation of Static RBAC Model in Prolog
	3.2.2 Transformation of Static RBAC Model from Prolog to SQL Database
	3.2.3 Enforcement of Static RBAC in DBMS Meta-data

	3.3 Dynamic RBAC
	3.3.1 Representation of Dynamic RBAC Model in Prolog
	3.3.2 Transformation of Dynamic RBAC Model from Prolog to SQL Database
	3.3.3 Enforcement of Dynamic RBAC in DBMS Meta-data

	3.4 Testing the Implementation of RBAC in Oracle
	3.4.1 Overview: Parts and Conditions
	Parts
	Conditions

	3.4.2 Representation of RBAC
	1 Role Permissions and Denials (rpa and d_rpa)
	2 Static User Permissions and Authorizations (permittable, authorizable, permitted and authorized)
	3 Dynamic User Permissions and Authorizations (permittable_cc, authorizable_cc, permitted_cc and authorized_cc)
	Running

	3.5 Results
	3.6 Conclusion

	4 The Problem
	4.1 Problems with Current RBAC
	4.2 Literature Review
	4.2.1 RBAC and XML
	4.2.2 RBAC and the Semantic Web

	4.3 Conclusion

	5 The Proposal: Semantic and Ontology-based Role-Based Access Control (SO-RBAC)
	5.1 Introduction
	5.2 Ontological Model and Reasoning
	5.2.1 Definition of SO-RBAC Ontological Model
	5.2.1.1 OWL classes and their hierarchies
	5.2.1.2 Necessary & Sufficient conditions
	5.2.1.3 Object property relationships

	5.2.2 Populating SO-RBAC classes by assertion
	5.2.3 Reasoning in SO-RBAC using SWRL
	5.2.3.1 Defining new object properties
	5.2.3.2 Assigning individuals to SO-RBAC classes

	5.3 SO-RBAC Process
	5.4 Contrasting SO-RBAC with Prolog
	5.4.1 Property inheritance
	5.4.2 Negation and Transitivity

	5.5 Implementing SO-RBAC based on a hospital environment
	5.6 Results of Implementation
	5.7 Results of SO-RBAC Process in Protégé
	5.7.1 Classes and Individuals
	5.7.1.1 General
	5.7.1.2 Initialization

	5.7.2 Reasoning
	5.7.2.1 Stage 1
	5.7.2.2 Stage 2
	5.7.2.3 Stage 3
	5.7.2.4 Stage 4
	5.7.2.5 Stage 5

	5.7.3 SWRL Rules Tab

	5.8 Conclusion

	6 The Proposal (Continued): Enhanced Semantic and Ontology-based RBAC (ESO-RBAC)
	6.1 Introduction
	6.2 Ontological Model and Reasoning
	6.2.1 Definition of ESO-RBAC Ontological Model
	6.2.1.1 OWL classes and their hierarchies
	6.2.1.2 Necessary & Sufficient conditions
	6.2.1.3 Object property relationships

	6.2.2 Populating ESO-RBAC classes by assertion
	6.2.3 Reasoning in ESO-RBAC using Jena
	6.2.3.1 Defining new object properties
	6.2.3.2 Moving individuals across ESO-RBAC classes

	6.3 ESO-RBAC Process
	6.4 Modelling Dynamic RBAC in ESO-RBAC
	6.5 Contrasting ESO-RBAC with SO-RBAC and with Prolog
	6.6 Implementing ESO-RBAC based on a hospital environment
	6.7 Results of Implementation
	6.8 Results of ESO-RBAC Process in Protégé
	6.8.1 Classes and Individuals
	6.8.1.1 General
	6.8.1.2 Initialization

	6.8.2 Reasoning
	6.8.2.1 Stage 1
	6.8.2.2 Stage 2
	6.8.2.3 Stage 3
	6.8.2.4 Stage 4
	6.8.2.5 Stage 5

	6.9 Conclusion

	7 Conclusion
	7.1 Summary of Research
	7.1.1 Modelling RBAC in Prolog
	7.1.2 Modelling RBAC in RDBMS
	7.1.3 Modelling RBAC in OWL
	7.1.3.1 SO-RBAC in OWL-DL
	7.1.3.2 ESO-RBAC in OWL-Full

	7.2 Evaluation
	7.2.1 OWL in general
	7.2.1.1 Concerns with OWL
	Monotonicity in OWL
	Persistence of Reasoning Results
	Negation in OWL

	Populating OWL classes with individuals
	OWL Speed and Efficiency

	7.2.1.2 Advantages of OWL
	Faster reasoning on persistence
	Use of natural class and property hierarchy in OWL
	Not Vendor Specific
	Independence of query layer from ontology
	Summary

	7.2.2 SO-RBAC and ESO-RBAC Models
	7.2.2.1 Reasoning processes
	Pre-requisites in the Reasoning Process
	Characteristics of the Reasoning Process

	7.2.3 Future Works

	Appendices
	Appendix I: Publications
	Appendix II: Prolog Rules in Static RBAC
	Appendix III: Prolog Rules in Dynamic RBAC
	Appendix IV: Prolog Facts in Static RBAC
	Appendix V: Context Constraints in Static RBAC
	Appendix VI: RBAC and database diagrams
	Appendix VII: Oracle Database: Data Description
	Appendix VIII: SQL Code for Static RBAC
	Tables
	Views
	Triggers
	Functions

	Appendix IX: SQL Code for Dynamic RBAC: Generic
	Tables
	Views 1
	Views 2
	Triggers

	Appendix X: SQL Code for Dynamic RBAC: Hospital Database
	Tables
	Views
	Triggers

	Appendix XI: Oracle VPD Context for Hospital Database
	Head
	Body

	Appendix XII: Oracle VPD Policy for Hospital Database
	Adding
	Dropping

	Appendix XIII: Hospital Database CREATE TABLE statements
	Appendix XIV: Test Script for RBAC Enforcement
	Appendix XV: Hospital Database RBAC INSERT Statements
	Appendix XVI: Hospital Database Data INSERT Statements
	Appendix XVII: Discussion of Testing and Output
	Role Permissions and Denials (rpa and d_rpa)
	Static User Permissions and Authorizations (permittable, authorizable, permitted and authorized)
	Dynamic User Permissions and Authorizations (permittable_cc, authorizable_cc, permitted_cc and authorized_cc)
	Enforcement of RBAC in Meta-Data
	Separation of Duties

