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Abstract
Classifying subjects into risk categories is a common challenge in medical research. Machine Learning (ML) methods are widely
used in the areas of risk prediction and classification. The primary objective of such algorithms is to use several features to predict
dichotomous responses (e.g., healthy/at risk). Similar to statistical inference modelling, ML modelling is subject to the problem
of class imbalance and is affected by the majority class, increasing the false-negative rate. In this study, we built and evaluated
thirty-six ML models to classify approximately 4300 female and 4100 male participants from the UK Biobank into three
categorical risk statuses based on discretised visceral adipose tissue (VAT) measurements from magnetic resonance imaging.
We also examined the effect of sampling techniques on the models when dealing with class imbalance. The sampling techniques
used had a significant impact on the classification and resulted in an improvement in risk status prediction by facilitating an
increase in the information containedwithin each variable. Based on domain expert criteria the best three classificationmodels for
the female and male cohort visceral fat prediction were identified. The Area Under Receiver Operator Characteristic curve of the
models tested (with external data) was 0.78 to 0.89 for females and 0.75 to 0.86 for males. These encouraging results will be used
to guide further development of models to enable prediction of VAT value. This will be useful to identify individuals with excess
VAT volume who are at risk of developing metabolic disease ensuring relevant lifestyle interventions can be appropriately
targeted.

Keywords Machine learning . Imbalanced learning . UK biobank . Random under sampling . Synthetic minority over-sampling
technique (SMOTE) . Visceral fat

1 Introduction

Real-world data are often imbalanced and lack uniform distri-
bution across classes. Classification of imbalanced datasets is

a significant challenge across both industrial and research do-
mains [1]. There are multiple approaches to tackle class im-
balance [2], of which data enrichment is the most straightfor-
ward. Other more sophisticated methods include varied sam-
pling techniques [3], cost-sensitive learning [4, 5], feature se-
lection; more complex strategies include meta learning [6],
combining classifiers [7], and algorithmic modifications [8].

When resampling methods are applied, questions over
their suitability are often raised [9]. For example: is the
new resampled dataset representative of the population in
relation to the response variable? Is it acceptable to arti-
ficially generate synthetic data of class subjects when
training Machine Learning (ML) classification models?
It has been argued that by using sampling methods, the
original class ratio is lost during the training process and
that this affects the accuracy metrics [10]. Similarly, train-
ing ML models with synthetic data may compromise ac-
curacy measures by deceiving the process of cross-
validation sampling [11].
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In this paper, we compare the classification performance of
six ML algorithms (Naïve Bayes, Logistic Regression,
Artificial Neural Network, Decision Tree, Logistic Model
Tree, and Random Forest) in predicting discretised visceral
fat ranges associated with the development of long-term dis-
eases in a multiclass classification problem. The new models
were built using Random Under Sampling (RUS) [8] and
Synthetic Minority Over Sampling Technique (SMOTE)
[12] sampling techniques applied to highly imbalanced train-
ing data (in the female cohort case), and on less severe imbal-
ance (in the male cohort case). This study suggests the most
suitable models meeting the domain experts’ success criteria.
The data imbalance characteristic causing the transition in
classifier training performance was monitored visually by
Adaptive Projection Analysis (APA) [13] and numerically
via Information Gain (IG) attribute evaluation [14, 15].

The deployment of machine learning modelling in this
study aims at tackling a long-term real-world disease burden;
Obesity affects an increasing number of adults in the UK [16],
with obesity-associated changes in adipose tissue (AT) predis-
posing to metabolic dysregulation [17] and other disorders.
Distribution of AT, in particular the accumulation of visceral
adipose tissue (VAT) and liver fat, is a critical factor in deter-
mining susceptibility to diseases [18, 19]. Excess VAT and
liver fat play a significant role in the pathogenesis of type 2
diabetes, dyslipidaemia, hypertension and cardiovascular dis-
ease [20].

Current strategies for the treatment of obesity and its
associated co-morbidities have focused on lifestyle im-
provements [21, 22]. Such a focus aims to reduce VAT
and liver fat, via calorie restriction and/or exercise, the
impact of which are associated with improved insulin sen-
sitivity, decreased blood pressure and lower circulating
lipid levels [17, 23, 24]. Large scale analysis of the com-
partmental distribution of AT is often limited due to the
expense and time required to employ the requisite imaging
techniques. The UK Biobank (UKBB) provides a compre-
hensive means of assessing the relationship between body
composition and lifestyle in a large population-based co-
hort of adults. Having such a large dataset could increase
the presence of a pattern in the data, without it machine
learning algorithm can’t sufficiently learn to produce ef-
fective results.

The primary goal of this study is to identify the best models
to predict VAT levels in a cohort of female and male individ-
uals from the UKBB. The study is a cross sectional assess-
ment of 4327 female and 4126 male individuals from the
UKBB multimodal imaging cohort [25], aged 40–70 years
and scanned chronologically between August 2014 and
September 2016.

The paper is structured as follows: In Section 2, the meth-
odology, methods and approaches used in this study are pre-
sented. In Section 3, the experimental design is shown. The

results are documented in section 4, with the discussion and
conclusions Sections 5 and 6.

2 Methodology

For VAT prediction, multi-class ML classification models
were applied to predict susceptibility to disease (risk) based
on the discretised amount of VAT. Two groups of 2292 fe-
male and 2191 male subjects were used to train six ML algo-
rithms using 10-fold cross-validation in three different scenar-
ios. In relation to their cohort, the trained models were tested
on two new groups of external data of 2035 and 1935 female
and male cases, respectively. Figure 1 shows the methodolo-
gy: multiple imbalanced datasets with the same predictor var-
iables were modified with sampling techniques and used for
modeling using the six ML algorithms. Selected performance
metrics of the models were compared after training in the
evaluation phase. IG was monitored for all predictor variables
at every stage.

2.1 Data collection protocol

This cross-sectional study includes data from 8453 individuals
included in the UKBB multimodal imaging cohort. The
UKBB had approval from the North West Multi-Centre
Research Ethics Committee (MREC), and written consent
was obtained from all participants before their involvement.
The data was acquired through the UK Biobank Access
Application number 23889.The age range for inclusion was
40–70 years, with exclusion criteria were: metal or electric
implants, medical conditions that prohibited MRI scanning
or planned surgery within 6 weeks before the scanning date.
The subjects were scanned chronologically between August
2014 and September 2016. The visceral adipose tissue (VAT)
volumes were acquired as part of the UKBB dataset.

Anthropometry measurements were collected at UKBB as-
sessment centers; height was measured using the Seca 202
height measure (Seca, Hamburg, Germany). The average of
two blood pressure measurements, taken moments apart, was
obtained using an automated device (Omron, UK). Images
were acquired at the UK biobank imaging Centre at Cheadle
(UK) using a Siemens 1.5 T Magnetom Aera. The partici-
pants’ height and weight were recorded before imaging
screening which later was utilised to calculate the Body
Mass Index (BMI).

For physical activity assessment data, a touchscreen ques-
t i onna i r e wa s u sed to co l l e c t i n f o rma t i on on
sociodemographic characteristics and lifestyle exposures
(http://www.ukbiobank.ac.uk/resources/). Specific questions
on the frequency and duration of walking (UK biobank field
ID: 864, 874), moderate physical activity (884, 894) and
vigorous physical activity (904, 914) events allowed the
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calculations of metabolic equivalent-minutes per week (MET-
min/week) for each individual. Participants were excluded
from the calculations and analysis if they selected ‘prefer not
to answer’ or ‘do not know’ to any of the possible six ques-
tions on physical activity used to calculate theMET score (n =
868).

2.2 Information gain evaluation algorithm

Information and entropy levels within independent vari-
ables were monitored using an Information Gain
Attribute Evaluator Algorithm [15]. This algorithm eval-
uates the worth of each attribute by measuring informa-
tion gained with respect to the class in combination
with a ranker algorithm that ranks the attributes by their
influence on the class [14, 15, 26].

2.3 Adaptive projection analysis (APA)

APA uses a linear projection to display high dimensional data
into 3-dimensions by allowing the user to drag points in an
interactive scatter plot to find new views [13]. These views
indicate the classes which can be separated, the attribute com-
binations which are most associated with each class, the out-
liers, the sources of error in the classification algorithms, and
the existence of clusters in the data [27].

2.4 Data preprocessing

Pre-processing (preparation) steps are applied to the train-
ing dataset depending on various observed characteristics
within the data, i.e., dataset dimensions, units of measure-
ments and distribution. Preprocessing the data aims to
change classifiers behavior in the modeling phase. Some
forms of classifier behavior changes are adding bias to-
wards a response group, adding more weight to a feature
and taking a classification cost into account. Dataset class
imbalance requires the training dataset to undergo re-
sampling processes. Resampling methods are one of many
different approaches known to improve imbalanced learn-
ing [2–8]. The application of resampling techniques en-
hances the training dataset in the form of data reduction
or enrichment. The following two resampling techniques
were applied in this study.

Random Undersampling (RUS) This approach consisted of
selecting a subset of the majority class to balance the data
[8]. In this approach (Fig. 2), some of the majority class re-
cords were removed at random. However, it was recognised
that deleting records could lead to loss of important informa-
tion or patterns which may have been relevant to the learning
process [28]. Denoting the majority class L and the minority
class S, r was defined as the ratio between the size of the
minority and majority classes [3]. We performed random
under-sampling of L to achieve a balanced ratio of r = 1.

Fig. 1 The methodology adopted in this work, showing the different
steps followed. Where TD = Targeted dataset, RUS = Random Under
Sampling, SMOTE = Synthetic Minority Oversampling Technique,
ML =Machine Learning, NB =Naïve Bayes, LR = Logistic Regression,

ANN=Artificial Neural Network, C4.5, LMT = Logistic Model Tree,
RF = Random Forest, TPR = true-positive rate, FPR = false-positive
rate, AUC =Area under receiver operator characteristic curve

927Health Technol. (2020) 10:925–944



The imbalanced r ratios before RUS were r (females) = 0.14
and r (males) = 0.43.

Synthetic minority oversampling technique (SMOTE) SMOTE
is an over-sampling technique developed by Chawla [12]. It
aims to enhance the minority class by creating artificial exam-
ples in the minority class (Fig. 3). For each data point x in S
(theminority class), one of its k-nearest neighbours (k = 5) was
identified. The k neighbours were randomly selected, and ar-
tificial observations were generated and spread in the area
between x and the nearest neighbours. These synthetic points
were added to the dataset in class S. The artificial generation of
the data points differed from the multiplication method [16] to
avoid the problem of overfitting.

2.5 ML Modelling

The classification process in this study uses a predictive learn-
ing function that classifies an observation into one of three
predefined (labeled) classes. The six ML classification algo-
rithms selected for this study have different learning schemes
such as graphical model-based classifiers, curve-fitting algo-
rithms, tree-based techniques and ensemble learners. The use
of such a variety is to examine the effect of different learning
schemes on the final results.

Naïve Bayes (NB) A probabilistic graphical model-based ma-
chine learning classifier used for classification tasks. The
foundation of the classifier is the Bayes Theorem [29]. It also
assumes that predictor variables are independent and that all

predictor variables have an equal effect on the response out-
come. Despite the simplified assumptions of Naïve Bayes
classifiers, they were reported to be useful in complex real-
world situations [30].

Logistic Regression (LR) LR is a deterministic curve-fitting
technique which produces a probability-based model that ac-
counts for the likelihood of an event occurring (the value of
the class variable) depending on the values of the predictors
(categorical or numerical) [31, 32].

Artificial neural network (ANN) ANNs are used to fit observed
data, unusually high dimensional datasets characterised by
noise and missingness (pollution). Neural networks comprise
elementary autonomous computational units, known as neu-
rons. Neurons are interconnected via weighted connections
and organised in layers (an input layer, hidden layers and an
output layer). In this study, a Multi-Layer Perceptron (MLP)
ANN with a sigmoid activation function was used, [17] as a
curve-fitting classifier.

Decision tree (C4.5) The C4.5 algorithm is used in data mining
as a Decision Tree Classifier which generates a decision,
based on a sample of data. In this method, a new data point
is predicted (classified) via a series of tests to determine its
class. The tests hierarchically assemble a tree of decisions,
hence ‘decision tree’ [15, 33, 34].

Logistic model tree (LMT) LMT is an ensemble model with a
tree structure but with LR functions at the leaves level. The

Fig. 3 Illustration of synthetic minority oversampling technique

Fig. 2 Illustration of random undersampling technique
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LMT structure comprises a set of non-terminal nodes and a set
of leaves (terminal nodes). LMT is designed to adapt to small
data subsets where a simple linear model offers the best bias-
variance trade-off [31].

Random Forest (RF) RF is another ensemble learner and a
generalisation of standard decision trees proposed by
Breiman based on bagging (Bootstrap Aggregation) from a
single training set or random not pruned decision trees [18].
Bootstrap Aggregation is used to combine the predictions of
the individual trees [19].

All the six methods used for this study were implemented
in Weka [35] (with default parameters settings), with the C4.5
using the J48 implementation.

2.6 Out-of-sample testing

Out of sample testing is also known as cross-validation [11]
aims to test the model’s capability of predicting (classifying)
new data that was not used for training it. Cross-validation
provides an insight on how the model will generalize to a
new unknown dataset.

Cross-validation can be performed in several rounds
(folds) k (see Fig. 4). A fold of cross-validation involves
partitioning a sample of data into subsets, performing the
model’s training on one subset, and testing the model on
the other subset. Where multiple rounds of cross-validation
are performed using different partitions, the test results are
averaged over the folds to estimate the model’s classifica-
tion performance.

2.7 Model evaluation

The following measures were chosen to evaluate the perfor-
mance of each model: accuracy (later reported as Correctly
Classified Instances ratio or ‘CCI’) true-positive rate (TPR,
also known as sensitivity or recall), specificity, false-positive
rate (‘FPR’), precision (‘Prcn’), area under the receiver oper-
ator characteristic curve (‘ROC’), and F-measure (‘F-m’)
[36–38]. The latter is a harmonic mean of precision and recall.
Practically, a high F-measure value indicates that both recall
and precision are high, meaning fewer subjects misdiagnosed
with a disease or risk of disease. The F-measure is essential to
assess the model performance when classifying very imbal-
anced data [37].

True positive (TP), true negative (TP), false positive (FP) and
false negative (FN) TP is the number of correctly classified
instances in a risk group (class), TN is the number of correctly
classified instances in other groups, FP also known as false
alarm or type-I error is the number of incorrectly classified
instances in healthy and moderate groups as at risk and FN
also known as type-II error is the number of incorrectly clas-
sified instances in a risk group.

Accuracy (CCI)Model accuracy is the ratio of all examples in a
dataset which were correctly classified. Also known as
Correctly Classified Instances ratio CCI.

CCI ¼ TP þ TN
TP þ TN þ FP þ FN

Fig. 4 Illustration of k-fold cross-validation
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Recall Also, knowns as sensitivity or true positive rate (TPR);
assume having a group whose members are at risk of a dis-
ease, the true positive rate (TPR) in a risk class (group) is the
ratio of number of subjects who were predicted correctly as at
risk to the total number of subjects of risk group (both predict-
ed correctly and incorrectly).

Recall ¼ TP
TP þ FN

Specificity Specificity is also known as true negative rate
(TNR); Assume having a group who are risk-free of a
disease (Healthy class), the true negative rate in a risk-
free class is the ratio of number of subjects were predict-
ed correctly as at risk-free to the total number of subjects
of risk-free group (both predicted correctly and incorrect-
ly).

Specificity ¼ TN
TN þ FP

Precision (Prcn) This performance metric is also known as
positive predictive value (PPV) which is the ratio of true pos-
itive (TP) predictions to all correctly and incorrectly predicted
positive predictions (TP + FP)

Precision ¼ TP
TP þ FP

F-measure (F-m) Also known as the harmonic mean of preci-
sion and recall. Practically, a high F-measure value indicates
that both recall and precision are high which means the less
subjects are misdiagnosed with a disease or risk. This metric is
important to assess the model performance when classifying
minority class.

F−measure ¼ 2*
Prcn*Recall
Prcnþ Recall

¼ 2TP
2TP þ FP þ FN

Area under the curve (AUC) The area under the receiver oper-
ator characteristic (ROC) curve is a method to comparing
classifiers performances. From the ROC graph example in
Fig. 5, it is possible to obtain an overall evaluation of quality.
AUC is the fraction of the total area which falls under the
ROC curve. FPR is the false positive rate. The AUC is calcu-
lated by

AUC ¼ ∫1x¼0TPR FPR−1 xð Þ� �
dx

The AUC value is in the range of 0.5 to 1, where 0.5
denotes a bad performing classifier and 1 denotes an excellent

performing classifier. In medical diagnosis, experts seek very
high AUC value.

Confusion matrix It is also known as the error matrix. Figure 6
shows all outcomes of the classification formulated intom ×m
matrix. The confusionmatrix layout is useful when visualising
the performance of a classification algorithm. Each row of the
matrix represents the predicted instances in a class while each
column represents the actual instances in a class.

3 Experimental design

VAT- related disease susceptibility was based on the follow-
ing MRI response labels (Fig. 7): Healthy, Moderate and Risk
defined according to VAT volume. In females; VAT volume
of ≤2 was deemed ‘Healthy’ (H); VAT volume > 2 but ≤5 was
classed as ‘Moderate’ (M); VAT volume > 5 was classified as
‘Risk’ (R) [39]. In males; VAT volume ≤ 3 was deemed
‘Healthy’ (H); VAT volume was >3 but ≤6, was classed as
‘Moderate’ (M); VAT volume > 6, was classed as ‘Risk’ (R)
[39]. The training datasets contained ten data variables report-
ed in Table 1, with the VAT in liters being the class determi-
nation response variable. All nine predictor variables in
Table 1 were selected as input features by domain experts
based on their correlation with VAT prediction in previous
studies which are discussed in section 5.

The UK Biobank Physical Activity Index (UKBB PAI or
PAI) was created by domain experts [40] using data collected
during physical activity assessment; comprising a total of 27
outcomes, 23 outcomes reflecting activity and four reflecting
inactivity (see Table 2). An individual’s response to questions
was scored with values between −1 and + 1 and combined
cumulatively to give a final score. With an increasingly neg-
ative score implying a progressively unhealthier phenotype.
For binary variables 0 indicated absence of the parameter, 1
the presence.

Targeted dataset (TD) The TD was the first dataset modelled.
The TD contained 2292 female and 2191 male records, from
the UKBB cohort. Table 1 shows the summary statistics of all
TD’s variables. The TD was highly imbalanced in the female
cohort and less severely imbalanced in the male cohort in
relation to records numbers per class: In the females’ TD class
H had 1002 subjects, class M had 1128 subjects, and class R
contained only 162 subjects. In the males’ TD class H had 489
subjects, class M had 1125 subjects, and class R contained
577 subjects. The class imbalance of TD can be observed
via APA visualisation in Fig. 8.

Random under-sampled (RUS) dataset This dataset was a re-
duced subset of TD. A subset of each majority class was
randomly removed to balance the data. As a result of applying
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RUS to the females’ TD, each of the H,M and R classes ended
up with 162 subjects. While in the males’ TD each of the H,M
and R classes ended up with 489 subjects. The effect of RUS
can be observed APA visualisation in Fig. 8.

Synthetic minority over-sampled (SMOTE) dataset Thisdataset
was obtained as a result of applying SMOTE to the numeric data
variables ofTD.Bydoing so, the threeVATclasses becamemore
closely balanced. In the female cohort, classH had 1002 subjects,
classMhad1128subjects, andclassRcontained1296subjects. In
the male cohort, class H had 1125 subjects, class M had 1125
subjects and class R contained 1125 subjects. The effect of
SMOTE can be observed via APA visualisation in Fig. 8.

IG Evaluation Algorithmwas used to measure the informa-
tion levels for independent variables in relation to the class
variable. The measurement and ranking of IG in each inde-
pendent variable in TD, RUS and SMOTE training sets are
presented in Section 3.

The Test Dataset The ML models were tested on a new group
of 2035 females from the UKBB female cohort and a new
group of 1935 males from the UKBB male cohort. The same
ten variables as per the training datasets, were used to test all
models. Table 3 shows their summary statistics. Like the TD,
the female Test Dataset was also highly imbalanced: class H
had 823 subjects, class M had 1039, and class R contained

Fig. 5 Illustration of AUC classification metric

Fig. 6 Classification confusion
matrix layout
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only 173 subjects. The males Test Dataset was less severely
imbalanced: class H had 468 subjects, class M had 906, and
class R contained 561 subjects.

4 Results

4.1 ML models training results

From the confusion matrices in Table 4, the model training
accuracies for the female cohort, presented as Correctly
Classified Instances ratio (CCI) or True Positive Rate (TPR)

of all methods were computed, they showed that resampling
methods resulted in an improvement in CCI compared to the
original TD. When the performance of the LR, ANN, C4.5
and RF models for the female cohort was evaluated, it was
apparent that the RUS dataset was poorer than when the TD
data set was used, Fig. 9.

The AUC for each of the trained models were in the range
of 0.783 (for RF on SMOTE) to 0.96 (for C4.5 on TD). These
values indicate that the trained models did not sacrifice much
precision to achieve a good recall value on the observed data
points. The RF model achieved the highest TPR (0.850) when
trained on the SMOTE dataset, while the C4.5model achieved
the lowest TPR (0.714) when trained on the RUS dataset.

Table 1 Descriptive statistics of
variables in the Targeted Dataset
(TD)

Female Cohort (n = 2292)

Numeric selected dataset variables Median Mean (Min, Max)

Response variable

Visceral adipose tissue volume (VAT in litres) 2.2 2.5 (0.1, 9.7)

Predictor variables

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 126.0)

Pre-imaging Weight (W in Kg) 66.0 68.3 (42.0, 128.0)

BMI (in kg/m2) 24.8 25.7 (15.5, 48.0)

Hip circumference (HC in cm) 100.0 100.9 (77.0, 147.0)

Standing height (H in cm) 163.0 163.0 (141.0, 194.0)

Systolic blood pressure (SBP in mmHG) 133.0 134.5 (87.0, 225.0)

Diastolic blood pressure (DBP in mmHG) 77.0 77.8 (45.0, 120.0)

Physical Activity Index (PAI) 0.5 0.6 (−12.0, 15.5)
Age at recruitment (AGE in years) 55.0 54.6 (40.0, 70.0)

Male Cohort (n = 2191)

Response variable

Visceral adipose tissue volume (VAT in litres) 5.6 4.7 (0.35, 9.63)

Predictor variables

Waist Circumference (WC in cm) 102.0 92.5 (66.0, 138.0)

Pre-imaging Weight (W in Kg) 104.0 82.5 (53.0, 155.0)

BMI (in kg/m2) 33.0 26.6 (18.0, 48.0)

Hip circumference (HC in cm) 116.5 101.1 (83.0, 150.0)

Standing height (H in cm) 176.0 176.1 (152.0, 200.0)

Systolic blood pressure (SBP in mmHG) 159.0 141.9 (99.0, 219.0)

Diastolic blood pressure (DBP in mmHG) 84.5 80.8 (51.0, 118.0)

Physical Activity Index (PAI) 3.0 0.5 (−12.0, 18.0)
Age at recruitment (AGE in years) 55.0 56.4 (40.0, 70.0)

Fig. 7 The response labels of
VAT- related disease
susceptibility
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By observing the confusion matrices for all models after
training on all the TD and RUS datasets, it is clear that the
number of incorrectly classified instances for class R highly
decreased for themodels trained on the RUS dataset compared
to those trained on the TD. However, when evaluating the
minority class accuracy performance in Fig. 10, it is notable
that all trained models benefitted from the sampling methods,
exhibiting consistent TPR improvement for class R in each
model.

The accuracies (CCI) of the models for the male cohort
were calculated from Table 4. SMOTE resampling resulted
in a consistent improvement in CCI as compared to the orig-
inal TD. SMOTE resampling resulted in a consistent improve-
ment in CCI as compared to the original TD. The training
performance of all models for the male cohort using the
RUS dataset was reduced compared to the same algorithms
trained on the TD. The AUC for each of the trained models
were in the range of 0.729 (for C4.5 on TD) to 0.923 (for RF
on SMOTE). These values indicate that the trained models did
not sacrifice a lot of precision to obtain a good recall value on

the observed data points. The RF model trained on the
SMOTE dataset achieved the highest TPR (0.793), while the
C4.5 model trained on the RUS dataset achieved the lowest
TPR (0.631).

Examination of the confusion matrices for all models
trained on the TD vs the RUS datasets demonstrated that the
number of subjects incorrectly classified as class H instead of
class R increased for models trained on the RUS dataset com-
pared with those trained on the original TD despite the remov-
al of 88 subjects from the original R group as a result of RUS.
The number of correctly classified instances for class H in-
creased. However, when evaluating class R accuracy perfor-
mance (see Fig. 10), it is notable that all trained models
benefitted from the sampling methods, exhibiting consistent
TPR improvement for class R in each model.

4.2 Models test results

The models derived above were tested on a further dataset
(female, n = 2035; male n = 1935). When the CCI values for

Table 2 UK Biobank outcomes
used in creating the physical
activity index

UK BB ID Outcome Units

816 Job involves heavy lifting Categorical

864 Days/week walked 10+ minutes Days/Week

874 Duration of Walks Minute/Day

884 Days/week moderate physical activity 10+ minutes Days/Week

894 Duration of moderate activity min Min/Day

904 Days/week vigorous physical activity 10+ minutes Days/Week

914 Duration of vigorous activity Minute/Day

924 Usual walking pace Categorical

943 Frequency of stair climbing in last 4 weeks Categorical

971 Frequency of walking for pleasure in last 4 weeks Categorical

981 Duration of walking for pleasure Categorical

991 Frequency of strenuous sports in last 4 weeks Categorical

1001 Duration of strenuous sports Categorical

1011 Frequency of light DIY in last 4 weeks Categorical

1021 Duration of light DIY Categorical

2624 Frequency of heavy DIY in last 4 weeks Categorical

2634 Duration of heavy DIY Categorical

3637 Frequency of other exercises in last 4 weeks Categorical

3647 Duration of other exercises Categorical

6164 Types of physical activity in past 4 weeks Categorical

104,900 Time spent doing vigorous physical activity Categorical

104,910 Time spent doing moderate physical activity Categorical

104,920 Time spent doing light physical activity Hours

806 Job involves mainly standing or walking Categorical

1070 Time spent watching television Hour/Day

1080 Time spent using computer Hour/Day

1090 Time spent driving Hour/Day
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all models were compared using the female cohort, the CCI
decreased to a maximum degradation of 6.2% when testing
the C4.5 model trained on the RUS dataset against the same
algorithm trained on the original TD. LMT model built with
SMOTE dataset achieved an overall test accuracy improve-
ment of 6.83% when compared to TD.

In the female cohort (see Fig. 11) RF models achieved the
best TPR of 0.770 when trained on the TD dataset. LMT
model achieved the least TPR of 0.681 when trained on the
TD dataset. The ROC area across all tested models ranged
between 0.786 (for C4.5 on SMOTE dataset) and 0.889 (for
LR on TD). These values indicate hardly any loss of precision
whilst achieving a good recall value on the observed data
points. For evaluating risk class, R, the TPR performance
(Fig. 10) classified the risk group with the highest level of
0.798 was achieved by RF on RUS. RF also achieved the
greatest TPR improvement in test with a difference of 0.463

between RUS and TD. NB ranked last, with just 0.121 in
minority class TPR improvement between NB on SMOTE
and TD. These results can be visualised in the confusion ma-
trixes in Table 4. The RF model trained on SMOTE correctly
classified the highest number of instances (138 of the original
173) in class R. The model which performed the worst in TPR
performance for the class R was C4.5 trained on TD, which
only correctly classified 43 instances.

In male cohort subjects; when comparing the CCI for all
models, CCI decreased with a maximum degradation of
11.9% when testing the RF model trained on the SMOTE
dataset compared to the same model built on the TD. All
models built on the TD showed an overall model accuracy
improvement on test datasets, the highest model accuracy im-
provement 4.0%was achievedwith C4.5 model trained on TD
dataset when compared to all other models. The models’ over-
all accuracy improvements in test were also observed for NB,

Fig. 8 Adaptive projection visualisation of Targeted Dataset, Random Under Sampled dataset and SMOTE dataset variables
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LR and MLP models trained on RUS dataset with the greatest
improvement of 1.2% on NB when compared to all models
built with RUS dataset. All models build with SMOTE dataset
suffered an overall model accuracy degradation in test except
for NB overall accuracy that remained unchanged.

In the male cohort, it was observed that in test, LR models
achieved the best TPR of 0.733 when trained on TD dataset
(see Fig. 11). LMT model achieved the least TPR of 0.730
when trained on TD dataset. The ROC area across all tested
models ranged between 0.753 (for C4.5 on SMOTE) and
0.864 (for LR on both TD and SMOTE, and LMT on TD).
These values indicate that also, the tested models do not sac-
rifice much precision to obtain a good recall value on the
observed data points.

When observing class R, the TPR performance results in
Fig. 10 show that consistent improvements were made in clas-
sifying the risk group with the highest level of 0.836 achieved
by LMT on RUS.

LMT also achieved the greatest TPR improvement in test
with a difference of 0.164 between LMT on RUS and LMT on
TD, while MLP ranked last, with just 0.05 in class R TPR
improvement between MLP on RUS and TD. This compari-
son is demonstrated in the confusion matrixes in Table 4. The
LMT model trained on RUS correctly classified the highest
number of instances (469 of the original 561) in class R. The
model which performed the worst in TPR performance for
class R was NB trained on TD, which only correctly classified
361 instances.

The effect of using a variety of ML algorithms with
different learning schemes is examined. At a model level,
Fig.8 shows a small difference between the minimum and
the maximum TPR test performances per dataset in each
cohort. In the females, tested TD, RUS and SMOTE
models showed only differences of 0.1, 0.06 and 0.05
respectively between the highest and the lowest
performing algorithms. A similar pattern is found in the

Table 3 Descriptive statistics of
variables in the test set Female Cohort (n = 2035)

Numeric test dataset variables Median Mean (Min, Max)

Response variable

Visceral adipose tissue volume (VAT in litres) 2.4 2.7 (0.2, 10.0)

Predictors variables

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 142.0)

Pre-imaging Weight (W in Kg) 67.0 68.7 (39.0, 136.0)

BMI (in kg/m2) 25.2 25.9 (14.4, 54.5)

Hip circumference (HC in cm) 100.0 101.3 (73.0, 156.0)

Standing height (H in cm) 163.0 162.7 (145.0, 195.0)

Systolic blood pressure (SBP in mmHG) 129.0 130.4 (87.0, 196.0)

Diastolic blood pressure (DBP in mmHG) 76.0 76.6 (45.0, 115.0)

Physical Activity Index (PAI) 0.0 0.1 (−12.5, 18.0)
Age at recruitment (AGE in years) 55.0 54.6 (40.0, 70.0)

Male Cohort (n = 1935)

Numeric test dataset variables Median Mean (Min, Max)

Response variable

Visceral adipose tissue volume (VAT in litres) 7.2 4.9 (0.3, 14.1)

Predictors variables

Waist Circumference (WC in cm) 101.0 93.3 (63.0, 139.0)

Pre-imaging Weight (W in Kg) 100.0 83.4 (50.0, 150.0)

BMI (in kg/m2) 32.5 26.9 (17.0, 48.0)

Hip circumference (HC in cm) 109.5 101.4 (78.0, 141.0)

Standing height (H in cm) 178.5 175.8 (156.0, 201.0)

Systolic blood pressure (SBP in mmHG) 142.0 137.1 (75.0, 209.0)

Diastolic blood pressure (DBP in mmHG) 83.5 79.9 (47.0, 120.0)

Physical Activity Index (PAI) 2.8 0.5 (−12.0, 17.5)
Age at recruitment (AGE in years) 55.0 56.0 (40.0, 70.0)
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males; Tested TD, RUS and SMOTE models showed dif-
ferences of 0.06, 0.07 and 0.07 respectively between the
highest and the lowest performing algorithms. C4.5
showed consistency in achieving the least TPR among
all tested models.

At a class level, taking the risk group into account
for this comparison, Fig. 10 demonstrates relatively
large differences between the minimum and the maxi-
mum TPR test performances for R class in each cohort.

In the females, tested TD, RUS and SMOTE models
showed a high R class accuracy differences of 0.34,
0.13 and 0.25 respectively between the highest and the
lowest performing algorithms. A lesser TPR differences
were found in the males TD, RUS and SMOTE models
of 0.08, 0.13 and 0.12 respectively between the highest
and the lowest performing algorithms. NB showed con-
sistency in scoring the lowest TPR among all tested
models.

Table 4. All cohorts VAT Prediction Models Confusion Matrices

936 Health Technol. (2020) 10:925–944



4.3 Attribute information gain results

In the female cohort training datasets, when considering the
IG for each variable across all datasets (Fig. 12), the IG in-
creased in each attribute for RUS and SMOTE datasets com-
pared to the TD. By comparing the IG ranking of variables in
each dataset, it is apparent that WC achieved the highest IG
value in all the three datasets. The dominance in WC rank-
ing was also accompanied by an increase of its values
(from TD to RUS and SMOTE). Such an increase

correlates directly with the increase in class R TPR per-
formance in all trained models except for NB where RUS
model overtook SMOTE by a small TPR positive margin
of 0.092. From Fig. 12, SMOTE boosted the information
within each variable (Table 5). This boost, in turn, in-
creased the ability to differentiate class R from other clas-
ses in the TD, which in turn increases the class R TPR
(see Fig. 10). The APA multi-dimensional visualisation
(see Fig. 13) shows the improved class R discrimination
per dataset.

Fig. 9 Comparison of
performance metrics across
trained models in different
cohorts

Fig. 10 Risk class TPR
performance for trained and tested
models per cohort
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In the male cohort training datasets, when considering the
measured IG for each variable across all datasets (Fig. 12), it is
observed that the IG increased in each attribute for SMOTE
dataset and some of the attributes for RUS dataset compared to
the TD. By comparing the IG ranking of variables in each
dataset, it was apparent that waist circumference (WC) achieved
the highest IG value in all the TD and RUS datasets while BMI
achieved the highest IG value in the SMOTE dataset. The

advancement in BMI ranking in SMOTE dataset correlates di-
rectly with the increase in class R TPR performance in all trained
models. SMOTE resampling technique amplified the informa-
tion within each variable (Fig. 12). This amplification, in turn,
increased the class R border density with other classes in the
training dataset, which in turn increased class R TPR in training
(see Fig. 10). The APA visualisation showing the enhancement
in class R borders density per dataset is shown in Fig. 13.

Fig. 11 Comparison of
performance metrics across all
tested models

Fig. 12 Information Gain evaluation comparison of all variables per dataset
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4.4 Domain experts’ results

The misclassification of healthy subjects by a predictive mod-
el could result in costly and unnecessary follow-up examina-
tions whilst false-negativemisclassificationsmight result in an
individual not receiving an important intervention. In this ap-
plication, apart from potential cost, there would be few ad-
verse effects associated with healthy/moderate risk subjects
being misclassified, as such subjects would be encouraged
to undertake lifestyle-based interventions to improve their
health. Therefore, in this scenario the best models to adopt
would be those which minimise the number of subjects
misclassified as at ‘risk’, so they may initiate interventions at
an appropriate time. Confusion matrices play an essential role
in helping researchers define the best-suited model for use in
future trials. When analysing the confusionmatrices (Table 4),
from both the female and male cohorts three models from each
cohort were identified as satisfying the domain experts’
criteria. These models are reported in Table 6. They may not

necessarily occupy the highest ranks when their performance
metrics were compared to the others.

5 Discussion

The overall goal of this study was to predict visceral adipose
tissue (VAT) content in male and female participants from the
UKBB and to apply machine learning methods to classify
these subjects into risk categories. VAT has consistently been
shown to be associated with the development of metabolic
conditions such as coronary heart disease and type-2 diabetes.
The ability to predict and classify this variable, using simple
anthropometry without the need for costly MRI scanning, will
have a significant impact on the identification of subjects like-
ly to benefit most from life-style based interventions [41]. The
models tested here input features that include age, waist and
hip circumferences, weight, height, BMI, blood pressure and

Fig. 13 Adaptive projection visualisation of all classes and the effect of sampling methods

Table 5 The Information Gain evaluation of all features per dataset

Dataset Features Female Cohort Dataset Male Cohort Dataset

TD RUS SMOTE Test Dataset TD RUS SMOTE Test Dataset

Age 0.0125 0.0346 0.5900 0.0092 0.0000 0.0000 0.0138 0.0000

BMI 0.4717 0.6725 0.7488 0.4839 0.4392 0.5279 0.7287 0.5315

DBP 0.0375 0.0537 0.3163 0.0435 0.0360 0.0460 0.0637 0.0364

H 0.0000 0.0000 0.4266 0.0000 0.0000 0.0000 0.0060 0.0000

HC 0.3130 0.4420 0.7725 0.3399 0.2182 0.2766 0.3790 0.3361

PAI 0.0346 0.0503 0.6546 0.0435 0.0204 0.0194 0.0445 0.0363

SBP 0.0331 0.0755 0.2034 0.0278 0.0211 0.0292 0.0399 0.0213

W 0.4148 0.6341 0.8284 0.4172 0.3685 0.4624 0.5071 0.4569

WC 0.7543 0.7781 0.0284 0.5806 0.4700 0.5857 0.6835 0.5751
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level of physical activity, all variables previously demonstrat-
ed to significantly correlate with VAT [42].

Previous UKBB studies [39, 40] have demonstrated sig-
nificant correlations of anthropometry measurement and
physical activities with VAT, with significant gender dif-
ferences in the distribution of VAT, as well as by age;
Hence separate models were built for females and males

participants. In the same study, an index of physical activ-
ity, the UKBB-PAI, was proposed which correlated more
strongly with VAT outcomes than established question-
naires, such as the International physical activity question-
naire (IPAQ) and lifestyle Index. Additionally, its findings
challenged previous studies [42–44], and describes only a
weak correlation between age with VAT, even after

Table 6. Domain compliant prediction models

a) For females n (LMT RUS Trained) = 486; n (LR SMOTE Trained) = 3426; n (RF RUS Trained) = 486. n (all Tested) = 2035

b) For males n (LMT RUS Trained) = 1467; n (LMT SMOTE Trained) = 3375; n (RF RUS Trained) = 1467. n (all Tested) = 1935. For the F-m metric,
m = 1
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adjusting for BMI, and UKBB-PAI. It was also noted that
the influence of UKBB-PAI parameters was comparable to
that of age, and that it provided more effective means
representing the physical activity measures to discriminate
between Health, Moderate and Risk classes.

With domain experts’ advice, the current study selected the
above-mentioned variables (age, blood pressure, body mass
index, height, hip circumference, physical activity index,
waist circumference and weight) as input features on which
to base the ML VAT prediction models. However, to under-
stand the influence of each feature onVAT and their reliability
to predict three distinct ranges associated with various long-
term conditions, information theory was used to evaluate each
feature in relation to the 3 different classes, Healthy, Moderate
and at Risk. The IG evaluation algorithm was utilised to eval-
uate the worth of each input feature independently [15] against
the class unlike correlation analysis carried out in previous
studies [39]. One way to interpret the calculated IG values is
the possible presence of associations between each feature and
the class labels in each cohort. In the female cohort, the
strength of the association in the IG varies (see Table 5), with
HC, WC, BMI and W providing the greatest contribution,
whilst the physical activity, age, H, SBP and DBP showed
the least in both TD and RUS training datasets. A similar
dominance in IG ranking is observed in the SMOTE dataset,
with HC,WC, BMI andW showing the strongest associations
with VAT. An analogous pattern was found in male subjects.
This information theory approach into the models’ features
adds an additional layer of details to observed correlations
reported in previous studies by describing the strength of each
feature to discriminate between the Health, Moderate and at
Risk classes.

When considering the TD and RUS datasets which
contain observations from the participants rather than gen-
erated artificial synthetic data, there was no association
between age and VAT (given zero IG) in the males and
only a weak association in the female cohort, with the
discretised VAT ranges similar to the weak correlation
described in previous studies. Though this may challenge
previous studies that have reported a linear relationship
between age and VAT [42–44], our results may reflect
the somewhat smaller age range included in the UKBB
(40-70 yrs), compared with previous studies (17-70 yrs)
[42]. However, this may also relate to a data problem in
the machine learning community known as data heteroge-
neity [45].

The lack of association of UKBB-PAI with discretised
VAT classes, reflects the previously reported [46, 47] low
correlation between physical activity and this fat depot, and
may in part arise from to the poor reliability of the recorded
frequencies and durations of physical activities. The level of
granularity in the input data variables always determines the
level of details in the prediction model possible outputs.

Depending on the assessment design, detailed observations
may be grouped during or after data collection into frequen-
cies, categories and scores. This grouping is considered a var-
iable transformation. Variable transformation aims to create
better features at exposing patterns in the data. However, the
transformation process could also lead to engineering a new
feature that is less powerful suppressing important trends of-
fered by its detailed (raw) components.

It could also be argued that the implementation of such
low-cost measures may lack the susceptibility to errors if stud-
ied within large populations [48]. However, there are many
newly developed physical activities questionnaires (PAQs)
which do not appear to perform substantially better than
existing tests with regard to reliability and validity [49–51].
The variability of these PAQs and their ineffectiveness leads
to a cause known in the data science community as detail
aggregation. Variables in datasets often fall within two types;
either detailed (Granular) or aggregated (Summaries). ML
modeling prefer detailed variables over summary variables.
Detailed data often represent summary variables and better
at showing patterns. Take daily walking which forms part of
PAI calculations as an example. Previous studies [52, 53]
showed that daily walking is linked to reductions in VAT.
However, its significance is curbed when combinedwith other
variables in PAI calculations. Data granularity is a macro
structural feature. Granularity refers to the amount of detail
captured in any measurement such as time to the nearest min-
ute, the nearest hour, or simply differentiating morning, after-
noon, and night, for instance. Decisions about macro structure
have an essential impact on the amount of information that a
data set carries, which, in turn, has a very significant effect on
the resolution of any model built using that data set [54].
Therefore, we must acknowledge that physical activity is a
complex behavior that is hard to measure accurately even at
a low degree, in case ofmemory recollection, or a high degree,
by using monitoring electronic devices. However, it is a real
challenge to record the interactions among physical activity
various elements (variables). The PAI structure that combines
sets of variables with transformed scores could be introducing
bias, which stresses the natural structure of the original vari-
ables states in a dataset so that the data is distorted. Hence the
PAI may be less representative of the real world than the
original, unbiased variables form.

The understanding of the effect of data aggregation by
domain experts enhances feature selection strategies of how
variables are used in predictive modeling. Some derived
(aggregated) variables may increase the representation of
trend within a dataset which by turn, show higher IG evalua-
tion and act as a stronger predictor in modeling. For example,
BMI is directly obtained from height and weight (calculated as
weight in kilo-grams (W) divided by height (H) in meters
squared). From our analysis, H maintained its IG evaluation
to zero in both RUS and TD datasets, by dividing body mass
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over two exponents of the base H, this seems to expose better
trends. Aggregated variables may require checking for calcu-
lations integrity from detailed variables. For numeric features,
aggregated variables come in many forms such as averages,
sums, multiplication and ratios. Categorical features can be
combined into a single feature containing combination of dif-
ferent categories. Variable aggregation must not be overdone
as to not overfit models due to misleading combined features.
Wrongly derived variables may show false significance or
insignificance in the analysis [54].

For ML modeling, tackling the imbalanced class problem
has a significant impact on the performance of standard ma-
chine learning algorithms. Classification performance in the
training phase is severely impacted by class separability.
Training standard ML algorithms with highly imbalanced
overlapping classes without any adjustment to the training
set results in an accuracy bias towards the majority class. In
this study, we observed that applying the two methods (RUS
and SMOTE) was used to adjust the class imbalance in the
classification training phase at the dataset level, which in turn,
amplified the IG in many input features. It remains unclear as
to whether other remedies for imbalanced data classifications,
such as Cost-Sensitive and Ensembles Learning (which are
implemented at algorithmic level), could result in better per-
formances [4, 6, 55]. The advantages of sampling techniques
evaluated here, however, include simplicity and transportabil-
ity. Nevertheless, they are limited by the amount of IG manip-
ulation as a result of their application resulting in biased pre-
dictions towards the minority class. The excessive use of such
techniques could result in overfitting of the models.

In this study, for the female cohort case, the original dataset
was highly imbalanced. Traditional ML algorithms were sen-
sitive to higher information gains. They tended to produce
superb performance results in training, but when testing the
models, the overall model accuracy often dropped below the
training phase performance.

However, for the male cohort, the class imbalance in the
original dataset was less severe; therefore, traditional ML al-
gorithms were less sensitive to higher information gains and
tended to produce close performance results in training and
test. The overall model accuracy often dropped below the
training phase performance, which was the case for all models
trained with the SMOTE dataset. On the contrary, the models’
test accuracy outperformed the training accuracy when each
algorithm was trained on TD; this situation also occurred in
NB, LR andMLP trained with RUS dataset. The cause of such
competitive accuracy test results may be attributed to the in-
crease in IG per feature in the test dataset as compared to the
TD (Fig. 12). A higher IG in a variable indicates higher ob-
servations’ purity per class. Having higher IG in multiple fea-
tures enhances class separability and leads to improvement in
classification accuracy. In other words, the higher the IG in a
dataset the easier the dataset to be learned and to be predicted.

In both cohorts, the UKBB datasets utilised in this study
showed that applying the correct level of sampling without
disrupting the original data distribution, together with the de-
sired choice of performance metrics and slight manipulation
of IG levels produced a prediction solution which could be
developed further with algorithmic modifications [8]. Among
all eighteen models for each cohort presented in this study, six
models satisfied the domain experts’ success criteria for this
specific domain problem. For the female cohort, these were
LMT and RF built with RUS sampled dataset, and LR built
with SMOTE sampled dataset. For the male cohort, they were
LMT and RF built with RUS sampled dataset, and LMT built
with SMOTE sampled dataset.

The difference in ML algorithms learning schemes proved
to have a minimal impact on the whole model accuracy. ML
algorithms are biased towards achieving the highest model’s
accuracy. But the effect of learning scheme becomes largely
noticeable in imbalanced datasets when the minority classes
accuracies are compared. In the testing results analysis, learn-
ing schemes impact was seen to increase with the class imbal-
ance severity in datasets compared to balanced datasets.

This domain problem is the first to use the discretised MRI
VAT variable ranges to describe the health status of partici-
pants and to label instances. At present, it would be impracti-
cal to compare the results of this study to any other research
from the same domain. However, this work will be followed
by further analyses where additional methods to improve the
outcomes will be investigated.

6 Conclusion

Our study shows that the application of traditional machine
learning algorithms to datasets of phenotype variables offers a
fast and inexpensive solution to predict visceral fat by aligning
the classification task to predict specific VAT ranges. The
selection of a multi-class prediction task in this study is stra-
tegic. It identifies individuals who are at higher risk of devel-
opingmetabolic conditions and are more likely to benefit from
focused lifestyle intervention to reduce visceral fat. The de-
sign of the case study of a multi-class prediction, by separating
the risk group from a moderate group, helped in selecting
models that minimise incorrect classification of those who
are at high risk as healthy. Achieving a zero False Negative
Rate (FNR) when classifying risk patients as healthy guaran-
tees that any individual to miss treatment intervention belongs
to the moderate group rather than the risk group. The process
of training various ML algorithms with 10-Fold Cross-
Validation and testing the models with external groups of
females and males of similar ratio to the training data makes
this study suitable for follow-up research in medical screening
to identify subjects that may require treatment intervention.
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