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Abstract

We extend the semi-nonparametric (SNP) density of Leén, Mencfa and Sentana (2009) to time-varying
higher-order moments for daily asset return innovations of stock indexes and foreign-exchange rates. We
estimate robust tail-indexes for testing the existence of the unconditional higher-order moments. We
obtain closed-form expressions of partial moments and expected shortfall under the time-varying SNP
density with the GJR-GARCH for modeling returns. A comparative study between SNP and Hansen’s
skewed-t, based on skewness-kurtosis frontiers, in-sample and backtesting analyses, is also implemented.
Finally, we conduct an out-of-sample portfolio selection exercise for the stocks of the S&P 100 index
through an equity screening method based on our parametric one-sided reward /risk performance measures
and compare with the Sharpe ratio portfolio.
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1 Introduction

Optimal asset allocation relies critically on the modeling of asymmetry and tail-fatness of portfolio return
distributions.! Recent econometric results have shown the importance of clustering and asymmetric response
of time-varying (TV) skewness and/or kurtosis to positive and negative shocks. These TV or conditional
higher-moments are implicitly modeled through the TV shape parameters of the distribution assumed for
the innovations of asset returns. This framework has been employed, among others, by Jondeau and
Rockinger (2003) (JR hereafter) with the skewed-t (ST) distribution of Hansen (1994); Leén and Niguez
(2020) and Ledén, Rubio and Serna (2005) with a transformation of the Gram-Charlier (GC) distribution in
JR (2001); Bali, Mo and Tang (2008) for the skewed generalized ¢ of Theodossiou (1998); Feunou, Jahan-
Parvar and Tédongap (2016) who introduce the skewed generalized error distribution (GED); and Lalancette
and Simonato (2017) for the Johnson S,, distribution. Following this literature, we propose an analytically
tractable probability density function (pdf) for modeling asset return innovations, which extends the semi-
nonparametric (SNP) density of Leén, Mencia and Sentana (2009) by incorporating TV parameters and, as
a result, conditional higher-order moments. The SNP density is obtained as an expansion of the standard
normal in terms of Hermite polynomials. Besides, it is more flexible than, for example, the sum of independent
restricted GC densities in Zoia, Biffi and Nicolussi (2018), as the latter accounts only for excess kurtosis. It
also allows to model financial time series that can only take positive values, such as the volatility index VIX,
by making use of the SNP expansion of the Gamma density; see Mencia and Sentana (2018) for details.
Our paper proceeds as follows. First, we propose various possible specifications for the TV behavior of
the SNP parameters for the conditional distribution of returns with the specific GARCH-family model by
Glosten, Jagannathan and Runkle (1993) (GJR hereafter). In short, our model, henceforth referred to as
TV-SNP-GJR, aims to capture stylized features in asset returns such as non-constant conditional skewness
and kurtosis. Second, we provide evidence on the model suitability through an in-sample analysis for a set
of daily stock-index and foreign-exchange (FX) returns. We also perform a comparative analysis between
the SNP and ST distributions. For that purpose, we examine the regions of skewness and kurtosis that the
distributions can generate. Besides, we use Vuong’s closeness test (1989) for the in-sample fit, an analysis
for the fit of the distribution tails, and also the backtesting approach of Du and Escanciano (2017) to
study differences in forecasting Value-at-Risk (VaR) and expected shortfall (ES) for long and short trading
positions. Third, recent evidence in the literature has shown that the tails of the unconditional distributions
of daily or weekly returns can be well approximated by power laws,? which are characterized by the behavior
of the tail index. Its value determines the maximal order of finite moments of return distributions. For
instance, if ¢ € (2,3) then the first two moments (mean and variance) exist; if ¢ € (2,4) then the skewness
also exist; and if ¢ € (2,5) then the mean, variance, skewness and kurtosis of returns exist. Suppose that
¢ > 4, then the lower the tail index, the higher the kurtosis, and vice versa.? Hence, the finiteness of first
moments is relevant for risk managers, financial regulators and also, for investors with preferences going

beyond the typical Markowitz framework, relying on the first two finite moments, to the finite higher-order

1See Bernardi and Catania (2018) and references therein.
2See Gabaix, Gopikrishnan, Plerou and Stanley (2006), Gabaix (2009) and Ibragimov, Ibragimov and Walden (2015).
3The relation between the GARCH unconditional kurtosis and the tail-index can be seen in Mikosch and Starica (2000).



moments of skewness and kurtosis.* Thus, the estimation of tail-indexes is of key interest. Here, we estimate
robust tail-indexes, based on the methodology of Gabaix and Ibragimov (2011), for testing finiteness in the
first unconditional moments.

Furthermore, we derive closed-form expressions of conditional one-sided reward/risk measures under
the TV-SNP-GJR specification, and obtain their corresponding performance measures (PMs), as in Leén
and Moreno (2017) for the unconditional return distribution under the GC specification. In an empirical
application, we design active portfolio strategies through equity screening rules based on our PMs for ranking
stocks and then building portfolios. These PMs extend those in Leén, Navarro and Nieto (2019) obtained
under historical simulation (HS). The PMs we study are listed as follows: (a) The Sharpe ratio (SR) (Sharpe,
1966, 1994) as the benchmark. (b) The skewness and kurtosis ratio (SKR), see Watanabe (2006). (c) PMs
based on partial moments, such as (i) the Farinelli-Tibiletti (F'T) ratio, which nests the popular Omega and
Upside potential ratios, see Farinelli and Tibiletti (2008), and (ii) the Sortino ratio, see Sortino and Van
der Meer (1991). (d) Quantile-based PMs, such as the Rachev or expected tail ratio (ETR), and the Value-
at-Risk ratio (VaRR). See Biglova, Ortobelli, Rachev and Stoyanov (2004) and Caporin and Lisi (2011) for
these two last measures, respectively.

Finally, we implement an out-of-sample (OOS) analysis for portfolios composed from selecting among the
stocks that constitute the S&P 100 index using these alternative PM strategies. Cumulative portfolio returns
are obtained over the OOS period for each PM strategy and compared with the SR portfolio returns. Our
empirical findings show evidence of considerable gains in both SKR and ETR portfolio cumulative returns.®

The remainder of the article is organized as follows. In Section 2, we introduce the TV-SNP-GJR models,
discuss some statistical properties and obtain closed-form expressions for the ES and partial moments used to
build conditional parametric PMs. Section 3 discusses the previous model estimation through an empirical
application to stock index and FX returns, as well as it provides a comparative analysis with respect to
the ST. Section 4 shows the performance of OOS portfolios by means of equity screening based on PMs for
ranking stocks that compose the S&P 100 index. In Section 5, we summarize our conclusions. All proofs are
provided in Appendix 1. Appendix 2 contains the conditional PMs used in our analysis. Appendix 3 derives
the confidence interval for testing the existence of the unconditional fourth moment, and hence kurtosis,
based on the Delta method. Appendix 4 provides both SNP and ST theoretical quantiles for a comparative

analysis.

2 Modeling asset returns

Let the asset return r; be a process characterized by the sequence of conditional densities f (¢ |l;—1;%),
where I;_; denotes the information set available prior to the realization of ¢, ¥ = (0,v) is the vector of
unknown parameters such that 0 is the subset characterizing both the conditional mean and variance of ry,

ie. p, (0) = pu(l;_1;0) and 0? (8) = o (I;_1;0), and finally, v is the subset characterizing the shape of the

4See Niguez, Paya, Peel and Perote (2019), Boudt, Lu and Peeters (2015), Xiong and Idzorek (2011) and Jondeau and
Rockinger (2006).
50ur results are also in line with those in Leén et al. (2019) where the best portfolio performance is obtained under the

Generalized Rachev ratio, which nests the ETR used in this study.



distribution of the innovations, z;. Thus, we assume that
Tt = My (0) + &, Et = 0¢ (0) Zt, Zt ™~ i.3.d. g (Zt; I/) . (1)

So, equation (1) decomposes the return at time ¢ into a conditional mean, p,, and the term &; defined as
the product between the conditional standard deviation, o, and the innovation (or standardized return),
zt, with zero mean and unit variance. It is assumed that {z:} is a sequence of independent identically
distributed (i.i.d.) random variables with g (-) as pdf. A TV distribution with g (z¢;v¢) as pdf is obtained
with a dynamic specification of the parameter vector v;, then {z;} are neither independent nor identically

distributed, with z; [I;_1 ~ g (2;;v¢) as conditional distribution.

2.1 SNP density of z;

Let us define z; as a linear transformation of z; with pdf given by the SNP distribution of Leén et al. (2019),
zz=a)+bW)x, b=1/0y, a= —bu,, (2)

where p, = E (z¢) and o, = /V (2:) are, respectively, the mean and the standard deviation of z; with

density function transformed according to the Gallant and Nychka (1987) method:

n 2
an () = 22 (Z viHy (m)) , 3)
k=0

where v = (vg,v1,...,v,) € R™1 ¢() denotes the pdf of a standard normal random variable and Hy, (-)

are the normalized Hermite polynomials. These polynomials can be defined recursively for k > 2 as
LL‘H}C,1(£L') — \/k — 1Hk,2($)

vk ’
with initial conditions Ho (x) = 1 and H; () = x. The set {Hy ()}, constitutes an orthonormal basis

with respect to the weighting function ¢(z). Thus, Ey[Hy(x)H;(z)] = 1(k =1), where 1(-) is the usual

Hy(z) = (4)

indicator function and the operator E,[-] takes the expectation of its argument with respect to ¢ (-) as pdf.
Since ¢y, () in (3) is homogeneous of degree zero in v, we impose vy = 1 to solve the scale indeterminacy.
If we consider n = 2 and expand the square term expression in (3), we obtain an alternative expression of

g2 () and, henceforth, denoted as ¢ (-):

4
q(x) = (@) Y v () Hy (1), ()
k=0
such that v, (v) = 1 and
2v 1+\/§1/ \/5 I/2+21/2+\/§I/
7 () = 2] g () = Pl ), “
1/2
73 (V) = 2\/3%, V4 (V) = \,/,6/,,2~
2.1.1 Moments
The first four noncentral moments of x; with pdf in (5) are:
pe (1) =7, (v), pe (2) = V27, (v) + 1, o
2 2
1 (3) = 6111(1;;2”\/51/2)7 i (4) = 12(u1+?:/zji+\/§;/2) L3



Hence, p, = !, (1) and 02 = pi/, (2) — pu2. Therefore, the skewness and kurtosis of z; are given by
5. = E(2}) = a® + 3a”bpl, (1) + 3ab’p), (2) + b pil, (3), (8)

k. = FE (2) = a* + 4a®byl, (1) + 6a°b> 1), (2) + 4ab®pily (3) + b*pil, (4) . (9)

2.1.2 Cumulative distribution function (cdf)

Let Q (-) denote the cdf of ; with ¢ (-) as the pdf in (5). The pdf of z; is given by ¢ (z;) = b(u)q (Z‘b_(i()u)).

The next result shows the expression of the cdf related to z;.

Proposition 1. The cdf of z; in (2), denoted as G(-), is obtained as

Glz) = Q@D:/fquamt

4

- 3 et (), (10)

=k
where z; = (z: — a) /b, Hy() is given in (4) and @ (-) denotes the cdf of the standard normal.

Proof. It is verified that [*__ Hy(z)p(x)dx = —ﬁHk_l(u)d)(u), then (10) is directly obtained.

2.2 GJR-SNP model
Let 07 = E [¢7|I;—1] be the GJR (1,1) conditional variance model. Then,

0 = au+Boi +af ()" +ar (5m)]

2 _ N2
ag + Bof_y +afoi (Zt+—1) +ayo} (z21)" (11)

such that ag > 0, 8 >0, af > 0 and a; > 0. Consider y;” = max (y;,0), y; = min (y;,0) where y; can be
either &; or z; defined in (1). Another representation of (11) is given by 02 = oo+ 807 | + (a1 +vDy_1)e?
where D; 1 =1ife; 1 <0and D;_1 =0if e,_1 > 0. Hence, both expressions are related through af = a1
and o] = ag + . Henceforth, we denote (11) as simply the GJR model, which nests the GARCH model

when af = a7 .

2.2.1 Unconditional variance

Following He and Terasvirta (1999), we can rewrite the GJR in (11) as the following stochastic difference
equation (SDE):

o} =g +cor_q, (12)
where ¢; = B+ af (zttl)2 +a7 (2;1)2. Note that for the GARCH, we have ¢; = B+ ay27 ;. If we assume

(11) to be covariance stationary, then the unconditional variance of €; is obtained as

02:E(U?) = 170@

E(c)’ (13)

such that E (¢;) < 1 and
E(e) = f+af + (a7 —ai) B[ ()’]. (14)



where E [(z[)z} is obtained in Proposition 2 below for k = 2. Note that if we assume j, = p in (1), then o2
in (13) is the unconditional variance of 7, , and both &; and r; have the same unconditional skewness and

kurtosis.

Proposition 2. Let z; = a + bx; be the standardized variable defined in (2) and xy an i.i.d. sequence

with pdf given in (5), then

E[(Z;)k} = f_o 28 (z) dzy = f;/b(a+bxt)kQ(9Ct)d$t
k
= K a*Iie; (—a/b), 15
> (5)ewes ot (15

where k € N and §; (u) = ["  2iq(x)dx is the equation in (45).
Proof. See section ii) of Appendiz 1.

2.2.2 Unconditional fourth moment and kurtosis

If we square o2 in (12), then o} = a3 + c?o}_, + 2apci0?_;. By taking expectations and assuming that

E (0}) = E(0o}_,), then [1 — E(c})] E (0f) = a3 +2a0E (c;) E (07) and finally, we obtain the unconditional

_E() _ E(d) _ (1-E(a)
ke = — 2t =, _k<1_E(C?)> (16)

O¢ O¢

kurtosis of &; :

such that k, is defined in (9) and
B (¢f) = 28E (er) = 8+ (af) ko + |(a1) = (a1)*] B[ (1)) (17)

where E {(z_)ﬂ is obtained for k = 4 in (15). The condition for the existence of the unconditional fourth
moment is verified when FE (ct) <L

Note that z; ~ i.i.d. N (0,1) when v; = vy = 0 under the SNP distribution for z;, then s, = 0 and
s. = 0. Tt is verified that E {(zt ) } =1/2, E {( ;) } =3/2, k., = 3 and so, k. in (16) becomes the following

expression:

1— 32— B (aF 1 ?
ko =3 25 Blof +ar) — 5 (ar +aq) . (18)
1= =B (of +a7) - 3 [(a})* + (01)’]
Finally, Ling and McAleer (2002) show expressions of £ (cf) for alternative GARCH-family models (including
the GJR) when z; ~ i.i.d. t (v) with v > 5 such that z; ~4.i.d. N (0,1) when v — oo.

T+
)"+

2.2.3 Power-law tail property

A consequence of using GARCH models is that they exhibit heavy-tails and hence, excess kurtosis for the
unconditional distribution of returns regardless of the distribution of z;, see Bai, Russell and Tiao (2003).
Knowledge of the tail behavior of financial returns is in itself of great interest. In this paper, we study
the tail shape of the empirical distribution of some returns series. The tail index, or Pareto exponent, is

a measure of the fatness or heaviness (the rate of decay) of the tails under power law distributions. The



greater the probability mass in the tails, the smaller the tail index, and vice versa. The value of the tail
index characterizes the maximal order of the finite moments of ;. In our empirical analysis we compare
the tail index estimates with the conditions related to the existence of unconditional moments under the
estimated parametric distribution driven by the SNP-GJR model. We define heavy-tails by this power-law
tail property in more detail below.

Consider the SDE representation for o7 in (12) which nests alternative GARCH-family equations under
different specifications of ¢; as a function on z;_1, then ¢; = ¢(2;—1) such that ¢; > 0. Suppose there exists
a positive real number g > 0 such that E (¢f) = 1. According to the theory in Kesten (1973), the stationary

solution of o7 follows a heavy-tailed distribution:
P{af > :c} ~ Az~ as = — oo,

where ¢ is the tail index of 67 and A > 0 is the tail scale. Then, P {0, > 2} = P {0} > 2?} ~ Az~ where
¢ = 20 is the tail index of o;. Here, f (z) ~ g(z) means f (z) = g(z) (1+0(1)) as & — oco. Suppose that
E (]z¢]°) < oo, then Mikosch and Starica (2000) derive the following result:

P{|5t|>:c}:P{|atzt|>m}~E(|zt|<)P{at>w}, as - oo.

In short, |&;| has a similar tail behavior as o, i.e. the tail index of |e;| equals (. For the existence of the
p-th moment of &, it must be verified that E (|e;|”) < co. Since the value of ¢ characterizes the maximal

order of finite moments of ¢;, then
E(lei]’) <00 if p<¢ and E(gf’) =00 if p>¢. (19)

According to (19), it is verified that E (|e;|) < oo if and only if ¢ > 1. The second moment E (£7) < oo,
and thus 02 < oo, if and only if ¢ > 2. The fourth moment E (5?) < 00, and thus k. < oo, if and only if
¢ > 4. In short, the condition E (cf) < 1 with k¥ = 1,2 in (14) and (17) hold, respectively, if ¢ > 2 and
¢ > 4. Finally, suppose that ¢ € (2,4), then F(¢;) < 1 and FE (cf) > 1 which implies a finite variance but

an infinite kurtosis for the unconditional distribution of r, with p, = p in (1).

2.3 Time-varying SNP parameters

Consider &, = 1, — p, in equation (1) and let 07 = E [¢7 |[,_1 ] follow the GJR model in (11). Then, the

conditional skewness and kurtosis of r; are defined, respectively, as

E(e311,_ E(erI,_
Srt = (etglgt 1 )v kf’,t - (eta'gt 1) ’ (20)

If we let the SNP distribution exhibit TV parameters, the pdf of a; in (5) is now defined as ¢ (x4 |I;—1 ) where
v; is replaced with v;; being measurable with respect to the information set I;_;. Hence, s, = s,; and
k,i = k., are now TV such that both s, and k,; are obtained by plugging v; ; into equations (8) and (9),

respectively. We model v; ; according to the following autoregressive specification:

Vit = Po; + P1iVit—1 + Tf (zt-1), (21)



where Y7 (-) is a real-valued function that aims to capture the news impact curve specification of both
conditional skewness and kurtosis.® We consider a flexible model for T7 (-) and specifically, the equation

labeled as ’transition model” in Anatolyev and Petukhov (2016):
T (2) = 03,1+ @3 12027 + 00, (1 + 3 |2])27, (22)

where 27 = max (z,0) and 2z~ = min (z,0). The equation (22) does account for nonlinear dynamics in v; ¢
through the parameter ¢s;. Note that it nests the asymmetric linear model when ¢5; = 0 and cp;ri # Vo
ie. Tr(2) = apg'iz* + 5,2~ . The symmetric linear one corresponds to the case of 5, = 0 and @3, = ¢,
i.e. Y7 (2) = pq;z. In short, hereafter any TV-SNP specification adopted here is nested in the general TV
(GTV) model driven by equations (21) and (22), and denoted as GTV-SNP.

2.4 Log-likelihood function

Note that we have previously studied the main components that define the asset return equation given in
(1). If we now express the conditional density of r; in terms of the conditional density of x;, then

q ($t |It—1 )

frelli—1;9) = b)) o

(23)

where 1 is the whole parameter vector, ¢ (-|I;—1) is the conditional pdf given in (5) with v;; as TV
parameters with general expression in (21), z; = % and z; (0) = (ry — u, (0)) /o (8) such that
6 C 1) contains the parameters driven by both conditional mean and variance of (1). The log-likelihood

function corresponding to a particular observation 7, denoted as l;, takes the following form:

o= s (eF(0) (@) - m ) - bnen
2( b () >+1 ]; ’“’tHk< b(vy) )] (24)

such that v = 1, v; 4 = v; 4 (9;) where ¥; C 9 is the parameter vector underlying the equation of v; ; in (21)

and hence, 1 = (0,191, Y2). If we adopt, for instance, the GTV-SNP model, then ¢; = (5002», O1is g02+i, Pais @31»).

T
Finally, the log-likelihood function for the model is obtained as LL = _ I; where T is the total sample size.
t=1

2.5 Conditional quantile and expected shortfall

Let F (r|I;—1) denote the conditional cdf corresponding to the TV-SNP model of r; with pdf in (23),

F(mut,n:[ f(re |It,1;w>dn=/ ¢ (@il lor ) doe = Q (17 |1 (25)

where @ (- [I;—1 ) is the conditional cdf, which is just the cdf @ (-) in (10) but with TV-SNP parameters, and
ry = (ry — p, — agoy) /byoy where a; = a(v) and by = b(v4). The a-quantile, or VaR at the a-confidence

level, of the distribution of the asset return ry is 7o, = F~(a|l;—1). So,

Ta,t = Kot + k1 Qp ' (@), (26)

6 According to the literature, two choices are suggested for the equations driven by the TV-SNP parameters, v; ;. The first

one is as a function of lags of the standardized returns z¢, and the second one as a function of lags of e;. We stick to the former

since we are indeed modeling the higher-order moments for the distribution of z;.



where Kkor = p; + ato¢, k1t = broy and Q;l (o) = inf {x |Q(z|I;—1) > a} is the conditional a-quantile with
q(-|T;—1) as pdf. Since g (-|I;_1) nests the N (0,1) distribution for vy ; = vo; = 0, then Q; ' (o) = &~ (a).

Once we have obtained 74 in (26), the ES is easily computed.

Proposition 3. Let r; be the asset return with pdf in (23) and let 74, be the conditional a-quantile in
(26), then

ESi(a) = Eia(re|re <ray)
= Kot + k1B (@ o <))

= o+ 6, () (27)

where 17, = (Tt — Kot) /K1 and &y (u) = [*zq(x|l,—1)dx is the conditional version of & (u) given in
section 1) in Appendiz 1.

Proof. See section iii) in Appendiz 1.

2.6 Conditional partial moments

The lower partial moments (LPMs), see Fishburn (1977), measure risk by negative deviations of the asset
return in relation to a return threshold, . The conditional LPM of order m where the asset return r; follows
a TV-SNP process, i.e. with pdf given by (23), is defined as
0
LPM,(6,m) = / (0 — r)™ vy [T )drs. (28)

—0oQ

The conditional upper partial moment (UPM) of order m and return threshold 6 is defined as
UPM,(6,m) = / (re — 0)" F(re | o1 )drs. (20)
0

In this paper we are only interested in the LPMs of orders 1 and 2, that is, LPM;(0,1) and LPM.(0,2)
n (28). Respecting the UPMs, we use UPM;(6,1) in (29). Next, we obtain the closed-form expressions of
these two LPMs and the UPM.

Proposition 4. Let r; be the asset return driven by the TV-SNP process with pdf in (23), then

LPM;(0,1) = (0~ kot)Eor (07) — w1614 (67) (30)

LPM(0,2) = (60— “Ot)z ot (9:) + (K%t - 29"6175) 1t (9:) + K%t&Zt (‘9:) ) (31)

UPM,(0,1) = p, — 0+ LPM,(6,1), (32)
where Koy = py + a0y, K1y = by, 0f = (0 — ko) /K1, Eop(uw) = Q(ulli—1) and €t (u)

[* @iq(x|Ii—1) dx is the conditional version of &; (u) given in section ii) of Appendiz 1.

Proof. It is obtained straightforwardly.



3 Empirical application

3.1 Dataset and summary statistics

We start analyzing the time-series behavior of six stock indexes and four FX rates. The data employed were
daily percentage log returns, which were computed as r; = 100log (P;/P;—1) from series {Pt}?zl of daily
closing prices for Nasdaq, TAIEX, Bovespa, CAC, DAX and Eurostoxx stock indexes; and pound sterling
to euro (UK-EU), Japanese yen to U.S. dollar (JAP-US), Canadian dollar to U.S. dollar (CAN-US) and
pound sterling to U.S. dollar (UK-US) FX rates. All of the price series were sampled from September 28,
1997 to September 27, 2017 to obtain a total of T' = 5,219 observations. The data were downloaded from
Datastream.

Table 1 exhibits summary statistics of both stock-index and FX returns series. We can see that all
series of stock-index returns exhibit much higher standard deviations than FX ones. The same goes for the
maximum and minimum values, all series of stock-index returns exhibit both the lowest minimum and highest
maximum values. Clearly, all series show high leptokurtosis with the UK-US returns presenting the largest
kurtosis (14.7), and the TAIEX the smallest (6.79). The degree of unconditional skewness is heterogeneous
among the series, with the largest positive and negative (in absolute value) skewness corresponding to the
UK-US (0.57) and JAP-US (-0.47) returns, respectively, and the smallest (in absolute value) to the Nasdaq
(-0.06). The UK-EU and UK-US returns are positively skewed whilst the rest of the series present negative
skewness. In all cases, the Jarque-Bera (J-B) test rejects the null of normality, motivating the use of our

SNP distribution.

Table 1: Summary statistics for daily percent stock-index and foreign-exchange log returns

Nasdaq TAIEX Bovespa CAC DAX Eurostoxx UK-EU JAP-US CAN-US UK-US

Mean 0.02 0.00 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00
Std. dev. 1.59 1.49 2.47 1.57 1.62 1.59 0.51 0.68 0.56 0.58
Min -10.16 -11.34 -17.96 -11.74  -9.60 -11.10 -2.67 -6.58 -5.05 -4.47
Max 13.25 8.26 18.01 12.14  12.37 11.96 6.22 3.71 4.34 8.31
Skewness -0.06 -0.22 -0.24 -0.06  -0.11 -0.08 0.50 -0.47 -0.10 0.57
Kurtosis 8.59 6.79 9.35 9.02 7.54 8.40 9.07 8.10 8.44 14.75

This table presents the summary statistics for stock-index and FX daily percent log returns from September 29, 1997
to September 27, 2017 (T = 5,218 obs.).

3.2 Estimation results

The parameters of the SNP models we considered in this analysis were estimated using maximum likelihood
(ML) according to equation (24). To account for the small structure in the return conditional means, we
filtered the r; series with autoregressive processes of different orders for the conditional mean, p,. Since the
estimations, under either filtered (r; — fi;) or non-filtered returns, yielded rather similar results, we decided

to report only the results for non-filtered data. Therefore, we assume a constant mean equation for ry, i.e.
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py = p. The stylized features of returns volatility were described through the GJR process in (11). For the
SNP distribution driven by the innovations, z;, in equation (1), we take different specifications for v, ; nested
in the GTV-SNP driven by equations (21) and (22).

3.2.1 C-SNP-GJR model

Table 2 presents the estimation results under the constant SNP (C-SNP) model, which is the restricted GTV-
SNP with ¢; = cp; = @5, = ¢3; = 0. The unconditional mean parameter, p, is not significant for any of the
return series, except for the DAX returns for which it is significant at the five per cent level. The parameter
estimates of the conditional variance equation (11) show that, for all series, the model correctly captures the
asset returns stylized features of (i) clustering and high persistence in volatility, and (ii) asymmetric response
of volatility to positive and negative shocks. Indeed, both persistence, 5, and asymmetry, o] # af, in (11)
are not altered either through the Normal or the different SNP specifications besides C-SNP (available upon
request). For all series, the C-SNP parameters, denoted as ¢, and ¢y,, are significant at least at the one
per cent level. The last row of Table 2 presents the likelihood ratio (LR) test for the Normal versus C-SNP
models. The LR test null is rejected for all series at any reasonable significance level, which shows that the
SNP distribution significantly improves the Normal in fitting the skewness and leptokurtosis levels exhibited
in the empirical returns distributions in Table 1.

The point estimation, not reported, of FE (¢;) in (14) to check the condition for the existence of the
unconditional second moment of ¢, is always lower than one and hence, 02 < oo in (13). In all series, the
unconditional standard deviations implied by model C-SNP, i.e. oc.snp = 0., are very close to the sample
ones. For instance, the estimated oc.gnp is equal to 2.46 and the sample standard deviation is 2.47 for
Bovespa. The condition for the existence of the unconditional fourth moment of ¢, given by FE (c?) <1lin
(17), seems to be satisfied according to the point estimates of E (Cf) for all FX return series, whilst among
the stock index series only Bovespa satisfies this condition. Furthermore, to be more precise, we obtained a
confidence interval at 95% for E (c%) by using a numerical derivative based on the Delta method. The null
hypothesis H, : (cf) = 1 is only rejected for JAP-US in favor of the alternative H, : F (cf) < 1. For the
remaining assets, H, : F (c?) =1 is not rejected in favor of either the one-sided alternative H, : F (Cf) <1
or H,: FE (cf) > 1. In short, the infinite unconditional kurtosis will not be rejected in most cases. Stronger
evidence of possibly infinite fourth unconditional moments will be discussed later in Table 3 through the
analysis of confidence intervals from tail-index estimates. Finally, the confidence interval at 95% for E (cf)
is derived in Appendix 3 by using now a closed-form expression for the Delta method under the Normal-GJR
model since their partial derivatives are obtained immediately unlike the C-SNP-GJR model. The results

from the confidence intervals are similar in both models.

3.2.2 Further results on the existence of unconditional moments

Next, we study the finiteness of the first moments of asset returns so as to understand some previous results
in Table 2 related to the existence of the unconditional variance and kurtosis through the estimates of

oco.snyp and FE (cf), respectively. In particular, we analyze the heavy-tailedness property by estimating the
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tail indexes. A number of studies have concluded that inference on the tail index ¢ using the popular Hill’s
estimator suffers from several problems. Table 3 exhibits the robust estimates of ( from the OLS approach
using the log-log rank-size (RS) regressions from Gabaix and Ibragimov (2011) and denoted as ZRS. The
standard error of ZRS is equal to ZRS\/% where n < T" with T" as the total number of observations. We
set for n the most commonly used values for extreme observations, i.e. n = kg x T with ky = 5%, 10%. The

corresponding 95% confidence interval for ( is

(ZRS —1.96 X Cpgy/2/n , Cpg +1.96 X C g/ 2/") : (33)

The point estimates ZRS for the returns of our stock indexes and FX lie between 3.20 and 4.31 for the 5%
truncation level, and between 3.06 and 3.86 for the 10%. The conclusions drawn from this table are the
following. First, the null hypothesis H, : ( = j where j = 1, 2 is rejected in favor of the one-sided alternative
H, : ¢ > j for the two truncation levels and all assets, so the the first moment and the variance are finite
for the ten assets. Second, it is verified that H, : ( = 3 is not rejected but H, : { = 3 is rejected in favor
of H, : ¢ > 3 for (i) TAIEX, UK-EU, CAN-US and UK-US at 10% truncation level, and (ii) TAIEX, DAX,
UK-EU, JAP-US and CAN-US at 5% truncation level. Hence, there is a strong evidence of finite skewness
for most of the FX series. Third, the null hypothesis H, : ( = 4 is rejected in most cases for the 10%
truncation level except for TAIEX and UK-EU, while it is only rejected at 5% truncation level for Bovespa
and UK-US. Fourth, for those cases where H, : ( = 4 is not rejected, we cannot reject H, : { = 4 in favor
of H, : ¢ > 4. Fifth, those assets rejecting H, : ( = 4 at 10% truncation level also do not reject F (cf) =1
under C-SNP-GJR except for JAP-US; see the confidence intervals in Table 2. In short, there seems to be

more evidence in favor of infinite kurtosis (¢ < 4) for most asset returns.”

3.2.3 TV-SNP-GJR models

Finally, we implement the following TV-SNP models nested in the GTV-SNP, defined according to (21)
and (22): (i) the asymmetric linear SNP in (22) with and without AR(1), denoted as AL1-SNP (restricted
GTV with ¢5; = 0) and ALO-SNP (restricted GTV with ¢, = ¢5; = 0), respectively; (ii) the transition
specification in (22) with and without AR(1), denoted as T1-SNP (non restricted GTV) and TO0-SNP
(restricted GTV with ¢,;, = 0), respectively. Table 4 reports the Akaike information criterion (AIC)
corresponding to the four candidate TV-SNP models for all series and also, the parameter estimates for
the TV-SNP-GJR with the best fit according to AIC. First, we find that the parameter estimates of the GJR
model remain similar in magnitude to those of the C-SNP and their statistical significance does not seem to
be affected, so they are not reported in the table. Second, the AL1-SNP provides a better fit for TAIEX,
Bovespa, and UK-US series; ALO-SNP for Eurostoxx, TO-SNP for CAN-US and T1-SNP for the rest.®

"We do not obtain the implicit tail index ¢ from equation E(cf) = 1 since it is beyond the scope of this paper. Our empirical
analysis follows the approach, among others, in Gu and Ibragimov (2018), Ankudinov, Ibragimov and Lebedev (2017) and

Ibragimov, Ibragimov and Kattuman (2003).
8We also employed the Schwarz information criterion (SIC), which penalizes model complexity more heavily compared to

AIC, and found that T1-SNP provides better fit for Nasdaq, whilst ALO-SNP is selected for the other series. These results are

not included but are available upon request.
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3.3 Comparative analysis

This section provides, for modeling the innovation z; in (1), a comparison of the C-SNP distribution and the
popular ST distribution of Hansen (1994) with parameters ¢ € (—1,1) and v > 2 that control for skewness

and kurtosis, respectively.”

3.3.1 Skewness-kurtosis frontiers

We examine the differences of these two densities through the regions of skewness and kurtosis they can
generate. Figure 1 provides the envelope of all the combinations of skewness and kurtosis for ST and SNP
densities, which are symmetric respecting the x-axis (kurtosis). For the sake of neatness, the ST envelope is
plotted up to a suitable level of kurtosis so that its scale is compatible with the SNP envelope (frontier of
the yellow area). The figure shows the differences in the levels of skewness and kurtosis these distributions
can achieve. First, if we consider levels of kurtosis from three to about ten (positive excess kurtosis), the
SNP clearly admits a higher range of skewness than the ST. Note that the sample kurtosis for most returns
series in Table 1 are within that range. Second, although the ST can generate larger kurtosis values than our
two-parameter SNP distribution, it is worth remarking that the SNP can produce tailored levels of kurtosis
through adjusting the truncation order of its polynomial series expansion, as shown in Figure 1 in Ledn,
Mencia and Sentana (2009). Third, the ST cannot generate kurtosis below 3 (negative excess kurtosis).
This might be restrictive for modeling asset returns over longer time horizons since kurtosis tend to decrease
as the return horizon increases. Fourth, if we consider the kurtosis value of 3, the ST only allows for a

zero-valued skewness (standard Normal), whilst the SNP allows for a range of possible skewness values.

Figure 1: Regions of skewness and kurtosis

Skewness
o

-4
Kurtosis

This figure exhibits the regions of skewness and kurtosis for SNP (yellow area) and ST (blue-dashed line) densities.
The region enveloped by the red-dashed line contains all possible combinations of skewness and kurtosis.

9We thank the referee for pointing out this analysis of comparing distributions.

16



3.3.2 In-sample analysis

We use Vuong’s likelihood ratio test (LRV) (1989) for the nonnested ST versus C-SNP models. The
LRV statistic is based on the null hypothesis of being the two candidate models equally close to the true

specification, and it is defined as
T~Y2(LLgr — LLc-snp) /@7 > N (0,1), (34)

such that LL; denotes the log-likelihood value for model j, and @r is the sample standard deviation obtained

in the usual manner, i.e.

or =71 ZT: (In (z;”“T/th-SNP))2 - (T—l iln(lfT/ltC'SNP)> , (35)

t=1
where l{ denotes the log-likelihood corresponding to a particular observation ¢ for model j. We consider
here the whole sample of T' = 5,218 observations. Table 5 reports the parameter estimates of the ST model.
Similar to C-SNP in Table 2, the ST parameters are significant except d, which is not significant for CAN-
US and UK-US. Thus, we can reject a symmetric distribution for their innovations z;. Our LRV results are
mixed as follows: (i) for Nasdaq and Bovespa the C-SNP provides better fit, (ii) the null of no difference is
not rejected for TATEX, CAC and DAX; (iii) for Eurostoxx, UK-EU, JAP-US, CAN-US there is a greater
evidence (and less for UK-US) that ST provides a better fit than C-SNP.

In order to study more exhaustively the differences between the SNP and the ST, we have performed an
analysis for their fit of the return distribution tails. To isolate the effect of the distribution, we have applied
a two-stage ML estimation procedure. In the first stage we obtain the standardized residuals from a Normal-
GJR model, which are employed in the second stage to estimate the parameters of each density.'? Figure 2
presents a comparison of each density theoretical quantiles with the sample standardized residuals ones for
both distribution tails: left or lower tail (quantiles from 0.001 to 0.05) and right or upper tail (quantiles from
0.95 to 0.999). The results of this analysis do not throw a clear-cut better model for all series. For instance,
for Nasdaq we find that the SNP seems to provide a better fit for the right tail whilst for the left tail the fit
is rather similar. So, as a result, more evidence is found in favor of the SNP as best candidate. For CAN-US
returns, both SNP and ST fits are rather similar for the left tail whilst for the right tail the ST performs
better, which suggests the ST provides a better fit. These findings are in line with our Vuong test results.
Finally, Table A4 (in Appendix 4) exhibits both SNP and ST theoretical quantiles for the specific levels of
1, 5, 95 and 99 per cent, extracted from Figure 1. The results show small differences in the quantiles from

both distributions. In particular, the ST systematically overestimates the SNP quantiles for 99% level.

10The parameter estimates from the second stage are rather similar to those from the one-stage ML in Tables 2 and 5.
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Figure 2: Distribution tail fit analysis
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This figure provides SNP and ST theoretical quantiles versus sample standardized return quantiles for both

distribution tails: lower tail (quantiles from 0.001 to 0.05) and upper tail (quantiles from 0.95 to 0.999).
theoretical quantiles correspond to the parameter estimates obtained through a two-stage ML procedure.

Nasdaq and CAN-US standardized returns (7' = 5,218 obs.).
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3.3.3 Backtesting

For the out-of-sample analysis, we implement the backtesting approach of Escanciano and Olmo (2010)
for VaR and Du and Escanciano (2017) for ES. We also study the performance for long and short trading
positions which are related, respectively, to the left and right tails of the return distribution; see, e.g., Giot
and Laurent (2003) for a similar analysis. We are interested in both the unconditional and conditional
backtests for VaR and ES.

The backtest implementation involves the first 7- N observations for the first in-sample window and
the OOS period of length N = 1,000 using a constant-sized rolling window. We use two-step estimation
procedure as shown, among others, in Zhu and Galbraith (2011) and Komunjer (2007). In the first stage,
the mean and GJR parameters are estimated by quasi-maximum likelihood (QML). Then, the SNP and ST
density parameters are obtained by ML using the estimations of the standardized residuals, z;, from the first
stage. We have done this for all asset return series presented above under several coverage levels (denoted

as a): 1%, 2.5%, 5% and 10%. The one-day-ahead VaR for the a-quantile is given by
VaR (o) = ko + £1,:Q 7" (a), (36)
where ko = pt +ao; and k1, = boy. Let

hi (@) =1 (ry < VaRy («)) (37)

1 which incorporates the

denote the violation or hit variable. We obtain the quadratic loss function,
exception magnitude and provides useful information to discriminate among similar models in terms of

the unconditional coverage criterion. Thus,
QL (a) = (ry — VaR; (@) x hy (). (38)

We estimate the sample averages VIOL and MSE corresponding, respectively, to the daily violations in (37)

and the daily quadratic losses in (38) for the OOS period of N days, i.e.
1 & 1 &
I0L = — MSE = — L .
VIOL (a) N;ht(a), SE () N;Q +(a) (39)

Backtesting VaR The probability P (r; < VaR; («)|I;—1) = « suggests that violations are Bernoulli
variables with mean « and hence, the centered violations {h;(a) — a},o; follow a martingale difference
sequence (MDS) that implies the zero mean property and its uncorrelation. Testing MDS leads to the

unconditional and conditional backtests initially proposed by Kupiec (1995) and Christoffersen (1998),

1 For a comparison of VaR models under different loss functions, see Abad, Benito and Lépez (2015).
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respectively. The null hypothesis for the unconditional backtest, Hoy : E [h(a)] = «, corresponds to

the following sample test statistic:

Uvan (@) = W LN (0,1), (10)

_ ~ N ~
where h(«) is the sample average of {ht (a)} _such that % (o) = 1 (4 < «) with u; as the estimation of

u, = F (ry|I,—1) in (25). To test the null hypothesis for the conditional backtest, Ho ¢ : E [hi(a) — a|[;—1] =
0, we implement the approach by Escanciano and Olmo (2010) based on the Box-Pierce (BP) test statistic
defined as Cyur(m) = NY*, ﬁ? < Xi, which is asymptotically a chi-square distribution with m
degrees of freedom such that p; is the j-th lag of the sample autocorrelation given by p; = 4,/4, with

7= N5 Licieg (Et () = a) (Et_j (o) = a)'

Backtesting ES The ES backtest by Du and Escanciano (2017) is based on the notion of cumulative
violations (CV) defined as H;(a) = [; h¢(u)du, which accumulates the violations across the tail
distribution. Note that h; (v) = 1(r; < VaR;(u)) = 1(u; <wu), then H;(w) can be rewritten as
Hi(a) = (1 —ui/a)l(up < ). This equation provides a better insight of the notion of CV since it
measures the distance of the returns from the corresponding a-quantile in (36) for the violations. It is
also verified that {H;(a) — «/2};2, follows a MDS. The null hypothesis for the unconditional backtest is

given by Hoy : E [Hi(a)] = /2 and the related sample test statistic is obtained as

VN (H(a) — a/2)
Va(l/3 —a/4)

_ ~ N ~
where H(«) is the mean of {Ht (a)} such that H; (@) = (1 —uy/a) 1 (4 < «). The null hypothesis for

t=1
the conditional backtest is Ho ¢ : E[Hi(a) — a/2[I;—1] = 0 with BP as the test statistic where ¥, is now

obtained as §; = ﬁ Zi\[:lﬂ- <ﬁt (a) — a/2) (’}Tlt,j (o) — a/2).

UES (Oé) = < N (07 1) ) (41)

Backtesting results Table 6 exhibits a descriptive analysis of VaR violations obtained from C-SNP-GJR
and ST-GJR models. The columns of VIOL and MSE correspond to the equations in (39) with N = 1,000
and different coverage levels for long (Panel 1) and short (Panel 2) positions. We can conclude that both
models provide rather similar performance for long and short trading positions in terms of VIOL. Respecting
the MSE, we can observe that (i) for long position, C-SNP is better (lower MSE) than ST regardless the
level of « for Nasdaq and TAIEX; (ii) for short position, ST is always better than C-SNP at levels of o = 1%,
2.5%; and (iii) for both positions, C-SNP is always better than ST at level a = 10%.

Table 7 reports the p-values for the unconditional backtesting of VaR and ES associated with the sample

test statistics of (40) and (41), respectively. The following conclusions are based on a significance level of
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5%. For the long position (Panel 1), there is hardly any difference between the two models. In all cases, both
null hypotheses are not rejected except for one case. In particular, for UK-EU the null is always rejected at
level @ = 1% for both VaR and ES, nevertheless there is difference between C-SNP and ST at level a = 2.5%
where the null is rejected for the ES with C-SNP density. For the short position (Panel 2), we find more
differences respecting the long position. First, for Nasdaq and TAIEX the two null hypotheses are rejected
in most situations regardless the model. Second, for CAC, both null hypotheses are never rejected at the
a = 1% level, nevertheless both are always rejected at levels a = 5%, 10%, irrespective of the model. Third,
we always reject both null hypotheses at level o = 10% for DAX and Eurostoxx. Fourth, for the FX series,
both null hypotheses are not rejected in any situation except for CAN-US at the a = 10% level under ST
for VaR. As a result, we can conclude that both models do really perform very similarly in backtesting VaR,
and ES. Finally, the conditional backtests for VaR and ES yield stronger evidence of similar performance.'?

In summary, the results of our analysis in this section show that the SNP can be a good alternative

density to the ST for modeling asymmetric and heavy-tailed distributions.

4 Equity screening and portfolio selection

Once we have proposed the SNP distribution for modeling asset return innovations and discussed its
properties and estimation, we apply the TV-SNP-GJR specification to derive closed-form expressions of
alternative conditional performance measures based on the one-sided risk and reward measures obtained in
previous sections. These PMs will be appropriate to create portfolios through an equity screening approach

as in Ledn et al. (2019).

4.1 Dataset description

We study the performance of portfolios formed from choosing stocks that were constituents of the S&P 100
index in October 2017. The data series used are sampled over the period November 4, 2004 to October 18,
2017, a total of T' = 3,262 daily percent log return observations. After filtering, we restrict to 90 stocks that
continuously belonged to S&P 100 during our sample period. We split the series into two subsamples, one
for the in-sample and another for the OOS period. The in-sample period goes from November 4, 2004 to
December 7, 2009. We always use a constant-sized rolling window of 1,282 observations for the in-sample

period and, also, when estimating across the OOS period.

12The few cases in which the null hypothesis for the conditional backtesting is rejected (at 5% level) are marked in Table 7

with the symbol.T The p-values of the full conditional backtesting analysis are not reported but they are available upon request.

21



"(gg) ut uoryeIASD pIRpUR)S OY) SI LM puR [ [opOW I0J oN[eA POOYIAYI[-30] o1} ojouap f77 aroym (uorjeoymods oniy oYy 0} aso[d A[renba are spppou
qj0q) [[nu a9y 1epun (T ‘0) A/ > Lo/ (NSO~ T) ¢/1—L T sppow INS-D Pue IS 10§ (6861) SUONA JO O1SIIRIS 1599 YT PIISOUUOU dY) 0J0USD AY'T “[oAd]
9%0T e PoURDYIUSIS $94RIIPUI () PUR [9A9] %G JB 9OURIYIUSIS $99RIIPUL () {[9AS] 9T JB 00URDIYIUSIS sojeoIpul (,,,) "sejeunr)se Iejourered o) molaq sesoyjuared ur
popraoad oIe SIOL® PIRPURIS JUOISISU0D-AIIOIISRPIISOIIO "SUOIIRAIOSCO QTF ‘G = [, JO sIs1su00 ojdures oy J, ‘suinjol o[ jueoiod 91l X J PUR XOPUI JO0IS oI POSTL
ryep o1, "Ayordnp proae oy aIe1 pajussord jou ore £o1]) ‘S[PPOW [WLION Pu® (g 9[qRI) JNS-D Iepun pejrodal 1) 0} Te[rurrs £Iea aIe J,G I0J sojewIIse uoryenbo
"D pue uedly A[oA1300dsor ‘SISOLINY PUR SSOUMOYS 10J [0IJU0D JRY) g < @ pue (T ‘T—) D ¢ oloym siojourered J,§ S, UOSURY JO sojewmII)se TN ) sjuasoxd o[qey SI T,

L9T 09T s 9C€ 0T 66T €90 G9°0 wxlV T 7ol eenG6°G AYT
6€°€L6E- L9°169¢- 97" GT61- 06°L1¥¢- 13'8788- 87663 ST°GT8S- PP8GeTT- PP LOLS- LG LVGS- LS
(L910°0) (2610°0) (6,10°0) (6L10°0) (2610°0) (9810°0) (0610°0) (6210°0) (8710°0) (0210°0)
8¥10°0 120070~ wELE0°0" «xL€90°0 «x0€20°0- «x8780°0- +x8580°0- wex6€L0°0- FTE0°0" wenEPET 0" !
(6212°1) (L69¢°1) (9927°0) (vee11) (ve61°1) (9L€1°1) (8681°1) (0228°0) (¥89%°0) (9000°1) N
x60T8'8 wexGETCT 0T wxB1GG°G €088 xGL60°6 s GEVO'6 x008%°6 exVGE8"L x8699°G e 10GE8
Sn-MN SN-NVD Sn-dvr na-3n XX0)SOING] Xva oVO edsanog XAIVL bepseN

S}[NSAI UOIJRWIISS [, S, USSUR] :G d[qe],

22



Table 6: Descriptive analysis of violations and MSE

VIOL MSE VIOL MSE
« ST C-SNP ST C-SNP | « ST C-SNP ST C-SNP
Panel 1: Long
Nasdaq TAIEX
0.01 0.012 0.012 0.0077 0.0072 | 0.01 0.013 0.012 0.0043  0.0027
0.025 0.026 0.025 0.0163 0.0154 | 0.025 0.022 0.021 0.0178 0.0160
0.05 0.047 0.046 0.0321 0.0312 | 0.05 0.041  0.039 0.0375 0.0354
0.1 0.083 0.081 0.0655 0.0647 0.1 0.093 0.083 0.0722  0.0682
Bovespa CAC
0.01 0.007  0.006 0.1503  0.1467 | 0.01 0.009 0.009 0.0462 0.0465
0.025 0.022 0.023 0.1975 0.1976 | 0.025 0.021 0.022 0.0640 0.0653
0.05 0.047 0.047 0.2670  0.2687 0.05 0.041  0.046 0.0878 0.0893
0.1 0.098 0.095 0.4135 0.4122 | 0.1 0.092 0.092 0.1339 0.1338
DAX Eurostoxx
0.01 0.010 0.011 0.0372 0.0373 | 0.01 0.008 0.008 0.0574  0.0583
0.025 0.022 0.022 0.0553 0.0564 0.025 0.022 0.022 0.0780 0.0799
0.05 0.043 0.043 0.0790 0.0801 | 0.05 0.040 0.045 0.1036  0.1053
0.1 0.087 0.086 0.1241 0.1237 | 0.1 0.092  0.090 0.1514  0.1509
UK-EU JAP-US
0.01 0.017 0.018 0.0012 0.0014 0.01 0.011 0.011 0.0055  0.0058
0.025 0.031 0.031 0.0038 0.0037 | 0.025 0.027 0.028 0.0118 0.0129
0.05 0.053  0.050 0.0080 0.0074 | 0.05 0.044 0.044 0.0209 0.0212
0.1 0.102  0.097 0.0166  0.0149 0.1 0.085 0.079 0.0364 0.0346
CAN-US UK-US
0.01 0.008 0.008 0.0030 0.0032 | 0.01 0.012 0.014 0.0038  0.0041
0.025 0.020 0.021 0.0051 0.0053 | 0.025 0.027 0.027 0.0074 0.0076
0.05 0.049 0.049 0.0086  0.0085 0.05 0.044 0.044 0.0124 0.0122
0.1 0.090 0.084 0.0167 0.0159 | 0.1 0.083 0.075 0.0217  0.0207
Panel 2: Short
Nasdaq TAIEX
0.01 0.001 0.002 0.0001 0.0014 | 0.01 0.003  0.005 0.0005 0.0014
0.025 0.013 0.014 0.0007 0.0009 | 0.025 0.012 0.013 0.0030  0.0039
0.05 0.029 0.029 0.0042 0.0040 | 0.05 0.036 0.035  0.0091 0.0090
0.1 0.084 0.076 0.0165 0.0147 | 0.1 0.093 0.079  0.0271 0.0233
Bovespa CAC
0.01 0.014 0.016 0.0380 0.0501 | 0.01 0.007 0.008 0.0139 0.0152
0.025 0.024 0.027 0.0887 0.0943 | 0.025 0.013 0.014 0.0224 0.0225
0.05 0.050 0.048 0.1594 0.1561 | 0.05 0.035 0.032 0.0346 0.0332
0.1 0.102 0.096 0.2981 0.2798 | 0.1 0.076 0.070  0.0625 0.0580
DAX Eurostoxx
0.01 0.008 0.008 0.0112 0.0124 | 0.01 0.007 0.008 0.0154 0.0167
0.025 0.021 0.021 0.0190 0.0194 | 0.025 0.012 0.012 0.0234 0.0237
0.05 0.039 0.036 0.0330 0.0317 | 0.05 0.039 0.038 0.0350 0.0337
0.1 0.074 0.066 0.0634 0.0591 | 0.1 0.077 0.076  0.0636 0.0590
UK-EU JAP-US
0.01 0.011 0.015 0.0216 0.0235 | 0.01 0.010 0.021  0.0051 0.0066
0.025 0.028 0.033 0.0266 0.0277 | 0.025 0.027 0.030 0.0097 0.0104
0.05 0.048 0.050 0.0330 0.0332 | 0.05 0.052 0.048 0.0166 0.0157
0.1 0.104 0.092 0.0450 0.0436 | 0.1 0.097 0.087  0.0297 0.0262
CAN-US UK-US
0.01 0.009 0.013 0.0019 0.0023 | 0.01 0.010 0.014  0.0424 0.0445
0.025 0.026 0.027 0.0038 0.0040 | 0.025 0.025 0.028  0.0489 0.0499
0.05 0.056 0.056 0.0070 0.0069 | 0.05 0.058 0.058  0.0560 0.0561
0.1 0.121 0.116 0.0151 0.0140 | 0.1 0.101 0.098 0.0688 0.0675

This Table presents a descriptive analysis of one-day-ahead VaR violations for both C-SNP-GJR and ST-GJR models.
Both VIOL and MSE denote, respectively, average violations and mean square error in (39). The coverage level is
a = {0.01,0.025,0.05,0.1} for both long and short positions in Panels 1 and 2, respectively. The data consists of
daily return series from five stock indexes: Nasdaq, TATEX, Bovespa, CAC, DAX, Eurostoxx, and four FX: UK-EU,
JAP-US, CAN-US and UK-US. Total sample: 5,218 observations from September 29, 1997 to September 27, 2017.
Predictions: 1,000.
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Table 7: P-values for unconditional backtesting ES and VaR

VaR ES VaR ES
a ST C-SNP ST C-SNP | « ST C-SNP ST C-SNP
Panel 1: Long
Nasdaq TAIEX
0.01 0.5250  0.5250 0.3049  0.3613 | 0.01 0.3404  0.5250 0.4981 0.9013
0.025 0.8395 1.0000 0.5906  0.7869 | 0.025 0.5434  0.4178 0.7639  0.8450
0.05 0.6634  0.5617 0.6639  0.8521 0.05 0.1916  0.1105 0.5821 0.3399
0.1 0.0731 0.0452 0.3804 0.2953 0.1 0.4606 0.0731 0.2100 0.0707
Bovespa CAC
0.01 0.3404  0.2036 0.6822 0.5912 | 0.01 0.7506  0.7596 0.9867 0.9725
0.025 0.5434  0.6854 0.7320  0.6359 | 0.025 0.4178  0.5434 0.3757 0.4929
0.05 0.6634  0.6634 0.6063  0.6127 | 0.05 0.1916  0.5617 0.2960 0.4520
0.1 0.8330 0.5982 0.4852 0.4992 0.1 0.3991 0.3991 0.3192 0.4369
DAX Eurostoxx
0.01 1.0000  0.7506 0.9466  0.8279 | 0.01 0.5250  0.5250 0.8139 0.7801
0.025 0.5434  0.5434 0.5792 0.7153 | 0.025 0.5434  0.5434 0.4316 0.6417
0.05 0.3098 0.3098 0.3974 0.5223 0.05 0.1468 0.4682 0.2391 0.3987
0.1 0.1706  0.1400 0.1458  0.1795 | 0.1 0.3991 0.2918 0.2782 0.3804
UK-EU JAP-US
0.01 0.0261  0.0110 0.0405 0.0056 | 0.01 0.7506  0.7506 0.7835 0.6933
0.025 0.2243 0.2243 0.0536 0.0273 0.025 0.6854 0.5434 0.7139 0.4552
0.05 0.6634  1.0000 0.2337  0.2970 | 0.05 0.3840  0.3840 0.7533  0.9973
0.1 0.8330  0.7518 0.5014  0.9911 0.1 0.1138  0.0269 0.2744 0.2612
CAN-US UK-US
0.01 0.5250 0.5250 0.6791 0.9069 0.01 0.5250 0.2036 0.6439 0.4498
0.025 0.3112  0.4178 0.2289  0.3698 | 0.025 0.6854  0.6854 0.3571 0.2175
0.05 0.8846  0.8846 0.4781 0.5771 | 0.05 0.3840  0.3840 0.9611  0.9400
0.1 0.2918  0.0917 0.4200  0.3458 | 0.1 0.0731 0.0084T  0.2138 0.1612
Panel 2: Short
Nasdaq TAIEX
0.01 0.0042"  0.0110 0.0123"  0.0210 | 0.01 0.0261 0.1120 0.0377 0.2859
0.025 0.0151 0.0259 0.0016 0.0068 | 0.025 0.0085 0.0151 0.0068 0.0845
0.05 0.0023 0.0023 0.0015 0.0027 0.05 0.0422 0.0295 0.0014  0.0083
0.1 0.0917 0.0114 0.0023 0.0007 | 0.1 0.4606 0.0269 0.0160 0.0054
Bovespa CAC
0.01 0.2036 0.0565 0.0707 0.0003 | 0.01 0.3404 0.52507  0.5995  0.9249
0.025 0.8395 0.6854 0.6566 0.1933 0.025 0.0151 0.0259 0.0655 0.1101
0.05 1.0000 0.7717 0.9283 0.8175 | 0.05 0.0295 0.0090 0.0205 0.0172
0.1 0.8330 0.6733 0.8464 0.9332 | 0.1 0.0114 0.0016 0.0077 0.0019
DAX Eurostoxx
0.01 0.52501  0.52507  0.5922 0.7986 0.01 0.3404 0.5250 0.5490 0.8820
0.025 0.4178 0.4178 0.3493 0.6370 | 0.025 0.0085 0.0085 0.0525 0.0906
0.05 0.1105 0.0422 0.1811 0.2122 0.05 0.1105 0.0817 0.0199 0.0149
0.1 0.0061 0.0003 0.0201 0.0093 | 0.1 0.0153 0.0114 0.0228 0.0063
UK-EU JAP-US
0.01 0.7506 0.1120 0.7722 0.0365 | 0.01 1.00007  0.0005 0.7174 0.0006
0.025 0.5434 0.1052 0.8718 0.0461 0.025 0.6854 0.3112 0.5265 0.0193
0.05 0.7717 1.0000 0.8511 0.2698 | 0.05 0.7717 0.7717 0.7282  0.3822
0.1 0.6733 0.3991 0.8902 0.7994 | 0.1 0.7518 0.1706 0.9344 0.6414
CAN-US UK-US
0.01 0.7506 0.3404 0.8799 0.2476 | 0.01 1.0000 0.2036 0.9944 0.1202
0.025 0.8395 0.6845 0.8825 0.2682 | 0.025 1.0000 0.5434 0.9799 0.2548
0.05 0.3840 0.3840 0.7402 0.4472 | 0.05 0.2457 0.2457 0.5641  0.1940
0.1 0.0269 0.0917 0.1016 0.1571 0.1 0.9161 0.83307  0.6027 0.5475

This table reports the p-values of the tests for the VaR and ES unconditional backtesting for both C-SNP-GJR and
ST-GJR models. The coverage level is « = {0.01,0.025,0.05,0.1} for both long and short positions in Panels 1 and 2,
respectively. The symbol T denotes rejection of the null at 5% level for the conditional backtest (these p-values, with
Box-Pierce test statistic asymptotically distributed x?, are available upon request). The data consists of daily return
series from five stock indexes: Nasdaq, TAIEX, Bovespa, CAC, DAX, Eurostoxx, and four FX: UK-EU, JAP-US,
CAN-US and UK-US. T = 5,218 observations from September 29, 1997 to September 27, 2017. Predictions: 1,000.
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Table 8 presents some summary statistics of the data analyzed in this section. The top panel presents
sample moments only for the in-sample daily percent log returns. The kurtosis coefficients reveal the stock
return distributions are highly leptokurtic (median kurtosis is 10.883). In contrast with the stock indexes in

Table 1, the skewness of the single stocks is predominantly positive (median skewness is 0.069).

4.2 Model and estimation of individual stock returns

The estimation of the parameters for each stock return series, 7;¢, is in two stages as in our backtesting
procedure in subsection 3.3. For the first stage, we estimate by QML the conditional mean and variance
under the specification from Oh and Patton (2017), i.e. the AR(1)- GJR(1,1) model augmented with lagged

market (S&P 100) return information for the stock return series, then

Tit = Yoj T Y1Tit—1 T YmjTmi—1 + Ejt, Ejt = OjtZjt, 7=1,...,90 (42)
2 _ N2 2 2
a?,t = aoj + ﬁjait_l + oafj (E;th) + ay; (5N71) + 5,% (6$7t_1) + 00 (5m,t—1) ; (43)

such that €, ; is the demeaned market return. Onwards, we refer to model in (42) - (43) as AR1-GJRA where
AR1 and GJRA denote the conditional mean and variance in (42) and (43), respectively. The bottom panel
of Table 8 exhibits information on the parameter estimates of the AR1-GJRA for the in-sample period.
Our estimates of the mean equation show a small positive AR(1) coefficient, 7, ;, that is significant only
for 7% of the stocks, and an estimate for the lagged market return parameter, Ym;» that is predominantly
negative, larger in magnitude than v, ; and significant for 31% of the stocks. The GJRA parameter estimates
show that most stock returns exhibit typical volatility clustering and high persistence in volatility, as well
as asymmetric response of volatility to positive and negative news. Furthermore, the GJRA asymmetric
response is in average greater to market shocks than to individual ones. We find evidence of leverage effect
since the average estimate of a; is higher than that of afj, namely 0.068 > 0.023. The second stage consists
of using the QML standardized returns, i.e. z;; = €;/0,+, to estimate by ML the parameters of alternative
specifications of the SNP distribution. It can be seen in the bottom panel that the estimated standardized
returns are non-Gaussian since the C-SNP parameters ¢g;; and ¢,; are significant for 100% and 98% of
the stocks, respectively. In the next subsections, we will only consider for building portfolios the ALO-SNP
out of all TV-SNP models we used in section 3. Note that ALO-SNP is the most parsimonious model and
a very good candidate according to the SIC for model selection (see footnote 8). The parameter estimates
show evidence of larger response of v;o; to positive rather than to negative shocks, whilst the response of

v;.1¢ to shocks is more symmetric (see median values).
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Table 8: Summary statistics of S&P 100 stocks and estimation results

Cross-sectional distribution

In-sample period: 11/4/2004-12/7/2009

Mean 5% 25% Median 75% 95% M
Daily obs. 1,282
Mean 0.010 -0.054 -0.014 0.013 0.029 0.098
Std. dev. 2.318 1.310 1.697 2.057 2.688 4.105
Skewness -0.018 -0.767 -0.213 0.069 0.283 0.837
Kurtosis 13.936 7.190 8.650 10.883 14.893 24.162
Conditional mean
Yo 0.032 -0.026 0.001 0.024 0.051 0.126 0.03
Y1 0.010 -0.094 -0.024 0.012 0.052 0.096 0.07
Y -0.114 -0.240 -0.152 -0.126 -0.067 0.018 0.31
Conditional variance
Qo 0.158 0.016 0.044 0.074 0.126 0.577 0.42
B 0.875 0.724 0.856 0.888 0.916 0.953 0.76
OzT 0.023 0.000 0.000 0.013 0.037 0.071 0.11
oy 0.068 0.000 0.026 0.062 0.094 0.182 0.37
st 0.035 0.000 0.000 0.000 0.024 0.176 0.09
Om 0.176 0.020 0.070 0.128 0.203 0.533 0.42
C-SNP
Po1 0.748 0.406 0.647 0.724 0.807 1.218 1
©o2 0.347 0.170 0.270 0.334 0.398 0.618 0.98
ALO-SNP
Po1 0.732 0.202 0.614 0.711 0.840 1.260 0.96
o 0.003 -0.524 -0.185 0.029 0.190 0.459 0.66
Yo -0.019 -0.629 -0.195 0.026 0.182 0.461 0.57
Po2 0.355 0.012 0.246 0.345 0.481 0.628 0.88
05 -0.054 -0.420 -0.173 -0.052 0.043 0.302 0.53
P -0.038 -0.422 -0.147 0.006 0.083 0.200 0.37
Model (AR1-ALO-SNP-GJRA):
Tit = Yoj T V1 it—1 + VinjTm,t—1 + €5ty €t = 054 (0) 2, J=1,...,90, 2zt ~ g(25,6;V5¢), Ve = (Vj1e,Vj2t)
o3 = aoj + ﬁja?,t—l +af (€j+,t—1)2 +ay; (Ejit—l)z + 5:;3‘ (5;,#1)2 + 00 (5;%1&71)2 )
Viit = Poij + a5 (251-1) " + P2 (zjftfl)Qv i=1,2.

The top panel presents some summary statistics of the in-sample daily log returns of the stocks that constitute the
S&P 100 index used in this study. The columns present the mean, median and percentiles from the cross-sectional
distribution of the measures listed in the rows. The bottom panel presents the associated cross-sectional analysis for
(i) the QML parameter estimates from the AR1-GJRA model for the conditional mean and variance and (ii) the ML
parameter estimates for the C-SNP and ALO-SNP specifications, which are listed in the rows. Note that j denotes
an individual stock from S&P 100, and M denotes the number of stocks out of 90 (in %) with significant parameter

estimates at 5% level.
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4.3 Time-varying portfolio selection

Through our constant-sized rolling window, we obtain the estimations of a battery of PMs across the OOS
period for each individual stock and setting a zero mean return as the threshold, # = 0. We compute a total
of thirteen conditional PMs, namely: Sharpe ratio (SR), skewness-kurtosis ratio (SKR),'* Sortino, Omega
and Upside potential ratios, as well as VaR ratio (VaRR) and the Rachev or expected tail ratio (ETR) for
the levels of a: 1%, 5%, 10% and 20%. These PMs can be seen in detail in Appendix 2.

Next, we explain the steps to construct the different portfolios. First, the last day of each window, we
compute all PMs based on the one-day-ahead forecast of the conditional mean, variance and v; ;; for each
stock assuming the AR1-ALO-SNP-GJRA specification. Second, the stocks are ranked on the basis of each
PM and then, we select the ten best-ranked stocks to build initially an equally-weighted (EW) portfolio,
ie. wy; = 1/10 where k = 1,...,10. We keep this portfolio for the next 5 days to then, compute the daily
portfolio returns for these five days. Third, by rolling the window every five days, we repeat the previous two
steps a total of 396 times and change each time the portfolio composition according to the equity screening
from the different PMs. Fourth, we obtain thirteen OOS portfolio return series of 1,980 daily observations.
We label each of these return series according to the selected PM.

We also repeat the above procedure but changing now the rebalancing frequency. So, we estimate
each stock return model under the OOS period every 22 days (monthly frequency) and 10 days (biweekly
frequency). Thus, these two rebalancing horizons account for 90 and 198 estimations, respectively.

Figure 3 represents the spreads between the cumulative returns on each portfolio and the SR during
the OOS period for the three different rebalancing periods. It is exhibited that the size of spreads - notice
the scale in the vertical axis- becomes much higher under both SKR and ETRs, except for the ETR (95,5).
Negative spreads, displayed the majority of days, are obtained under monthly frequencies in many portfolios.
We also find that VaRR portfolios show positive spreads in most cases under biweekly frequency except for
the VaRR (80,20) where, surprisingly, the monthly frequency cumulative returns are consistently higher.
Finally, unlike the Omega portfolio, we obtain positive spreads under both Sortino and Upside potential
portfolios for weekly frequency.

Finally, a similar analysis, not presented here to save space, was carried out for the spread with respect
the S&P 100 index returns. Again, the portfolios with the best performance correspond to both ETR, and
SKR strategies. The monthly rebalancing yields lower performance although rather better than in the case

displayed in Figure 1.

13The unconditional version of the SKR may be inapplicable in portfolio choice mainly due to the problem of possibly infinite

unconditional kurtosis (see Table 3). Nevertheless, this problem can be overcome using the conditional version of the SKR.
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4.4 Weighting schemes and robustness analysis

We have previously applied the naive EW portfolio rule. Here, we are interested in the relative portfolio
performances, under the PMs used in the previous section, but now adopting different rules to set up portfolio
weights. Thus, we consider the following schemes. First, the shortsale-constrained global-minimum-variance
(GMV) portfolio, i.e. w; = argmin wgﬁtwt s.t. w;l =1 and w; > 0, where ﬁt is the estimated conditional
covariance matrix of order 10 and [ is a column vector of ones. Second, the volatility timing (VT) portfolio,
le Wy, = (1/8@) /Z,lcozl (1/8@) where Gz,t is the estimated conditional variance. Third, the reward-to-
risk timing (RRT) portfolio, i.e. Wy = (ﬁ;t/E;O /Z;lf)d (ﬁm/aiyt) where ﬁ?t = max(fig 4, 0) with 7iy ,
denoting the estimated conditional mean. For more details about these weighting schemes, see Kirby and
Ostdiek (2012).

To proceed with the weighting scheme’s comparison, we compute the cumulative portfolio daily return
spreads for each PM strategy under the GMV, VT and RRT schemes with respect to the EW one. These
spread series are exhibited in Figure 4, and only for the weekly rebalancing frequency.'* Our results show that
(i) the RRT scheme overall dominates the rest of the weighting schemes for all PMs consistently across the
OOS period except for both ETR (80,20) and, sometimes, VaR, (80,20); (ii) the GMV tends to significantly
underperform the other schemes for all PMs except for both ETR (80,20) and, sometimes, VaR (80,20); (iii)
the VT scheme yields portfolio returns between those obtained under the previous two weighting methods;
and (iv) GMV performs less well (negative spread) than the EW portfolio for most PMs. As a result, we
show that portfolio performance is significantly sensitive to alternative schemes to the naive diversification.
Besides, we find similar results for the SR portfolios which are not displayed in Figure 4.

Finally, as a robustness check although not reported here, we have also provided a comparative analysis
of the AR1-ALO-SNP-GJRA model with the HS approach. To do so, we have repeated the exercise presented
in the previous section but now using HS to obtain PM portfolio return spreads with respect to SR. For
instance, for weekly rebalancing and the EW scheme under either constant-sized rolling or expanding window
methods, we find that the weekly portfolio return series in Figure 3 tend to dominate the corresponding HS
ones over the OOS period. This finding provides evidence on the superior performance of our parametric

model in regard to the HS method.

14The results for biweekly and monthly rebalancing are not presented but they are available from the authors.
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5 Conclusions

This paper develops the SNP density of Leén, Mencia and Sentana (2009) to incorporate time-varying
higher-order moments. First, we derive closed-form expressions of the unconditional variance and kurtosis
by assuming a conditional heteroscedastic variance model such as the GJR model, and the SNP density
with constant parameters for the innovations of asset returns, i.e. the C-SNP-GJR model. Second, we
aim to analyze better the finiteness of the unconditional kurtosis under the heavy-tailed power-law models
for financial returns. We obtain expressions for the conditional partial moments, quantiles and expected
shortfall (ES) under the C-SNP-GJR. Furthermore, relying on skewness-kurtosis frontiers, in-sample and
backtesting analyses, we compare the performance of forecasting VaR and ES between the C-SNP and the
popular skewed-t (ST) distribution of Hansen (1994) for modeling the innovations of several return series
of stock-indexes and foreign-exchange rates. We estimate robust tail-indexes based on the methodology of
Gabaix and Ibragimov (2011) for testing the finiteness of the first unconditional moments. We extend the
SNP to time-varying (TV) higher-order moments accounting for nonlinearity and asymmetric effects. Finally,
we implement performance measures (PM), based on our closed-form expressions of one-sided reward/risk
measures under the TV-SNP-GJR framework, and then carry out an equity screening exercise for ranking
stocks from the S&P 100 index depending on the selected PM. We examine the portfolios based on different
PM strategies with respect to the benchmark Sharpe ratio portfolio. Our results show that portfolio asset
allocation depends critically on the PM considered, as well as on the rebalancing periods and weighting
strategies.

Several interesting avenues for further research would be the following. First, obtaining the tail index
implied in the heavy-tailed unconditional distribution under the C-SNP-GJR model for testing better the
finiteness of the unconditional skewness and kurtosis. See, among others, Zhang, Li and Peng (2019) and Su
and Zhou (2014). Second, implementing the generalized autoregressive score for the SNP density as in Thiele
(2020). Finally, we could extend the consumption-based asset pricing model with higher-order cumulants in
Martin (2013) by assuming the SNP distribution to account for pure higher-order effects on the consumption

decision.
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Appendix 1: Proofs

i) Obtain the expression of my (-):
Let © ~ N (0,1) with ¢ (-) and ® () as pdf and cdf, respectively. We are interested in the moments of
the truncated Normal random variable defined as z |z < u where v € R. Thus, my, (u) = Ey [mk |z < u]

where k € N. A recursive formula for the truncated normal moments can be obtained as

uF 1o (u
my (u) = (k— 1) mp_2 (u) — (I)((Z)(), k=1,23,.. (44)

where m_; (u) = 0 and mg (u) = 1. For more details, see Liquet and Nazarathy (2015).

ii) Obtain the expression of ¢; (-):
Let &; (u) = [* #7q(z) dz where j € N and ¢ (-) is the pdf in (5), then

£ () = / g () d

— 00

S / w7 Hy (2) 6 () do

k=0

u) Z nimj+i—1 (u), (45)

such that my, (u) is defined in (44) and

3
m=1-2%+% n=7-2% o)
7L,% _ O3 — a
V2 /a1’ M4 /317 UH /41’

where 7, can be seen in (6). Note that &, (u) = @ (u) Z,‘?:l n;mi—1 (w) is just the SNP cdf given in (10).
iii) Proof of Proposition 3: The expected shortfall, ES; («), is obtained as

1 Ta,t
Ei i (ri|re <ray) = a/ ref (re | Le—1;9p) dry

— 00

1 Tt
= - / (Nt + Qat0¢ + th'tLL't) q (.’Et |It71 ) det

o J

K T:,t
= kKot t i/ zeq (04 |Ly—1) doy
= Kot + = fu (rae) (47)
kit * *
= kot ——0 (ra) thmuz‘fl (rie) (48)
where 77, ; = (Ta,t — Kot) /F1t, Kot = by + 104, K1p = broy and &y, (u) in (47) is computed according to &; (u)

in (45) such that 7;, in (48) is given by the expression of n; in (46) but replacing v; with v;,, and finally,
the expression my (+) in (48) is defined in (44).
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Appendix 2: Conditional performance measures

Sharpe ratio

We start with the Sharpe (1966, 1994) ratio, denoted as SR, as our benchmark PM. A slightly different
version of SR is defined as (u, — 0) /o, where 6 is the return threshold (e.g., risk-free rate, zero return,...),
py = Efre|Ii—1] and o, = \/V [r;[I;—1] denote the conditional mean and volatility of the asset return. A
drawback of using SR for ranking assets occurs when the numerator is negative. Israelsen (2005) suggests
a modified version to overcome that problem: SR;(6) = U“#e_ where sgn (z) = z/|z| if z # 0 and

:9"(#t 0)
sgn(z) =0if z = 0.

Skewness-kurtosis ratio

Watanabe (2006) suggests the simple skewness-kurtosis ratio, s, ;/k ¢, where s, ; and k., are defined in (20).
Again, higher rather than lower ratios are preferred. Since this PM may lead to ranking problems when

the numerator becomes negative, we propose a modified version based on Israelsen’s idea. Hereafter, our

Sr,t

sgn(spt) "
rt

conditional skewness-kurtosis ratio is SK R; =

PMs based on partial moments

First, the Sortino ratio (Sortino and van der Meer, 1991) is the mean excess return, pu, — 6, per unit of risk
measured by the square root of LPM of order 2 in (31). Note that this PM presents the same problem as the

previous measures since the numerator may be negative. As a solution, we propose the conditional modified
ny—0
s —6) *
( LPMt(0,2)) gn(py—0)

Sortino ratio: Sortino; (0) = Second, we use two conditional PMs which are special

‘ - o . Y UPM,(0,9) .
cases of the Farinelli and Tibiletti (2008) ratio: F'T; (0,q,m) = EVAITRR with ¢ > 0 and m > 0. The
higher the value for g, the greater the investor’s preference for expected gain, and the higher the value for
m the greater the investor’s dislike of expected losses. If ¢ = m = 1, we have the Omega ratio (Keating and
Shadwick, 2002) and for ¢ = 1 and m = 2, we have the Upside potential ratio (Sortino, van der Meer and

Platinga, 1999). These PMs will be represented as F'T; (0,1,1) and FT; (6,1, 2), respectively.

PMs based on quantiles

First, the VaRR (Caporin and Lisi, 2011) is defined as the ratio of the upper and lower quantiles given by

VaRR; (o) = VaRi(1-a) , where VaR; (o) = Q; ! (o) and VaR, (1 — a) = Q; ! (1 — a) are, respectively, the
VaR: (o) t t

conditional lower and upper quantiles of r; in (26). Second, the ETR or Rachev ratio (Biglova et al., 2004) is

defined as ETR; () = ’ E,fg,(rffﬁ)

where ES; (¢, @) is just the conditional ES in (27) with r; as the random
variable, while E'S; (—r¢, @) is the same but replacing r; with —r;. Thus, the numerator is the reward measure
corresponding to the right-hand side (gains) of the return distribution, Ey_q (¢ |r: > VaR: (1 — @) ), while
the denominator is the risk measure defined as F;_1 (r¢ |1y < VaR; («)). Finally, we can rewrite VaRR; («)

as a quotient of conditional lower quantiles, i.e. VaR; (o) = VaR; (ry, @) and VaR; (1 — o) = VaR; (—ry, o).
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Appendix 3: Confidence interval of E (c})

The expression of E (¢f) in (17) under the Normal-GJR model is obtained as

B (et) = 6%+ pot + oy + 5 (o) + 5 (a7)".

To shorten, let E (¢7) be denoted as I'. Note that I' = I' (¥) is a nonlinear function of ¥ = (3, o, af)/. The
asymptotic distribution of the ML estimate Y is given by the following result: /T ('f - 'I‘) < N (0,Qv),
where Q-+ is the asymptotic covariance matrix. By applying the Delta method, the function F=r (T) has

the following asymptotic distribution:

o ., or
oY Yox’

VI (P-T)AN(0,08), of=

such that OT'/0Y’ is a row vector containing all the partial derivatives of I', then

or/op 28+ af +ay
or/ox = | or/oat | = B+ 3af
or' /oo~ B+ 3ai

The following table shows the 95% confidence interval for the true I' = E (cf) corresponding to the asset

returns in our paper:

Table A3: Normal-GJR point-estimates and confidence intervals of E (c?)

Nasdaq TAIEX Bovespa CAC DAX

E(c}) 0.996 0.993 0.956 0.996 0.989
95% CI  (0.982,1.010)  (0.981, 1.005)  (0.927, 0.984) (0.976, 1.016) ~ (0.971, 1.007)

Eurostoxx UK-EU JAP-US CAN-US UK-US

E (c}) 0.995 0.997 0.983 0.998 0.990

95% CI  (0.974, 1.015)  (0.985, 1.008)  (0.963, 1.002)  (0.990, 1.007)  (0.973, 1.007)
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