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Abstract

We extend the semi-nonparametric (SNP) density of León, Mencía and Sentana (2009) to time-varying
higher-order moments for daily asset return innovations of stock indexes and foreign-exchange rates. We
estimate robust tail-indexes for testing the existence of the unconditional higher-order moments. We
obtain closed-form expressions of partial moments and expected shortfall under the time-varying SNP
density with the GJR-GARCH for modeling returns. A comparative study between SNP and Hansen’s
skewed-t, based on skewness-kurtosis frontiers, in-sample and backtesting analyses, is also implemented.
Finally, we conduct an out-of-sample portfolio selection exercise for the stocks of the S&P 100 index
through an equity screening method based on our parametric one-sided reward/risk performance measures
and compare with the Sharpe ratio portfolio.
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1 Introduction

Optimal asset allocation relies critically on the modeling of asymmetry and tail-fatness of portfolio return

distributions.1 Recent econometric results have shown the importance of clustering and asymmetric response

of time-varying (TV) skewness and/or kurtosis to positive and negative shocks. These TV or conditional

higher-moments are implicitly modeled through the TV shape parameters of the distribution assumed for

the innovations of asset returns. This framework has been employed, among others, by Jondeau and

Rockinger (2003) (JR hereafter) with the skewed-t (ST) distribution of Hansen (1994); León and Ñíguez

(2020) and León, Rubio and Serna (2005) with a transformation of the Gram-Charlier (GC) distribution in

JR (2001); Bali, Mo and Tang (2008) for the skewed generalized t of Theodossiou (1998); Feunou, Jahan-

Parvar and Tédongap (2016) who introduce the skewed generalized error distribution (GED); and Lalancette

and Simonato (2017) for the Johnson Su distribution. Following this literature, we propose an analytically

tractable probability density function (pdf) for modeling asset return innovations, which extends the semi-

nonparametric (SNP) density of León, Mencía and Sentana (2009) by incorporating TV parameters and, as

a result, conditional higher-order moments. The SNP density is obtained as an expansion of the standard

normal in terms of Hermite polynomials. Besides, it is more flexible than, for example, the sum of independent

restricted GC densities in Zoia, Biffi and Nicolussi (2018), as the latter accounts only for excess kurtosis. It

also allows to model financial time series that can only take positive values, such as the volatility index VIX,

by making use of the SNP expansion of the Gamma density; see Mencía and Sentana (2018) for details.

Our paper proceeds as follows. First, we propose various possible specifications for the TV behavior of

the SNP parameters for the conditional distribution of returns with the specific GARCH-family model by

Glosten, Jagannathan and Runkle (1993) (GJR hereafter). In short, our model, henceforth referred to as

TV-SNP-GJR, aims to capture stylized features in asset returns such as non-constant conditional skewness

and kurtosis. Second, we provide evidence on the model suitability through an in-sample analysis for a set

of daily stock-index and foreign-exchange (FX) returns. We also perform a comparative analysis between

the SNP and ST distributions. For that purpose, we examine the regions of skewness and kurtosis that the

distributions can generate. Besides, we use Vuong’s closeness test (1989) for the in-sample fit, an analysis

for the fit of the distribution tails, and also the backtesting approach of Du and Escanciano (2017) to

study differences in forecasting Value-at-Risk (VaR) and expected shortfall (ES) for long and short trading

positions. Third, recent evidence in the literature has shown that the tails of the unconditional distributions

of daily or weekly returns can be well approximated by power laws,2 which are characterized by the behavior

of the tail index. Its value determines the maximal order of finite moments of return distributions. For

instance, if ζ ∈ (2, 3) then the first two moments (mean and variance) exist; if ζ ∈ (2, 4) then the skewness

also exist; and if ζ ∈ (2, 5) then the mean, variance, skewness and kurtosis of returns exist. Suppose that

ζ > 4, then the lower the tail index, the higher the kurtosis, and vice versa.3 Hence, the finiteness of first

moments is relevant for risk managers, financial regulators and also, for investors with preferences going

beyond the typical Markowitz framework, relying on the first two finite moments, to the finite higher-order

1See Bernardi and Catania (2018) and references therein.
2See Gabaix, Gopikrishnan, Plerou and Stanley (2006), Gabaix (2009) and Ibragimov, Ibragimov and Walden (2015).
3The relation between the GARCH unconditional kurtosis and the tail-index can be seen in Mikosch and Starica (2000).
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moments of skewness and kurtosis.4 Thus, the estimation of tail-indexes is of key interest. Here, we estimate

robust tail-indexes, based on the methodology of Gabaix and Ibragimov (2011), for testing finiteness in the

first unconditional moments.

Furthermore, we derive closed-form expressions of conditional one-sided reward/risk measures under

the TV-SNP-GJR specification, and obtain their corresponding performance measures (PMs), as in León

and Moreno (2017) for the unconditional return distribution under the GC specification. In an empirical

application, we design active portfolio strategies through equity screening rules based on our PMs for ranking

stocks and then building portfolios. These PMs extend those in León, Navarro and Nieto (2019) obtained

under historical simulation (HS). The PMs we study are listed as follows: (a) The Sharpe ratio (SR) (Sharpe,

1966, 1994) as the benchmark. (b) The skewness and kurtosis ratio (SKR), see Watanabe (2006). (c) PMs

based on partial moments, such as (i) the Farinelli-Tibiletti (FT) ratio, which nests the popular Omega and

Upside potential ratios, see Farinelli and Tibiletti (2008), and (ii) the Sortino ratio, see Sortino and Van

der Meer (1991). (d) Quantile-based PMs, such as the Rachev or expected tail ratio (ETR), and the Value-

at-Risk ratio (VaRR). See Biglova, Ortobelli, Rachev and Stoyanov (2004) and Caporin and Lisi (2011) for

these two last measures, respectively.

Finally, we implement an out-of-sample (OOS) analysis for portfolios composed from selecting among the

stocks that constitute the S&P 100 index using these alternative PM strategies. Cumulative portfolio returns

are obtained over the OOS period for each PM strategy and compared with the SR portfolio returns. Our

empirical findings show evidence of considerable gains in both SKR and ETR portfolio cumulative returns.5

The remainder of the article is organized as follows. In Section 2, we introduce the TV-SNP-GJR models,

discuss some statistical properties and obtain closed-form expressions for the ES and partial moments used to

build conditional parametric PMs. Section 3 discusses the previous model estimation through an empirical

application to stock index and FX returns, as well as it provides a comparative analysis with respect to

the ST. Section 4 shows the performance of OOS portfolios by means of equity screening based on PMs for

ranking stocks that compose the S&P 100 index. In Section 5, we summarize our conclusions. All proofs are

provided in Appendix 1. Appendix 2 contains the conditional PMs used in our analysis. Appendix 3 derives

the confidence interval for testing the existence of the unconditional fourth moment, and hence kurtosis,

based on the Delta method. Appendix 4 provides both SNP and ST theoretical quantiles for a comparative

analysis.

2 Modeling asset returns

Let the asset return rt be a process characterized by the sequence of conditional densities f (rt |It−1;ψ ),

where It−1 denotes the information set available prior to the realization of rt, ψ = (θ,ν) is the vector of

unknown parameters such that θ is the subset characterizing both the conditional mean and variance of rt,

i.e. µt (θ) = µ (It−1;θ) and σ2
t (θ) = σ (It−1;θ), and finally, ν is the subset characterizing the shape of the

4See Ñíguez, Paya, Peel and Perote (2019), Boudt, Lu and Peeters (2015), Xiong and Idzorek (2011) and Jondeau and

Rockinger (2006).
5Our results are also in line with those in León et al. (2019) where the best portfolio performance is obtained under the

Generalized Rachev ratio, which nests the ETR used in this study.
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distribution of the innovations, zt. Thus, we assume that

rt = µt (θ) + εt, εt = σt (θ) zt, zt ∼ i.i.d. g (zt;ν) . (1)

So, equation (1) decomposes the return at time t into a conditional mean, µt, and the term εt defined as

the product between the conditional standard deviation, σt, and the innovation (or standardized return),

zt, with zero mean and unit variance. It is assumed that {zt} is a sequence of independent identically
distributed (i.i.d.) random variables with g (·) as pdf. A TV distribution with g (zt;νt) as pdf is obtained

with a dynamic specification of the parameter vector νt, then {zt} are neither independent nor identically
distributed, with zt |It−1 ∼ g (zt;νt) as conditional distribution.

2.1 SNP density of zt

Let us define zt as a linear transformation of xt with pdf given by the SNP distribution of León et al. (2019),

zt = a (ν) + b (ν)xt, b = 1/σx, a = −bµx, (2)

where µx = E (xt) and σx =
√
V (xt) are, respectively, the mean and the standard deviation of xt with

density function transformed according to the Gallant and Nychka (1987) method:

qn (xt) =
φ (xt)

ν′ν

(
n∑
k=0

νkHk (xt)

)2

, (3)

where ν = (ν0, ν1, . . . , νn)
′ ∈ Rn+1, φ (·) denotes the pdf of a standard normal random variable and Hk (·)

are the normalized Hermite polynomials. These polynomials can be defined recursively for k ≥ 2 as

Hk(x) =
xHk−1(x)−

√
k − 1Hk−2(x)√
k

, (4)

with initial conditions H0 (x) = 1 and H1 (x) = x. The set {Hk (x)}k∈N constitutes an orthonormal basis

with respect to the weighting function φ(x). Thus, Eφ[Hk(x)Hl(x)] = 1 (k = l), where 1 (·) is the usual
indicator function and the operator Eφ[·] takes the expectation of its argument with respect to φ (·) as pdf.
Since qn (·) in (3) is homogeneous of degree zero in ν, we impose ν0 = 1 to solve the scale indeterminacy.

If we consider n = 2 and expand the square term expression in (3), we obtain an alternative expression of

q2 (·) and, henceforth, denoted as q (·):

q (xt) = φ (xt)

4∑
k=0

γk (ν)Hk (xt) , (5)

such that γ0 (ν) = 1 and

γ1 (ν) =
2ν1(1+

√
2ν2)

ν′ν , γ2 (ν) =
√

2(ν21+2ν22+
√

2ν2)
ν′ν ,

γ3 (ν) = 2
√

3ν1ν2
ν′ν , γ4 (ν) =

√
6ν22
ν′ν .

(6)

2.1.1 Moments

The first four noncentral moments of xt with pdf in (5) are:

µ′x (1) = γ1 (ν) , µ′x (2) =
√

2γ2 (ν) + 1,

µ′x (3) =
6ν1(1+2

√
2ν2)

ν′ν , µ′x (4) =
12(ν21+3ν22+

√
2ν2)

ν′ν + 3.
(7)
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Hence, µx = µ′x (1) and σ2
x = µ′x (2)− µ2

x. Therefore, the skewness and kurtosis of zt are given by

sz ≡ E
(
z3
t

)
= a3 + 3a2bµ′x (1) + 3ab2µ′x (2) + b3µ′x (3) , (8)

kz ≡ E
(
z4
t

)
= a4 + 4a3bµ′x (1) + 6a2b2µ′x (2) + 4ab3µ′x (3) + b4µ′x (4) . (9)

2.1.2 Cumulative distribution function (cdf)

Let Q (·) denote the cdf of xt with q (·) as the pdf in (5). The pdf of zt is given by g (zt) = 1
b(ν)q

(
zt−a(ν)
b(ν)

)
.

The next result shows the expression of the cdf related to zt.

Proposition 1. The cdf of zt in (2), denoted as G(·), is obtained as

G(zt) = Q (z∗t ) =

∫ z∗t

−∞
q (xt) dxt

= Φ (z∗t )− φ (z∗t )

4∑
k=1

γk√
k
Hk−1 (z∗t ) , (10)

where z∗t = (zt − a) /b, Hk(·) is given in (4) and Φ (·) denotes the cdf of the standard normal.
Proof. It is verified that

∫ u
−∞Hk(x)φ(x)dx = − 1√

k
Hk−1(u)φ(u), then (10) is directly obtained.

2.2 GJR-SNP model

Let σ2
t = E

[
ε2
t |It−1

]
be the GJR (1,1) conditional variance model. Then,

σ2
t = α0 + βσ2

t−1 + α+
1

(
ε+
t−1

)2
+ α−1

(
ε−t−1

)2
= α0 + βσ2

t−1 + α+
1 σ

2
t−1

(
z+
t−1

)2
+ α−1 σ

2
t−1

(
z−t−1

)2
, (11)

such that α0 > 0, β ≥ 0, α+
1 ≥ 0 and α−1 ≥ 0. Consider y+

t = max (yt, 0), y−t = min (yt, 0) where yt can be

either εt or zt defined in (1). Another representation of (11) is given by σ2
t = α0 +βσ2

t−1 +(α1 + γDt−1) ε2
t−1

where Dt−1 = 1 if εt−1 < 0 and Dt−1 = 0 if εt−1 ≥ 0. Hence, both expressions are related through α+
1 = α1

and α−1 = α1 + γ. Henceforth, we denote (11) as simply the GJR model, which nests the GARCH model

when α+
1 = α−1 .

2.2.1 Unconditional variance

Following He and Terasvirta (1999), we can rewrite the GJR in (11) as the following stochastic difference

equation (SDE):

σ2
t = α0 + ctσ

2
t−1, (12)

where ct = β + α+
1

(
z+
t−1

)2
+ α−1

(
z−t−1

)2
. Note that for the GARCH, we have ct = β + α1z

2
t−1. If we assume

(11) to be covariance stationary, then the unconditional variance of εt is obtained as

σ2
ε = E

(
σ2
t

)
=

α0

1− E (ct)
, (13)

such that E (ct) < 1 and

E (ct) = β + α+
1 +

(
α−1 − α+

1

)
E
[(
z−t
)2]

, (14)
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where E
[(
z−t
)2]

is obtained in Proposition 2 below for k = 2. Note that if we assume µt = µ in (1), then σ2
ε

in (13) is the unconditional variance of rt , and both εt and rt have the same unconditional skewness and

kurtosis.

Proposition 2. Let zt = a + bxt be the standardized variable defined in (2) and xt an i.i.d. sequence

with pdf given in (5), then

E
[(
z−t
)k]

=
∫ 0

−∞z
k
t g (zt) dzt =

∫ −a/b
−∞ (a+ bxt)

k
q (xt) dxt

=

k∑
j=0

(
k

j

)
ak−jbjξj (−a/b) , (15)

where k ∈ N and ξj (u) =
∫ u
−∞ xjq (x) dx is the equation in (45).

Proof. See section ii) of Appendix 1.

2.2.2 Unconditional fourth moment and kurtosis

If we square σ2
t in (12), then σ4

t = α2
0 + c2tσ

4
t−1 + 2α0ctσ

2
t−1. By taking expectations and assuming that

E
(
σ4
t

)
= E

(
σ4
t−1

)
, then

[
1− E

(
c2t
)]
E
(
σ4
t

)
= α2

0+2α0E (ct)E
(
σ2
t

)
and finally, we obtain the unconditional

kurtosis of εt :

kε =
E
(
ε4
t

)
σ4
ε

= kz
E
(
σ4
t

)
σ4
ε

= kz

(
1− E (ct)

2

1− E (c2t )

)
, (16)

such that kz is defined in (9) and

E
(
c2t
)

= 2βE (ct)− β2 +
(
α+

1

)2
kz +

[(
α−1
)2 − (α+

1

)2]
E
[(
z−t
)4]

, (17)

where E
[(
z−t
)4]

is obtained for k = 4 in (15). The condition for the existence of the unconditional fourth

moment is verified when E
(
c2t
)
< 1.

Note that zt ∼ i.i.d. N (0, 1) when ν1 = ν2 = 0 under the SNP distribution for xt, then sz = 0 and

sε = 0. It is verified that E
[(
z−t
)2]

= 1/2, E
[(
z−t
)4]

= 3/2, kz = 3 and so, kε in (16) becomes the following

expression:

kε = 3

 1− β2 − β
(
α+

1 + α−1
)
− 1

4

(
α+

1 + α−1
)2

1− β2 − β
(
α+

1 + α−1
)
− 3

2

[(
α+

1

)2
+
(
α−1
)2]
 . (18)

Finally, Ling and McAleer (2002) show expressions of E
(
c2t
)
for alternative GARCH-family models (including

the GJR) when zt ∼ i.i.d. t (v) with v ≥ 5 such that zt ∼ i.i.d. N (0, 1) when v →∞.

2.2.3 Power-law tail property

A consequence of using GARCH models is that they exhibit heavy-tails and hence, excess kurtosis for the

unconditional distribution of returns regardless of the distribution of zt, see Bai, Russell and Tiao (2003).

Knowledge of the tail behavior of financial returns is in itself of great interest. In this paper, we study

the tail shape of the empirical distribution of some returns series. The tail index, or Pareto exponent, is

a measure of the fatness or heaviness (the rate of decay) of the tails under power law distributions. The
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greater the probability mass in the tails, the smaller the tail index, and vice versa. The value of the tail

index characterizes the maximal order of the finite moments of rt. In our empirical analysis we compare

the tail index estimates with the conditions related to the existence of unconditional moments under the

estimated parametric distribution driven by the SNP-GJR model. We define heavy-tails by this power-law

tail property in more detail below.

Consider the SDE representation for σ2
t in (12) which nests alternative GARCH-family equations under

different specifications of ct as a function on zt−1, then ct = c (zt−1) such that ct > 0. Suppose there exists

a positive real number % > 0 such that E (c%t ) = 1. According to the theory in Kesten (1973), the stationary

solution of σ2
t follows a heavy-tailed distribution:

P
{
σ2
t > x

}
∼ Ax−%, as x→∞,

where % is the tail index of σ2
t and A > 0 is the tail scale. Then, P {σt > x} = P

{
σ2
t > x2

}
∼ Ax−ζ where

ζ = 2% is the tail index of σt. Here, f (x) ∼ g (x) means f (x) = g (x) (1 + o (1)) as x → ∞. Suppose that
E (|zt|ς) <∞, then Mikosch and Starica (2000) derive the following result:

P {|εt| > x} = P {|σtzt| > x} ∼ E
(
|zt|ζ

)
P {σt > x} , as x→∞.

In short, |εt| has a similar tail behavior as σt, i.e. the tail index of |εt| equals ζ. For the existence of the
p-th moment of εt, it must be verified that E (|εt|p) < ∞. Since the value of ζ characterizes the maximal
order of finite moments of εt, then

E (|εt|p) <∞ if p < ζ and E (|εt|p) =∞ if p ≥ ζ. (19)

According to (19), it is verified that E (|εt|) < ∞ if and only if ζ > 1. The second moment E
(
ε2
t

)
< ∞,

and thus σ2
ε < ∞, if and only if ζ > 2. The fourth moment E

(
ε4
t

)
< ∞, and thus kε < ∞, if and only if

ζ > 4. In short, the condition E
(
ckt
)
< 1 with k = 1, 2 in (14) and (17) hold, respectively, if ζ > 2 and

ζ > 4. Finally, suppose that ζ ∈ (2, 4), then E (ct) < 1 and E
(
c2t
)
≥ 1 which implies a finite variance but

an infinite kurtosis for the unconditional distribution of rt with µt = µ in (1).

2.3 Time-varying SNP parameters

Consider εt = rt − µt in equation (1) and let σ2
t = E

[
ε2
t |It−1

]
follow the GJR model in (11). Then, the

conditional skewness and kurtosis of rt are defined, respectively, as

sr,t =
E
(
ε3
t |It−1

)
σ3
t

, kr,t =
E
(
ε4
t |It−1

)
σ4
t

. (20)

If we let the SNP distribution exhibit TV parameters, the pdf of xt in (5) is now defined as q (xt |It−1 ) where

νi is replaced with νi,t being measurable with respect to the information set It−1. Hence, sr,t = sz,t and

kr,t = kz,t are now TV such that both sz,t and kz,t are obtained by plugging νi,t into equations (8) and (9),

respectively. We model νi,t according to the following autoregressive specification:

νi,t = ϕ0i + ϕ1iνi,t−1 + Υ?
i (zt−1) , (21)

7



where Υ?
i (·) is a real-valued function that aims to capture the news impact curve specification of both

conditional skewness and kurtosis.6 We consider a flexible model for Υ?
i (·) and specifically, the equation

labeled as ’transition model’in Anatolyev and Petukhov (2016):

Υ?
i (z) = ϕ+

2i(1 + ϕ3i |z|)z+ + ϕ−2i(1 + ϕ3i |z|)z−, (22)

where z+ = max (z, 0) and z− = min (z, 0). The equation (22) does account for nonlinear dynamics in νi,t

through the parameter ϕ3i. Note that it nests the asymmetric linear model when ϕ3i = 0 and ϕ+
2i 6= ϕ−2i,

i.e. Υ?
i (z) = ϕ+

2iz
+ + ϕ−2iz

−. The symmetric linear one corresponds to the case of ϕ3i = 0 and ϕ+
2i = ϕ−2i,

i.e. Υ?
i (z) = ϕ2iz. In short, hereafter any TV-SNP specification adopted here is nested in the general TV

(GTV) model driven by equations (21) and (22), and denoted as GTV-SNP.

2.4 Log-likelihood function

Note that we have previously studied the main components that define the asset return equation given in

(1). If we now express the conditional density of rt in terms of the conditional density of xt, then

f (rt |It−1;ψ ) =
q (xt |It−1 )

b (νt)σt
, (23)

where ψ is the whole parameter vector, q (· |It−1 ) is the conditional pdf given in (5) with νi,t as TV

parameters with general expression in (21), xt = zt(θ)−a(νt)
b(νt)

and zt (θ) = (rt − µt (θ)) /σt (θ) such that

θ ⊂ ψ contains the parameters driven by both conditional mean and variance of (1). The log-likelihood

function corresponding to a particular observation rt, denoted as lt, takes the following form:

lt = −1

2
ln
(
σ2
t (θ)

)
− ln (b (νt))− ln (ν′tνt)−

1

2
ln (2π)

−1

2

(
zt (θ)− a (νt)

b (νt)

)2

+ ln

[
2∑
k=0

νk,tHk

(
zt (θ)− a (νt)

b (νt)

)]2

, (24)

such that ν0,t = 1, νi,t = νi,t (ϑi) where ϑi ⊂ ψ is the parameter vector underlying the equation of νi,t in (21)

and hence, ψ = (θ,ϑ1,ϑ2). If we adopt, for instance, the GTV-SNP model, then ϑi =
(
ϕ0i, ϕ1i, ϕ

+
2i, ϕ

−
2i, ϕ3i

)
.

Finally, the log-likelihood function for the model is obtained as LL =
T∑
t=1

lt where T is the total sample size.

2.5 Conditional quantile and expected shortfall

Let F (rt |It−1 ) denote the conditional cdf corresponding to the TV-SNP model of rt with pdf in (23),

F (rt |It−1 ) =

∫ rt

−∞
f (rt |It−1;ψ ) drt =

∫ r∗t

−∞
q (xt |It−1 ) dxt = Q (r∗t |It−1 ) , (25)

where Q (· |It−1 ) is the conditional cdf, which is just the cdf Q (·) in (10) but with TV-SNP parameters, and

r∗t = (rt − µt − atσt) /btσt where at = a (vt) and bt = b (vt). The α-quantile, or VaR at the α-confidence

level, of the distribution of the asset return rt is rα,t = F−1(α |It−1 ). So,

rα,t = κ0t + κ1tQ
−1
t (α) , (26)

6According to the literature, two choices are suggested for the equations driven by the TV-SNP parameters, νi,t. The first

one is as a function of lags of the standardized returns zt, and the second one as a function of lags of εt. We stick to the former

since we are indeed modeling the higher-order moments for the distribution of zt.
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where κ0t = µt + atσt, κ1t = btσt and Q
−1
t (α) = inf {x |Q(x |It−1 ) ≥ α} is the conditional α-quantile with

q (· |It−1 ) as pdf. Since q (· |It−1 ) nests the N (0, 1) distribution for ν1,t = ν2,t = 0, then Q−1
t (α) = Φ−1 (α).

Once we have obtained rα,t in (26), the ES is easily computed.

Proposition 3. Let rt be the asset return with pdf in (23) and let rα,t be the conditional α-quantile in

(26), then

ESt (α) = Et−1 (rt |rt ≤ rα,t )

= κ0t + κ1,tEt−1

(
xt
∣∣xt ≤ r∗α,t )

= κ0t +
κ1t

α
ξ1t

(
r∗α,t
)

(27)

where r∗α,t = (rα,t − κ0t) /κ1t and ξ1t (u) =
∫ u
−∞ xq (x |It−1 ) dx is the conditional version of ξ1 (u) given in

section ii) in Appendix 1.

Proof. See section iii) in Appendix 1.

2.6 Conditional partial moments

The lower partial moments (LPMs), see Fishburn (1977), measure risk by negative deviations of the asset

return in relation to a return threshold, θ. The conditional LPM of order m where the asset return rt follows

a TV-SNP process, i.e. with pdf given by (23), is defined as

LPMt(θ,m) =

∫ θ

−∞
(θ − rt)mf(rt |It−1 )drt. (28)

The conditional upper partial moment (UPM) of order m and return threshold θ is defined as

UPMt(θ,m) =

∫ ∞
θ

(rt − θ)mf(rt |It−1 )drt. (29)

In this paper we are only interested in the LPMs of orders 1 and 2, that is, LPMt(θ, 1) and LPMt(θ, 2)

in (28). Respecting the UPMs, we use UPMt(θ, 1) in (29). Next, we obtain the closed-form expressions of

these two LPMs and the UPM.

Proposition 4. Let rt be the asset return driven by the TV-SNP process with pdf in (23), then

LPMt(θ, 1) = (θ − κ0t) ξ0t (θ∗t )− κ1tξ1t (θ∗t ) , (30)

LPMt(θ, 2) = (θ − κ0t)
2
ξ0t (θ∗t ) +

(
κ2

1t − 2θκ1t

)
ξ1t (θ∗t ) + κ2

1tξ2t (θ∗t ) , (31)

UPMt(θ, 1) = µt − θ + LPMt(θ, 1), (32)

where κ0t = µt + atσt, κ1t = btσt, θ∗t = (θ − κ0t) /κ1t, ξ0t (u) = Q (u |It−1 ) and ξjt (u) =∫ u
−∞ xjq (x |It−1 ) dx is the conditional version of ξj (u) given in section ii) of Appendix 1.

Proof. It is obtained straightforwardly.
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3 Empirical application

3.1 Dataset and summary statistics

We start analyzing the time-series behavior of six stock indexes and four FX rates. The data employed were

daily percentage log returns, which were computed as rt = 100 log (Pt/Pt−1) from series {Pt}Tt=1 of daily

closing prices for Nasdaq, TAIEX, Bovespa, CAC, DAX and Eurostoxx stock indexes; and pound sterling

to euro (UK-EU), Japanese yen to U.S. dollar (JAP-US), Canadian dollar to U.S. dollar (CAN-US) and

pound sterling to U.S. dollar (UK-US) FX rates. All of the price series were sampled from September 28,

1997 to September 27, 2017 to obtain a total of T = 5, 219 observations. The data were downloaded from

Datastream.

Table 1 exhibits summary statistics of both stock-index and FX returns series. We can see that all

series of stock-index returns exhibit much higher standard deviations than FX ones. The same goes for the

maximum and minimum values, all series of stock-index returns exhibit both the lowest minimum and highest

maximum values. Clearly, all series show high leptokurtosis with the UK-US returns presenting the largest

kurtosis (14.7), and the TAIEX the smallest (6.79). The degree of unconditional skewness is heterogeneous

among the series, with the largest positive and negative (in absolute value) skewness corresponding to the

UK-US (0.57) and JAP-US (-0.47) returns, respectively, and the smallest (in absolute value) to the Nasdaq

(-0.06). The UK-EU and UK-US returns are positively skewed whilst the rest of the series present negative

skewness. In all cases, the Jarque-Bera (J-B) test rejects the null of normality, motivating the use of our

SNP distribution.

Table 1: Summary statistics for daily percent stock-index and foreign-exchange log returns

Nasdaq TAIEX Bovespa CAC DAX Eurostoxx UK-EU JAP-US CAN-US UK-US

Mean 0.02 0.00 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00

Std. dev. 1.59 1.49 2.47 1.57 1.62 1.59 0.51 0.68 0.56 0.58

Min -10.16 -11.34 -17.96 -11.74 -9.60 -11.10 -2.67 -6.58 -5.05 -4.47

Max 13.25 8.26 18.01 12.14 12.37 11.96 6.22 3.71 4.34 8.31

Skewness -0.06 -0.22 -0.24 -0.06 -0.11 -0.08 0.50 -0.47 -0.10 0.57

Kurtosis 8.59 6.79 9.35 9.02 7.54 8.40 9.07 8.10 8.44 14.75

This table presents the summary statistics for stock-index and FX daily percent log returns from September 29, 1997

to September 27, 2017 (T = 5, 218 obs.).

3.2 Estimation results

The parameters of the SNP models we considered in this analysis were estimated using maximum likelihood

(ML) according to equation (24). To account for the small structure in the return conditional means, we

filtered the rt series with autoregressive processes of different orders for the conditional mean, µt. Since the

estimations, under either filtered (rt − µ̂t) or non-filtered returns, yielded rather similar results, we decided
to report only the results for non-filtered data. Therefore, we assume a constant mean equation for rt, i.e.

10



µt = µ. The stylized features of returns volatility were described through the GJR process in (11). For the

SNP distribution driven by the innovations, zt, in equation (1), we take different specifications for νi,t nested

in the GTV-SNP driven by equations (21) and (22).

3.2.1 C-SNP-GJR model

Table 2 presents the estimation results under the constant SNP (C-SNP) model, which is the restricted GTV-

SNP with ϕ1i = ϕ+
2i = ϕ−2i = ϕ3i = 0. The unconditional mean parameter, µ, is not significant for any of the

return series, except for the DAX returns for which it is significant at the five per cent level. The parameter

estimates of the conditional variance equation (11) show that, for all series, the model correctly captures the

asset returns stylized features of (i) clustering and high persistence in volatility, and (ii) asymmetric response

of volatility to positive and negative shocks. Indeed, both persistence, β, and asymmetry, α−1 6= α+
1 , in (11)

are not altered either through the Normal or the different SNP specifications besides C-SNP (available upon

request). For all series, the C-SNP parameters, denoted as ϕ01 and ϕ02, are significant at least at the one

per cent level. The last row of Table 2 presents the likelihood ratio (LR) test for the Normal versus C-SNP

models. The LR test null is rejected for all series at any reasonable significance level, which shows that the

SNP distribution significantly improves the Normal in fitting the skewness and leptokurtosis levels exhibited

in the empirical returns distributions in Table 1.

The point estimation, not reported, of E (ct) in (14) to check the condition for the existence of the

unconditional second moment of εt is always lower than one and hence, σ2
ε < ∞ in (13). In all series, the

unconditional standard deviations implied by model C-SNP, i.e. σC-SNP = σε, are very close to the sample

ones. For instance, the estimated σC-SNP is equal to 2.46 and the sample standard deviation is 2.47 for

Bovespa. The condition for the existence of the unconditional fourth moment of εt, given by E
(
c2t
)
< 1 in

(17), seems to be satisfied according to the point estimates of E
(
c2t
)
for all FX return series, whilst among

the stock index series only Bovespa satisfies this condition. Furthermore, to be more precise, we obtained a

confidence interval at 95% for E
(
c2t
)
by using a numerical derivative based on the Delta method. The null

hypothesis Ho : E
(
c2t
)

= 1 is only rejected for JAP-US in favor of the alternative Ha : E
(
c2t
)
< 1. For the

remaining assets, Ho : E
(
c2t
)

= 1 is not rejected in favor of either the one-sided alternative Ha : E
(
c2t
)
< 1

or Ha : E
(
c2t
)
> 1. In short, the infinite unconditional kurtosis will not be rejected in most cases. Stronger

evidence of possibly infinite fourth unconditional moments will be discussed later in Table 3 through the

analysis of confidence intervals from tail-index estimates. Finally, the confidence interval at 95% for E
(
c2t
)

is derived in Appendix 3 by using now a closed-form expression for the Delta method under the Normal-GJR

model since their partial derivatives are obtained immediately unlike the C-SNP-GJR model. The results

from the confidence intervals are similar in both models.

3.2.2 Further results on the existence of unconditional moments

Next, we study the finiteness of the first moments of asset returns so as to understand some previous results

in Table 2 related to the existence of the unconditional variance and kurtosis through the estimates of

σC-SNP and E
(
c2t
)
, respectively. In particular, we analyze the heavy-tailedness property by estimating the
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tail indexes. A number of studies have concluded that inference on the tail index ζ using the popular Hill’s

estimator suffers from several problems. Table 3 exhibits the robust estimates of ζ from the OLS approach

using the log-log rank-size (RS) regressions from Gabaix and Ibragimov (2011) and denoted as ζ̂RS . The

standard error of ζ̂RS is equal to ζ̂RS
√

2/n where n < T with T as the total number of observations. We

set for n the most commonly used values for extreme observations, i.e. n = k0 × T with k0 = 5%, 10%. The

corresponding 95% confidence interval for ζ is(
ζ̂RS − 1.96× ζ̂RS

√
2/n , ζ̂RS + 1.96× ζ̂RS

√
2/n

)
. (33)

The point estimates ζ̂RS for the returns of our stock indexes and FX lie between 3.20 and 4.31 for the 5%

truncation level, and between 3.06 and 3.86 for the 10%. The conclusions drawn from this table are the

following. First, the null hypothesis Ho : ζ = j where j = 1, 2 is rejected in favor of the one-sided alternative

Ha : ζ > j for the two truncation levels and all assets, so the the first moment and the variance are finite

for the ten assets. Second, it is verified that Ho : ζ = 3 is not rejected but Ho : ζ = 3 is rejected in favor

of Ha : ζ > 3 for (i) TAIEX, UK-EU, CAN-US and UK-US at 10% truncation level, and (ii) TAIEX, DAX,

UK-EU, JAP-US and CAN-US at 5% truncation level. Hence, there is a strong evidence of finite skewness

for most of the FX series. Third, the null hypothesis Ho : ζ = 4 is rejected in most cases for the 10%

truncation level except for TAIEX and UK-EU, while it is only rejected at 5% truncation level for Bovespa

and UK-US. Fourth, for those cases where Ho : ζ = 4 is not rejected, we cannot reject Ho : ζ = 4 in favor

of Ha : ζ > 4. Fifth, those assets rejecting Ho : ζ = 4 at 10% truncation level also do not reject E
(
c2t
)

= 1

under C-SNP-GJR except for JAP-US; see the confidence intervals in Table 2. In short, there seems to be

more evidence in favor of infinite kurtosis (ζ < 4) for most asset returns.7

3.2.3 TV-SNP-GJR models

Finally, we implement the following TV-SNP models nested in the GTV-SNP, defined according to (21)

and (22): (i) the asymmetric linear SNP in (22) with and without AR(1), denoted as AL1-SNP (restricted

GTV with ϕ3i = 0) and AL0-SNP (restricted GTV with ϕ1i = ϕ3i = 0), respectively; (ii) the transition

specification in (22) with and without AR(1), denoted as T1-SNP (non restricted GTV) and T0-SNP

(restricted GTV with ϕ1i = 0), respectively. Table 4 reports the Akaike information criterion (AIC)

corresponding to the four candidate TV-SNP models for all series and also, the parameter estimates for

the TV-SNP-GJR with the best fit according to AIC. First, we find that the parameter estimates of the GJR

model remain similar in magnitude to those of the C-SNP and their statistical significance does not seem to

be affected, so they are not reported in the table. Second, the AL1-SNP provides a better fit for TAIEX,

Bovespa, and UK-US series; AL0-SNP for Eurostoxx, T0-SNP for CAN-US and T1-SNP for the rest.8

7We do not obtain the implicit tail index ζ from equation E(cζt ) = 1 since it is beyond the scope of this paper. Our empirical

analysis follows the approach, among others, in Gu and Ibragimov (2018), Ankudinov, Ibragimov and Lebedev (2017) and

Ibragimov, Ibragimov and Kattuman (2003).
8We also employed the Schwarz information criterion (SIC), which penalizes model complexity more heavily compared to

AIC, and found that T1-SNP provides better fit for Nasdaq, whilst AL0-SNP is selected for the other series. These results are

not included but are available upon request.
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3.3 Comparative analysis

This section provides, for modeling the innovation zt in (1), a comparison of the C-SNP distribution and the

popular ST distribution of Hansen (1994) with parameters δ ∈ (−1, 1) and υ > 2 that control for skewness

and kurtosis, respectively.9

3.3.1 Skewness-kurtosis frontiers

We examine the differences of these two densities through the regions of skewness and kurtosis they can

generate. Figure 1 provides the envelope of all the combinations of skewness and kurtosis for ST and SNP

densities, which are symmetric respecting the x-axis (kurtosis). For the sake of neatness, the ST envelope is

plotted up to a suitable level of kurtosis so that its scale is compatible with the SNP envelope (frontier of

the yellow area). The figure shows the differences in the levels of skewness and kurtosis these distributions

can achieve. First, if we consider levels of kurtosis from three to about ten (positive excess kurtosis), the

SNP clearly admits a higher range of skewness than the ST. Note that the sample kurtosis for most returns

series in Table 1 are within that range. Second, although the ST can generate larger kurtosis values than our

two-parameter SNP distribution, it is worth remarking that the SNP can produce tailored levels of kurtosis

through adjusting the truncation order of its polynomial series expansion, as shown in Figure 1 in León,

Mencía and Sentana (2009). Third, the ST cannot generate kurtosis below 3 (negative excess kurtosis).

This might be restrictive for modeling asset returns over longer time horizons since kurtosis tend to decrease

as the return horizon increases. Fourth, if we consider the kurtosis value of 3, the ST only allows for a

zero-valued skewness (standard Normal), whilst the SNP allows for a range of possible skewness values.

Figure 1: Regions of skewness and kurtosis

This figure exhibits the regions of skewness and kurtosis for SNP (yellow area) and ST (blue-dashed line) densities.
The region enveloped by the red-dashed line contains all possible combinations of skewness and kurtosis.

9We thank the referee for pointing out this analysis of comparing distributions.
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3.3.2 In-sample analysis

We use Vuong’s likelihood ratio test (LRV) (1989) for the nonnested ST versus C-SNP models. The

LRV statistic is based on the null hypothesis of being the two candidate models equally close to the true

specification, and it is defined as

T−1/2 (LLST − LLC-SNP ) /ω̂T
d→ N (0, 1) , (34)

such that LLj denotes the log-likelihood value for model j, and ω̂T is the sample standard deviation obtained

in the usual manner, i.e.

ω̂2
T = T−1

T∑
t=1

(
ln
(
lSTt /lC-SNPt

))2 −(T−1
T∑
t=1

ln(lSTt /lC-SNPt )

)2

, (35)

where ljt denotes the log-likelihood corresponding to a particular observation t for model j. We consider

here the whole sample of T = 5, 218 observations. Table 5 reports the parameter estimates of the ST model.

Similar to C-SNP in Table 2, the ST parameters are significant except δ, which is not significant for CAN-

US and UK-US. Thus, we can reject a symmetric distribution for their innovations zt. Our LRV results are

mixed as follows: (i) for Nasdaq and Bovespa the C-SNP provides better fit, (ii) the null of no difference is

not rejected for TAIEX, CAC and DAX; (iii) for Eurostoxx, UK-EU, JAP-US, CAN-US there is a greater

evidence (and less for UK-US) that ST provides a better fit than C-SNP.

In order to study more exhaustively the differences between the SNP and the ST, we have performed an

analysis for their fit of the return distribution tails. To isolate the effect of the distribution, we have applied

a two-stage ML estimation procedure. In the first stage we obtain the standardized residuals from a Normal-

GJR model, which are employed in the second stage to estimate the parameters of each density.10 Figure 2

presents a comparison of each density theoretical quantiles with the sample standardized residuals ones for

both distribution tails: left or lower tail (quantiles from 0.001 to 0.05) and right or upper tail (quantiles from

0.95 to 0.999). The results of this analysis do not throw a clear-cut better model for all series. For instance,

for Nasdaq we find that the SNP seems to provide a better fit for the right tail whilst for the left tail the fit

is rather similar. So, as a result, more evidence is found in favor of the SNP as best candidate. For CAN-US

returns, both SNP and ST fits are rather similar for the left tail whilst for the right tail the ST performs

better, which suggests the ST provides a better fit. These findings are in line with our Vuong test results.

Finally, Table A4 (in Appendix 4) exhibits both SNP and ST theoretical quantiles for the specific levels of

1, 5, 95 and 99 per cent, extracted from Figure 1. The results show small differences in the quantiles from

both distributions. In particular, the ST systematically overestimates the SNP quantiles for 99% level.

10The parameter estimates from the second stage are rather similar to those from the one-stage ML in Tables 2 and 5.
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Figure 2: Distribution tail fit analysis

Nasdaq standardized returns

CAN-US standardized returns

This figure provides SNP and ST theoretical quantiles versus sample standardized return quantiles for both
distribution tails: lower tail (quantiles from 0.001 to 0.05) and upper tail (quantiles from 0.95 to 0.999). The
theoretical quantiles correspond to the parameter estimates obtained through a two-stage ML procedure. Series:
Nasdaq and CAN-US standardized returns (T = 5, 218 obs.).
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3.3.3 Backtesting

For the out-of-sample analysis, we implement the backtesting approach of Escanciano and Olmo (2010)

for VaR and Du and Escanciano (2017) for ES. We also study the performance for long and short trading

positions which are related, respectively, to the left and right tails of the return distribution; see, e.g., Giot

and Laurent (2003) for a similar analysis. We are interested in both the unconditional and conditional

backtests for VaR and ES.

The backtest implementation involves the first T -N observations for the first in-sample window and

the OOS period of length N = 1, 000 using a constant-sized rolling window. We use two-step estimation

procedure as shown, among others, in Zhu and Galbraith (2011) and Komunjer (2007). In the first stage,

the mean and GJR parameters are estimated by quasi-maximum likelihood (QML). Then, the SNP and ST

density parameters are obtained by ML using the estimations of the standardized residuals, zt, from the first

stage. We have done this for all asset return series presented above under several coverage levels (denoted

as α): 1%, 2.5%, 5% and 10%. The one-day-ahead VaR for the α-quantile is given by

V aRt (α) = κ0,t + κ1,tQ
−1 (α) , (36)

where κ0,t = µ+ aσt and κ1,t = bσt. Let

ht (α) = 1 (rt < V aRt (α)) (37)

denote the violation or hit variable. We obtain the quadratic loss function,11 which incorporates the

exception magnitude and provides useful information to discriminate among similar models in terms of

the unconditional coverage criterion. Thus,

QLt (α) = (rt − V aRt (α))
2 × ht (α) . (38)

We estimate the sample averages VIOL and MSE corresponding, respectively, to the daily violations in (37)

and the daily quadratic losses in (38) for the OOS period of N days, i.e.

V IOL (α) =
1

N

N∑
t=1

ht (α) , MSE (α) =
1

N

N∑
t=1

QLt (α) . (39)

Backtesting VaR The probability P (rt < V aRt (α) |It−1 ) = α suggests that violations are Bernoulli

variables with mean α and hence, the centered violations {ht(α)− α}∞t=1 follow a martingale difference

sequence (MDS) that implies the zero mean property and its uncorrelation. Testing MDS leads to the

unconditional and conditional backtests initially proposed by Kupiec (1995) and Christoffersen (1998),

11For a comparison of VaR models under different loss functions, see Abad, Benito and López (2015).
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respectively. The null hypothesis for the unconditional backtest, H0,U : E [ht(α)] = α, corresponds to

the following sample test statistic:

UV aR (α) =

√
N
(
h(α)− α

)√
α (1− α)

a∼ N (0, 1) , (40)

where h(α) is the sample average of
{
ĥt (α)

}N
t=1

such that ĥt (α) = 1 (ût ≤ α) with ût as the estimation of

ut = F (rt |It−1 ) in (25). To test the null hypothesis for the conditional backtest, H0,C : E [ht(α)− α |It−1 ] =

0, we implement the approach by Escanciano and Olmo (2010) based on the Box-Pierce (BP) test statistic

defined as CV aR(m) = N
∑m
i=1 ρ̂

2
j

a∼ χ2
m
, which is asymptotically a chi-square distribution with m

degrees of freedom such that ρ̂j is the j-th lag of the sample autocorrelation given by ρ̂j = γ̂j/γ̂0 with

γ̂j = 1
N−j

∑N
t=1+j

(
ĥt (α)− α

)(
ĥt−j (α)− α

)
.

Backtesting ES The ES backtest by Du and Escanciano (2017) is based on the notion of cumulative

violations (CV) defined as Ht (α) =
∫ α

0
ht (u) du, which accumulates the violations across the tail

distribution. Note that ht (u) = 1 (rt < V aRt (u)) = 1 (ut ≤ u), then Ht (α) can be rewritten as

Ht (α) = (1− ut/α) 1 (ut ≤ α). This equation provides a better insight of the notion of CV since it

measures the distance of the returns from the corresponding α-quantile in (36) for the violations. It is

also verified that {Ht(α)− α/2}∞t=1 follows a MDS. The null hypothesis for the unconditional backtest is

given by H0,U : E [Ht(α)] = α/2 and the related sample test statistic is obtained as

UES (α) =

√
N
(
H(α)− α/2

)√
α (1/3− α/4)

a∼ N (0, 1) , (41)

where H(α) is the mean of
{
Ĥt (α)

}N
t=1

such that Ĥt (α) = (1− ût/α) 1 (ût ≤ α). The null hypothesis for

the conditional backtest is H0,C : E [Ht(α)− α/2 |It−1 ] = 0 with BP as the test statistic where γ̂j is now

obtained as γ̂j = 1
N−j

∑N
t=1+j

(
Ĥt (α)− α/2

)(
Ĥt−j (α)− α/2

)
.

Backtesting results Table 6 exhibits a descriptive analysis of VaR violations obtained from C-SNP-GJR

and ST-GJR models. The columns of VIOL and MSE correspond to the equations in (39) with N = 1, 000

and different coverage levels for long (Panel 1) and short (Panel 2) positions. We can conclude that both

models provide rather similar performance for long and short trading positions in terms of VIOL. Respecting

the MSE, we can observe that (i) for long position, C-SNP is better (lower MSE) than ST regardless the

level of α for Nasdaq and TAIEX; (ii) for short position, ST is always better than C-SNP at levels of α = 1%,

2.5%; and (iii) for both positions, C-SNP is always better than ST at level α = 10%.

Table 7 reports the p-values for the unconditional backtesting of VaR and ES associated with the sample

test statistics of (40) and (41), respectively. The following conclusions are based on a significance level of
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5%. For the long position (Panel 1), there is hardly any difference between the two models. In all cases, both

null hypotheses are not rejected except for one case. In particular, for UK-EU the null is always rejected at

level α = 1% for both VaR and ES, nevertheless there is difference between C-SNP and ST at level α = 2.5%

where the null is rejected for the ES with C-SNP density. For the short position (Panel 2), we find more

differences respecting the long position. First, for Nasdaq and TAIEX the two null hypotheses are rejected

in most situations regardless the model. Second, for CAC, both null hypotheses are never rejected at the

α = 1% level, nevertheless both are always rejected at levels α = 5%, 10%, irrespective of the model. Third,

we always reject both null hypotheses at level α = 10% for DAX and Eurostoxx. Fourth, for the FX series,

both null hypotheses are not rejected in any situation except for CAN-US at the α = 10% level under ST

for VaR. As a result, we can conclude that both models do really perform very similarly in backtesting VaR

and ES. Finally, the conditional backtests for VaR and ES yield stronger evidence of similar performance.12

In summary, the results of our analysis in this section show that the SNP can be a good alternative

density to the ST for modeling asymmetric and heavy-tailed distributions.

4 Equity screening and portfolio selection

Once we have proposed the SNP distribution for modeling asset return innovations and discussed its

properties and estimation, we apply the TV-SNP-GJR specification to derive closed-form expressions of

alternative conditional performance measures based on the one-sided risk and reward measures obtained in

previous sections. These PMs will be appropriate to create portfolios through an equity screening approach

as in León et al. (2019).

4.1 Dataset description

We study the performance of portfolios formed from choosing stocks that were constituents of the S&P 100

index in October 2017. The data series used are sampled over the period November 4, 2004 to October 18,

2017, a total of T = 3, 262 daily percent log return observations. After filtering, we restrict to 90 stocks that

continuously belonged to S&P 100 during our sample period. We split the series into two subsamples, one

for the in-sample and another for the OOS period. The in-sample period goes from November 4, 2004 to

December 7, 2009. We always use a constant-sized rolling window of 1, 282 observations for the in-sample

period and, also, when estimating across the OOS period.

12The few cases in which the null hypothesis for the conditional backtesting is rejected (at 5% level) are marked in Table 7

with the symbol.† The p-values of the full conditional backtesting analysis are not reported but they are available upon request.
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Table 6: Descriptive analysis of violations and MSE

VIOL MSE VIOL MSE
α ST C-SNP ST C-SNP α ST C-SNP ST C-SNP

Panel 1: Long
Nasdaq TAIEX

0.01 0.012 0.012 0.0077 0.0072 0.01 0.013 0.012 0.0043 0.0027
0.025 0.026 0.025 0.0163 0.0154 0.025 0.022 0.021 0.0178 0.0160
0.05 0.047 0.046 0.0321 0.0312 0.05 0.041 0.039 0.0375 0.0354
0.1 0.083 0.081 0.0655 0.0647 0.1 0.093 0.083 0.0722 0.0682

Bovespa CAC
0.01 0.007 0.006 0.1503 0.1467 0.01 0.009 0.009 0.0462 0.0465
0.025 0.022 0.023 0.1975 0.1976 0.025 0.021 0.022 0.0640 0.0653
0.05 0.047 0.047 0.2670 0.2687 0.05 0.041 0.046 0.0878 0.0893
0.1 0.098 0.095 0.4135 0.4122 0.1 0.092 0.092 0.1339 0.1338

DAX Eurostoxx
0.01 0.010 0.011 0.0372 0.0373 0.01 0.008 0.008 0.0574 0.0583
0.025 0.022 0.022 0.0553 0.0564 0.025 0.022 0.022 0.0780 0.0799
0.05 0.043 0.043 0.0790 0.0801 0.05 0.040 0.045 0.1036 0.1053
0.1 0.087 0.086 0.1241 0.1237 0.1 0.092 0.090 0.1514 0.1509

UK-EU JAP-US
0.01 0.017 0.018 0.0012 0.0014 0.01 0.011 0.011 0.0055 0.0058
0.025 0.031 0.031 0.0038 0.0037 0.025 0.027 0.028 0.0118 0.0129
0.05 0.053 0.050 0.0080 0.0074 0.05 0.044 0.044 0.0209 0.0212
0.1 0.102 0.097 0.0166 0.0149 0.1 0.085 0.079 0.0364 0.0346

CAN-US UK-US
0.01 0.008 0.008 0.0030 0.0032 0.01 0.012 0.014 0.0038 0.0041
0.025 0.020 0.021 0.0051 0.0053 0.025 0.027 0.027 0.0074 0.0076
0.05 0.049 0.049 0.0086 0.0085 0.05 0.044 0.044 0.0124 0.0122
0.1 0.090 0.084 0.0167 0.0159 0.1 0.083 0.075 0.0217 0.0207

Panel 2: Short
Nasdaq TAIEX

0.01 0.001 0.002 0.0001 0.0014 0.01 0.003 0.005 0.0005 0.0014
0.025 0.013 0.014 0.0007 0.0009 0.025 0.012 0.013 0.0030 0.0039
0.05 0.029 0.029 0.0042 0.0040 0.05 0.036 0.035 0.0091 0.0090
0.1 0.084 0.076 0.0165 0.0147 0.1 0.093 0.079 0.0271 0.0233

Bovespa CAC
0.01 0.014 0.016 0.0380 0.0501 0.01 0.007 0.008 0.0139 0.0152
0.025 0.024 0.027 0.0887 0.0943 0.025 0.013 0.014 0.0224 0.0225
0.05 0.050 0.048 0.1594 0.1561 0.05 0.035 0.032 0.0346 0.0332
0.1 0.102 0.096 0.2981 0.2798 0.1 0.076 0.070 0.0625 0.0580

DAX Eurostoxx
0.01 0.008 0.008 0.0112 0.0124 0.01 0.007 0.008 0.0154 0.0167
0.025 0.021 0.021 0.0190 0.0194 0.025 0.012 0.012 0.0234 0.0237
0.05 0.039 0.036 0.0330 0.0317 0.05 0.039 0.038 0.0350 0.0337
0.1 0.074 0.066 0.0634 0.0591 0.1 0.077 0.076 0.0636 0.0590

UK-EU JAP-US
0.01 0.011 0.015 0.0216 0.0235 0.01 0.010 0.021 0.0051 0.0066
0.025 0.028 0.033 0.0266 0.0277 0.025 0.027 0.030 0.0097 0.0104
0.05 0.048 0.050 0.0330 0.0332 0.05 0.052 0.048 0.0166 0.0157
0.1 0.104 0.092 0.0450 0.0436 0.1 0.097 0.087 0.0297 0.0262

CAN-US UK-US
0.01 0.009 0.013 0.0019 0.0023 0.01 0.010 0.014 0.0424 0.0445
0.025 0.026 0.027 0.0038 0.0040 0.025 0.025 0.028 0.0489 0.0499
0.05 0.056 0.056 0.0070 0.0069 0.05 0.058 0.058 0.0560 0.0561
0.1 0.121 0.116 0.0151 0.0140 0.1 0.101 0.098 0.0688 0.0675

This Table presents a descriptive analysis of one-day-ahead VaR violations for both C-SNP-GJR and ST-GJR models.
Both VIOL and MSE denote, respectively, average violations and mean square error in (39). The coverage level is
α = {0.01, 0.025, 0.05, 0.1} for both long and short positions in Panels 1 and 2, respectively. The data consists of
daily return series from five stock indexes: Nasdaq, TAIEX, Bovespa, CAC, DAX, Eurostoxx, and four FX: UK-EU,
JAP-US, CAN-US and UK-US. Total sample: 5, 218 observations from September 29, 1997 to September 27, 2017.
Predictions: 1, 000.
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Table 7: P-values for unconditional backtesting ES and VaR

VaR ES VaR ES
α ST C-SNP ST C-SNP α ST C-SNP ST C-SNP

Panel 1: Long
Nasdaq TAIEX

0.01 0.5250 0.5250 0.3049 0.3613 0.01 0.3404 0.5250 0.4981 0.9013
0.025 0.8395 1.0000 0.5906 0.7869 0.025 0.5434 0.4178 0.7639 0.8450
0.05 0.6634 0.5617 0.6639 0.8521 0.05 0.1916 0.1105 0.5821 0.3399
0.1 0.0731 0.0452 0.3804 0.2953 0.1 0.4606 0.0731 0.2100 0.0707

Bovespa CAC
0.01 0.3404 0.2036 0.6822 0.5912 0.01 0.7506 0.7596 0.9867 0.9725
0.025 0.5434 0.6854 0.7320 0.6359 0.025 0.4178 0.5434 0.3757 0.4929
0.05 0.6634 0.6634 0.6063 0.6127 0.05 0.1916 0.5617 0.2960 0.4520
0.1 0.8330 0.5982 0.4852 0.4992 0.1 0.3991 0.3991 0.3192 0.4369

DAX Eurostoxx
0.01 1.0000 0.7506 0.9466 0.8279 0.01 0.5250 0.5250 0.8139 0.7801
0.025 0.5434 0.5434 0.5792 0.7153 0.025 0.5434 0.5434 0.4316 0.6417
0.05 0.3098 0.3098 0.3974 0.5223 0.05 0.1468 0.4682 0.2391 0.3987
0.1 0.1706 0.1400 0.1458 0.1795 0.1 0.3991 0.2918 0.2782 0.3804

UK-EU JAP-US
0.01 0.0261 0.0110 0.0405 0.0056 0.01 0.7506 0.7506 0.7835 0.6933
0.025 0.2243 0.2243 0.0536 0.0273 0.025 0.6854 0.5434 0.7139 0.4552
0.05 0.6634 1.0000 0.2337 0.2970 0.05 0.3840 0.3840 0.7533 0.9973
0.1 0.8330 0.7518 0.5014 0.9911 0.1 0.1138 0.0269 0.2744 0.2612

CAN-US UK-US
0.01 0.5250 0.5250 0.6791 0.9069 0.01 0.5250 0.2036 0.6439 0.4498
0.025 0.3112 0.4178 0.2289 0.3698 0.025 0.6854 0.6854 0.3571 0.2175
0.05 0.8846 0.8846 0.4781 0.5771 0.05 0.3840 0.3840 0.9611 0.9400
0.1 0.2918 0.0917 0.4200 0.3458 0.1 0.0731 0.0084† 0.2138 0.1612

Panel 2: Short
Nasdaq TAIEX

0.01 0.0042† 0.0110 0.0123† 0.0210 0.01 0.0261 0.1120 0.0377 0.2859
0.025 0.0151 0.0259 0.0016 0.0068 0.025 0.0085 0.0151 0.0068 0.0845
0.05 0.0023 0.0023 0.0015 0.0027 0.05 0.0422 0.0295 0.0014 0.0083
0.1 0.0917 0.0114 0.0023 0.0007 0.1 0.4606 0.0269 0.0160 0.0054

Bovespa CAC
0.01 0.2036 0.0565 0.0707 0.0003 0.01 0.3404 0.5250† 0.5995 0.9249
0.025 0.8395 0.6854 0.6566 0.1933 0.025 0.0151 0.0259 0.0655 0.1101
0.05 1.0000 0.7717 0.9283 0.8175 0.05 0.0295 0.0090 0.0205 0.0172
0.1 0.8330 0.6733 0.8464 0.9332 0.1 0.0114 0.0016 0.0077 0.0019

DAX Eurostoxx
0.01 0.5250† 0.5250† 0.5922 0.7986 0.01 0.3404 0.5250 0.5490 0.8820
0.025 0.4178 0.4178 0.3493 0.6370 0.025 0.0085 0.0085 0.0525 0.0906
0.05 0.1105 0.0422 0.1811 0.2122 0.05 0.1105 0.0817 0.0199 0.0149
0.1 0.0061 0.0003 0.0201 0.0093 0.1 0.0153 0.0114 0.0228 0.0063

UK-EU JAP-US
0.01 0.7506 0.1120 0.7722 0.0365 0.01 1.0000† 0.0005 0.7174 0.0006
0.025 0.5434 0.1052 0.8718 0.0461 0.025 0.6854 0.3112 0.5265 0.0193
0.05 0.7717 1.0000 0.8511 0.2698 0.05 0.7717 0.7717 0.7282 0.3822
0.1 0.6733 0.3991 0.8902 0.7994 0.1 0.7518 0.1706 0.9344 0.6414

CAN-US UK-US
0.01 0.7506 0.3404 0.8799 0.2476 0.01 1.0000 0.2036 0.9944 0.1202
0.025 0.8395 0.6845 0.8825 0.2682 0.025 1.0000 0.5434 0.9799 0.2548
0.05 0.3840 0.3840 0.7402 0.4472 0.05 0.2457 0.2457 0.5641 0.1940
0.1 0.0269 0.0917 0.1016 0.1571 0.1 0.9161 0.8330† 0.6027 0.5475

This table reports the p-values of the tests for the VaR and ES unconditional backtesting for both C-SNP-GJR and
ST-GJR models. The coverage level is α = {0.01, 0.025, 0.05, 0.1} for both long and short positions in Panels 1 and 2,
respectively. The symbol † denotes rejection of the null at 5% level for the conditional backtest (these p-values, with
Box-Pierce test statistic asymptotically distributed χ2

5
, are available upon request). The data consists of daily return

series from five stock indexes: Nasdaq, TAIEX, Bovespa, CAC, DAX, Eurostoxx, and four FX: UK-EU, JAP-US,
CAN-US and UK-US. T = 5, 218 observations from September 29, 1997 to September 27, 2017. Predictions: 1, 000.
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Table 8 presents some summary statistics of the data analyzed in this section. The top panel presents

sample moments only for the in-sample daily percent log returns. The kurtosis coeffi cients reveal the stock

return distributions are highly leptokurtic (median kurtosis is 10.883). In contrast with the stock indexes in

Table 1, the skewness of the single stocks is predominantly positive (median skewness is 0.069).

4.2 Model and estimation of individual stock returns

The estimation of the parameters for each stock return series, rj,t, is in two stages as in our backtesting

procedure in subsection 3.3. For the first stage, we estimate by QML the conditional mean and variance

under the specification from Oh and Patton (2017), i.e. the AR(1) -GJR(1,1) model augmented with lagged

market (S&P 100) return information for the stock return series, then

rj,t = γ0j + γ1jrj,t−1 + γmjrm,t−1 + εj,t, εj,t = σj,tzj,t, j = 1, ..., 90 (42)

σ2
j,t = α0j + βjσ

2
j,t−1 + α+

1j

(
ε+
j,t−1

)2
+ α−1j

(
ε−j,t−1

)2
+ δ+

mj

(
ε+
m,t−1

)2
+ δ−mj

(
ε−m,t−1

)2
, (43)

such that εm,t is the demeaned market return. Onwards, we refer to model in (42) - (43) as AR1-GJRA where

AR1 and GJRA denote the conditional mean and variance in (42) and (43), respectively. The bottom panel

of Table 8 exhibits information on the parameter estimates of the AR1-GJRA for the in-sample period.

Our estimates of the mean equation show a small positive AR(1) coeffi cient, γ1j , that is significant only

for 7% of the stocks, and an estimate for the lagged market return parameter, γmj , that is predominantly

negative, larger in magnitude than γ1j and significant for 31% of the stocks. The GJRA parameter estimates

show that most stock returns exhibit typical volatility clustering and high persistence in volatility, as well

as asymmetric response of volatility to positive and negative news. Furthermore, the GJRA asymmetric

response is in average greater to market shocks than to individual ones. We find evidence of leverage effect

since the average estimate of α−1j is higher than that of α
+
1j , namely 0.068 > 0.023. The second stage consists

of using the QML standardized returns, i.e. zj,t = εj,t/σj,t, to estimate by ML the parameters of alternative

specifications of the SNP distribution. It can be seen in the bottom panel that the estimated standardized

returns are non-Gaussian since the C-SNP parameters ϕ01j and ϕ02j are significant for 100% and 98% of

the stocks, respectively. In the next subsections, we will only consider for building portfolios the AL0-SNP

out of all TV-SNP models we used in section 3. Note that AL0-SNP is the most parsimonious model and

a very good candidate according to the SIC for model selection (see footnote 8). The parameter estimates

show evidence of larger response of νj,2t to positive rather than to negative shocks, whilst the response of

νj,1t to shocks is more symmetric (see median values).
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Table 8: Summary statistics of S&P 100 stocks and estimation results

Cross-sectional distribution

In-sample period: 11/4/2004-12/7/2009

Mean 5% 25% Median 75% 95% M

Daily obs. 1,282

Mean

Std. dev.

Skewness

Kurtosis

0.010

2.318

-0.018

13.936

-0.054

1.310

-0.767

7.190

-0.014

1.697

-0.213

8.650

0.013

2.057

0.069

10.883

0.029

2.688

0.283

14.893

0.098

4.105

0.837

24.162

Conditional mean

γ0 0.032 -0.026 0.001 0.024 0.051 0.126 0.03

γ1 0.010 -0.094 -0.024 0.012 0.052 0.096 0.07

γm -0.114 -0.240 -0.152 -0.126 -0.067 0.018 0.31

Conditional variance

α0 0.158 0.016 0.044 0.074 0.126 0.577 0.42

β 0.875 0.724 0.856 0.888 0.916 0.953 0.76

α+1 0.023 0.000 0.000 0.013 0.037 0.071 0.11

α−1 0.068 0.000 0.026 0.062 0.094 0.182 0.37

δ+m 0.035 0.000 0.000 0.000 0.024 0.176 0.09

δ−m 0.176 0.020 0.070 0.128 0.203 0.533 0.42

C-SNP

ϕ01 0.748 0.406 0.647 0.724 0.807 1.218 1

ϕ02 0.347 0.170 0.270 0.334 0.398 0.618 0.98

AL0-SNP

ϕ01 0.732 0.202 0.614 0.711 0.840 1.260 0.96

ϕ+21 0.003 -0.524 -0.185 0.029 0.190 0.459 0.66

ϕ−21 -0.019 -0.629 -0.195 0.026 0.182 0.461 0.57

ϕ02 0.355 0.012 0.246 0.345 0.481 0.628 0.88

ϕ+22 -0.054 -0.420 -0.173 -0.052 0.043 0.302 0.53

ϕ−22 -0.038 -0.422 -0.147 0.006 0.083 0.200 0.37

Model (AR1-AL0-SNP-GJRA):
rj,t = γ0j + γ1jrj,t−1 + γmjrm,t−1 + εj,t, εj,t = σj,t (θ) zj,t, j = 1, . . . , 90, zj,t ∼ g (zj,t;νj,t) , νj,t = (νj,1t, νj,2t) ,
σ2j,t = α0j + βjσ

2
j,t−1 + α+1j

(
ε+j,t−1

)2
+ α−1j

(
ε−j,t−1

)2
+ δ+mj

(
ε+m,t−1

)2
+ δ−mj

(
ε−m,t−1

)2
,

νj,it = ϕ0ij + ϕ+2ij
(
z+j,t−1

)2
+ ϕ−2ij

(
z−j,t−1

)2
, i = 1, 2.

The top panel presents some summary statistics of the in-sample daily log returns of the stocks that constitute the
S&P 100 index used in this study. The columns present the mean, median and percentiles from the cross-sectional
distribution of the measures listed in the rows. The bottom panel presents the associated cross-sectional analysis for
(i) the QML parameter estimates from the AR1-GJRA model for the conditional mean and variance and (ii) the ML
parameter estimates for the C-SNP and AL0-SNP specifications, which are listed in the rows. Note that j denotes
an individual stock from S&P 100, and M denotes the number of stocks out of 90 (in %) with significant parameter
estimates at 5% level.
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4.3 Time-varying portfolio selection

Through our constant-sized rolling window, we obtain the estimations of a battery of PMs across the OOS

period for each individual stock and setting a zero mean return as the threshold, θ = 0. We compute a total

of thirteen conditional PMs, namely: Sharpe ratio (SR), skewness-kurtosis ratio (SKR),13 Sortino, Omega

and Upside potential ratios, as well as VaR ratio (VaRR) and the Rachev or expected tail ratio (ETR) for

the levels of α: 1%, 5%, 10% and 20%. These PMs can be seen in detail in Appendix 2.

Next, we explain the steps to construct the different portfolios. First, the last day of each window, we

compute all PMs based on the one-day-ahead forecast of the conditional mean, variance and νj,it for each

stock assuming the AR1-AL0-SNP-GJRA specification. Second, the stocks are ranked on the basis of each

PM and then, we select the ten best-ranked stocks to build initially an equally-weighted (EW) portfolio,

i.e. wk,t = 1/10 where k = 1, ..., 10. We keep this portfolio for the next 5 days to then, compute the daily

portfolio returns for these five days. Third, by rolling the window every five days, we repeat the previous two

steps a total of 396 times and change each time the portfolio composition according to the equity screening

from the different PMs. Fourth, we obtain thirteen OOS portfolio return series of 1, 980 daily observations.

We label each of these return series according to the selected PM.

We also repeat the above procedure but changing now the rebalancing frequency. So, we estimate

each stock return model under the OOS period every 22 days (monthly frequency) and 10 days (biweekly

frequency). Thus, these two rebalancing horizons account for 90 and 198 estimations, respectively.

Figure 3 represents the spreads between the cumulative returns on each portfolio and the SR during

the OOS period for the three different rebalancing periods. It is exhibited that the size of spreads - notice

the scale in the vertical axis - becomes much higher under both SKR and ETRs, except for the ETR (95,5).

Negative spreads, displayed the majority of days, are obtained under monthly frequencies in many portfolios.

We also find that VaRR portfolios show positive spreads in most cases under biweekly frequency except for

the VaRR (80,20) where, surprisingly, the monthly frequency cumulative returns are consistently higher.

Finally, unlike the Omega portfolio, we obtain positive spreads under both Sortino and Upside potential

portfolios for weekly frequency.

Finally, a similar analysis, not presented here to save space, was carried out for the spread with respect

the S&P 100 index returns. Again, the portfolios with the best performance correspond to both ETR and

SKR strategies. The monthly rebalancing yields lower performance although rather better than in the case

displayed in Figure 1.

13The unconditional version of the SKR may be inapplicable in portfolio choice mainly due to the problem of possibly infinite

unconditional kurtosis (see Table 3). Nevertheless, this problem can be overcome using the conditional version of the SKR.
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4.4 Weighting schemes and robustness analysis

We have previously applied the naive EW portfolio rule. Here, we are interested in the relative portfolio

performances, under the PMs used in the previous section, but now adopting different rules to set up portfolio

weights. Thus, we consider the following schemes. First, the shortsale-constrained global-minimum-variance

(GMV) portfolio, i.e. ŵt = arg minw
′

tΩ̂twt s.t. w
′

tl = 1 and wt ≥ 0, where Ω̂t is the estimated conditional

covariance matrix of order 10 and l is a column vector of ones. Second, the volatility timing (VT) portfolio,

i.e. ŵk,t =
(

1/σ̂2
k,t

)
/
∑10
k=1

(
1/σ̂2

k,t

)
where σ̂2

k,t is the estimated conditional variance. Third, the reward-to-

risk timing (RRT) portfolio, i.e. ŵk,t =
(
µ̂+
k,t/σ̂

2
k,t

)
/
∑10
k=1

(
µ̂+
k,t/σ̂

2
k,t

)
where µ̂+

k,t = max(µ̂k,t, 0) with µ̂k,t

denoting the estimated conditional mean. For more details about these weighting schemes, see Kirby and

Ostdiek (2012).

To proceed with the weighting scheme’s comparison, we compute the cumulative portfolio daily return

spreads for each PM strategy under the GMV, VT and RRT schemes with respect to the EW one. These

spread series are exhibited in Figure 4, and only for the weekly rebalancing frequency.14 Our results show that

(i) the RRT scheme overall dominates the rest of the weighting schemes for all PMs consistently across the

OOS period except for both ETR (80,20) and, sometimes, VaR (80,20); (ii) the GMV tends to significantly

underperform the other schemes for all PMs except for both ETR (80,20) and, sometimes, VaR (80,20); (iii)

the VT scheme yields portfolio returns between those obtained under the previous two weighting methods;

and (iv) GMV performs less well (negative spread) than the EW portfolio for most PMs. As a result, we

show that portfolio performance is significantly sensitive to alternative schemes to the naive diversification.

Besides, we find similar results for the SR portfolios which are not displayed in Figure 4.

Finally, as a robustness check although not reported here, we have also provided a comparative analysis

of the AR1-AL0-SNP-GJRA model with the HS approach. To do so, we have repeated the exercise presented

in the previous section but now using HS to obtain PM portfolio return spreads with respect to SR. For

instance, for weekly rebalancing and the EW scheme under either constant-sized rolling or expanding window

methods, we find that the weekly portfolio return series in Figure 3 tend to dominate the corresponding HS

ones over the OOS period. This finding provides evidence on the superior performance of our parametric

model in regard to the HS method.

14The results for biweekly and monthly rebalancing are not presented but they are available from the authors.
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5 Conclusions

This paper develops the SNP density of León, Mencía and Sentana (2009) to incorporate time-varying

higher-order moments. First, we derive closed-form expressions of the unconditional variance and kurtosis

by assuming a conditional heteroscedastic variance model such as the GJR model, and the SNP density

with constant parameters for the innovations of asset returns, i.e. the C-SNP-GJR model. Second, we

aim to analyze better the finiteness of the unconditional kurtosis under the heavy-tailed power-law models

for financial returns. We obtain expressions for the conditional partial moments, quantiles and expected

shortfall (ES) under the C-SNP-GJR. Furthermore, relying on skewness-kurtosis frontiers, in-sample and

backtesting analyses, we compare the performance of forecasting VaR and ES between the C-SNP and the

popular skewed-t (ST) distribution of Hansen (1994) for modeling the innovations of several return series

of stock-indexes and foreign-exchange rates. We estimate robust tail-indexes based on the methodology of

Gabaix and Ibragimov (2011) for testing the finiteness of the first unconditional moments. We extend the

SNP to time-varying (TV) higher-order moments accounting for nonlinearity and asymmetric effects. Finally,

we implement performance measures (PM), based on our closed-form expressions of one-sided reward/risk

measures under the TV-SNP-GJR framework, and then carry out an equity screening exercise for ranking

stocks from the S&P 100 index depending on the selected PM. We examine the portfolios based on different

PM strategies with respect to the benchmark Sharpe ratio portfolio. Our results show that portfolio asset

allocation depends critically on the PM considered, as well as on the rebalancing periods and weighting

strategies.

Several interesting avenues for further research would be the following. First, obtaining the tail index

implied in the heavy-tailed unconditional distribution under the C-SNP-GJR model for testing better the

finiteness of the unconditional skewness and kurtosis. See, among others, Zhang, Li and Peng (2019) and Su

and Zhou (2014). Second, implementing the generalized autoregressive score for the SNP density as in Thiele

(2020). Finally, we could extend the consumption-based asset pricing model with higher-order cumulants in

Martin (2013) by assuming the SNP distribution to account for pure higher-order effects on the consumption

decision.
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Appendix 1: Proofs

i) Obtain the expression of mk (·):
Let x ∼ N (0, 1) with φ (·) and Φ (·) as pdf and cdf, respectively. We are interested in the moments of

the truncated Normal random variable defined as x |x ≤ u where u ∈ R. Thus, mk (u) = Eφ
[
xk |x ≤ u

]
where k ∈ N. A recursive formula for the truncated normal moments can be obtained as

mk (u) = (k − 1)mk−2 (u)− uk−1φ (u)

Φ (u)
, k = 1, 2, 3, ... (44)

where m−1 (u) = 0 and m0 (u) = 1. For more details, see Liquet and Nazarathy (2015).

ii) Obtain the expression of ξj (·):
Let ξj (u) =

∫ u
−∞ xjq (x) dx where j ∈ N and q (·) is the pdf in (5), then

ξj (u) =

∫ u

−∞
xjq (x) dx

=

4∑
k=0

γk

∫ u

−∞
xjHk (x)φ (x) dx

= Φ (u)

5∑
i=1

ηimj+i−1 (u) , (45)

such that mk (u) is defined in (44) and

η1 = 1− γ2√
2

+ 3γ4√
4!
, η2 = γ1 −

3γ3√
3!
,

η3 = γ2√
2
− 6γ4√

4!
, η4 = γ3√

3!
, η5 = γ4√

4!
,

(46)

where γk can be seen in (6). Note that ξ0 (u) = Φ (u)
∑5
i=1 ηimi−1 (u) is just the SNP cdf given in (10).

iii) Proof of Proposition 3: The expected shortfall, ESt (α), is obtained as

Et−1 (rt |rt ≤ rα,t ) =
1

α

∫ rα,t

−∞
rtf (rt |It−1;ψ ) drt

=
1

α

∫ r∗α,t

−∞
(µt + atσt + btσtxt) q (xt |It−1 ) dxt

= κ0t +
κ1t

α

∫ r∗α,t

−∞
xtq (xt |It−1 ) dxt

= κ0t +
κ1t

α
ξ1t

(
r∗α,t
)

(47)

= κ0t +
κ1t

α
Φ
(
r∗α,t
) 5∑
i=1

ηitm1+i−1

(
r∗α,t
)

(48)

where r∗α,t = (rα,t − κ0t) /κ1t, κ0t = µt + atσt, κ1t = btσt and ξ1t (u) in (47) is computed according to ξ1 (u)

in (45) such that ηit in (48) is given by the expression of ηi in (46) but replacing νi with νi,t, and finally,

the expression mk (·) in (48) is defined in (44).
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Appendix 2: Conditional performance measures

Sharpe ratio

We start with the Sharpe (1966, 1994) ratio, denoted as SR, as our benchmark PM. A slightly different

version of SR is defined as (µt − θ) /σt, where θ is the return threshold (e.g., risk-free rate, zero return,...),
µt = E [rt |It−1 ] and σt =

√
V [rt |It−1 ] denote the conditional mean and volatility of the asset return. A

drawback of using SR for ranking assets occurs when the numerator is negative. Israelsen (2005) suggests

a modified version to overcome that problem: SRt (θ) = µt−θ
σ
sgn(µt−θ)
t

, where sgn (z) = z/ |z| if z 6= 0 and

sgn (z) = 0 if z = 0.

Skewness-kurtosis ratio

Watanabe (2006) suggests the simple skewness-kurtosis ratio, sr,t/kr,t, where sr,t and kr,t are defined in (20).

Again, higher rather than lower ratios are preferred. Since this PM may lead to ranking problems when

the numerator becomes negative, we propose a modified version based on Israelsen’s idea. Hereafter, our

conditional skewness-kurtosis ratio is SKRt =
sr,t

k
sgn(sr,t)
r,t

.

PMs based on partial moments

First, the Sortino ratio (Sortino and van der Meer, 1991) is the mean excess return, µt − θ, per unit of risk
measured by the square root of LPM of order 2 in (31). Note that this PM presents the same problem as the

previous measures since the numerator may be negative. As a solution, we propose the conditional modified

Sortino ratio: Sortinot (θ) = µt−θ(√
LPMt(θ,2)

)sgn(µt−θ) . Second, we use two conditional PMs which are special
cases of the Farinelli and Tibiletti (2008) ratio: FTt (θ, q,m) =

q
√
UPMt(θ,q)

m
√
LPMt(θ,m)

, with q > 0 and m > 0. The

higher the value for q, the greater the investor’s preference for expected gain, and the higher the value for

m the greater the investor’s dislike of expected losses. If q = m = 1, we have the Omega ratio (Keating and

Shadwick, 2002) and for q = 1 and m = 2, we have the Upside potential ratio (Sortino, van der Meer and

Platinga, 1999). These PMs will be represented as FTt (θ, 1, 1) and FTt (θ, 1, 2), respectively.

PMs based on quantiles

First, the VaRR (Caporin and Lisi, 2011) is defined as the ratio of the upper and lower quantiles given by

V aRRt (α) =
∣∣∣V aRt(1−α)
V aRt(α)

∣∣∣, where V aRt (α) = Q−1
t (α) and V aRt (1− α) = Q−1

t (1− α) are, respectively, the

conditional lower and upper quantiles of rt in (26). Second, the ETR or Rachev ratio (Biglova et al., 2004) is

defined as ETRt (α) =
∣∣∣ESt(−rt,α)
ESt(rt,α)

∣∣∣, where ESt (rt, α) is just the conditional ES in (27) with rt as the random

variable, while ESt (−rt, α) is the same but replacing rt with −rt. Thus, the numerator is the reward measure
corresponding to the right-hand side (gains) of the return distribution, Et−1 (rt |rt ≥ V aRt (1− α) ), while

the denominator is the risk measure defined as Et−1 (rt |rt ≤ V aRt (α) ). Finally, we can rewrite V aRRt (α)

as a quotient of conditional lower quantiles, i.e. V aRt (α) = V aRt (rt, α) and V aRt (1− α) = V aRt (−rt, α).
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Appendix 3: Confidence interval of E
(
c2t
)

The expression of E
(
c2t
)
in (17) under the Normal-GJR model is obtained as

E
(
c2t
)

= β2 + βα+
1 + βα−1 +

3

2

(
α+

1

)2
+

3

2

(
α−1
)2
.

To shorten, let E
(
c2t
)
be denoted as Γ. Note that Γ = Γ (Υ) is a nonlinear function ofΥ =

(
β, α+

1 , α
−
1

)′
. The

asymptotic distribution of the ML estimate Υ̂ is given by the following result:
√
T
(
Υ̂−Υ

)
a∼ N (0,ΩΥ),

where ΩΥ is the asymptotic covariance matrix. By applying the Delta method, the function Γ̂ = Γ
(
Υ̂
)
has

the following asymptotic distribution:

√
T
(

Γ̂− Γ
)
a∼ N

(
0, σ2

Γ

)
, σ2

Γ =
∂Γ

∂Υ′
ΩΥ

∂Γ

∂Υ
,

such that ∂Γ/∂Υ′ is a row vector containing all the partial derivatives of Γ, then

∂Γ/∂Υ =


∂Γ/∂β

∂Γ/∂α+

∂Γ/∂α−

 =


2β + α+

1 + α−1

β + 3α+
1

β + 3α−1

 .

The following table shows the 95% confidence interval for the true Γ = E
(
c2t
)
corresponding to the asset

returns in our paper:

Table A3: Normal-GJR point-estimates and confidence intervals of E
(
c2t
)

Nasdaq TAIEX Bovespa CAC DAX

E
(
c2t
)

0.996 0.993 0.956 0.996 0.989

95%CI (0.982, 1.010) (0.981, 1.005) (0.927, 0.984) (0.976, 1.016) (0.971, 1.007)

Eurostoxx UK-EU JAP-US CAN-US UK-US

E
(
c2t
)

0.995 0.997 0.983 0.998 0.990

95%CI (0.974, 1.015) (0.985, 1.008) (0.963, 1.002) (0.990, 1.007) (0.973, 1.007)

34



A
p
p
en
d
ix
4:
T
h
eo
re
ti
ca
l
qu
an
ti
le
s
fr
om

S
N
P
an
d
S
T
d
en
si
ti
es

T
ab
le
A
4:
T
he
or
et
ic
al
qu
an
ti
le
s
fr
om

SN
P
an
d
ST

de
ns
it
ie
s

N
as
da
q

T
A
IE
X

B
ov
es
pa

C
A
C

D
A
X

E
ur
os
to
xx

U
K
-E
U

JA
P
-U
S

C
A
N
-U
S

U
K
-U
S

P
an
el
1:
L
ef
t
ta
il

SN
P

1% 5%

-2
.7
67
6

-1
.7
04
4

-2
.7
68
9

-1
.6
43
5

-2
.6
70
1

-1
.6
30
6

-2
.5
31
0

-1
.6
41
6

-2
.5
45
0

-1
.6
45
0

-2
.4
83
0

-1
.6
30
5

-2
.3
25
9

-1
.6
15
4

-2
.6
54
8

-1
.5
88
3

-2
.3
92
5

-1
.6
26
5

-2
.4
03
0

-1
.6
11
7

ST
1% 5%

-2
.6
79
6

-1
.6
94
9

-2
.6
26
4

-1
.6
08
2

-2
.6
26
8

-1
.6
55
2

-2
.6
04
6

-1
.6
69
6

-2
.6
05
9

-1
.6
68
1

-2
.5
91
7

-1
.6
61
0

-2
.3
97
6

-1
.5
74
3

-2
.6
48
2

-1
.6
02
8

-2
.4
72
5

-1
.6
23
1

-2
.4
74
3

-1
.6
06
7

P
an
el
2:
R
ig
ht
ta
il

SN
P

95
%

99
%

1.
54
86

2.
16
59

1.
56
62

2.
20
73

1.
58
22

2.
23
55

1.
60
36

2.
26
69

1.
60
06

2.
26
12

1.
61
31

2.
28
56

1.
64
72

2.
34
68

1.
58
52

2.
24
93

1.
63
22

2.
31
82

1.
62
76

2.
31
48

ST
95
%

99
%

1.
52
80

2.
28
49

1.
56
18

2.
50
88

1.
55
90

2.
39
49

1.
56
31

2.
35
47

1.
56
31

2.
35
90

1.
57
02

2.
37
80

1.
65
38

2.
58
57

1.
55
11

2.
51
50

1.
62
05

2.
46
64

1.
62
32

2.
51
33

T
hi
s
ta
bl
e
ex
hi
bi
ts
th
eo
re
ti
ca
l
qu
an
ti
le
s
fo
r
1,
5,
95
an
d
99
p
er
ce
nt
le
ve
ls
fr
om

SN
P
an
d
ST

m
od
el
s
fo
r
st
oc
k-
in
de
x
an
d
F
X
st
an
da
rd
iz
ed
re
tu
rn
s
(T
=
5
,2
1
8

ob
se
rv
at
io
ns
).

35



References

[1] Abad, P., Muela, S. B., and Martín, C. L., 2015. The role of the loss function in value-at-risk comparisons.
The Journal of Risk Model Validation 9 (1), 1-19.

[2] Anatolyev, S., Petukhov, A., 2016. Uncovering the skewness news impact curve. Journal of Financial
Econometrics 14 (4), 746-771.

[3] Ankudinov, A., Ibragimov, R., Lebedev, O., 2017. Heavy tails and asymmetry of returns in the Russian
stock market. Emerging Markets Review 32, 200-219.

[4] Bai, X., Russell, J.R., Tiao, G.C., 2003. Kurtosis of GARCH and stochastic volatility models with
non-normal innovations. Journal of Econometrics, 114 (2), 349-360.

[5] Bali, T. G., Mo, H., Tang, Y., 2008. The role of autoregressive conditional skewness and kurtosis in the
estimation of conditional VaR. Journal of Banking and Finance 32 (2), 269-282.

[6] Bernardi, M., Catania, L., 2018. Portfolio optimisation under flexible dynamic dependence modelling.
Journal of Empirical Finance 48, 1-18.

[7] Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S., 2004. Different approaches to risk estimation in
portfolio theory. Journal of Portfolio Management 31 (1), 103-112.

[8] Boudt, K., Lu, W., Peeters, B., 2015. Higher order comoments of multifactor models and asset allocation.
Finance Research Letters 13, 225-233.

[9] Caporin, M., Lisi, F., 2011. Comparing and selecting performance measures using rank correlations.
The Open-Access, Open-Assessment E-Journal 5, 1-34.

[10] Christoffersen, P.F., 1998. Evaluating interval forecasts. International Economic Review 39, 841-862.

[11] Du, Z., and Escanciano, J. C., 2017. Backtesting expected shortfall: accounting for tail risk.Management
Science 63 (4), 940-958.

[12] Escanciano, J. C., Olmo, J., 2010. Backtesting parametric value-at-risk with estimation risk. Journal of
Business and Economic Statistics 28 (1), 36-51.

[13] Farinelli, S., Tibiletti, L., 2008. Sharpe thinking in asset ranking with one-sided measures. European
Journal of Operational Research 185, 1542-1547.

[14] Feunou, B., Jahan-Parvar, M.R., Tédongap, R., 2016. Which parametric model for conditional skewness?
European Journal of Finance 22 (13), 1237-1271.

[15] Fishburn, P.C., 1977. Mean-risk analysis with risk associated with below-target returns. American
Economic Review 67 (2), 116-126.

[16] Gabaix, X., Gopikrishnan, P., Plerou, V., and Stanley, H.E., 2006. Institutional investors and stock
market volatility. The Quarterly Journal of Economics 121 (2), 461-504.

[17] Gabaix, X., 2009. Power laws in economics and finance. Annual Review of Economics 1 (1), 255-294.

[18] Gabaix, X., Ibragimov, R., 2011. Rank-1/2: a simple way to improve the OLS estimation of tail
exponents. Journal of Business and Economic Statistics 29, 24-39.

[19] Gallant, A.R., Nychka, D.W., 1987. Semi-nonparametric maximum likelihood estimation. Econometrica
55, 363-390.

[20] Giot, P., Laurent, S., 2003. Value-at-risk for long and short trading positions. Journal of Applied
Econometrics 18 (6), 641-663.

[21] Glosten, R.T., Jagannathan, R., Runkle, D., 1993. On the relation between the expected value and the
volatility of the nominal excess return on stocks. Journal of Finance 48 (5), 1779-1801.

36



[22] Gu, Z., Ibragimov, R., 2018. The “Cubic Law of the Stock Returns” in emerging markets. Journal of
Empirical Finance 46, 182-190.

[23] Hansen, B.E., 1994. Autoregressive conditional density estimation. International Economic Review 35
(3), 705-730.

[24] He, C., Terasvirta, T., 1999. Properties of moments of a family of GARCH processes. Journal of
Econometrics 92, 173-192.

[25] Ibragimov, M., Ibragimov, R., Kattuman, P., 2013. Emerging markets and heavy tails. Journal of
Banking and Finance 37 (7), 2546-2559.

[26] Ibragimov, M., Ibragimov, R., Walden, J., 2015. Heavy-tailed distributions and robustness in economics
and finance. Springer, New York.

[27] Israelsen, C.L., 2005. A refinement of the Sharpe ratio and information ratio. Journal of Asset
Management 5 (6), 423-427.

[28] Jondeau, E., Rockinger, M., 2001. Gram-Charlier densities. Journal of Economic Dynamics and Control
25 (10), 1457-1483.

[29] Jondeau, E., Rockinger, M., 2003. Conditional volatility, skewness and kurtosis: Existence, persistence,
and comovements. Journal of Economic Dynamics and Control 27, 1699-1737.

[30] Jondeau, E., Rockinger, M., 2006. Optimal portfolio allocation under higher moments. European
Financial Management, 12 (1), 29-55.

[31] Keating, C., Shadwick, W.F., 2002. A universal performance measure. Journal of Performance
Measurement 6 (3), 59-84.

[32] Kesten, H., 1973. Random difference equations and renewal theory for products of random matrices.
Acta Mathematica 131, 207-248.

[33] Kirby, C., Ostdiek, B., 2012. It’s all in the timing: Simple active portfolio strategies that outperform
naive diversification. Journal of Financial and Quantitative Analysis 47, 437-467.

[34] Komunjer, I., 2007. Asymmetric power distribution: Theory and applications to risk measurement.
Journal of Applied econometrics 22 (5), 891-921.

[35] Kupiec, P., 1995. Techniques for verifying the accuracy of risk measurement models. Journal of
Derivatives 2, 174-184.

[36] Lalancette, S., Simonato, J.G., 2017. The role of the conditional skewness and kurtosis in VIX index
valuation. European Financial Management 23 (2), 325-354.

[37] León, A., Rubio, G., Serna, G., 2005. Autoregressive conditional volatility, skewness and kurtosis.
Quarterly Review of Economics and Finance 45, 599-618.

[38] León, A., Mencía, J., Sentana, E., 2009. Parametric properties of semi-nonparametric distribution, with
applications to option valuation. Journal of Business & Economic Statistics 27 (2), 176-192.

[39] León, A., Moreno, M., 2017. One-sided performance measures under Gram-Charlier distributions.
Journal of Banking & Finance 74, 38-50.

[40] León, A., Navarro, L., Nieto, B., 2019. Screening rules and portfolio performance. North American
Journal of Economics and Finance 48, 642-662.

[41] León, A., Ñíguez, T.M., 2020. Modeling asset returns under transformed Gram Charlier. Westminster
Business School, Working Paper No 1.

[42] Ling, S., McAleer, M., 2002. Stationarity and the existence of moments of a family of GARCH processes.
Journal of Econometrics 106 (1), 109-117.

37



[43] Liquet, B., Nazarathy, Y., 2015. A dynamic view to moment matching of truncated distributions.
Statistics and Probability Letters 104, 87-93.

[44] Martin, I.W., 2013. Consumption-based asset pricing with higher cumulants. Review of Economic
Studies, 80 (2), 745-773.

[45] Mencía, J., Sentana, E., 2018. Volatility-related exchange traded assets: An econometric investigation.
Journal of Business and Economic Statistics 36 (4), 599-614.

[46] Mikosch, T., Starica, C., 2000. Limit theory for the sample autocorrelations and extremes of a GARCH
(1,1) process. The Annals of Statistics 28 (5), 1427-1451.

[47] Ñíguez, T.M., Paya, I., Peel, D., Perote, J., 2019. Flexible distribution functions, higher-order
preferences and optimal portfolio allocation. Quantitative Finance 19 (4), 699-703.

[48] Oh, D.H., Patton, A.J., 2017. Modeling dependence in high dimensions with factor copulas. Journal of
Business and Economic Statistics 35 (1), 139-154.

[49] Pézier, J., White, A., 2008. The relative merits of alternative investments in passive portfolios. Journal
of Alternative Investments 10 (4), 37-49.

[50] Sharpe, W.F., 1966. Mutual fund performance. Journal of Business 39, 119-138.

[51] Sharpe, W.F., 1994. The Sharpe ratio. Journal of Portfolio Management 21, 49-58.

[52] Sortino, F.A., van der Meer, R., 1991. Downside risk. Journal of Portfolio Management 17 (4), 27-31.

[53] Sortino, F.A., van der Meer, R., Platinga, A., 1999. The Dutch triangle. Journal of Portfolio
Management 26, 50-57.

[54] Sun, P., Zhou, C., 2014. Diagnosing the distribution of GARCH innovations. Journal of Empirical
Finance 29, 287-303.

[55] Theodossiou, P., 1998. Financial data and the skewed generalized t distribution. Management Science
44, 1650-1661.

[56] Thiele, S., 2020. Modelling the conditional distribution of financial returns with asymmetric tails.
Journal of Applied Econometrics 35 (1), 46-60.

[57] Vuong, Q.H., 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica,
307-333.

[58] Watanabe, Y., 2006. Is Sharpe ratio still effective? Journal of Portfolio Measurement 11 (1), 55-66.

[59] Xiong, J.X., Idzorek, T. M., 2011. The impact of skewness and fat tails on the asset allocation decision.
Financial Analysts Journal 67 (2), 23-35.

[60] Zhang, R., Li, C., Peng, L., 2019. Inference for the tail index of a GARCH (1, 1) model and an AR (1)
model with ARCH (1) errors. Econometric Reviews 38 (2), 151-169.

[61] Zhu, D., Galbraith, J.W., 2011. Modeling and forecasting expected shortfall with the generalized
asymmetric Student-t and asymmetric exponential power distributions. Journal of Empirical Finance
18, 765-778

[62] Zoia, M.G., Biffi , P., Nicolussi, F., 2018. Value at Risk and Expected Shortfall based on Gram-Charlier-
like expansions. Journal of Banking and Finance 93, 92-104.

38


