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Quantization Effects in the PolyphaseN -Path IIR
Structure

Artur Krukowski, Richard Charles Spicer Morling, Member, IEEE, and Izzet Kale, Member, IEEE

Abstract—Polyphase IIR structures have recently proven them-
selves very attractive for very high performance filters that can
be designed using very few coefficients. This, combined with their
low sensitivity to coefficient quantization in comparison to stan-
dard FIR and IIR structures, makes them very applicable for very
fast filtering when implemented in fixed-point arithmetic. How-
ever, although the mathematical description is very simple, there
exist a number of ways to implement such filters. In this paper, we
take four of these different implementation structures, analyze the
rounding noise originating from the limited arithmetic wordlength
of the mathematical operators, and check the internal data growth
within the structure. These analyses need to be done to ensure that
the performance of the implementation matches the performance
of the theoretical design. The theoretical approach that we present
has been proven by the results of the fixed-point simulation done
in Simulink and verified by an equivalent bit-true implementation
in VHDL.

Index Terms—Digital filters, dynamic range analysis, polyphase
IIR structure, quantization effects, quantization noise, roundoff
noise.

I. INTRODUCTION

ONE OF the important implementation issues, which have
to be considered during the design of the architecture for

any type of filter, is the storage requirement for the internal cal-
culations. The size of the memory has to be such that it does
not cause the loss of precision due to rounding effects of the
results of internal multiplications and summations. It happens
very often, especially for IIR filters having a feedback loop, that
even if the input and output samples are limited to unity and are
represented with -bits, the internal values might have values
well above one (even infinitely large values for unity allpass co-
efficient) and might require many more bits thanin order to
provide a reliable output. Additionally, there may be a big dif-
ference between internal values. The result of one summation
can be below unity; the output of the other one may be very
large. This makes for many problems in the implementation, as
it would require varying the position of the decimal point

(1)
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Fig. 1. General polyphase structure.

The general polyphase IIR structure [1]–[3] is given in Fig. 1
and described by (1). It incorporatesth-order allpass sub-
filters, , that can be implemented both in floating-point
and in fixed-point arithmetic using any combination of struc-
tures shown in Fig. 2. Because of the small number of cal-
culations required per filter order and very high performance,
such a structure is very attractive for fixed-point implemen-
tation like for decimation filters for high-accuracy A/D con-
verters [4]. It is advantageous over the floating-point one in
terms of calculation speed, area on the integrated circuit, and
the total power consumption. The disadvantage is that the fixed-
point implementation is subject to such effects as quantization
noise, caused by quantizing the result of multiplications and
summations to the internal arithmetic wordlength, and limit-
cycle oscillations—repetitive flipping of the least significant bit
(LSB)—caused by the chosen quantization scheme. The effect
of the quantization noise can be reduced at the time of designing
the filter. For example, for the lowpass filter design, knowing the
passband and stopband ripples, the arithmetic wordlength will
be chosen such that the estimated overall quantization noise falls
below the level of filter ripple. It will be shown later in this paper
how this noise characteristic can be determined, assessed and
applied in the filter design. The second quantization effect can
be limited by the appropriate selection of the quantization (loss
of precision) schemes and the choice of the internal arithmetic
wordlength.

Using any type of fixed-point binary arithmetic with a uni-
form quantization step size, whether it is signed binary, one or
two’s complement, will cause errors due to product quantization
and due to register overflow after additions. In the filtering op-
eration, where a number of multiplications and additions are un-
dertaken, the error will accumulate, causing in the most drastic
cases wrong filtering results. Therefore, proper care has to be
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Fig. 2. Peak gains for different allpass structures.

taken to avoid or minimize the effect of the arithmetic quan-
tization error. The error due to product quantization is caused
by the fact that a product of two fixed-point numbers with
and bits, respectively, will yield a new number that requires

bits for its nonerror representation. On the other
hand, an addition of the same two numbers yields a result that
requires at most bits. In the digital filter im-
plementation, the signal values are multiplied with the filter co-
efficients, and the result is usually constrained back to the orig-
inal signal wordlength. It is not feasible to allow the increase in
the number of bits at every product calculation, especially when
a recursive filter structure is used, as the wordlength would keep
growing too rapidly toward infinity after successive multiplica-
tions. It is commonly used in the literature to model the product
quantization as an additive disturbance

(2)

where denotes the quantization operation on the argu-
ment signal and is the disturbance due to quantization.
Assuming that the quantization noise for the-bit data path
length is caused by variation of the LSB , then to
a first approximation the quantization error can be modeled as
a white noise source with power of
[5], [6]. Such an approximation is used very often in modeling
quantization effects [6], [7] even if it does not consider such
effects like the loss of precision, when the data needs to be
represented with a smaller number of bits than is required for

keeping it in full precision, and the correlation between the
quantization noise and an input signal. The method of mod-
eling the quantization process more accurately by considering
the loss of precision mechanisms can be found in [8]. The
correlation between the quantization noise and the structure of
the input signal is explained in [9], [10]. There are a number
of different quantization schemes: truncate, round to infinity,
round to zero, round, and convergent round. These differ in dc
offset (bias) and number of loss bits to consider. For most of the
quantization schemes, except for the simple truncation, the LSB
and some of the discarded bits need to be considered to derive
the final quantized value. This requires more complicated
hardware to perform the quantization. For applications when
dc bias is detrimental, the loss of precision should be carefully
considered. There are only two quantization schemes that are
dc bias free: round-to-zero and convergent-round. This is due
to the results of the quantization being rounded up and down
with, statistically, equal probability.

II. PEAK GAINS ALONG ALLPASSFILTER STRUCTURES

When looking at the whole structure of the polyphase filter
in Fig. 1, it can be seen that it does not have any feedback. The
block, which makes the polyphase structure an IIR one, creating
local feedback loops, is the allpass filter . For the purpose
of our analysis we made an assumption that the input signal, just
like the filter coefficients, is less than or equal to one. Such an
approach, where there are no integer bits and the whole data is
the mantissa, simplifies the analysis of both the values of the
internal calculation and assessment of the quantization noise.

When the input signal is limited to unity, then the output of the
allpass filter is also limited to unity. Therefore, the summation of
two such filters would require one extra bit to represent the result
of the addition without loss of precision. In most practical cases,
application of the structure in Fig. 1 is used with the number of
paths equal to the power of two, i.e., with being an
integer. In such a case, the output scaling bycan be realized as
a simple -bit right-shift operation, moving the fractional point
by bits. Regarding the th-order allpass filters themselves,
they can be, in principle, implemented in at least four different
ways, as shown in Fig. 2. They differ in terms of the number of
summations and multiplications as well as the arrangement of
their numerator and denominator parts—which one is first and
which one is second.

The important distinction between the structures is the value
of the results of the internal multiplications and summations,
which influences the memory size requirements. These results
are dependent not only on the value of the allpass coefficient, but
also on the frequency of the input signal. In order to assess how
big the internal value may become (its dynamic range), transfer
functions of internal calculations (TFIC) have to be determined
for each allpass filter structure between the input of the filter
(limited to unity) and the input to each of the delayers (imple-
mented as a memory). In other words, this has to be done only
for outputs of each adder. As filter coefficients are less than one
for the polyphase structure, multipliers will not contribute to the
increase of the peak internal value. The dynamic range anal-
ysis can be done without considering the quantization effects
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Fig. 3. Peak gains for coefficient values0 < � < 1 for allpass structures from Fig. 2 (N = 2).

because of the several order of magnitude differences in value
between the one and the other. The transfer functions in ques-
tion have been determined for all of the allpass filter structures
and are presented in Fig. 3.

Those transfer functions have been evaluated for a range of
coefficient values between zero and one, and the resulting mag-
nitude responses are shown in Fig. 3. These plots clearly illus-
trate how only one structure [Fig. 2(c)] has TFIC magnitude
responses limited to a finite value of two for any frequency
and independent of the coefficient value. All the other ones are
peaking at half-Nyquist ( ) to very large numbers. This
means for such structures that, if the input signal has frequency
components close to half-Nyquist, then the results of the in-
ternal multiplication and summations may well have very large
values, causing problems with different positioning of the frac-
tional point in different parts of the system or inaccuracy of the
final result.

The verification of the theoretical analysis has been done by
applying various input signals to the fixed-point model of the
polyphase filter designed using the fixed-point blockset from
Simulink™: single tones at various frequencies, impulse, wide-

band signals as well as noise sources and speech. The simulation
results matched the theory. The maximum values at the points
of interest were below limits given in Fig. 2, derived for an im-
pulse input.

Only one structure, in the numerator–denominator (N–D) ar-
rangement, does not suffer from such effects. For the dc, half-
Nyquist, and Nyquist frequencies, the memory will store very
small numbers. The maximum values are for two frequencies:

and . This can be taken care of by in-
creasing the size of the memory by one additional integer guard
bit. The advantage of this allpass structure is that it makes it
easy to create higher order allpass filters, simply by cascading a
number of such structures together (Fig. 4), sharing one delayer
between each pair of allpass sections.

III. QUANTIZATION NOISEDUE TO ROUNDING OFARITHMETIC

In the polyphase filter, like in any other filter, quantization has
to be performed on the result of any arithmetic operation. This
is because any such operation requires more bits to represent
the result than is required for each of the operands. If the
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(a) (b)

Fig. 4. (a) Using a one-coefficient allpass section (b) to form higher order allpass filters.

wordlength were always to be adjusted to store the data in full
precision, this would be impractical, as there would soon be
too many bits required to be stored in the available memory.
Therefore, the wordlength of the internal data,, has to be
chosen, and the result of any arithmetic operation has to be
constrained back to using the quantization scheme chosen
from the ones shown in the previous section, as appropriate
for the given application. The quantization effects in allpass
filters have been studied in different publications [5], [10].
This paper concentrates on the analysis of the special case
of the polyphase structure detailed in Fig. 1, incorporating
allpass filters as shown in Fig. 2.

The quantization operation may cause a disturbance to the re-
sult of the arithmetic operation. For normal filtering operations,
such a quantization disturbance can usually be successfully con-
sidered as white noise and modeled as an additive noise source
at the point of the arithmetic operation with the quantization step
equal to the LSB of the internal data, . This cer-
tainly is not the case for zero-valued or constant input signals.
However, modeling the quantization has—in most cases—the
purpose of determining the maximum noise disturbance in the
system. Hence, even if the additive quantization noise model
gives overestimated values of the noise for very specific sig-
nals, this fact does not decrease the usefulness of the approach.
After the shape of the quantization noise power spectral den-
sity (NPSD) is found, it can be used to identify regions that
might cause overloading or loss of precision due to arithmetic
noise shaping; also the required input signal scaling and the re-
quired internal arithmetic wordlength can be estimated for a
given noise performance. The standard methods of estimating
the maximum signal level at a given node are L1-norm (modulus
of the impulse response—worst-case scenario), L2-norm (statis-
tical mean-square), and L-norm (peak in frequency domain
giving the effect of the input spectral shaping). These norms
can be easily estimated for the given node from the shape of
the NPSD.

The quantization noise injected at each adder and multiplier,
originally spectrally flat, is shaped by the noise shaping function
(NSF), , calculated from the output of the filter to the
input of each of the noise sources, i.e., to the output of each
of the arithmetic operators. These functions were calculated
for all of the allpass filter structures from Fig. 2 and are
shown in Fig. 5. The shapes of the nontrivial of the NFS
are shown in Fig. 6.

The accumulated quantization NPSD transferred to the
output, , is obtained by shaping the uniform NPSD
from each of the quantization noise sources by the square of

Fig. 5. Quantization noise-shaping functions for selected test points of the
allpass structures.

the magnitude of the NFS corresponding to the given noise
injection point and can be described by (3)

(3)

The results show that all structures perform in a way very
distinctfromtheotherones.Structure(a)hasthebestperformance
at dc, half-Nyquist , and Nyquist , where
the NPSD falls toward minus infinity. Its two maxima are
symmetric about and independent of the coefficient
value. The peaks are distant from for small coefficient
values and approaches it as the coefficient increases. Structure
(b) has uniform noise spectral distribution as all the arithmetic
operations are either at the filter input—then noise is shaped
by the allpass characteristic of the whole filter—or at its
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Fig. 6. Shapes of NFS for coefficient values0 < � < 1 for allpass structures from Fig. 2 (N = 2).

output. Structure (d) also has a minimum at . Its
average noise power level decreases as the value of the allpass
coefficient increases. Structure (c), the best from the point of
view of the required guard bits, has its maximum at
going toward infinity for coefficient values approaching one.
This effect is a result of the denominator of theth-order
allpass filter causing the poles of the filter to move toward
the unit circle at normalized frequencies of ,

, for the coefficient approaching one. If
there is no counter effect of the numerator, like for the case
of for structure (c) and for structure (a),
then the function goes to infinity. Even though structure (c)
goes to infinity at for , it has the lowest
average noise power from all the structures. This structure
has a big advantage in terms of the number of required guard
bits and ease of cascading a number of them into higher order

allpass filters. If the filter coefficients approach one, then the
increase in quantization noise power could be countered with
few additional bits. Using other structures would only replace
the problem of dealing with an increase in the quantization
noise with the problem of having to increase the number of
guard bits required to deal with an increase of the peak gains.

The NPSD of the quantization noise at the output of the
polyphase structure can be calculated as the sum of the NPSD
at the output of all allpass filters in the filter scaled by the
factor, being the number of paths. If the filter is cascaded
with another filter, the NPSD of the first one will also be shaped
by the square of the magnitude of the second filter.

The verification of the theoretical analysis was done in
Simulink™ by comparing the results from the fixed-point
implementation with the floating-point equivalent that incor-
porated quantization effects modeled as additive white noise
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Fig. 7. Output quantization noise normalized toP for allpass structures from Fig. 2 (� = 0:25).

sources. The intention was to check the correctness of the
theoretical equations by applying the white noise sources
instead of quantization and by performing the quantization
after addition and multiplication (rounding and truncating)
to verify the shaping of the quantization noise and its level
both for white input noise sources and real-life signals. The
shape of the output quantization noise accumulated from all
arithmetic elements for a wide-band input signal assuming, for
simplicity, no correlation between the noise sources, is shown
for all considered allpass structures in Fig. 7. The solid curve
indicates the theoretical NSF that is very well matching the
median of the quantization noise (curves lying on top of each
other). The quantization noise power increase calculated for
the given coefficient was 8.5 dB for structure (a),
6 dB for structure (c), 7.3 dB for structure (d), and 9 dB for
structure (b).

It is clear that the quantization “noise” differs from the as-
sumed white noise characteristic. However, the approximation
still holds with an accuracy of around 5–10% depending on the
structure of the input signal. An example of more accurate mod-
eling of the quantization noise caused by arithmetic operations
can be found in [8]. The arithmetic quantization noise certainly
decreases the accuracy of the filter output. The value of the arith-
metic wordlength has to be chosen such that the quantization
noise power is smaller than the stopband attenuation of the filter
and the stopband ripples. In certain cases, the design require-
ments have to be made more stringent to allow some unavoid-
able distortion due to the arithmetic wordlength effects. For the
case of decimation filters for the based A/D converters, the

quantization noise adds to the one originating from the modu-
lator. In such a case, each stage of the decimator has to be de-
signed so that it filters out this noise as well.

The verification of the peak gain analysis was performed
by applying single-tone signals at the characteristic frequen-
cies—where functions from Fig. 2 have their extremes—and
by using wideband signals to make sure that the estimates are
accurate. The experimental results confirmed the theoretical
calculations. The results of the simulation for the white noise
input signal of unity power are given in Fig. 8. The simulation
was performed for a white noise input signal of unity power in
order to have a uniform gain analysis across the whole range
of frequencies. The theoretical shape of the gain is shown by a
solid line that is very closely matching the median value of the
signal at the test points.

IV. CONCLUSION

In this paper, we have presented the analysis of the-path
polyphase IIR structure in view of its application for fixed-point
implementation. We have shown the different ways of imple-
menting the allpass filters that are the only recursive elements
in the structure and therefore very sensitive to internal over-
flows. We identified structure (c) from Fig. 2 to be the best for
full-band filtering. Any other structure can also be used, but the
usefulness is limited to signals having no spectral components
at 0.25 of the sampling frequency or its closest vicinity. Other-
wise internal overflow may occur. The same structure (c) also
performs very well in terms of the quantization noise injection.
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Fig. 8. Peak gains for white noise input for allpass structures from Fig. 2 (� = 0:25).

Even though it peaks in its transition band, it has the lowest in-
jection in the filter passband and stopband, in the parts of the
filter that are the most important. In most of the cases the transi-
tion band is not that important anyway. If the noise performance
is important in the transition band of the filter, then the structure
(a) from Fig. 2 could be a choice. In such a case, the noise has its
minimum in the transition band as well as at dc and at the half
sampling frequency. If it is preferable to have the same noise in-
jection throughout the frequency range, then structure (b) from
Fig. 2 could be the choice.
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