

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Grid application meta-repository system.

Alexandru Cristian Tudose

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2010.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

GRID APPLICATION

META-REPOSITORY SYSTEM

Alexandru Cristian Tudose

A thesis submitted in partial fulfilment of the requirements of the University of

Westminster for the degree of Doctor of Philosophy

August 2010

To Isabella, Sorana, Aritina and Valentin

2

Acknowledgements

I would like to express my gratitude to all the people who encouraged and helped

me throughout my PhD studies, from its very start and up to the writing up of this

thesis.

Special thanks to Dr. Gabor Terstyanszky for the close guidance, advice and

mentorship he provided for the past four years. I am indebted to him for the

numerous research meetings we had and for his excellent suggestions and

corrections during the writing up of various research papers, reports and of this

thesis.

Furthermore, I would like to express my gratitude towards Prof. Stephen Winter, my

director of studies, for admitting me to the PhD programme and for granting me the

research scholarship. I would also like to thank him for his patience, guidance and

support throughout my research.

Special thanks are due to Prof. Peter Kacsuk for his invaluable questions, ideas

and advice, as well as for his words of encouragement and for helping me

understand that no PhD research can hold the answer to all the unsolved issues in

computing science.

I am also indebted to my research colleagues for all the debates and discussions

held during my years of research, which helped broaden my view of this research

area and ultimately improved the quality of my research.

Last, but not least, I wish to express my gratitude towards my dear wife, Sorana –

for her emotional support and understanding, and for the countless editorial

suggestions she made to this thesis; to my wonderful baby Isabella – for being

patient and waiting to be born only after I had finished the first draft of this thesis; to

my parents, Aritina and Valentin, who have inspired me to become who I am today;

and to all my friends and family – for their uplifting words of encouragement

throughout these past four years.

3

Abstract

As one of the most popular forms of distributed computing technology, Grid brings

together different scientific communities that are able to deploy, access, and run

complex applications with the help of the enormous computational and storage

power offered by the Grid infrastructure.

However as the number of Grid applications has been growing steadily in recent

years, they are now stored on a multitude of different repositories, which remain

specific to each Grid. At the time this research was carried out there were no two

well-known Grid application repositories sharing the same structure, same

implementation, same access technology and methods, same communication

protocols, same security system or same application description language used for

application descriptions. This remained a great limitation for Grid users, who were

bound to work on only one specific repository, and also presented a significant

limitation in terms of interoperability and inter-repository access. The research

presented in this thesis provides a solution to this problem, as well as to several

other related issues that have been identified while investigating these areas of

Grid.

Following a comprehensive review of existing Grid repository capabilities, I defined

the main challenges that need to be addressed in order to make Grid repositories

more versatile and I proposed a solution that addresses these challenges. To this

end, I designed a new Grid repository (GAMRS – Grid Application Meta-Repository

System), which includes a novel model and architecture, an improved application

description language and a matchmaking system. After implementing and testing

this solution, I have proved that GAMRS marks an improvement in Grid repository

systems. Its new features allow for the inter-connection of different Grid

repositories; make applications stored on these repositories visible on the web;

allow for the discovery of similar or identical applications stored in different Grid

repositories; permit the exchange and re-usage of application and application-

related objects between different repositories; and extend the use of applications

stored on Grid repositories to other distributed environments, such as virtualized

cluster-on-demand and cloud computing.

4

Contents

1. Introduction .. 13

1.1. Short History of Grid Application Repositories .. 14

1.2. Outline of the Thesis .. 19

2. Related Work – Grid Application Repository 23

2.1. Architecture .. 25

2.1.1 General Overview of Grid Application Repository Architectures 25

2.1.2 Review of Existing Solutions... 28

2.1.3 Conclusions .. 35

2.2. Grid Application Repository Models... 37

2.2.1 General Overview of Grid Application Repository Models .. 37

2.2.2 Review of Existing Solutions... 38

2.2.3 Conclusions .. 45

2.3. Grid Application Repository Application Description Languages 46

2.3.1 General Overview of Application Description Languages... 46

2.3.2 Review of Existing Solutions... 49

2.3.3 Conclusions .. 53

2.4. Grid Application Matchmaking Systems .. 53

2.4.1 General Overview of Grid Application Matchmaking Systems 54

2.4.2 Review of Existing Solutions... 58

2.4.3 Conclusions .. 66

2.5. Challenges ... 67

2.5.1 Architecture .. 71

2.5.2 Repository Model ... 72

2.5.3 Application Description Language .. 74

2.5.4 Matchmaking Systems ... 78

2.6. Objectives ... 81

3. The Grid Application Meta-Repository System 84

3.1. GAMRS Architecture .. 85

3.1.1 Overview .. 85

3.1.2 Design .. 86

5

3.1.3 Summary .. 104

3.2. GAMRS Repository Model... 107

3.2.1 Overview .. 107

3.2.2 Design .. 110

3.2.3 Summary .. 126

3.3. GAMRS Application Description Language (MRDL) 128

3.3.1 Overview .. 128

3.3.2 Design .. 133

3.3.3 Summary .. 138

3.4. GAMRS Matchmaking Service .. 140

3.4.1 Overview .. 140

3.4.2 Design .. 142

3.4.3 Summary .. 163

3.5. Conclusions .. 165

4. Implementation and Tests .. 168

4.1. Constraints ... 170

4.2. Experimental Architecture .. 171

4.3. Test Scenarios ... 175

4.4. Testbed Results ... 182

5. Conclusions ... 204

6. Contributions to Knowledge and Extensions 217

6.1. Contributions to Knowledge ... 218

6.2. Future Extensions .. 221

7. Publications ... 224

8. Bibliography ... 225

Appendix A: GAMRS Repository Model .. 242

Appendix B: MRDL Application Description Language 243

Appendix C: String-distance Methods tested in GAMRS 244

Appendix D: Repository Frameworks .. 253

Appendix E: OAI-PMH GetRecord query example 254

Appendix F: OAI-ORE document of a GAMRS object – example 255

Appendix G: BSoft application – FOXML .. 258

6

Appendix H: Snapshot of Bsoft application deployed in a virtualized

environment using GAMRS.. 267

List of Figures

Figure 2-1: Traditional architecture of a Grid system that includes the application

repository .. 26

Figure 2-2: Traditional Grid application repository: usage scenario 27

Figure 2-3: NGS AR repository model .. 38

Figure 2-4: GEMLCA repository model ... 40

Figure 2-5: GEMLCA storage structure .. 41

Figure 2-6: CHARON/iSoftrepo repository model... 42

Figure 2-7: myExperiment repository model ... 43

Figure 2-8: Grid application repository model entities .. 73

Figure 2-9: The life-cycle of a Grid application stored in an application repository .. 75

Figure 2-10: Research objectives and their relations to requirements R1-R4 83

Figure 3-1: GAMRS Architecture .. 86

Figure 3-2: GAMRS Publisher service architecture .. 88

Figure 3-3: Using the Publisher's HTTP/REST service to search for applications in

GAMRS .. 90

Figure 3-4: Using the Publisher's OAI-PMH provider to list all the records stored in

GAMRS .. 90

7

Figure 3-5: Using the Publisher's OAI-PMH provider to retrieve a specific

application (metadata only) from GAMRS ... 91

Figure 3-6: Using the Publisher's OAI-ORE provider to retrieve a specific

application (metadata and datastreams) from GAMRS 92

Figure 3-7: Connecting different types of Grid application repositories.................... 94

Figure 3-8: Meta-Repository Service architecture .. 94

Figure 3-9: Meta-Repository service Adapter architecture 98

Figure 3-10: Meta-Repository service – Implementation of the

COMM_UPDATE_PROVIDER command .. 102

Figure 3-11: Grid application repository model entities .. 107

Figure 3-12: Entities in the GAMRS repository model .. 111

Figure 3-13: The six main entities of the GAMRS repository model 112

Figure 3-14: The User entity and its relations to the Group, Authentication, and

Certificate entities ... 115

Figure 3-15: The Policy entity and its associations to the PolicyRule entity........... 117

Figure 3-16: The Application entity together with the Provider, Asset, Hash and

ApplicationAsset entities .. 121

Figure 3-17: Types used in the GAMRS repository model 122

Figure 3-18: The Application entity with the ApplicationRelation and RelationPair

entities .. 124

Figure 3-19: JSDL‟s main entities ... 128

Figure 3-20: JSDL extensions (MRDL entities) .. 133

Figure 3-21: Partial view of the MRDL model highlighting the Authentication,

X509Credential and Hash entities ... 134

8

Figure 3-22: The SubmitterData entity and its associations to the Argument,

JobDescription and Source entities ... 137

Figure 3-23: GAMRS Matchmaking service architecture 143

Figure 4-1: GAMRS implementation architecture ... 171

Figure 4-2: Applications retrieved from NGS, GEMLCA and myExperiment......... 185

Figure 4-3: Example search for applications created by "Alex" that contain the word

"amber" in title and the word "amber" in description 186

Figure 4-4: Example of a GAMRS HTTP/REST interface test 187

Figure 4-5: BSoft application stored in GAMRS ... 189

Figure 4-6: BSoft source code – content download.. 190

Figure 4-7: Using GAMRS in virtualized architectures ... 192

Figure 4-8: Maximum F1 value for string-distance methods 197

Figure 4-9: Variation within six matching intervals of the average precision of the

TFIDF/Cosine method when trained on the three corpora 198

Figure 4-10: Variation within four matching intervals of the average precision of the

suite of JSD methods when trained on the three corpora 199

Figure 4-11: Comparison between the average precision of the JSD methods with

no stop-list and the same JSD methods using a stop-list with a threshold

between [0.07-0.12] ... 200

Figure 4-12: Grid applications used for testing the application-running module 202

9

List of Tables

Table 2-1: Example of two formalisms encoding the same application property 55

Table 2-2: Current Grid application repository solutions vs. Requirements R1-R4 . 71

Table 2-3: Traditional Grid application repository models and repository entities ... 74

Table 2-4: Traditional Grid application description languages vs. requirements 77

Table 2-5: Matchmaking systems vs. requirements ... 80

Table 3-1: Current Grid application repository architectures and GAMRS

architecture vs. R1-R3 ... 105

Table 3-2: Traditional Grid application repository models vs. proposed GAMRS

model (except application-related objects) .. 126

Table 3-3: Traditional Grid repository models vs. proposed GAMRS repository

model (application-related objects) .. 127

Table 3-4: Traditional application description language capabilities vs. MRDL 139

Table 4-1: Scenarios, objectives and goals .. 180

Table 5-1: GAMRS architectural features vs. other solutions 208

Table 5-2: GAMRS repository model features vs. other solutions 210

Table 5-3: GAMRS repository model features vs. other solutions (application asset

types) .. 210

Table 5-4: MRDL features vs. other solutions .. 211

Table 5-5: Degree to which test results met the research objectives 213

10

List of Acronyms

ACL = Access Control List

ADL = Application Description Language

API = Application Programming Interface

BDII = Berkeley Database Information Index

BPEL = Business Process Execution Language

BPEL4WS = Business Process Execution Language for Web Services

CPU = Computing Processing Unit

CRUD = Create Retrieve Update Delete

DAML-S/ OWL-S = DARPA Agent Markup Language - Semantic/ Ontology Web Language
- Semantic

DL = Deductive Logic

DNS = Domain Name Server

EDGeS = Enabling Desktop Grids for e-Science

EGEE = Enabling Grids for E-sciencE

FOXML = Fedora Object Extended Markup Language

FQDN = Fully Qualified Domain Name

ftp = file transfer protocol

GAMRS = Grid Application Meta-Repository Service

GEMLCA = Grid Execution Management for Legacy Code Architecture

GGF = Global Grid Forum

gLite = Lightweight Middleware for Grid Computing

gridftp = Grid file transfer protocol

GSI = Grid Security Infrastructure

gsiftp = Grid security infrastructure file transfer protocol

GT2 = Globus Toolkit 2

GT4 = Globus Toolkit 4

GUI = Graphical User Interface

http = hypertext transfer protocol

I/O = Input/Output

IR = Information Retrieval

ITL = Information Terminological Language

JDL = Job Description Language

JSDL = Job Submission Description Language

JSR-168 = Java Specification Requests - 168

LARKS = Language for Advertisement and Request for Knowledge Sharing

LCG = LHC Computing Grid

11

LCID = Legacy Code Interface Description

LDAP = Lightweight Directory Access Protocol

LDL++ = Logical Data Language

LSI = Latent Semantic Index

MAS = Multi-Agent Systems

MPI = Message Passing Interface

MRDL = Meta-Repository application Description Language

NGS = National Grid Service

OAI-PMH = Open Archive Initiative – Protocol for Metadata Harvesting

OAI-ORE = Open Archive Initiative – Object Reuse and Exchange

OGSA-WG = Open Grid Services Architecture – Working Group

OGSI = Open Grid Services Infrastructure

OS = Operating System

OVF = Open Virtualisation Format

OWLS-MX = Ontology Web Language Semantic Matchmaker

P-GRADE = Parallel Grid Run-time and Application Development Environment

PKI = Public Key Infrastructure

RAM = Random Access Memory

RBS = Resource Brokering System

REST = Representational State Transfer

rfiod = remote file input output daemon

RSL = Resource Specification Language

Scufl = Simple conceptual unified language

SMTP = Simple Mail Transfer Protocol

SOAP = Simple Object Access Protocol

SRB = Storage Resource Broker

srm = storage resource management

SWSL = Semantic Web Services Language

TFIDF = Term Frequency Inverse Document Frequency

UDDI = Universal Description Discovery and Integration

UI = User Interface

URI = Universal Resource Identifier

VNC = Virtual Network Computing

VO = Virtual Organisation

VM = Virtual Machine

WfMC = Workflow Management Coalition

WFML = Web Form Markup Language

WS = Web Services

12

WSDL = Web Services Description Language

WSMO = Web Services Modeling Ontology

WS-PGRADE/gUSE = Web Service P-GRADE/ grid User Support Environment

WSRF = Web Services Resource Framework

WS-RSL = Web Service – Resource Specification Language

X Scufl = extended Simple conceptual unified language

XML = Extended Markup Language

xRSL = Extended Resource Specification Language

I N T R O D U C T I O N

13

1. Introduction

xtensive research is being undertaken these days in the field of Grid

computing. On one hand, scientists try to adapt old technologies and old

concepts to Grid platforms. On the other hand, as new concepts appear,

they are already designed to be compatible with Grid technologies. The impact of

Grid on scientific communities all over the world has often being compared to the

tremendous impact that the discovery of WWW has had on the worldwide IT

community [1].

Grid is a wide network of distributed resources, in which groups of people with

common computationally demanding or data-intensive goals have chosen to share

their resources (e.g. computers, storage components, software and applications,

data, firmware implementations, sensors, networks, networking services etc.) in a

controlled, secure and flexible way.[2] Within Grid, users can gain access to a

multitude of applications and resources, with the help of which they can solve their

problems more effectively.

Given that the number of Grid applications has been growing steadily in recent

years, they are now stored in repositories that offer better options for their

management. However, there are many repository frameworks on the market and

these vary in terms of access interface, security system, implementation

technology, communication protocols and transfer protocols. Moreover,

administrators are free to choose among them and also have free choice in

defining a specific repository model. At the same time, different Grid applications

Chapter

1

E

I N T R O D U C T I O N

14

are described using one of more than ten application descriptions languages

(ADLs), which are either standard-specific or proprietary-specific.

As a result of this diversity, at the time this research was carried out there were no

two well-known Grid application repositories having the same structure, same

implementation, same access technology and methods, same communication

protocols, same security system or same application description language used for

application descriptions. This remained a great limitation for Grid users, who were

bound to work on only one specific repository, and also presented a significant

limitation in terms of interoperability and inter-repository access. The research

presented in this thesis provides a solution to this problem, as well as to several

other related issues that have been identified while investigating these areas of

Grid.

This first chapter introduces and defines the main concepts related to the area of

research and offers an outline of the structure of this thesis.

1.1. Short History of Grid Application
Repositories

Grid technologies emerged in the mid 1990s as a solution for the optimization of

resource sharing in computer networks. Initially, Grid computing research focused

on the areas of computing resources, data access, and storage resources.

However, the definition of Grid computing resource sharing has evolved in time and

now includes any resources made available by a Grid participant, such as

computing resources, data, hardware, software and applications, firmware

implementations, networking services, and any other forms of computing resource

attainment. By using the Grid infrastructure and Grid technologies users today can

solve problems related to software capability (e.g. models, simulations, etc.);

hardware availability or computing capacity shortage (e.g. CPUs, data storage,

etc.); as well as address the need for immediate circuit provisioning of a network or

a security event and many more types of critical environmental needs.

I N T R O D U C T I O N

15

GRID APPLICATIONS

One of the aims for which the entire Grid infrastructure and Grid middleware were

developed was to enable users to use applications more effectively. On Grid, users

can gain access to a large number of applications, as well as to a multitude of

resources, with the help of which they can solve their problems quicker and more

efficiently.

Grid applications are pieces of software exposed to users through a Grid user

interface. Many of these applications are well-known to users and were used in the

past as stand-alone software, commonly installed on one PC or on small clusters.

With the arrival of Grid technologies they were ported to interact with the Grid

middleware and to run on the Grid infrastructure. Provided they acquire adequate

rights to access them, many scientific communities can use these applications

remotely and obtain the results they needed using the Grid. However, in certain

cases, users need to solve problems with a higher degree of complexity, which

require the help of not one, but several applications - for example, results obtained

from running one application need to be passed as input to another application,

which in turn should return the final results to the user. In order to make this

process automatic and eliminate the need for intervention from the user, scientific

communities have adapted the workflow paradigm to Grid.

W ORKFLOW S

The Workflow Management Coalition (WfMC) defines workflow as "The automation

of a business process, in whole or part, during which documents, information or

tasks are passed from one participant to another for action, according to a set of

procedural rules".[3] The Open Grid Services Architecture – Working Group

(OGSA-WG) expanded the WfMC statement, and defined the workflow simply as a

pattern of business process interaction.[4] Such interactions may take place

between services residing within a single data centre, or across a range of different

platforms located anywhere in the world.

http://www.gridworkflow.org/snips/gridworkflow/space/WfMC

I N T R O D U C T I O N

16

In the context of Grid computing the term workflow usually concerns the automation

of distributed IT processes. However, there are several differences between Grid

workflows and regular (i.e. non-Grid) business workflows, mainly in terms of

reliability and performance. Since Grid resources involved in the execution of the

workflow may fail during the runtime, Grid workflows rely on advanced workflow

fault management techniques (such as workflow checkpointing, recovery and

monitoring) to ensure a high level of reliability of the service. In terms of

performance, one of the objectives of Grid computing is to provide high

performance computing power and Grid workflows therefore have to deal with

resource brokerage, scheduling (load balancing), and distributed applications

(parallel computing) – services which are usually not needed by regular business

workflows.

Given that one intrinsic characteristic of the Grid is its distributed infrastructure –

which makes it an ideal candidate for supporting parallel computational tasks, Grid

is regarded by researchers as an excellent workspace for workflows.

Consequently, scientists and researchers have lately placed increasingly more

effort in adapting the workflow paradigm to Grid concepts. As a result, Grid was

enriched with several different workflow description languages (e.g. BPEL [5],

BPEL4WS [6], Scufl [7], xScufl [8], etc.) as well as with several different workflow

engines, such as P-GRADE [9], Taverna [10, 11], Kepler [12, 13], Triana [14], WS-

PGRADE/gUSE [15], etc.

W EB SERVICES

At present, the vast majority of Grid software resources can be accessed in a

standard client-server way. The server program is usually running in the main

memory of the computer as a daemon, listening to a certain port on the machine.

The client program connects to that port and communication occurs by means of

pre-known requests and responses. This means that both client and server know

the API (Application Programming Interface) of their requests and responses from

the outset. However, with the growth of the Grid infrastructure, services became

increasingly numerous and this raised new security issues (i.e. the increased

I N T R O D U C T I O N

17

number of ports became a problem for firewalls and network administrators);

development issues (i.e. developers needed to know every particular API for

servers in order to develop new clients, sometimes for the same type of service); as

well as usage issues (i.e. users became lost in complicated command-line

syntaxes).

All these issues can be addressed by using the web services (WS) technology.

First, WS uses well-known communication transport protocols (e.g. http, ftp,

SMTP), which usually reside on well-known ports (ports that are opened and

monitored on almost every network), so the network administrator‟s effort is

reduced drastically. Second, the server publishes a set of communication

information into a registry. The client therefore does not need to have prior

knowledge of the server‟s API, it can simply query the registry and will find the

location of the server, the location of a WSDL (Web Service Description Language)

document describing how to initiate the communication, and the patterns of all

requests and responses.

GRID SERVI CES

Given the benefits of web service technology, and after years of carefully

conducted studies and research on this topic, the Global Grid Forum (GGF)

extended the web service concept to the concept of Grid service.

A Grid service, as defined in the Open Grid Services Infrastructure (OGSI), is a

web service that conforms to a set of conventions (interfaces and behaviours) that

define how a client interacts with that service [16]. Since it is created through the

extension of the web service concept, the Grid service receives an ample heritage

from its predecessor; for example, Grid services are defined in terms of standard

WSDL with minor extensions, and rely on standard web service technologies such

as SOAP and WS-Security.

However, the Grid service conventions specified in the OGSI document add further

elements by addressing fundamental issues in distributed computing such as how

to name, create, discover, monitor and manage the lifetime of stateful services [17].

I N T R O D U C T I O N

18

The OGSI conventions support explicitly stateful services with lifetime management

and a base set of service capabilities, including rich discovery facilities

(introspection/reflection). In addition to this, they also support a two-level naming

scheme similar to the DNS (Domain Name System), which is more user-friendly

than a traditional WS address scheme.

REPOSITO RIES

As Grid scientists began to port more and more applications to the Grid, managing

the growing number of applications gradually became a burden to Grid site

administrators. They therefore turned to repository technologies to structure, store

and reference – i.e. better manage – Grid applications.

A repository, as its name implies, is used to store objects in a structured manner,

following a model defined by the repository administrator. The repository provides

functions for classification, storage, management and retrieval of the components

stored inside it. [18]

In most cases repository frameworks differ from one another in terms of access

interfaces, security modules, communication protocols and transfer protocols.

Moreover, these repositories vary in terms of the repository model employed

because administrators enjoy free choice in defining the repository model.

Furthermore, in the case of Grid application repositories each of these repositories

employs a different application description language to describe the applications

stored in it.

As a result of this diversity, the field of Grid application repositories contains many

open questions in the areas of interoperability between repositories, application

discovery, as well as cross-operability with Grid services and services outside Grid.

For example, as Grid application repositories start to accumulate applications,

users need to be able to find these applications and access the repositories which

store them. However, Grid users are not interested in the particularities of Grid

middleware, or repository technologies; or in differences between a Web/Grid

I N T R O D U C T I O N

19

service invocation and a standard Grid job submission. Users just want to gain

easy access to as many applications as possible and be able to use them to solve

their problems. Consequently, Grid application repositories need an architecture

that allows for application storage and enables interaction with other application

repositories and Grid services, permitting users to discover and utilize such

applications. However, current repository architectures are very restrictive and none

of the Grid repository solutions used today allows for inter-connectivity with other

repositories.

Another example of the restrictive design and functionality of current Grid

application repositories is related to the fact that the same application can be found

stored in different repositories. In theory, if one repository is unavailable users

should have the opportunity to run their application from another repository to solve

their problem. However, current repository solutions are not linked in any manner

and there is no matchmaking service that can identify similar or identical Grid

applications stored in different repositories.

1.2. Outline of the Thesis

The first stage of my research consisted of an in-depth critical analysis of the Grid

application repository solutions currently used in Grid infrastructures, based on

which I identified a series of shortcomings associated with these solutions. For the

rest of my research I aimed to design a Grid application repository that would

address these shortcomings. My aim was also to provide a modular, easily

extendible solution, based on functional principles that can be followed not only by

application repositories usable on Grid, but also by generic application repositories

that reside in collaborating environments other than Grid.

In relation to these aims, my research was focused on pursuing four major

objectives. The first objective of this research was to design a service able to

connect different types of Grid application repositories, but which would still function

as a Grid application repository in its own right. The second objective of this

I N T R O D U C T I O N

20

research was to propose a new model for application repositories, which would

achieve uniformity in Grid application presentation and would extend the

functionality of these repositories beyond Grid. The third objective was to find (or

create) an application description language, which would provide uniformity in the

presentation of Grid application descriptions; while, at the same time, would allow

the use of Grid application repositories and of applications stored by them in

scenarios other than Grid, such as virtualisation, source code staging and

compilation, or automatic application deployment. The fourth objective was to

design a matchmaking methodology and an algorithm able to process information

about applications stored in repositories and identify similar or identical

applications.

After the specification of the four objectives, the next step in my research was to

present the theoretical design and specification of a Grid application repository

solution able to meet these objectives. The design phase was followed by the

implementation phase, which started with the identification and careful analysis of a

series of constraints that could be put in place in order to simplify the development

of the solution without restricting its core functionality or its ability to meet the four

objectives set out in this research.

Further on I identified the necessary technologies needed for the development of

my solution and used these to implement a pilot-solution compliant with the

theoretical specifications described in the design phase. After successfully

completing of the implementation phase, I moved on to test the solution and

analyse test results (analysis phase). As part of this phase, I selected five use-

case scenarios, which were representative to prove the functionality of the new

Grid application repository solution (GAMRS) and to show that this solution met the

research objectives. I successful ran these scenarios and analysed the results.

Following the interpretation of these results, I summarized the findings in a series of

conclusions, which prove that all requirements and objectives of this research were

met, as well as present a critical analysis of the limitations of this research.

I N T R O D U C T I O N

21

The research was finalised with a summary of the contributions brought by this

thesis to scientific knowledge, alongside several recommendations on how this

solution can be extended through future research.

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the main area of research – it describes the

major concepts behind Grid application repositories and then offers a

comprehensive review of related work from the specialty literature to describe the

current state of the art in this field. Due to the complexity of the issues identified

during research investigations, the area of research is divided into four topics: Grid

repository architecture; Grid repository model; Grid application description

language; and Grid application matchmaking system. The concepts related to each

of these four topics are discussed in separate sections. The chapter continues with

an overview of the challenges identified in the Grid application repository area and

concludes with a statement of the objectives of this research.

Chapter 3 describes the design principles behind the solution proposed by this

research in order to solve some of the challenges identified in the previous chapter.

The chapter describes the Grid Application Meta-Repository System (GAMRS) –

i.e. the solution-candidate proposed in this research as a new generation of Grid

application repository able to meet the objectives identified in Chapter 2 – following

the same division into four separate topics as the one in Chapter 2: GAMRS

architecture; GAMRS repository model; GAMRS application description language;

and GAMRS matchmaking service.

Chapter 4 describes the testbed implemented in order to test and prove the

functionality of the Grid Application Meta-Repository System. The chapter starts

with a description of the main constraints and limitations imposed to the pilot-

solution (mainly by the time-constraints to which each PhD research is bound). It

then moves on to describe the testbed architecture and its implementation, as well

as specify five test scenarios. The chapter concludes with an analysis of the results

obtained after the implementation of the test scenarios.

I N T R O D U C T I O N

22

Chapter 5 presents the conclusions of the analysis of the testbed results,

highlighting the main capabilities of the proposed solution, but also analyzing the

limitations of GAMRS. The chapter concludes with an analytical overview of how

the requirements and objectives set out at the beginning of this research were met.

Chapter 6 summarizes the contributions of this thesis to scientific knowledge and

concludes with several suggestions on how this research could be extended.

R E L A T E D W O R K

23

2. Related Work – Grid Application

Repository

his chapter describes the Grid application repository solutions that are

currently used in Grid infrastructures and projects in an attempt to analyse

the current state of the art in this field and highlight those areas which can

still be improved. This overview covers four repository aspects important to any

Grid application repository: the repository architecture, the repository model, the

application description language and Grid application matchmaking methods.

The investigation is focused primarily on the architecture of the most widely used

Grid application repositories and on the repository model designed by peer

research teams for their repository solutions. These two properties are the most

important aspects of a repository and they decide most of the functional capabilities

of a Grid application repository, such as: the scientific area of usage, the ability to

inter-connect with similar solutions, the ability to be easily extendible, the ability to

interoperate across different scientific domains, and the ability to be easily

accessed by different technologies under various usage scenarios.

The applications stored in Grid application repositories are formally described by

application description languages. Every application description language is

capable of describing a set of properties associated with a Grid application. Most

description languages usually refer to a common subset of application features -

even though the naming scheme of the formal attributes may differ. However, apart

from this common set, each application description language is capable of

Chapter

2

T

R E L A T E D W O R K

24

modelling particular application properties that will not to be formalized by the other

description languages. This chapter presents an overview of the most important

application description languages currently used in Grid solutions. Different subsets

of Grid application properties decide which usage scenario the application can be

employed in and implicitly, they have an impact on those scenarios in which the

Grid application repository storing the application can be involved. Therefore, the

relation between the description capabilities of an application description language

used to describe a certain Grid application and the repository that holds that

application can restrict the repository‟s areas of usage.

Since Grid application repositories store applications and application-related

objects, they represent the first choice for end-users and services in the discovery

and usage of applications. Furthermore, the same application can be found stored

in different repositories. In this case, although different repository models may

associate different metadata and different application-related objects to the

application, in principle they model the same application. Therefore, Grid

application repositories can be subject to matchmaking systems that are looking for

similar applications. However, these matchmaking systems are dependent on the

amount of information they find in the repository, as well as on the quality and the

formal structure of such information regarding the application and application-

related objects. This chapter presents a short description of existing matchmaking

methods and solutions that can be applied to the content of Grid application

repositories in order to find similar Grid applications.

The remaining of this chapter continues with the investigation of existing Grid

application repository solutions, covering the four repository aspects mentioned

above: repository architecture, repository model, application description language

and Grid application matchmaking methods. Each aspect is covered in its own

section which includes a critical analysis of the related work and conclusions.

Following the analysis of the current Grid application repository solutions, as well as

taking in consideration the evolution of Grid and other distributed computing

paradigms, the chapter continues with a list of requirements (R1-R4) that should be

met by solutions such as the one suggested in the remainder of this thesis. Next,

R E L A T E D W O R K

25

this chapter presents a summary of current Grid repository solutions‟ capabilities

and how these comply with the requirements identified by this research.

The chapter concludes with a list of four objectives (O1-O4) aimed to deliver a new

application repository solution that would provide the functionality defined by

requirements R1-R4.

2.1. Architecture

This section presents the particularities of the architecture of the Grid application

repository. It starts with the description of the traditional repository architecture and

highlights its functional modules by explaining step-by-step the most common

usage scenario of the repository on Grid. The section continues with the description

of the most widely-used application repository solutions that exist in Grid

infrastructures today. The final part of the section outlines those questions and

issues that remain unresolved in the area of Grid application repository

architectures.

2.1.1 General Overview of Grid Application

Repository Architectures

As Grid application repositories start to accumulate applications, users become

more and more interested in how to find these repositories and access the

applications stored there. However, one needs to keep in mind that the users in

discussion are no Grid specialists and do not hold an extensive knowledge of

computer science. In most cases, they come from other areas of science such as

bio-sciences, medicine, physics, mathematics, etc. Furthermore, they are not

interested in the underlying Grid middleware, in repository technologies, or in

differences between a Web/Grid service invocation and a standard Grid job

submission (i.e. accessing a Grid application through the standard client-server

R E L A T E D W O R K

26

way). Users just want to have access to as many applications as possible and be

able to use them to solve their problems.

Consequently, Grid application repositories need an architecture that allows for

application storage and enables interaction with other services, enabling users to

discover and utilize such applications.

The following figure (Figure 2-1) offers an overview of the architecture common to

all major Grid systems that expose Grid application repository services to users.

Figure 2-1: Traditional architecture of a Grid system that includes the application repository

The system exposes a User Interface (UI) module to users in order to allow them to

interact with the system. Next, the Authentication and Authorization module

authenticates Grid users onto the system and allows/denies them different

interactions with the other modules, according to the specific security policy in

force.

The Application Repository module is usually an implementation of repository

software with all the functionalities provided by such a technology (e.g. data

classification according to the captured metadata, storage/data management,

indexing capabilities, access to the data stored on it, search functions etc.) The

repository model implemented in the Application Repository usually captures

metadata, such as user, identifier, version, date of creation, application description,

security. However, each repository stores the application description in an

Application Description Language different from other repositories. For example,

R E L A T E D W O R K

27

GEMLCA [19, 20] repository uses LCID [20], NGS application repository [21] uses

JSDL [22], and myExperiment repository [23, 24] uses Scufl [7].

The architecture description continues with the Application Instance Management

module. This module handles the set of actions needed by the system to: create a

Grid application instance; format the application description into a language

supported by the Submission engine; submit and monitor the run of the application

instance; and retrieve the results of the run. All technology-specific actions are

hidden to the user and come under the management of this module.

Figure 2-2: Traditional Grid application repository: usage scenario

A common user scenario (Figure 2-2) finds the user authenticating in the system

(action 1), choosing an application from the Application Repository (action 2),

customizing the necessary parameters in the application description document

(action 3) and submitting the application (action 4). At this point, either the user

waits for the results or, in some cases, monitoring data is returned to the user to

update him/her on the state of that application instance. Next, the Converter

module converts the application description document (actions 5 and 6) from the

R E L A T E D W O R K

28

language used to describe the application at the higher level (such as JSDL – Job

Submission Description Language, or LCID – Legacy Code Interface Description)

into an application submission language that can be processed by various Grid

submission engines (such as JDL – Job Description Language [25, 26], RSL –

Resource Specification Language [27] or xRSL – Extended Resource Specification

Language [28]).

The Application Instance Management module manages the actions required to

authenticate the user on the Grid; it delegates credentials to other services involved

in the process; and monitors the entire process. The Submission Engine is then

responsible for Grid resource/service identification and actual job submission/result

retrieval from the underlying Grid infrastructure. Once the conversion from

description into submission language is performed, the Application Instance

Management module passes the document to the Submission Engine (action 7),

which connects to the Grid infrastructure, chooses a suitable resource that matches

the job requirements, submits the job and retrieves the results (action 8). The

results are finally passed back to the user.

2.1.2 Review of Existing Solutions

BERKELEY DATABASE IN FO RMATI ON INDEX (BDI I)

BDII [29] is employed as a central information system in gLite/lcg-based Grids. It

stores information about resources commissioned to Grid by each site (i.e. a Grid

site refers to a number of Grid resources grouped together under the same

administration), as well as about the Grid applications installed on them. BDII uses

the GLUE schema [30] as description model for these objects.

Communication with the clients occurs via LDAP (Lightweight Directory Access

Protocol) commands [31, 32], whether they come from command line or more user-

friendly interfaces. The BDII is highly available since it exposes a standard

R E L A T E D W O R K

29

communication API (i.e. LDAP-query), which means that any LDAP client can be

used to connect to the BDII. However, users are required to know the GLUE

schema in order to perform relevant searches and understand the results of these

searches. Moreover, the way to retrieve relevant and usable information from the

BDII is not straightforward to the average user, who needs specialist training and

knowledge of GLUE in order to make any search process productive. BDII also

lacks any intuitive user interface for publishing applications – the publishing process

is usually done by administrators via command-line.

By exposing only the LDAP interface, BDII does not interact either with popular web

search engines, or with OGSI/WSRF-compliant Grid Services. In order to access

the BDII, a service usually needs to embed an LDAP-client into its code. However,

neither the service nor the BDII can make use of the OGSI/WSRF protocols stack –

this would prove very useful, as actions performed on application entries in the

BDII, such as addition, removal, and modification could be automatically advertised

to other Grid services. Furthermore, BDII has no connection to any other Grid

application repository – neither in gLite/lcg-based Grids infrastructures nor in any

other Grids. BDII is also not able to find similar applications and only provides users

with a basic search engine that can perform queries on application metadata

values.

Furthermore, BDII was not built on a repository technology able to exchange and

reuse objects and employs no communication protocol that could do that. BDII was

created and is used exclusively on gLite/lcg-based Grids. The GLUE schema lacks

the capability to describe application-related objects and BDII repository

implementations are not able to store any application-related object.

BDII is one of the oldest examples of an application repository that can be found on

Grid. As such, it was meant to provide only storage for information about an object

according to a model (i.e. GLUE schema), the retrieval of that information, and the

possibility of searching through metadata. However it lacks any further capabilities,

as detailed above.

R E L A T E D W O R K

30

CHARON EXT ENSION LAYER / I NTERACTIVE SOF TW ARE

REPOSITO RY (CHARON/ ISOFT REPO)

CHARON Extension Layer (simply CHARON or CEL) [33, 34] provides uniform and

simple tools for job submission and management in various computer

environments such as clusters of computers or Grid environments. The CHARON

system is currently available at the National Centre for Biomolecular Research CZ

(TROLLCluster and WOLFCluster), at the METACentrum (Czech national Grid

project) and at VOCE-UI (Virtual Organization for Central Europe). One of the

modules comprised in the CHARON architecture is a software repository called

iSoftrepo (Interactive Software Repository), which is used to store information about

Grid sites and the applications that run on them.

The capabilities of CHARON/iSoftrepo are similar to those exhibited by BDII, with

the exception that the former provides further means of categorizing applications,

such as breaking them down into categories following areas of applicability – e.g.

Molecular Mechanics and Dynamics, Conversion and Analysis, Visualization,

Nuclear Magnetic Resonance, etc. The CHARON/iSoftrepo software package also

comes with a collection of static web pages where administrators can manually

enter the information about the applications stored in the repository. This makes the

application visible to web search engines through page-links, but with the obvious

drawback that any change in the application description or any new application

added to the repository requires the manual intervention of administrators to

change the CHARON/iSoftrepo web pages.

With regard to application-related objects stored on the repository,

CHARON/iSoftrepo only captures information about Grid applications on its

proprietary repository model but cannot store any application-related objects.

Furthermore, like BDII, it is used exclusively on gLite/lcg-based Grids and has no

means to interact with other CHARON/iSoftrepo instances.

http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/TROLLCluster
http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/WOLFCluster
http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/METACentrum
http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/VOCE-UI

R E L A T E D W O R K

31

GRID EXECUTION MANAG EMENT F OR LEG ACY CODE

ARCHITECTURE (GEML CA)

The GEMLCA system enables deployment of legacy code applications as Grid

services without the need for code re-engineering or access to the source files.

With GEMLCA, running a legacy application from a standard Grid service client

only requires a user-level understanding of the system. The legacy code runs in its

native environment and uses the GEMLCA resource layer to communicate with the

Grid client, thus hiding the legacy nature of the application and presenting it as a

Grid service. [35]

GEMLCA is capable to store legacy codes descriptions into a repository. While

BDII and CHARON/iSoftrepo structured and stored minimal information about the

application itself in their repository models, GEMLCA is the first example of a Grid

application repository that can store application-related objects. GEMLCA employs

an application description language (i.e. LCID) and application description

documents written in LCID can be stored in GEMLCA repositories. Moreover,

GEMLCA benefits from a very friendly graphical user interface (GUI) which has

been developed as a JSR-168-compliant portlet [36] in the P-GRADE portal. From

there users and administrators can easily publish new applications because the

portlet layout and the LCID metadata naming scheme are intuitive enough not to

require a thorough knowledge of LCID on behalf of the user.

The GEMLCA system is built as an OGSI/WSRF-compliant Grid service, which

makes it fully interoperable with other Grid services. However, GEMLCA was built

as a Grid service and exposes only a Grid service interface; it does not publish

information about the applications contained in its repository on any web page, it

has no HTTP/REST [115, 116] API that could be used by web crawlers and no

support for OAI-PMH [37] protocol that could be used by harvesters and popular

search engines. Further on, GEMLCA has no connection to any other Grid

application repository. Surprisingly, at this stage there is no communication even

between two GEMLCA systems, although this can be done effortlessly by making

use of their already-implemented Grid service interfaces.

R E L A T E D W O R K

32

GEMLCA is the first application repository from the list of repositories under

discussion which stores application-related objects. Moreover, beside LCID

application description documents, GEMLCA is also capable to store the

application binary. This is the first step towards making Grid application repositories

more versatile, so that they allow the application to be used in scenarios other than

only in conjunction with traditional Grid architectures.

NATIONAL G RID SERVIC E APPL ICATION REPOSI TORY (NG S

AR)

The NGS Applications Repository is a Grid portal solution developed in accordance

with the JSR-168 standard, which employs a repository module for storing Grid

applications. NGS AR provides users with a list of applications available on the

NGS Grid [38, 39]; it allows users to parameterize instances of those applications

and to run these instances on NGS resources. Applications found on the NGS

repository are described using JSDL documents and users can select and save

JSDL application descriptions into their own personal space on the repository for

subsequent modification and personal configuration.

While the NGS Applications repository provides a considerably richer user interface

and a larger set of functionalities than BDII or the CHARON/iSoftrepo systems, in

many cases its JSR-168 based implementation proves to be a limitation. Although

this approach allows the portal to be distributed and hosted in project-specific portal

containers, it limits the access interface to a graphical user interface that is intended

exclusively for humans. Therefore, the NGS Applications repository is neither

compliant with the OGSI/WSRF-standards stack, nor does it provide any

HTTP/REST API. As a consequence, this system can only be accessed by human

users who know the location of the portal. Furthermore, while the NGS Application

Repository model does allow application-related objects to be stored on or

referenced by the repository, these are all stored under the attribute Application

Associated Files / Links, which makes them indistinguishable for automatic

retrieval. At the same time, even human users can have trouble distinguishing

R E L A T E D W O R K

33

between user documentation, source code or binary, given that the system lacks a

structured naming scheme that could be followed by publishers.

GRI MOIRES F RAMEW ORK

One of the methods of exposing Grid applications to users (as mentioned in

Section 1.1) is with the help of web services technology. Using open standards

such as XML, SOAP, WDSL and UDDI, WS can help achieve resource sharing

and service sharing in the Grid environment in the form of web based services.

References to these services are usually kept into a registry. Clients can query the

registry and find the location of the web service, as well as the location of the

service description. The description of the web service (in WSDL format) holds the

patterns of all requests and responses necessary to communicate with the web

service. GRIMOIRES is an example of such registry which is used to refer to

applications exposed as services on Grid infrastructures.

GRIMOIRES is an UDDIv2-compliant registry for web services that has the ability

to augment interfaces with metadata such as functionality, semantic information

about their inputs and outputs, or various metrics (e.g. perceived quality of service,

trust). [40] In addition to the UDDIv2 interface, the GRIMOIRES framework also

provides some other interfaces, such as a metadata interface and a WSDL

interface, which allow clients to publish and inquire over metadata and WSDL-

related data, respectively.

As this framework was designed to be used on Grid, it employs a GSI (Grid

Security Infrastructure)-based [41] authentication system as well as a fine-grained

access control for each published entity that is based on the X509 Distinguished

Name (X509DN) extracted from the certificate corresponding to the signature.

When deployed in an environment supporting OGSI/WSRF [42], GRIMOIRES is

able to expose registry entities (such as businesses and services) as WS-

resources. Consequently, WSRF standard operations (e.g. using XPath [43] to

query resource properties or subscriptions for notifications written according to the

WS-Notification [44]) can be used to operate on registry entities. Furthermore, the

R E L A T E D W O R K

34

lifetime of registry entities are managed according to WS-ResourceLifetime [45]

and GRIMOIRES can be implemented as a Grid OGSI/WSRF service. However,

GRIMOIRES is a registry technology; it cannot accommodate any application-

related objects, except references to applications exposed as web services or Grid

services.

MYEXPERI MENT REPOSIT ORY

myExperiment is a collaborative environment where scientists can publish and

share their workflows notwithstanding the scientific areas they belong to. The

myexperiment.org social web site is used by “thousands of users ranging from life

sciences and chemistry to social statistics and information retrieval”. [46]

Although myExperiment repository can in principle accommodate workflows

designed for various workflow engines (such as Taverna [11], Kepler [13], Triana

[14], Trident [47] etc.), at the time this research was carried out, the repository only

had the capability of running and analyzing Taverna workflows. Currently, out of all

major Grid application repositories integrated in Grid, the myExperiment repository

stores the largest number of Grid applications (i.e. approx. 635 in July 2009). This

can be regarded as a direct consequence of the HTTP/REST interface, which

makes the repository and the applications stored on it visible on the Web. However,

myExperiment has no means to access other types of repositories or the

applications stored on them. Moreover, it exposes no OGSI/WSRF-compliant

interface, which makes it unusable by other standard Grid services.

Similar to GEMLCA and NGS AR, myExperiment benefits from a rich and user-

friendly access interface that allows users and administrators to easily publish and

find applications stored in the repository. Currently myExperiment does not support

the exchange of repository objects in a standard way. However, the myExperiment

development team plans to migrate to an Open repository solution able to support

the OAI-ORE standard.

Like the NGS Application Repository, the myExperiment model allows application-

related objects to be stored or referenced inside the repository. However, it follows

R E L A T E D W O R K

35

the same pattern as NGS AR and uses only two attributes (i.e. Files and Packs) for

their reference. Again, this approach limits drastically the ability to distinguish

between application-related objects, and impedes automatic retrieval of specific

objects.

2.1.3 Conclusions

Other Grid application repository architectures exist, such as EGEE Application

Repository [48], EDGeS Application Repository [49], g-Eclipse Workflow Builder

[50], gUSE Repository [15], as well as Grid Service registries: Lattice registry [51],

D-Grid registry [52] and ARCS registry [53]. However these are very similar to the

solutions already described in the previous section (2.1.2). Therefore, they were

omitted from this discussion, since their architecture does not bring any particular

novelty elements in terms of repository architectures compared to the ones already

presented above.

This critical analysis started with an overview of the oldest Grid application

repository solution - BDII, which simply stores information about resources

commissioned to Grid by each site and about the Grid applications installed on

them. However, BDII is not able to store any application-related object and lacks an

intuitive user interface for publishing applications. BDII interacts with neither popular

web search engines nor OGSI/WSRF Grid Services and has no connection to any

other repository – neither in gLite/lcg-based Grids infrastructures nor on any other

Grids.

CHARON/iSoftrepo marks an improvement in this respect, as it comes with a

collection of static web pages where administrators can manually enter the

information about the applications stored in the repository. This makes the

application visible to web search engines but with the obvious drawback that any

change in the application description or any new application added to the repository

requires manual intervention from administrators.

R E L A T E D W O R K

36

GEMLCA, NGS AR and myExperiment expose user-friendly graphical interfaces,

which makes them easily accessible both by Grid-knowledgeable users and by

non-Grid users. Notably, GEMLCA highlights the importance of interoperability with

OGSI/WSRF Grid Services.

An excellent example in highlighting the importance of application exposure to web

is the myExperiment repository which employs a HTTP/REST interface. The ability

to find information about Grid applications straight through popular search engines,

combined with myExperiment‟s intuitive and user-friendly interface made this

system very popular – as shown by the increasing number of myExperiment users

(e.g. 1000 registered users in July 2008, 2478 registered users in July 2009) and

the growing number of applications (e.g. 321 registered applications in July 2008,

635 registered applications in July 2009) stored in the repository.

Also, in terms of the ability of exchanging repository objects, myExperiment is the

only repository which intends to migrate to a technology, which comes with support

for protocols that permit the exchange of objects between repositories. However,

even myExperiment lacks support for metadata harvesting clients (i.e. services that

collect the metadata descriptions of the objects in the repository so that other

services can be built using such metadata), thus limiting the visibility of the objects

stored in the repository and reducing the number of scenarios in which

myExperiment can be involved.

In conclusion, Grid application repositories are currently not connected in any

structured manner as a straightforward consequence of the different repository

frameworks they are built on. Moreover, at this stage there is no service that users

or other services can inquire to find whether a desired Grid application is stored on

any of these repositories.

http://en.wikipedia.org/wiki/Metadata_(computing)

R E L A T E D W O R K

37

2.2. Grid Application Repository Models

Repository models are a formal way to structure information and to describe

relations between the objects stored in a repository. When applied to Grid

application repositories, these models usually refer to the following entities and the

relations between them: users; applications and application-related objects; and

security policies.

2.2.1 General Overview of Grid Application

Repository Models

Since in most cases the technology used for repository implementations is generic

and imposes little or no restrictions on what administrators define in their models,

these models vary significantly from one repository to another, even though they

may refer to similar objects. Besides the metadata associated with users and

security policies, little information can be found in these models about the actual

application. Only the following information is usually common to these: application

name; application version; the creator of the application description document; a

free-text description of the application; creation date; last modification date; and

particular fields used internally by the system such as universal identification,

modification history, usage statistics etc.

Moreover, Grid application repository models refer to application description

documents as objects stored in the repository. The exceptions which allow

additional objects to be stored besides application descriptions (i.e. myExperiment,

NGS AR, GEMLCA) make no formal distinction between the types of objects that

can be added to the repository. This is a consequence of the fact that such

repositories are usually tightly coupled with one particular Grid and they are running

on platforms well-known to their administrators. Therefore, apart from the case

when the application is exposed as a service, the applications exist only in their

binary form and are either already-deployed on the execution sites or they can be

R E L A T E D W O R K

38

staged there from storage facilities other than the repository itself. This implies that

scenarios involving prerequisite application-related actions such as getting the

source code, compiling the code, solving licensing issues, solving software

dependencies and application deployment are done by Grid site administrators

without any help from what is stored in the repository.

2.2.2 Review of Existing Solutions

NGS AR REPO SITORY MO DEL

The NGS AR stores application descriptions written in JSDL – therefore the

repository model employed in NGS AR is designed in accordance with the

description capabilities of JSDL. Figure 2-3 depicts the repository structure

responsible with modelling information about a given application.

Figure 2-3: NGS AR repository model

The application properties and application-related entities modelled by the NGS AR

are derived from the formal structure of the JSDL. For example, the candidate host

entity, along with the environment variables and data stage entities, describe the

information retrieved from the following JSDL sections: Resource/CandidateHosts

element; POSIXApplication/Environment element; DataStaging/Source and

DataStaging/Target elements. Candidate host entities describe the information

about the computational resources on which the application can run; the

environment variables entities refer to the operating system variables that need to

be used or to be set to particular values in order to allow the application to run in

that environment; the data stage entity describes the input and output files that

R E L A T E D W O R K

39

need to be retrieved or uploaded from/to various storage resources available in

NGS Grid.

The NGS AR is part of a system, which not only stores application descriptions, but

is also able to instantiate those applications and run them on Grid. This system is

coupled with a GridSAM submission engine that is able to provide job submission

interfaces ”for submitting computational jobs to many commonly used distributed

resource management systems (Condor, PBS, SGE, etc.)”.[54] Theoretically,

GridSAM allows the system to be connected to different Grids, hence the user Grid

host entity in the repository model, which allows users to choose resources located

in any of the Grids connected to GridSAM. However, the NGS Grid is currently the

only one connected to the system, so the running of any application is effectively

restricted to NGS Grid.

The NGS repository model allows applications to be classified in different

categories under the attribute job category. The model also allows the user to

define personal user categories apart from the ones pre-defined by the NGS

repository administrators, which are: Tutorials/Examples, Engineering,

Bioinformatics, Analysis/Stats, Biomedical, Chemistry, Astrophysics, Image

Analysis and CCPb Workshop.

The security policy of the NGS AR is based on Public Key Infrastructure (PKI) X509

certificates and the identity of repository users is established on the Distinguished

Name attribute of the certificate. The repository stores this information in relation

with a user entity described by its model. Security policies are basic and they model

particular actions associated with two roles: the administrator and the regular user.

As opposed to the regular user, administrators can create/delete/modify new users,

new NGS categories and new NGS applications.

The Job Profile entity from the NGS AR model gathers all information about an

application under one reference and functions as a container for the other entities in

the model.

R E L A T E D W O R K

40

The NGS AR is able to store application-related objects in its repository. However,

all these objects are stored under the generic entity Files/Links, which makes these

objects indistinguishable for automatic retrieval. The repository model is not able to

differentiate between different types of application-related objects and furthermore,

the formal description document of the application (written in JSDL) is not stored as

a whole document in the repository. The next repository model takes a different

approach to this matter.

GEMLCA REPO SITORY MO DEL

As opposed to the NGS AR, in which JSDL played a central role in the design of

the repository model, GEMLCA is not dependent on the formal structure of LCID –

the application language used for application descriptions stored in the repository.

The repository model consists of five entities necessary for the GEMLCA system to

operate (see Figure 2-4): the user profile; the job information; legacy code

environment variables; Grid site information; and the Grid Backend profile.

Figure 2-4: GEMLCA repository model

Similar to NGS AR, the security policy of the GEMLCA system is based on PKI

(Public Key Infrastructure) X509 certificates and the Distinguished Name attribute is

used to establish the identity of users. This information is stored in the user profile

entity along with personal information such as name, affiliation, address and email.

The job information entity refers to its LCID description, including the state in which

a submitted application instance (i.e. job) finds itself in, such as: submitted, queued,

running, done, failed or cancelled. The legacy code environment specifies the

R E L A T E D W O R K

41

operating system variables that are needed in order to ensure a correct run of the

application instance.

While the NGS repository was part of a system which used GridSAM as

submission engine, GEMLCA has its own submission backends that can submit

jobs to different Grid infrastructures (e.g. GT2, GT4, gLite/lcg). As production

GEMLCA systems do connect to two or more Grids, the backend specifics are

described by the repository model in Grid backend profile entities. Finally, the Grid

site information entity is equivalent with the candidate host entity from the NGS AR

model and describes the computational resource where the application is set to

run.

Figure 2-5: GEMLCA storage structure

The GEMLCA storage structure (see Figure 2-5), allows for application binaries

and application descriptions files (code config) to be stored in the repository. By

doing this, GEMLCA allows these objects to be used independently in different

scenarios, which do not necessarily involve running the application on Grid

infrastructures.

CHARON/ I SOFTREPO REPO SITORY MODEL

It was mentioned in section 2.1.2 of this chapter that the CHARON/iSoftrepo

repository is used on gLite/lcg based Grids (e.g. EGEE, SEE-Grid, EELA Grid,

EUMedGrid, EU-India Grid, EUChinaGrid, Baltic-Grid II). Particular to these Grids is

R E L A T E D W O R K

42

the fact that application binaries cannot be staged and installed on demand on the

infrastructure – they are already deployed and can only be run on the sites which

expose them. However, CHARON/iSoftrepo administrators understood that a Grid

application repository might be used in other scenarios (i.e. not only in connection

to Grid) and designed a model, which actually exceeds the requirements of a

gLite/lcg Grid.

Figure 2-6: CHARON/iSoftrepo repository model

Similar to NGS AR and GEMLCA, CHARON/iSoftrepo model (see Figure 2-6)

contains entities, which describe users (author information); categories of

applications (categories); the computational resources used to run the application

instances (site information); the application description (application information);

and the operating system environment variables required to run the application

(environment information). In addition to that, the repository can store the source

code in a tar.gz archive (source information), as well as information about the

compiler distributions used to build the runtime executables of the application (build

information).

Grid infrastructures that support gLite/lcg middleware are Linux-based and

therefore a common technique for the dynamic modification of a user's environment

is via modulefiles. Typically each application needs one or more environment

variables to get specific values, while the modulefiles approach is to instruct the

Linux module command to modify or set shell environment variables (such as path,

R E L A T E D W O R K

43

ld_library_path, cc, manpath, etc.) with the necessary values. The

CHARON/iSoftrepo repository model captures the information about the modulefile

associated with a Grid application in the module information entity. In cases when

different versions of the same application exist on the same system, they are

usually deployed as different modules. However, it is customary in such cases that

the modulefile associated with one version of the application contains references to

the modulefile associated with the other version of the application, since they use

the same values for a common subset of environment variables. This is true not

only in the case of different versions of the same application, but also when

different applications depend on each other. The CHARON/iSoftrepo model

captures the information about the version of an application along with the possible

dependencies of that application on other modules in the realization information

entity.

MYEXPERI MENT REPOSIT ORY MO DEL

As stated in section 2.1.2, myExperiment represents a collaborative environment

built around a repository of scientific workflows. Consequently, in order to

emphasize the idea of collaboration, the repository model was designed to describe

not only relations between users and applications or between applications and their

related objects, but also user-to-user relations.

Figure 2-7: myExperiment repository model

R E L A T E D W O R K

44

As seen in Figure 2-7, myExperiment‟s repository model focuses extensively on

interactions between different users of the system. Entities like friendship,

messages, reviews, comments, citations, pictures, credits and ratings make

myExperiment not just an application repository but also a social networking

system.

The system keeps the list of users in a users entity and each user‟s description is

modelled in a profile entity. Users can be grouped together in groups, while security

policies, access policies and user roles are described via the following entities:

membership, policies, permissions and attributions. Moreover, users can define

access policies and can enforce permissions on the applications they own.

However, these policies cannot be more permissive than the policy assigned by the

system administrator to that particular class of entities.

The myExperiment model describes applications as workflows suitable for various

submission engines (such as Taverna, Triana, Kepler, etc.). Multiple workflows can

be grouped together under the same experiment and these workflows can have

additional application-related objects stored in the repository. However, the model

does not have the capability to distinguish between different application-related

objects as it categorizes them in only two classes: files and packs.

myExperiment is integrated with a Taverna submission engine; therefore, users

can run applications (i.e. as Grid jobs) on Grid and the system will use notifications

to update users on the progress of the application running process. The

myExperiment repository model allows users to mark their favourite applications

and permits assignation of application tags that help the search process by giving a

better categorization of applications.

The myExperiment repository model is much more complex than all the models

currently used in production Grid application repositories. This comes as a

consequence of the fact that this model was built to satisfy the design requirements

of an entire social network system, not only those of an application repository.

Nonetheless, the ability to model user-to-user relations as well as the ability to

support fine-grained user policies permit application sharing and encourage

R E L A T E D W O R K

45

collaboration between users. These elements should represent an inspiration for

designing future Grid application repository models, especially since the entire Grid

is based on the idea of collaboration and sharing.

2.2.3 Conclusions

Other Grid application repository models do exist – GLUE, gUSE, EDGeS,

GRIMOIRES, EGEE – but they are similar to at least one of the solutions already

described in the previous section (2.2.2). They were therefore omitted from this

discussion as they do not bring any further innovation in terms of repository models.

When describing Grid applications, the repository model usually contains

information such as the application name, the version, a free-text description of the

application, the environment variables necessary to the application to run correctly

and the computing resource(s) where the application is set to run. Occasionally, the

applications are grouped in categories depending on their scientific domain of

applicability.

In cases such as GEMLCA and NGS AR, in which the repositories are part of

systems that employ heterogeneous or generic submission engines (i.e. able to

use Grid infrastructures based on different middleware), the models were designed

to accommodate information about such submission engines. Moreover, such

models can capture certain particularities of Grid infrastructures (such as the

underlying technology used as middleware, or the application description language

used for submission), which are used at submission stage to ensure a correct

processing of the application instances.

myExperiment gives a very good solution for exposing information about users,

security policies, access permissions, as well as relations between different objects

captured in the repository model. This is mainly because the entire myExperiment

system is designed to support a collaborative environment and its primary focus is

therefore on modelling user-to-user relations.

R E L A T E D W O R K

46

In terms of making Grid application repositories more versatile and expanding their

domain of usage, GEMLCA, NGS AR and myExperiment can store not only

application descriptions, but also other application-related objects. However, the

attributes used for their reference make the application objects indistinguishable for

automatic retrieval. Without a structured naming scheme to be followed by

publishers, even human users can have difficulties distinguishing between different

application-related objects stored in repository. This approach limits the possibilities

to discover specific application-related objects and impedes automatic retrieval of

these objects.

2.3. Grid Application Repository
Application Description Languages

Application description languages are formal ways to describe applications. These

languages are the result of various investigations into the relationship between the

Application and the Grid infrastructure/services and they address a list of features

needed to make the application visible and usable on Grid. Unfortunately, there is

no single Grid application description language, but several of them, since different

scientific research teams have put effort into finding their own way to describe Grid

applications.

2.3.1 General Overview of Application

Description Languages

Following the timeline from the beginnings of Grid application description

languages up to present days, Grid application description requirements can be

divided in two categories: basic requirements and advanced requirements.

R E L A T E D W O R K

47

BASIC REQUIREMENTS

In order to make the application usable on Grid these description languages

needed to be able to describe several basic features of the application (basic

requirements). Given that Grid is a distributed environment, applications reside on

different resources scattered throughout the Grid participating sites. In order to run

the application they need, users have to know the name, the version and the

executable path of the software they want to use, and these key attributes are a

must for every language. Furthermore, they need to describe the remote

environment (such as the working directory or the environment variables needed

for the application to run), as well as the location of the default input files and the

arguments that need to be passed on to the application.

Another consequence of the fact that Grid is a distributed environment is that the

application description language needs to be able to address remote file staging

because the executable and/or default input files may reside on resources other

than the one chosen for execution.

Given that the Grid architecture enables users to run parallel applications, this issue

needs to be addressed as well. Therefore, at the basic requirements level, any

description language needs to be able to specify at least the number of processors

required for the application to run.

Although Grid is quite resourceful in terms of computing and storage power, it is

comprised of various sites, which offer Grid users a very diverse panel of resources

(e.g. different machine architectures, different operating systems, different usage

policies, different CPU/memory/disk limitations, etc.). Consequently, an application

description language is also used to specify the memory/disk/CPU/etc.

requirements needed for the application to run. These requirements are written in a

document that is passed on to the execution site. If the execution site policies are

met, the execution will be allowed on the site‟s resources.

As Grid evolved, users began to have more expectations from the way Grid

handled the applications and consequently, the capabilities of application

R E L A T E D W O R K

48

description languages evolved as well. On one hand, newer technologies emerged

and were adopted by Grid (Grid/Web services) and on the other hand, applications

grew in complexity, demanding finer grained descriptions from description

languages.

ADVANCED REQUIREMENTS

To cope with the new requirements, description languages had to be improved with

newer capabilities (advanced requirements). First, resource requirements were

fine-tuned to allow specific memory/disk/CPU/network requirements to be specified

(for example: core dump size limits, virtual memory requirements, pipe size limits,

minimum network bandwidth requirements, or open file descriptors limit). Moreover,

at the beginnings of Grid, file staging usually occurred with the help of two transfer

protocols, namely gridftp [55] and rfiod (UNIX remote file access daemon). As more

file transfer protocols were adopted by Grid (such as SRB [56] or srm [57]),

description languages had to make room for them in their schema as well. Later on,

as service technologies (i.e. Web services and OGSI/WSRF Grid services) were

adopted by Grid, the application description language schema had to be modified

to accommodate descriptions of such technologies. Also, as applications grew in

complexity, the default configuration of such applications required increasingly

more knowledge from users. Consequently, administrators had to create a template

for the application: in some cases by supplying values (unchangeable by users) for

certain parameters; or, in other cases, by specifically asking users for mandatory

input of certain application arguments. The idea of a template was to provide users

with the set of parameter values necessary for a correct run of the application (for

example, in order to run accurately, applications may demand a certain machine

architecture, a certain OS, a minimum amount of memory, or a specific value for an

environmental variable). Implicitly, it reduces the complexity and the amount of

knowledge a regular user is required to have about the Grid infrastructure or about

the application set up in a particular Grid environment. As the notion of application

template began to gain terrain in the past few years (e.g. GEMLCA, gUSE)

description languages also needed to reflect this trend accordingly. Finally, while at

the beginnings of Grid parallelism was addressed only in terms of number of

R E L A T E D W O R K

49

processors and Grid parallel computing referred mainly to cluster jobs such as MPI

jobs, as time went on, description languages had to be extended to be able to

express other forms of parallelism, such as parameter sweep applications and

multi-process applications.

To summarize, a minimal set of functionalities that any application description

language is expected to implement in order to comply with current Grid

requirements today includes:

 Legacy compatibility – Any new application description language

should implement all the basic application description requirements to

ensure full backwards compatibility with all previous solutions.

 Advanced features – On top of the basic features, the description

language should be able to describe complex application/resource

specification as well as complex data-staging. Furthermore, this language

must be able to accommodate Web and Grid service technologies;

therefore its schema must permit service-like entries in it (e.g. service

endpoints).

 Advanced parallel behaviour description – Any new application

description language should be able to express advanced parallel

capabilities such as parameter sweep and multi-process applications.

2.3.2 Review of Existing Solutions

This section brings into discussion the most important application description

languages used on existent production Grid middleware, including: RSL, JDL,

xRSL, WS-GRAM RSL, LCID and JSDL.

RESOURCE SPECIF ICATI ON L ANG UAG E (RSL)

RSL [27] is one of the first application description languages that emerged for Grid.

It was developed by the Globus team [58] along with the GT2 Grid middleware [59]

R E L A T E D W O R K

50

and other Grid specific tools. Since it came packaged with one of the widely spread

Grid middleware like GT2, RSL became the first choice of description language for

many researchers and users. As such, it can be regarded as a landmark for the

evolution of application description languages, since it set up the basic application

description requirements for languages to come.

With regard to the first requirement (Legacy compatibility), RSL represents the

legacy in discussion and defines and implements the basic application description

requirements. However, since it is so old, Advanced features are almost non-

existent. Users cannot specify features like: file size limit, open descriptors limit,

process count, machine architecture, OS requirements, CPU requirements, virtual

memory requirements, or file system description etc. In terms of its Advanced

parallel behaviour description capabilities, RSL allows users to describe parallel

jobs and MPI [60] jobs through the following parameters: jobType and hostCount,

but has no support for parameter sweep jobs or multi-process jobs (e.g. no thread

limit or number of processes limit).

JOB DESCRI PTION LANG UAGE (JDL)

Another legacy application description language, JDL [25, 26] is used on gLite/lcg

middleware-based Grids. Similar to RSL, JDL implements all the basic application

description requirements (Legacy compatibility), but does not natively implement

the Advanced features. However, it supports BDII constraints into its schema. The

BDII schema improved over time and nowadays allows site administrators to add

important metadata to their resources (such as machine architecture, OS type,

number of CPUs, memory, disk size etc). JDL therefore indirectly supports a large

part of the Advanced features through its BDII constraints. However, some fine

grained features cannot be expressed via JDL, such as locked memory limit, open

descriptors limit, network bandwidth, thread count limit etc.

The JDL schema is able to accommodate and describe the parallel behaviour of an

application with the same limiations as in the RSL case; therefore JDL is only partly

able to satisfy the Advanced parallel behaviour description requirements.

R E L A T E D W O R K

51

EXT ENDED RESOURCE SPEC IF ICATION LANGUAGE (XRSL)

xRSL [28] is a Grid application description language used in Grids based on ARC

[61] middleware (e.g. NorduGrid [62], Swegrid [63], KnowARC [64], NDGF [65]). As

its name implies, xRSL was created through the extension of the RSL schema by

several new features.

Many of xRSL extensions over RSL capabilities are related to the ARC middleware

(e.g. notifications, ACLs (Access Control Lists), ftp threads). However, several

improvements from RSL can be noticed with reference to the Advanced features

requirement: at the resource level xRSL displays some extra disk-related

parameters and at the data staging level it accommodates URIs. However, the

Advanced features requirement is not entirely.

(W S-) GRID RESOURCE ALLO CATI ON AND MANAGE MENT

(GRAM4) RSL

As its prefix WS suggests, GRAM4 RSL [66] was mainly built to address services.

Once Grid began to adopt the Web service technology (which was later

transformed and adapted to Grid, finally emerging as the OGSI/WSRF-Grid Service

technology), a new description language was needed to support service

descriptions and invocations. The Globus team modified its GT2 Grid middleware

and adapted it to the new Grid service paradigm and so they created the GT4. As

in the case of GT2, GT4 came packaged with an application description language,

only that this time, the new application description language was oriented towards

the new service technology. This became known as WS-GRAM RSL or GRAM4

RSL.

The GRAM4 RSL remains quite similar to RSL and is not a marked improvement

from that in terms of its Legacy compatibility and Advanced features

requirements. However, the WS-GRAM schema supports file staging using

different credentials. WS-GRAM RSL can express a myproxy service [67]

invocation for credential retrieval used for file staging (myproxy is a Grid service

that holds user PKI X509 credential-delegates [68]), thus describing a scenario

R E L A T E D W O R K

52

when files can be transferred using different credentials (e.g.

jobCredentialEndpoint, stagingCredentialEndpoint).

However, apart from this particular case, and as its forerunners RSL and xRSL, the

WS-GRAM RSL schema still lacks some fine granularity such as multi-process

description capability or parameter sweep description capability to meet the

Advanced parallel behaviour description requirement.

LEGACY CODE I NTERF AC E DESCRIPTION (L CID)

LCID [20] is an application description language used by GEMLCA to describe the

applications stored in its repository. From the point of view of meeting the basic

requirements and the advanced requirements this solution has fewer description

capabilities than the other languages brought in discussion. However, LCID needs

to be mentioned because, historically, it is the first application description language

to implement the idea of a template. LCID permits administrators to fix values for

certain application description parameters (i.e. through the attribute fixed) and can

also demand users to input values for a specific description field (i.e. through the

attribute mandatory).

However, apart from this ability, LCID meets only the Legacy compatibility

requirement and provides partial support for the Advanced features and

Advanced parallel behaviour description demands.

JOB SUBMISSION DESCR I PTION L ANGUAG E (JSD L)

The JSDL‟s schema [22] marked a decisive step forward for the Grid application

description language standards. Not only that JSDL meets the Legacy

compatibility requirements, is also meets all the Advanced features

requirements identified in Section 2.3.1. Furthermore, its schema has the

advantage of being extendible (i.e. through the use of other attribute).

The JSDL schema was able to accommodate multi-process application

descriptions from the outset and while the original schema could not express

R E L A T E D W O R K

53

parameter sweep behaviour, through the use of JSDL‟s native extension capability

researchers effortlessly added the parameter sweep extensions [69] making JSDL

able to fully meet the Advanced parallel behaviour description requirement.

2.3.3 Conclusions

The previous section (2.3.2) described the most important application description

languages used in current Grid infrastructures. Almost all of these languages

implement the basic requirements. However, with the notable exception of JSDL,

these languages implement only parts of the advanced requirements and they

cannot be regarded as a complete solution that meets both basic and advanced

requirements.

This analysis also found that a substantial subset of application description

attributes is common to all application description languages. Therefore, a future

description language might consider the idea of extending an old ADL rather than

create a new one. An excellent example in this matter is given by JSDL, which

exhibits native extension capabilities that allow it to accustom new parameters,

types and attributes while still remaining compliant with the original language

schema.

2.4. Grid Application Matchmaking
Systems

In computer science, matching (or matchmaking) can be defined as the process of

evaluating the degree of similarity between two objects.[70] Objects are

characterized by properties and a matchmaking system would run an algorithm

which compares these properties, analyses the results of the comparison and

returns a matching degree. In most cases the matching degree is a real number

with values in the interval [0, 1], where usually 1 denotes identical or equal objects,

while 0 denotes opposed or completely different objects (Note: there are some

R E L A T E D W O R K

54

cases, such as the edit-distance metrics, where 0 means equal objects). A value in

the interval (0, 1) – i.e. with both endpoints excluded from the interval – can be

translated as similar to a certain extent.

Traditionally, the properties of an object are formally encoded in a description

document following a predefined model of the object. However, in many cases, one

property of the object can be encoded in the model via a set of two or more

description attributes. Usually, the description documents contain tuples like (name,

value), where name refers to the description attribute, while in most cases value is

a number, a string of characters or a Boolean value.

2.4.1 General Overview of Grid Application

Matchmaking Systems

Grid application description documents follow the same concept as the one

described above and therefore can be processed by matchmaking systems.

However, there are different approaches to matchmaking and there is no evidence

in related research that they were applied to Grid applications until now. Examples

of matchmaking techniques that can process Grid application description

documents include syntactic methods, string-distance metrics and semantic

techniques, which are discussed below.

SYNTACTI C MATCHMAKIN G

Syntactic matchmaking uses the structure or the format of an object description in

order to perform the matching process. Syntactical matching systems do not take

into consideration either the meaning of the attribute name or the meaning of the

attribute value found in a description; they process the fields without knowledge of

their semantic value.

Applications are described using formal languages and structures that can be either

proprietary or standard-based. In most cases, syntactic matchmaking is performed

R E L A T E D W O R K

55

on homogenous descriptions, but they have been extended to heterogeneous

descriptions as well.

In the case of homogenous descriptions, the structure of the description documents

of the two applications under comparison is the same. The matchmaking system

usually employs very strict mathematical and logical functions to compare the

values of each pair of attributes. The partial results are then combined according to

an aggregation model, which supplies the final result. The aggregation model

usually employs a weighing system and assigns scores to each partial result in

relation to the importance of each attribute within the overall description of the

application. Next, the system then matches the score against a threshold and

provides the final decision to the comparison process.

In the case of heterogeneous descriptions, a syntactic structure matchmaking is

first performed in order to find the correspondence between those attributes that

encode the same property of the application.

Information about an application property can be formally encoded using a set of

description attributes.

Table 2-1: Example of two formalisms encoding the same application property

Application Formalism no. 1 Formalism no. 2

Property Attribute(s) Value(s) Attribute(s) Value(s)

Execution

Site

SiteLocation ngs2.rl.ac.uk:2119/

jobmanager-pbs-short

SiteName ngs2.rl.ac.uk

Port 2119

Jobmanager
&Queue

jobmanager-pbs-
short

When encountering heterogeneous structures, it is common to find the same

information about an application property encoded in different sets of description

attributes, which means different formalisms may have no syntactical symmetry

when describing the same application property. The example given in Table 2-1

shows two different approaches to modelling the execution site where the

application can run: one formalism uses only one attribute (i.e. Formalism no. 1 -

SiteLocation) to encode this property, while the second uses a set of three

R E L A T E D W O R K

56

attributes (i.e. Formalism no. 2 – Site, Port and Jobmanager&Queue) to encode the

same property.

Consequently, matchmaking systems used in these cases have to perform an

alignment of the information about the application property by recomposing the

original set of descriptions attributes. Once the alignment has been performed, the

process follows exactly the same steps as in the case of homogenous descriptions,

applying comparison functions and combining partial results to generate a final

answer to the matching case.

STRING DI STANCE METR I CS

String distance metrics are “a class of textual based metrics resulting in a similarity

or dissimilarity (distance) score between two text strings for approximate matching

or comparison” [71].

Nowadays string-distance metrics are used in a multitude of areas such as fraud

detection, plagiarism detection, ontology comparisons, DNA sequencing and

analysis, data mining, evidence based machine learning or Web interfaces (e.g.

word suggestions as you type, typing error detection, etc.)

On Grid, every application description language has a field called [Application]

Description. The value of this field usually contains a paragraph of free-text in which

application administrators describe the application history, functionality and purpose

of the application using natural language, with no formal constraints. This text

contains information about the application, but syntactic matchmaking systems

leave this information unprocessed due to the complexity of the functions needed

for such a comparison, as well as due to the level of uncertainty induced by their

outcomes, which would require a far more complex result-processing system.

However, these paragraphs of text can be processed by algorithms that use string-

distance metrics to find similarities between these texts and to eventually give users

an indication of how similar two Grid applications are.

http://en.wikipedia.org/wiki/Metric_%28mathematics%29
http://en.wikipedia.org/wiki/Similarity
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Fraud_detection
http://en.wikipedia.org/wiki/Fraud_detection
http://en.wikipedia.org/wiki/Plagiarism_detection
http://en.wikipedia.org/wiki/Ontology_merging
http://en.wikipedia.org/wiki/Ontology_merging

R E L A T E D W O R K

57

String-distance metrics can be divided in three categories: edit-distance metrics,

token-based metrics and hybrid metrics.

Edit distances compute the dissimilarity between strings as the cost of the best

sequence of edit operations that convert the first string to the second string. Typical

edit operations are character insertion, deletion and substitution. Nowadays, many

methods also use character transposition in their functions. Examples of techniques

that use edit distances are Damerau-Levenshtein [72], Smith-Waterman [73], Jaro-

Winkler [74], Needleman-Wunsch [75] and Monge-Elkan [76].

Token-based distance functions assume that strings are sets of words (or

tokens). Functions associated with token-based metrics usually compare the

similarity and diversity of token sets. More advanced methods compute token

frequency statistics from the complete corpus of documents to be matched and use

vector analysis functions and probabilistic approaches to compute the matching

score between two strings. Some approaches see the token sets as samples from

an unknown distribution of tokens and compute the distance between two sets of

tokens based on similarity/divergence scores of such distributions. Notable

methods in token-based string matching are the TFIDF/Cosine similarity function

[77], Jaccard distance [78], Tanimono coefficient [78], Dice coefficient [79], Jensen-

Shannon Divergence [80] and Jelinek-Mercer mixture model [81].

The hybrid methods are usually combinations between edit and token based

distances (e.g. SoftTFDIF [82]), but sometimes they can combine functions from

the same class (e.g. the two-level edit-distance algorithm proposed by Monge and

Elkan [83]).

SEMANTIC MATCHMAKING

While syntactic matchmaking processes descriptions based solely on their

structure and format, semantic matchmaking systems also look at the meaning of

the description attributes name and value.

http://en.wikipedia.org/wiki/Similarity

R E L A T E D W O R K

58

Semantic matchmaking systems are not new. Extensive research has been

undertaken in recent years in the world of semantic web services, ontology

matchmaking, natural language processing, and document analysis - many of them

with outstanding results. Currently Grid does not hold a specific example of

semantic matchmaking; however, semantic analysis methods employed in

semantic web services and document-processing areas can be applied to Grid

application descriptions documents in order to find similarities between

applications.

As in all approaches that involve a structured description of an object, the formal

semantics of the object are specified with the help of a language, such as LARKS,

LDL++, DAML-S/OWL-S, WSMO, OWLS-MX, SWSL etc. These languages

provide a core set of markup language constructs for describing both the properties

and the capabilities of an object in unambiguous, computer-interpretable form. [84,

85] However, as they are limited to the lexicons and terminologies used in different

ontologies, these approaches do not address cases of implicit semantics that can

be found in patterns or relative frequencies of terms in object descriptions.

Semantic matchmaking can also analyze the linguistic semantic associations

between words such as synonyms (i.e. words that have similar meaning and can

often be used interchangeably), antonyms (i.e. words that have opposite

meanings), hypernyms (i.e. words that have a more general meaning), hyponyms

(i.e. words that have a more specific meaning), meronyms (i.e. words that

represent a part-of relation) and holonyms (i.e. words that represent a whole

relation). For example, „leaf‟ is a meronym of „tree‟ and „tree‟ is a holonym of „leaf‟.

[86]

2.4.2 Review of Existing Solutions

While matchmaking techniques have not been used for application matching in

Grid until now, they have successfully been used in matching Grid resources. [70,

87, 88, 89] The following analysis presents four such solutions used for resource-

R E L A T E D W O R K

59

matching in Grid. The analysis is complemented with that of three general

matchmaking systems, which describes how string-distance and semantic

techniques can be used to match objects based on their description.

CONDO R

Condor is a software system designed to manage a dedicated cluster of

workstations. Its advantage resides in the ability to effectively harness non-

dedicated, pre-existing resources under distributed ownership. [90] One of the

modules provided by the Condor system is the matchmaking framework that

matches resource owners with resource consumers.

The framework is based on a semi-structured data model [91, 92] called classified

advertisements (classads) which are used to describe resources and requests.

There are two types of classads: resource offer ads and resource request ads. A

resource offer ad is submitted by resource providers and represents a formal

mapping between resource properties (such as machine architecture, operating

system, available disk space, available RAM memory, CPU type, CPU speed,

virtual memory size, physical location, current load average, etc.) and a value

expression. A resource request ad is specified by the users when submitting a job

and follows the same mapping as the resource offer ads.

Condor matchmaking takes two classads (i.e. a resource offer ad and a resource

request ad) and evaluates each of these against the other. A strong requirement of

Condor is that the provider and the requester know each other's classad structure.

A classad has a special attribute named Requirements and two classads match

only when the values of the field Requirements of both classads under comparison

are evaluated to be true. If users want a finer match to their requests after finding

the machines that met the requirements, they can express their preference via the

Rank attribute. For example, a resource requirement ad specifying

Requirements = Memory >= 1024 && OpSys="SOLARIS10" && Arch="SUN"

Rank = Memory >= 2048

R E L A T E D W O R K

60

asks Condor to choose all SUN machines running the operating system SOLARIS

10 with more than 1GB of memory and expresses a preference to run the program

on machines with more than 2GB of physical memory provided such machines are

available.

BERKELEY DATABASE IN SFORMAT ION INDEX - BDI I

The central information system in gLite/lcg-based Grids (i.e. BDII) stores

information about Grid resources and uses the GLUE schema as a description

model for the referenced objects. The GLUE schema provides support for two

types of gLite/lcg Grid resources: computing elements (CEs) and storage elements

(SEs).

BDII allows communication with clients via LDAP (Lightweight Directory Access

Protocol) queries. Matchmaking in BDII is similar to the matching system in Condor.

Namely, the client specifies a set of needed requirements in a field called

Requirement; only when these Requirements are met the two GLUE entries are

considered to be a match. Like Condor, clients using BDII are required to know the

formal schema used by the system (i.e. in this case, the GLUE schema).

The following example describes a client querying one of the BDIIs located at

CERN (i.e. lcg-bdii.cern.ch:2170):

The result will be a list of machines with i686 architecture, a symmetric

multiprocessing power of 4 and more than 1GB of RAM. Furthermore, similar to

Condor, BDII uses a Rank attribute to select the best resource from the list of

candidates.

ldapsearch -x -H ldap://lcg-bdii.cern.ch:2170 -b Mds-Vo-name=local,

o=grid'(&(GlueHostArchitectureSMPSize=4)

(GlueHostMainMemoryRAMSize>=1024)

(GlueHostArchitecturePlatformType=i686))'

R E L A T E D W O R K

61

RESOURCE BROKERI NG S YSTEM (RBS)

Similar to the two systems described above (i.e. Condor and BDII), RBS is a

matchmaking algorithm developed for Grid resource discovery and matching. RBS

implementation is based on the Condor classad matchmaking algorithm, but it also

provides a Latent Semantic Indexing (LSI) based algorithm using concepts

commonly applied to IR (i.e. information retrieval) and internet search engines.

The brokering service interprets client requests and correlates them with virtual

organization policies regarding resource access. The RBS enables users to query

a VO (i.e. Virtual Organization) index service for a specific resource and acts as a

mediator between the resource consumer and the resource producer. Producers

register their resources inside the VO index using Condor classads, which will be

later queried by resource consumers.

RBS‟ greatest achievement rests nevertheless in its framework for automatic

publishing, collecting and classifying of resource properties in the VO index service.

For example, RBS is able to realize automatic mapping between GT4 resource

properties and Condor classads.

With regard to the matchmaking algorithm proposed by RBS, the new LSI

approach is effective and efficient [88]. However, in Grid resource description and

matchmaking, the Condor classad notation is regarded as lingua franca; therefore,

the LSI algorithm was integrated with the Condor matchmaking algorithm. A

comparison between the RBS matchmaking algorithm and the Condor matching

system described in [88] showed that the combined approach (LSI + Condor)

exhibited better results in terms of effectiveness than the simple Condor matching

system; however, the complexity of LSI calculus is a drawback in terms of

performance, which places the RBS system in second place behind Condor.

NAREGI RESOURCE MATC HMAKER (NAREGI -RMM)

As opposed to the first three matchmaking systems, which are examples of

syntactic matchmaking algorithms, NAREGI-RMM is the first system that uses a

R E L A T E D W O R K

62

description based on semantic web technologies - in particular ontologies [93].

NAREGI-RMM enables complex and diverse descriptions of user requirements and

resources in production Grid (e.g. complex workflow and co-allocation) which are

mapped on ontologies developed using Protégé 2 [94] and the OWL standard.[95]

Given that the NAREGI Grid middleware uses JSDL to express job requirements,

the subsequent ontology is able to describe all information that can be found in a

JSDL description (such as candidate hosts, i.e. a list of hosts that can be allocated;

operating system; CPU architecture; individual CPU count; total CPU count; total

physical memory; total virtual memory; executable; data staging; etc.).

Furthermore, the NAREGI-RMM ontology can also be used to describe network

bandwidth; network latency; time reservation-related attributes (i.e. the date after

which the job must start, the date before which the job must end, the time the

resource is reserved); cluster reservations; access policies; list of applications

installed on the resource; user policies; and group policies.

The resource matchmaking system is integrated with the NAREGI submission

engine. Once a job is submitted, the request is translated into an XML document

compliant with the NAREGI-WFML schema.[96] Because each system has a

timetable of resource reservations, the next step is to check the time constraints of

the request. If the time constraints are matched, the next step is to validate the

user/group constraints against the policies enforced on the system (e.g. in a

university, a student may not have the same permissions as a professor; or, the

group of Grid site administrators may have different permissions and constraints

than the group of Grid application users). Next, the matchmaker checks whether

the user application is installed on the system and if not, the system does not match

the request and will not be part of the solution. If the application is deployed and

available, the NAREGI-RMM checks whether the resource requirements are

satisfied and returns the first from a list of candidate resources. In the final step of

the process the submission engine submits the job to the suggested resource and

then delegates the job monitoring process and the result retrieval aspects to other

Grid services.

R E L A T E D W O R K

63

OW LS-MX

OWLS-MX is a hybrid semantic matchmaker used in Web service matching. The

OWLS-MX matchmaker is based on LARKS [97, 98, 99, 100], but it differs from it in

terms of the description language and description language logic (DL) used in the

matching process. While LARKS uses a proprietary capability description language

and logic, OWLS-MX uses the standard OWL-S and OWL-DL for service capability

description and description logic. OWL-S is an OWL-based Web service ontology

with three main components: the service profile for advertising and discovering

services; the process model, which gives a detailed description of a service

operation; and the grounding, which provides details on how to interoperate with a

service via messages.[101]

The service matching performed by the OWLS-MX matchmaker exploits both logic-

based reasoning and content-based IR techniques for OWL-S service profile I/O

matching. OWLS-MX takes in consideration pairs of service advertisements and

service requests and for each of them computes the matching degree by

successively applying seven different filters: exact, plug-in, subsumes, subsumed-

by, logic-based fail, nearest-neighbour and fail.

The OWLS-MX matchmaker takes any OWL-S-compliant request as a query, runs

the filters against the service descriptions publicized by the providers and returns

an ordered set of relevant services that match the query. Each service returned by

the matchmaker is annotated with the individual degree of matching with the initial

request, as well as the syntactic similarity value between the service and the

request. Furthermore, the client can specify a preferred matching degree as well as

a syntactic similarity threshold. In particular, OWLS-MX also determines the

syntactic similarity between the conjunctive I/O concept expressions (described in

OWLLite [102]). OWLS-MX recursively unfolds each query and service I/O concept

and includes the primitive components of a basic shared vocabulary in the local

matchmaker ontology. Furthermore, if the degree of syntactic similarity between the

respective unfolded service and request concept expressions exceeds a given

R E L A T E D W O R K

64

similarity threshold, OWLS-MX will tolerate any failure of logical concept

subsumption produced by the integrated deductive language.

INFOSL EUTH

InfoSleuth is a generic agent-based information discovery and retrieval system,

which bases its syntactic and semantic matching process on so-called broker

agents.[103, 104, 105, 106, 107, 108, 109] The InfoSleuth matchmaking

architecture defines three types of agents: operational agents, querying agents and

broker agents. The operational agent is equivalent to the concept of service

provider; the querying agent is equivalent to the service requester; and the broker

agent matches querying agents against operational agents.

The broker maintains a repository about the operational agents and their services

and enables the querying agent to locate all available agents that can provide

services that meet their interests.

The InfoSleuth system can match requests to agents on the basis of the syntax of

incoming messages used to wrap the requests (i.e. syntactic matchmaking). In

addition to this, InfoSleuth can also match requests to agents on the basis of the

requested agent capabilities or services (i.e. semantic matchmaking).

The agent capabilities and services are described in a common shared ontology of

attributes and constraints which uses a specific vocabulary. All operational and

querying agents can use this vocabulary to specify advertisements and requests to

the broker. The service capability information is written in LDL++ [110] and broker

agents use a set of LDL++ deductive rules to support inferences about whether an

expression of requirements matches a set of advertised capabilities.

REUSABL E TASK STRUCT URE- BASED I NTELLIG ENT

NETW ORK AG ENTS (RET S INA)

RETSINA is a multi-agent infrastructure proposed and developed at Carnegie

Mellon University in Pittsburgh, Pennsylvania (USA). Following the same structure

R E L A T E D W O R K

65

of agents as InfoSleuth, RETSINA proposes three general agent categories: the

service provider, the service requester, and the middle agent. Mediation in this

system also relies on service matchmaking, although in order to describe agent

capabilities in the matching process they have defined a new agent capability

description language called LARKS (Language for Advertisement and Request for

Knowledge Sharing). LARKS offers the option to use application domain

knowledge in any advertisement or request by using a local ontology, provided that

the local ontology is written in ITL (Information Terminological Language). In that

case, the ontology can automatically be incorporated in LARKS and can be

processed by the RETSINA systems.

The RETSINA matchmaking system allows service providers to register their

capabilities in an advertisement, which provides a short description of the agent, a

sample query, input and output parameter declarations, and other constraints.

When the matchmaker agent receives a query from a service requester it searches

its dynamic database of advertisements for providers that can fulfil the incoming

request. Although RETSINA was developed for generic MAS (Multi-Agent

Systems), the most known and used implementation deals with Web service

discovery and matchmaking. In this case, each service provider advertisement

gives a semantically-based view of the web service, including the abstract

description of the capabilities of the service, the specification of the service

interaction protocol, and the actual messages that it exchanges with other web

services. The matchmaking system employs techniques from information retrieval,

artificial intelligence and software engineering to compute the syntactical, string-

distance, and semantic similarity degree between different service capability

descriptions. The matching engine of the matchmaking system contains five

different filters for namespace comparison, word frequency comparison, ontology

similarity matching, ontology subsumption matching, and constraint matching [111].

Users can select which filters to use and can also apply custom thresholds to these

filters in order to improve the accuracy of the matchmaking and balance between

the performance and the quality of the matching system.

R E L A T E D W O R K

66

2.4.3 Conclusions

Other matchmaking systems exist which may be used to find similar applications in

Grid repositories. Examples such as PromptDiff [112], Minersoft [113] or GridLET

[114] employ matchmaking methods that can be adapted for Grid applications (e.g.

token-based solutions with indexing and categorization methods based on term

frequency), but they are similar to those already described. Therefore, their

description was omitted, as they do not present any new method over the ones

already mentioned in section 2.4.2.

In Grid, syntactic matchmaking methods were successfully used in resource

matching and therefore represent the first option when trying to match objects

based on their formal descriptions. However, in cases like gLite/lcg-based Grids – a

type of infrastructure widely used throughout the world – the formal description

document of the application is usually missing from the repository. Furthermore, the

metadata associated with the application does not contain the basic and advanced

requirements of the application (i.e. as discussed in Section 2.3.1). Hence, the

accuracy of syntactic matchmaking techniques is limited, as the most important

application properties are not formally contained in a document that could be

processed by such matchmaking systems.

In such cases, the repository needs to rely on other forms of matchmaking, for

example techniques which use string-distance or semantic methods that can

process the free-text field Description from the repository model, as well as

matching techniques which process application-related objects other than the

application description document itself (such as binaries or source code).

Within the time constraints imposed by the lengths of a PhD, this research

managed to analyze four matching methods – i.e. syntactic, string-distance,

application running and binary matching – and proposed several others which may

help identify similar applications stored in Grid repositories.

R E L A T E D W O R K

67

2.5. Challenges

Applications play one of the most important roles in Grid, regardless of the methods

used to describe such an application or to expose it to Grid users.

Initially, Grid application repositories were regarded by Grid scientists as of

moderate importance and were used mainly by Grid administrators for improved

storage and management of applications. Moreover, since the information about

applications was structured following a repository model, they were also used by

administrators to present users with a uniform view of application metadata.

However, as the number of Grid applications grew year by year, Grid application

repositories became not only important, but a necessity. Between July 2008 and

July 2009 the number of applications found on the University of Westminster

application repository (represented by a GEMLCA resource) increased by 94%,

from 18 to 35 Grid Applications; the number of applications found on the NGS

Application repository increased by 51%, from 33 to 50 applications; and the

number of Grid applications stored in the myExperiment repository increased by

98%, from 321 to 635 applications. Meantime, repository technologies and

distributed computing technologies evolved and nowadays Grid application

repositories face a far more complex set of challenges.

For a better understanding of the Grid application repository solutions and of the

functionality and capabilities that these repositories must exhibit in order to

interoperate with current and future distributed computing environments, the

following requirements have to be met:

(R1) APPLICATION PUBLISHING: The first and foremost requirement of any Grid

application repository is to store and manage Grid applications. The repository

model needs to be able to describe the application along with descriptions of

related entities (such as author, access policies, provider, application-objects –

binaries, documentation and licenses), as well as relations between them.

Furthermore, any application repository needs an intuitive, user-friendly interface,

R E L A T E D W O R K

68

such as graphical clients or web-based solutions, which would make application

publishing easy for both Grid administrators and users. Command-line solutions

demand a much more thorough understanding of the underlying concepts and

technologies, which users should not be required to have.

(R2) APPLICATION DISCOVERY: Currently, each production Grid application

repository stores tens or hundreds of Grid applications. It is obvious that for users

or services interested in such applications, these repositories should be the first

place to look for them. Therefore, a Grid application repository needs to provide

means to discover the Grid applications it stores and this process should be made

easy to both users and services. A Grid application repository should permit the

discovery of applications it stores following several principles:

 (R2.1) Expose their application to the Web: Grid application

repositories should be built using technologies that interact with popular

web search engines and web metadata harvesters. It is therefore desired

that application repositories expose interfaces such as HTTP/REST [115,

116] or OAI-PMH, which would make the application discovery process

easier to both human users and services. Such protocols would permit

services to retrieve Grid application metadata and Grid application

objects from repositories using the ubiquitous HTTP clients and simple

HTTP queries.

 (R2.2) Interoperability with any OGSI/WSRF Grid service: Grid

application repositories should expose an OGSI/WSRF Grid service

interface, which would make them able to interact seamlessly with any

other OGSI/WSRF Grid service in a standard, serviceable manner. In

2005 Globus implemented the first Grid service-based middleware,

based on OGSI/WSRF standards stack, and since then many Grid

projects have been developing and using OGSI/WSRF Grid services

(such as The Lattice Project, GEMLCA, D-Grid Projects, WS-

PGRADE/gUSE, and ARCS). From the application discovery point of

view, by fulfilling R2.1 and R2.2, any application stored in such repository

could be easily discovered by human users, Grid services and any other

R E L A T E D W O R K

69

service equipped with a simple HTTP client. However, having an

OGSI/WSRF service interface also offers the possibility to manage the

repository and the objects stored inside through a service interface.

Moreover, by implementing OGSI/WSRF WS-Notifications providers,

clients can be notified automatically when certain actions are performed,

such as the addition/deletion/modification of a new Grid application in the

repository.

 (R2.3) Connection with other repositories: While various Grid

application repositories are currently not connected in any manner, a

service able to connect different repositories and to find whether a

desired Grid application is stored in any of the connected repositories

would prove extremely valuable to both human users and services. The

lack of connectivity between Grid application repositories comes as a

straightforward consequence of the different repository frameworks,

which vary in terms of access interface, security system, implementation

technology, communication protocols and transfer protocols. A service

able to connect such repositories would simplify the application discovery

process.

 (R2.4) Ability to find similar applications: The set of applications found

on two or more Grid application repositories might overlap (for example,

no less than 29% of the Grid applications found on the NGS AR and

CHARON/iSoftrepo are similar – July 2009). A service able to find the

same application or similar applications on different repositories would be

very helpful to users and services in cases when certain repositories

become inaccessible or when the Grid infrastructure behind one given

repository becomes unavailable. Such a service would also give users

the choice between application description languages (for example if a

user wants to use application AUTODOCK [117] and knows JSDL better

than LCID, s/he would prefer to use the NGS AR, where this application

is available in JSDL, rather than the Westminster GEMLCA repository,

where the same application is described using LCID).

R E L A T E D W O R K

70

(R3) OBJECT EXCHANGEABILITY & REUSEABILITY: Grid application

repositories should permit the exchange and re-usage of Grid application objects

and application-related objects with other repositories.

Repository technologies evolved rapidly during recent years and scientists put a lot

of effort into trying to standardize communication between them to make them

interoperable and permit automatic exchange of objects between them. In

December 2007 Open Archive Initiative [118] publicly released the first version of

such a standard (i.e. OAI-ORE [119]) and by December 2008 (the date of the last

version) OAI-ORE was already adopted as a standard by two of the most important

Open repository technologies (i.e. FEDORA [120], ePrints [121]). The third one,

DSpace [122], is in the process of adopting it as well.[123] Should Grid application

repositories allow object reuse and exchange (for example, by implementing the

OAI-ORE standard), this would also allow administrators to easily find and relocate

objects in fresh repositories in an automatic manner and would permit services to

simultaneously extract metadata and objects from repositories.

(R4) VERSATILITY IN USAGE: Grid application repositories should extend the

scope of the distributed environments so that applications stored by them can be

used to include computing concepts similar to Grid such as application-on-demand,

cluster-on-demand and cloud computing. Traditionally, Grid application repositories

used in current production environments are hard-wired to a Grid submission

engine and can only be used on Grid architectures. In most cases these

repositories store only descriptions of the applications written in an application

description language processed by the underlying Grid, which effectively makes

them usable only in that particular framework. However, emerging distributed

computing concepts such as cluster-on-demand, virtual computer-on-demand and

cloud computing are very similar to Grid. As applications stored in Grid application

repositories are able to run on any of these architectures, these repositories should

not limit themselves to Grid, but should try to extend the scope of the distributed

environments where these applications can be used.

R E L A T E D W O R K

71

Application repositories could store application-related objects such as the

executable, the source code, library dependencies, the documentation, licenses,

etc., all in the same place, giving users and administrators countless possibilities to

use them in different scenarios and on different distributed computing architectures.

2.5.1 Architecture

Based on the discussion in Section 2, the following table summarises existing Grid

application repository solutions and how they comply with requirements R1-R4:

Table 2-2: Current Grid application repository solutions vs. Requirements R1-R4

 R1: PUBLISHING R2: DISCOVERY

R3:

EXCHANGE
& REUSE

R4: VERSATILITY

B
D

II

- Publishing done by

automated services via

scripts that contain suites

of console commands;

- No graphical/web

interface for human users.

- Console commands containing LDAP

queries;

- No OGSI/WSRF Grid service

interface;

- No Web visibility;

- No HTTP/REST interface;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

- GLUE attributes: name,

version, location;

- Used only to list EGEE sites

where the application resides

and can be run.

C
H

A
R

O
N

 - Command-line only for

human users;

- No access support for

services;

- Collection of static Web pages;

- No OGSI/WSRF Grid service interface

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

- Metadata for Application

object only;

- Used only to list EGEE sites

where the application resides

and can be run.

G
E

M
L

C
A

- Graphical interface for

human users;

- OGSI/WSRF Grid

service interface for

services.

- OGSI/WSRF Grid service interface;

- Human users can find application

information through PGRADE portals or

using a GEMLCA Service Client;

- No Web visibility;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

- Can store the application

binary and application

description documents only;

- Permits the usage of different

Grid submission systems.

N
G

S
 A

R
 - Graphical interface for

human users

- No access support for

services

- JSR-168 web application interface –

for human users;

- No OGSI/WSRF Grid service

interface;

- No HTTP/REST interface;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

- Stores application

description documents;

- No support for distinctive

application-related objects;

-Can be used only in traditional

Grid frameworks in conjunction

with its submission system.

R E L A T E D W O R K

72

G
R

IM
O

IR
E

S

- Human users and

services can register web

services via UDDI clients.

- Visible to UDDI clients;

- Visible to human users through a

collection of static web pages.

N/A N/A
m

y
E

x
p

e
ri

m
e
n

t

- User-friendly web

interface for human users;

- HTTP/REST interface for

services.

- Intuitive web interface for human

users;

- Exposes HTTP/REST interface;

- No OGSI/WSRF Grid Service

interface;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

- No support for distinctive

application-related objects.

Unfortunately, none of the current Grid application repositories that were discussed

in this chapter can be seen as a comprehensive solution that meets all R1-R4

requirements. Notably, the GEMLCA system highlights the importance of

interoperability with Grid WSRF/OGSI Services and the myExperiment repository

accentuates the value of application visibility on Web. Currently, there is no

connection between application repositories and there is no service which users or

other services can inquire to find whether a desired Grid application is stored in one

of the Grid repositories. In conclusion, at the time this research was carried out

existing Grid application repository solutions only partly met requirements R1 – R4.

2.5.2 Repository Model

Traditional Grid application repository models revolve around two entities: the user

who described the application and the application itself. While more advanced

solutions do allow for the storage of application-related objects, they store them

without any categorization or name-pattern tagging, which makes them

indistinguishable for searches or meaningful automatic retrieval.

According to requirement R2.4 an application repository solution able to connect

multiple Grid application repositories to its system requires a new entity to be

described in the model – the Provider.

In addition to user, application and provider, any repository model is required to

contain descriptions of different Access Policies, which deal with security, visibility

R E L A T E D W O R K

73

and permission attributes for each of the object they relate to. Moreover, in order to

expand the area of usage of Grid application repositories, the repository model

should not limit itself to the description of application-related objects, but should

permit the modelling of user-related objects and provider-related objects.

The Provider Related Objects refer to those objects that may have to be stored in

Grid application repositories in order to give a comprehensive description of a

provider and to ensure proper access and connectivity to it (e.g. PKI public

certificate, software client, etc.).

The User Related Objects refer to those objects that can be stored in Grid

application repositories and can be used for identification, application running or

data staging (e.g. X509 proxies, PKI public keys, username/password sets, etc.).

Figure 2-8 shows the entities that need to be present in a Grid application

repository model, in line with requirements R1-R4:

Figure 2-8: Grid application repository model entities

Table 2-3 below summarizes the critical analysis of the five repository models

described in Section 2.2.2 (MyExperiment, NGS, GEMLCA, GUSE and

CHARON/iSoftrepo) assessing their ability to describe the entities specified above:

R E L A T E D W O R K

74

user, user policies and user related objects; application, application policies and

application-related objects; provider, provider policies and provider-related objects.

Table 2-3: Traditional Grid application repository models and repository entities

myExperiment NGS AR GEMLCA GUSE

CHARON/
iSoftrepo

User YES YES YES YES YES

User-related
objects

no no no no no

User
access policies

YES YES YES YES YES

Application YES YES YES YES YES

Application
related objects

YES
*

YES
*
 YES

*
 YES

*
 YES

*

Application
access policies

YES YES YES YES YES

Provider no no no no no

Provider-related
objects

no no no no no

Provider
access policies

no no no no no

Note: YES* from Table 2-3 – current solutions store only a few types of application-
related objects; furthermore, these are stored without any meaningful categorization,
which makes them indistinguishable for searches or automatic retrieval.

In conclusion, none of the repository models currently in production is able to fully

satisfy the requirements set out above.

2.5.3 Application Description Language

Based on the critical analysis of Grid application repositories from their early stages

(e.g. BDII, CHARON/iSoftrepo) to the most recent available solutions (e.g.

myExperiment, NGS Application Repository, GEMLCA), and in conjunction with the

repository requirements R1-R4 (i.e. publishing; discovery; reuse and exchange;

R E L A T E D W O R K

75

and versatility), this research identifies the following life-cycle for a Grid application

that resides in a Grid application repository:

Figure 2-9: The life-cycle of a Grid application stored in an application repository

Once the application is published in the repository, the application description

document contains all the necessary values for the configuration parameters, which

make it usable on Grid (e.g. machine architecture, minimum amount of RAM,

default input files, required command parameters, etc.). The parameters are

predefined by the application publisher that is responsible for providing the

necessary values for those attributes. These attributes will have to remain

unchanged and free from users‟ interference, otherwise the application may

become unusable. When such a formal description skeleton is provided, the

application is said to be in the Template state.

The user can retrieve such an application template and can provide values for the

rest of the parameters necessary for a particular run. At this stage the application

enters the Instance state. In this state, the application is parameterized and ready

to run. (Note: the parameterization can be specific to each run or to each user.) The

application can then be submitted via a submission engine to run on Grid.

However, before the actual run of the application, application deployment and data

staging may occur.

R E L A T E D W O R K

76

In the Deploy state the application binaries and the application input files are

retrieved from different locations (including the repository where the application

resides), possibly using different authentication methods. Furthermore, these

application objects could be staged from different Grids, using different X509

certificates and possible different transport protocols. Moreover, it is advisable that

the staged data benefit from data protection (e.g. hash sums) which would insure

that the transferred data is genuine and would protect against data corruption that

may occur during transfers. Data are staged to the Grid resource where the

application instance will run (stage in) but output can also be staged from the

execution resource to storage servers (stage out).

Next, once the staging is completed, the application starts running on the Grid

infrastructure resource that has been commissioned for it. Currently, there are only

two types of application running set up on Grid infrastructures: first, when the

application binaries are already present on the resource and only the input files are

staged on the resource; and second, when both the binaries and the input files are

staged on the Grid resource. However, Grid applications stored on a Grid

repository should benefit from the fact that many other application objects could be

available, which would permit other types of application running such as: virtual

machine-embedded applications that can be staged and run on the resource;

source code staging (plus, possibly, software dependencies and libraries) and

compilation directly on the resource; as well as running licensed software which

would require license staging and acceptance prior to the actual application

running. Nevertheless, whichever the type of application run, the results can be

retrieved upon completion – and depending on their relevance to the description of

the application, some of them can be published in the repository (for example, the

publishing of a test suite – input set, running script, and expected output set –

which would later help with testing the applications or with application

matchmaking).

Grid application description languages must be able to describe the states from the

life-cycle described above, as well as the Legacy compatibility, Advanced

R E L A T E D W O R K

77

features, and Advanced parallel behaviour description requirements (see

Section 2.3.1).

The following table summarizes the critical analysis of the six application

description languages repository models described in Section 2.3.2 (RSL, JDL,

xRSL, WS-GRAM, LCID and JSDL) versus the requirements mentioned above:

Table 2-4: Traditional Grid application description languages vs. requirements

RSL JDL xRSL

WS-
GRAM

LCID JSDL

Legacy compatibility

YES YES YES YES YES YES

Advanced features partly partly partly partly partly YES

Advanced parallel
behaviour

partly partly partly partly partly YES

Multi-Grid/ multi-
certificate secure data
access

no no no
YES

(service
only)

no no

Multiple transfer
protocols supported
as URI definitions

no no YES no no YES

Data protection no no no no no no

Template no no no no YES no

Application run types

Binaries
already

deployed
on the

resource

Binaries
already

deployed
on the

resource

Binaries
already

deployed
on the

resource

Binaries
already

deployed
on the

resource

Binaries
already

deployed
OR

Binaries
staging

Binaries
already

deployed
on the

resource

Native extension no no no no no YES

The conclusion of this analysis is that the languages currently used in Grid only

partly meet the requirements identified above. From the table above it becomes

obvious that JSDL is the language which comes closest to meeting the

R E L A T E D W O R K

78

requirements set before. JSDL has been lately gaining popularity on all major Grids

and a lot of effort has been put in adopting JSDL as the default job description

language on Grid (e.g. GridWay [125], GridSAM [54], NAREGI [126], GRIA [127]

and Genesis II [128]). Moreover, the JSDL schema has the advantage of being

extendible. Consequently, instead of creating a new language, a better solution

would be to extend JSDL to add the missing parts.

2.5.4 Matchmaking Systems

Syntactic matchmaking methods were successfully used in resource matching in

Grid and therefore represent the first option when trying to match objects based on

their formal descriptions. However, in cases like gLite/lcg-based Grids – a type of

infrastructure widely used throughout the world, such as in EGEE [129], SEE-Grid

[130], EELA Grid [131], EUMedGrid [132], EU-India Grid [133], EUChinaGrid [134],

Baltic-Grid II [135] – the formal description document of the application is usually

missing from the repository. Hence, the accuracy of syntactic matchmaking

techniques is limited. In such cases, the matching system needs to rely on other

forms of matchmaking, for example techniques which use string-distance or

semantic methods that can process the free-text field Description from the

repository model, or matching techniques that process application-related objects

other than the application description document itself (such as binaries or source

code).

In order to use any of the algorithms described in the critical analysis section (i.e.

Condor, BDII, RBS, NAREGI-RMM, OWLS-MX, InfoSleuth and RETSINA) for grid

application matchmaking, the following requirements need to be met:

 Ability to process the ADL used for application description: Every

matchmaking algorithm that searches for similarities between objects by

processing their description documents relies on a formal description

language. These description languages are used to express objects‟

properties and capabilities in a structured way. Although subsets of

R E L A T E D W O R K

79

matching methods and matching techniques may be common to many

matchmaking systems, usually each matchmaking system is bound to

only one description language and can process documents written in that

particular formalism. Each of the algorithms described in the critical

analysis section (see Section 2.4.2) is bound to such formalism. For

example, Condor and RBS processes classads; BDII is linked to GLUE;

NAREGI-RMM uses NAREGI-WFML and TRIPLE [136]; OWLS-MX and

other similar algorithms such as those described in [137, 138] use DAML-

S/OWL-S; InfoSleuth understands LDL++; and RETSINA processes

LARKS.

In the case of Grid applications, the application description documents are written in

a Grid ADL. The first and foremost challenge of any Grid application matchmaking

system with the ability to process Grid application description documents is to be

able to understand the language the documents are written in. Unfortunately, none

of the existing matchmaking algorithms identified by this research (in Grid or similar

areas, such as WS, semantic web, ontology matchmaking, etc.) can process any

Grid ADL document.

 Ability to process the application descriptions written in free-text: As

mentioned before, every description language has a field called

[Application] Description, which usually contains a free-text description of

the application history, application functionality and its purpose. The text

contains information about the application but many matchmaking

systems leave this information unprocessed, as it is written in natural

language, with no formal constraints. Syntactic matchmaking systems

usually omit this type of fields automatically. Among semantic

matchmakers, only those with linguistic semantics capabilities (e.g.

RETSINA, InfoSleuth) are able to process such paragraphs of free text.

 [Ability to process sources of information other than the description

document: Apart from the application description document, Grid

application repositories can also store application-related objects such as

binaries, source code, hash sums and test files. These objects can help

R E L A T E D W O R K

80

with the identification of similar applications and a Grid application

matchmaking system should be able to process such objects.

Table 2-5 below summarizes how the matchmaking solutions described in Section

2.4.2 meet the requirements mentioned above:

Table 2-5: Matchmaking systems vs. requirements

Process ADL

Syntactic and free-text
processing

Processing of
application-related

objects

CONDOR
No

 (class-ads)
YES no no

BDII
no

(GLUE)
YES no no

RBS
no

(class-ads)
YES pilot-LSI no

NAREGI-MM
No

(NAREGI-WFML)

YES
(ontology
approach)

no no

OWLS-MX
No

(DAML-S/OWL-S)

YES no

no (semantic ontology
approach)

InfoSleuth
no

(LDL++)

YES YES
no

(IR functions)

RETSINA
no

(LARKS)

YES YES
no

(IR functions)

Based on this analysis, we can conclude that each matchmaking system is bound

to its own language. Therefore none of the current solutions is able to interpret the

Grid application description languages described in Section 2.3.2. Furthermore, the

matchmaking systems under discussion were designed specifically for document

processing – therefore these solutions are not capable to use any other Grid

application-related objects besides the application description document. However,

as the string-distance functions used by some of these algorithms can be applied to

any free-text paragraph, these functions could be applied to Grid application

descriptions as well.

R E L A T E D W O R K

81

2.6. Objectives

Since none of the repositories currently used on Grid can be regarded as a

comprehensive solution to the requirements identified in Chapter 2 section 2.5

(R1-R4), this research aims to design a Grid application repository able to meet all

those requirements. The ultimate aim is to create a modular, easily extendible

solution which is based on functional principles that can be followed not only by

application repositories usable on Grid, but also by generic application repositories

that reside in collaborating environments other than Grid. In order to achieve that,

this research was aimed to fulfil de following objectives:

OBJECTIVE O1: The first objective of this research was to design a service able to

connect different types of Grid application repositories, but which would still function

as a Grid application repository in its own right. By meeting this objective, the

service would connect Grid application repositories notwithstanding their different

implementation technologies, methods of access and authentication,

communication protocols and transport protocols (R2.3), while at the same time

human users and services could use an access interface to store and retrieve Grid

applications directly from the service‟s repository (R1).The design of this service

was also meant to provide a solution to the application discovery problem (R2) and

make applications stored on Grid repositories accessible to other Grid services

(R2.2) and also visible to the Web (R2.1). Therefore, achieving this objective would

not only solve the current interoperability issue, but also expose the applications to

Web search engines and through them, to a much larger community interested in

Grid applications. Furthermore, the service would also employ methods and

protocols for the exchange of objects, thus fulfilling the requirement (R3).

OBJECTIVE O2: The second objective of this research was to propose a new

model for application repositories, which would achieve uniformity in Grid

application presentation and would extend the functionality of these repositories

beyond Grid (R4). After reviewing all the major repository models used on Grid,

results have shown that these models imposed limitations on the applicability

R E L A T E D W O R K

82

domains of Grid application repositories. The objective was therefore to design a

new repository model that would provide a comprehensive description of an

application along with a suggestion for a new categorization of application-related

objects. This would allow Grid application repositories to be compatible and ready-

to-use in conjunction with newly emerging technologies such as virtualization,

automatic virtual machine creation, cloud computing and automatic service

deployments, as well as to be ready-to-use in future distributed computing designs.

The final goal related to the repository model was to investigate how the objects

stored in a repository following such a model can help with the identification of

similar Grid applications (R2.4).

OBJECTIVE O3: While the architecture described in objective O1 would be

capable to connect multiple repositories with different types of application

description languages (R2.3), the third objective of this research was to find an

application description language, which would provide uniformity in the presentation

of Grid application descriptions. Furthermore, the aim was to find (or create) an

application description language which would allow for Grid application repositories

and the applications stored by them to be used in scenarios other than Grid, such

as virtualisation; source code staging and compilation; or automatic application

deployment. (R4) Moreover, the proposed solution should also provide answers to

several Grid interoperability problems, such as multi-Grid data staging and using

different security certificates for job-submission and data staging. A secondary aim

related to application description languages was to investigate and define a

structured life-cycle for any Grid application that resides in a Grid repository,

including the different states in which the application can be found (i.e. template,

instance, deployment, running) and how these states can be accommodated in an

application description language schema. The final goal related to the description

language was to investigate how the information about a Grid application modelled

by such a language can help with the identification of similar Grid applications

(R2.4).

OBJECTIVE O4: The fourth objective was to design a matchmaking methodology

and an algorithm able to process information about applications stored in

R E L A T E D W O R K

83

repositories and identify similar or identical applications (R2.4). When one

repository becomes unavailable, such a matchmaking service would help users

and services to find a subset of the same applications on other repositories

connected to the architecture proposed in O1. The aim was to identify or create

matchmaking techniques that can process various application-related objects

stored in repository and can be applied in different scenarios. The final goal was to

analyze the performance of a subset of such matchmaking techniques when

applied to real-case scenarios, using data found on production Grid repositories as

well as objects stored following the repository model described in objective O2.

Figure 2-10 shows the relations between the research objectives and the

challenges identified in this research:

Figure 2-10: Research objectives and their relations to requirements R1-R4

S O L U T I O N O V E R V I E W

84

3. The Grid Application

Meta-Repository System

his chapter describes the Grid Application Meta-Repository System

(GAMRS) as the solution proposed by this research to respond to the

challenges identified in the previous chapter. Chapter 2 highlighted the

diversity of repository implementations currently found on Grid, as well as the

problems posed by this heterogeneity in the area of Grid application repositories.

The chapter concluded with the specification of a set of requirements (i.e. R1-R4)

and four research objectives (i.e. O1-O4) essential for the design and functionality

of a repository that would address the problem of heterogeneity.

In order to meet the research objectives O1-O4, this research proposes a new Grid

application repository called The Grid Application Meta-Repository System

(GAMRS). In line with the four research objectives, this chapter covers the four

repository aspects identified in Chapter 2: repository architecture, repository model,

application description language, and Grid application matchmaking methods. Each

aspect is described in a separate section, which presents a short overview, the

design principles, the solution, and the functionality of that module. The chapter

 Chapter

3

T

S O L U T I O N O V E R V I E W

85

concludes with a summary of the novel capabilities of GAMRS, which allow it to

meet requirements R1-R4.

3.1. GAMRS Architecture

3.1.1 Overview

In line with the first objective (O1) of this research, GAMRS was designed to

function as a Grid application repository with the additional capability to connect

different types of Grid application repositories notwithstanding their different

implementation technologies, methods of access and authentication,

communication protocols, and transport protocols (R2.3).

The GAMRS architecture specifies abstract interfaces that permit the connection,

authentication, and retrieval of information about applications stored in repositories

connected to GAMRS. The architecture specifies human- and service-friendly

interfaces (i.e. GUI/web, HTTP/REST, OGSI/WSRF) that can be used to publish

Grid applications directly in the service‟s repository (R1). These interfaces can also

be used to retrieve information about Grid applications stored or referenced by

GAMRS.

Furthermore, the design of this service provides a solution to the application

discovery problem (R2): Grid services can access information about applications

via the standard OGSI/WSRF Grid interface, while through the HTTP/REST

interface all the applications stored on GAMRS or referenced by it become visible

to the Web and, therefore, available to a much larger community interested in Grid

applications.

The GAMRS architecture was also designed to be compatible with OAI standards,

with support for OAI-PMH and OAI-ORE protocols, which facilitates

communications with other OAI-compatible repositories and permits easy discovery

of objects through metadata harvesting. Furthermore, the GAMRS architecture

S O L U T I O N O V E R V I E W

86

suggests that objects stored in the repository are described in a language capable

to embed (or refer to) metadata and associated datastreams (i.e. FOXML, OAI-

ORE implementations) – digital assets related to an object , i.e. files – which would

allow for the straightforward relocation and exchange of repository objects (R3).

The design of GAMRS had to take in consideration all the challenges identified by

this research, including the system of identification of similar Grid applications.

Consequently, the architecture design also contains the Matchmaking Service,

which will be discussed in detail in Section 3.4.

3.1.2 Design

As none of the application repository architectures currently used in Grid is able to

answer to the challenges identified by this research, a new architecture had to be

designed for GAMRS. Figure 3-1 depicts the GAMRS architecture:

Figure 3-1: GAMRS Architecture

S O L U T I O N O V E R V I E W

87

The system consists of three core services: Publisher, Meta-Repository and

Matchmaking. These core services are designed and implemented separately so

that they can also be used independently and can easily be extended with new

methods in the future.

 Should new repository standards for publishing emerge in the future, they

could always be added to the Publisher service.

 Should new application repositories be added to Grid, the Meta-Repository

service would already have a connection interface and new adapters could

be written and integrated to it.

 The Matchmaking service finds similar applications in repositories

connected to GAMRS and is also implemented as a separate service in

order to allow new matchmaking methods to be added to it.

The three core services are backed up by the GAMRS Backend module, which is

responsible for the actual storage of repository objects.

GAMRS PUBLI SHER SERVICE

This service is responsible for the publishing of Grid application information for

various clients. It exposes all the necessary interfaces through which objects stored

in the repository can be accessed or published: HTTP/REST, OAI protocols (i.e.

PMH and ORE), and an OGSI/WSRF Grid Service interface. Examples of services

that can access GAMRS are: HTTP clients, other OAI-ORE compliant repositories,

any OGSI/WSRF Grid service, web crawlers, OAI-PMH harvesters, and WS-

Notification subscribers. Human users can use the graphical interface (GUI) to

search, publish, and retrieve Grid application information and application-related

objects from the repository.

The following figure (i.e. Figure 3-2) offers an overview of the Publisher service

architecture, highlighting the various modules that provide the GAMRS access

interfaces:

S O L U T I O N O V E R V I E W

88

Figure 3-2: GAMRS Publisher service architecture

The GUI interface permits users to create, retrieve, update, and delete objects

stored in repository and metadata associated with them. GAMRS differentiates

between the metadata associated with an object and the actual file (also called

datastream in literature), which represents the digital representation of the object.

These are stored on the backend, with the help of a relational database – which

maintains a coherent representation of the relations between objects, metadata,

and datastreams – and a filesystem, which is used for file storage. In order to allow

fast searches over the metadata associated with the objects, the Publisher service

employs an Indexing Service, which indexes and sorts the information about the

objects stored in the repository and which, ultimately, is used by all the other

modules for querying and listing of such information.

With the help of a Web builder module and a HTTP server users are provided with

a suite of web pages in which they can perform in a graphical, human-friendly

S O L U T I O N O V E R V I E W

89

manner the CRUD (create/retrieve/update/delete) actions mentioned above. In

addition, the graphical interface offers search facilities to human users. These

facilities are used to perform queries (with the help of the Indexing Service) on the

metadata associated to applications stored or referred by GAMRS.

The low-level transactions with the backend and the error handling system, as well

as the authentication and policy assessment (i.e. permissions) systems are

implemented in the Management module.

The HTTP/REST service is built around the transfer of representations of

resources. The resource in this case is a repository object, while the representation

of a resource is represented by a document that captures the current state of a

resource. The methods used in a HTTP/REST interface are the well-known HTTP

GET, PUT, POST, and DELETE; and they correspond roughly to the CRUD verbs

READ, UPDATE, CREATE, and DELETE. [139] A GAMRS object can be created

with the help of a POST method and a document (usually written in XML) which

contains together the datastream and the metadata associated with it. An object

can be read with the help of a GET method, which retrieves the object‟s description

document (i.e. metadata and datastream) from the repository. An update can be

done via a PUT method plus an object description document, which will replace the

one already stored in the repository; while an object purge can be done via a

DELETE command. However, more complex actions can be performed with the

help of HTTP/REST interface such as, for example, searching for a particular

object. The HTTP/REST service used in GAMRS permits searching for repository

objects by querying the Indexing Service.

The following figure (i.e. Figure 3-3) gives the implementation details for an

“application search” scenario. It shows the sequence of actions, the GAMRS

Publisher‟s modules which participate to the scenario, and the message exchange

between these modules.

S O L U T I O N O V E R V I E W

90

Figure 3-3: Using the Publisher's HTTP/REST service to search for applications in GAMRS

The OAI-PMH Provider is used for metadata harvesting and its functionality is very

similar to that exhibited by the HTTP/REST Service. However, there are two major

differences between the two services: first, as opposed to the HTTP/REST

operations – where the names of actions can be user-defined (e.g. findObjects,

ingestObject), the OAI-PMH uses standard names for its actions as defined in [37]

(e.g. ListIdentifiers, ListRecords, GetRecord); second, while in a REST

implementation one can use all the four CRUD actions, OAI-PMH limits itself only

to the READ operation. The following figure (i.e. Figure 3-4) gives the

implementation details for a “list all records in the repository” scenario using the

OAI-PMH standard.

Figure 3-4: Using the Publisher's OAI-PMH provider to list all the records stored in GAMRS

S O L U T I O N O V E R V I E W

91

Both the OAI-PMH and HTTP/REST services help with application discovery for

potential users, since these services are usually used by web crawlers and

harvesters working behind web search engines. Ultimately, with the help of OAI-

PMH and HTTP/REST services, GAMRS helps improve the application‟s visibility

on the Web. The following figure (i.e. Figure 3-5) gives the implementation details

for a “search for a specific application” scenario using the OAI-PMH standard.

Figure 3-5: Using the Publisher's OAI-PMH provider to retrieve a specific application (metadata

only) from GAMRS

The OAI-ORE Provider‟s functionality is very similar to GET actions implemented in

the HTTP/REST interface; namely, it retrieves the object stored in the repository in

a serialized form including metadata and datastreams. If the datastream (i.e. file) is

represented by an XML-like structured document, the datastream will be

automatically embedded in the serialized form of the object. Otherwise, the

datastream is only referenced with its full URI in the serialized form of the object.

The OAI-ORE standard introduces the concept of Aggregations and Aggregated

Resources (i.e. an Aggregation is simply a set of Aggregated Resources, all of

S O L U T I O N O V E R V I E W

92

which are represented by URIs). [140] The main difference from the document

described in the HTTP/REST service is that the OAI-ORE provider works by

building an XML document according to the OAI-ORE standard specifications,

which maps the predicate ore:aggregates to metadata and datastreams.

The OAI-ORE interface exposed by the GAMRS Publisher Service can be used by

other OAI-ORE compliant repositories to easily exchange and reuse repository

objects. Moreover, by handling the serialized form of the complete object (metadata

and datastream), administrators can easily implement fail-over and backup

solutions for their repository objects. The following figure (i.e. Figure 3-6) gives the

implementation details for a “retrieve a specific application” scenario using the OAI-

ORE standard.

Figure 3-6: Using the Publisher's OAI-ORE provider to retrieve a specific application (metadata

and datastreams) from GAMRS

S O L U T I O N O V E R V I E W

93

The OGSI/WSRF service is present in the Publisher Service‟s architecture in order

to permit Grid services to interact with GAMRS in a serviceable manner in line with

the OGSI/WSRF standard. This service allows the same actions as those

described in the HTTP/REST service, only that their implementation is consistent

with the specifications found in the WSRF standard suite. The serialized form of

each repository object is seen as a WS-Resource and CRUD operations can be

performed on these resources.

While the majority of current Grid repositories cannot be queried directly by

OGSI/WSRF Grid services, the applications stored in them become visible through

the Publisher service‟s OGSI/WSRF interface if these repositories are connected to

GAMRS.

GAMRS MET A-REPO SITORY SERVI CE

The Meta-Repository Service is responsible for connecting together various types

of Grid application repositories, independent of the underlying technology these are

built on, because it can negotiate through their different methods of access and

authentication, communication and transport protocols. In this way the service

grants access to any application stored in connected Grid repositories,

notwithstanding the differences between various methods.

Figure 3-7 shows the Meta-Repository service connecting four repositories, each of

them employing different security methods (i.e. GSI, username/password, public

access), different access interfaces (i.e. Grid Service access interface, JSR-168

access interface, HTTP/REST interface, Web Service interface) and each of them

storing different types of Grid applications (i.e. stand-alone jobs, workflows, web

services), which in turn are described using different application description

languages (JSDL, LCID, SCUFL, and WSDL).

S O L U T I O N O V E R V I E W

94

Figure 3-7: Connecting different types of Grid application repositories

Figure 3-8 shows the three-layered architecture of the Meta-Repository Service –

the Access layer, the Management layer and the Storage layer.

Figure 3-8: Meta-Repository Service architecture

S O L U T I O N O V E R V I E W

95

The Access layer exposes an OGSI/WSRF interface through which users and

client services can interact with the Meta-Repository service. Through it, users can

authenticate within the system and can retrieve application description documents

and application metadata from repositories connected to the Meta-Repository

Service.

The logic and the functionality associated with these actions are addressed by the

Management layer:

The first module in the management layer is Security. This module deals with

authentication and authorization methods both on the Meta-Repository service and

on connected repositories. The Meta-Repository service uses GSI to achieve full-

compatibility with other Grid services; however, authentication on repositories with

security infrastructures other than GSI is achieved with an orchestrated effort of the

Security module, the Core module and the Adapter responsible with

communication with the corresponding repository. The Meta-Repository service is

deployed in a web application container able to understand X509 certificate/proxy

authentication. Users require a valid Grid certificate issued by well-known

Certification Authorities in order to use the service. The security module maintains a

list of the public certificates of these Authorities, as well as a white-list of X509

distinguished names taken from the certificates belonging to users, which are

allowed to use the service. When a user requests access to the service, s/he would

be required to present his/her certificate. The Security module compares the

distinguished name of the certificate with those maintained in the white-list. If a

match is found (i.e. the user is allowed to use the service) the Security module

compares the signature of the Certification Authority found on the user certificate

against the signature of the Certification Authority already recorded in the list of

public certificates. If the signatures match (i.e. the certificate is genuine) and the

certificate is still valid (i.e. did not pass the expiration date), the user is permitted to

use the service.

The Core module is responsible for the integration and supervision of all the other

Meta-Repository service modules. It specifies the interfaces of communications

S O L U T I O N O V E R V I E W

96

between different modules; it translates the commands received from the access

interfaces; it specifies the formal interfaces for repository queries and answers; it

distinguishes between queries directed to the Meta-Repository service and queries

intended for application repositories connected to the service; and it relays the

query to the appropriate module. The Core module is therefore the centre point of

the system and it coordinates all the activity between different modules of the Meta-

Repository service. The Meta-Repository service implements commands (e.g.

COMM_ADD_APPLICATION, COMM_GET_APPLICATION, etc.) in order to

provide access and allow CRUD actions on the repository objects, as well as to

connect to other providers and update the list of applications they expose.

The Adapter Management module is responsible for instantiating adapters, as well

as for supervising and accounting for their actions.

The Repository management module is responsible for communication with the

Backend. This module provides access to the CRUD operations (i.e.

Create/Retrieve/Update/Delete) exposed by the backend and also supervises the

actions associated with these operations. This module contains the implementation

of the Meta-Repository commands described by the Core module in conjunction

with an implementation of the Backend API (i.e. driver implementation) necessary

to run the database transactions and the file storage transfers of repository objects

to and from the Backend.

The Storage layer (Backend) is responsible for the actual storage of repository

objects. It consists of a relational database and a filesystem (local or remote via a

storage server). The database is used to store the metadata associated with each

repository object, as well as the relations between such objects. The filesystem is

used to store serialized forms of the repository objects and the datastreams such

as binaries, source code, licenses, virtual machines etc.

Users access the Meta-Repository service through its access interface, and before

any command is issued, the Security module performs GSI authentication

procedures on the user‟s credentials. If access is granted, users can interact with

the application repository via Meta-Repository service commands. Once a

S O L U T I O N O V E R V I E W

97

command is issued, the Core module will interact with the storage layer through the

Repository Management module, which implements the necessary drivers to

communicate with the Backend. In this fashion, users can store, retrieve, modify,

and delete objects from the repository. One particular command –

COMM_UPDATE_PROVIDER – updates the list of applications from the

repositories connected to the Meta-Repository service.

The Meta-Repository service allows different types of repositories to be connected

to it through the use of Adapters. From the service point of view, an adapter

provides a uniform connection to other repositories. In order to accomplish that, the

adapter implements the following four modules (see Figure 3-9 below):

 The Communication protocol module is responsible for accessing the

connected repository. This requires knowledge of the repository API.

 The Authentication and authorization module helps the Meta-Repository

service to mediate the authentication process on connected repositories.

Usually, the authentication process differs from one Grid application

repository to another (e.g. GSI, username/password, free access). This

module is therefore required to implement the authentication process

appropriate to each of the repository connected to the Meta-Repository

service.

 The Transport protocol module helps the service retrieve the application

metadata and the application-related objects stored on connected

repositories. Every repository can implement a different transport protocol

(e.g. HTTP, SOAP, GridFTP). Subsequently, the adapter must implement

the transport protocol that is appropriate to the respective repository

technology.

 The Meta-Repository interface is the module responsible for the

management of commands received from the Meta-Repository service,

as well as for formatting the responses according to those particular

interface specifications accepted by the service.

S O L U T I O N O V E R V I E W

98

Figure 3-9: Meta-Repository service Adapter architecture

The Meta-Repository service defines the high-level command

COMM_UPDATE_PROVIDER for interaction with connected repositories. This

command updates the list of applications exposed by the repositories connected to

the Meta-Repository service. The command accepts as arguments universal

identifiers of the providers needed to be contacted for updates or, if provided with

no arguments, will contact all the repositories connected to the service at that time.

The adapter translates this command into five different subcommands defined in its

interface:

CONNECT
 DISCONNECT
 GET_APPLICATIONS
 GET_APPLICATION_DESCRIPTION
 RUN_QUERY

The implementation of the adapter requires knowledge of the communication

protocols, authentication methods, and transport protocols used in repositories

connected to the Meta-Repository service. Using this knowledge, the commands

enumerated above will be implemented to provide the following functionality:

S O L U T I O N O V E R V I E W

99

 CONNECT – This command is used to connect to the remote system. Its

implementation requires knowledge of the transport protocol and

communication API employed on the remote system. This stage may

require authentication from the remote repository service. The

implementation of this function should provide all the remote retrieval

locations (e.g. myproxy servers, voms servers) or files (i.e. PKI

certificates/ keys; X509 proxies; username/password tuples) necessary to

the authentication process.

Note: Some systems delay the authentication process until a formal

query is passed to the system – for example, to list applications or search

for applications. In this case, the authentication phase is not implemented

in command CONNECT, but is moved to the implementation of another

command such as GET_APPLICATIONS or RUN_QUERY. The

authentication system implemented on the remote service infrastructure

needs to be known in advance.

 DISCONNECT – This command is used to perform a clean disconnection

from the remote system. In many cases the break of or the simple non-

utilization of the communication channel for a certain period of time

eventually breaks down the connection with the remote server. However,

most servers would implement a disconnect option, which gives them a

better management over their resources, such as de-allocation of

memory, closure of file descriptors, or cleanup of temporary files. If the

disconnect feature is present in the remote server‟s API, then it should be

used in the implementation of the Adapter.

 GET_APPLICATIONS – This command is used to retrieve the list of

applications from the remote server. The implementation of this

command requires knowledge of the remote server‟s API in terms of the

formal enquiry and formal response that the Meta-Repository sends to

and receives from the remote server. The list contains tuples like the

following: (the name of the application; the unique reference point that

can be used to retrieve application metadata and datastreams from the

S O L U T I O N O V E R V I E W

100

remote server).

 GET_APPLICATION_DESCRIPTION – This command is used to

retrieve the formal description document written in ADL, which is

assigned to each application by the remote repository. Each application

description document is added to the list created by the command

GET_APPLICATIONS to an entry corresponding to the application it

describes. This list is kept by the Adapter for further reference. After

performing the next update the Adapter will compare for each application

the description document received from the server with the ones kept in

its list. If any differences exist, it will replace the old description document

with the new one, at the same time instructing the Core module to modify

the object stored in GAMRS accordingly. If the application does not exist

anymore on the remote repository, the Adapter will remove it from its list

and will instruct the Core module to delete the object stored in the

GAMRS repository. Similarly, if the remote repository exposes new

applications, the Adapter‟s list will be updated with the new entries and

new objects will be added to the GAMRS repository.

 RUN_QUERY – This command performs various personalized queries

on the remote repositories. Under current requirements, the Meta-

Repository service only needs the list of applications and their formal

descriptions from the connected repositories in order to make these

applications visible in GAMRS. However, as repositories evolve, they

begin to store more types of application-related objects and more diverse

metadata. The RUN_QUERY command can give GAMRS the means to

retrieve such objects and collect more information about an application,

provided that such information is needed by future extensions or meta-

repository designs.

Upon receiving the COMM_UPDATE_PROVIDER command, the Adapter will use

the command CONNECT to establish a communication channel with the remote

repository. Next, it will issue the GET_APPLICATIONS command and will create a

list of applications, each entry containing the name of the application and its remote

S O L U T I O N O V E R V I E W

101

access point reference. For each application reference point, the Adapter issues

the GET_APPLICATION_DESCRIPTION command and retrieves the formal

description document of the application, which is then used to update its list of

applications. Next, the Adapter uses a transformation method to convert the formal

description document retrieved from the remote repository into the application

language used by GAMRS. After that, the GAMRS repository object document is

created by adding metadata and two datastreams: the formal application

description document written in the native language of the remote repository; and

the formal application description document written in the language employed on

GAMRS.

The document of the repository object document is then passed on to the

Repository Management module to be added to the GAMRS (or to modify an

existing object). Upon a new addition, the unique GAMRS identifier of the object is

passed back to the Adapter to be stored in its list of applications for further update

actions. The following figure (i.e. Figure 3-10) gives the implementation details for

the COMM_UPDATE_PROVIDER command. It shows the sequence of actions,

the GAMRS Meta-Repository‟s modules which participate to the scenario, and the

message exchange between these modules.

S O L U T I O N O V E R V I E W

102

Figure 3-10: Meta-Repository service – Implementation of the COMM_UPDATE_PROVIDER
command

S O L U T I O N O V E R V I E W

103

GAMRS MATCHMAKING SERVICE

The Matchmaking service is a service used to find similar or identical applications

stored on different repositories connected to GAMRS. This service has the ability to

process application description documents written in the application language used

by GAMRS and can also use application-related objects stored in GAMRS. The

Matchmaking service uses different types of matchmaking techniques to analyze

the description documents and its service architecture allows developers to extend

it easily with further matchmaking methods. This service can also implement

methods that are able to process not only description documents, but also other

application-related objects such as hash sums, binaries, test files, source code, and

list of dependencies.

The limited timeline of a PhD research only allowed for the implementation and

performance analysis of four matchmaking methods – syntactic, string-distance,

application-running, and binary matching. The syntactic algorithm processes

description documents and relies on the application information contained in them.

The string-distance methods can help with the identification of similar applications

on the basis of the information contained in the free-text description of the

application. This research proposes a new technique of improving the accuracy of

string-distance metrics by using entropy-generated stop-lists and test results have

showed that this can increase the performance of string-distance methods. The

application-running method compares two applications by running two application

binaries with a common set of input files (retrieved from one of the application test

suites) and compares their output set. The binary matching method uses

application binaries stored in GAMRS and hash sums to identify identical

applications.

The architecture proposed for the Matchmaking service and the algorithm used for

that are extendable, hence future research can implement and analyze the

performance of other matchmaking methods when applied to the objects stored in

the GAMRS repository.

S O L U T I O N O V E R V I E W

104

Section 3.4 in this chapter offers an in-depth overview of the GAMRS Matchmaking

service.

GAMRS BACKEND

The backend is responsible for the actual storage of repository objects and the

backend structure follows the layout of the GAMRS repository model. The backend

consists of a relational database and a filesystem (i.e. local or remote via a storage

server). The database is used to store the metadata associated with each

repository object, as well as the relations between such objects. The filesystem is

used to store serialized forms of the repository objects consisting of metadata and

datastreams. As mentioned before, if the datastream is not represented by an

XML-like structured document, it will be only referenced with its full URI in the

serialized form of the object. Therefore, the filesystem can also be used to store

non-XML datastreams, such as binaries, source code, licenses, or virtual

machines.

All services may access the backend directly; however, each module can also

access the backend by using the interfaces provided by the Publisher service. In

conclusion, if GAMRS is extended in the future with other services, there will be no

need for these services to implement a new communication module with the

backend because they could use existing interfaces provided by the Publisher

service.

3.1.3 Summary

The following table (i.e. Table 3-1) is a reiteration of Table 2-2 from Chapter 2,

Section 2.5.1, with the addition of GAMRS repository capabilities. This table

summarizes the capabilities of existing Grid application repository architectures and

those of the GAMRS architecture against requirements R1-R3, which correspond

to objective O1 (see Chapter 2, Figure 2-10):

S O L U T I O N O V E R V I E W

105

Table 3-1: Current Grid application repository architectures and GAMRS architecture vs. R1-R3

 R1: PUBLISHING R2: DISCOVERY
R3: EXCHANGE

& REUSE

B
D

II

- Publishing done by

automated services via

scripts that contain suites of

console commands;

- No graphical/web interface

for human users.

- Console commands containing LDAP

queries;

- No OGSI/WSRF Grid service interface;

- No Web visibility;

- No HTTP/REST interface;

- No connection to other repositories;

- No system of identification of similar Grid

applications;

- No support for OAI-PMH protocol.

NO

C
H

A
R

O
N

 - Command line only for

human users;

- No access support for

services;

- Collection of static Web pages;

- No OGSI/WSRF Grid service interface

- No connection to other repositories;

- No system of identification of similar Grid

applications;

- No support for OAI-PMH protocol.

NO

G
E

M
L

C
A

 - Graphical interface for

human users;

- OGSI/WSRF Grid service

interface for services.

- OGSI/WSRF Grid service interface;

- Human users can find application

information through PGRADE portals or

using a GEMLCA Service Client;

- No Web visibility;

- No connection to other repositories;

- No system of identification of similar Grid

applications;

- No support for OAI-PMH protocol.

NO

N
G

S
 A

R
 - Graphical interface for

human users

- No access support for

services

- JSR-168 web application interface for

human users;

- No OGSI/WSRF Grid service interface;

- No HTTP/REST interface;

- No connection to other repositories;

- No system of identification of similar Grid

applications;

- No support for OAI-PMH protocol.

NO

G
R

IM
O

IR
E

S

- Human users and services

can register web services via

UDDI clients.

- Visible to UDDI clients;

- Visible to human users through a

collection of static web pages.

N/A

S O L U T I O N O V E R V I E W

106

m
y
E

x
p

e
ri

m
e
n

t

- User-friendly web interface

for human users;

- HTTP/REST interface for

services.

- Intuitive web interface for human users;

- Exposes HTTP/REST interface;

- No OGSI/WSRF Grid Service interface;

- No connection to other repositories;

- No system of identification of similar Grid

applications;

- No support for OAI-PMH protocol.

NO

G
A

M
R

S

- Graphical interface for

human users;

- HTTP/REST interface for

services.

- Intuitive web interface for human users;

- Exposes HTTP/REST interface;

- Exposes OGSI/WSRF Grid Service

interface;

- Supports connections to other

repositories;

- Exposes a system of identification of

similar Grid applications;

- Support for OAI-PMH protocol.

- Support for OAI-

ORE protocol;

S O L U T I O N O V E R V I E W

107

3.2. GAMRS Repository Model

3.2.1 Overview

The second objective of this research (O2) was to propose a new model for

application repositories, which would achieve uniformity in Grid application

presentation and would extend the functionality of these repositories beyond Grid

(R4). Current major repository models used on Grid impose limitations on the

applicability domains of Grid application repositories. Therefore, the objective was

to design a new repository model that would provide a comprehensive description

of an application along with a suggestion for a new categorization of application-

related objects. This will allow Grid application repositories to be compatible and

ready-to-use in conjunction with newly emerging technologies such as

virtualization, automatic virtual machine creation, cloud computing, and automatic

service deployments, as well as to be ready-to-use in future distributed computing

designs.

Following the conclusions of Section 2.5.2, I decided to extend the traditional

repository model with the necessary entities that would make it able to describe

user-related objects; the provider and its associated policies; and provider-related

objects (entities in dark grey in Figure 3-11).

Figure 3-11: Grid application repository model entities

S O L U T I O N O V E R V I E W

108

The User entity is required by the model to describe a repository user. Users can

have user related-objects associated with them (e.g. PKI signature certificates,

authentication certificates or username/password suites), which can be modelled

and stored in the repository and would be available on demand for various

scenarios. The user access policies describe the actions each repository user is

permitted to perform on user entities (e.g. create new users, delete users, etc.). The

Application entity is required by the model to describe a Grid application stored or

referred by a repository. An application entity contains a reference to its application-

related objects (i.e. description document, binaries, source code, etc.) as well as a

reference to the user who created it. The application access policies are used to

describe those actions that repository users are permitted to perform on application

entities and their related objects. The Provider entity is required by the model in

cases when the repository is connected to other repositories. In a network of inter-

connected repositories, each of these repositories is described by a Provider entity.

These providers can have provider related-objects associated with them (e.g. PKI

signature certificates, software clients to facilitate access to them, etc.) which can

be modelled and stored in the repository as well. A Provider entity contains a

reference to its applications as well as a reference to the user who created it. The

provider access policies are used to describe the actions repository users are

permitted to perform on provider entities and their related objects.

Moreover, the Application Related Objects had to be extended with new types of

objects in order to help the GAMRS solution to meet the objectives set out in this

research in Section 2.6 .

The suggested set of application-related objects needed to be modelled in a Grid

application repository includes:

 Application description documents: These should be stored in Grid

application repositories since they provide the link to submission systems

that allow users to run the application on Grid. Administrators can create

preconfigured description files (i.e. templates) in which resource attributes

and other Grid specific attributes have already been filled (such as the

S O L U T I O N O V E R V I E W

109

minimum CPU frequency, the minimum amount of memory, or the

minimum number of file descriptors required for the application to run).

 Application binaries: These are referenced in the application description

document, but in most cases they are already deployed on a Grid site,

and cannot be retrieved, only accessed. Once the application binary is

stored in the repository, services which deal with automatic deployment

or automatic virtual machine generation can make use of the binary.

Furthermore, if the application deployed on a Grid site becomes

unavailable but the user insists to use that particular site for personal

reasons, the executable could still be staged and run on-demand.

 Application source code: This can provide an additional information

source for application matchmaking systems and can help with the

automatic deployment of applications on heterogeneous machine

architectures and operating systems, as it can be compiled directly on the

target system.

 Application libraries: Libraries should be stored on application repositories

as they can help in those cases where compilation is needed. They can

also help with automatic application deployment and automatic virtual

machine generation.

 Application dependency software: As with Application libraries, the

dependency software is necessary in cases that require automatic

application deployment.

 Application documentation: This is a useful set of objects for users and

administrators who want to know more about the application than the

short summary available in the application description document under

the attribute Description.

 Application test files: These can help with matchmaking – matchmaking

systems can run a candidate-match application with the set of test input

files. If the output files prove to be the same as the test output files there

is a high possibility that the applications are the same.

S O L U T I O N O V E R V I E W

110

 Virtual Machine-embedded application: In order to make the application

easily deployable in virtualized environments, one solution is to embed it

from the outset in a virtual machine. That allows the application to run in

its native environment, overcoming potential architecture- or operating

system-related issues.

 Hash sums: These were added to the model to help check the integrity of

records after the completion of a data transfer. Hash functions are also

used in matchmaking algorithms to speed up the matching process.

 Application licenses: Since this repository model can also be used to

accommodate commercial applications, the application license

acceptance is a necessary prerequisite to any automatic deployment

process or job submission involving commercial software.

3.2.2 Design

In order to provide a coherent structure for the description of the GAMRS repository

a new entity has been added (i.e. the MetaRepository), which acts as a container

for all the objects described in GAMRS. This entity also helps with the exchange

and reuse requirement identified by this research (R.3), as it permits the

serialization of all GAMRS entities under one root element. In this way, the whole

repository can be effortlessly relocated to another repository framework.

The user policy, provider policy and application policy entities have been unified in

a single entity called Policy. Moreover, in order to permit the better management of

users, the GAMRS repository model also employs a Group entity.

S O L U T I O N O V E R V I E W

111

Figure 3-12: Entities in the GAMRS repository model

Apart from the six main entities (i.e. MetaRepository, User, Application, Provider,

Policy and Group) the repository model required the addition of seven new entities:

PolicyRule, Authentication, Certificate, Asset, Hash sum, Relation, and RelPair.

These describe the following aspects:

 Describe and differentiate between policies related to users, groups,

applications, providers or other private policies (i.e. PolicyRule).

 Describe and differentiate between various types of authentication methods

needed by users or requested by various providers (i.e. Authentication and

Certificate).

 Describe and differentiate between various types of objects related to

applications, providers and users (i.e. Asset).

 Describe and differentiate between various types of hash sums, which can

be used to strengthen data integrity on GAMRS (i.e. Hash sum).

 Describe the property of an application to be identical or similar to a certain

extent to another application stored or referred by the repository (i.e.

Relation, RelPair).

Figure 3-12 above gives a general overview of the entities in the GAMRS

repository model. Each of the entities in the GAMRS repository model will be

explained separately below.

S O L U T I O N O V E R V I E W

112

Figure 3-13 provides a more in-depth view of the GAMRS model with its six main

entities and the relations between them: MetaRepository, User, Application,

Provider, Policy and Group.

Figure 3-13: The six main entities of the GAMRS repository model

S O L U T I O N O V E R V I E W

113

Every entity in the GAMRS repository model contains five attributes and an

association to the User entity, all of which are used for management purposes, i.e.

to uniquely identify the objects, track changes and log their modification history:

 UID (universal identifier): This attribute is needed for the unique

identification of the object within the GAMRS. The UID is composed of

two parts: The first part represents the fully qualified domain name (i.e.

FQDN) of the server where GAMRS is hosted. The second part

represents a string, unique to each object within one meta-repository

system. The FQDN part of the UID helps with the identification of objects

in a federated architecture of GAMRS. Since the architecture can be

cascaded, one GAMRS system can be connected to another GAMRS

system. Constructing the UID in this way ensures that the objects can be

uniquely identified within the federated architecture. This attribute is

mandatory and the attribute multiplicity is one.

 Name: This attribute is used to model the name of the object. Its main

purpose is to allow a friendly identification of objects by human users. As

the unique identification of objects can be done via UID, this attribute is

not mandatory. The multiplicity of Name is one.

 Description: Each object may contain a paragraph of free-text, which

represents a short description of the object properties and capabilities.

This attribute is used to capture such descriptions of objects. The attribute

is not mandatory and its multiplicity is 0 - 1.

 Creation date: This attribute is used to model the date when the object

was created. The attribute is mandatory and the multiplicity is one.

 Update dates: This attribute represents the set of dates when the object

was accessed and/or modified. It is used to help logging/audit systems to

keep track of changes of the object. The attribute is non-mandatory and

the multiplicity is 0 - multiple.

 Author: With the exception of the MetaRepository entity, all other entities

in the repository contain a relation to the user who created them. This is

S O L U T I O N O V E R V I E W

114

represented by an association to the User entity called author. This

attribute is mandatory and the multiplicity is one.

The GAMRS model is extendible and GAMRS entities can be extended with other

attributes and relations to other objects. This is done via two attributes –

anyAttribute and any – that are present in each entity description contained in the

model. The attribute anyAttribute may be used to add new attributes to an entity

description, while the attribute any may be used to add new associations between

GAMRS entities.

THE MET AREPO SITORY ENTITY

The MetaRepository is the central entity of the GAMRS repository model. The

MetaRepository represents the container for the main entities of the repository:

User, Group, Policy, Application and Provider.

Figure 3-13 shows that the association between the MetaRepository entity and the

User entity, as well as the association between the MetaRepository entity and the

Policy entity, is a 1..* multiplicity, meaning that the meta-repository is bound to have

at least one user (i.e. the default user) and one policy (i.e. the default policy). The

default user represents the meta-repository administrator and the default policy

represents the default administrator policy, which grants him/her permissions to

create, modify, and delete other objects. From here on the default user is

responsible for the creation and management of users, groups, and policies, as

well as for the assignment of such policies to different entities.

THE USER ENTITY

The User entity captures the following information: name, address, affiliation and

email. This can be often associated with human users. However, the entity can be

extended to include further information about a user (such as telephone, fax, etc.)

via the attribute anyAttribute. A quota is associated to each user on the repository

storage system (modelled through the attribute Quota), which offers a better control

over the repository backend and prevents a user from (intentionally or un-

S O L U T I O N O V E R V I E W

115

intentionally) filling up the storage, which would in turn make the system

unavailable.

A user can be part of one or more groups and can create his/her private group(s) of

users (friends). A user can add applications, application-related objects, and

provider objects to the system and can also create his/her private policies and

apply them to the objects s/he owns.

Figure 3-14: The User entity and its relations to the Group, Authentication, and Certificate entities

As shown in Figure 3-14, the user object is associated with different types of

authentication. Grids normally use GSI (Grid Security Infrastructure) for

authentication – this is a type of Public Key Infrastructure implementation based on

X509 certificates. GSI is captured in the GAMRS model on two objects:

Authentication and Certificate. The model permits users to own multiple

authentication sets and therefore allows them to access various resources located

in different Grid infrastructures. Furthermore, the authentication object also permits

S O L U T I O N O V E R V I E W

116

the specification of (username, password) tuples that can be used with resources

that accept such type of authentication.

The Certificate entity is used to model all three types of X509 certificates:

certificate, private key and delegated proxy. This entity contains an attribute called

URI (Uniform Resource Identifier), which is used to indicate that the certificate is

stored on a remote resource (i.e. usually a myproxy server). However, the GAMRS

repository can be used to store the certificate as well. Therefore, the Certificate

entity also contains the attribute Value, which points to the actual digital file stored

in the repository. The GAMRS model also allows each user to choose one

certificate and use it as digital signature.

THE GRO UP ENTITY

As mentioned before, the GAMRS model allows users to be organized in groups.

The Group object ensures a better management of users and allows for a simpler

and easily understandable design and association of policies. For example, a policy

may specify that provider objects can be read, but are not open to modifications by

users with non-administrative rights. Instead of creating all the associations

between this policy and each one of the users with non-administrative rights, these

users can be organized in one group and only one association is needed between

this group and the policy.

THE POLICY ENTITY

The GAMRS model uses the Policy entity to model interactions between various

objects in the repository. The GAMRS model defines four operations that can be

applied to any object in the model, with the exception of the MetaRepository object,

the default user and the default policy: create, read, modify and delete. These

operations are defined within the structure of an enumeration entity, which also

contains the literal other that makes the model extendible to permit further

operations such as deploy, execute, etc.

S O L U T I O N O V E R V I E W

117

The Policy entity acts as a container for PolicyRule objects. Each PolicyRule

represents a rule, which, conceptually, follows the following pattern: “the Actor is

allowed to perform the following operation(s) upon the Object.”

In the GAMRS model the Actor is represented by a User object or by a Group

object. The operations are represented by the four actions mentioned above

(create, read, modify and delete) and the Object can be represented by any of the

following entities: User, Group, Provider, Application, Asset, ApplicationRelation

and Policy.

Each of these entities contains an association with the PolicyRule entity called

ruleObject (i..e ruleObjectUser, ruleObjectGroup, ruleObjectProvider,

ruleObjectApplication, etc). However, in the case of the User and Group entities,

these two can function both as Actor and as Object of the policy rule. Therefore, the

User entity and the Group entity each contain two associations to the PolicyRule

entity – ruleActorUser and ruleObjectUser; ruleActorGroup and ruleObjectGroup.

Figure 3-15 shows the two entities Policy and PolicyRule along with the

enumeration entity Permissions used to model the four operations defined in

GAMRS.

Figure 3-15: The Policy entity and its associations to the PolicyRule entity

S O L U T I O N O V E R V I E W

118

The PolicyRule entity permits the specification of Actors in the following ways:

 all users: through the Boolean attribute All_users;

 all groups: through the Boolean attribute All_groups;

 all users with administrative rights: through the Boolean attribute

All_admins;

 all users with non-administrative rights: through the Boolean attribute

All_nonadmins;

 individual users: through ruleActor relations to User objects;

 individual groups: through ruleActor relations to Group objects;

 combined: by making combinations between c, d, e and f.

The PolicyRule entity permits the specification of operations through the attribute

Permissions and the specification of Objects through a set of applies-to Boolean

attributes (Applies2user, Applies2group, Applies2provider, Applies2application,

Applies2asset, Applies2appRelation, Applies2policy) and corresponding ruleObject

relations to the entities User, Group, Provider, Application, Asset,

ApplicationRelation and Policy.

If one of the applies-to attributes is marked true and no ruleObject relations are

specified to corresponding objects, then the rule will apply to all instances of that

entity. Moreover, the use of an applies-to attribute does not imply the automatic

exclusion of the other applies-to attributes. Like in the case of Actors, where the

specification of different combinations of Actors is possible, the GAMRS PolicyRule

object permits combinations between different Objects.

The example below shows a possible GAMRS rule, which can specify both

complex sets of Actors and complex sets of Objects:

Example

S O L U T I O N O V E R V I E W

119

Rule: “The users Alex, Steve and Gabor, plus the group CPC, are allowed to
add, retrieve and modify applications, application-related objects and
providers to GAMRS.”

GAMRS Rule:

“The Actors: Alex (entity User), Steve (entity User), Gabor (entity User) and

CPC (entity Group)

Operations: Create, Read, Modify

Objects: Provider (all instances), Application (all instances) and

ApplicationAsset (all instances).”

GAMRS model XML excerpt:
<MetaRepository, UID="https://161.74.69.171:4561/1", Description=
"University of Westminster GAMRS" (...)>
<Name>GAMRS ONE</Name>
<users UID="https://161.74.69.171:4561/1001" (...)>
 <Name>Alex</Name> (...) </users>
<users UID="https://161.74.69.171:4561/1002" (...)>
 <Name>Steve</Name> (...) </users>
<users UID="https://161.74.69.171:4561/1003" (...)>
 <Name>Gabor</Name> (...) </users>
(...)
<groups UID="https://161.74.69.171:4561/101" Description="CPC Group",
registeredUsers="//@users.3 //@users.4 //@users.5" (...)>
 <Name>CPC</Name></groups>
 (...)
 <policies UID=https://161.74.69.171:4561/10000, Description= "CPC policy"
(...)>
 <Name>Example</Name>
 <policyRules UID=https://161.74.69.171:4561/10001,
 Applies2application="true", Applies2asset="true", Applies2provider="true",
 ruleActorUser=//@users.0 //@users.1 //@users.2
ruleActorGroup="//@groups.0" (...)>
 <Name>First CPC rule</Name>
 <Permission>CREATE</Permission>
 <Permission>READ</Permission>
 <Permission>MODIFY</Permission>
 </policyRules> (...)
 </policies> (...)
</MetaRepository>

S O L U T I O N O V E R V I E W

120

The Policy entity also contains the attribute Priority, which is used internally by

GAMRS to prioritize different policies that can be applied to an object. Users can

define their own private policies to help regulate access to their own objects.

However, these policies will always be superseded by any administrator-defined

policy in force for that particular entity. For example, for security reasons an

administrator-defined policy may permit a particular group of users to read, modify

and delete any application asset in the repository (e.g. to remove virus-infected

files). A user may create a private policy and try to restrict these permissions to

read for this particular group in relation with his/her application assets. However,

this private policy will never be enforced as the rules in the administrator-defined

policy take precedence over the rules defined by common users.

THE APPLICATION ENTITY

The Application entity is used to capture information about the Grid application

stored in GAMRS or in one of the application repositories connected to the system.

The Application entity contains the five general attributes: UID, name, description,

creation date, update date, and three specific attributes: template, version and URI.

 The template attribute is used to provide users with preset values for

certain application parameters – such as machine architecture, OS,

minimum amount of memory, or environmental variables, which are

necessary for a correct run of the application.

 The version attribute helps distinguish between different versions of an

application as the repository can accommodate several versions of the

same application.

 The URI refers to the webpage of the company that developed the

application, which usually contains the most comprehensive description

and documentation about the application.

The Application entity contains an association with the Provider entity, which

describes the repository from where the application originates. Figure 3-16 shows

this relation, along with the containment association betweenthe Application entity

S O L U T I O N O V E R V I E W

121

and its related objects (i.e. ApplicationAssets) and other relations between the

following entities: Application, Provider, Asset, AppplicationAsset and Hash.

Figure 3-16: The Application entity together with the Provider, Asset, Hash and ApplicationAsset
entities

THE ASSET ENTITY

The Asset entity is used in the GAMRS model to describe application-related

objects and provider-related objects. Beside the general attributes, an Asset object

contains the following extra attributes: Version, Value, URI and Archive. The

Version and URI attributes hold the same meaning as in the case of the Application

object.

The Archive attribute refers to the possibility of an asset object being stored in a

compressed form. Since application assets can be quite large in size (for example,

a virtual machine can be several GB in size), it is best that such objects are stored

S O L U T I O N O V E R V I E W

122

in an archived form in order to save storage space. The Archive attribute is of type

ARCHIVE_TYPE (see Figure 3-17). This type contains compression types most

widely used in computer science (such as zip, rar, jar, arj, tgz, etc.) and the literal

other, which allows for the specification of new methods.

The Asset entity also contains the attribute Value, which is used to model the actual

digital file stored in the repository backend (on the filesystem).

The ApplicationAsset entity is derived from the entity Asset and, in addition to the

inherited attributes inherited from Asset, contains the following attributes: AdlType,

VMType and AssetType. The AssetType attribute is used to differentiate between

different types of application-related objects. AssetType is of type

APPLICATION_ASSET_TYPE (see Figure 3-17) and can be one of the following:

default_input, document_description, executable, library, license,

software_dependency, source_code, test_suite and virtual_machine. The literal

other was also added to support future extensions, i.e. the specification of new

types of application-related objects.

Figure 3-17: Types used in the GAMRS repository model

In cases when the ApplicationAsset object refers to the formal description

document of the application, AdlType is used to designate the application

description language in which the document is written. The AdlType attribute is of

type ADL_TYPE (see Figure 3-17), which can be one of the language descriptions

S O L U T I O N O V E R V I E W

123

that are extensively used in current Grid infrastructures: JDL, JSDL, LCID, RSL,

SCUFL, WS_GRAM and xRSL. ADL_TYPE also contains the literal MRDL (Meta-

Repository Description Language), which designates the application language

proposed in this research in Chapter 3, section 3.3. Similar to other types, the

ADL_TYPE entity contains the literal other to ensure that additional application

description languages can be added to the model in the future.

In cases when the ApplicationAsset object refers to a virtual machine, the VMType

attribute is used to identify the type of the virtual machine and, implicitly, of the

virtual hypervisors able to run such a virtual machine. The VM_TYPE (see Figure

3-17) specifies the virtual machine types that are used in current virtual

environments (IBM-VM, KVM, ORACLE-VM, OVF, QEMU, SUN-XVM, SVISTA,

VIRTUAL-BOX, VMWARE and XEN). However, because of the rapid evolution of

virtualized infrastructures and the ongoing research efforts invested in this area,

new virtual machine solutions emerge almost every day. Therefore, VM_TYPE

contains the literal other, which allows for the addition of new virtual machine types

in the future.

THE HASH ENTITY

In GAMRS one or more hash sums can be associated to any asset. The Hash

entity is used to model the value of a hash algorithm when applied to an application

asset. For example, an application binary can be stored in the repository as an

application asset. One can use a hash function to calculate the hash sum for this

binary and then store it as a hash object in the repository as well. The Hash entity

contains two specific attributes: Type and Value.

The Type attribute is used to identify the hash algorithm used to generate the hash

sum. This attribute is of type HASH_TYPE (see Figure 3-17), which is used to

specify the most widely used hash algorithms – cubehash, gost, jh, lane, md2,

md4, md5, md6, nhash, ripemd, sha1, sha224, sha256, sha384, sha512, tiger and

whirlpool. As in the case of the other types defined in the GAMRS model,

S O L U T I O N O V E R V I E W

124

HASH_TYPE contains the literal other, which ensures that future hash types can

be added to the model.

The Value attribute represents the hash value of the digital object stored in the

repository.

THE APPLICATIONREL AT ION ENTI TY

In Chapter 2, section 2.5, requirement R2.3 specified that a Grid application

repository system should allow connectivity with other repositories. As a result of

such connectivity, similar applications could be found throughout a network of inter-

connected Grid application repositories. To that end, the repository model needs to

be able to capture the aspect that an application is identical or similar to a certain

extent with another application stored elsewhere on such a network. In order to do

that, the GAMRS repository model employs two entities: ApplicationRelation and

RelationPair. Figure 3-18 shows these two entities and the associations between

them, along with the Application entity and the relationships to it.

Figure 3-18: The Application entity with the ApplicationRelation and RelationPair entities

S O L U T I O N O V E R V I E W

125

The ApplicationRelation is used to model the relation of correspondence between

two applications that are found to be similar. Each Application entity object may

contain references to one or more ApplicationRelation entities. In return, the

ApplicationRelation entity holds an association called referredApplication (of

multiplicity one) to that Application entity object, which is considered similar to the

first application. Each such ApplicationRelation object contains a reference to one

or more RelationPair objects that record the similarity method used and the

similarity score obtained.

Example

If applications A and B were compared using the TFIDF/Cosine string-

distance method and the result showed that they were similar, the following

objects would be created:

- First, a RelationPair object would record the Name of the method and the

Score.

- Second, an ApplicationRelation object would be created and a relationship

added to the RelationPair object.

- Finally, two more relationships would be added, linking the

ApplicationRelation object to the Application objects A and B.

THE PROVIDER ENTITY

In GAMRS the Provider entity is used to model the place of origin of an application,

an application-asset, or a certificate. In the case of applications, the provider

represents a repository where the application is stored; in the case of application

assets, the provider can be represented by any type of storage-servers; and in the

case of certificates, the provider is usually represented by proxy servers (e.g.

myproxy [67], voms [141]). The Provider entity may also be used to model pools of

virtual machines on virtual servers used in clouds or other types of virtualized

infrastructures. Finally, as GAMRS can be used as a repository in its own right, the

Provider may be used to designate a GAMRS system as a place of origin for some

applications. For a seamless integration in a PKI security environment, such as the

S O L U T I O N O V E R V I E W

126

one used in Grid, the Provider can store its digital certificate and use it as signature

for identification within the security infrastructure. The Provider entity has an

association with the Asset entity, which is used to model provider-related objects

that can help ensure proper connectivity and access to a provider – for example, a

software client.

The full GAMRS repository model containing all the types, entities and the

associations between these entities can be found in Appendix A.

3.2.3 Summary

Table 3-2 and Table 3-3 below summarize the critical analysis of the five repository

models described in Chapter 2, section 2.2.2 (MyExperiment, NGS, GEMLCA,

GUSE and CHARON/iSoftrepo) assessing their ability to describe the entities

specified at the beginning of this section (user, user policies and user related

objects; application, application policies and application-related objects; provider,

provider policies and provider-related objects) by comparison to the GAMRS

solution.

Table 3-2: Traditional Grid application repository models vs. proposed GAMRS model (except
application-related objects)

myExperiment NGS AR GEMLCA GUSE CHARON/

iSoftrepo
GAMRS

User YES YES YES YES YES YES

User-related
objects

no no no no no YES

User
access policies

YES YES YES YES YES YES

Application YES YES YES YES YES YES

Application
access policies

YES YES YES YES YES YES

Provider no no no no no YES

Provider-related
objects

no no no no no YES

Provider
access policies

no no no no no YES

S O L U T I O N O V E R V I E W

127

Table 3-3: Traditional Grid repository models vs. proposed GAMRS repository model (application-
related objects)

 myExperiment NGS AR GEMLCA GUSE CHARON/
iSoftrepo

GAMRS

Description
document

YES YES YES YES no YES

Binaries n/a reference YES no reference YES

Source code n/a no no no reference YES

Library
dependencies

possible
(generic tag)

no no no no YES

Software
dependencies

possible
(generic tag)

no no no no YES

Documentation reference no no no reference YES

Test files
possible

(generic tag)
no no no no YES

VM
embedded

no no no no no YES

Licenses YES no no no reference YES

Hash sums no no no no no YES

S O L U T I O N O V E R V I E W

128

3.3. GAMRS Application Description
Language (MRDL)

3.3.1 Overview

The third objective set out in this research was to find an application description

language, which would provide uniformity in the presentation of Grid application

descriptions. The application description language should allow for Grid application

repositories and the applications stored by them to be used in scenarios other than

Grid, such as virtualisation, source code staging and compilation or automatic

application deployment. At the same time, further research related to current

language capabilities revealed other shortcomings, which can lead to Grid

interoperability problems, such as their reduced ability to describe the use of

different X509 certificates for staging data from different Grid infrastructures and

their limited capacity to differentiate between the X509 certificate used for job

submission and X509 certificates used for data staging.

The conclusion of the critical analysis conducted in Section 2.5.3 was that, because

JSDL passed most GAMRS requirements and its schema supported extensions

natively, its further extension with the missing parts would be a better solution than

creating a completely new language.

Figure 3-19: JSDL‟s main entities

S O L U T I O N O V E R V I E W

129

JSDL defines five core entities in its model: Structure, Identity, Application,

Resource and Data staging (see Figure 3-19). The Structure entity is used only as

a container for the other entities and represents the root element of the JSDL

schema. The Structure entity contains the attribute Description, which is used to

give a free-text description of the application.

The Identity entity contains information about the project in which the application is

used, along with identification fields that are used internally by JSDL

processing/submission systems for management purposes.

The Resource entity is used to describe the computational resources required by

the application in order to insure a correct run. Initially, this entity only permitted the

specification of basic requirements (as described in Section 2.3.1), such as:

machine architecture, operating system, CPU requirements, memory requirements

and disk requirements. However, the original JSDL schema [22] was immediately

followed by an extension [69], which also permits the specification of advanced

resource requirements, such as: core dump size limits, virtual memory

requirements, pipe size limits, minimum network bandwidth requirements, open file

descriptors limit. In time, the JSDL schema was also extended to describe

parameter sweep applications and multi-process applications.

The Data staging entity describes the data requirements of the application, namely

which files are used as input (stage in) and which files are produced as output

(stage out). It specifies the files that should be moved to the execution host before

the application enters running stage and the files that should be moved from the

execution host after the run. The JSDL schema employs no restrictions on the

transfer protocol description used for data staging; therefore, any transfer protocol

can be used in the application description document (e.g. http, ftp, gridftp, rfiod, srb,

etc.). However, the JSDL processing/submission system should contain

implementations of transfer clients able to understand such protocols and,

subsequently, to perform the staging of required data from storage servers to the

execution resource and the other way around.

S O L U T I O N O V E R V I E W

130

The Application entity contains the attributes necessary to describe the name,

version, executable, executable arguments, and environment variables. It also

contains associations to the Data stage entity, which identify the input and output

files used or created during the application execution.

In correlation with the application description language requirements and the life-

cycle outlined in Section 2.5.3 , the JSDL model was extended during this research

to provide the following capabilities:

 Multi-Grid/multi certificate secure data access:

o Distinction between the application instance submission certificate and the

staging certificate: Current application description languages cannot

describe a situation where an X509 certificate other than the one used for

application instance submission needs to be used for data staging. WS-

GRAM [66] allows this kind of specification but only in the rare case where

the certificate is stored into a MyProxy Grid service [67] and the submission

engine knows how to make an OGSI/WSRF Service invocation.

o Multi-Grid data staging with different X509 certificates: Existing description

languages are not able to specify different X509 certificates for data staging

from different Grids. This comes as a direct derivative of the point above, i.e.

the impossibility of current languages to describe the following scenario: a

user has two X509 certificates (A and B) and s/he uses two storage servers

to keep their files (X and Y); one certificate (i.e. A) is used to authenticate on

server X, and the other one (i.e. B) is used as a proof of authentication for

server Y; if s/he needs to run an application that requires data to be staged

from both servers, this would simply not be possible, because there would

be no way to define the location of his/her X509 certificates within the

application description document (except for the particular case where the

ADL used is WS-GRAM and the certificates are stored on a myproxy

server).

 Data protection:

o Hash sums for staged data: Current application description languages are

S O L U T I O N O V E R V I E W

131

not able to specify any hash sums to files, whether this is an application

binary or a file that needs to be staged.

 Template:

o Advanced parameter/attribute descriptions: Existing description languages

have the capacity to describe the functionality of each attribute or parameter

of an application and allow users to define values for them. However, in

many cases a much more fine-grained usage of parameters and attributes

is required. For example, many applications have a set of mandatory

parameters that need to be specified at every run and this scenario cannot

be described with the help of existing languages (mandatory). Moreover, the

use of a certain parameter may require another parameter that needs to be

specified as well (requires). In many cases, the person responsible for the

administration of a certain application would want to fix the value of a

parameter or attribute; a common user is not supposed to know that a

certain application needs 2GB of memory to run, but the application

administrator might know it and may want to fix that value, so that when a

user creates an application instance s/he should not be able to overwrite

that parameter and cause unwanted outcomes at runtime.

 Application type of running:

o Additional information such as location of licenses, libraries, code for

compilation: One of the main shortcomings of existing description languages

is their inability to describe an application not only as a software executable,

but as a complex set of application-related objects associated with the

formal description of the application. The GAMRS set of application assets

contains, but is not restricted to, the following digital objects associated with

a Grid application: licenses, source code, executables, test files,

libraries/software dependencies, user documentation, and images of virtual

machines running the application inside them.

o Virtual machine-embedded application: This requirement is based on the

same inability of existing Grid application description languages to describe

the application assets mentioned above. As virtualization gains terrain in

S O L U T I O N O V E R V I E W

132

Grid, applications can be run in their native environment on a virtual

machine, avoiding the problem raised by machine architecture-

incompatibilities, Operating System-incompatibilities, dependency-failings,

etc. Hence, the GAMRS description language should be able to describe

the case when the application is embedded in a virtual machine and

therefore the whole virtual machine needs to be staged, not only the

application executable.

o Application pre-run prerequisites such as requires compilation, license

acceptance, staging dependencies and VM-embedded: This requirement

refers to the ability of a description language to model actions associated

with application-related objects. This requirement needs to be met in order

to address the following scenarios:

 The application can be run by staging the source code and compiling it

directly on the Grid resource selected for running the application.

 The application requires license acceptance prior to submission and

running on the Grid infrastructure.

 The application requires additional dependency software to be staged on

the Grid resource to ensure a correct run of the application.

 The application will run as embedded in a virtual machine.

In order to meet these requirements, JSDL was extended into an application

description language called the Meta Repository application Description

Language (MRDL), which can be used within the GAMRS framework.

Figure 3-20 shows the JSDL extensions proposed in this research, highlighting the

new entities added in MRDL, as well as the modifications made to existing (old)

JSDL entities. The Structure and Identity entities remained the same as JSDL. The

Application, Resource and Data staging entities were extended with the Advanced

parameter/attribute descriptions additions, in order to permit MRDL to describe

application templates. The Data staging entity was extended with data protection

capabilities in terms of hash sums and also with the necessary attributes and

associations to permit the description of secure data access from storage servers

S O L U T I O N O V E R V I E W

133

located in different Grids with the use of different X509 certificates. The Application

type of running was modelled in a single entity within the MRDL model, which also

implements a concept borrowed from the LCID description language – the property

of an application to run on different types of Grid middleware.

Figure 3-20: JSDL extensions (MRDL entities)

3.3.2 Design

In order to satisfy the requirements related to Multi-Grid/multi certificate secure

data access (multi-Grid data staging with different X509 certificates and the

distinction between the application instance submission certificate and the staging

certificate), JSDL was extended to include two new entities: Authentication and

X509Credential. The two entities in MRDL are similar to the entities Authentication

and Certificate used in the GAMRS model. However, in the GAMRS model these

types of objects were focused more on user actions (such as accessing other

repositories for application retrieval), while in MRDL they are used to highlight the

fact that an application requires different certificates for data staging and/or running.

Moreover, in the GAMRS model, these entities were used for the actual storage of

S O L U T I O N O V E R V I E W

134

the certificate in the repository (hence the presence of the attribute Value), while an

application description language does not model such action. Thus, in MRDL, the

X509Credential entity does not contain the attribute Value, only the attribute URI,

which points to the location where the certificate is stored.

Figure 3-21: Partial view of the MRDL model highlighting the Authentication, X509Credential and
Hash entities

With regard to the requirement regarding Data protection (hash sums for staged

data), a new entity – Hash – was added to the original JSDL schema (see Figure

3-21). This entity is mainly used to prevent data corruption that may occur during

file transfers between the storage server and the resource where the application

runs. It also guards against accidental damage that may occur to files while they

are stored on servers. In MRDL, Hash objects are associated to JSDL‟s File entities

(used to model files residing on the filesystem of the Grid resource where the

application is submitted to run) and to the Source and Target entities, which are

used to model remote files residing in repositories or dedicated storage servers and

are used for data staging.

S O L U T I O N O V E R V I E W

135

The Template (advanced parameter/attribute descriptions) requirement was met

through the addition of three attributes (Mandatory, Fixed and Requires) to the

following JSDL entities: Resources, Filesystem, Operating system, Candidate host,

Cpuarchitecture, Target, Source and Argument.

The attribute Mandatory indicates whether the presence of that object in the

description of an application is compulsory or not. It relates to the fact that specific

information about an application may be needed in order to ensure an accurate

description and a correct run of such an application on Grid. In structural terms, in a

document written in MRDL, the field(s) that describes an object containing the

attribute Mandatory has to be provided with values.

The attribute Fixed denotes whether the value entered for a specific object is non-

changeable. This attribute should be used by application administrators who know

the specific requirements needed by a particular application to run correctly. This

would prevent users from entering wrong values for that field and from causing an

erroneous run of the application. Moreover, the attribute Fixed can be used for the

specification of default input files – usually configuration files that are required for

each and every run of an application.

The attribute Requires denotes that the presence of a value for a particular object

requires the value of another object to be specified as well. For example, some

applications which need remote connectivity to a service or server contain the

argument Host, which points to the location of such server. In most cases, if a user

specifies a value for Host, s/he is automatically required to introduce a value for a

second parameter called Port. Therefore, the attribute Requires can be used to

describe such particular scenarios, where the use of one object might require a

follow-up object to be specified as well.

Grid applications can run on various Grid infrastructures and each of these

infrastructures may be serviced by a different Grid submission system. Grid

description languages should be able to capture in their schema information about

such submission systems, since it presents users with a comprehensive picture of

the Grid infrastructures where the application can run. Currently, GEMLCA‟s LCID

S O L U T I O N O V E R V I E W

136

is the only application description language able to describe the functional property

of a Grid application to run on GT2, GT4 and gLite/lcg Grid infrastructures.

The MRDL language proposed in this research uses this LCID concept to extend

the JSDL schema with a new entity called SubmitterData. The SubmitterData entity

along with its associations to other MRDL objects models the application running

type additions: it can describe the additional information about a Grid application by

including information such as location of licenses, libraries, code for compilation;

can describe the staging of virtual machine-embedded applications; and can also

specify application pre-run prerequisites, such as requires compilation, license

acceptance or staging dependencies.

In addition to the capabilities of LCID, through these extensions, an application

description written in MRDL is able to model the following scenarios that are not

currently available in any other application description language used in Grid:

 An application can be presented as embedded in a virtual machine. Such

applications can be easily deployed and run on distributed virtualized

infrastructures either in Grid or in cloud computing environments.

 With the help of libraries and source code an application can be

deployed, compiled and run on Grid resources without needing the

application binary. Furthermore, even when the binary is available, this

scenario may prove helpful in cases when Grid resources employ

machine architectures and operating systems different from the ones that

the application binary was compiled for.

 Applications that require license acceptance can be run on Grid

infrastructures because MRDL allows the specification of license

locations in its schema.

Figure 3-22 shows the SubmitterData entity along with its relationships to the

following JSDL/MRDL entities: JobDescription, Source and Argument.

S O L U T I O N O V E R V I E W

137

Figure 3-22: The SubmitterData entity and its associations to the Argument, JobDescription and
Source entities

The JobDescription entity represents the parent element in the JSDL/MRDL

schema to which the SubmitterData entity is related to.

The SubmitterData entity has four associations with the Source entity – license,

source code, VMsource and ApplicationDependecies, which are used to describe

the specific locations of the following application-related objects: the application

license, the application source code, the virtual machine in which the application is

embedded, and, respectively, the application software dependencies (e.g. libraries,

compilers).

The two associations with the Argument entity – CompilerArgs and VMArgs –

permit the specification of necessary arguments that are used for source code

compilation or for running virtual machine-embedded applications.

S O L U T I O N O V E R V I E W

138

In order to be able to describe the new scenarios mentioned above, the

SubmitterData object contains the following attributes:

Specified in LCID:

 Submitter – this attribute specifies the type of submission system used;

 Retries – if a submission error occurs, this attribute specifies how many

times a submission system should try to re-submit the application on the

designated Grid resources before reporting it as failure;

 VirtualOrganization – specific to gLite/lcg Grids, this attribute specifies the

group of Grid users allowed to run the application).

New attributes:

 LicenceAcceptance – this attribute is used to specify that a license

acceptance is required before the actual submission and run of the

application;

 Compile – this attribute is used to specify whether the application requires

to be compiled before the actual run of the application;

 VM and VMType – the VM attribute is used to specify whether the

application is embedded in a virtual machine; (the type of the virtual

machine is specified by the attribute VMType)

 any and anyAttribute – these attributes allow for future extensions to be

added to the SubmittedData entity;

The SubmitterData entity is linked to the other JSDL main entities through an

association to the JSDL‟s JobDescription entity. The full MRDL application

description language model can be found in Appendix B.

3.3.3 Summary

Table 3-4 summarizes the critical analysis of the application description languages

discussed in Chapter 2, section 2.3.2 (RSL, JDL, xRSL, WS-GRAM, LCID and

S O L U T I O N O V E R V I E W

139

JSDL), and assesses their ability to meet the application description language

challenges identified in this research (legacy compatibility; advanced features;

different submission certificate and staging certificate; multi-Grid data staging; hash

sums; advanced parameter/attribute description; multiple transfer protocols

supported as URI definitions; additional information – licenses, libraries, code for

compilation; application pre-run prerequisites; virtual machine staging; advanced

parallel behaviour; and native extension) by comparison to MRDL.

Table 3-4: Traditional application description language capabilities vs. MRDL

RSL JDL xRSL

WS-
GRAM

LCID JSDL MRDL

Legacy
compatibility

YES YES YES YES YES YES
YES/

inherited

Advanced features partly partly partly partly partly YES
YES/

Inherited

Different
submission
certificate and
staging certificate

no no no
YES

(service
only)

no no YES

Multi-Grid data
staging

no no no
YES

(service
only)

no no YES

Hash sums no no no no no no YES

Advanced
parameter/attribute
descriptions

no no no no partly no YES

Multiple transfer
protocols
supported as URI
definitions

no no YES no no YES
YES/

inherited

Additional
information
(licenses, libraries,
code for
compilation)

no no no no no no YES

Application pre-
run prerequisites

no no no no no no YES

Virtual machine
staging

no no no no no no YES

Advanced parallel
behaviour

partly partly partly partly partly YES
YES/

inherited

Native extension no no no no no YES
YES/

inherited

S O L U T I O N O V E R V I E W

140

3.4. GAMRS Matchmaking Service

3.4.1 Overview

The fourth objective set out in this research was to design a matchmaking

methodology and an algorithm able to identify similar or identical applications

stored in Grid repositories connected to GAMRS. The aim was to identify or create

matchmaking techniques that could: compare two applications stored or referenced

by GAMRS; process their application-related objects found in the repository; and

decide whether two applications are similar or not. The time contraints of a PhD

research permitted the implementation and performance analysis of only a subset

of the methods identified. Nevertheless, the architecture proposed for the

matchmaking system and the algorithm used here are extendable, and future

research can implement and analyze the performance of other matchmaking

methods when applied to the objects stored in GAMRS repository.

Following the critical analysis described in Section 2.5.4, I started with the design

and testing of the most widely used approach to matchmaking: the syntactic

algorithm. The syntactic algorithm was designed to process MRDL description

documents and to extract the application information contained in them. Moreover,

the syntactic approach also takes into consideration the new additions included by

MRDL, such as data protection (i.e. hash sums) and template (i.e. advanced

parameter description), in order to provide a more accurate answer to the Grid

application matching problem.

Due to the rigid logic of the syntactical approach and to the scarceness of

information present in real-case application description documents, this method

may often return inconclusive results. Moreover, in gLite/lcg-based Grids the formal

description document of the application is usually missing from the repository.

Hence, a scenario involving application information gathered from gLite/lcg-based

Grid application repositories cannot use the syntactic matchmaking technique as

there would be no formal description document to process.

S O L U T I O N O V E R V I E W

141

However, all these applications come from a repository and they contain a

metadata field called Description, in which information about the application is

stored as a paragraph of free text. Consequently, since the syntactic method was

not a suitable solution in such cases, I moved on to investigating how string-

distance methods could help with the identification of similar applications based on

the information contained in the free-text description of the application. Based on

reviews and successful case studies published in the specialised literature I

selected eleven of the most widely-used string-distance techniques and applied

them to Grid application descriptions. At the same time, this research proposed a

new technique of improving the accuracy of string-distance metrics by using

entropy-generated stop-lists. Following this investigation, I identified at least two

string-distance methods that could be used to identify similar applications stored in

Grid repositories and also showed that the new entropy-generated stop-list method

proposed by this research can increase the performance of the string-distance

methods. Furthermore, the entropy-generated stop list technique is generic and

can be applied to other scenarios involving the usage of string-distance metrics,

besides the identification of similar Grid applications.

However, the string-distance approach has its limitations as well, especially

because it bases its matching mechanisms on paragraphs of free-texts. Such

paragraphs are always affected by the subjectivism of the author, as there are no

formal constraints on what needs to be written in a Description field.

Therefore, in an attempt to provide a more objective matchmaking result, I

considered a different approach, which does not rely on the information found in the

application description document or the metadata Description field, but on the

ability of GAMRS to store application binaries and application test suites.

The GAMRS repository permits the storage of application binaries and test suites.

A test suite in this case is comprised of a complete set of input files (i.e. the testIN

set); the complete set of output files corresponding to an application run with the

input contained in testIN (i.e. the testOUT set); and a script providing the values for

environment variables and the suite of commands necessary to run the application

S O L U T I O N O V E R V I E W

142

with the input files contained in testIN (i.e. the run script). The method proposed

(i.e. application-running) compares two applications by running two application

binaries with a common set of input files (retrieved from one of the application test

suites) and compares the output set.

Another method of identifying identical Grid applications based on application-

related objects other than the description document is the binary matching method.

This technique relies on the availability of application binaries stored in Grid

repositories. The method implements a strong collision resistant hash algorithm

and computes the hash sum for each application binary. It then compares these

hash sums with each other and decides whether any two application binaries are

the same (i.e. the applications are identical) or not. Whichever the result, the

method also updates the application objects stored or referred in GAMRS with the

newly computed hash sums.

This research also suggests other matchmaking methods that can be used to

identify similar or identical Grid applications stored in Grid repositories. However,

due to existing time constraints, these could not be implemented and tested within

the timeframe of this PhD research.

3.4.2 Design

Based on the available sources of information about an application stored in

GAMRS, matchmaking techniques can be grouped in three categories:

 techniques that extract and process application information contained in

the formal application description document;

 techniques that can extract information by processing application-related

objects stored in GAMRS other than the description document (e.g.

binaries, source code, dependency software);

 hybrid techniques, which use combinations of methods from the first two

categories.

S O L U T I O N O V E R V I E W

143

Figure 3-23 shows the architecture of the GAMRS Matchmaking service, along with

suggested matchmaking methods from the three categories listed above that can

be used for finding similar applications stored in Grid repositories.

Figure 3-23: GAMRS Matchmaking service architecture

The architecture of the proposed Matchmaking service includes the following

elements:

 ACCESS INTERFACE: This interface allows communication between the

Matchmaking service and users.

 Modules that process application description documents:

o SYNTACTIC MODULE: This module returns the degree of similarity

between two applications by applying syntactical similarity functions to two

application description documents written in MRDL.

o STRING-DISTANCE MODULE: This module returns the degree of similarity

between two applications by applying string-distance similarity functions to

two application descriptions written in free-text (i.e. retrieved from the

attribute Description associated with the applications in the GAMRS model).

S O L U T I O N O V E R V I E W

144

This module can implement different types of string-distance method (i.e.

edit-based, token-based and hybrid). The token-based functions that need

training can use the TRAINING CORPUS for that. This module also

contains the proposed method of entropy-generated stop-list, which helps to

increase the accuracy of the string-distance methods.

o SEMANTIC MODULE: This module returns the degree of similarity between

two applications by applying semantic similarity functions to two application

description documents written in MRDL or to application descriptions written

in free-text.

o SVD/LSA/LSI MODULE: This module returns the degree of similarity

between two applications by applying latent semantic analysis methods to

two application description documents written in MRDL or to application

descriptions written in free-text.

o TRAINING CORPUS: The training corpus is needed for token-based string

similarity functions, which use statistics and probabilities in their

computation. It can come as a separate entity or, because the Matchmaking

service is connected to the GAMRS BACKEND, a training corpus can be

created by retrieving the application descriptions stored there.

 Modules that process application-related objects other than the application

description document:

o APPLICATION-RUNNING MODULE: The application-running module can

find similar applications by executing jobs with test input files, retrieving the

output files and checking for differences between output files.

o BINARY MATCHING MODULE: This module can be used to optimize the

accuracy of matching systems by comparing and analyzing two application

binaries, provided these are stored in the repository.

o SOURCE CODE MODULE: This module can be used to optimize the

accuracy of matching systems by comparing and analyzing two application

source codes, provided these are stored in the repository.

o DEPENDENCY ANALYSIS MODULE: This module can be used to

S O L U T I O N O V E R V I E W

145

optimize the accuracy of matching systems by comparing and analyzing two

sets of application dependencies, provided these are stored in the

repository.

 HYBRID MATCHMAKING METHODS: This module contains an aggregation

model able to combine together the scores returned by different matching

modules with the aim of increasing the accuracy of the matchmaking system.

 OTHER: The GAMRS Matchmaking service is extendible with other

matchmaking modules, which could help with finding similar applications stored

in Grid repositories.

 GAMRS BACKEND: The backend stores the GAMRS repository objects.

This investigation focused on the analysis of only four of the modules mentioned

above: the syntactic module (because it is the most widely-used technique and

the first choice of matchmaking method for documents formatted according to a

formal structure); the string-distance module (because it is the first time this

technique is used to identify similar applications stored in Grid repositories); the

application-running module and the binary matching module (because the

application binary is the most common type of application-related object likely to be

stored in a repository – apart from the application description document). At the

same time, a new method of entropy-generated stop-list was proposed in

conjunction with the string-distance module in order to analyse to what extent the

accuracy of string-distance methods could be improved through the use of such

stop-lists.

The rest of the methods suggested and their applicability in Grid environments

could make the subject of further research – this could test the performance and

accuracy of such techniques when applied to Grid applications. Should the results

of such tests prove successful, these methods could be easily implemented at a

later stage as modules in the GAMRS Matchmaking service.

S O L U T I O N O V E R V I E W

146

THE SYNT ACTIC MODUL E

The syntactic module tries to identify similar or identical applications by comparing

their description documents, which are written in MRDL – the GAMRS application

description language. MRDL was chosen as the best candidate for the syntactic

module for two reasons: first, it provides a uniform description of applications,

bridging the discrepancies between the other ADLs currently used in Grid

repositories, while it does not lose information in the translation process; and

second, for applications published directly in the GAMRS repository, its new

extensions provide more sources of information about the application than

traditional Grid ADLs.

The syntactic module uses a language parser to parse trough the structure of

MRDL. The following attributes are processed by the syntactic function: name;

version; all resource attributes (e.g. architecture, OS, RAM, disk, virtual memory

…); default input files (name and path); mandatory attributes (i.e. resources and

application arguments); designated running sites; binary paths; application

arguments; and hash sums for binaries, for default input files and for test files.

At the same time, the syntactic module defines fast-track subsets of attributes,

which can help identify identical applications quicker. In this case, if the comparison

of each of the following subsets of attributes returns the Boolean true, then the Grid

applications are the same: {hashsums of binaries} and {designated running site,

binary location, mandatory application arguments}.

The following algorithm is proposed for the syntactic module:

SYNTACTIC APPLICATION MATCHMAKER (,)

1: retrieve description documents MRDL1 and MRDL2 from GAMRS using and

2: IF MRDL1 or MRDL2 is missing

3: RETURN decision: “syntactic matching not possible in this case “

4: END_IF

5: IF MRDL1 contains the hash sum of the application binary

6: YES: HashType1 retrieve the type of hash sum from MRDL1

7: Hash1 retrieve the value of hash sum from MRDL1

S O L U T I O N O V E R V I E W

147

8: END_IF

9: IF MRDL2 contains the hash sum of the application binary

10: YES: HashType2 retrieve the type of hash sum from MRDL2

11: Hash2 retrieve the value of hash sum from MRDL2

12: END_IF

13: IF (HashType1, HashType2, Hash1, Hash2 exist) AND (HashType1 EQUALS

HashType2) AND (Hash1 EQUALS Hash2)

14: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are

identical”

15: END_IF

16: DRS1 retrieve designated running site from MRDL1

17: DRS2 retrieve designated running site from MRDL2

18: BLP1 retrieve binary location path from MRDL1

19: BLP2 retrieve binary location path from MRDL2

20: AL1 retrieve the list of mandatory arguments and fixed value arguments from

MRDL1

21: AL2 retrieve the list of mandatory arguments and fixed value arguments from

MRDL2

22: IF (DRS1 EQUALS DRS2) AND (BLP1 EQUALS BLP2) AND (AL1 EQUALS AL2)

23: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are

identical”

24: END_IF

25: compare MRDL1 and MRDL2 over the following fields: application name, version,

resource elements, list of application arguments and binary names

26: IF the comparison (step 25) returned the Boolean true

27: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are

similar, but based on the information contained in their description documents the

syntactic matchmaker cannot decide on their identicalness”

28: END_IF

28a: IF the test suite for the application identified by UID1 in GAMRS exists stored in

the repository

28b: YES: retrieve the test suite from GAMRS using UID1 TestSuite1

28c: END_IF

28d: IF the test suite for the application identified by UID2 in GAMRS exists stored in

the repository

28e: YES: retrieve the test suite from GAMRS using UID2 TestSuite2

28f: END_IF

28g: D1 retrieve the value of attribute DeterministicType from MRDL1

28h: D2 retrieve the value of attribute DeterministicType from MRDL2

28i: IF (TestSuite1 EQUALS TestSuite2) AND (D1 EQUALS D2 EQUALS „Boolean true‟)

S O L U T I O N O V E R V I E W

148

28j: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are

identical”

28k: END_IF

The notations used in the algorithm are as follows:

 UID1, UID2: The two GAMRS universal identifiers (UIDs), which refer to

the applications under comparison;

 MRDL1, MRDL2: The application description documents corresponding to

the two applications identified in GAMRS by UID1 and UID2;

 Hash1, Hash2: Hash sums of binaries corresponding to the two

applications identified in GAMRS by UID1 and UID2;

 HashType1, HashType2: The type of hash sums Hash1, Hash2;

 DRS1, DRS2: Designated running sites of the two applications identified in

GAMRS by UID1 and UID2;

 BLP1, BLP2: Full path to the location of application binaries of the two

applications identified in GAMRS by UID1 and UID2;

 AL1, AL2: List of executable arguments of the two applications identified in

GAMRS by UID1 and UID2;

 TestSuite1, TestSuite2: Application test suites (each consisting of a set of

input files, a set of output files and a running script) associated with the

two applications identified in GAMRS by UID1 and UID2;

 D1, D2: DeterministicType – new attribute of Boolean type added by the

MRDL to the original JSDL POSIXApplication entity, which has the value

TRUE if the application exhibits a deterministic behavior (i.e. “Given a

particular input, it will always produce the same output, and the

underlying machine will always pass through the same sequence of

states” [142]) and FALSE if the application behaves in a non-deterministic

manner. D1 and D2 retrieve the values of this field from MRDL1 and

MRDL2.

S O L U T I O N O V E R V I E W

149

The algorithm starts by retrieving the application descriptions documents MRDL1

and MRDL2 from GAMRS with the help of universal identifiers UID1 and UID2 (step

1). If MRDL1 or MRDL2 is missing, then the syntactical technique cannot be applied

(steps 2-4). The algorithm continues with the tests of fast-track subsets of

attributes: first, it retrieves the hash sum types and the hash sums of binaries for

the two applications under comparison (steps 5-12); second, it tests if the hash

sums are of the same type and if they have the same value (step 13). If there is a

match, then the binaries of the two applications are the same, meaning that the

applications are identical (step 14). If the comparison returned Boolean FALSE, the

algorithm continues with the retrieval of the designated running sites (steps 16-17),

the binary location paths (steps 18-19), and the list of mandatory arguments and

fixed value arguments (steps 20-21) from the description documents MRDL1 and

MRDL2. If the designated running sites are the same, it means that the two

applications are meant to run on the same Grid resource; if the binary paths are the

same, it means that the applications point to the same location on a filesystem or a

storage server. In combination, the designated running site and the binary location

path could point to the same application that was probably exposed in two different

Grid repositories connected to GAMRS. However, there is an additional test to be

performed in order to decide whether the applications are truly the same: the list of

mandatory and fixed value arguments. This test is required to pinpoint a specific

application from groups of applications: in some cases, multiple Grid applications

are exposed in batches as one single software package (i.e. BSoft, AMBER). The

call to run one particular application from such packages includes the name of the

package binary followed by the name of the application given as a fixed-value

argument and followed by the list of mandatory arguments required by that

particular application to run. Consequently, if the designated running sites, the

binary location paths and the list of arguments (mandatory and fixed) match (step

22), then the two MRDL documents actually describe the same application (step

23).

If the two fast-track subsets were unsuccessful in finding a match, the algorithm

continues with the comparison of the following MRDL fields: application name,

S O L U T I O N O V E R V I E W

150

version, resource elements, list of application arguments and binary names (step

25). If the comparison returns a match (step 26), then the applications are similar;

however, the algorithm cannot decide on their identicalness (step 27).

In this form (steps 1-27, without steps 28a-28k), the syntactic algorithm has been

designed to process information from MRDL description documents only. However,

steps 28a-28k provide an addition to the algorithm, by adding a new fast-track

decision set.

One of the conclusions drawn after testing the application-running module (which

will be discussed later in this section) was that the method cannot be applied to

applications that exhibit non-deterministic behaviour. Moreover, none of the

application description languages currently used in Grid contains such information

about the deterministic nature of the application. Consequently, a new attribute,

DeterministicType, was added in MRDL, and has the Boolean value TRUE if the

application exhibits a deterministic behaviour. This addition helped enhance the

syntactic algorithm with a new fast-track decision set: {test Suite files (input, output,

running script), „DeterministicType =TRUE‟}. Namely, if two applications are

deterministic and their test input files, test output files and running scripts are

identical, then the applications are identical.

The algorithm provides this test in steps 28a-28k: first, it retrieves the test suites

from GAMRS for the two applications under comparison (steps 28a-28f); next, it

retrieves the value of the DeterministicType attribute from the description

documents of the two applications (steps 28g-28h); finally, it performs the test (step

28i) and, if the test suites are identical and the applications are deterministic, it

returns the decision that the applications are identical (step 28j).

If used only with steps 1-28, the algorithm can be identified as the Syntactic module

in the GAMRS Matchmaking service architecture shown at the beginning of Section

3.4.2 in Figure 3-23. When the algorithm is used with the additional steps 28a-28k,

it is categorized as a hybrid matchmaking method in the GAMRS Matchmaking

service architecture because it processes not only the application description

S O L U T I O N O V E R V I E W

151

document but also other application-related objects stored in repository (i.e.

binaries and test suites).

THE ST RING-D IST ANCE MODULE

This research investigated eleven string-distance methods – four edit-based

functions (Damerau-Levenshtein, Jaro-Winkler, Case and Fixed Weight), six token-

based functions (TFIDF/Cosine, Jaccard, Dice, Jensen-Shannon Divergence

(JSD), Dirichlet JSD, Jelinek-Mercer JSD) and one hybrid method (Jaro-

Winkler/TFIDF). All these methods have been used successfully in matching

paragraphs of free text in other contexts. [70, 81, 82, 83, 86, 97, 98, 103, 105]

These eleven string-distance methods were implemented in the string-distance

module of the GAMRS Matchmaking service and their performance in matching

Grid application descriptions was analysed subsequently. The mathematical

background and explanations of each of these methods can be found in Appendix

C. The string-distance methods were used to identify similar applications by

comparing the information contained in the free-text description of the application.

This module was proposed as an alternative to other methods, in cases where the

application description document or other application-related objects such as

binaries or test suites were missing from the repository. This research also

proposed a new technique for improving the accuracy of such string-distance

methods by using entropy-generated stop-lists.

A stop-list (sometimes called a block-list) is, by definition, a list of terms which are

filtered out prior to (or sometimes after) the processing of natural language texts. A

stop-list includes the most common parts of speech, which usually occur very

frequently in any text. In most cases a stop-list includes punctuation marks,

prepositions (e.g. of, to, in, for, with), conjunctions (e.g. and, but, or, nor), and

articles (e.g. the, a, an).

In this research I decided to expand the concept of stop-list and not to limit its

contents to the elements enumerated above. The purpose of this extension was to

optimize the matching abilities of the string-distance metrics used here by

S O L U T I O N O V E R V I E W

152

generating a stop-list containing the terms with the lowest entropy levels in the

whole corpus.

The underlying assumption was that token-based methods, which depend on term

frequency (such as TFIDF/Cosine, Jaro-Winkler/TFIDF and Jensen-Shannon

variants), could improve their matching accuracy if the terms that occur most

frequently in the corpus (but not only prepositions, conjunctions, articles and

punctuation marks) were filtered out beforehand.

In order to test this optimization solution via an entropy-generated stop-list, I

proposed the following function to generate the stop-list:

GENERATE_STOP-LIST (C, thd, S)

1: FOR each distinctive ti in C

2:

3. log

4: IF H(ti) ≤ thd

5: add ti to S

6: END_IF

7: END_LOOP

8: RETURN S

The following notations were used:

 t = term: basic entity in token-based analysis; the equivalent of a word in

natural language;

 d = document: a set of terms; in our case, a paragraph of text written in

English, which represents a free-text description of a Grid application;

 C = corpus: a collection of documents;

 S: the stop-list returned by the function;

 thd: the entropy threshold used for the generation of the stop-list;

 H: Shannon entropy function;

S O L U T I O N O V E R V I E W

153

 the number of occurrences of term t in the collection of documents C;

 the number of terms in corpus C.

The function above computes the probability of each term ti (step 2) as its

frequency of occurrence in corpus C (i.e. maximum likelihood), and uses this

probability to compute Shannon‟s entropy for term ti (step 3). If the entropy is lower

than a threshold thd (step 4), it adds the term to the stop-list S (step 5). The entropy

threshold thd can take any real value in the interval (0, 1). Each corpus C may have

its own optimal values/interval for thd. Finding such values/interval takes into

account the following two aspects:

 First, if threshold thd is too low, then too many non-important terms would

be processed by the matching methods;

 Second, if threshold thd is too high, then too many important terms would

not be processed by the matching methods.

The stop-list S is then used in the process of matching two application descriptions.

First, using the following function, the terms contained in the stop-list are removed

from each description:

TRIM_DESCRIPTION (d, S, δ)

1: FOR each distinctive term ti contained in the description d

2: IF ti not contained in the stop-list S

3: add the term ti to the description δ

4: END_IF

5: END_LOOP

6: RETURN δ

Second, the following function is used to match two application descriptions:

MATCH_DESCRIPTIONS (d1, d2, M, S, result)

1: IF use the stop-list S

2: NO: result apply M (d1, d2)

3: YES: δ1 TRIM_DESCRIPTION (d1, S, δ1)

S O L U T I O N O V E R V I E W

154

4: δ2 TRIM_DESCRIPTION (d2, S, δ2)

5: result apply M (δ1, δ2)

6: END_IF

7: RETURN result

The following notations were used:

 d1, d2: the original, untrimmed descriptions of two applications;

 S: the stop-list;

 δ1, δ2: the descriptions d1, d2 without the low-entropy terms;

 M: an implementation of a string-distance metric;

 result: similarity returned by the string-distance method M.

The MATCH_DESCRIPTIONS function can be used with any of the string-distance

metrics considered in this research. Moreover, the function can be used both in

cases were a stop-list is required, and in cases were matching is done without a

stop-list.

Finally, the string-distance algorithm applies the MATCH_DESCRIPTION function

for each of the string-distance methods implemented:

STRING DISTANCE APPLICATION MATCHMAKER (, , , C, T,
])

1: retrieve from GAMRS the free-text application description for UID1 d1

2: retrieve from GAMRS the free-text application description for UID2 d2

3: IF d1 OR d2 does NOT EXIST

4: YES: RETURN decision: “string-distance algorithm cannot be applied in this case”

5: END_IF

6: FOR each string-distance method

7: IF needs training

8: YES: train on T

9: END_IF

10: IF method uses a threshold for stop-list

11: YES: Sk GENERATE_STOP_LIST(C,
 , Sk)

12: END_IF

13: MATCH_DESCRIPTIONS (d1, d2, , Sk, result)

14: END_LOOP

15: RETURN the list of tuples result

S O L U T I O N O V E R V I E W

155

The notations used in the algorithm are as follows:

 , : The two input GAMRS application universal identifiers

(UIDs), which refer to the applications under comparison;

 : the string-distance method k;

 C : the collection of application descriptions;

 T : the collection of application descriptions used as training corpus;

 : the entropy threshold used for the generation of the stop-list

required by the string-distance method .

 d1, d2 : The two free-text description of the applications identified in

GAMRS by UID1 and UID2;

 : the stop-list used by the string-distance method
 .

 : the similarity score returned by the string-distance method
;

The algorithm starts by retrieving the free-text description of the applications

identified as UID1 and UID2 in GAMRS from the metadata associated to them in the

repository (steps 1-2). If one of these application descriptions is missing (steps 3-5),

the string-distance methods cannot be applied and the algorithm stops. Next, the

algorithm takes each string-distance method (step 6) and executes the

following steps: if the method needs training, then it uses the training corpus T to

train it (steps 7-9); next, if the method can be applied with the entropy-generated

stop-list (step 10), it generates the stop-list (step 11) using the threshold

given as argument for that particular string-distance method; finally, it runs the

method using the MATCH_DESCRIPTIONS function (step 13) described above

and records the result. The algorithm finishes by returning the list of methods and

the score of the comparison for each of them (step 15).

APPLICATION-RUNNING MODULE

The GAMRS repository permits the storage of application binaries and test suites.

The application-running module compares two applications by running their

S O L U T I O N O V E R V I E W

156

application binaries with a common set of input files (retrieved from one of

application test suites) and comparing their output sets. The proposed algorithm is

presented below.

APPLICATION RUNNING MATCHMAKER (,)

1a: retrieve description documents MRDL1 and MRDL2 from GAMRS using and

1b: D1 retrieve the value of attribute DeterministicType from MRDL1

1c: D2 retrieve the value of attribute DeterministicType from MRDL2

1d: IF D1 OR D2 EQUALS „Boolean false‟

1e: YES: RETURN decision: “one or both applications identified in GAMRS by UID1

and UID2 is non-deterministic; the application running module cannot be applied in this

case”

1f: END_IF

1: IF the test suite for the application identified by UID1 in GAMRS exists stored in

the repository

2: YES: retrieve the test suite from GAMRS using UID1 TestSuite1

3: IN1 retrieve the set of input files from TestSuite1

4: OUT1 retrieve the set of output files from TestSuite1

5: RUN1 retrieve the running script from TestSuite1

6: END_IF

7: IF the test suite for the application identified by UID2 in GAMRS exists stored in

the repository

8: YES: retrieve the test suite from GAMRS using UID2 TestSuite2

9: IN2 retrieve the set of input files from TestSuite2

10: OUT2 retrieve the set of output files from TestSuite2

11: RUN2 retrieve the running script from TestSuite2

12: END_IF

13: IF (IN1 EQUALS IN2) AND (OUT1 EQUALS OUT2) AND (RUN1 EQUALS RUN2)

14: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are identical”

15: END_IF

16: IF (IN1 EXISTS) AND (OUT1 EXISTS)

17: run application identified in GAMRS by UID2 with IN1 OUT

18: save IN1 and OUT in TestSuite2

19: update the application identified in GAMRS by UID2 with TestSuite2

20: IF (OUT EQUALS OUT1)

21: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are identical”

S O L U T I O N O V E R V I E W

157

22: NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are NOT identical”

23: END_IF

24: END_IF

25: IF (IN2 EXISTS) AND (OUT2 EXISTS)

26: run application identified in GAMRS by UID1 with IN2 OUT

27: save IN2 and OUT in TestSuite1

28: update the application identified in GAMRS by UID1 with TestSuite1

29: IF (OUT EQUALS OUT2)

30: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are identical”

31: NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are NOT identical”

32: END_IF

33: END_IF

34: IF (IN1 EXISTS)

35: run application identified in GAMRS by UID1 with IN1 OUT1

36: run application identified in GAMRS by UID2 with IN1 OUT2

37: save IN1 and OUT1 in TestSuite1; and save IN1 and OUT2 in TestSuite2

38: update the application identified in GAMRS by UID1 with TestSuite1; and

 update the application identified in GAMRS by UID2 with TestSuite2

39: IF (OUT1 EQUALS OUT2)

40: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are identical”

41: NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are NOT identical”

42: END_IF

43: END_IF

44: IF (IN2 EXISTS)

45: run application identified in GAMRS by UID1 with IN2 OUT1

46: run application identified in GAMRS by UID2 with IN2 OUT2

47: save IN2 and OUT1 in TestSuite1; and save IN2 and OUT2 in TestSuite2

48: update the application identified in GAMRS by UID1 with TestSuite1; and

 update the application identified in GAMRS by UID2 with TestSuite2

49: IF (OUT1 EQUALS OUT2)

50: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are identical”

51: NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2

are NOT identical”

52: END_IF

53: END_IF

S O L U T I O N O V E R V I E W

158

54: RETURN decision: “The application-running module could not reach a decision based

on the information contained in the test suites of the applications identified in GAMRS

by UID1 and UID2”

The notations used in the algorithm are as follows:

 UID1, UID2: The two input GAMRS application universal identifiers (UIDs),

which refer to the applications under comparison;

 MRDL1, MRDL2: The application description documents corresponding to

the two applications identified in GAMRS by UID1 and UID2;

 D1, D2: The values of the field DeterministicType from MRDL1 and

MRDL2;

 TestSuite1, TestSuite2: Application test suites (each consisting of set of

input files, set of output files and running script) associated with the two

applications identified in GAMRS by UID1 and UID2;

 IN1, IN2: Sets of input files retrieved from the test suites TestSuite1,

TestSuite2;

 OUT1, OUT2: Sets of output files retrieved from the test suites TestSuite1,

TestSuite2;

 RUN1, RUN2: Running scripts retrieved from the test suites TestSuite1,

TestSuite2;

Initially, the application-running algorithm consisted only of steps 1-50. However,

after testing the algorithm with real applications published in Grid repositories, the

results showed that the method could not be applied to applications that exhibited

non-deterministic behaviour. In conclusion, the algorithm was improved with steps

1a-1f, according to which it retrieves the values of field DeterministicType from the

two description documents of the applications identified in GAMRS by UID1 and

UID2 and continues only if the two applications are deterministic. The algorithm

continues with the retrieval from GAMRS of the two test suites corresponding to the

two applications identified by UID1 and UID2. At the same time, from each of the

test suites the algorithm extracts the set of test inputs, the set of test outputs and

S O L U T I O N O V E R V I E W

159

the running script (steps 1-12). Next, it tests whether the two sets of inputs, the two

sets of outputs and the running scripts are identical (step 13). Provided these are

identical, it returns the decision that the applications are the same (step 14). Next, if

one application has both the set of inputs and the set of outputs present (step 16

/25), it runs the other application with the set of inputs and records the new set of

outputs in OUT (step 17 /26). It then records the set of inputs used to run the

second application in its test suite along with the OUT set of outputs (step 18 /27)

and it updates the test suite in GAMRS (step 19 /28). The algorithm continues with

the comparison of the set of outputs belonging to the first application (step 20 /29)

against the OUT set of outputs belonging to the second one (i.e. the application

which has been run). If there is a match, this means that both applications are

deterministic and they produced the same set of output files after being run with the

same set of input files; the algorithm therefore decides that the two applications are

identical (step 21 /30). If the comparison failed and the two set of output files are

not identical, the algorithm decides that the two applications are not the same (step

step 22 /31). If only the set of input files is present (step 34 /44), then both

applications are run with this set of input files and their set of output files are

recorded in OUT1 (step 35 /45) and OUT2 (step 36 /46). Similar to the functionality

explained above (steps 18-19), the test suite of each application is updated with the

set of input files used for the run and the corresponding set of output files (step 37

/47); and GAMRS is updated with the new test suites (step 38 /48). Next, the

algorithm tests whether OUT1 is identical to OUT2 (step 39 /49), and if they are, it

marks the two applications as identical (step 40 /50). Otherwise, the algorithm

decides that the two applications are not the same (step step 41 /51). Finally, if all

of the above tests fail (e.g. both two test suites are missing the set of input files), the

algorithm acknowledges that it cannot reach a decision based on the information

contained in the test suites of the applications identified in GAMRS by UID1 and

UID2 (step 54).

S O L U T I O N O V E R V I E W

160

BINARY MATCHING MODU L E

The binary matching technique is used to identify identical applications based on

the comparison of their binaries. Consequently, it can be applied only when both

application binaries are available in GAMRS. The proposed algorithm is presented

below.

APPLICATION BINARY MATCHMAKER (,)

1: IF the binary for the application identified by UID1 in GAMRS exists stored in the

repository

2: YES: retrieve the binary from GAMRS using UID1 Binary1

3: compute hash sum of type SHA-512 of Binary1 Hash1

4: HashType1 SHA-512

5: update GAMRS application identified by UID1 with Hash1 and HashType1

6: NO: RETURN “The binary matching method cannot be applied in this case.”

7: END_IF

8: IF the binary for the application identified by UID2 in GAMRS exists stored in the

repository

9: YES: retrieve the binary from GAMRS using UID2 Binary2

10: compute hash sum of type SHA-512 of Binary2 Hash2

11: HashType2 SHA-512

12: update GAMRS application identified by UID2 with Hash2 and

HashType2

13: NO: RETURN “The binary matching method cannot be applied in this case.”

14: END_IF

15: IF Hash1 EQUALS Hash2

16: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are

identical”

17: END_IF

18: RETURN decision: “the binaries of the applications identified in GAMRS by UID1 and

UID2 are not identical”

The notations used in the algorithm are as follows:

 UID1, UID2: The two input GAMRS application universal identifiers (UIDs),

which refer to the applications under comparison;

 Hash1, Hash2: Hash sums of binaries corresponding to the two

applications identified in GAMRS by UID1 and UID2;

 HashType1, HashType2: The type of hash sums Hash1, Hash2;

S O L U T I O N O V E R V I E W

161

 Binary1, Binary2: Binaries corresponding to the two applications identified

in GAMRS by UID1 and UID2;

The algorithm commences with the retrieval from GAMRS of the application binary

for the first application with the help of the universal identifiers UID1 (step 1). If the

application binary is missing, then the binary matching technique cannot be applied

in this case (step 6). If the application binary exists, it is retrieved from GAMRS

(step 2) and then the algorithm computes a hash sum of this binary (Note: in this

description the algorithm uses the SecureHashAlgorithm-512 to compute the hash

sum; however, there is no restriction on the type of hash algorithm that can be used

in implementation) – step 3. Next, the algorithm records the type of hash algorithm

(step 4) used to generate the hash sum. It then updates the GAMRS application

binary entity (step 5) with the hash type and the hash sum of the application binary.

The algorithm repeats the same set of actions for the second application, which is

identified in GAMRS by the universal identifier UID2 (steps 8-14). Next, it continues

by comparing the newly computed hash sums of the two application binaries (step

15). If these hash sums are the same, then the applications are identical (step 16).

If the hash sums are not the same (step 18), the algorithm cannot decide over the

similarity or the identicalness of the two applications (e.g. the application binary is

dependent on the operating system of the target machine; hence, even though two

binaries are different they might represent the same application but compiled to run

under two different operating systems).

THE G AMRS MATCHMAKER

All the matchmaking techniques proposed as GAMRS Matchmaking modules in

the architecture process information about applications stored in GAMRS and can

help identify similar applications. The following matchmaking algorithm is proposed

to be used in conjunction with the GAMRS Matchmaking service:

GRID APPLICATION MATCHMAKER (, , ,)

1: FOR each matchmaking method implemented

2: IF application-related objects necessary for are not retrieved yet

3. YES: retrieve objects from GAMRS repository using and

S O L U T I O N O V E R V I E W

162

4: IF the objects are missing

5: YES: mark as not-available in this case

6: CONTINUE from 1:

7: END_IF

8: END_IF

9: apply

10: record as the partial score

11: END_LOOP

12: RETURN the set of tuples

12a: calculate the final score

12b: RETURN the tuple

The notations used in the algorithm are as follows:

 , : The two input GAMRS application universal identifiers

(UIDs), which refer to the applications under comparison;

 : the matchmaking method k;

 : the weight of the matchmaking method k; in the case of an

aggregation model, it specifies how trustworthy the method k is, i.e. the

level of confidence of the system in the accuracy of the method k;

 = partial score: the score returned by the matchmaking method

 = final score: the score returned by the aggregation model after

combining the partial scores () scaled with their corresponding

weights ().

The Matchmaking service architecture is extendible; consequently, the algorithm

has to be generic enough to permit the usage of all suggested methods – including

hybrid methods that use aggregation models.

The algorithm starts by taking each matchmaking method specified in the

matchmaking request document and uses the universal identifiers of the two

applications , to retrieve the application-related objects necessary for

 to run (steps 2-8). If any of the objects required for a correct run of is

missing (step 5), the method is marked as not-available and will not be used in the

S O L U T I O N O V E R V I E W

163

matchmaking process. Next, the algorithm runs the method and records the partial

score (step 10). For each partial score , the algorithm returns the score and the

suggested decision regarding the similarity/dissimilarity of the two applications (step

12). If an aggregation model is put in place, the algorithm computes a final score

(FS) based on the partial scores and their respective weights . (step 12a)

Finally, the algorithm returns the score FS and the suggested decision with regard

to the similarity degree of the two applications (step 12b). The final result (FS) and

the partial results () can be recorded in a GAMRS RelationPair object, which

can then be used in further matchmaking cases.

3.4.3 Summary

The GAMRS Matchmaking service proposes a matchmaking algorithm which aims

to identify similar or identical Grid applications stored in repositories by processing

various application-related objects stored in these repositories. This research

identified the set of objects that could help in the process of application

matchmaking (e.g. application description document, free-text descriptions of

applications, application binaries, application binary hash sums, application test-

suites, application source code, application dependencies) and suggested several

matchmaking approaches based on this set.

Due to existing time constraints, only four matchmaking algorithms were proposed:

the syntactic matchmaking, the string-distance matchmaking, the application-

running matchmaking and the application binary matching algorithm. The rest of

the methods suggested in this research (i.e. semantic, LSI/LSA/SVD, source code

matching, dependency analysis, and hybrid matchmaking based on aggregation

models) remain to be implemented and analysed in future research. The question

about how the latter set of methods can help with the identification of similar Grid

applications stored in repositories remains open.

The syntactic algorithm proposed in this research can be used in two forms: purely

syntactic or hybrid. In its purely syntactic form, the algorithm processes application

S O L U T I O N O V E R V I E W

164

description documents only. The choice of language was the GAMRS‟s MRDL

which can help improve the algorithm‟s accuracy thanks to some of its new

additions, such as hash sums and advanced parameter description. In its hybrid

form, the algorithm can be extended to other scenarios and its performance can be

increased by using application test-suite objects found stored in the repository.

The string-distance algorithm is meant to be used in scenarios where the repository

holds no application-related object that can be used by other application matching

methods and the only available information is the free-text description of the

application. The algorithm can process such paragraphs of free-text and return the

degree of similarity between them. An important addition to the string-distance

algorithm is the entropy-generated stop-list, which can increase the performance of

the string-distance methods. Furthermore, the entropy-generated stop-list

technique is not restricted to be applied to Grid descriptions only, but it can be

applied to any scenario involving training-based string-distance metrics.

The application-running algorithm compares two applications by running two

application binaries with a common set of input files and compares the output set.

This method is meant to be used in conjunction with two GAMRS application-

related objects: binary and test suite, and shows excellent results when matching

deterministic applications.

The binary matching algorithm compares two applications by computing hash sums

of their binaries and testing whether they are identical or not. This method uses the

binary and can be applied successfully in scenarios involving the matching of

applications meant to run on Grid resources belonging to one Grid (e.g. all gLite

Grid resources run Scientific Linux CERN v4/5).

S O L U T I O N O V E R V I E W

165

3.5. Conclusions

The architecture of the Grid Application Meta-Repository System specifies a

collection of services that work together in a system meant to provide the functional

specifications for a new generation of Grid application repositories.

GAMRS provides an intuitive Web user interface, where users can easily publish

applications and application-related objects into the repository. Furthermore,

GAMRS provides an OGSI/WSRF Grid service interface that can be used by Grid

Services to interact with the system, and a HTTP/REST interface that can be used

by non-Grid services to publish applications directly onto GAMRS.

GAMRS connects different Grid application repositories and allows users and

services to discover the Grid applications stored in them. It provides web visibility

for all applications in the repositories connected to GAMRS, even if the majority of

connected repositories did not provide it initially. Furthermore, Grid applications

stored or referenced by GAMRS can be discovered by any Grid service compliant

with the OGSI/WSRF standards stack and the HTTP/REST interface mentioned

above allows search engines to discover such applications. Moreover, GAMRS

employs an OAI provider, which other services can use for application metadata

discovery (through the OAI-PMH protocol). The OAI provider also allows the

exchange and reuse of application-related objects between repositories by using

the OAI-ORE protocol. Both the object metadata and the actual object can be

imported as well as exported automatically using XML-like documents compliant

with OAI-ORE specifications.

GAMRS allows applications to be deployed embedded in virtual machines;

therefore, the application runs in its native environment and can be used in

application-on-demand, cluster-on-demand and cloud architectures. GAMRS can

also embed commercial applications that require license acceptance and paid

services. It offers a framework for deploying and running commercial applications

provided a fee-based model is put in place to that end. Finally, GAMRS‟

S O L U T I O N O V E R V I E W

166

architecture and model allow Grid administrators to find and use all the required

objects for Grid application deployment in one place - the GAMRS repository.

In addition, the proposed GAMRS repository model extends traditional models

allowing inter-operability between Grid application repositories and other Grid

services. The GAMRS repository model proposes a more detailed description of a

Grid application and is also able to function as a mediator between older

application repository models. Furthermore, the GAMRS model is able to describe

new types of objects (such as the application provider object, user-related objects

and provider-related objects) and also suggests a new set of application-related

objects that should be modelled by any Grid application repository model. These

new categories of application-related objects allow for Grid application repositories

to be used in conjunction with newly emerging technologies such as virtualization,

automatic virtual machine creation, cloud computing and automatic service

deployments. Furthermore, thanks to its novel model, GAMRS can be used in

different scenarios, many of them not necessarily involving Grid infrastructures. For

example, by exposing applications as virtual machines, Grid administrators and

users can easily deploy these applications on virtualized infrastructures without

being required to know or to perform any of the following procedures: Operating

System installation, application installation, software dependency installation or

even application configuration. Finally, these GAMRS application-related objects

can also be used to help with the identification of similar or identical applications

stored in the repositories connected to GAMRS.

This research identified the structured life-cycle for a Grid application which resides

in a Grid repository, taking in consideration the different states in which the

application can be found (i.e. template, instance, deployment and running) and how

these states can be accommodated in an application description language schema.

The GAMRS application description language proposed here – MRDL – extends

the list of capabilities of traditional languages in the following areas: multi-Grid/multi

certificate secure data access, data protection, template, and application type of

running. Moreover, MRDL is able to refer application-related objects in its schema,

which makes it able to reflect the ability of a Grid application to be used in different

S O L U T I O N O V E R V I E W

167

deployment and running scenarios – such as remote compilation of the source

code; staging application binaries and software dependencies; as well as

deployment and running of virtual machine-embedded application in virtualized

infrastructures. Furthermore, the new elements of MRDL also improve the accuracy

of application matchmaking methods when trying to identify similar or identical

applications stored in the repositories connected to GAMRS.

Finally, GAMRS also contains a matchmaking service able to process information

about applications stored in repositories and identify similar or identical

applications. The Matchmaking service architecture proposed in this research

contains modules able to process not only application description documents, but

also other application-related objects that can be found stored in Grid application

repositories. The architecture of this service is extendible to other matching

modules; the algorithm suggested in this research is generic and can

accommodate multiple matching methods. The limited timeframe of this PhD

restricted the implementation and testing of all matchmaking solutions proposed for

Grid application matchmaking, so this research has focused on only four of them:

syntactic, string-distance, application running and application binary matching.

Furthermore, a new method of generating stop-lists based on term entropy has

been proposed in conjunction with the string-distance algorithm. The analysis of

test results shows that these methods can be applied successfully to Grid

application matchmaking and lists both successful scenarios as well as scenarios

where these methods have limited applicability or poor performance.

I M P L E M E N T A T I O N A N D T E S T S

168

4. Implementation and Tests

his chapter describes the implementation of the Grid Application Meta-

Repository System, as well as the suite of tests designed to demonstrate

the novel capabilities of GAMRS and to show how this solution could be

used to successfully meet some of the current challenges related to Grid

application repositories.

The chapter starts by discussing the implementation constraints resulted from the

time limitations inherent to a PhD research. Next, it presents the design of the

testbed and the implementation of the GAMRS experimental solution. It continues

with the specification of the suite of tests used to prove GAMRS‟ capabilities and

the metrics used for performance measurements as part of five different scenarios

designed to test the functionality of GAMRS against the requirements set out at the

beginning of this research. The chapter ends by presenting the conclusions drawn

from the analysis of results obtained from the testbed.

The chapter explains how the proposed GAMRS architecture was implemented in

a pilot-solution that contains all three core GAMRS services (Publisher, Meta-

Repository and Matchmaking) along with the Backend and the access interfaces.

Furthermore, it describes how the Meta-Repository service was implemented using

Chapter

4

T

I M P L E M E N T A T I O N A N D T E S T S

169

the OGSI/WSRF Grid service standard (R2.2) and how it was used to connect

three different Grid application repositories (NGS AR, GEMLCA and

myExperiment) to GAMRS. The pilot-solution provides access to these three

repositories, as well as enables the retrieval of applications stored by them (R2.3).

The chapter also describes a repository technology suitable to be used as the

Publisher service for GAMRS. The technology supported the addition of OAI

providers (both PMH and ORE) and provides a HTTP/REST API, which helps

improve application visibility on the web (R2.1). At the same time, the repository

stores objects in XML format, which embeds datastreams and hence allows for the

exchange of objects between similar repositories (R3). Furthermore, the repository

technology provides a friendly user interface which can be used to publish, search,

modify and delete Grid applications (R1) and other GAMRS.

The chapter moves on to explain how the GAMRS repository model and the

proposed application description language (MRDL) were used to store a Grid

application in GAMRS as a virtual machine-embedded application. Staging this

scenario helped demonstrate the versatility requirement of GAMRS (R4) by

deploying and running the virtual machine-embedded application on a virtualized

infrastructure.

Furthermore, the repository model and MRDL were used in conjunction with the

Matchmaking service to help identify similar Grid applications in connected

repositories (R2.4). This chapter includes the analysis of results obtained by using

the matchmaking algorithms proposed in Chapter 3, Section 3.4.2, with a focus on

string-distance module and the new entropy-generated stop-list, and makes

suggestions regarding the methods which proved the most suitable to Grid

application matchmaking.

I M P L E M E N T A T I O N A N D T E S T S

170

4.1. Constraints

Due to the time constraints inherent to a PhD research several restrictions had to

be put in place in order to narrow down the implementation of the solution to a

manageable timeframe. However, as discussed further in this chapter, these

limitations do not hamper the results and contributions brought by this to scientific

knowledge.

First, apart from the six Grid application repositories described in the critical

analysis section (BDII, CHARON/iSoftrepo, GEMLCA, NGS AR, GRIMOIRES and

myExperiment), which are also the most widely used in Grid, other application

repository solutions exist (e.g. EGEE Application Repository, gUSE Repository),

which have not been discussed or tested in the course of this research. However,

their functionality is usually similar to the functionality of at least one of the

repositories analysed here.

Second, with regard to the GAMRS Matchmaking service, one of the limitations of

the pilot solution implemented is that it matches only applications described as

standalone-job applications. However, the matchmaking methods employed here

are not necessarily restricted to this type of Grid applications and could therefore be

applied to workflows or Web Service-published applications in the future.

Third, although many matchmaking methods were mentioned when designing the

Matchmaking service, the GAMRS pilot solution did not test all of these due to the

time constraints mentioned above. However, the Matchmaking service does allow

for the expansion of its capabilities with any other new method in the future. For

now, this research was focused on testing syntactical, string-distance, application-

running and binary matching techniques. Furthermore, it proposed and tested a

new method of improving string-distance techniques by applying stop-lists based

on the entropy of the terms contained in the corpus.

Fourth, the number of string-distance similarity techniques (i.e. Damerau-

Levenshtein, Jaro-Winkler, Case, Fixed Weight, TFIDF/Cosine, Jaccard, Dice,

I M P L E M E N T A T I O N A N D T E S T S

171

Jensen-Shannon Divergence (JSD), Dirichlet JSD, Jelinek-Mercer JSD and Jaro-

Winkler/TFIDF) used in the GAMRS string-distance module is by no means

exhaustive. The methods used here were chosen after investigating the most

commonly-used techniques described in the literature that can process paragraphs

of free-text and, consequently, could be applied in the case of matching Grid

application descriptions.

Another limitation regarding the matchmaking system refers to the use of English

language only in the descriptions of the applications.

Finally, although at conceptual level both the GAMRS repository model and the

GAMRS application description language are able to meet all the challenges

described in Chapter 3, Sections 3.2 and 3.3, the limited timeframe of this research

did not allow for the full description and implementation of test scenarios for each of

the aspects considered in these challenges. Such scenarios and their functionality

will instead be discussed in Chapter 5 (Contributions to Knowledge and

Extensions) as suggested extensions for the future.

4.2. Experimental Architecture

The following GAMRS implementation Architecture was designed in order to test

the functionality of GAMRS (see Figure 4-1):

Figure 4-1: GAMRS implementation architecture

I M P L E M E N T A T I O N A N D T E S T S

172

The architecture of the pilot implementation follows closely the theoretical GAMRS

architecture, with one addition which does not alter the conceptual design and

functionality of GAMRS. This modification is related to the inability of current

repository technologies to store and handle efficiently files larger than 1GB in size.

As the virtual machines can often exceed 1GB in size, a new storage service

(Virtual Machine Storage) was added to the GAMRS Backend with the purpose of

storing and managing large-size files.

The Publisher service was built on the most acclaimed open repository technology

currently in production, namely Fedora Commons [120]. Fedora was chosen as a

suitable repository technology candidate for the GAMRS Publisher service based

on a critical analysis performed on seven widely used repository frameworks:

Fedora Commons, ePrints [121], Oracle 10g Warehouse Builder [143, 144], IBM

WebSphere Service Registry and Repository module [145, 146], ACS [147],

WebGRelC [148], and Java COG kit [149]. These repository frameworks were

compared with regard to eight properties necessary to meet the GAMRS

requirements: their availability for download and their commercial status (free/paid);

their ability to comply with GSI or HTTPS, which would make them usable on Grid

security infrastructure; their ability to offer the basic CRUD and Search operations;

their ability to accustom a user-defined repository model (i.e. the GAMRS

repository model); the availability of a user-friendly access interface; their ability to

provide a HTTP/REST interface; and their ability to support OAI-PMH/OAI-ORE

protocols. The result of this analysis (which can be seen in Appendix D) presented

Fedora as the most suitable candidate for the GAMRS Publisher service. Fedora

was also augmented with two additional modules, Islandora [150] and Drupal [150],

which provide a very user-friendly web interface (GUI) required by GAMRS to

satisfy the R1 challenge. These two software packages provide the web builder

module and the web server (see Section 3.1.2, Figure 3-2) necessary to build and

expose the Publisher GUI interface to human users.

Fedora, Islandora and Drupal were installed, configured and adapted to GAMRS

requirements in terms of security and repository access. The Fedora repository

technology also provided the necessary database structure, which functions as the

I M P L E M E N T A T I O N A N D T E S T S

173

GAMRS Backend service, as well as the management module able to

communicate with the database. Fedora technology supports the addition of an

indexing service called gSearch [151]. Following the installation notes found at

[152], gSearch was installed and configured to be used by the Fedora repository

instance used for this research. The HTTP/REST interface was provided by default

by the Fedora technology. Once the GAMRS repository model was mapped onto

the repository, objects could be stored, retrieved, modified and deleted using the

HTTP/REST interface.

Fedora was also chosen for the implementation of the GAMRS Publisher service

because of its capability to support OAI-PMH and OAI-ORE protocols. The OAI-

PMH interface was implemented with the help of an OAI-PMH provider compatible

with the Fedora technology [153]. The provider was configured following the

installation notes found at [154] and the OAI-PMH interface was tested using OAI-

PMH queries directed to the GAMRS Provider service. The following snapshot

shows the answer returned by the GAMRS Provider service to the OAI-PMH query

ListRecords. (Note: The GAMRS solution ran on a private network under the IP

192.168.1.68; since the service had no DNS resolve, the OAI provider appended

the default “oai:example.org” to its answers. Provided the GAMRS runs under a

public IP with a full domain name such as gamrs.cpc.wmin.ac.uk, the provider

answers would look like “oai:gamrs.cpc.wmin.ac.uk”). The list shows a partial view

of the applications stored in GAMRS, which are identified as

gamrs:applicationXXX.

http://192.168.1.68:8080/fedora/oai?verb=ListRecords&metadataPrefix=oai_dc

oai:example.org:gamrs:application563 2009-10-27T03:17:52Z EMBOSS

oai:example.org:gamrs:application564 2009-10-27T03:17:52Z EXONERATE

oai:example.org:gamrs:application565 2009-10-27T03:17:52Z FASTA

oai:example.org:gamrs:application567 2009-10-27T03:17:52Z GAMESS-UK

oai:example.org:gamrs:application568 2009-10-27T03:17:52Z GAMESS(US)

oai:example.org:gamrs:application569 2009-10-27T03:17:52Z GATE

oai:example.org:gamrs:application578 2009-10-27T03:17:52Z mpiBLAST

oai:example.org:gamrs:application579 2009-10-27T03:17:52Z NAMD

http://192.168.1.68:8080/fedora/oai?verb=ListRecords&metadataPrefix=oai_dc

I M P L E M E N T A T I O N A N D T E S T S

174

oai:example.org:gamrs:application583 2009-10-27T03:17:52Z Octave

oai:example.org:gamrs:application584 2009-10-27T03:17:52Z PC-GAMESS

oai:example.org:gamrs:application586 2009-10-27T03:17:52Z R

oai:example.org:gamrs:application587 2009-10-27T03:17:52Z Sabre(parallel)

oai:example.org:gamrs:application588 2009-10-27T03:17:52Z Sabre(serial)

.....

Appendix E shows the answer of an OAI-PMH GetRecord query over the Dublin

core [155] metadata associated to one of the applications stored in the GAMRS

repository (i.e. AMBER application, identifier gamrs:application549).

The OAI-ORE interface was implemented with the help of an OAI-ORE provider

compatible with the Fedora technology [156]. The provider was configured

following the installation notes found at [157]. This provider implementation follows

the OAI-ORE implementation specifications of ResourceMaps as Atom feeds [158].

After successful configuration, the interface was tested using the Fedora

administrative interface. Appendix F shows an example of a GAMRS application

object serialized following OAI-ORE specification. Furthermore, the document

shows the application description document written in MRDL, which was

incorporated in the OAI-ORE representation, along with audit data and Dublin core

metadata. (Note: The full document contains other information as well – i.e.

application description written in original JSDL language, information about the

collection of application-related objects, and other GAMRS model additions, but it

has been reduced to show only the MRDL, Dublin core and audit metadata for the

sake of compactness).

The OGSI/WSRF interface was implemented in Java programming language and

uses the REST API provided by Fedora. OGSI/WSRF commands were

implemented by embedding a HTTP client and using the HTTP/REST commands

to create, retrieve, modify and delete objects stored in GAMRS.

The GAMRS Meta-Repository service and GAMRS Matchmaking service were

developed from scratch, as described in the following sections of this chapter.

I M P L E M E N T A T I O N A N D T E S T S

175

4.3. Test Scenarios

Five scenarios were designed to test the functionality of the GRID Application

Meta-Repository System. These scenarios were chosen in relation to the research

objectives set out in this thesis. By staging these scenarios it can be assessed

whether and how the GAMRS solution meets objectives O1-O4.

The five scenarios were created to prove that GAMRS fully meets objective O1, by

showing its ability to:

 connect to different Grid application repository technologies and solutions

and retrieve the applications stored in them;

 be accessed by OGSI/WSRF Grid Services;

 expose the applications to the web via the HTTP/REST interface;

 support Search operations on metadata associated to objects stored in the

repository;

 be accessed on WWW by any service equipped with a HTTP client;

 present the repository objects in a format that permits their exchange and

reuse on other repositories built on technologies similar to that of GAMRS.

The five scenarios also aimed to prove that GAMRS fully meets objective O2, by

showing GAMRS‟s ability to:

 function as a Grid application repository in its own right and allow users to

publish objects inside GAMRS;

 store application-related objects following the categorization designed in the

GAMRS repository model;

 be used on distributed infrastructures other than Grid.

Moreover, the five scenarios were created to prove that GAMRS also fully meets

objective O3, by showing GAMRS‟s ability to:

I M P L E M E N T A T I O N A N D T E S T S

176

 convert application description documents in MRDL for a uniform

presentation of applications;

 facilitate the application matchmaking process;

 be used in new scenarios (i.e. deployment, running, testing) previously

unavailable in traditional solutions (such as source code staging and

compilation, virtual-machine running and testing a correct application

deployment and functioning with the help of test suites).

Finally, the five scenarios were aimed to prove that GAMRS fully meets objective

O4, by showing that:

 the matchmaking modules proposed in this research are suitable for the

identification of similar applications stored in Grid repositories;

 the newly-proposed entropy-generated stop-list can improve the accuracy

of string-distance methods when applied to matching applications stored in

Grid repositories.

Successful completion of the following five scenarios therefore proves that the

GAMRS solution satisfies the objectives set out in this research:

SCENARIO 1: CONNECT I NG GRID APPLICAT IO N

REPOSIT ORIES T O G AMR S

Connect the following repositories to GAMRS: the NGS application repository; the

GEMLCA application repository provided by the University of Westminster; and the

myExperiment application repository (R2.3). Next, use the OGSI/WSRF interface

and retrieve the application descriptions stored by the three repositories mentioned

above (R2.2). Save the application description document (written in the formal

language employed by the respective repository) in GAMRS. Finally, convert their

application description document into a new document written in MRDL (to provide

uniform description formalism suitable for further processing) and save this

document in the GAMRS.

I M P L E M E N T A T I O N A N D T E S T S

177

The purpose of this scenario is to test GAMRS‟ ability to connect different Grid

application repositories exhibiting different communication protocols, different

access protocols and different security protocols and then to retrieve information

about the applications stored by them. This scenario also tests GAMRS‟

OGSI/WSRF interface – which allows any other Grid service built according to

OGSI/WSRF specifications to access and use GAMRS through this interface.

SCENARIO 2: SEARCHIN G IN G AMRS

Connect to GAMRS using the HTTP/REST interface (R2.1) and test the search

function of GAMRS by introducing different keywords in the search field and

directing the search to different metadata fields. The most widely used method for

this is to search the Name field of applications; however, the search can also be

directed to fields like Description or Author.

The purpose of this scenario is to tests the HTTP/REST interface (can be tested

from any web browser), which provides web visibility to applications stored in

GAMRS and connected repositories. Furthermore, this scenario can also test the

Search capability of GAMRS.

SCENARIO 3: ST ORING APPL ICAT ION-REL AT ED O BJECT S

IN G AMRS

Use the GAMRS Publisher service to insert application-related objects into a Grid

application stored in GAMRS. Next, test whether these objects can be accessed by

users with the help of the graphical user interface (GUI) (R.1). Finally, check

whether the formal FOXML documents associated with these objects contain/refer

datastreams – this should make such objects easily exchangeable and reusable in

other Fedora-based repositories (R.3).

The purpose of this scenario is to test the ability of GAMRS to store application

related-objects following the repository model. At the same time, this scenario tests

the publishing requirement of GAMRS as well as its ability to exchange objects.

I M P L E M E N T A T I O N A N D T E S T S

178

SCENARIO 4: USE G AMR S IN D IST RIBUT ED

INF RAST RUCT URES OT HER T HAN GRID

Use a virtual-machine embedded application asset to deploy and use the Grid

application on virtualized infrastructures.

The purpose of this scenario is to test GAMRS‟ ability to be used on infrastructures

other than Grid (R.4). This scenario required the deployment and configuration of a

virtualized infrastructure at the Centre for Parallel Computing laboratory (University

of Westminster) – hypervisors, servers and resource pools; as well as the creation

of a new web service needed to deal with actions associated with the deployment

and running of a new virtual machine on such infrastructure (e.g. virtual machine

transfer, registration, cloning and start-up/shut-down).

SCENARIO 5: IDENT IFY S IMIL AR O R IDENT ICAL GRID

APPLICAT IO NS USING G AMRS

Using the GAMRS Matchmaking service, test the syntactic algorithm on the

applications retrieved from the three repositories connected to GAMRS: NGS,

GEMLCA and myExperiment.

Create a training corpus of free-text application descriptions from the following

three repositories: NGS, CHARON/iSoftrepo and EGEE. GEMLCA could not be

used for this scenario as no free-text description was found in its application

description documents for any of the applications exposed by this repository. The

myExperiment repository stores Grid applications of the type workflow – as

opposed to NGS and GEMLCA, which store Grid applications of type standalone –

and no common set of applications was identified either with NGS or with

GEMLCA. However, CHARON/iSoftrepo and EGEE both describe standalone Grid

applications and a common set of applications was identified between the NGS

repository and CHARON/iSoftrepo. Therefore, in order to make the testing of the

string-distance method relevant, GEMLCA and myExperiment were replaced in this

scenario with the free-text descriptions retrieved from CHARON/iSoftrepo and

EGEE. The time constraints prevented the implementation of Meta-Repository

I M P L E M E N T A T I O N A N D T E S T S

179

adapters for EGEE and CHARON/iSoftrepo. Consequently, the application

descriptions were retrieved from these two repositories with the help of shell-scripts

implemented specifically for this purpose.

Next, use a subset of application descriptions retrieved from NGS and

CHARON/iSofrepo repositories to build a test corpus. Test the string-distance

module by applying the methods on the test corpus and analyze the results to

decide which string-distance method is most suitable for finding similar or identical

applications stored in Grid repositories. Further, apply the entropy-generated stop-

list method with different entropy thresholds and identify the cases when this

method optimizes the performance of token-based string-distance techniques.

Finally, construct three different training corpora from the application descriptions

retrieved from the repositories; induce training of string-distance methods

separately on each of these corpora; and analyze how this affects their accuracy in

finding similar Grid applications.

Create test suites for the applications found in NGS and GEMLCA and analyze the

performance of the application-running technique.

The purpose of this scenario is to test the ability of GAMRS to find similar

applications that may reside in connected repositories (R2.4) using syntactic, string-

distance and application-running methods. (Note: The binary matching technique is

explained theoretically.) Furthermore, this scenario tests a new method of

generating stop-lists based on the entropy of terms and looks at how this method

can optimize the accuracy of string-distance techniques.

* * *

I M P L E M E N T A T I O N A N D T E S T S

180

The following table shows the relation between each scenario, the Grid application

repository challenge addressed, the research objective it relates to and the final

goal of the test:

Table 4-1: Scenarios, objectives and goals

 CHALLENGE OBJECTIVE GOALS

S
C

E
N

A
R

IO
 1

R2.2: Be interoperable with
any OGSI/WSRF Grid
services
R2.3: Connect multiple Grid
application repositories

O1: Architecture

O3: MRDL

- To show GAMRS‟ ability to connect to

different Grid application repository

technologies and solutions (O1); retrieve

the applications stored in them; and

convert their description documents in

MRDL for a uniform presentation of

applications and to facilitate the

application matchmaking process (O3).

- To demonstrate GAMRS‟ ability to be

accessed by OGSI/WSRF Grid Services

(O1).

S
C

E
N

A
R

IO
 2

R2.1: Expose Grid
applications to the Web

O1: Architecture

- To show GAMRS‟ ability to support

Search operations (O1) on metadata

associated to objects stored in the

repository.

- To demonstrate GAMRS‟ ability to

expose the applications to web via the

HTTP/REST interface (O1).

- To show GAMRS‟ ability to be

accessed on WWW by any service

equipped with a HTTP client (O1).

S
C

E
N

A
R

IO
 3

R1: Application publishing
R.3: Object exchangeability
& reusability

O1: Architecture

O2: Repository

model

- To show GAMRS‟ ability to function as

a Grid application repository in its own

right and allow users to publish objects

inside GAMRS (O2).

- To demonstrate the storage of

application-related objects following the

categorization designed in the GAMRS

repository model (O2).

-To show GAMRS‟ ability to present the

repository objects in a format that permits

their exchange and reuse on other

repositories which are built on

technologies similar to that of GAMRS

(O1).

I M P L E M E N T A T I O N A N D T E S T S

181

S
C

E
N

A
R

IO
 4

R4: Versatility

O2: Repository

model

- To demonstrate that GAMRS can be

used on distributed infrastructures other

than Grid (O2).

- To show that the storage of application-

related objects following the

categorization proposed in the GAMRS

repository model (O2) helps expand the

area of usage of GAMRS with new

scenarios previously unavailable in

traditional solutions.

S
C

E
N

A
R

IO
 5

R2.4: Find similar
applications

O3: MRDL

O4: Matchmaking

- To show that matchmaking modules

proposed in this research (O4) are

suitable for the identification of similar

applications stored in Grid repositories

(O3).

- To show that the newly-proposed

entropy-generated stop-list can improve

the accuracy of string-distance methods

when applied to matching applications

stored in Grid repositories (O4).

I M P L E M E N T A T I O N A N D T E S T S

182

4.4. Testbed Results

SCENARIO 1: CONNECT I NG GRID APPLICAT IO N

REPOSIT ORIES T O G AMR S

 CHALLENGE OBJECTIVE GOALS

S
C

E
N

A
R

IO
 1

R2.2: Be interoperable with
any OGSI/WSRF Grid
services
R2.3: Connect multiple Grid
application repositories

O1:Architecture

O3: MRDL

- To show GAMRS‟ ability to connect to

different Grid application repository

technologies and solutions (O1); retrieve

the applications stored in them; and

convert their description documents in

MRDL for a uniform presentation of

applications and to facilitate the

application matchmaking process (O3).

- To demonstrate GAMRS‟ ability to be

accessed by OGSI/WSRF Grid Services

(O1).

The implementation of this scenario was done in Java programming language,

under the Eclipse Integrated Development Environment (IDE). The deployment of

the Meta-Repository service was done in a globus-tomcat container, which was

configured to accept GSI certificates for authentication. The implementation of the

Meta-Repository service was done following the latest OGSI/WSRF specifications,

version 1.2 [42], which permits automatic interoperability with any other Grid service

implemented according to this standard.

In this scenario the Meta-Repository Service connected the following three

repositories to GAMRS: GEMLCA, NGS AR and myExperiment. Each of these

repositories exposes an access interface different from the others: GEMLCA

exposes an OGSI/WSRF Grid service interface; NGS is built on the JSR-168

portlet standard and had to be modified with the addition of a web service interface

in order to permit services an easy access for its contents; and myExperiment

exposes a HTTP/REST interface. Furthermore, the security systems of GEMLCA

and NGS AR are based on GSI and HTTPS, while myExperiment is public,

therefore no secure access is required to view and retrieve applications stored in it.

I M P L E M E N T A T I O N A N D T E S T S

183

The Meta-Repository service implemented three adapters able to access the three

repositories mentioned above. With the help of these adapters GAMRS was able to

retrieve the application description documents stored by GEMLCA, NGS AR and

myExperiment. GEMLCA was accessed with the help of an OGSI/WSRF Grid

service client provided by the GEMLCA software package. NGS AR was accessed

with the help of a Web service client written specifically for this research.

myExperiment was accessed with the help of a HTTP client provided by the

org.apache.commons.httpclient jar, which comes with the Apache server

distribution [159]. For the secure access of GEMLCA and NGS AR, we used a GSI-

compliant X509 certificate, which was issued by the NGS Certification Authority UK

[160].

To provide uniformity in the way Grid applications are presented to GAMRS users,

the information about all applications was formalized following the GAMRS

repository model and the MRDL application description language. To accomplish

that, the application description document of each application stored in the three

repositories connected to GAMRS was retrieved and processed. (Note: The

average size of a Grid application description document is around 4500B, therefore

no strain was put on the GAMRS storage system during this process.)

In order to extract the necessary information needed for GAMRS storage and

translation into MRDL language, two language converters were implemented to

translate from GEMLCA‟s LCID to MRLD and from myExperiment‟s Scufl to MRDL.

NGS AR‟s JSDL needed no conversion to MRDL, because MRDL is itself an

extension to the JSDL schema and accepts all JSDL objects and relations. The two

converters, the GAMRS repository model, and MRDL were developed in Java

under the Eclipse Modelling Framework (EMF) – a tool that allows users to

combine graphical modelling with Java development. The EMF module is provided

as a plug-in for the Eclipse IDE. Documentation and download locations for EMF

can be found in [161].

Following the processing of the application description document, all the

information about the application (including the two description documents – one in

I M P L E M E N T A T I O N A N D T E S T S

184

native language, the other in MRDL) was compiled in a FOXML document, which is

the XML standard understood by the Fedora repository technology. Each object

stored in a Fedora repository needs to be described in FOXML following a

repository model. In this case, the FOXML document was created to describe

objects according to the GAMRS repository model proposed by this research. An

example of FOXML document describing the application BSoft retrieved from NGS

repository is annexed in Appendix G. (Note: The BSoft FOXML document contains

the Dublin core metadata; the RDF statements about the repository object (i.e.

needed by Fedora internal management system); a thumbnail image (reference to

a datastream of type IMAGE/JPEG stored in the repository); four application assets

(one reference to a datastream of type pdf stored in the repository – installation

notes; one reference to a datastream of type TAR_GZ-archive stored in the

repository – source code; one reference to a datastream of type ZIP-archive stored

in the repository – test suite; and one reference to a virtual machine stored by the

Virtual Machine Storage Service – virtual machine); the GAMRS model metadata

as a datastream of type XML, which is embedded in the FOXML document; the

application description written in native application language (i.e. in this case JSDL)

as a datastream of type XML, which is embedded in the FOXML document; and

the application description written in MRDL as a datastream of type XML, which is

embedded in the FOXML document.)

Due to time constraints, the implementation of the Meta-Repository service was not

extended with automatic insertion of the FOXML documents in GAMRS. The

FOXML documents were inserted in the repository manually, with the help of a

shell script that uses Fedora administrative command lines. After adding the

documents to the repository, the applications became visible in GAMRS.

Apart from Application objects, all the other GAMRS objects needed for this

scenario (such as users, providers, policies) were created using the Fedora

Administrative Web Interface.

I M P L E M E N T A T I O N A N D T E S T S

185

Figure 4-2 represents a snapshot of the GAMRS graphical user interface which

shows twelve applications out of the 505 retrieved from the three repositories

(GEMLCA, NGS AR and myExperiment) connected to GAMRS:

Figure 4-2: GAMRS applications retrieved from NGS, GEMLCA and myExperiment

Successful completion of SCENARIO 1 permitted GAMRS to retrieve and store

information about the applications stored in three Grid repositories: GEMLCA, NGS

AR and myExperiment.

SCENARIO 2: SEARCHIN G IN G AMRS

 CHALLENGE OBJECTIVE GOALS

S
C

E
N

A
R

IO
 2

R2.1: Expose Grid
applications to the Web

O1: Architecture

- To show GAMRS‟ ability to support

Search operations (O1) on metadata

associated to objects stored in the

repository.

- To demonstrate GAMRS‟ ability to

expose the applications to web via the

HTTP/REST interface (O1).

- To show GAMRS‟ ability to be

accessed on WWW by any service

equipped with a HTTP client (O1).

I M P L E M E N T A T I O N A N D T E S T S

186

The Fedora repository framework permitted the addition of an indexing service,

which was configured to index the terms found in the metadata associated to

GAMRS objects. The user interface includes graphical search fields that can be

used to search for keywords contained in the metadata of a GAMRS object.

Furthermore, the interface permits search combinations that can be directed

concomitantly to up to three metadata fields (e.g. title, author, description) – see

Figure 4-3.

Figure 4-3: Example search for applications created by "Alex" that contain the word "amber" in title
and the word "amber" in description

SCENARIO 2 was completed successfully and users can search for Grid

applications using the graphical web interface provided by the Islandora/Drupal

module, which is part of the GAMRS Publisher. Services can also use the

HTTP/REST interface and perform searches on the GAMRS. The following snippet

is an example of such a query which can be issued by any service equipped with a

HTTP client:

I M P L E M E N T A T I O N A N D T E S T S

187

The results of this query can be seen in Figure 4-4:

Figure 4-4: Example of a GAMRS HTTP/REST interface test

Query: ”Search for all applications that contain the word amber in their

descriptions and were created by any user whose name is Alex.”

HTTP:

http://X.X.X.X:8080/fedoragsearch/rest?operation=gfindObjects&query=dc.desc

ription"amber"+AND+dc.creator:"Alex"

I M P L E M E N T A T I O N A N D T E S T S

188

SCENARIO 3: ST ORING APPL ICAT ION-REL AT ED O BJECT S

IN G AMRS
 CHALLENGE OBJECTIVE GOALS

S
C

E
N

A
R

IO
 3

R1: Application publishing
R.3: Object exchangeability
& reusability

O1: Architecture

O2: Repository

model

- To show GAMRS‟ ability to function as

a Grid application repository in its own

right and allow users to publish objects

inside GAMRS (O2).

- To demonstrate the storage of

application-related objects following the

categorization designed in the GAMRS

repository model (O2).

-To show GAMRS‟ ability to present the

repository objects in a format that permits

their exchange and reuse on other

repositories which are built on

technologies similar to that of GAMRS

(O1).

In this scenario the repository administrative interface exposed by the GAMRS

Publisher service was used to insert the following application assets to the BSoft

Grid application [162]: source code, installation notes, test suite, and an OVF-

compliant virtual-machine, which contains the BSoft application deployed inside.

Bsoft is a collection of software for image and molecular processing in structural

biology, which was adapted and is used on the NGS Grid infrastructure.

Figure 4-5 represents a screenshot of the GAMRS web interface showing the BSoft

application and the metadata associated to it.

The full name of this application is PFT3DR-Bsoft and a short description of it can

be seen in the Description field. The field Owner points to the GAMRS user who

added the application to the system. Further on, the Template attribute is true,

which means that this application is to be used as template for future instances.

The value of ADL Type is JSDL, which refers to the application description

language in which the application was originally published. The Reference provides

users and services with the URI where the application information can be retrieved

from GAMRS. The Provider field points to the GAMRS Provider object, which

describes the repository where the application was originally retrieved from.

I M P L E M E N T A T I O N A N D T E S T S

189

Figure 4-5: BSoft application stored in GAMRS

The External ref field contains the URI to the location of the application in its

repository of origin (not in GAMRS). In this example, the URI (i.e.

http://portal.ngs.ac.uk/JobProfiles.jsf) shows that this application was retrieved from

NGS AR. The Assets field contains the list of references to the application objects

related to this application. The Relations field contains the set of similar

applications: the Peer attribute stores the reference to a similar application and the

Score attribute registers the name of the matching method and the degree of

similarity between the two applications.

Once GAMRS connects to a repository, the description documents of all

applications contained in that repository are translated into MRDL and stored in

GAMRS – both in their native language (Application description – native ADL) and

in MRDL (Application description – GAMRS ADL). The Detailed list of content

section contains the documents that refer to this repository object and are specific

to the Fedora repository technology. Finally, the Application Assets icon shown at

I M P L E M E N T A T I O N A N D T E S T S

190

the bottom of the figure represents the collection of application related objects

linked to this application.

Correct storage and exposure of these application-related objects was tested via

the GAMRS graphical web interface and references to the four objects can also be

seen in Figure 4-5 under the headline Assets.

For this scenario, the virtual machine-embedded BSoft application was created with

the help of the GAMRS pilot solution. First, the operating system was installed on

the virtual machine. Next, from within the virtual machine, the Bsoft source code

(see Figure 4-6) was downloaded via the HTTP/REST interface from GAMRS.

Using the same interface, the BSoft installation notes were downloaded on the

virtual machine as well. Following the instructions detailed in the installation notes,

the source code was compiled and Bsoft was installed inside the virtual machine.

Figure 4-6: BSoft source code – content download

Further, the BSoft installation was tested with the help of the BSoft test suite, which

had been downloaded from the GAMRS repository as well. The test suite contains

three types of files: test input file(s); the running script – which represents the

correct command line(s) needed to run the application correctly; and test output

I M P L E M E N T A T I O N A N D T E S T S

191

files – which represent the correct output when the application is run with the test

input file(s) found in the test suite. Tests have shown a correct installation of BSoft

within the virtual machine.

Finally, the virtual machine was stored on the Virtual Machine Storage server and a

reference to it was added in GAMRS.

SCENARIO 4: USE G AMR S IN D IST RIBUT ED

INF RAST RUCT URES OT HER T HAN GRID

 CHALLENGE OBJECTIVE GOALS

S
C

E
N

A
R

IO
 4

R4: Versatility

O2: Repository

model

- To demonstrate that GAMRS can be

used on distributed infrastructures other

than Grid (O2).

- To show that the storage of application-

related objects following the

categorization proposed in the GAMRS

repository model (O2) helps expand the

area of usage of GAMRS with new

scenarios previously unavailable in

traditional solutions.

SCENARIO 4 tests how virtual machine-embedded Grid applications stored in

GAMRS can be run on virtualized infrastructures (and implicitly on cloud

infrastructures).

Figure 4-7 shows how GAMRS can be used in conjunction with virtualized/cloud

infrastructures. The user can search GAMRS for a certain application (action 1)

which s/he wants to deploy and run on a virtualized infrastructure. If the collection of

application-related objects contains the virtual machine-embedded object, the user

can then download it on his/her computer (action 2). Next, the user can connect to

a cloud gateway or virtualization hypervisor access interface and upload the virtual

machine on the virtualized infrastructure (action 3). The machine will remain saved

in the pool of virtual machines and the user can instantiate it (even multiple copies,

creating a cluster) any time s/he wants to use it to solve his/her problems (action 4).

I M P L E M E N T A T I O N A N D T E S T S

192

Figure 4-7: Using GAMRS in virtualized architectures

Traditionally, the transfer of the virtual machine from the repository to the user‟s

computer and from the user‟s computer to the virtualized infrastructure represented

a drawback. Virtual machines are usually large in size (i.e. several gigabytes) and

they can be costly in terms of network usage and disk usage, hampering the

normal utilization of the user‟s computer. However, this scenario implemented a

solution, which overcomes this drawback. This involved the creation of a new

service (VM Service), which is able to communicate both with GAMRS and the

virtual infrastructure hypervisors.

The virtual machine-embedded application object stored in GAMRS contains in its

associated metadata the path to its storage location, the protocol needed for

access and staging the object, and the virtualization technology type used in the

creation of the virtual machine (in this scenario the standard Open Virtualization

Format was used – a format known by most virtualization hypervisors currently in

production).

I M P L E M E N T A T I O N A N D T E S T S

193

The cloud/virtualized hypervisors can be stored as provider objects in the GAMRS.

They too have metadata associated with them, such as location, methods of

access, protocols and security information. The user submits to the VM-Service the

information about the virtual machine-embedded application and about the

hypervisor on which s/he would like to deploy the virtual machine (action A). The

VM-Service finds the virtual machine archive on GAMRS (action B) and initiates a

direct transfer of that archive between the GAMRS storage and the virtualized

hypervisor storage (action C). Upon successful completion, the VM-Service

connects to the hypervisor access interface (action D) and unpacks the virtual

machine files. Next, it registers the virtual machine as a template in the pool of

virtual machines and, if so specified by user, can also clone an instance for the

user, power the instance on and, preferably, start a VNC (Virtual Network

Computing) server [163] on the virtual machine to enable remote desktop

connections to it. The user can then access the application through the cloud

interface or directly through a VNC viewer.

The suite of actions described above was successfully implemented using the

following objects: the BSoft VM-embedded application specified in SCENARIO 3; a

VMWare ESXi virtualization hypervisor [164] and VMWare server that were

installed at the Centre for Parallel Computing (University of Westminster) and which

acted as a gateway to the virtualized infrastructure; and the new VM Service, which

was developed from scratch in the Java programming language and was deployed

as a web service in a GlassFish_v3 container [165].

Appendix H contains a snapshot taken after the successful completion of

SCENARIO 4. On the column on the left-hand side it shows the BSoft virtual

machine deployed as a template on the VMWare server (Template-Bsoft) and a

powered-on clone of the virtual machine (alex-Bsoft). On the right-hand side one

can see the desktop of the alex-Bsoft machine through which users can interact

with the virtual machine. Moreover, the snapshot shows an example of such

interaction: the user started a shell console and listed the contents of the BSoft test

suite that was installed on the virtual machine in SCENARIO 3.

I M P L E M E N T A T I O N A N D T E S T S

194

SCENARIO 5: IDENT IFY S IMIL AR O R IDENT ICAL GRID

APPLICAT IO NS USING G AMRS
 CHALLENGE OBJECTIVE GOALS

S
C

E
N

A
R

IO
 5

R2.4: Find similar
applications

O3: MRDL

O4: Matchmaking

- To show that matchmaking modules

proposed in this research (O4) are

suitable for the identification of similar

applications stored in Grid repositories

(O3).

- To show that the newly-proposed

entropy-generated stop-list can improve

the accuracy of string-distance methods

when applied to matching applications

stored in Grid repositories (O4).

The syntactical module of the GAMRS Matchmaking service was implemented in

Java programming language under the Eclipse platform. Implementation of the

MRDL parser was also implemented in Java using the MRDL model developed

under the EMF plug-in of Eclipse. Since GEMLCA and NGS AR repositories share

a common set of applications, the syntactic module was tested on their application

description documents. myExperiment could not be used in this scenario because it

did not have any set of applications common with either NGS AR or GEMLCA.

The syntactic modules correctly identified the identical applications which fall under

the fast-track comparison test {designated running site, binary location path, list of

arguments}; namely, the algorithm identified the applications, which had their

binaries already deployed on the NGS Grid infrastructure and were described both

in GEMLCA and NGS AR. However, the algorithm failed to identify identical

applications in the following scenario: the application exposed by NGS AR had its

binary already deployed on the NGS Grid infrastructure; the same application was

exposed by GEMLCA but required binary staging.

Full MRDL comparisons returned inconclusive results due to the lack of information

comprised in real-case application description documents. Furthermore, the extra

functionality of the syntactical module (i.e. binary hash sums and test suites) could

not be tested in real-life scenarios as it involves the usage of the new application-

related object additions proposed in the GAMRS repository model.

I M P L E M E N T A T I O N A N D T E S T S

195

The matching of applications using test suites (GAMRS application-related objects)

was tested in the application-running module.

* * *

The string-distance module of the GAMRS Matchmaking service was implemented

in Java programming language under Eclipse platform. Implementation of the

eleven string-distance functions used in this analysis was provided by two Java

archives: Lingpipe [167] and Stringmetrics [168].

This scenario used application descriptions that had been retrieved from three Grid

application repositories: the NGS AR, the CHARON/iSoftrepo, and the EGEE

application repositories. Given that NGS AR contained too few application

descriptions to build a consistent training set, these application descriptions were

grouped together with those from CHARON/iSoftrepo. Application descriptions

were therefore grouped in three sets: corpus123 (containing 123 descriptions

retrieved from NGS and CHARON/iSoftrepo), corpus246 (containing 246

descriptions retrieved from EGEE) and corpus369 (containing 369 descriptions, i.e.

all descriptions found on the three repositories). Techniques based on term

frequencies and term importance probabilities were trained separately on each of

these three sets in order to analyze the variance in the accuracy of string-distance

methods when trained on different corpora.

The test corpus was comprised of a subset of descriptions retrieved from

CHARON/iSoftrepo and NGS repositories, which were compared in pairs of two:

each application description against each one of the remaining descriptions. This

resulted in 4372 comparison cases, out of which 631 represented cases of similar

applications.

Several decision groups were considered for each string-distance method and

these groups were implemented with the help of match-intervals. If the score of a

method had a value within the match-interval, the two application descriptions were

considered similar, otherwise they were considered dissimilar. The match-intervals

(i.e. decision groups) were constructed in an incremental way (e.g. [0.0, 0.1], [0.0,

I M P L E M E N T A T I O N A N D T E S T S

196

0.2]... [0.0, 1.0]) and were used to analyse how the accuracy of the matching

methods varied with the relaxation or restriction of decision rules.

The accuracy of string-distance methods was compared with the help of the

following measurements:

 False positives = how many times the method had marked as similar two

applications which were different from each other.

 False negatives = how many times the method had marked as dissimilar

two applications which were similar.

 Precision = the number of true positives (i.e. the comparison cases that

correctly marked the applications as similar) divided by the total number

of comparison cases that marked the applications as similar (i.e. the sum

of true positives and false positives).

 Recall = the number of true positives divided by the total number of cases

that compared two similar applications (i.e. the sum of true positives

and false negatives).

 F1 = the harmonic mean of precision and recall.

In addition to the measurements mentioned above, the matchmaking methods

were also compared using the average precision and the maximum F1 value of

each method. Precision and recall need to be balanced, and when F1 is

maximized, both precision and recall are set to acceptable values.

All eleven string-distance methods were run with their respective matching-intervals

and different entropy thresholds, using the three training corpora described above.

The analysis of results collected in this exercise showed that overall, token-based

matchmaking methods performed better than edit-distance metrics. This can be

seen in the chart in Figure 4-8, which depicts the maximum F1 values obtained in

the analysis:

(Note: in the next figures, the following notations have been used for the string-

distance methods: TFIDF for TFIDF/Cosine; JW-TFIDF for Jaro-

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors

I M P L E M E N T A T I O N A N D T E S T S

197

Winkler_TFIDF/Cosine; JSD for Jensen-Shannon Divergence, JM-JSD for Jelinek-

Mercer/Jensen-Shannon Divergence; D-JSD for Dirichlet/Jensen-Shannon

Divergence; CASE for Case edit-distance; DL for Damerau-Levenshtein distance;

FIXED for Fixed Weight edit-distance; DICE for Dice distance; JACCARD for

Jaccard distance; and JW for Jaro-Winkler distance).

Figure 4-8: Maximum F1 value for string-distance methods

TFIDF and JSD-related methods showed the best performance of all methods

under analysis, their maxF1 score reaching values between 0.62-0.67. Although

the Jaccard and Dice methods are token-based methods as well, they exhibited

lower performances than TFIDF and JSDs techniques (i.e. maxF1 values between

0.55-0.59).The explanation is that, as opposed to TFIDF and JSDs, which use

probabilistic approaches in their calculus and base their decision on the frequency

of terms (i.e. importance), DICE and JACCARD consider all terms of equal

importance. Consequently, DICE and JACCARD methods record a higher number

of false positives than in the case of TFIDF and JSD, thus recording a lower F1

score than TFIDF and JSD.

Edit-distance metrics (CASE, DL, FIXED, JW) performed poorer than the other

methods, recording maxF1 values between 0.38-0.5. These methods base their

decision on the number of operations with characters (i.e. insertion, deletion,

substitution or transposition) needed to transform one string into the other. Edit-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

 F
1

String-distance methods

Performance Comparison

I M P L E M E N T A T I O N A N D T E S T S

198

distance metrics (CASE, DL, FIXED, JW) seem more suitable for comparing short

strings rather than whole paragraphs of text.

The hybrid method (JW-TFIDF) showed the lowest performance out of all methods

tested in the string-distance module (i.e. maxF1 value of 0.35). Even though the

Jaro-Winkler coefficient used in this implementation (i.e. 0.9) was big enough to

detect only small typos, the method wrongly coupled too many similar words. This

determined a significant increase in the number of false positives, hence the low

performance of the JW-TFIDF technique.

In the case of TFIDF it was observed that the average precision increases with the

relaxation of matching rules. For example, the best average precision was obtained

when applied on the decision groups [0-0.8] and [0-0.9] (as shown in Figure 4.9).

Moreover, the max F1 values were obtained in the same decision intervals.

Figure 4-9: Variation within six matching intervals of the average precision of the
TFIDF/Cosine method when trained on the three corpora

The figure shows that, when trained on corpus123 or corpus369, TFIDF/Cosine

recorded the best precision values (i.e. 0.56-0.57) for the decision group [0-0.9];

when trained on corpus246, the method recorded the best average precision

value (0.54) for the decision group [0-0.8]. The analysis showed that for stricter

0

0.1

0.2

0.3

0.4

0.5

0.6

0-0.5 0-0.6 0-0.7 0-0.8 0-0.9 0-1

A
ve

ra
ge

 P
re

ci
si

o
n

Matching Intervals

TFIDF/Cosine

corpus123

corpus246

corpus369

I M P L E M E N T A T I O N A N D T E S T S

199

matching rules (e.g. decision intervals lower than [0-0.6]) TFIDF/Cosine

recorded low average precision values (i.e. 0.18-0.35), the only exception being

the case when the method was trained on the corpus123, from which the test

corpus was created.

The suite of JSD methods achieved the best average performance and the

highest F1 score when applied to the [0.3-1] decision group (as shown in Figure

4-10). The test corpus was constructed as a subset from the 123-application

description corpus. Training the JSD on the 123-application description corpus

showed a slightly better performance of the technique (i.e. average precision in

the [0.3-1] decision group: 0.53-0.55) than when trained on the 246-application

corpus, which does not contain descriptions found in the test corpus (i.e.

average precision in the [0.3-1] decision group: 0.52-0.53). This is explained by

the fact that a method trained on a corpus, which already contains the terms

and description documents found in the test corpus, gives a more accurate view

of the term importance and term probability distributions than when trained on a

corpus which does not contain the application descriptions found in the test

corpus.

Figure 4-10: Variation within four matching intervals of the average precision of the suite of JSD
methods when trained on the three corpora

Moreover, the results showed that training the JSD functions on the 369-application

corpus further optimized the accuracy of these methods (i.e. average precision in

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.5 - 1 0.4 - 1 0.3 - 1 0.2 - 1

A
ve

ra
ge

 P
re

ci
si

o
n

Matching Intervals

Jensen Shannon Divergence Methods

JSD(corpus123)

JM-JSD(corpus123)

D-JSD(corpus123)

JSD(corpus246)

JM-JSD(corpus246)

D-JSD(corpus246)

JSD(corpus369)

JM-JSD(corpus369)

D-JSD(corpus369)

I M P L E M E N T A T I O N A N D T E S T S

200

the [0.3-1] decision group: 0.53-0.56) by giving a more comprehensive and more

precise view of the term probability distributions in the corpus.

The use of entropy-generated stop-list in combination with TFIDF showed no

concluding results as the average precision and F1 scores were comparable

between the cases where a stop-list was used and the cases where a stop-list was

not used (i.e. best results were obtained for entropy threshold values in [0.06-0.1]).

However, when applied in conjunction with JSD techniques, the entropy-generated

stop-list using thresholds between [0.07-0.12] showed an improvement of both

average precision and F1 scores throughout the cases considered in this analysis.

An example can be seen in Figure 4.11, where the use of stop-list with such

thresholds determined a significant increase in the average precision of JSD

methods, notwithstanding what corpus was used for training.

Figure 4-11: Comparison between the average precision of the JSD methods with no stop-list and

the same JSD methods using a stop-list with a threshold between [0.07-0.12]

For the decision group [0.3-1] the average precision of JSD and D-JSD methods

applied without a stop-list recorded an average precision ranging between [0.37-

0.39]. For the same decision group, when using the entropy-generated stop-list with

a threshold between [0.07-0.12], the same two methods recorded an overall

increase in the average precision, with values ranging between [0.56-0.58]. The

0

0.1

0.2

0.3

0.4

0.5

0.6

JS
D

(c
o

rp
u

s1
23

)

JM
-J

SD
(c

o
rp

u
s1

23
)

D
-J

SD
(c

o
rp

u
s1

23
)

JS
D

(c
o

rp
u

s2
46

)

JM
-J

SD
(c

o
rp

u
s2

46
)

D
-J

SD
(c

o
rp

u
s2

46
)

JS
D

(c
o

rp
u

s3
69

)

JM
-J

SD
(c

o
rp

u
s3

69
)

D
-J

SD
(c

o
rp

u
s3

69
)

A
ve

ra
ge

 P
re

ci
si

o
n

JSD Method (corpus)

Matching Interval 0.3 - 1

T=0

T in [0.07-
0.12]

I M P L E M E N T A T I O N A N D T E S T S

201

JM-JSD method recorded better values than JSD and D-JSD even without the use

of stop-lists (i.e. average precision [0.51-0.52]). Nevertheless, the entropy-

generated stop-list with a threshold between [0.07-0.12] improved slightly the

average precision of JM-JSD to [0.52-0.53].

* * *

Due to the time constraints of this research, the application-running module was not

integrated in the GAMRS Matchmaking service. The tests involving this module

were done manually using the NGS Grid infrastructure and the Grid user interface

exposed on the NGS site [38] via a Java applet called gsiSSH-Term [169].

To that end, I analyzed the Grid applications exposed on the NGS Grid core sites

and collected test suites (i.e. set of input files, running script and the set of output

files) for 30 applications (out of 38 at the time the analysis has been made). Figure

4-12 shows the list of applications for which a test suite was created.

Each of these applications was run on Grid using the set of input files and the

running script available in the test suite. The output was retrieved and compared

against the set of output files available in the test suite using the diff Linux software

[170] – a very common and reliable piece of software, which points out differences

between files. For a better understanding of the results, the applications were run

several times with the same set of input files and the process of output comparison

was repeated after each run.

The conclusion of the tests was that the application-running module can accurately

identify identical applications that exhibit deterministic behaviour. Since for the

same set of input files, the application always returns the same set of output files,

identical deterministic applications are correctly identified by this method. However,

the way the comparison of output files was implemented, identical non-deterministic

applications could not be identified by the application-running method.

I M P L E M E N T A T I O N A N D T E S T S

202

Figure 4-12: Grid applications used for testing the application-running module

* * *

Due to the scarceness of data (i.e. binaries) stored in the few production Grid

application repositories capable of storing binaries, the binary matching module

could not be tested in real-case scenarios. Nevertheless, its fundamental test of

hash sums can be explained theoretically and is based on the property of collision

resistance of hash algorithms (i.e. in our case, what is the probability that two

different binaries generate the same hash sum). Tests on binary hash sums

generated with strong collision resistant algorithms (such as SHA-512, which had

no known collisions identified at the time this thesis was written) should identify

correctly identical applications. Moreover, even those algorithms for which collisions

I M P L E M E N T A T I O N A N D T E S T S

203

have been found (such as SHA-1 or MD5) have such a low probability of collisions

(i.e. and .)

[166], that they can be safely used to generate hash sums of Grid application

binaries. In cases where such algorithms are used (for example SHA-1) if two

binary hash sums are found to be identical, the mathematically-correct decision of

the GAMRS syntactic module should be “The two applications are identical with a

probability of ”. However, for obvious practical reasons, the syntactic

module returns just “The two applications are identical”.

.

C O N C L U S I O N S

204

5. Conclusions

ll the five scenarios designed in Chapter 4 in order to test the functionality

of GAMRS were implemented successfully. The results of this testbed

confirm that GAMRS brings relevant contributions to existing solutions in

the area of Grid. With the combined capabilities of the three core services –

Publisher, Meta-Repository and Matchmaking, GAMRS sets the milestone for a

new generation of Grid application repositories able to support different distributed

computing architectures, while being easily accessible to both human users and

services.

The GAMRS architecture shows that Grid technology can be combined with web

technologies to provide a wide range of interfaces to make applications easily

accessible both to human users and services. As part of SCENARIO 1, the pilot

GAMRS solution implemented for this research was able to successfully connect

three Grid application repositories (GEMLCA, myExperiment and NGS Application

Repository) to the system, making their applications visible and usable through the

GAMRS interfaces. SCENARIO 2 showed that GAMRS can also expose

applications to the web via these interfaces and can support Search operations on

metadata associated to objects stored in it.

At the same time, the successful storage and deployment of the BSoft application

on GAMRS as part of SCENARIO 3 proved that GAMRS can function as a

Chapter

5

A

C O N C L U S I O N S

205

repository in its own right, by storing applications and application-related objects

and exposing them to the web.

The new repository model is richer than traditional Grid application repository

models, and it expands the area of usage of Grid applications to other distributed

architectures such as cloud architectures and application-on-demand architectures

as demonstrated in SCENARIO 4. Moreover, GAMRS can store Grid application-

related objects such as binaries, source code, dependencies, documentation and

test files. These objects can be used by Grid administrators for application

deployment processes.

In addition to that, the virtual machine-embedded approach allows applications to

be run in their native environment making the porting of application on different

machine architectures or different operating systems unnecessary. This research

implemented a pilot VM-Service and used a VMWare virtualized infrastructure to

successfully deploy and run applications that are stored as virtual machine-

embedded objects in the GAMRS, thus demonstrating the application‟s usability not

only in Grid but also in cloud computing or other virtualized technologies.

Finally, the successful implementation of SCENARIO 5 showed that the GAMRS

Matchmaking service works and is able to find identical or similar applications

among different Grid application repositories.

The syntactic module can be successfully used to identify identical applications in

the following scenarios: when the applications binary is present and stored in

GAMRS; when the application binary hash sum is present in MRDL; when the

application test suite is present in GAMRS; and when the full binary path

referenced inside the two MRDL documents under comparison are pointing to the

same Grid resource and application. Scenarios other than these four failed due to

the lack of information present in real-case application descriptions – for example,

none of the application description documents found stored in repositories

connected to GAMRS contained values in the fields used for description of

application resources.

C O N C L U S I O N S

206

The string-distance module can be used in scenarios where no application-related

object needed by other matchmaking methods exists stored in the repository. It

comes as a last resort in trying to identify similar applications based only on the free

text-description of the application. The module implemented a set of the most

popular string-distance methods, which were tested against their ability to identify

similar applications stored in Grid repositories. Overall, token-based matchmaking

methods performed better than edit-distance methods and the hybrid method.

Based on the analysis of test results, it was concluded that TFIDF/Cosine and

Jensen-Shannon Divergence methods would be the best candidates for finding

similar applications by comparing their free-text descriptions. Moreover, the results

showed that the accuracy of those methods can be improved through the selection

of particular matching intervals.

The same scenario also tested a new method of entropy-generated stop-list. The

method proved to be very successful with Jensen-Shannon Divergence

techniques: trimming the documents under comparison of their low-importance

terms worked as an optimization method for JSD techniques, making them the

most accurate method among the ones tested here.

Results also showed that training on different corpora can influence the accuracy of

the matching methods. The analysis suggested that in order to acquire a more

precise view of the term probability distributions in Grid application descriptions, it is

better to induce training on corpora that include as many descriptions as available.

And preferably, the training corpus should include application descriptions from the

repositories where the two descriptions under comparison were retrieved from.

Moreover, to make the matching more accurate, the two descriptions should first be

added to the training corpus, and only then one should induce training and apply

the trained matching methods on those two descriptions.

Nevertheless, due to the constraint-free aspect of what can be written in a free-text

description of an application, even with the help of entropy-generated stop-list

technique, the accuracy of these methods was around 60%. Consequently, my

C O N C L U S I O N S

207

suggestion is that this method is applied as a last resort, when no other methods

(out of those tested by this research) can be used.

The application-running module returned excellent results in matching deterministic

applications. With the help of test suites this module manages to successfully

identify applications which exhibit a deterministic behaviour. However, this requires

the presence of test suites in the repository. Furthermore, due to the limitations of

method implemented for the comparison of output sets, the module fails to identify

identical applications which exhibit non-deterministic behaviour.

Provided the application binaries are available in GAMRS, the binary matching

method should successfully identify identical applications based on their hash

sums. However, this method has its limitations, as it cannot identify identical

applications which have their binary compiled for different operating systems.

Nevertheless, many Grid infrastructures require their Grid sites to use only one or

two operating systems on their execution nodes and this increases the chances

that the binary matching can be used successfully.

* * *

As mentioned in Chapter 1, Section 1.2 this research started with an extensive

critical analysis of the application repository solutions currently used in Grid, which

resulted in the identification of a list of shortcomings associated with these

solutions. I formally translated these shortcomings in a list of solution requirements

related to the Grid application repository conceptual design and its functionality;

while, at the same time, I took into consideration the roles such repositories would

have on distributed computing frameworks other than Grid. Based on these

specified requirements I set out four major research objectives:

 Objective O1: to design a service able to connect different types of Grid

application repositories, but which would still function as a Grid application

repository in its own right.

C O N C L U S I O N S

208

 Objective O2: to propose a new model for application repositories, which

would achieve uniformity in Grid application presentation and would extend

the functionality of these repositories beyond Grid.

 Objective O3: to find (or create) an application description language, which

would provide uniformity in the presentation of Grid application descriptions;

but would also allow Grid application repositories and the applications stored

by them to be used in scenarios other than Grid, such as virtualisation;

source code staging and compilation; or automatic application deployment.

 Objective O4: to design a matchmaking methodology and an algorithm able

to process information about applications stored in different repositories and

identify similar or identical applications.

In order to satisfy the four objectives mentioned above, I designed a novel type of

Grid application repository – the Grid Application Meta-Repository System

(GAMRS). GAMRS‟ theoretical design is described in Chapter 3 of this thesis.

Objective O1 was successfully met by creating a new Grid application repository

architecture. The following table summarizes GAMRS‟ architectural features by

comparison to the features exposed by other repository solutions.

Table 5-1: GAMRS architectural features vs. other solutions

 APPLICATION
PUBLISHING

APPLICATION
DISCOVERY

REPOSITORY
OBJECT

EXCHANGE &
REUSE

G
A

M
R

S

- Graphical interface

for human users;

- HTTP/REST

interface for services;

- OGSI/WSRF Grid

Service interface for

Grid services.

- Intuitive web interface for human

users;

- Exposes HTTP/REST interface;

- Exposes OGSI/WSRF Grid Service

interface;

- Supports connections to other

repositories;

- Exposes a system of identification of

similar Grid applications;

- Support for OAI-PMH protocol.

- Support for OAI-

ORE protocol;

- Support for

FOXML

documents.

C O N C L U S I O N S

209

B
D

II

- Publishing done by

automated services

via scripts that

contain suites of

console commands;

- No graphical/web

interface for human

users.

- Console commands containing LDAP

queries;

- No OGSI/WSRF Grid service

interface;

- No Web visibility;

- No HTTP/REST interface;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

C
H

A
R

O
N

 - Command-line only

for human users;

- No access support

for services;

- Collection of static Web pages;

- No OGSI/WSRF Grid service

interface

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

G
E

M
L

C
A

- Graphical interface

for human users;

- OGSI/WSRF Grid

service interface for

services.

- OGSI/WSRF Grid service interface;

- Human users can find application

information through PGRADE portals or

using a GEMLCA Service Client;

- No Web visibility;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

N
G

S
 A

R
 - Graphical interface

for human users

- No access support

for services

- JSR-168 web application interface –

for human users;

- No OGSI/WSRF Grid service

interface;

- No HTTP/REST interface;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

G
R

IM
O

IR
E

S

- Human users and

services can register

web services via

UDDI clients.

- Visible to UDDI clients;

- Visible to human users through a

collection of static web pages.

N/A

C O N C L U S I O N S

210

m
y
E

x
p

e
ri

m
e
n

t - User-friendly web

interface for human

users;

- HTTP/REST

interface for services.

- Intuitive web interface for human

users;

- Exposes HTTP/REST interface;

- No OGSI/WSRF Grid Service

interface;

- No connection to other repositories;

- No system of identification of similar

Grid applications;

- No support for OAI-PMH protocol.

NO

Objective O2 was successfully met by creating a new Grid application repository

model. The following two tables summarize the features of the GAMRS repository

model by comparison to those exposed by other repository models.

Table 5-2: GAMRS repository model features vs. other solutions

myExperiment NGS AR GEMLCA GUSE

CHARON/
iSoftrepo

GAMRS

User YES YES YES YES YES YES

User-related
objects

No no no no no YES

User
access policies

YES YES YES YES YES YES

Application YES YES YES YES YES YES

Application
access policies

YES YES YES YES YES YES

Provider No no no no no YES

Provider-related
objects

No no no no no YES

Provider
access policies

No no no no no YES

Table 5-3: GAMRS repository model features vs. other solutions (application asset types)

 myExperiment NGS AR GEMLCA GUSE
CHARON/
iSoftrepo

GAMRS

Description
document

YES YES YES YES no YES

C O N C L U S I O N S

211

Binaries n/a reference YES no reference YES

Source code n/a no no no reference YES

Library
dependencies

possible
(generic tag)

no no no no YES

Software
dependencies

possible
(generic tag)

no no no no YES

Documentation Reference no no no reference YES

Test files
possible

(generic tag)
no no no no YES

VM
embedded

No no no no no YES

Licenses YES no no no reference YES

Hash sums No no no no no YES

Objective O3 was successfully met by extending an existing application description

language (i.e. JSDL) with a new set of features which resulted in a novel Grid

application description language called MRDL. The following table summarizes the

features of MRDL by comparison to the features exposed by other application

description languages.

Table 5-4: MRDL features vs. other solutions

RSL JDL xRSL

WS-
GRAM

LCID JSDL MRDL

Legacy
compatibility

YES YES YES YES YES YES
YES/

inherited

Advanced features partly partly partly partly partly YES
YES/

Inherited

Different
submission
certificate and
staging certificate

no no no
YES

(service
only)

no no YES

Multi-Grid data
staging

no no no
YES

(service
only)

no no YES

Hash sums no no no no no no YES

C O N C L U S I O N S

212

Advanced
parameter/attribute
descriptions

no no no no partly no YES

Multiple transfer
protocols
supported as URI
definitions

no no YES no no YES
YES/

inherited

Additional
information
(licenses, libraries,
code for
compilation)

no no no no no no YES

Application pre-
run prerequisites

no no no no no no YES

Virtual machine
staging

no no no no no no YES

Advanced parallel
behaviour

partly partly partly partly partly YES
YES/

inherited

Native extension no no no no no YES
YES/

inherited

Objective O4 was successfully met by creating the first Grid application

matchmaking service able to identify similar or identical applications stored in

different Grid repositories. For the matchmaking process I successfully identified

different sources of information within the application-related objects stored in

GAMRS and designed four matchmaking algorithms which are able to process

these sources and decide over the similarity or identicalness of two Grid

applications. Due to the limited timeframe of this PhD I had to restrict the research

to only four matchmaking methods: syntactic, string-distance, binary matching, and

application-running. However, the GAMRS Matchmaking service is extendable with

other matching modules subject to further research.

The implementation of the pilot GAMRS-solution was subject to a series of

constraints outlined in Chapter 4, Section 4.1. These constraints were put in place

in order to simplify the development of the solution, but did not restrict the core

functionality of GAMRS or its ability to meet the four objectives set out in this

research.

C O N C L U S I O N S

213

The pilot-solution was used in five scenarios, which proved the GAMRS‟s novel

features and showed how this solution met the research objectives. The following

table gives an overview of the research objectives, the test scenarios designed to

prove these objectives, and the results obtained.

Table 5-5: Degree to which test results met the research objectives

RESEARCH
OBJECTIVE

TEST
SCENARIOS

RESULT

O1: ARCHITECTURE

- to connect to different Grid

application repository

technologies and solutions and

to retrieve the applications

stored in them;

- to be accessed by OGSI/WSRF

Grid Services;

- to expose the applications to

web via the HTTP/REST

interface;

- to support Search operations on

metadata associated to objects

stored in the repository;

- to be accessed on WWW by

any service equipped with a

HTTP client;

- to present the repository objects

in a format that permits their

exchange and reuse on other

repositories which are built on

technologies similar to that of

GAMRS.

The following scenarios

were used to test the

functionality required by

Objective O1:

- Scenario 1: Connecting

grid application

repositories to GAMRS

- Scenario 2: Searching

in GAMRS

- Scenario 3: Storing

application-related

objects in GAMRS

OBJECTIVE

SUCCESSFULLY MET

- successfully connected

three application

repositories and retrieved

the applications stored in

them;

- successfully tested the

OGSI/WSRF Grid

interface;

- successfully tested the

HTTP/REST interface;

- successfully tested the

search operation

- successfully used the

WWW access interface;

- successfully tested the

OAI-ORE and FOXML

formats.

C O N C L U S I O N S

214

O2: REPOSITORY MODEL

- to function as a Grid application

repository in its own right and

allow users to publish objects

inside GAMRS;

- to store application-related

objects following the

categorization designed in the

GAMRS repository model;

- to be used on distributed

infrastructures other than Grid.

The following scenarios

were used to test the

functionality required by

Objective O2:

- Scenario 3: Storing

application-related

objects in GAMRS

- Scenario 4: Use

GAMRS in distributed

infrastructures other

than Grid

OBJECTIVE

SUCCESSFULLY MET

- Successfully published

objects inside GAMRS;

- Successfully stored

objects following the

GAMRS repository

model;

- Successfully used

GAMRS to run a Grid

application in a cloud

virtualized environment

O3: APPLICATION

DESCRIPTION LANGUAGE

- to convert application

description documents in MRDL

for a uniform presentation of

applications;

- to facilitate the application

matchmaking process;

- to be used in new scenarios (i.e.

deployment, running, testing)

previously unavailable in

traditional solutions (such as

source code staging and

compilation, virtual-machine

running and testing a correct

application deployment and

functioning with the help of test

suites).

The following scenarios

were used to test the

functionality required by

Objective O3:

- Scenario 1: Connecting

grid application

repositories to GAMRS

- Scenario 5: Identify

similar or identical Grid

applications using

GAMRS

OBJECTIVE

SUCCESSFULLY MET

- Successfully converted

three different types of

ADL (i.e. LCID, Scufl and

JSDL) to MRDL;

- Successfully used

description documents

written in MRDL syntactic

matchmaker and

application running

matchmaking module;

- Successfully used a

MRDL-formatted

document to deploy a

Grid application by

staging the source code,

followed by compilation

and testing.

C O N C L U S I O N S

215

O4: APPLICATION

MATCHMAKING

- to identify sources of information

for the matchmaking process

within the application-related

objects stored in repository;

- to show that the matchmaking

modules proposed in this

research are suitable for the

identification of similar

applications stored in Grid

repositories;

- to show that the newly-

proposed entropy-generated

stop-list can improve the

accuracy of string-distance

methods when applied to

matching applications stored in

Grid repositories.

The following scenario was

used to test the

functionality required by

Objective O4:

- Scenario 5: Identify

similar or identical Grid

applications using

GAMRS

OBJECTIVE

SUCCESSFULLY* MET

- Successfully identified

the sources of

information able to help

with the matchmaking

process (i.e. the

application metadata, the

application description

document, binaries, test

suites, the source code,

hash sums,

dependencies);

- Successfully

implemented and tested

four matchmaking

modules able to identify

similar Grid applications.

Result analysis

concluded with several

practical suggestions on

the benefits and

limitations of each

module;

- Successfully shown that

the entropy-generated

stop-list improved the

accuracy of a whole

class of string-distance

methods (i.e. JSD)

making them the most

accurate from all the

methods tested in this

research, when applied

to matching Grid

applications

C O N C L U S I O N S

216

*Objective O4 was successfully met for the four matching modules described in this thesis.

Implementation and analysis of other matchmaking techniques which may be suitable for

identifying similar or identical applications stored in Grid repositories could be explored in

future research.

C O N T R I B U T I O N S A N D E X T E N S I O N S

217

6. Contributions to Knowledge

and Extensions

hapter 5 showed that the four research objectives set out in this thesis

were met within certain limits. GAMRS is a service able to connect

different types of repositories and expose them through various interfaces

to both human users and services. Moreover, GAMRS offers a new repository

model, which achieves uniformity in Grid application presentation and extends the

functionality of these repositories beyond Grid; and it uses an application

description language, which allows for Grid application repositories and the

applications stored by them to be used in scenarios other than Grid, such as

virtualisation, source code staging and compilation, or automatic application

deployment. GAMRS also includes a matchmaking algorithm able to process

information about applications stored in Grid repositories and identify similar or

identical applications.

This chapter summarizes the contributions brought by this research to the general

knowledge of Grid application repositories and concludes with several suggestions

on how this research could be extended in the future.

Chapter

6

C

C O N T R I B U T I O N S A N D E X T E N S I O N S

218

6.1. Contributions to Knowledge

This research makes four contributions to scientific knowledge in the area of Grid

application repositories:

CONTRIBUTION 1: Novel architecture

The Grid Application Meta-Repository System proposes an architecture, which

allows different Grid application repositories to be connected to the service,

independent of their underlying technology. This provides users with access to the

applications stored in all connected Grid repositories, and also presents

applications in a uniform manner, regardless of the differences between the specific

models of each repository. Furthermore, as opposed to the majority of existing Grid

application repositories, this solution provides a standard OGSI/WSRF Grid Service

interface that allows seamless integration with all other Grid Services, allowing

them to access the content of non-OGSI repositories through the GAMRS. At the

same time, the GAMRS architecture exposes a HTTP/REST API (Representational

State Transfer, Application Programming Interface), which makes applications from

all connected repositories visible to search engines on the Web. While until now

most applications stored on Grid application repositories were invisible to the Web

(mainly due to limitations of repository technologies used in implementation),

GAMRS makes the application discovery easier for users – the HTTP/REST API

provides a much simpler form of access for non-OGSI services than the Grid

Service interface. Furthermore, GAMRS‟ access interfaces allow for the discovery

of Grid application repository objects and associated metadata through OAI-PMH

and OAI-ORE protocols, at the same time making these objects exchangeable and

reusable between OAI-compliant repositories.

CONTRIBUTION 2: New application repository model

The Grid Application Meta-Repository Service proposes a new application

repository model, which allows for inter-operability between various Grid application

repositories and Grid services and extends the functionality of these repositories

C O N T R I B U T I O N S A N D E X T E N S I O N S

219

beyond Grid. The new model helps store together the application and application-

related objects, which makes them available to use across different Grid services.

The proposed solution includes suggestions on the type of application-related data

that repositories should store and also proposes scenarios where this model can

be used in distributed computing designs other than Grid. The model gives a

comprehensive description of a Grid application and is also able to function as a

mediator between older application repository models. With the help of this model

Grid applications can be easily deployed and ran on cloud systems. Furthermore,

applications can be presented as embedded in virtual machines (VM) and therefore

they can be run in their native environments. Also, by exposing applications as

virtual machines, both administrators and users can easily deploy these

applications on virtualized infrastructures. This procedure requires no prior

knowledge of Operating System installation procedures, application installation

procedures, the installation of software dependencies, or knowledge on how to

configure the application. The new application repository model also contains the

necessary description capability to allow users to describe and run commercial

applications embedded in virtual machines, provided that a fee-based model is put

in place for that.

CONTRIBUTION 3: Improved application description language

This research proposes a solution which enriches the functionality of old application

description languages and provides answers to several interoperability problems,

such as multi-Grid data staging and hybrid job-submission/data staging certificates.

Furthermore, it proposes a life-cycle model for a Grid application describing the

different states in which the application can be found (i.e. template, instance,

deployment, and running) and sets a standard of how description languages can

describe attributes, objects and actions associated with these states. The

extensions to JSDL proposed by this research (such as the location of virtual

machine-embedded application; the location of licenses, libraries and source code;

and the new application running requirements: license acceptance, code

compilation and VM-embedded) also allow for cross-operability with new

generation technologies such as application-on-demand and virtualized systems.

C O N T R I B U T I O N S A N D E X T E N S I O N S

220

MRDL, the new application description language obtained by expanding JSDL,

provides the necessary description capabilities to refer to the application-related

objects described by the GAMRS model. This permits Grid applications to be run

using methods not employed on Grid until now, such as virtual machine-embedded

or by source code staging and compilation.

CONTRIBUTION 4: Novel Grid application matchmaking service

This research also proposes a matchmaking service aimed at finding similar or

identical applications stored in different Grid application repositories by analysing

the information included in application description documents and application-

related objects. The research identifies and describes several methods of matching

Grid applications based on the application-related objects and, in the

implementation phase, focuses on four classes of matchmaking techniques:

syntactic, string-distance, application binary matching and application running. In

conjunction with the application-related objects mentioned under Contribution 2,

and with the help of the application description language described in Contribution

3 GAMRS proposes new algorithms for all four methods and analyzes the

performance of these algorithms in real-case scenarios using data retrieved from

production Grid repositories. Furthermore, GAMRS proposes and analyzes a new

method of automatic processing of the training corpus through entropy thresholds

for a better performance of the string-distance methods. This new method is not

necessarily restricted to Grid applications; it can be used more broadly in natural

language processing for the comparison of any two texts. Finally, based on the

performance of the matchmaking modules, this research concludes with

suggestions regarding which module would be suitable for which scenario and

mentions the limitations or non-availability in other scenarios.

C O N T R I B U T I O N S A N D E X T E N S I O N S

221

6.2. Future Extensions

In this thesis we have shown the benefits of the Grid Application Meta-Repository

System as efficient solution to several current challenges in the field of Grid

application repositories. However, the dynamics of distributed computing

technologies will continue to generate new challenges and requirements in the time

to come. Consequently, all four aspects of GAMRS – the architecture, the

repository model, the application description language and the matchmaking

service - were designed to be modular and extendible so that new features can be

added effortlessly in order to permit GAMRS to be integrated easily with future

technologies.

The following list contains several suggestions on how GAMRS can be extended in

the future. The list is by no means exhaustive; it describes the immediate

extensions that can be done from the current state of the pilot solution to enrich

GAMRS‟ capabilities:

ARCHITECTURE:

 The GAMRS Meta-Repository service can be extended with new

adapters which would connect other repositories currently on production

on Grid, such as BDII, GRIMOIRES, EGEE, EDGeS and

CHARON/iSoftrepo.

 The GAMRS architecture is suitable to be cascaded in order to construct

federated GAMRS regions. Multiple GAMRS can be connected together

through their access interfaces (or each one can reference the others as

Provider entities in its repository), thus helping users and services to

discover and access Grid application stored by any of them.

 GAMRS can be extended with a fee-based model to include commercial

applications. GAMRS already stores virtual machine-embedded

applications and application licenses. Once such a fee-based model is

put in place, users could gain access to applications by accepting the

C O N T R I B U T I O N S A N D E X T E N S I O N S

222

terms of the license and paying a fee proportionate with the length of time

s/he uses the application for.

 GAMRS can be extended with a submission engine able to process all

MRDL extensions. This would allow GAMRS‟ submission engine to

submit and run the application as virtual machine-embedded or by

automatic source-code compilation. At the same time, the submission

engine could be used to automatically process hybrid authentication for

the deployment and running phases of the Grid application.

REPOSITORY MODEL:

 The GAMRS repository model can be extended to describe new

authentication methods, which started to gain terrain in recent years and

which are being considered for adoption on Grid infrastructures, such as

Shibboleth or SAML/XACML implementations.

APPLICATION DESCRIPTION LANGUAGE:

 The GAMRS MRDL language schema can be extended to accommodate

not only the description of stand-alone applications – as it does here, but

also the description of applications presented as Web or Grid Services

and applications exposed as workflows on the Grid infrastructure.

APPLICATION MATCHMAKING:

 The string-distance module of the GAMRS Matchmaking service is

extendible and further string-distance methods can be added to the ones

already implemented, such as Needleman-Wunsch, Witten-Bell, Katz and

Knesser-Ney.

 The GAMRS Matchmaking service can be extended with a module,

which also implements semantic matchmaking methods (including Latent

Semantic Analysis) that can help identify similar applications stored in the

Grid repositories connected to GAMRS.

 Another valuable extension of the GAMRS Matchmaking service would

C O N T R I B U T I O N S A N D E X T E N S I O N S

223

be the design and implementation of an aggregation model able to

combine together the scores returned by different matching modules, with

the aim of delivering an even more accurate solution to the problem of

finding similar applications stored in Grid repositories.

P U B L I C A T I O N S

224

7. Publications

 Kiss, Tamas and Tudose, Alexandru and Kacsuk, Peter K. and

Terstyanszky, Gabor (2007) SRB data resources in computational grid

workflows. In: Cox, Simon J., (ed.) Proceedings of the UK e-Science All

Hands Meeting 2007, Nottingham UK, 10th - 13th September. National e-

Science Centre, Edinburgh, pp. 643-650. ISBN 9780955398834

 Kiss, Tamas and Tudose, Alexandru and Terstyanszky, Gabor and

Kacsuk, Peter K. and Sipos, Gergely (2008) Utilizing heterogeneous data

sources in computational grid workflows. In: Danelutto, Marco and

Fragopoulou, Paraskevi and Getov, Vladimir, (eds.) Making grids work:

Proceedings of the CoreGRID Workshop on Programming Models Grid

and P2P System Architecture Grid Systems, Tools and Environments 12-

13 June 2007, Heraklion, Crete, Greece. Springer, pp. 225-236. ISBN

9780387784472

 Tudose, Alexandru and Terstyanszky, Gabor and Kacsuk, Peter K. and

Winter, Stephen (2010) Grid Application Meta-Repository System:

Repository interconnectivity and cross-domain application usage in

distributed computing environments. In: Data Driven e-Science: Use

Cases and Successful Applications of Distributed Computing

Infrastructures (ISGC 2010), Taipei, Taiwan. Springer, pp. 277-292. ISBN

9781441980137.

 Tudose, Alexandru and Terstyanszky, Gabor and Kacsuk, Peter K. and

Winter, Stephen (2010) Using string-distance methods to identify similar

applications in Grid repositories, In: Proceedings of the UK e-Science All

Hands Meeting 2010, Cardiff, UK. - forthcoming

http://westminsterresearch.wmin.ac.uk/5288/
http://westminsterresearch.wmin.ac.uk/5288/
http://westminsterresearch.wmin.ac.uk/6826/
http://westminsterresearch.wmin.ac.uk/6826/

B I B L I O G R A P H Y

225

8. Bibliography

[1]. Kacsuk P., and Kiss T., Towards a scientific workflow-oriented computational

World Wide Grid. In: CoreGRID Technical Report, 2007,

http://westminsterresearch.wmin.ac.uk/5400/1/Kacsuk_Kiss_2007_final.pdf

[accessed on 31/7/2010]

[2]. Foster I., Kesselman C., Nick J., Tuecke S., The Physiology of the Grid,

2002, http://www.globus.org/alliance/publications/papers/ogsa.pdf [accessed

on 31/7/2010]

[3]. Workflow Management Coalition, The Workflow reference Model, Document

Number WFMC-TC-1003, Brussels, 1995,

http://www.wfmc.org/standards/docs/tc003v11.pdf [accessed on 31/7/2010]

[4]. The Open Grid Services Architecture WG, 2006,

https://forge.gridforum.org/projects/ogsa-wg [accessed on 31/7/2010]

[5]. OASIS, Business Process Execution Language version 2.0 specifications,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf [accessed on

31/7/2010]

[6]. IBM, Business Process Execution Language for Web Services version 1.1,

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-

bpel.pdf [accessed on 31/7/2010]

[7]. Addis M., Ferris J., Greenwood M., Li P., Experiences with e-Science

workflow specification and enactment in bioinformatics, In: e-Science All

Hands Meeting 2003, 2-4 September 2003, East Midlands Conference

Centre, Nottingham. pp. 459-466

[8]. xScufl specifications,

http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html [accessed on

31/7/2010]

[9]. (P-GRADE) Parallel Grid Run-time and Application Development

Environment, http://www.p-grade.hu/main.php?m=1 [accessed on

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.mygrid.org.uk/wiki/pub/Mygrid/AllHands2003/AHM2003WorkflowDraft3.pdf
http://www.mygrid.org.uk/wiki/pub/Mygrid/AllHands2003/AHM2003WorkflowDraft3.pdf

B I B L I O G R A P H Y

226

31/7/2010]

[10]. Oinn T., et al., Taverna: a tool for the composition and enactment of

bioinformatics workflows, In: Bioinformatics 20 (17), 2004, pp. 3045–54.

doi:10.1093/bioinformatics/bth361, PMID 15201187

[11]. Hull D., et al., Taverna: a tool for building and running workflows of services, In:

Nucleic Acids Res. 34 (Web Server issue): W729–32. doi:10.1093/nar/gkl320,

2006, PMID 16845108

[12]. Ludäscher B., et al., 2006, Scientific Workflow Management and the Kepler

System, In: Special Issue: Workflow in Grid Systems. Concurrency and

Computation: Practice & Experience 18(10), 2006, pp.1039-1065.

[13]. Altintas, I., et al., Kepler: An Extensible System for Design and Execution of

Scientific Workflows, In: Proceedings of the 16th international Conference

on Scientific and Statistical Database Management 2004, SSDBM. IEEE

Computer Society, Washington, DC, 423. DOI=

http://dx.doi.org/10.1109/SSDBM.2004.44.

[14]. Triana workflow system, http://www.trianacode.org/ [accessed on 31/7/2010]

[15]. WS-PGRADE/gUSE, http://www.guse.hu/?m=architecture&s=0 [accessed

on 31/7/2010]

[16]. Tuecke S., et al., Open Grid Services Infrastructure(OGSI), 2003,

http://www.globus.org/alliance/publications/papers/Final_OGSI_Specificatio

n_V1.0.pdf [accessed on 31/7/2010]

[17]. Grimshaw A., Grid Services Extend Web Services, In: SOA Magazine,

2003, http://soa.sys-con.com/node/39829 [accessed on 31/7/2010]

[18]. Stephens T., Knowledge: The essence of Meta Data: The Repository vs.

The Registry, 2005,

http://www.dmreview.com/article_sub.cfm?articleId=1025672 [accessed on

31/7/2010]

[19]. Delaitre T., Goyeneche A., Kacsuk P., Kiss T., Terstyanszky

G.Z., Winter S.C., GEMLCA: grid execution management for legacy code

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fbioinformatics%2Fbth361
http://www.ncbi.nlm.nih.gov/pubmed/15201187
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1538887
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fnar%2Fgkl320
http://www.ncbi.nlm.nih.gov/pubmed/16845108

B I B L I O G R A P H Y

227

architecture design, In: Proceedings for 30th Euromicro Conference, 2004,

pp. 477-483, ISBN: 0-7695-2199-1

[20]. Delaitre T., et al., GEMLCA: Running Legacy Code Applications as Grid

Services, Journal of Grid Computing, Volume 3, no.1-2, 2005, pg. 75-90,

ISSN 1570-7873

[21]. UK National Grid Service (NGS) application repository portal,

https://portal.ngs.ac.uk/JobProfiles.jsf [accessed on 31/7/2010]

[22]. Anjomshoaa A., et al., Job Submission Description Language(JSDL), 2005,

http://www.gridforum.org/documents/GFD.56.pdf [accessed on 31/7/2010]

[23]. Goble C. A., De Roure D. C., myExperiment: social networking for workflow-

using e-scientists, In: Proceedings of the 2nd Workshop on Workflows in

Support of Large-Scale Science, 2007, WORKS '07. ACM, New York, DOI=

http://doi.acm.org/10.1145/1273360.1273361

[24]. myExperiment Portal web page, http://www.myexperiment.org [accessed on

31/7/2010]

[25]. Pacini F., Job Description Language HowTo, http://www.infn.it/workload-

grid/docs/DataGrid-01-TEN-0102-0_2-Document.pdf [accessed on

31/7/2010]

[26]. Pacini F., JDL Attributes, http://www.infn.it/workload-grid/docs/DataGrid-01-

TEN-0142-0_2.pdf [accessed on 31/7/2010]

[27]. RSL, The Globus Resource Specification Language,

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html [accessed on

31/7/2010]

[28]. xRSL, Extended Resource Specification Language, In: NORDUGRID-

MANUAL-4 Reference manual, 2008, http://

www.nordugrid.org/documents/xrsl.pdf [accessed on 31/7/2010]

[29]. Field L., Schulz M. W., Grid Deployment Experiences: The path to a

production quality LDAP based grid information system, In: Proceedings of

the International Conference on Computing in High Energy and Nuclear

B I B L I O G R A P H Y

228

Physics (CHEP 2004), 2004.

[30]. Andreozzi S., Burke S., Field L., Konya B., GLUE Schema Specification

version 1.3, 2004, http://glueschema.forge.cnaf.infn.it/Spec/V13 [accessed

on 31/7/2010]

[31]. The OpenLDAP Project, http://www.openldap.org [accessed on 31/7/2010]

[32]. Request For Comments, RFC 4511: Lightweight Directory Access Protocol

(LDAP): The Protocol, 2006, http://tools.ietf.org/html/rfc4511

[33]. CHARON/iSoftrepo Grid application repository web page,

http://meta.cesnet.cz/charonwiki/isoftrepo/site.php?site=voce [accessed on

31/7/2010]

[34]. Kmunicek J., Kulhanek P., Petrek M., CHARON System - Framework for

Applications and Jobs Management in Grid Environment, Proceedings of

CGW05, 2006, http:// egee.cesnet.cz/sources/charon.pdf [accessed on

31/7/2010]

[35]. Kecskemeti G, et.al., Automatic deployment of Interoperable Legacy Code

Services, In: Proceedings for UK e-Science All Hands Meeting, 2005,

Nottingham, UK

[36]. Java Specification Request, JSR 168: Portlet Specification

http://www.jcp.org/jsr/detail/168.jsp [accessed on 31/7/2010]

[37]. Lagoze C., et al., Open Archives Initiative Protocol for Metadata Harvesting,

2008, http://www.openarchives.org/OAI/openarchivesprotocol.html

[accessed on 31/7/2010]

[38]. UK National Grid Service (NGS) web page, http://www.grid-support.ac.uk

[accessed on 31/7/2010]

[39]. D Meredith, et.al, A JSDL Application Repository and Artefact Sharing Portal

for Heterogeneous Grids and the NGS, In: Proceedings of the UK e-Science

All Hands Meeting, 2007, Nottingham, UK

[40]. GRIMIORES Functional Specifications,

http://www.omii.ac.uk/docs/3.4.0/GrimoiresDocumentation/funcspec.html

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.4256&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.4256&rep=rep1&type=pdf
http://www.allhands.org.uk/2007/proceedings/papers/824.pdf
http://www.allhands.org.uk/2007/proceedings/papers/824.pdf

B I B L I O G R A P H Y

229

[accessed on 31/7/2010]

[41]. Grid Security Infrastructure, www.globus.org/security/overview.html

[accessed on 31/7/2010]

[42]. Organization for the Advancement of Structured Information Standards

(OASIS), Open Grid Services Infrastructure – Web Service Resource

Framework (OGSI/WSRF), WS-Resource Specifications version 1.2,

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf [accessed

on 31/7/2010]

[43]. Extensible Markup Language (XML), Path Language Specifications version

1.0, http://www.w3.org/TR/xpath [accessed on 31/7/2010]

[44]. Organization for the Advancement of Structured Information Standards

(OASIS), Open Grid Services Infrastructure – Web Service Resource

Framework (OGSI/WSRF), WS-Notification Specifications, version 1.3,

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

[accessed on 31/7/2010]

[45]. Organization for the Advancement of Structured Information Standards

(OASIS), Open Grid Services Infrastructure – Web Service Resource

Framework (OGSI/WSRF), WS- Resource Lifetime Specifications, version

1.2, http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-

os.pdf [accessed on 31/7/2010]

[46]. myExperiment wiki page, http://wiki.myexperiment.org [accessed on

31/7/2010]

[47]. Project Trident, A Scientific Workflow Workbench,

http://research.microsoft.com/en-us/collaboration/tools/trident.aspx

[accessed on 31/7/2010]

[48]. Enabling Grid for E-Science (EGEE) Application Database,

http://grid.ct.infn.it/egee_applications/index.php?page=1 [accessed on

31/7/2010]

[49]. Enabling Desktop Grid for E-Science application repository,

B I B L I O G R A P H Y

230

http://www.edges-grid.eu/web/edges/49 [accessed on 31/7/2010]

[50]. Johnson D., et al., A Middleware Independent GridWorkflow Builder for

Scientific Applications, http://eprints.ecs.soton.ac.uk/18539/1/2009_-_18539

[accessed on 31/7/2010]

[51]. The Lattice Project web page, http://lattice.umiacs.umd.edu/gridservices.php

[accessed on 31/7/2010]

[52]. Deutsche-Grid (D-GRID) Projects web page, http://www.d-

grid.de/index.php?id=41&L=1 [accessed on 31/7/2010]

[53]. Australian Research Collaboration Service (ARCS) web page,

http://www.arcs.org.au/products-services/systems-services/grid-services

[accessed on 31/7/2010]

[54]. GridSAM submission interface web page,

http://www.omii.ac.uk/wiki/GridSAM [accessed on 31/7/2010]

[55]. Global Grid Forum, GRIDFTP Protocol Description, version 2,

http://www.ogf.org/documents/GFD.47.pdf [accessed on 31/7/2010]

[56]. Rajasekar A., et al., Storage Resource Broker - Managing Distributed Data

in a Grid, In: Computer Society of India Journal, Special Issue on SAN,

2003, Vol. 33, No. 4, pp. 42-54

[57]. Storage Resource Manager Interface Specifications, version 2.0,

https://sdm.lbl.gov/srm-wg/doc/srm.methods.v2.0.doc [accessed on

31/7/2010]

[58]. The GLOBUS Alliance web page, http://www.globus.org [accessed on

31/7/2010]

[59]. Globus toolkit version 2, Documentation,

http://www.globus.org/toolkit/docs/2.4/ [accessed on 31/7/2010]

[60]. MPI-Forum, Message Passing Interface (MPI) specifications, version 2.2,

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf [accessed on

31/7/2010]

[61]. The Advanced Resource Connector (ARC),

http://www.sdsc.edu/srb/Pubs/CSI-paper-sent.doc
http://www.sdsc.edu/srb/Pubs/CSI-paper-sent.doc

B I B L I O G R A P H Y

231

http://www.nordugrid.org/middleware/ [accessed on 31/7/2010]

[62]. NorduGrid Projects web page, http://www.nordugrid.org [accessed on

31/7/2010]

[63]. Swegrid Project web page, http://www.snic.vr.se/projects/swegrid [accessed

on 31/7/2010]

[64]. KnowARC Project web page, http://www.knowarc.eu [accessed on

31/7/2010]

[65]. Nordic Datagrid Facility (NDGF) Project web page,

http://www.ndgf.org/ndgfweb/home.html [accessed on 31/7/2010]

[66]. Web Service Grid Resource Allocation and Management (WS-GRAM),

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/ [accessed on

31/7/2010]

[67]. Novotny J., et al., An Online Credential Repository for the Grid: MyProxy,

2001, http://www.globus.org/alliance/publications/papers/myproxy.pdf

[accessed on 31/7/2010]

[68]. Request For Comments, RFC 2459: Internet X.509 Public Key Infrastructure

Certificate and CRL Profile, http://www.ietf.org/rfc/rfc2459.txt [accessed on

31/7/2010]

[69]. Dresher M, et al., JSDL parameter sweep extension,

http://www.ogf.org/documents/GFD.149.pdf [accessed on 31/7/2010]

[70]. Bai, X., Resource matching and a matchmaking service for an intelligent

grid, In: International Journal of Computational Intelligence 1.3 (2004),

pg.197

[71]. String metric, http://en.wikipedia.org/wiki/String_metric [accessed on

31/7/2010]

[72]. Damerau-Levenshtein distance metric,

http://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

[accessed on 31/7/2010]

[73]. Smith-Waterman string distance metric, http://en.wikipedia.org/wiki/Smith-

B I B L I O G R A P H Y

232

Waterman [accessed on 31/7/2010]

[74]. Jaro Winkler distance metric, http://en.wikipedia.org/wiki/Jaro-

Winkler_distance [accessed on 31/7/2010]

[75]. Needleman-Wunsch string distance metric,

http://en.wikipedia.org/wiki/Needleman-Wunsch [accessed on 31/7/2010]

[76]. Monge-Elkan string distance metric,

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html#monge [accessed on

31/7/2010]

[77]. Term Frequency Inverse Document Frequency (TFIDF),

http://en.wikipedia.org/wiki/Tf%E2%80%93idf [accessed on 31/7/2010]

[78]. Jaccard index, Tanimono coefficient,

http://en.wikipedia.org/wiki/Jaccard_index [accessed on 31/7/2010]

[79]. Dice‟s coefficient, http://en.wikipedia.org/wiki/Dice%27s_coefficient

[accessed on 31/7/2010]

[80]. Jensen-Shannon Divergence, http://en.wikipedia.org/wiki/Jensen-

Shannon_divergence [accessed on 31/7/2010]

[81]. MacCartney B., NLP Lunch Tutorial: Smoothing, 2005,

http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

[accessed on 31/7/2010]

[82]. Cohen W., et al., A Comparison of String Distance Metrics for Name-

Matching Tasks, In: International Joint Conference on Artificial Intelligence,

2003, http://www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf

[accessed on 31/7/2010]

[83]. Monge A. E., et al., The field matching problem: Algorithms and

applications, In: Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, 1996, pp. 267-270

[84]. Ankolekar A., et al., Daml-s: Semantic markup for web services, In: The

emerging semantic web, by Isabel F. Cruz, 2002, pp.131-152, ISBN:

1586032550

http://citeseer.ist.psu.edu/monge96field.html
http://citeseer.ist.psu.edu/monge96field.html
http://www.alibris.co.uk/search/books/isbn/1586032550

B I B L I O G R A P H Y

233

[85]. Klusch M., Fries B., Sycara K., Automated semantic web service discovery

with OWLS-MX, In: Proceedings of the Fifth international Joint Conference

on Autonomous Agents and Multiagent Systems, 2006, AAMAS '06. ACM,

pp. 915-922. DOI= http://doi.acm.org/10.1145/1160633.1160796

[86]. Sridhara G., et al., Identifying word relations in software: a comparative

study of semantic similarity tools, presentation at MASPLAS '09 Mid-Atlantic

Student Workshop on Programming Languages and Systems, (2009),

Haverford College, Philadelphia, USA

[87]. Iosup, A., et al., Inter-operating grids through delegated matchmaking, In:

Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC

'07, pp. 1-12. DOI= http://doi.acm.org/10.1145/1362622.1362640

[88]. Montella R., et al., An Integrated ClassAd-Latent Semantic Indexing

Matchmaking Algorithm for Globus Toolkit Based Computing Grids, In:

Lecture notes in computer science, Volume 4967/2008, pg. 942-950, ISBN

978-3-540-68105-2

[89]. Liu C., et al., Design and Evaluation of a Resource Selection Framework for

Grid Applications, In: Proceedings of the 11th IEEE International

Symposium on High Performance Distributed Computing, 2002, HPDC-11

2002, pg 63-72, ISBN: 0-7695-1686-6

[90]. Condor Manual,

http://www.cs.wisc.edu/condor/manual/v6.4/1_2Condor_s_Power.html

[accessed on 31/7/2010]

[91]. Condor ClassAds, http://www.cs.wisc.edu/condor/classad [accessed on

31/7/2010]

[92]. Liu C., Yang L., Foster I., Angulo D., Design and evaluation of a resource

selection framework for GRID applications, In: Proceedings of the Eleventh

IEEE International Symposium on High-Performance Distributed Computing

(HPDC-11), 2002, pp.63.

[93]. Hurault A., et al., Using ontology for resources matchmaking in grid

Middleware, ftp://ftp.irit.fr/IRIT/ACADIE/HuraultAida.pdf [accessed on

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7999
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7999

B I B L I O G R A P H Y

234

31/7/2010]

[94]. Knublauch H., et al., The protégé owl plugin: An open development

environment for semantic web applications, In: Third International Semantic

Web Conference - ISWC 2004, Hiroshima, Japan

[95]. Web Ontology Language (OWL) Overview, http://www.w3.org/TR/owl-

features/ [accessed on 31/7/2010]

[96]. Unicore WF as NAREGI-WFML,

http://www.unicore.eu/summit/2008/presentations/06_Hoeing_WS-BPEL.pdf

[accessed on 31/7/2010]

[97]. Sycara K., et al., LARKS: Dynamic Matchmaking Among Heterogeneous

Software Agents in Cyberspace, In: Autonomous Agents and Multi-Agent

Systems, 5, 2002, pp.173–203.

[98]. Sycara K., Lu J., Klusch M., Widoff S., Dynamic Service Matchmaking

among Agents in Open Information Environments, In: Journal ACM

SIGMOD Record, Special Issue on Semantic Interoperability in Global

Information Systems, 1999, pp 47-53. DOI=

http://doi.acm.org/10.1145/309844.309895

[99]. Sycara K., Lu J., Klusch M., Widoff S., Matchmaking Among Heterogeneous

Agents in the Internet, In: Proceedings AAAI Spring Symposium on

Intelligent Agents in Cyberspace, 1999, Stanford, USA,

http://www.cs.cmu.edu/~softagents/papers/aaai4.pdf, [accessed on

31/7/2010]

[100]. Sycara K., Lu J., Klusch M., Interoperability among Heterogeneous Software

Agents on the Internet, In: Technical Report CMU-RI-TR-98-22, 1998, CMU

Pittsburgh, USA.

[101]. Klusch M, et al., OWLS-MX: Hybrid OWL-S Service Matchmaking,

http://www-ags.dfki.uni-sb.de/~klusch/papers/owlsmx-aaai.pdf [accessed on

31/7/2010]

[102]. World Wide Web Consortium, Feature Synopsys for OWL Lite and OWL,

http://www.w3.org/TR/2002/WD-owl-features-20020729/ [accessed on

http://www.cs.cmu.edu/~softagents/papers/ACM99-L.ps
http://www.cs.cmu.edu/~softagents/papers/ACM99-L.ps

B I B L I O G R A P H Y

235

31/7/2010]

[103]. Larry M. Deschaine L.M., Brice R.S., Nodine M.H., Use of InfoSleuth to

Coordinate Information Acquisition, Tracking and Analysis in Complex

Applications, In: Proceedings of Advanced Simulation Technologies

Conference, 2000,

http://www.argreenhouse.com/InfoSleuth/publications/astc2000.pdf

[accessed on 31/7/2010]

[104]. Fowler J., Perry B., Nodine M., Bargmeyer B., Agent-Based Semantic

Interoperability inInfoSleuth,In: SIGMOD Record 28:1, 1999, pp. 60-67.

[105]. Nodine M., Fowler J., Perry B., An Overview of Active Information Gathering

in InfoSleuth, In: Proceedings of the International Symposium on

Cooperative Database Systems for Advanced Applications, 1999,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.6762&rep=rep

1&type=pdf [accessed on 31/7/2010]

[106]. Nodine M., et al., Semantic Brokering over Dynamic Heterogeneous Data

Sources in InfoSleuth, In: Proceedings of the International Conference on

Data Engineering, 1999, pp 358-365.

[107]. Nodine M., Perry B., Unruh A., Experience with the InfoSleuth Agent

Architecture, In: Proceedings of AAAI-98 Workshop on Software Tools for

Developing Agents, 1998,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.4133&rep=rep

1&type=pdf [accessed on 31/7/2010]

[108]. Singh M., et al., Facilitating Open Communication in Agent Systems, In:

Lecture Notes in AI, v. 1365, Intelligent Agents IV: Agent Theories,

Architectures, and Languages, 1998, pp. 281-296.

[109]. Bayardo R., et al., Semantic Integration of Information in Open and Dynamic

Environments, In: Proceedings of the ACM SIGMOD International

Conference on Management of Data, 1997, pp. 195-206.

[110]. Arni F., et al., The deductive database system LDL++,

http://arxiv.org/abs/cs/0202001v1 [accessed on 31/7/2010]

B I B L I O G R A P H Y

236

[111]. Martin D., et al., Bringing Semantics to Web Services: The OWL-S

Approach, In: First International Workshop on Semantic Web Services and

Web Process Composition (SWSWPC 2004) 6-9, 2004, San Diego,

California, USA,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.2273&rep=rep

1&type=pdf [accessed on 31/7/2010]

[112]. Noy N., Musen M., PROMPTDIFF: A Fixed-Point Algorithm for Comparing

Ontology Versions, In: Proceedings in Eighteenth National Conference on

Artificial Intelligence, 2002, pp 744-750

[113]. Pallis G., et al., Effective Keyword Search for Software Resources Installed

in Large-Scale Grid Infrastructures, In: IEEE/WIC/ACM International Joint

Conferences on Web Intelligence and Intelligent Agent Technologies, 2009,

pp 482-489, ISBN 978-0-7695-3801-3

[114]. Indumathi D., Chitra A., Software Agent Based Search Engine Using Grid

Technology, In: Academic Open Internet Journal, v.16, 2005,

http://www.acadjournal.com/2005/v16/part6/p8 [accessed on 31/7/2010]

[115]. Fielding R. T., Taylor R. N., Principled Design of the Modern Web Architecture,

ACM Transactions on Internet Technology (TOIT) 2 , pp 115–150, ISSN 1533-5399

[116]. Fielding R. T., Architectural Styles and the Design of Network-based Software

Architectures, Doctoral dissertation, 2000, University of California, Irvine

[117]. AUTODOCK application web page, http://autodock.scripps.edu [accessed

on 31/7/2010]

[118]. Open Archives Initiative web page, http://www.openarchives.org [accessed

on 31/7/2010]

[119]. Open Archive Initiative – Object Reuse and Exchange, OAI-ORE

specifications and user guide, version 1.0,

http://www.openarchives.org/ore/1.0/toc [accessed on 31/7/2010]

[120]. Fedora Commons repository framework web page, http://www.fedora-

commons.org [accessed on 31/7/2010]

http://www.cs.cmu.edu/~softagents/papers/OWL-S-SWSWPC2004-final.pdf
http://www.cs.cmu.edu/~softagents/papers/OWL-S-SWSWPC2004-final.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5284806
http://www.acadjournal.com/2005/v16/part6/p8
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://worldcat.org/issn/1533-5399
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

B I B L I O G R A P H Y

237

[121]. ePrints repository framework web page, http://www.eprints.org [accessed

on 31/7/2010]

[122]. dSpace Repository framework web page, http://www.dspace.org [accessed

on 31/7/2010]

[123]. Maslov A., Adding OAI-ORE Support to Repository Platforms, In: The 4th

International Conference on Open Repositories, 2009, Atlanta, Georgia,

http://journals.tdl.org/jodi/article/download/749/640 [accessed on 31/7/2010]

[124]. Fedora Commons FOXML language, Introduction to Fedora Object XML,

http://www.fedora-

commons.org/documentation/3.0b1/userdocs/digitalobjects/introFOXML.htm

l [accessed on 31/7/2010]

[125]. GridWay web page, http://www.gridway.org/doku.php?id=start [accessed on

31/7/2010]

[126]. Japanse National Research Grid Initiative (NAREGI) web page,

http://www.naregi.org/index_e.html [accessed on 31/7/2010]

[127]. Service Oriented Collaborations for Industry and Commerce (GRIA) web

page, http://www.gria.org [accessed on 31/7/2010]

[128]. Genesis II Project web page,

http://www.cs.virginia.edu/~vcgr/wiki/index.php/The_Genesis_II_Project

[accessed on 31/7/2010]

[129]. EGEE Project web page, http://www.eu-egee.org [accessed on 31/7/2010]

[130]. SEE-Grid Project web page, http://www.see-grid.org [accessed on

31/7/2010]

[131]. EELA Grid Project web page, http://www.eu-

eela.eu/index.php?option=com_content&task=view&id=26&Itemid=50

[accessed on 31/7/2010]

[132]. EUMedGrid Project web page, http://www.eumedgrid.eu [accessed on

31/7/2010]

[133]. EU-India Grid Project web page, http://www.euindiagrid.eu [accessed on

B I B L I O G R A P H Y

238

31/7/2010]

[134]. EUChinaGrid Project web page, http://www.euchinagrid.org [accessed on

31/7/2010]

[135]. Baltic-Grid II Project web page, http://www.balticgrid.org [accessed on

31/7/2010]

[136]. TRIPLE: subject–predicate–object expression in Resource Description

Framework - Concepts and Abstract Syntax, http://www.w3.org/TR/rdf-

concepts [accessed on 31/7/2010]

[137]. Sycara K., et al., Automated discovery, interaction and composition of

Semantic Web services, In: Journal of Web Semantics, Vol. 1, No. 1, 2003,

pp. 27-46

[138]. Li L., Horrocks I., A software framework for matchmaking based on

semantic web technology, In: Proceedings of the 12th international

Conference on World Wide Web, 2003, WWW '03, pp 331-339, DOI=

http://doi.acm.org/10.1145/775152.775199

[139]. Request For Comments, RFC 2616: Hypertext Transfer Protocol (HTTP)

1.1, http://www.ietf.org/rfc/rfc2616.txt [accessed on 31/7/2010]

[140]. Tarrant D., et al., Using OAI-ORE to Transform Digital Repositories into

Interoperable Storage and Services Applications, In: Code{4}lib Journal, v.

6, 2009, ISSN 1940-5758, http://journal.code4lib.org/articles/1062

[accessed on 31/7/2010]

[141]. Virtual Organization Membership Service (VOMS), http://edg-

wp2.web.cern.ch/edg-wp2/security/voms/voms.html [accessed on

31/7/2010]

[142]. Deterministic algorithm, http://en.wikipedia.org/wiki/Deterministic_algorithm

[accessed on 31/7/2010]

[143]. Oracle White Paper, Oracle Application Server 10g – Grid Computing,

Oracle Corporation, 2005,

http://www.oracle.com/technology/tech/grid/collateral/OracleAS10g_gcwp.p

http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/Resource_Description_Framework

B I B L I O G R A P H Y

239

df [accessed on 31/7/2010]

[144]. Kusnetzky D., Olofson C., Oracle 10g: Putting Grids to Work, Oracle

Corporation, 2004,

http://www.oracle.com/technology/tech/grid/collateral/idc_oracle10g.pdf

[accessed on 31/7/2010]

[145]. McKee B., et al, Introducing IBM WebSphere Service Registry and

Repository, Part1: A day in the life of WebSphere Service Registry and

Repository in the SOA life cycle,

2006,http://www.ibm.com/developerworks/websphere/library/techarticles/06

09_mckee/0609_mckee.html [accessed on 31/7/2010]

[146]. McKee B. et al, Introducing IBM WebSphere Service Registry and

Repository, Part2: Architecture, APIs, and content, 2006,

http://www.ibm.com/developerworks/websphere/library/techarticles/0609_m

ckee2/0609_mckee2.html [accessed on 31/7/2010]

[147]. Global Grid Forum, Application Contents Service (ACS) Specification 1.0,

May 2006, http://www.ogf.org/documents/GFD.73.pdf [accessed on

31/7/2010]

[148]. Aloisio G., et al., WebGRelC: Towards Ubiquitous Grid Data Management

Services, 2006,

http://www.cogkit.org/GCE06/papers/CameraReady_116.pdf [accessed on

31/7/2010]

[149]. Java Commodity Kit web page, http://www.globus.org.cog.java [accessed

on 31/7/2010]

[150]. Islandora/ Drupal – Fedora commons modules,

http://vre.upei.ca/dev/islandora [accessed on 31/7/2010]

[151]. gSearch web page,

http://www.fedora.info/download/2.2/services/genericsearch/genericsearch-

1.1.zip [accessed on 31/7/2010]

[152]. gSearch installation notes, http://www.fedora-

B I B L I O G R A P H Y

240

commons.org/download/2.2/services/genericsearch/doc/index.html

[accessed on 31/7/2010]

[153]. Fedora commons OAI-PMH provider,

http://downloads.sourceforge.net/fedora-commons/oaiprovider-1.2.zip

[accessed on 31/7/2010]

[154]. Fedora commons OAI-PMH provider installation notes,

https://wiki.duraspace.org/display/FCSVCS/OAI+Provider+Configuration+Re

ference [accessed on 31/7/2010]

[155]. Dublin Core Metadata initiative, Dublin Core Metadata Element Set, version

1.1, http://dublincore.org/documents/dces [accessed on 31/7/2010]

[156]. Fedora commons OAI-ORE provider,

http://sourceforge.net/projects/oreprovider [accessed on 31/7/2010]

[157]. Fedora commons OAI-ORE provider installation notes,

http://oreprovider.sourceforge.net/examples.html [accessed on 31/7/2010]

[158]. ORE User Guide – Resource Map implementation in Atom,

http://www.openarchives.org/ore/1.0/atom [accessed on 31/7/2010]

[159]. Apache HTTP server web page, http://httpd.apache.org [accessed on

31/7/2010]

[160]. NGS Certification Authority web page, https://ca.grid-support.ac.uk/cgi-

bin/pub/pki?cmd=getStaticPage&name=index [accessed on 31/7/2010]

[161]. Eclipse Modeling Framework web page,

http://www.eclipse.org/modeling/emf [accessed on 31/7/2010]

[162]. Bernard‟s Software Package (BSoft) web page,

http://lsbr.niams.nih.gov/bsoft [accessed on 31/7/2010]

[163]. Virtual Network Computing System,

http://en.wikipedia.org/wiki/Virtual_Network_Computing [accessed on

31/7/2010]

[164]. VMWare ESXi hypervisor web page, http://www.vmware.com/products/esxi/

[accessed on 31/7/2010]

http://oreprovider.sourceforge.net/examples.html
http://www.openarchives.org/ore/1.0/atom

B I B L I O G R A P H Y

241

[165]. GlassFish application container version 3, https://glassfish.dev.java.net

[accessed on 31/7/2010]

[166]. Access Data, White Paper, MD5 collisions – The effect on computer

forensics,

http://www.accessdata.com/media/en_us/print/papers/wp.md5_collisions.en

_us.pdf [accessed on 31/7/2010]

[167]. LingPIPE, String Comparison Tutorial, http://alias-

i.com/lingpipe/demos/tutorial/stringCompare/read-me.html [accessed on

31/7/2010]

[168]. Stringmetrics web page, http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

[accessed on 31/7/2010]

[169]. GsiSSH-Term web page, http://www.ngs.ac.uk/tools/gsisshterm [accessed

on 31/7/2010]

[170]. Linux diff online manual, http://linux.about.com/library/cmd/blcmdl1_diff.htm

[accessed on 31/7/2010]

Appendix A: GAMRS Repository Model

Appendix B: MRDL Application Description Language

244

Appendix C: String-distance Methods

tested in GAMRS

The Damerau-Levenshtein distance metric compares two finite sequences of

symbols (i.e. strings) and returns the distance between them by counting the

minimum number of operations needed to transform one string into the other. An

operation is defined as an insertion, deletion, substitution or transposition of two

characters. The lower the Damerau-Levenshtein score is, the more similar the

strings are, with „0‟ meaning the strings are identical.

The Case distance metric is a variation of Damerau-Levenshtein and computes the

similarity score of two strings in the same fashion. The difference is that the Case

metric is case-insensitive (i.e. makes no difference between uppercase and

lowercase letters) and it does not count punctuation signs in its similarity score. Like

the Damerau-Levenshtein score, the lower the Case distance is, the more similar

the strings are.

The Fixed Weight string metric is another variation of the Damerau-Levenshtein

distance. While Damerau-Levenshtein makes no distinction between the

importance of each operation, Fixed Weight metric allows the assignment of

different weights to the four operations. In the tests done as part of this research it

was used an implementation of Fixed Weight with the weights suggested for

English text in [167]:

 . . . and .

The Fixed Weight score is the same as in the methods discussed above: the lower

the distance, the more similar the strings.

The Jaro-Winkler similarity distance is also based on character matching. For two

strings s1,s2, the Jaro distance is defined as:

j

 (1)

245

where m is the number of matching characters; t is the number of transpositions

needed to obtain the same sequence of matching characters in both strings; and |s|

denotes the number of characters in string s.

Winkler modified the Jaro distance so that the new distance gives better scores to

strings that start identically for a prefix of length L. Mathematically, the Jaro-Winkler

distance is defined in relation to the Jaro distance:

j
 j j (2)

where js1,s2 is the Jaro distance for strings s1,s2; L is the length of the common prefix

at the start of the string (with a threshold value of 4 characters; L ≤ 4) and p is a

constant used to adjust the score upwards for having common prefixes. The

standard value for this constant is 0.1. The higher the Jaro-Winkler score is, the

more similar the strings are. A score of 0 corresponds to no similarity, while 1

equates to an exact match.

The TFIDF (term frequency, inverse document frequency) is a weight widely-used

in natural language processing and information retrieval, which gives a measure of

how important a word (i.e. token or term) is to a document in a collection. TFIDF

relates the importance of the word with the number of occurrences of that word

both in the document under analysis and in the entire collection of documents (i.e.

“corpus” in specialized literature). TFIDF specifies that: “The importance

increases proportionally to the number of times a word appears in the document

but is offset by the frequency of the word in the corpus.”[18]

For the mathematical representation of TFDIF we have used the following

notations:

t = term; basic entity in token-based analysis; the equivalent of a word in natural

language

d = document; a set of terms; in our case, a paragraph of text written in English,

which represents a free-text description of a Grid application

http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Proportionality_(mathematics)

246

C = corpus; a collection of documents

 the number of occurrences of the term t in document d

the number of occurrences of the term t in the collection of documents C

 the number of terms in document d

 the number of documents in corpus

 the number of terms in corpus

 = the number of documents in

corpus C which contain the term t

Given these, the term frequency of the term t in document d is the ratio between

the number of occurrences of the term t in document d and the total number of

terms contained in document d.

 (3)

The term frequency of the term t in a corpus C is the ratio between the number of

occurrences of the term t in all documents in corpus C and the overall number of

terms contained in all documents in corpus C.

 (4)

The inverse document frequency of a term t used in documents contained in a

corpus C is a measure of the general importance of the term t in corpus C and is

obtained by dividing the total number of documents in corpus C by the number of

documents in C which contain the term t, and then taking the logarithm of

that quotient.

 (5)

http://en.wikipedia.org/wiki/Documents
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Quotient

247

The mathematical formula of TFIDF can now be obtained by combining formulas

(3) and (5):

 (6)

This is the most widely-used formula for TFIDF and we also used this mathematical

expression for the analysis of the paragraphs of free-text descriptions of Grid

applications. However, mathematical variants such as (7) and (8) can also be

encountered in the literature, but they are rare.

 (7)

 (8)

As mentioned before, TFIDF is not a distance but a weight. Subsequently, from

each document one can construct a vector of TFIDF weights relative to the

frequency of the terms in the document. A common way to compare two vectors is

to measure the cosine value of the angle between these vectors. Mathematically, if

A and B are vectors over a vector space Ʋ (i.e. in our case Rn), the cosine of the

angle between A and B is calculated as follows:

cos

 (9)

where represents the dot product between vectors A and B, and |x|

represents the length of the vector.

On Rn, the intuitive notion of the length of vector is captured by

the following formula:

 (10)

248

The TFIDF/Cosine distance between two documents d1 and d2, (both elements of

the same collection C) is defined as the cosine value of the angle between their

vectors of TFIDF weights. Mathematically, using formulae (6), (9) and (10) the

TFIDF/Cosine distance is calculated as:

 (11)

An important consequence of using formula (6) for TFIDF is that its values will

always be positive. Consequently, the cosine similarity of two documents will range

from 0 to 1, with 1 meaning the same vectors of term frequencies, hence very

similar documents.

The hybrid similarity distance Jaro-Winkler/TFIDF uses the same logic as the

TFIDF/Cosine method, except it tries to eliminate small typos that may occur in free

texts. Specifically, for the first stage, it uses the Jaro-Winkler distance to compare

the terms contained in two documents and suggests that pairs of terms with very

high similarity scores (i.e. usually over 0.9) are considered as just one term. In a

second stage, this method computes the TFIDF vectors and uses the cossim

formula (11) to obtain the similarity score of the two documents. Essentially, this

method tries to eliminate the cases when a word is misspelled and, in particular, the

case where the error consists of just two consecutive characters being swapped –

which would require just one transposition of those characters to make the word

correct again.

Example

For example, the word Grid can be incorrectly written as Gird. In this case, using

formula (1) with m = s = s = 4 and t = 1, it gives a Jaro distance j

0.9167. Implicitly, using the formula (2) with p = 0.1 and L = 1 it gives a Jaro-Winkler

score of j 0.9167 + 0.1 x 1 x (1 - 0.9167) 0.925.

Because j 0.9, this solution suggest that, for any two documents

contained within the corpus under analysis, instead of regarding Grid and Gird as two

249

different terms, they should be regarded as one and the same term and the frequency

vectors should be constructed accordingly.

The Jensen–Shannon Divergence (JSD – also known in literature as information

radius or total divergence to the average) is a widespread method of measuring the

similarity between two or more probability distributions.

The general definition of the Jensen-Shannon divergence, which allows for the

comparison of two or more distributions, is:

 (12)

where {αi: i=1,2,...,n} are the weights for the probability distributions {Pi: i=1,2,...,n}

and H(Pi) is the Shannon entropy for distribution Pi. However, in the majority of

cases formula (12) is used to compare only two probability distributions at one time

and the weights associated with them are selected as α1 = α2 = 1/2; hence,

 (13)

The Jensen-Shannon divergence relates to the concept of information entropy and

the most popular entropy used in computer science is Shannon‟s entropy. The

concept of Shannon‟s entropy relies on the concept of uncertainty:

For a random variable X with n outcomes each with a probability

of happening , the uncertainty associated with each outcome is defined as:

 log (14)

This definition captures the following idea: “the lower the probability of an

event to happen, the higher the uncertainty associated with that event”. The

logarithm is used to provide the additivity characteristic for independent uncertainty

(i.e. log) = log log . The average uncertainty associated with the

random variable X is defined as:

 log

 (15)

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Shannon_entropy

250

For a random variable X with n outcomes {xi: i=1,2,...,n}, each with a probability of

happening p(xi), Shannon‟s entropy H(X) is defined as “the average uncertainty

associated with the random variable X”. Hence, formula (15) gives the

mathematical representation of the Shannon‟s entropy:

 log

 (16)

This formula is used in natural language processing and information retrieval and is

the one we used in our research for the comparison of Grid application

descriptions. In our case the free-text paragraph that represents the description of a

Grid application can be seen as a probability distribution of a set of terms {ti:

i=1,2,...,n} (i.e. words), each having a probability of occurrence p(ti). Therefore, a

solution to find similarities between two documents/paragraphs is to use the

Jensen-Shannon divergence and find out to what extent the probability distributions

of their terms differ from the average. If these probability distributions are close to

the average, it is highly likely that the two documents describe similar applications.

In our research we have analyzed three types of methods that use the Jensen-

Shannon divergence. These methods differ among each other in terms of the

probability function they use to calculate the occurrence of a term in a document.

The first one, the classic Jensen-Shannon divergence – or simply Jensen-

Shannon divergence – uses the term frequency (formula 3) as p(ti)d – probability of

a term ti to occur in a document d:

 (17)

The second and third Jensen-Shannon methods are methods of interpolation,

which combine the importance of the term in the document with the importance of

the term in the whole corpus.

The Jelinek-Mercer/Jensen-Shannon method uses the following technique of

interpolating the term frequency in a document with the term frequency in the entire

corpus:

251

 (18)

For natural language processing, usually the value of is 1/2, which gives us the

formula used by the Jelinek-Mercer/Jensen-Shannon method: Let C be a collection

of documents {dj: j=1,2,...,n}. The probability of a term {ti: i=1,2,...,m}, to occur in dj

is given by the formula:

 (19)

Formula (19) shows that instead of focusing just on the importance of the term in

the document (i.e. tf(ti)dj), the Jelenik-Mercer method combines it evenly (i.e. =

1/2) with the importance of the term in the whole corpus (i.e. tf(ti)C).

The Dirichlet/Jensen-Shannon method uses a different technique of interpolation

between the term frequency in a document and the term frequency in the entire

collection: Let C be a collection of documents {dj: j=1,2,...,n}. The probability of a

term {ti: i=1,2,...,m}, to occur in dj is given by the formula:

 (20)

where µ is a scaling factor. Usually, for natural language processing µ = 1. Thus,

formula (20) becomes:

 (21)

In most of the cases encountered in natural language processing (1 + |dj|t) can be

approximated with |dj|t (i.e. the number of terms contained in a document is big

enough so that a small variation of (+1) cannot change the result significantly).

Hence, the Dirichlet/Jensen-Shannon method uses the following formula:

 (22)

252

Formula (22) shows that instead of focusing only on the importance of the term in

the document (i.e. tf(ti)dj), the Dirichlet method combines it with the importance of

the term in the whole corpus (i.e. tf(ti)C), scaled by the inverse number of the terms

contained in the document (i.e. 1/|dj|t).

Formulae (17), (19) and (22) are the most widespread forms of term occurrence

probabilities that can be encountered in Jensen-Shannon divergence methods

used in natural language processing. Consequently, we have used these forms for

the analysis of the free-text part of application description documents.

The Jaccard coefficient is a measure of the similarity between two sample sets

and is defined as the size of the intersection divided by the size of the union of the

sample sets:

 (23)

The Jaccard distance measures the dissimilarity between two sample sets and is

obtained by subtracting the Jaccard coefficient from 1 – formula (24

 (24)

Similar to the Jaccard coefficient, Dice's coefficient is a measure of the similarity

between sample sets. In natural language processing, for documents X and Y the

coefficient is defined as:

 (25)

The Dice distance measures the dissimilarity between two sample sets and is

obtained by subtracting the Dice coefficient from 1:

 (26)

The lower the Dice distance (or Jaccard distance) is, the more similar two strings

are.

http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Union_(set_theory)

9. Appendix D: Repository Frameworks

Name
Description

Usage
Security

CRUD
Search

User-defined
meta-model

User-friendly
interface

HTTP
REST

interface

OAI-PMH OAI-ORE

ePrints
Open source
Available for

download

HTTPS
supported

CRUD supported
Search supported

Supported Web-interface Supported Supported
Not yet

supported

Fedora
Open source
Available for

download

HTTPS
supported

CRUD supported
Search supported

Supported
Web-interface

and JAVA client
Supported Supported Supported

ACS
Open source
Available for

download

GSI
supported

CRUD supported
Search supported

Supported Not provided
Requires

development
Not

supported
Not

supported

Oracle 10g
Open source
Available for

download

HTTPS
supported

CRUD supported
Search supported

Supported
Graphical client

provided
N/A

Not
provided

Not
provided

IBM
WebSphere

Commercial
software

Available for
download

HTTPS
Supported

CRUD supported
Search supported

Supported

No client
provided by

default; requires
development

N/A N/A N/A

WebGRelC

Open source
No release

candidate at the
time this report

was being written

GSI
supported

CRUD supported
Search supported

Partial
support

JAVA client and
JSR-168

compliant client
Not provided Not

provided
Not

provided

JAVA CoG
Kit

Open source
Available for

download

* JAVA CoG Kit is a development environment; in theory, it supports all the requirements specified by this research. However, all of
them have to be engineered from community–added code in combination with newly written code.

Colour codes:

 Requirement not fulfilled; needs further development

 Requirement fulfilled

 Requirement fulfilled, but a better alternative is preferred

254

Appendix E: OAI-PMH

GetRecord query example

http://192.168.1.68:8080/fedora/oai?verb=GetRecord&identifier=oai:example.org:g
amrs:application549&metadataPrefix=oai_dc

<OAI-PMH xmlns=http://www.openarchives.org/OAI/2.0/
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
<responseDate>2010-05-26T14:56:36Z</responseDate>
<request verb="GetRecord" metadataPrefix="oai_dc"
identifier="oai:example.org:gamrs:application549">http://192.168.56.101:8080/fedo
ra/oai</request>
<GetRecord>
<record>
<header>
<identifier>oai:example.org:gamrs:application549</identifier>
<datestamp>2010-05-26T15:35:54Z</datestamp> </header>
<metadata>
<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>AMBER</dc:title>
<dc:creator>Alex Tudose</dc:creator>
<dc:description>
This is an example-job of Amber for parallel run.The input files required for this
parallel example-run of sander.LES.MPI can be staged to your home (or working)
directory by clicking on "DataStaging" page/tab. When you submit the
job and have "Stage all data when submitting job" checked on, these
files will automatically be uploaded to your selected directory on your selected run
host. If your working directory will be different from your home directory, you can
define a new directory on the "Detail" page/tab,
"WORKINGDIR" box.The executable should be given as the FIRST
argument (on the "Arguments page) and not in the executable box. This box
should always have the value /usr/ngs/AMBER or /usr/ngs/AMBER_9_0 if you want
to run version 9.0.
</dc:description>
<dc:identifier>gamrs:application549</dc:identifier>
</oai_dc:dc> </metadata> </record>
</GetRecord></OAI-PMH>

http://192.168.1.68:8080/fedora/oai?verb=GetRecord&identifier=oai:example.org:gamrs:application549&metadataPrefix=oai_dc
http://192.168.1.68:8080/fedora/oai?verb=GetRecord&identifier=oai:example.org:gamrs:application549&metadataPrefix=oai_dc

255

Appendix F: OAI-ORE document

of a GAMRS object – example

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <id>info:fedora/gamrs:application549</id>
 <title type="text">AMBER </title>
 <updated>2010-05-26T19:35:54.370Z</updated>
 <author><name>fedoraAdmin</name></author>
 <category term="Active" scheme="info:fedora/fedora-
system:def/model#state"></category>
 <category term="2009-10-29T21:38:20.329Z" scheme="info:fedora/fedora-
system:def/model# createdDate"></category>
 <icon>http://www.fedora-
commons.org/images/logo_vertical_transparent_200_251.png</icon>
<entry>
 <id>info:fedora/gamrs:application549/DC</id>
 <title type="text">DC</title>
 <updated>2010-05-26T19:35:54.370Z</updated>
 <link href="info:fedora/gamrs:application549/DC/2010-05-26T19:35:54.370Z"
rel="alternate"></link>
 <category term="A" scheme="info:fedora/fedora-
system:def/model#state"></category>
 <category term="X" scheme="info:fedora/fedora-
system:def/model#controlGroup"></category>
 <category term="true" scheme="info:fedora/fedora-system:def/model#
versionable"></category>
</entry>
<entry xmlns:thr="http://purl.org/syndication/thread/1.0">
 <id>info:fedora/gamrs:application549/DC/2009-10-27T07:17:52.541Z</id>
 <title type="text">DC1.0</title>
 <updated>2009-10-27T07:17:52.541Z</updated>
 <thr:in-reply-to ref="info:fedora/gamrs:application549/DC"></thr:in-reply-to>
 <category term="http://www.openarchives.org/OAI/2.0/oai_dc/"
scheme="info:fedora/fedora-system:def/model#formatURI"></category>
 <category term="Dublin Core Record for this object" scheme="info:fedora/fedora-
system:def/model# label"></category>
 <category term="378" scheme="info:fedora/fedora-
system:def/model#length"></category>
 <content type="text/xml">
 <oai_dc:dc xmlns:oai_dc=http://www.openarchives.org/OAI/2.0/oai_dc/
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

256

xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
 <dc:title>AMBER</dc:title>
 <dc:identifier>gamrs:application549</dc:identifier></oai_dc:dc></content>
</entry>
(...)
 <entry>
 <id>info:fedora/gamrs:application549/MRDL</id>
 <title type="text">MRDL</title>
 <updated>2009-10-29T11:51:50.080Z</updated>
 (...)
 <id>info:fedora/gamrs:application549/MRDL/2009-10-29T11:51:50.080Z</id>
 <title type="text">MRDL.0</title>
 <updated>2009-10-29T11:51:50.080Z</updated>
 <thr:in-reply-to ref="info:fedora/gamrs:application549/MRDL"></thr:in-reply-to>
 <category term="Description in GAMRS ADL" scheme="info:fedora/fedora-
system:def/model#label"></category>
 <category term="5380" scheme="info:fedora/fedora-
system:def/model#length"></category>
 <content type="text/xml">
 <uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription (...)>
 <JobIdentification>
 <JobName>AMBER (parallel example)</JobName>
 <Description>AMBER
This is an example-job of Amber for parallel run. The input files required for this
parallel example-run of sander.LES.MPI can be staged to your home (or working)
directory by clicking on "DataStaging"
page/tab.(...)</Description></JobIdentification>
 <Application>
 <ApplicationName>AMBER </ApplicationName>
 <ApplicationVersion>10.00</ApplicationVersion>
 <POSIXApplication>
 <Executable>/usr/ngs/AMBER</Executable>
 <Argument>sander.LES.MPI</Argument>
 <Argument>-O</Argument>
 <Argument>-i</Argument>
 <Argument>md.in</Argument>
(...)
 <ProcessCountLimit>4</ProcessCountLimit>
 </POSIXApplication>
 </Application>
 <DataStaging>
 <FileName>md.in</FileName>
 <FilesystemName>WORKINGDIR</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>

257

<URI>gsiftp://ngs.rl.ac.uk:2811/apps/amber/examples/parallel_example/md.in</UR
I>
 </Source>
 </DataStaging>
(...)
</uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription></content>
</entry>
<entry>
 <id>info:fedora/gamrs:application549/AUDIT</id>
 <title type="text">AUDIT</title>
 <updated>2009-10-29T21:38:20.329Z</updated>
(...)
 </entry>
 <entry xmlns:thr="http://purl.org/syndication/thread/1.0">
 <id>info:fedora/gamrs:application549/AUDIT/2009-10-29T21:38:20.329Z</id>
 <title type="text">AUDIT.0</title>
 (...)
<category term="Audit Trail for this object" scheme="info:fedora/fedora-
system:def/model#label"></category>
 <content type="text/xml">
 <audit:auditTrail xmlns:audit="info:fedora/fedora-system:def/audit#">
 <audit:record ID="AUDREC1">
 <audit:process type="Fedora API-M"></audit:process>
 <audit:action>ingest</audit:action>
 <audit:componentID></audit:componentID>
 <audit:responsibility>fedoraAdmin</audit:responsibility>
 <audit:date>2009-10-29T21:38:20.329Z</audit:date>
 <audit:justification>Ingested from local file
/root/foxml_all/apps/sec/gamrs_AMBER(parallel_example)_template_549</audit:ju
stification>
</audit:auditTrail>
 </content>
 </entry>
</feed>

258

Appendix G: BSoft application –

FOXML

<?xml version="1.0" encoding="UTF-8"?>
<foxml:digitalObject VERSION="1.1" PID="gamrs:application1"
 xmlns:foxml="info:fedora/fedora-system:def/foxml#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="info:fedora/fedora-system:def/foxml#
http://www.fedora.info/definitions/1/0/foxml1-1.xsd">
<foxml:objectProperties>
 <foxml:property NAME="info:fedora/fedora-system:def/model#state" VALUE="Active"/>
 <foxml:property NAME="info:fedora/fedora-system:def/model#label" VALUE="BSoft"/>
 <foxml:property NAME="info:fedora/fedora-system:def/model#ownerId" VALUE="fedoraAdmin"/>
 <foxml:property NAME="info:fedora/fedora-system:def/model#createdDate" VALUE="2009-10-
26T14:53:01.233Z"/>
 <foxml:property NAME="info:fedora/fedora-system:def/view#lastModifiedDate" VALUE="2009-10-
29T11:51:50.080Z"/>
</foxml:objectProperties>
<foxml:datastream ID="AUDIT" STATE="A" CONTROL_GROUP="X" VERSIONABLE="false">
 <foxml:datastreamVersion ID="AUDIT.0" LABEL="Audit Trail for this object" CREATED="2009-10-
26T14:53:01.233Z" MIMETYPE="text/xml" FORMAT_URI="info:fedora/fedora-
system:format/xml.fedora.audit">
 <foxml:xmlContent>
 <audit:auditTrail xmlns:audit="info:fedora/fedora-system:def/audit#">
 <audit:record ID="AUDREC1">
 <audit:process type="Fedora API-M"/>
 <audit:action>addDatastream</audit:action>
 <audit:componentID>TN</audit:componentID>
 <audit:responsibility>fedoraAdmin</audit:responsibility>
 <audit:date>2009-10-26T19:13:46.259Z</audit:date>
 <audit:justification></audit:justification>
 </audit:record>
 <audit:record ID="AUDREC2">
 <audit:process type="Fedora API-M"/>
 <audit:action>addDatastream</audit:action>
 <audit:componentID>ASSETS</audit:componentID>
 <audit:responsibility>fedoraAdmin</audit:responsibility>
 <audit:date>2009-10-26T19:59:26.524Z</audit:date>
 <audit:justification></audit:justification>
 </audit:record>
(...)
 </audit:auditTrail></foxml:xmlContent></foxml:datastreamVersion>
</foxml:datastream>
<foxml:datastream ID="DC" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true">
<foxml:datastreamVersion ID="DC.0" LABEL="Dublin Core Record for this object"
CREATED="2009-10-26T15:18:12.424Z" MIMETYPE="text/xml"
FORMAT_URI="http://www.openarchives.org/OAI/2.0/oai_dc/" SIZE="913">
<foxml:xmlContent>
<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

259

instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
 <dc:title>BSoft</dc:title>
 <dc:creator>Alex Tudose</dc:creator>
 <dc:description>This is an example of running the PFT3DR supplied tutorial example, which uses a
tcsh script 'iteration_01-09.tsch' to run pft2, em3dr2 and Bsoft programs in a sequence
of 9 steps to process an image file 'polyoma_images.pif'.</dc:description>
 <dc:publisher>NGS Application Repository</dc:publisher>
 <dc:type>INSTANCE</dc:type>
 <dc:format>v1.5.4</dc:format>
 <dc:identifier>gamrs:application1</dc:identifier>
 <dc:source>https://portal.ngs.ac.uk/JobProfiles.jsf</dc:source>
 <dc:relation></dc:relation>
</oai_dc:dc></foxml:xmlContent></foxml:datastreamVersion>
</foxml:datastream>

<foxml:datastream ID="RELS-EXT" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true">
<foxml:datastreamVersion ID="RELS-EXT.0" LABEL="RDF Statements about this object"
CREATED="2009-10-26T14:56:10.562Z" MIMETYPE="application/rdf+xml"
FORMAT_URI="info:fedora/fedora-system:FedoraRELSExt-1.0" SIZE="492">
<foxml:xmlContent>
 <rdf:RDF xmlns:fedora-model="info:fedora/fedora-system:def/model#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rel="info:fedora/fedora-
system:def/relations-external#">
 <rdf:Description rdf:about="info:fedora/gamrs:application1">
 <rel:isMemberOf rdf:resource="info:fedora/gamrs:applications"></rel:isMemberOf>
 <fedora-model:hasModel rdf:resource="info:fedora/gamrs:ApplicationModel"></fedora-
model:hasModel>
 </rdf:Description>
 </rdf:RDF></foxml:xmlContent></foxml:datastreamVersion>
</foxml:datastream>

<foxml:datastream ID="TN" STATE="A" CONTROL_GROUP="M" VERSIONABLE="true">
<foxml:datastreamVersion ID="TN.0" LABEL="Thumbnail.png" CREATED="2009-10-
26T19:13:46.259Z" MIMETYPE="image/png">
 <foxml:contentLocation TYPE="INTERNAL_ID"
REF="http://192.168.56.101:8080/fedora/get/gamrs:application1/TN/2009-10-26T19:13:46.259Z"/>
</foxml:datastreamVersion>
</foxml:datastream>

<foxml:datastream ID="ASSETS" STATE="A" CONTROL_GROUP="E" VERSIONABLE="true">
<foxml:datastreamVersion ID="ASSETS.0" LABEL="Application Assets" CREATED="2009-10-
26T19:59:26.524Z" MIMETYPE="text/xml">
 <foxml:contentLocation TYPE="URL"
REF="http://local.fedora.server/fedora/get/gamrs:appassets"/>
</foxml:datastreamVersion>
<foxml:datastreamVersion ID="ASSETS.1" LABEL="Application Assets" CREATED="2009-10-
26T20:27:04.786Z" MIMETYPE="text/xml">
 <foxml:contentLocation TYPE="URL"
REF="http://local.fedora.server/fedora/get/gamrs:app1assets"/>
</foxml:datastreamVersion>
</foxml:datastream>

<foxml:datastream ID="gamrsapplication" STATE="A" CONTROL_GROUP="X"
VERSIONABLE="true">
(...)

260

<foxml:datastreamVersion ID="gamrsapplication.5" LABEL="GAMRS Statements about this object"
CREATED="2009-10-27T07:35:35.273Z" MIMETYPE="text/xml" SIZE="1111">
<foxml:xmlContent>
<gamrsApplication>
 <name>PFT3DR-Bsoft</name>
 <version>v1.5.4</version>
 <description>This is an example of running the PFT3DR supplied tutorial example, which uses a
tcsh script 'iteration_01-09.tsch' to run pft2, em3dr2 and Bsoft programs in a sequence
of 9 steps to process an image file 'polyoma_images.pif'.</description>
 <owner>http://192.168.56.101/fedora/repository/gamrs:user1</owner>
 <template>TRUE</template>
 <adltype>JSDL</adltype>
 <reference>http://192.168.56.101/fedora/repository/gamrs:application1</reference>
 <provider>http://192.168.56.101/fedora/repository/gamrs:provider1</provider>
 <externalref>https://portal.ngs.ac.uk/JobProfiles.jsf</externalref>
 <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets1</asset>
 <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets2</asset>
 <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets3</asset>
 <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets4</asset>
 <relation>
 <peer></peer>
 <score></score>
 </relation>
 <other></other>
</gamrsApplication></foxml:xmlContent></foxml:datastreamVersion></foxml:datastream>

<foxml:datastream ID="ADL" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true">
<foxml:datastreamVersion ID="ADL.0" LABEL="Description in native ADL" CREATED="2009-10-
27T07:37:35.467Z" MIMETYPE="text/xml" SIZE="10549">
<foxml:xmlContent>
 <jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
xmlns:rsl="http://www.ggf.org/namespaces/2004/11/jsdl-rsl-1.0.xsd"
xmlns:sweep="http://schemas.ogf.org/jsdl/2007/04/sweep"
xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">
 <jsdl:JobDescription>
 <jsdl:JobIdentification>
 <jsdl:JobName>PFT3DR / Bsoft Iteration</jsdl:JobName>
 <jsdl:Description>PFT3DR - iteration_01-09.tsch Tutorial example.
--

template configured by J.Churchill (SCT,RAL,STFC) Sept 2008

This is an example of running the PFT3DR supplied tutorial example, which uses a tcsh script
'iteration_01-09.tsch' to run pft2, em3dr2 and Bsoft programs in a sequence of 9 steps
to process an image file 'polyoma_images.pif&apos.This portal example is slightly different
from other portal examples, as the staging step includes staging the 'executable' , which
in this case is a script. Unfortunately, at the time of writing (Sept 2008), the data staging uses an API
which does not retain executable file permissions. So this example needs to be run in two steps
where (a) Is the data staging step and (b) Runs the job. In between (a) and (b) you will need to login
to the run host and change the file permissions to executable (chmod +x file_name) on the iteration
script and the script which starts it, called 'run_iteration'. The script
'run_iteration' simply loads the appropriate environment modules for PFT3DR (and
Bsoft) so that these programs are in the environment path when it then runs 'iteration_01-
09.tcsh'. These module load statements could be included in the iteration script but this
example shows how you can run the tutorial unedited.For this example you need to create a small
directory hierarchy on the system that will run the job. First create a top level sub directory for the job

261

to run in (you can use the 'Browse Host' page in the portal or login to the run host). In
this subdirectory create the 'maps', 'resolution', 'particles' and
'run' directories. This portal example is setup to stage data into these 4 directories. Each
of these directory locations is determined on the 'File Systems' page of the portal by the
WORKINGDIR, MAPS, PARTICLES and RESOLUTION "file system", where
WORKINGDIR is set to the location of the 'run' subdirectory and the others are self
explanatory. The iterations script assumes it is in the 'run01 directory and the other 3
directories are at the same hierarchy level as 'run01'. This example assumes that the 4
directories are located for a mythical user ngs0341 under /home/ngs0341/pft3dr/run. You need to
change all 4 directory locations to your ngs user id (ngsXXX) and the location of your run (replace
pft3dr/run in the path). To do this click on the folder icon next to "WorkingDir" then
'Browse for dir on a grid host' on the 'File Systems' page. This takes you to
the "Browse Host" page. Connect to the host you will run the job on by selecting from the
hosts lists then clicking "Connect". Browse your files until you are in the directory you
want as the working dir, then use the Actions drop down and select "Apply as Working
dir" then click "OK" button. To create a new subdirectory to run in, use the Actions
drop down and select "Create subdir" option. Find or create the other three directories
and edit their locations directly into 'Mount Point' for each on the File systems page.To
run this example job (or another job based on this template) first go to the 'DataStaging'
page and click the 'Stage In Now' button to upload the files for the example. Now login
to the run host and change the permissions on run_iteration and itermation_01-09.tcsh files to
executable (eg chmod +x run_iteration). Then go to the "Submit/Run" page and check the
box next to "Ok to overwrite the job status when re-submitting the job" and uncheck the
box "Stage all data...". Then click the "Submit My Job" button. The status of
the job should appear on the "Job Status" line. First it will say "Submitted". To
update the status, click on "Check Job Status". When completed, go to the "Data
Transfer" or "Browse Host" page and download your output. This example takes
10-20 minutes to run.For more information about running PFT3DR jobs on the NGS, please refer to:
http://www.ngs.ac.uk/sites/ral/applications/ImageAnalysis/pft3dr.html or use the links on the
'Files/Links' page of this portal template.If you need help, please contact the NGS
helpdesk (support@grid-support.ac.uk)
 </jsdl:Description>
 </jsdl:JobIdentification>
 <jsdl:Application>
 <jsdl:ApplicationName>PFT3DR / Bsoft</jsdl:ApplicationName>
 <jsdl:ApplicationVersion>2.0.4 / 1.5.4</jsdl:ApplicationVersion>
 <jsdl-posix:POSIXApplication>
 <jsdl-posix:Executable filesystemName="WORKINGDIR">run_iteration</jsdl-posix:Executable>
 <jsdl-posix:Output filesystemName="WORKINGDIR">iteration.out</jsdl-posix:Output>
 <jsdl-posix:Error filesystemName="WORKINGDIR">iteration.err</jsdl-posix:Error>
 <jsdl-posix:WorkingDirectory>/home/ngs0341/pft3dr/run/run03</jsdl-posix:WorkingDirectory>
 <jsdl-posix:ProcessCountLimit>1</jsdl-posix:ProcessCountLimit>
 </jsdl-posix:POSIXApplication>
 <rsl:jobType>single</rsl:jobType>
 </jsdl:Application>
 <jsdl:Resources>
 <jsdl:CandidateHosts>
 <jsdl:HostName>ngs.rl.ac.uk:2119/lsf</jsdl:HostName>
 </jsdl:CandidateHosts>
 <jsdl:FileSystem name="WORKINGDIR">
 <jsdl:FileSystemType>normal</jsdl:FileSystemType>
 <jsdl:Description>The working job directory</jsdl:Description>
 <jsdl:MountPoint>/home/ngs0341/pft3dr/run/run03</jsdl:MountPoint>
 </jsdl:FileSystem>
 <jsdl:FileSystem name="MAPS">
 <jsdl:FileSystemType>normal</jsdl:FileSystemType>
 <jsdl:Description>File system added by browsing host</jsdl:Description>

262

 <jsdl:MountPoint>/home/ngs0341/pft3dr/run/maps</jsdl:MountPoint>
 </jsdl:FileSystem>
 <jsdl:FileSystem name="PARTICLES">
 <jsdl:FileSystemType>normal</jsdl:FileSystemType>
 <jsdl:Description></jsdl:Description>
 <jsdl:MountPoint>/home/ngs0341/pft3dr/run/particles</jsdl:MountPoint>
 </jsdl:FileSystem>
 <jsdl:FileSystem name="RESOLUTION">
 <jsdl:FileSystemType>normal</jsdl:FileSystemType>
 <jsdl:Description></jsdl:Description>
 <jsdl:MountPoint>/home/ngs0341/pft3dr/run/resolution</jsdl:MountPoint>
 </jsdl:FileSystem>
 </jsdl:Resources>
 <jsdl:DataStaging>
 <jsdl:FileName>iterations_01-09.tcsh</jsdl:FileName>
 <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/iterations_01-
09.tcsh</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>polyoma_00.star</jsdl:FileName>
 <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/run/polyoma_00.star</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>polyoma_images.pif</jsdl:FileName>
 <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/run/polyoma_images.pif</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>run_iteration</jsdl:FileName>
 <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/run/run_iteration</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>polyoma_3d.pif</jsdl:FileName>
 <jsdl:FilesystemName>MAPS</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>

263

 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/maps/polyoma_3d.pif</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>polyoma_images.pif</jsdl:FileName>
 <jsdl:FilesystemName>MAPS</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/maps/polyoma_images.pif</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>README</jsdl:FileName>
 <jsdl:FilesystemName>PARTICLES</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/particles/README</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 <jsdl:DataStaging>
 <jsdl:FileName>README</jsdl:FileName>
 <jsdl:FilesystemName>RESOLUTION</jsdl:FilesystemName>
 <jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
 <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination>
 <jsdl:Source>
 <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/resolution/README</jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 </jsdl:JobDescription>
</jsdl:JobDefinition></foxml:xmlContent></foxml:datastreamVersion>
</foxml:datastream>

<foxml:datastream ID="MRDL" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true">
<foxml:datastreamVersion ID="MRDL.0" LABEL="Description in GAMRS ADL" CREATED="2009-
10-29T11:51:50.080Z" MIMETYPE="text/xml" SIZE="8620">
<foxml:xmlContent>
<uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription
xmlns:uk.ac.wmin.cpc.mrp.parsers.mrdl="http://schemas.ggf.org/uk.ac.wmin.cpc.mrp.parsers.mrdl/2
005/11/uk.ac.wmin.cpc.mrp.parsers.mrdl" xmlns:xmi="http://www.omg.org/XMI" xmi:version="2.0">
 <JobIdentification>
 <JobName>PFT3DR / Bsoft Iteration</JobName>
 <Description>PFT3DR - iteration_01-09.tsch Tutorial example.
--

template configured by J.Churchill (SCT,RAL,STFC) Sept 2008

This is an example of running the PFT3DR supplied tutorial example, which uses a tcsh script
'iteration_01-09.tsch' to run pft2, em3dr2 and Bsoft programs in a sequence of 9 steps
to process an image file 'polyoma_images.pif'This portal example is slightly different

264

from other portal examples, as the staging step includes staging the 'executable' , which
in this case is a script. Unfortunately, at the time of writing (Sept 2008), the data staging uses an API
which does not retain executable file permissions. So this example needs to be run in two steps
where (a) Is the data staging step and (b) Runs the job. In between (a) and (b) you will need to login
to the run host and change the file permissions to executable (chmod +x file_name) on the iteration
script and the script which starts it, called 'run_iteration'. The script
'run_iteration' simply loads the appropriate environment modules for PFT3DR (and
Bsoft) so that these programs are in the environment path when it then runs 'iteration_01-
09.tcsh'. These module load statements could be included in the iteration script but this
example shows how you can run the tutorial unedited.For this example you need to create a small
directory hierarchy on the system that will run the job. First create a top level sub directory for the job
to run in (you can use the 'Browse Host' page in the portal or login to the run host). In
this subdirectory create the 'maps', 'resolution', 'particles' and
'run' directories. This portal example is setup to stage data into these 4 directories. Each
of these directory locations is determined on the 'File Systems' page of the portal by the
WORKINGDIR, MAPS, PARTICLES and RESOLUTION "file system", where
WORKINGDIR is set to the location of the 'run' subdirectory and the others are self
explanatory. The iterations script assumes it is in the 'run01 directory and the other 3
directories are at the same hierarchy level as 'run01'. This example assumes that the 4
directories are located for a mythical user ngs0341 under /home/ngs0341/pft3dr/run. You need to
change all 4 directory locations to your ngs user id (ngsXXX) and the location of your run (replace
pft3dr/run in the path). To do this click on the folder icon next to "WorkingDir" then
'Browse for dir on a grid host' on the 'File Systems' page. This takes you to
the "Browse Host" page. Connect to the host you will run the job on by selecting from the
hosts lists then clicking "Connect". Browse your files until you are in the directory you
want as the working dir, then use the Actions drop down and select "Apply as Working
dir" then click "OK" button. To create a new subdirectory to run in, use the Actions
drop down and select "Create subdir" option. Find or create the other three directories
and edit their locations directly into 'Mount Point' for each on the File systems page.To
run this example job (or another job based on this template) first go to the 'DataStaging'
page and click the 'Stage In Now' button to upload the files for the example. Now login
to the run host and change the permissions on run_iteration and itermation_01-09.tcsh files to
executable (eg chmod +x run_iteration). Then go to the "Submit/Run" page and check the
box next to "Ok to overwrite the job status when re-submitting the job" and uncheck the
box "Stage all data...". Then click the "Submit My Job" button. The status of
the job should appear on the "Job Status" line. First it will say "Submitted". To
update the status, click on "Check Job Status". When completed, go to the "Data
Transfer" or "Browse Host" page and download your output. This example takes
10-20 minutes to run.For more information about running PFT3DR jobs on the NGS, please refer
to:http://www.ngs.ac.uk/sites/ral/applications/ImageAnalysis/pft3dr.html or use the links on the
'Files/Links' page of this portal template.If you need help, please contact the NGS
helpdesk (support@grid-support.ac.uk)
 </Description>
 </JobIdentification>
 <Application>
 <ApplicationName>PFT3DR / Bsoft</ApplicationName>
 <ApplicationVersion>2.0.4 / 1.5.4</ApplicationVersion>
 <POSIXApplication>
 <Executable>/home/ngs0341/pft3dr/run/run03/run_iteration</Executable>
 <Output>/home/ngs0341/pft3dr/run/run03/iteration.out</Output>
 <Error>/home/ngs0341/pft3dr/run/run03/iteration.err</Error>
 <WorkingDirectory>/home/ngs0341/pft3dr/run/run03</WorkingDirectory>
 <ProcessCountLimit>1</ProcessCountLimit>
 </POSIXApplication>
 </Application>
 <DataStaging>
 <FileName>iterations_01-09.tcsh</FileName>

265

 <FilesystemName>WORKINGDIR</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/iterations_01-09.tcsh</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>polyoma_00.star</FileName>
 <FilesystemName>WORKINGDIR</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/polyoma_00.star</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>polyoma_images.pif</FileName>
 <FilesystemName>WORKINGDIR</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/polyoma_images.pif</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>run_iteration</FileName>
 <FilesystemName>WORKINGDIR</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/run_iteration</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>polyoma_3d.pif</FileName>
 <FilesystemName>MAPS</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/maps/polyoma_3d.pif</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>polyoma_images.pif</FileName>
 <FilesystemName>MAPS</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/maps/polyoma_images.pif</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>README</FileName>
 <FilesystemName>PARTICLES</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>

266

 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/particles/README</URI>
 </Source>
 </DataStaging>
 <DataStaging>
 <FileName>README</FileName>
 <FilesystemName>RESOLUTION</FilesystemName>
 <CreationFlag>overwrite</CreationFlag>
 <DeleteOnTermination>false</DeleteOnTermination>
 <Source>
 <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/resolution/README</URI>
 </Source>
 </DataStaging>
 <Backend backendId="GT2" count="1" error="STDERR" jobType="single" output="STDOUT">
 <siteInfo id="0" jobManager="lsf">
 <site>ngs.rl.ac.uk:2119</site>
 <executable stage="false">
 <value>/home/ngs0341/pft3dr/run/run03/run_iteration</value>
 </executable>
 <paramPrefix>.</paramPrefix>
 </siteInfo>
 </Backend>
</uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription>
</foxml:xmlContent>
</foxml:datastreamVersion>
</foxml:datastream>
</foxml:digitalObject>

267

Appendix H: Snapshot of Bsoft

application deployed in a

virtualized environment using

GAMRS

