
 

 
 
 
WestminsterResearch 
http://www.westminster.ac.uk/research/westminsterresearch 
 
 
Grid application meta-repository system. 
 
Alexandru Cristian Tudose 
 
School of Electronics and Computer Science 
 
 
 
This is an electronic version of a PhD thesis awarded by the University of 
Westminster.  © The Author, 2010. 
 
This is an exact reproduction of the paper copy held by the University of 
Westminster library. 
 
 
 
The WestminsterResearch online digital archive at the University of 
Westminster aims to make the research output of the University available to a 
wider audience.  Copyright and Moral Rights remain with the authors and/or 
copyright owners. 
Users are permitted to download and/or print one copy for non-commercial 
private study or research.  Further distribution and any use of material from 
within this archive for profit-making enterprises or for commercial gain is 
strictly forbidden.    
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of WestminsterResearch: 
(http://westminsterresearch.wmin.ac.uk/). 
 
In case of abuse or copyright appearing without permission e-mail 
repository@westminster.ac.uk 



 

 

   

 

 

 

 

 

 

GRID APPLICATION 

META-REPOSITORY SYSTEM 

 

 

Alexandru Cristian Tudose 

 

 

A thesis submitted in partial fulfilment of the requirements of the University of 

Westminster for the degree of Doctor of Philosophy 

 

August 2010 



 

 

To Isabella, Sorana, Aritina and Valentin 



 

2 

Acknowledgements 

I would like to express my gratitude to all the people who encouraged and helped 

me throughout my PhD studies, from its very start and up to the writing up of this 

thesis.  

Special thanks to Dr. Gabor Terstyanszky for the close guidance, advice and 

mentorship he provided for the past four years. I am indebted to him for the 

numerous research meetings we had and for his excellent suggestions and 

corrections during the writing up of various research papers, reports and of this 

thesis.   

Furthermore, I would like to express my gratitude towards Prof. Stephen Winter, my 

director of studies, for admitting me to the PhD programme and for granting me the 

research scholarship. I would also like to thank him for his patience, guidance and 

support throughout my research.  

Special thanks are due to Prof. Peter Kacsuk for his invaluable questions, ideas 

and advice, as well as for his words of encouragement and for helping me 

understand that no PhD research can hold the answer to all the unsolved issues in 

computing science. 

I am also indebted to my research colleagues for all the debates and discussions 

held during my years of research, which helped broaden my view of this research 

area and ultimately improved the quality of my research. 

Last, but not least, I wish to express my gratitude towards my dear wife, Sorana – 

for her emotional support and understanding, and for the countless editorial 

suggestions she made to this thesis; to my wonderful baby Isabella – for being 

patient and waiting to be born only after I had finished the first draft of this thesis; to 

my parents, Aritina and Valentin, who have inspired me to become who I am today; 

and to all my friends and family – for their uplifting words of encouragement 

throughout these past four years.  



 

3 

Abstract 

As one of the most popular forms of distributed computing technology, Grid brings 

together different scientific communities that are able to deploy, access, and run 

complex applications with the help of the enormous computational and storage 

power offered by the Grid infrastructure.   

However as the number of Grid applications has been growing steadily in recent 

years, they are now stored on a multitude of different repositories, which remain 

specific to each Grid. At the time this research was carried out there were no two 

well-known Grid application repositories sharing the same structure, same 

implementation, same access technology and methods, same communication 

protocols, same security system or same application description language used for 

application descriptions. This remained a great limitation for Grid users, who were 

bound to work on only one specific repository, and also presented a significant 

limitation in terms of interoperability and inter-repository access. The research 

presented in this thesis provides a solution to this problem, as well as to several 

other related issues that have been identified while investigating these areas of 

Grid. 

Following a comprehensive review of existing Grid repository capabilities, I defined 

the main challenges that need to be addressed in order to make Grid repositories 

more versatile and I proposed a solution that addresses these challenges. To this 

end, I designed a new Grid repository (GAMRS – Grid Application Meta-Repository 

System), which includes a novel model and architecture, an improved application 

description language and a matchmaking system. After implementing and testing 

this solution, I have proved that GAMRS marks an improvement in Grid repository 

systems. Its new features allow for the inter-connection of different Grid 

repositories; make applications stored on these repositories visible on the web; 

allow for the discovery of similar or identical applications stored in different Grid 

repositories; permit the exchange and re-usage of application and application-

related objects between different repositories; and extend the use of applications 

stored on Grid repositories to other distributed environments, such as virtualized 

cluster-on-demand and cloud computing.  
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1. Introduction 

xtensive research is being undertaken these days in the field of Grid 

computing. On one hand, scientists try to adapt old technologies and old 

concepts to Grid platforms. On the other hand, as new concepts appear, 

they are already designed to be compatible with Grid technologies. The impact of 

Grid on scientific communities all over the world has often being compared to the 

tremendous impact that the discovery of WWW has had on the worldwide IT 

community [1]. 

Grid is a wide network of distributed resources, in which groups of people with 

common computationally demanding or data-intensive goals have chosen to share 

their resources (e.g. computers, storage components, software and applications, 

data, firmware implementations, sensors, networks, networking services etc.) in a 

controlled, secure and flexible way.[2] Within Grid, users can gain access to a 

multitude of applications and resources, with the help of which they can solve their 

problems more effectively. 

Given that the number of Grid applications has been growing steadily in recent 

years, they are now stored in repositories that offer better options for their 

management. However, there are many repository frameworks on the market and 

these vary in terms of access interface, security system, implementation 

technology, communication protocols and transfer protocols. Moreover, 

administrators are free to choose among them and also have free choice in 

defining a specific repository model. At the same time, different Grid applications 

Chapter 

1 
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are described using one of more than ten application descriptions languages 

(ADLs), which are either standard-specific or proprietary-specific. 

As a result of this diversity, at the time this research was carried out there were no 

two well-known Grid application repositories having the same structure, same 

implementation, same access technology and methods, same communication 

protocols, same security system or same application description language used for 

application descriptions. This remained a great limitation for Grid users, who were 

bound to work on only one specific repository, and also presented a significant 

limitation in terms of interoperability and inter-repository access. The research 

presented in this thesis provides a solution to this problem, as well as to several 

other related issues that have been identified while investigating these areas of 

Grid. 

This first chapter introduces and defines the main concepts related to the area of 

research and offers an outline of the structure of this thesis.  

1.1. Short History of Grid Application 
Repositories 

Grid technologies emerged in the mid 1990s as a solution for the optimization of 

resource sharing in computer networks. Initially, Grid computing research focused 

on the areas of computing resources, data access, and storage resources. 

However, the definition of Grid computing resource sharing has evolved in time and 

now includes any resources made available by a Grid participant, such as 

computing resources, data, hardware, software and applications, firmware 

implementations, networking services, and any other forms of computing resource 

attainment. By using the Grid infrastructure and Grid technologies users today can 

solve problems related to software capability (e.g. models, simulations, etc.); 

hardware availability or computing capacity shortage (e.g. CPUs, data storage, 

etc.); as well as address the need for immediate circuit provisioning of a network or 

a security event and many more types of critical environmental needs. 
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GRID APPLICATIONS  

One of the aims for which the entire Grid infrastructure and Grid middleware were 

developed was to enable users to use applications more effectively. On Grid, users 

can gain access to a large number of applications, as well as to a multitude of 

resources, with the help of which they can solve their problems quicker and more 

efficiently. 

Grid applications are pieces of software exposed to users through a Grid user 

interface. Many of these applications are well-known to users and were used in the 

past as stand-alone software, commonly installed on one PC or on small clusters. 

With the arrival of Grid technologies they were ported to interact with the Grid 

middleware and to run on the Grid infrastructure. Provided they acquire adequate 

rights to access them, many scientific communities can use these applications 

remotely and obtain the results they needed using the Grid. However, in certain 

cases, users need to solve problems with a higher degree of complexity, which 

require the help of not one, but several applications - for example, results obtained 

from running one application need to be passed as input to another application, 

which in turn should return the final results to the user. In order to make this 

process automatic and eliminate the need for intervention from the user, scientific 

communities have adapted the workflow paradigm to Grid. 

W ORKFLOW S 

The Workflow Management Coalition (WfMC) defines workflow as "The automation 

of a business process, in whole or part, during which documents, information or 

tasks are passed from one participant to another for action, according to a set of 

procedural rules".[3] The Open Grid Services Architecture – Working Group 

(OGSA-WG) expanded the WfMC statement, and defined the workflow simply as a 

pattern of business process interaction.[4] Such interactions may take place 

between services residing within a single data centre, or across a range of different 

platforms located anywhere in the world.  

http://www.gridworkflow.org/snips/gridworkflow/space/WfMC
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In the context of Grid computing the term workflow usually concerns the automation 

of distributed IT processes. However, there are several differences between Grid 

workflows and regular (i.e. non-Grid) business workflows, mainly in terms of 

reliability and performance. Since Grid resources involved in the execution of the 

workflow may fail during the runtime, Grid workflows rely on advanced workflow 

fault management techniques (such as workflow checkpointing, recovery and 

monitoring) to ensure a high level of reliability of the service. In terms of 

performance, one of the objectives of Grid computing is to provide high 

performance computing power and Grid workflows therefore have to deal with 

resource brokerage, scheduling (load balancing), and distributed applications 

(parallel computing) – services which are usually not needed by regular business 

workflows. 

Given that one intrinsic characteristic of the Grid is its distributed infrastructure – 

which makes it an ideal candidate for supporting parallel computational tasks, Grid 

is regarded by researchers as an excellent workspace for workflows. 

Consequently, scientists and researchers have lately placed increasingly more 

effort in adapting the workflow paradigm to Grid concepts. As a result, Grid was 

enriched with several different workflow description languages (e.g. BPEL [5], 

BPEL4WS [6], Scufl [7], xScufl [8], etc.) as well as with several different workflow 

engines, such as P-GRADE [9], Taverna [10, 11], Kepler [12, 13], Triana [14], WS-

PGRADE/gUSE [15], etc. 

W EB SERVICES  

At present, the vast majority of Grid software resources can be accessed in a 

standard client-server way. The server program is usually running in the main 

memory of the computer as a daemon, listening to a certain port on the machine. 

The client program connects to that port and communication occurs by means of 

pre-known requests and responses. This means that both client and server know 

the API (Application Programming Interface) of their requests and responses from 

the outset. However, with the growth of the Grid infrastructure, services became 

increasingly numerous and this raised new security issues (i.e. the increased 
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number of ports became a problem for firewalls and network administrators); 

development issues (i.e. developers needed to know every particular API for 

servers in order to develop new clients, sometimes for the same type of service); as 

well as usage issues (i.e. users became lost in complicated command-line 

syntaxes). 

All these issues can be addressed by using the web services (WS) technology. 

First, WS uses well-known communication transport protocols (e.g. http, ftp, 

SMTP), which usually reside on well-known ports (ports that are opened and 

monitored on almost every network), so the network administrator‟s effort is 

reduced drastically. Second, the server publishes a set of communication 

information into a registry. The client therefore does not need to have prior 

knowledge of the server‟s API, it can simply query the registry and will find the 

location of the server, the location of a WSDL (Web Service Description Language) 

document describing how to initiate the communication, and the patterns of all 

requests and responses. 

GRID SERVI CES  

Given the benefits of web service technology, and after years of carefully 

conducted studies and research on this topic, the Global Grid Forum (GGF) 

extended the web service concept to the concept of Grid service. 

A Grid service, as defined in the Open Grid Services Infrastructure (OGSI), is a 

web service that conforms to a set of conventions (interfaces and behaviours) that 

define how a client interacts with that service [16]. Since it is created through the 

extension of the web service concept, the Grid service receives an ample heritage 

from its predecessor; for example, Grid services are defined in terms of standard 

WSDL with minor extensions, and rely on standard web service technologies such 

as SOAP and WS-Security.  

However, the Grid service conventions specified in the OGSI document add further 

elements by addressing fundamental issues in distributed computing such as how 

to name, create, discover, monitor and manage the lifetime of stateful services [17]. 
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The OGSI conventions support explicitly stateful services with lifetime management 

and a base set of service capabilities, including rich discovery facilities 

(introspection/reflection). In addition to this, they also support a two-level naming 

scheme similar to the DNS (Domain Name System), which is more user-friendly 

than a traditional WS address scheme.  

REPOSITO RIES  

As Grid scientists began to port more and more applications to the Grid, managing 

the growing number of applications gradually became a burden to Grid site 

administrators. They therefore turned to repository technologies to structure, store 

and reference – i.e. better manage – Grid applications. 

A repository, as its name implies, is used to store objects in a structured manner, 

following a model defined by the repository administrator. The repository provides 

functions for classification, storage, management and retrieval of the components 

stored inside it. [18] 

In most cases repository frameworks differ from one another in terms of access 

interfaces, security modules, communication protocols and transfer protocols. 

Moreover, these repositories vary in terms of the repository model employed 

because administrators enjoy free choice in defining the repository model. 

Furthermore, in the case of Grid application repositories each of these repositories 

employs a different application description language to describe the applications 

stored in it. 

As a result of this diversity, the field of Grid application repositories contains many 

open questions in the areas of interoperability between repositories, application 

discovery, as well as cross-operability with Grid services and services outside Grid. 

For example, as Grid application repositories start to accumulate applications, 

users need to be able to find these applications and access the repositories which 

store them. However, Grid users are not interested in the particularities of Grid 

middleware, or repository technologies; or in differences between a Web/Grid 
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service invocation and a standard Grid job submission. Users just want to gain 

easy access to as many applications as possible and be able to use them to solve 

their problems. Consequently, Grid application repositories need an architecture 

that allows for application storage and enables interaction with other application 

repositories and Grid services, permitting users to discover and utilize such 

applications. However, current repository architectures are very restrictive and none 

of the Grid repository solutions used today allows for inter-connectivity with other 

repositories. 

Another example of the restrictive design and functionality of current Grid 

application repositories is related to the fact that the same application can be found 

stored in different repositories. In theory, if one repository is unavailable users 

should have the opportunity to run their application from another repository to solve 

their problem. However, current repository solutions are not linked in any manner 

and there is no matchmaking service that can identify similar or identical Grid 

applications stored in different repositories.   

1.2. Outline of the Thesis 

The first stage of my research consisted of an in-depth critical analysis of the Grid 

application repository solutions currently used in Grid infrastructures, based on 

which I identified a series of shortcomings associated with these solutions. For the 

rest of my research I aimed to design a Grid application repository that would 

address these shortcomings. My aim was also to provide a modular, easily 

extendible solution, based on functional principles that can be followed not only by 

application repositories usable on Grid, but also by generic application repositories 

that reside in collaborating environments other than Grid.  

In relation to these aims, my research was focused on pursuing four major 

objectives. The first objective of this research was to design a service able to 

connect different types of Grid application repositories, but which would still function 

as a Grid application repository in its own right. The second objective of this 
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research was to propose a new model for application repositories, which would 

achieve uniformity in Grid application presentation and would extend the 

functionality of these repositories beyond Grid. The third objective was to find (or 

create) an application description language, which would provide uniformity in the 

presentation of Grid application descriptions; while, at the same time, would allow 

the use of Grid application repositories and of applications stored by them in 

scenarios other than Grid, such as virtualisation, source code staging and 

compilation, or automatic application deployment. The fourth objective was to 

design a matchmaking methodology and an algorithm able to process information 

about applications stored in repositories and identify similar or identical 

applications. 

After the specification of the four objectives, the next step in my research was to 

present the theoretical design and specification of a Grid application repository 

solution able to meet these objectives. The design phase was followed by the 

implementation phase, which started with the identification and careful analysis of a 

series of constraints that could be put in place in order to simplify the development 

of the solution without restricting its core functionality or its ability to meet the four 

objectives set out in this research.  

Further on I identified the necessary technologies needed for the development of 

my solution and used these to implement a pilot-solution compliant with the 

theoretical specifications described in the design phase. After successfully 

completing of the implementation phase, I moved on to test the solution and 

analyse test results (analysis phase). As part of this phase, I selected  five use-

case scenarios, which were representative to prove the functionality of the new 

Grid application repository solution (GAMRS) and to show that this solution met the 

research objectives. I successful ran these scenarios and analysed the results. 

Following the interpretation of these results, I summarized the findings in a series of 

conclusions, which prove that all requirements and objectives of this research were 

met, as well as present a critical analysis of the limitations of this research. 
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The research was finalised with a summary of the contributions brought by this 

thesis to scientific knowledge, alongside several recommendations on how this 

solution can be extended through future research. 

The remainder of this thesis is organized as follows:  

Chapter 2 provides an overview of the main area of research – it describes the 

major concepts behind Grid application repositories and then offers a 

comprehensive review of related work from the specialty literature to describe the 

current state of the art in this field. Due to the complexity of the issues identified 

during research investigations, the area of research is divided into four topics: Grid 

repository architecture; Grid repository model; Grid application description 

language; and Grid application matchmaking system. The concepts related to each 

of these four topics are discussed in separate sections. The chapter continues with 

an overview of the challenges identified in the Grid application repository area and 

concludes with a statement of the objectives of this research.   

Chapter 3 describes the design principles behind the solution proposed by this 

research in order to solve some of the challenges identified in the previous chapter. 

The chapter describes the Grid Application Meta-Repository System (GAMRS) – 

i.e. the solution-candidate proposed in this research as a new generation of Grid 

application repository able to meet the objectives identified in Chapter 2 – following 

the same division into four separate topics as the one in Chapter 2: GAMRS 

architecture; GAMRS repository model; GAMRS application description language; 

and GAMRS matchmaking service. 

Chapter 4 describes the testbed implemented in order to test and prove the 

functionality of the Grid Application Meta-Repository System. The chapter starts 

with a description of the main constraints and limitations imposed to the pilot-

solution (mainly by the time-constraints to which each PhD research is bound). It 

then moves on to describe the testbed architecture and its implementation, as well 

as specify five test scenarios. The chapter concludes with an analysis of the results 

obtained after the implementation of the test scenarios. 
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Chapter 5 presents the conclusions of the analysis of the testbed results, 

highlighting the main capabilities of the proposed solution, but also analyzing the 

limitations of GAMRS. The chapter concludes with an analytical overview of how 

the requirements and objectives set out at the beginning of this research were met. 

Chapter 6 summarizes the contributions of this thesis to scientific knowledge and 

concludes with several suggestions on how this research could be extended. 
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2. Related Work – Grid Application 

Repository 

his chapter describes the Grid application repository solutions that are 

currently used in Grid infrastructures and projects in an attempt to analyse 

the current state of the art in this field and highlight those areas which can 

still be improved. This overview covers four repository aspects important to any 

Grid application repository: the repository architecture, the repository model, the 

application description language and Grid application matchmaking methods. 

The investigation is focused primarily on the architecture of the most widely used 

Grid application repositories and on the repository model designed by peer 

research teams for their repository solutions. These two properties are the most 

important aspects of a repository and they decide most of the functional capabilities 

of a Grid application repository, such as: the scientific area of usage, the ability to 

inter-connect with similar solutions, the ability to be easily extendible, the ability to 

interoperate across different scientific domains, and the ability to be easily 

accessed by different technologies under various usage scenarios. 

The applications stored in Grid application repositories are formally described by 

application description languages. Every application description language is 

capable of describing a set of properties associated with a Grid application. Most 

description languages usually refer to a common subset of application features - 

even though the naming scheme of the formal attributes may differ. However, apart 

from this common set, each application description language is capable of 

Chapter 

2 

T 
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modelling particular application properties that will not to be formalized by the other 

description languages. This chapter presents an overview of the most important 

application description languages currently used in Grid solutions. Different subsets 

of Grid application properties decide which usage scenario the application can be 

employed in and implicitly, they have an impact on those scenarios in which the 

Grid application repository storing the application can be involved. Therefore, the 

relation between the description capabilities of an application description language 

used to describe a certain Grid application and the repository that holds that 

application can restrict the repository‟s areas of usage.  

Since Grid application repositories store applications and application-related 

objects, they represent the first choice for end-users and services in the discovery 

and usage of applications. Furthermore, the same application can be found stored 

in different repositories. In this case, although different repository models may 

associate different metadata and different application-related objects to the 

application, in principle they model the same application. Therefore, Grid 

application repositories can be subject to matchmaking systems that are looking for 

similar applications. However, these matchmaking systems are dependent on the 

amount of information they find in the repository, as well as on the quality and the 

formal structure of such information regarding the application and application-

related objects. This chapter presents a short description of existing matchmaking 

methods and solutions that can be applied to the content of Grid application 

repositories in order to find similar Grid applications.   

The remaining of this chapter continues with the investigation of existing Grid 

application repository solutions, covering the four repository aspects mentioned 

above: repository architecture, repository model, application description language 

and Grid application matchmaking methods. Each aspect is covered in its own 

section which includes a critical analysis of the related work and conclusions. 

Following the analysis of the current Grid application repository solutions, as well as 

taking in consideration the evolution of Grid and other distributed computing 

paradigms, the chapter continues with a list of requirements (R1-R4) that should be 

met by solutions such as the one suggested in the remainder of this thesis. Next, 
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this chapter presents a summary of current Grid repository solutions‟ capabilities 

and how these comply with the requirements identified by this research.  

The chapter concludes with a list of four objectives (O1-O4) aimed to deliver a new 

application repository solution that would provide the functionality defined by 

requirements R1-R4. 

2.1. Architecture 

This section presents the particularities of the architecture of the Grid application 

repository. It starts with the description of the traditional repository architecture and 

highlights its functional modules by explaining step-by-step the most common 

usage scenario of the repository on Grid. The section continues with the description 

of the most widely-used application repository solutions that exist in Grid 

infrastructures today. The final part of the section outlines those questions and 

issues that remain unresolved in the area of Grid application repository 

architectures. 

2.1.1 General Overview of Grid Application 

Repository Architectures 

As Grid application repositories start to accumulate applications, users become 

more and more interested in how to find these repositories and access the 

applications stored there. However, one needs to keep in mind that the users in 

discussion are no Grid specialists and do not hold an extensive knowledge of 

computer science. In most cases, they come from other areas of science such as 

bio-sciences, medicine, physics, mathematics, etc. Furthermore, they are not 

interested in the underlying Grid middleware, in repository technologies, or in 

differences between a Web/Grid service invocation and a standard Grid job 

submission (i.e. accessing a Grid application through the standard client-server 
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way). Users just want to have access to as many applications as possible and be 

able to use them to solve their problems. 

Consequently, Grid application repositories need an architecture that allows for 

application storage and enables interaction with other services, enabling users to 

discover and utilize such applications. 

The following figure (Figure 2-1) offers an overview of the architecture common to 

all major Grid systems that expose Grid application repository services to users. 

 

Figure 2-1: Traditional architecture of a Grid system that includes the application repository 

The system exposes a User Interface (UI) module to users in order to allow them to 

interact with the system. Next, the Authentication and Authorization module 

authenticates Grid users onto the system and allows/denies them different 

interactions with the other modules, according to the specific security policy in 

force.  

The Application Repository module is usually an implementation of repository 

software with all the functionalities provided by such a technology (e.g. data 

classification according to the captured metadata, storage/data management, 

indexing capabilities, access to the data stored on it, search functions etc.) The 

repository model implemented in the Application Repository usually captures 

metadata, such as user, identifier, version, date of creation, application description, 

security. However, each repository stores the application description in an 

Application Description Language different from other repositories. For example, 
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GEMLCA [19, 20] repository uses LCID [20], NGS application repository [21] uses 

JSDL [22], and myExperiment repository [23, 24] uses Scufl [7]. 

The architecture description continues with the Application Instance Management 

module. This module handles the set of actions needed by the system to: create a 

Grid application instance; format the application description into a language 

supported by the Submission engine; submit and monitor the run of the application 

instance; and retrieve the results of the run. All technology-specific actions are 

hidden to the user and come under the management of this module.  

 

Figure 2-2: Traditional Grid application repository: usage scenario 

A common user scenario (Figure 2-2) finds the user authenticating in the system 

(action 1), choosing an application from the Application Repository (action 2), 

customizing the necessary parameters in the application description document 

(action 3) and submitting the application (action 4). At this point, either the user 

waits for the results or, in some cases, monitoring data is returned to the user to 

update him/her on the state of that application instance. Next, the Converter 

module converts the application description document (actions 5 and 6) from the 
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language used to describe the application at the higher level (such as JSDL – Job 

Submission Description Language, or LCID – Legacy Code Interface Description) 

into an application submission language that can be processed by various Grid 

submission engines (such as JDL – Job Description Language [25, 26], RSL – 

Resource Specification Language [27] or xRSL – Extended Resource Specification 

Language [28]).  

The Application Instance Management module manages the actions required to 

authenticate the user on the Grid; it delegates credentials to other services involved 

in the process; and monitors the entire process.  The Submission Engine is then 

responsible for Grid resource/service identification and actual job submission/result 

retrieval from the underlying Grid infrastructure. Once the conversion from 

description into submission language is performed, the Application Instance 

Management module passes the document to the Submission Engine (action 7), 

which connects to the Grid infrastructure, chooses a suitable resource that matches 

the job requirements, submits the job and retrieves the results (action 8). The 

results are finally passed back to the user.  

 

2.1.2 Review of Existing Solutions 

BERKELEY DATABASE IN FO RMATI ON INDEX (BDI I )  

BDII [29] is employed as a central information system in gLite/lcg-based Grids. It 

stores information about resources commissioned to Grid by each site (i.e. a Grid 

site refers to a number of Grid resources grouped together under the same 

administration), as well as about the Grid applications installed on them. BDII uses 

the GLUE schema [30] as description model for these objects. 

Communication with the clients occurs via LDAP (Lightweight Directory Access 

Protocol) commands [31, 32], whether they come from command line or more user-

friendly interfaces. The BDII is highly available since it exposes a standard 
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communication API (i.e. LDAP-query), which means that any LDAP client can be 

used to connect to the BDII. However, users are required to know the GLUE 

schema in order to perform relevant searches and understand the results of these 

searches. Moreover, the way to retrieve relevant and usable information from the 

BDII is not straightforward to the average user, who needs specialist training and 

knowledge of GLUE in order to make any search process productive. BDII also 

lacks any intuitive user interface for publishing applications – the publishing process 

is usually done by administrators via command-line. 

By exposing only the LDAP interface, BDII does not interact either with popular web 

search engines, or with OGSI/WSRF-compliant Grid Services. In order to access 

the BDII, a service usually needs to embed an LDAP-client into its code. However, 

neither the service nor the BDII can make use of the OGSI/WSRF protocols stack – 

this would prove very useful, as actions performed on application entries in the 

BDII, such as addition, removal, and modification could be automatically advertised 

to other Grid services. Furthermore, BDII has no connection to any other Grid 

application repository – neither in gLite/lcg-based Grids infrastructures nor in any 

other Grids. BDII is also not able to find similar applications and only provides users 

with a basic search engine that can perform queries on application metadata 

values.  

Furthermore, BDII was not built on a repository technology able to exchange and 

reuse objects and employs no communication protocol that could do that. BDII was 

created and is used exclusively on gLite/lcg-based Grids. The GLUE schema lacks 

the capability to describe application-related objects and BDII repository 

implementations are not able to store any application-related object.  

BDII is one of the oldest examples of an application repository that can be found on 

Grid. As such, it was meant to provide only storage for information about an object 

according to a model (i.e. GLUE schema), the retrieval of that information, and the 

possibility of searching through metadata. However it lacks any further capabilities, 

as detailed above. 
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CHARON EXT ENSION LAYER /  I NTERACTIVE SOF TW ARE 

REPOSITO RY ( CHARON/ ISOFT REPO)  

CHARON Extension Layer (simply CHARON or CEL) [33, 34] provides uniform and 

simple tools for job submission and management in various computer 

environments such as clusters of computers or Grid environments. The CHARON 

system is currently available at the National Centre for Biomolecular Research CZ 

(TROLLCluster and WOLFCluster), at the METACentrum (Czech national Grid 

project) and at VOCE-UI (Virtual Organization for Central Europe). One of the 

modules comprised in the CHARON architecture is a software repository called 

iSoftrepo (Interactive Software Repository), which is used to store information about 

Grid sites and the applications that run on them. 

The capabilities of CHARON/iSoftrepo are similar to those exhibited by BDII, with 

the exception that the former provides further means of categorizing applications, 

such as breaking them down into categories following areas of applicability – e.g. 

Molecular Mechanics and Dynamics, Conversion and Analysis, Visualization, 

Nuclear Magnetic Resonance, etc. The CHARON/iSoftrepo software package also 

comes with a collection of static web pages where administrators can manually 

enter the information about the applications stored in the repository. This makes the 

application visible to web search engines through page-links, but with the obvious 

drawback that any change in the application description or any new application 

added to the repository requires the manual intervention of administrators to 

change the CHARON/iSoftrepo web pages.  

With regard to application-related objects stored on the repository, 

CHARON/iSoftrepo only captures information about Grid applications on its 

proprietary repository model but cannot store any application-related objects. 

Furthermore, like BDII, it is used exclusively on gLite/lcg-based Grids and has no 

means to interact with other CHARON/iSoftrepo instances. 

 

http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/TROLLCluster
http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/WOLFCluster
http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/METACentrum
http://troll.chemi.muni.cz/whitezone/development/charon/wiki/index.php/VOCE-UI
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GRID EXECUTION MANAG EMENT F OR LEG ACY CODE 

ARCHITECTURE (GEML CA)  

The GEMLCA system enables deployment of legacy code applications as Grid 

services without the need for code re-engineering or access to the source files. 

With GEMLCA, running a legacy application from a standard Grid service client 

only requires a user-level understanding of the system. The legacy code runs in its 

native environment and uses the GEMLCA resource layer to communicate with the 

Grid client, thus hiding the legacy nature of the application and presenting it as a 

Grid service. [35] 

GEMLCA is capable to store legacy codes descriptions into a repository. While 

BDII and CHARON/iSoftrepo structured and stored minimal information about the 

application itself in their repository models, GEMLCA is the first example of a Grid 

application repository that can store application-related objects. GEMLCA employs 

an application description language (i.e. LCID) and application description 

documents written in LCID can be stored in GEMLCA repositories. Moreover, 

GEMLCA benefits from a very friendly graphical user interface (GUI) which has 

been developed as a JSR-168-compliant portlet [36] in the P-GRADE portal. From 

there users and administrators can easily publish new applications because the 

portlet layout and the LCID metadata naming scheme are intuitive enough not to 

require a thorough knowledge of LCID on behalf of the user. 

The GEMLCA system is built as an OGSI/WSRF-compliant Grid service, which 

makes it fully interoperable with other Grid services. However, GEMLCA was built 

as a Grid service and exposes only a Grid service interface; it does not publish 

information about the applications contained in its repository on any web page, it 

has no HTTP/REST [115, 116] API that could be used by web crawlers and no 

support for OAI-PMH [37] protocol that could be used by harvesters and popular 

search engines. Further on, GEMLCA has no connection to any other Grid 

application repository. Surprisingly, at this stage there is no communication even 

between two GEMLCA systems, although this can be done effortlessly by making 

use of their already-implemented Grid service interfaces.  
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GEMLCA is the first application repository from the list of repositories under 

discussion which stores application-related objects. Moreover, beside LCID 

application description documents, GEMLCA is also capable to store the 

application binary. This is the first step towards making Grid application repositories 

more versatile, so that they allow the application to be used in scenarios other than 

only in conjunction with traditional Grid architectures. 

NATIONAL G RID SERVIC E APPL ICATION REPOSI TORY (NG S 

AR)   

The NGS Applications Repository is a Grid portal solution developed in accordance 

with the JSR-168 standard, which employs a repository module for storing Grid 

applications. NGS AR provides users with a list of applications available on the 

NGS Grid [38, 39]; it allows users to parameterize instances of those applications 

and to run these instances on NGS resources. Applications found on the NGS 

repository are described using JSDL documents and users can select and save 

JSDL application descriptions into their own personal space on the repository for 

subsequent modification and personal configuration.  

While the NGS Applications repository provides a considerably richer user interface 

and a larger set of functionalities than BDII or the CHARON/iSoftrepo systems, in 

many cases its JSR-168 based implementation proves to be a limitation. Although 

this approach allows the portal to be distributed and hosted in project-specific portal 

containers, it limits the access interface to a graphical user interface that is intended 

exclusively for humans. Therefore, the NGS Applications repository is neither 

compliant with the OGSI/WSRF-standards stack, nor does it provide any 

HTTP/REST API. As a consequence, this system can only be accessed by human 

users who know the location of the portal. Furthermore, while the NGS Application 

Repository model does allow application-related objects to be stored on or 

referenced by the repository, these are all stored under the attribute Application 

Associated Files / Links, which makes them indistinguishable for automatic 

retrieval. At the same time, even human users can have trouble distinguishing 
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between user documentation, source code or binary, given that the system lacks a 

structured naming scheme that could be followed by publishers. 

GRI MOIRES F RAMEW ORK 

One of the methods of exposing Grid applications to users (as mentioned in 

Section 1.1) is with the help of web services technology. Using open standards 

such as XML, SOAP, WDSL and UDDI, WS can help achieve resource sharing 

and service sharing in the Grid environment in the form of web based services. 

References to these services are usually kept into a registry. Clients can query the 

registry and find the location of the web service, as well as the location of the 

service description. The description of the web service (in WSDL format) holds the 

patterns of all requests and responses necessary to communicate with the web 

service. GRIMOIRES is an example of such registry which is used to refer to 

applications exposed as services on Grid infrastructures.  

GRIMOIRES is an UDDIv2-compliant registry for web services that has the ability 

to augment interfaces with metadata such as functionality, semantic information 

about their inputs and outputs, or various metrics (e.g. perceived quality of service, 

trust). [40] In addition to the UDDIv2 interface, the GRIMOIRES framework also 

provides some other interfaces, such as a metadata interface and a WSDL 

interface, which allow clients to publish and inquire over metadata and WSDL-

related data, respectively.  

As this framework was designed to be used on Grid, it employs a GSI (Grid 

Security Infrastructure)-based [41] authentication system as well as a fine-grained 

access control for each published entity that is based on the X509 Distinguished 

Name (X509DN) extracted from the certificate corresponding to the signature. 

When deployed in an environment supporting OGSI/WSRF [42], GRIMOIRES is 

able to expose registry entities (such as businesses and services) as WS-

resources. Consequently, WSRF standard operations (e.g. using XPath [43] to 

query resource properties or subscriptions for notifications written according to the 

WS-Notification [44]) can be used to operate on registry entities. Furthermore, the 
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lifetime of registry entities are managed according to WS-ResourceLifetime [45] 

and GRIMOIRES can be implemented as a Grid OGSI/WSRF service. However, 

GRIMOIRES is a registry technology; it cannot accommodate any application-

related objects, except references to applications exposed as web services or Grid 

services.  

MYEXPERI MENT REPOSIT ORY 

myExperiment is a collaborative environment where scientists can publish and 

share their workflows notwithstanding the scientific areas they belong to. The 

myexperiment.org social web site is used by “thousands of users ranging from life 

sciences and chemistry to social statistics and information retrieval”. [46] 

Although myExperiment repository can in principle accommodate workflows 

designed for various workflow engines (such as Taverna [11], Kepler [13], Triana 

[14], Trident [47] etc.), at the time this research was carried out, the repository only 

had the capability of running and analyzing Taverna workflows. Currently, out of all 

major Grid application repositories integrated in Grid, the myExperiment repository 

stores the largest number of Grid applications (i.e. approx. 635 in July 2009). This 

can be regarded as a direct consequence of the HTTP/REST interface, which 

makes the repository and the applications stored on it visible on the Web. However, 

myExperiment has no means to access other types of repositories or the 

applications stored on them. Moreover, it exposes no OGSI/WSRF-compliant 

interface, which makes it unusable by other standard Grid services. 

Similar to GEMLCA and NGS AR, myExperiment benefits from a rich and user-

friendly access interface that allows users and administrators to easily publish and 

find applications stored in the repository. Currently myExperiment does not support 

the exchange of repository objects in a standard way. However, the myExperiment 

development team plans to migrate to an Open repository solution able to support 

the OAI-ORE standard.  

Like the NGS Application Repository, the myExperiment model allows application-

related objects to be stored or referenced inside the repository. However, it follows 
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the same pattern as NGS AR and uses only two attributes (i.e. Files and Packs) for 

their reference. Again, this approach limits drastically the ability to distinguish 

between application-related objects, and impedes automatic retrieval of specific 

objects. 

2.1.3 Conclusions 

Other Grid application repository architectures exist, such as EGEE Application 

Repository [48], EDGeS Application Repository [49], g-Eclipse Workflow Builder 

[50], gUSE Repository [15], as well as Grid Service registries: Lattice registry [51], 

D-Grid registry [52] and ARCS registry [53]. However these are very similar to the 

solutions already described in the previous section (2.1.2). Therefore, they were 

omitted from this discussion, since their architecture does not bring any particular 

novelty elements in terms of repository architectures compared to the ones already 

presented above.  

This critical analysis started with an overview of the oldest Grid application 

repository solution - BDII, which simply stores information about resources 

commissioned to Grid by each site and about the Grid applications installed on 

them. However, BDII is not able to store any application-related object and lacks an 

intuitive user interface for publishing applications. BDII interacts with neither popular 

web search engines nor OGSI/WSRF Grid Services and has no connection to any 

other repository – neither in gLite/lcg-based Grids infrastructures nor on any other 

Grids. 

CHARON/iSoftrepo marks an improvement in this respect, as it comes with a 

collection of static web pages where administrators can manually enter the 

information about the applications stored in the repository. This makes the 

application visible to web search engines but with the obvious drawback that any 

change in the application description or any new application added to the repository 

requires manual intervention from administrators. 
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GEMLCA, NGS AR and myExperiment expose user-friendly graphical interfaces, 

which makes them easily accessible both by Grid-knowledgeable users and by 

non-Grid users. Notably, GEMLCA highlights the importance of interoperability with 

OGSI/WSRF Grid Services.  

An excellent example in highlighting the importance of application exposure to web 

is the myExperiment repository which employs a HTTP/REST interface. The ability 

to find information about Grid applications straight through popular search engines, 

combined with myExperiment‟s intuitive and user-friendly interface made this 

system very popular – as shown by the increasing number of myExperiment users 

(e.g. 1000 registered users in July 2008, 2478 registered users in July 2009) and 

the growing number of applications (e.g. 321 registered applications in July 2008, 

635 registered applications in July 2009) stored in the repository. 

Also, in terms of the ability of exchanging repository objects, myExperiment is the 

only repository which intends to migrate to a technology, which comes with support 

for protocols that permit the exchange of objects between repositories. However, 

even myExperiment lacks support for metadata harvesting clients (i.e. services that 

collect the metadata descriptions of the objects in the repository so that other 

services can be built using such metadata), thus limiting the visibility of the objects 

stored in the repository and reducing the number of scenarios in which 

myExperiment can be involved.  

In conclusion, Grid application repositories are currently not connected in any 

structured manner as a straightforward consequence of the different repository 

frameworks they are built on. Moreover, at this stage there is no service that users 

or other services can inquire to find whether a desired Grid application is stored on 

any of these repositories. 

  

http://en.wikipedia.org/wiki/Metadata_(computing)
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2.2. Grid Application Repository Models 

Repository models are a formal way to structure information and to describe 

relations between the objects stored in a repository. When applied to Grid 

application repositories, these models usually refer to the following entities and the 

relations between them: users; applications and application-related objects; and 

security policies. 

2.2.1 General Overview of Grid Application 

Repository Models 

Since in most cases the technology used for repository implementations is generic 

and imposes little or no restrictions on what administrators define in their models, 

these models vary significantly from one repository to another, even though they 

may refer to similar objects. Besides the metadata associated with users and 

security policies, little information can be found in these models about the actual 

application. Only the following information is usually common to these: application 

name; application version; the creator of the application description document; a 

free-text description of the application; creation date; last modification date; and 

particular fields used internally by the system such as universal identification, 

modification history, usage statistics etc. 

Moreover, Grid application repository models refer to application description 

documents as objects stored in the repository. The exceptions which allow 

additional objects to be stored besides application descriptions (i.e. myExperiment, 

NGS AR, GEMLCA) make no formal distinction between the types of objects that 

can be added to the repository. This is a consequence of the fact that such 

repositories are usually tightly coupled with one particular Grid and they are running 

on platforms well-known to their administrators. Therefore, apart from the case 

when the application is exposed as a service, the applications exist only in their 

binary form and are either already-deployed on the execution sites or they can be 
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staged there from storage facilities other than the repository itself. This implies that 

scenarios involving prerequisite application-related actions such as getting the 

source code, compiling the code, solving licensing issues, solving software 

dependencies and application deployment are done by Grid site administrators 

without any help from what is stored in the repository. 

2.2.2 Review of Existing Solutions 

NGS AR REPO SITORY MO DEL  

The NGS AR stores application descriptions written in JSDL – therefore the 

repository model employed in NGS AR is designed in accordance with the 

description capabilities of JSDL. Figure 2-3 depicts the repository structure 

responsible with modelling information about a given application.  

 

Figure 2-3: NGS AR repository model 

The application properties and application-related entities modelled by the NGS AR 

are derived from the formal structure of the JSDL. For example, the candidate host 

entity, along with the environment variables and data stage entities, describe the 

information retrieved from the following JSDL sections: Resource/CandidateHosts 

element; POSIXApplication/Environment element; DataStaging/Source and 

DataStaging/Target elements. Candidate host entities describe the information 

about the computational resources on which the application can run; the 

environment variables entities refer to the operating system variables that need to 

be used or to be set to particular values in order to allow the application to run in 

that environment; the data stage entity describes the input and output files that 
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need to be retrieved or uploaded from/to various storage resources available in 

NGS Grid.    

The NGS AR is part of a system, which not only stores application descriptions, but 

is also able to instantiate those applications and run them on Grid. This system is 

coupled with a GridSAM submission engine that is able to provide job submission 

interfaces ”for submitting computational jobs to many commonly used distributed 

resource management systems (Condor, PBS, SGE, etc.)”.[54] Theoretically, 

GridSAM allows the system to be connected to different Grids, hence the user Grid 

host entity in the repository model, which allows users to choose resources located 

in any of the Grids connected to GridSAM. However, the NGS Grid is currently the 

only one connected to the system, so the running of any application is effectively 

restricted to NGS Grid. 

The NGS repository model allows applications to be classified in different 

categories under the attribute job category. The model also allows the user to 

define personal user categories apart from the ones pre-defined by the NGS 

repository administrators, which are: Tutorials/Examples, Engineering, 

Bioinformatics, Analysis/Stats, Biomedical, Chemistry, Astrophysics, Image 

Analysis and CCPb Workshop.   

The security policy of the NGS AR is based on Public Key Infrastructure (PKI) X509 

certificates and the identity of repository users is established on the Distinguished 

Name attribute of the certificate. The repository stores this information in relation 

with a user entity described by its model. Security policies are basic and they model 

particular actions associated with two roles: the administrator and the regular user. 

As opposed to the regular user, administrators can create/delete/modify new users, 

new NGS categories and new NGS applications. 

The Job Profile entity from the NGS AR model gathers all information about an 

application under one reference and functions as a container for the other entities in 

the model.  
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The NGS AR is able to store application-related objects in its repository. However, 

all these objects are stored under the generic entity Files/Links, which makes these 

objects indistinguishable for automatic retrieval. The repository model is not able to 

differentiate between different types of application-related objects and furthermore, 

the formal description document of the application (written in JSDL) is not stored as 

a whole document in the repository. The next repository model takes a different 

approach to this matter.   

GEMLCA REPO SITORY MO DEL  

As opposed to the NGS AR, in which JSDL played a central role in the design of 

the repository model, GEMLCA is not dependent on the formal structure of LCID – 

the application language used for application descriptions stored in the repository. 

The repository model consists of five entities necessary for the GEMLCA system to 

operate (see Figure 2-4): the user profile; the job information; legacy code 

environment variables; Grid site information; and the Grid Backend profile. 

 

Figure 2-4: GEMLCA repository model 

Similar to NGS AR, the security policy of the GEMLCA system is based on PKI 

(Public Key Infrastructure) X509 certificates and the Distinguished Name attribute is 

used to establish the identity of users. This information is stored in the user profile 

entity along with personal information such as name, affiliation, address and email. 

The job information entity refers to its LCID description, including the state in which 

a submitted application instance (i.e. job) finds itself in, such as: submitted, queued, 

running, done, failed or cancelled. The legacy code environment specifies the 
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operating system variables that are needed in order to ensure a correct run of the 

application instance.  

While the NGS repository was part of a system which used GridSAM as 

submission engine, GEMLCA has its own submission backends that can submit 

jobs to different Grid infrastructures (e.g. GT2, GT4, gLite/lcg). As production 

GEMLCA systems do connect to two or more Grids, the backend specifics are 

described by the repository model in Grid backend profile entities. Finally, the Grid 

site information entity is equivalent with the candidate host entity from the NGS AR 

model and describes the computational resource where the application is set to 

run.     

 

Figure 2-5: GEMLCA storage structure 

The GEMLCA storage structure (see Figure 2-5), allows for application binaries 

and application descriptions files (code config) to be stored in the repository. By 

doing this, GEMLCA allows these objects to be used independently in different 

scenarios, which do not necessarily involve running the application on Grid 

infrastructures. 

CHARON/ I SOFTREPO  REPO SITORY MODEL  

It was mentioned in section 2.1.2 of this chapter that the CHARON/iSoftrepo 

repository is used on gLite/lcg based Grids (e.g. EGEE, SEE-Grid, EELA Grid, 

EUMedGrid, EU-India Grid, EUChinaGrid, Baltic-Grid II). Particular to these Grids is 
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the fact that application binaries cannot be staged and installed on demand on the 

infrastructure – they are already deployed and can only be run on the sites which 

expose them. However, CHARON/iSoftrepo administrators understood that a Grid 

application repository might be used in other scenarios (i.e. not only in connection 

to Grid) and designed a model, which actually exceeds the requirements of a 

gLite/lcg Grid. 

 

Figure 2-6: CHARON/iSoftrepo repository model 

Similar to NGS AR and GEMLCA, CHARON/iSoftrepo model (see Figure 2-6) 

contains entities, which describe users (author information); categories of 

applications (categories); the computational resources used to run the application 

instances (site information); the application description (application information); 

and the operating system environment variables required to run the application 

(environment information). In addition to that, the repository can store the source 

code in a tar.gz archive (source information), as well as information about the 

compiler distributions used to build the runtime executables of the application (build 

information).  

Grid infrastructures that support gLite/lcg middleware are Linux-based and 

therefore a common technique for the dynamic modification of a user's environment 

is via modulefiles. Typically each application needs one or more environment 

variables to get specific values, while the modulefiles approach is to instruct the 

Linux module command to modify or set shell environment variables (such as path, 
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ld_library_path, cc, manpath, etc.) with the necessary values. The 

CHARON/iSoftrepo repository model captures the information about the modulefile 

associated with a Grid application in the module information entity. In cases when 

different versions of the same application exist on the same system, they are 

usually deployed as different modules. However, it is customary in such cases that 

the modulefile associated with one version of the application contains references to 

the modulefile associated with the other version of the application, since they use 

the same values for a common subset of environment variables. This is true not 

only in the case of different versions of the same application, but also when 

different applications depend on each other. The CHARON/iSoftrepo model 

captures the information about the version of an application along with the possible 

dependencies of that application on other modules in the realization information 

entity.  

MYEXPERI MENT REPOSIT ORY MO DEL  

As stated in section 2.1.2, myExperiment represents a collaborative environment 

built around a repository of scientific workflows. Consequently, in order to 

emphasize the idea of collaboration, the repository model was designed to describe 

not only relations between users and applications or between applications and their 

related objects, but also user-to-user relations.  

 

Figure 2-7: myExperiment repository model 
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As seen in Figure 2-7, myExperiment‟s repository model focuses extensively on 

interactions between different users of the system. Entities like friendship, 

messages, reviews, comments, citations, pictures, credits and ratings make 

myExperiment not just an application repository but also a social networking 

system.  

The system keeps the list of users in a users entity and each user‟s description is 

modelled in a profile entity. Users can be grouped together in groups, while security 

policies, access policies and user roles are described via the following entities: 

membership, policies, permissions and attributions. Moreover, users can define 

access policies and can enforce permissions on the applications they own. 

However, these policies cannot be more permissive than the policy assigned by the 

system administrator to that particular class of entities. 

The myExperiment model describes applications as workflows suitable for various 

submission engines (such as Taverna, Triana, Kepler, etc.). Multiple workflows can 

be grouped together under the same experiment and these workflows can have 

additional application-related objects stored in the repository. However, the model 

does not have the capability to distinguish between different application-related 

objects as it categorizes them in only two classes: files and packs.  

myExperiment is integrated with a Taverna submission engine; therefore, users 

can run applications (i.e. as Grid jobs) on Grid and the system will use notifications 

to update users on the progress of the application running process. The 

myExperiment repository model allows users to mark their favourite applications 

and permits assignation of application tags that help the search process by giving a 

better categorization of applications.  

The myExperiment repository model is much more complex than all the models 

currently used in production Grid application repositories. This comes as a 

consequence of the fact that this model was built to satisfy the design requirements 

of an entire social network system, not only those of an application repository. 

Nonetheless, the ability to model user-to-user relations as well as the ability to 

support fine-grained user policies permit application sharing and encourage 
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collaboration between users. These elements should represent an inspiration for 

designing future Grid application repository models, especially since the entire Grid 

is based on the idea of collaboration and sharing.   

2.2.3 Conclusions 

Other Grid application repository models do exist – GLUE, gUSE, EDGeS, 

GRIMOIRES, EGEE – but they are similar to at least one of the solutions already 

described in the previous section (2.2.2). They were therefore omitted from this 

discussion as they do not bring any further innovation in terms of repository models.  

When describing Grid applications, the repository model usually contains 

information such as the application name, the version, a free-text description of the 

application, the environment variables necessary to the application to run correctly 

and the computing resource(s) where the application is set to run. Occasionally, the 

applications are grouped in categories depending on their scientific domain of 

applicability. 

In cases such as GEMLCA and NGS AR, in which the repositories are part of 

systems that employ heterogeneous or generic submission engines (i.e. able to 

use Grid infrastructures based on different middleware), the models were designed 

to accommodate information about such submission engines. Moreover, such 

models can capture certain particularities of Grid infrastructures (such as the 

underlying technology used as middleware, or the application description language 

used for submission), which are used at submission stage to ensure a correct 

processing of the application instances.  

myExperiment gives a very good solution for exposing information about users, 

security policies, access permissions, as well as relations between different objects 

captured in the repository model. This is mainly because the entire myExperiment 

system is designed to support a collaborative environment and its primary focus is 

therefore on modelling user-to-user relations.    
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In terms of making Grid application repositories more versatile and expanding their 

domain of usage, GEMLCA, NGS AR and myExperiment can store not only 

application descriptions, but also other application-related objects. However, the 

attributes used for their reference make the application objects indistinguishable for 

automatic retrieval. Without a structured naming scheme to be followed by 

publishers, even human users can have difficulties distinguishing between different 

application-related objects stored in repository. This approach limits the possibilities 

to discover specific application-related objects and impedes automatic retrieval of 

these objects. 

 

2.3. Grid Application Repository 
Application Description Languages 

Application description languages are formal ways to describe applications. These 

languages are the result of various investigations into the relationship between the 

Application and the Grid infrastructure/services and they address a list of features 

needed to make the application visible and usable on Grid. Unfortunately, there is 

no single Grid application description language, but several of them, since different 

scientific research teams have put effort into finding their own way to describe Grid 

applications.  

2.3.1 General Overview of Application 

Description Languages 

Following the timeline from the beginnings of Grid application description 

languages up to present days, Grid application description requirements can be 

divided in two categories: basic requirements and advanced requirements. 
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BASIC REQUIREMENTS 

In order to make the application usable on Grid these description languages 

needed to be able to describe several basic features of the application (basic 

requirements). Given that Grid is a distributed environment, applications reside on 

different resources scattered throughout the Grid participating sites. In order to run 

the application they need, users have to know the name, the version and the 

executable path of the software they want to use, and these key attributes are a 

must for every language. Furthermore, they need to describe the remote 

environment (such as the working directory or the environment variables needed 

for the application to run), as well as the location of the default input files and the 

arguments that need to be passed on to the application. 

Another consequence of the fact that Grid is a distributed environment is that the 

application description language needs to be able to address remote file staging 

because the executable and/or default input files may reside on resources other 

than the one chosen for execution. 

Given that the Grid architecture enables users to run parallel applications, this issue 

needs to be addressed as well. Therefore, at the basic requirements level, any 

description language needs to be able to specify at least the number of processors 

required for the application to run.  

Although Grid is quite resourceful in terms of computing and storage power, it is 

comprised of various sites, which offer Grid users a very diverse panel of resources 

(e.g. different machine architectures, different operating systems, different usage 

policies, different CPU/memory/disk limitations, etc.). Consequently, an application 

description language is also used to specify the memory/disk/CPU/etc. 

requirements needed for the application to run. These requirements are written in a 

document that is passed on to the execution site. If the execution site policies are 

met, the execution will be allowed on the site‟s resources. 

As Grid evolved, users began to have more expectations from the way Grid 

handled the applications and consequently, the capabilities of application 
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description languages evolved as well. On one hand, newer technologies emerged 

and were adopted by Grid (Grid/Web services) and on the other hand, applications 

grew in complexity, demanding finer grained descriptions from description 

languages.  

ADVANCED REQUIREMENTS 

To cope with the new requirements, description languages had to be improved with 

newer capabilities (advanced requirements). First, resource requirements were 

fine-tuned to allow specific memory/disk/CPU/network requirements to be specified 

(for example: core dump size limits, virtual memory requirements, pipe size limits, 

minimum network bandwidth requirements, or open file descriptors limit). Moreover, 

at the beginnings of Grid, file staging usually occurred with the help of two transfer 

protocols, namely gridftp [55] and rfiod (UNIX remote file access daemon). As more 

file transfer protocols were adopted by Grid (such as SRB [56] or srm [57]), 

description languages had to make room for them in their schema as well. Later on, 

as service technologies (i.e. Web services and OGSI/WSRF Grid services) were 

adopted by Grid, the application description language schema had to be modified 

to accommodate descriptions of such technologies. Also, as applications grew in 

complexity, the default configuration of such applications required increasingly 

more knowledge from users. Consequently, administrators had to create a template 

for the application: in some cases by supplying values (unchangeable by users) for 

certain parameters; or, in other cases, by specifically asking users for mandatory 

input of certain application arguments. The idea of a template was to provide users 

with the set of parameter values necessary for a correct run of the application (for 

example, in order to run accurately, applications may demand a certain machine 

architecture, a certain OS, a minimum amount of memory, or a specific value for an 

environmental variable). Implicitly, it reduces the complexity and the amount of 

knowledge a regular user is required to have about the Grid infrastructure or about 

the application set up in a particular Grid environment. As the notion of application 

template began to gain terrain in the past few years (e.g. GEMLCA, gUSE) 

description languages also needed to reflect this trend accordingly. Finally, while at 

the beginnings of Grid parallelism was addressed only in terms of number of 
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processors and Grid parallel computing referred mainly to cluster jobs such as MPI 

jobs, as time went on, description languages had to be extended to be able to 

express other forms of parallelism, such as parameter sweep applications and 

multi-process applications. 

To summarize, a minimal set of functionalities that any application description 

language is expected to implement in order to comply with current Grid 

requirements today includes: 

 Legacy compatibility – Any new application description language 

should implement all the basic application description requirements to 

ensure full backwards compatibility with all previous solutions.  

 Advanced features – On top of the basic features, the description 

language should be able to describe complex application/resource 

specification as well as complex data-staging. Furthermore, this language 

must be able to accommodate Web and Grid service technologies; 

therefore its schema must permit service-like entries in it (e.g. service 

endpoints).  

 Advanced parallel behaviour description – Any new application 

description language should be able to express advanced parallel 

capabilities such as parameter sweep and multi-process applications. 

2.3.2 Review of Existing Solutions 

This section brings into discussion the most important application description 

languages used on existent production Grid middleware, including: RSL, JDL, 

xRSL, WS-GRAM RSL, LCID and JSDL.  

RESOURCE SPECIF ICATI ON L ANG UAG E (RSL)  

RSL [27] is one of the first application description languages that emerged for Grid. 

It was developed by the Globus team [58] along with the GT2 Grid middleware [59] 
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and other Grid specific tools. Since it came packaged with one of the widely spread 

Grid middleware like GT2, RSL became the first choice of description language for 

many researchers and users. As such, it can be regarded as a landmark for the 

evolution of application description languages, since it set up the basic application 

description requirements for languages to come.  

With regard to the first requirement (Legacy compatibility), RSL represents the 

legacy in discussion and defines and implements the basic application description 

requirements. However, since it is so old, Advanced features are almost non-

existent. Users cannot specify features like: file size limit, open descriptors limit, 

process count, machine architecture, OS requirements, CPU requirements, virtual 

memory requirements, or file system description etc. In terms of its Advanced 

parallel behaviour description capabilities, RSL allows users to describe parallel 

jobs and MPI [60] jobs through the following parameters: jobType and hostCount, 

but has no support for parameter sweep jobs or multi-process jobs (e.g. no thread 

limit or number of processes limit).  

JOB DESCRI PTION LANG UAGE (JDL)  

Another legacy application description language, JDL [25, 26] is used on gLite/lcg 

middleware-based Grids. Similar to RSL, JDL implements all the basic application 

description requirements (Legacy compatibility), but does not natively implement 

the Advanced features. However, it supports BDII constraints into its schema. The 

BDII schema improved over time and nowadays allows site administrators to add 

important metadata to their resources (such as machine architecture, OS type, 

number of CPUs, memory, disk size etc). JDL therefore indirectly supports a large 

part of the Advanced features through its BDII constraints. However, some fine 

grained features cannot be expressed via JDL, such as locked memory limit, open 

descriptors limit, network bandwidth, thread count limit etc.  

The JDL schema is able to accommodate and describe the parallel behaviour of an 

application with the same limiations as in the RSL case; therefore JDL is only partly 

able to satisfy the Advanced parallel behaviour description requirements.  
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EXT ENDED RESOURCE SPEC IF ICATION LANGUAGE ( XRSL)  

xRSL [28] is a Grid application description language used in Grids based on ARC 

[61] middleware (e.g. NorduGrid [62], Swegrid [63], KnowARC [64], NDGF [65]). As 

its name implies, xRSL was created through the extension of the RSL schema by 

several new features.  

Many of xRSL extensions over RSL capabilities are related to the ARC middleware 

(e.g. notifications, ACLs (Access Control Lists), ftp threads). However, several 

improvements from RSL can be noticed with reference to the Advanced features 

requirement: at the resource level xRSL displays some extra disk-related 

parameters and at the data staging level it accommodates URIs. However, the 

Advanced features requirement is not entirely. 

(W S- )  GRID RESOURCE ALLO CATI ON AND MANAGE MENT 

(GRAM4)  RSL  

As its prefix WS suggests, GRAM4 RSL [66] was mainly built to address services. 

Once Grid began to adopt the Web service technology (which was later 

transformed and adapted to Grid, finally emerging as the OGSI/WSRF-Grid Service 

technology), a new description language was needed to support service 

descriptions and invocations. The Globus team modified its GT2 Grid middleware 

and adapted it to the new Grid service paradigm and so they created the GT4. As 

in the case of GT2, GT4 came packaged with an application description language, 

only that this time, the new application description language was oriented towards 

the new service technology. This became known as WS-GRAM RSL or GRAM4 

RSL. 

The GRAM4 RSL remains quite similar to RSL and is not a marked improvement 

from that in terms of its Legacy compatibility and Advanced features 

requirements. However, the WS-GRAM schema supports file staging using 

different credentials. WS-GRAM RSL can express a myproxy service [67] 

invocation for credential retrieval used for file staging (myproxy is a Grid service 

that holds user PKI X509 credential-delegates [68]), thus describing a scenario 
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when files can be transferred using different credentials (e.g. 

jobCredentialEndpoint, stagingCredentialEndpoint).  

However, apart from this particular case, and as its forerunners RSL and xRSL, the 

WS-GRAM RSL schema still lacks some fine granularity such as multi-process 

description capability or parameter sweep description capability to meet the 

Advanced parallel behaviour description requirement. 

LEGACY CODE I NTERF AC E DESCRIPTION (L CID)   

LCID [20] is an application description language used by GEMLCA to describe the 

applications stored in its repository. From the point of view of meeting the basic 

requirements and the advanced requirements this solution has fewer description 

capabilities than the other languages brought in discussion. However, LCID needs 

to be mentioned because, historically, it is the first application description language 

to implement the idea of a template. LCID permits administrators to fix values for 

certain application description parameters (i.e. through the attribute fixed) and can 

also demand users to input values for a specific description field (i.e. through the 

attribute mandatory).  

However, apart from this ability, LCID meets only the Legacy compatibility 

requirement and provides partial support for the Advanced features and 

Advanced parallel behaviour description demands. 

JOB SUBMISSION DESCR I PTION L ANGUAG E (JSD L)  

The JSDL‟s schema [22] marked a decisive step forward for the Grid application 

description language standards. Not only that JSDL meets the Legacy 

compatibility requirements, is also meets all the Advanced features 

requirements identified in Section 2.3.1. Furthermore, its schema has the 

advantage of being extendible (i.e. through the use of other attribute).  

The JSDL schema was able to accommodate multi-process application 

descriptions from the outset and while the original schema could not express 
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parameter sweep behaviour, through the use of JSDL‟s native extension capability 

researchers effortlessly added the parameter sweep extensions [69] making JSDL 

able to fully meet the Advanced parallel behaviour description requirement.  

2.3.3 Conclusions 

The previous section (2.3.2) described the most important application description 

languages used in current Grid infrastructures. Almost all of these languages 

implement the basic requirements. However, with the notable exception of JSDL, 

these languages implement only parts of the advanced requirements and they 

cannot be regarded as a complete solution that meets both basic and advanced 

requirements. 

This analysis also found that a substantial subset of application description 

attributes is common to all application description languages. Therefore, a future 

description language might consider the idea of extending an old ADL rather than 

create a new one.  An excellent example in this matter is given by JSDL, which 

exhibits native extension capabilities that allow it to accustom new parameters, 

types and attributes while still remaining compliant with the original language 

schema. 

2.4. Grid Application Matchmaking 
Systems 

In computer science, matching (or matchmaking) can be defined as the process of 

evaluating the degree of similarity between two objects.[70] Objects are 

characterized by properties and a matchmaking system would run an algorithm 

which compares these properties, analyses the results of the comparison and 

returns a matching degree.  In most cases the matching degree is a real number 

with values in the interval [0, 1], where usually 1 denotes identical or equal objects, 

while 0 denotes opposed or completely different objects (Note: there are some 
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cases, such as the edit-distance metrics, where 0 means equal objects). A value in 

the interval (0, 1) – i.e. with both endpoints excluded from the interval – can be 

translated as similar to a certain extent.  

Traditionally, the properties of an object are formally encoded in a description 

document following a predefined model of the object. However, in many cases, one 

property of the object can be encoded in the model via a set of two or more 

description attributes. Usually, the description documents contain tuples like (name, 

value), where name refers to the description attribute, while in most cases value is 

a number, a string of characters or a Boolean value. 

2.4.1 General Overview of Grid Application 

Matchmaking Systems 

Grid application description documents follow the same concept as the one 

described above and therefore can be processed by matchmaking systems. 

However, there are different approaches to matchmaking and there is no evidence 

in related research that they were applied to Grid applications until now. Examples 

of matchmaking techniques that can process Grid application description 

documents include syntactic methods, string-distance metrics and semantic 

techniques, which are discussed below. 

SYNTACTI C MATCHMAKIN G  

Syntactic matchmaking uses the structure or the format of an object description in 

order to perform the matching process. Syntactical matching systems do not take 

into consideration either the meaning of the attribute name or the meaning of the 

attribute value found in a description; they process the fields without knowledge of 

their semantic value.  

Applications are described using formal languages and structures that can be either 

proprietary or standard-based. In most cases, syntactic matchmaking is performed 
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on homogenous descriptions, but they have been extended to heterogeneous 

descriptions as well.  

In the case of homogenous descriptions, the structure of the description documents 

of the two applications under comparison is the same. The matchmaking system 

usually employs very strict mathematical and logical functions to compare the 

values of each pair of attributes. The partial results are then combined according to 

an aggregation model, which supplies the final result. The aggregation model 

usually employs a weighing system and assigns scores to each partial result in 

relation to the importance of each attribute within the overall description of the 

application. Next, the system then matches the score against a threshold and 

provides the final decision to the comparison process. 

In the case of heterogeneous descriptions, a syntactic structure matchmaking is 

first performed in order to find the correspondence between those attributes that 

encode the same property of the application.   

Information about an application property can be formally encoded using a set of 

description attributes.  

Table 2-1: Example of two formalisms encoding the same application property 

Application Formalism no. 1 Formalism no. 2 

Property Attribute(s) Value(s) Attribute(s) Value(s) 

Execution 

Site 

SiteLocation ngs2.rl.ac.uk:2119/ 

jobmanager-pbs-short 

SiteName ngs2.rl.ac.uk 

Port 2119 

Jobmanager 
&Queue 

jobmanager-pbs-
short 

When encountering heterogeneous structures, it is common to find the same 

information about an application property encoded in different sets of description 

attributes, which means different formalisms may have no syntactical symmetry 

when describing the same application property. The example given in Table 2-1 

shows two different approaches to modelling the execution site where the 

application can run: one formalism uses only one attribute (i.e. Formalism no. 1 - 

SiteLocation) to encode this property, while the second uses a set of three 
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attributes (i.e. Formalism no. 2 – Site, Port and Jobmanager&Queue) to encode the 

same property. 

Consequently, matchmaking systems used in these cases have to perform an 

alignment of the information about the application property by recomposing the 

original set of descriptions attributes. Once the alignment has been performed, the 

process follows exactly the same steps as in the case of homogenous descriptions, 

applying comparison functions and combining partial results to generate a final 

answer to the matching case. 

STRING DI STANCE METR I CS  

String distance metrics  are “a class of textual based metrics resulting in a similarity 

or dissimilarity (distance) score between two text strings for approximate matching 

or comparison” [71].  

Nowadays string-distance metrics are used in a multitude of areas such as fraud 

detection, plagiarism detection, ontology comparisons, DNA sequencing and 

analysis, data mining, evidence based machine learning or Web interfaces (e.g. 

word suggestions as you type, typing error detection, etc.) 

On Grid, every application description language has a field called [Application] 

Description. The value of this field usually contains a paragraph of free-text in which 

application administrators describe the application history, functionality and purpose 

of the application using natural language, with no formal constraints. This text 

contains information about the application, but syntactic matchmaking systems 

leave this information unprocessed due to the complexity of the functions needed 

for such a comparison, as well as due to the level of uncertainty induced by their 

outcomes, which would require a far more complex result-processing system. 

However, these paragraphs of text can be processed by algorithms that use string-

distance metrics to find similarities between these texts and to eventually give users 

an indication of how similar two Grid applications are. 

http://en.wikipedia.org/wiki/Metric_%28mathematics%29
http://en.wikipedia.org/wiki/Similarity
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Fraud_detection
http://en.wikipedia.org/wiki/Fraud_detection
http://en.wikipedia.org/wiki/Plagiarism_detection
http://en.wikipedia.org/wiki/Ontology_merging
http://en.wikipedia.org/wiki/Ontology_merging
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String-distance metrics can be divided in three categories: edit-distance metrics, 

token-based metrics and hybrid metrics.  

Edit distances compute the dissimilarity between strings as the cost of the best 

sequence of edit operations that convert the first string to the second string. Typical 

edit operations are character insertion, deletion and substitution. Nowadays, many 

methods also use character transposition in their functions. Examples of techniques 

that use edit distances are Damerau-Levenshtein [72], Smith-Waterman [73], Jaro-

Winkler [74], Needleman-Wunsch [75] and Monge-Elkan [76].  

Token-based distance functions assume that strings are sets of words (or 

tokens). Functions associated with token-based metrics usually compare the 

similarity and diversity of token sets. More advanced methods compute token 

frequency statistics from the complete corpus of documents to be matched and use 

vector analysis functions and probabilistic approaches to compute the matching 

score between two strings. Some approaches see the token sets as samples from 

an unknown distribution of tokens and compute the distance between two sets of 

tokens based on similarity/divergence scores of such distributions. Notable 

methods in token-based string matching are the TFIDF/Cosine similarity function 

[77], Jaccard distance [78], Tanimono coefficient [78], Dice coefficient [79], Jensen-

Shannon Divergence [80] and Jelinek-Mercer mixture model [81].  

The hybrid methods are usually combinations between edit and token based 

distances (e.g. SoftTFDIF [82]), but sometimes they can combine functions from 

the same class (e.g. the two-level edit-distance algorithm proposed by Monge and 

Elkan [83]). 

SEMANTIC MATCHMAKING  

While syntactic matchmaking processes descriptions based solely on their 

structure and format, semantic matchmaking systems also look at the meaning of 

the description attributes name and value.  

http://en.wikipedia.org/wiki/Similarity
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Semantic matchmaking systems are not new. Extensive research has been 

undertaken in recent years in the world of semantic web services, ontology 

matchmaking, natural language processing, and document analysis - many of them 

with outstanding results. Currently Grid does not hold a specific example of 

semantic matchmaking; however, semantic analysis methods employed in 

semantic web services and document-processing areas can be applied to Grid 

application descriptions documents in order to find similarities between 

applications. 

As in all approaches that involve a structured description of an object, the formal 

semantics of the object are specified with the help of a language, such as LARKS, 

LDL++, DAML-S/OWL-S, WSMO, OWLS-MX, SWSL etc. These languages 

provide a core set of markup language constructs for describing both the properties 

and the capabilities of an object in unambiguous, computer-interpretable form. [84, 

85] However, as they are limited to the lexicons and terminologies used in different 

ontologies, these approaches do not address cases of implicit semantics that can 

be found in patterns or relative frequencies of terms in object descriptions.  

Semantic matchmaking can also analyze the linguistic semantic associations 

between words such as synonyms (i.e. words that have similar meaning and can 

often be used interchangeably), antonyms (i.e. words that have opposite 

meanings), hypernyms (i.e. words that have a more general meaning), hyponyms 

(i.e. words that have a more specific meaning), meronyms (i.e. words that 

represent a part-of relation) and holonyms (i.e. words that represent a whole 

relation). For example, „leaf‟ is a meronym of „tree‟ and „tree‟ is a holonym of „leaf‟. 

[86] 

2.4.2 Review of Existing Solutions 

While matchmaking techniques have not been used for application matching in 

Grid until now, they have successfully been used in matching Grid resources. [70, 

87, 88, 89] The following analysis presents four such solutions used for resource-
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matching in Grid. The analysis is complemented with that of three general 

matchmaking systems, which describes how string-distance and semantic 

techniques can be used to match objects based on their description. 

CONDO R  

Condor is a software system designed to manage a dedicated cluster of 

workstations. Its advantage resides in the ability to effectively harness non-

dedicated, pre-existing resources under distributed ownership. [90] One of the 

modules provided by the Condor system is the matchmaking framework that 

matches resource owners with resource consumers. 

The framework is based on a semi-structured data model [91, 92] called classified 

advertisements (classads) which are used to describe resources and requests. 

There are two types of classads: resource offer ads and resource request ads. A 

resource offer ad is submitted by resource providers and represents a formal 

mapping between resource properties (such as machine architecture, operating 

system, available disk space, available RAM memory, CPU type, CPU speed, 

virtual memory size, physical location, current load average, etc.) and a value 

expression. A resource request ad is specified by the users when submitting a job 

and follows the same mapping as the resource offer ads.  

Condor matchmaking takes two classads (i.e. a resource offer ad and a resource 

request ad) and evaluates each of these against the other. A strong requirement of 

Condor is that the provider and the requester know each other's classad structure. 

A classad has a special attribute named Requirements and two classads match 

only when the values of the field Requirements of both classads under comparison 

are evaluated to be true. If users want a finer match to their requests after finding 

the machines that met the requirements, they can express their preference via the 

Rank attribute. For example, a resource requirement ad specifying  

 

Requirements = Memory >= 1024 && OpSys="SOLARIS10" && Arch="SUN"      

Rank = Memory >= 2048 
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asks Condor to choose all SUN machines running the operating system SOLARIS 

10 with more than 1GB of memory and  expresses a preference to run the program 

on machines with more than 2GB of physical memory provided such machines are 

available.  

BERKELEY DATABASE IN SFORMAT ION INDEX -  BDI I  

The central information system in gLite/lcg-based Grids (i.e. BDII) stores 

information about Grid resources and uses the GLUE schema as a description 

model for the referenced objects. The GLUE schema provides support for two 

types of gLite/lcg Grid resources: computing elements (CEs) and storage elements 

(SEs). 

BDII allows communication with clients via LDAP (Lightweight Directory Access 

Protocol) queries. Matchmaking in BDII is similar to the matching system in Condor.  

Namely, the client specifies a set of needed requirements in a field called 

Requirement; only when these Requirements are met the two GLUE entries are 

considered to be a match. Like Condor, clients using BDII are required to know the 

formal schema used by the system (i.e. in this case, the GLUE schema).  

The following example describes a client querying one of the BDIIs located at 

CERN (i.e. lcg-bdii.cern.ch:2170): 

 

The result will be a list of machines with i686 architecture, a symmetric 

multiprocessing power of 4 and more than 1GB of RAM. Furthermore, similar to 

Condor, BDII uses a Rank attribute to select the best resource from the list of 

candidates. 

 

ldapsearch -x -H ldap://lcg-bdii.cern.ch:2170  -b Mds-Vo-name=local, 

o=grid'(&(GlueHostArchitectureSMPSize=4) 

(GlueHostMainMemoryRAMSize>=1024) 

(GlueHostArchitecturePlatformType=i686))' 
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RESOURCE BROKERI NG S YSTEM ( RBS)  

Similar to the two systems described above (i.e. Condor and BDII), RBS is a 

matchmaking algorithm developed for Grid resource discovery and matching. RBS 

implementation is based on the Condor classad matchmaking algorithm, but it also 

provides a Latent Semantic Indexing (LSI) based algorithm using concepts 

commonly applied to IR (i.e. information retrieval) and internet search engines.  

The brokering service interprets client requests and correlates them with virtual 

organization policies regarding resource access. The RBS enables users to query 

a VO (i.e. Virtual Organization) index service for a specific resource and acts as a 

mediator between the resource consumer and the resource producer. Producers 

register their resources inside the VO index using Condor classads, which will be 

later queried by resource consumers.  

RBS‟ greatest achievement rests nevertheless in its framework for automatic 

publishing, collecting and classifying of resource properties in the VO index service. 

For example, RBS is able to realize automatic mapping between GT4 resource 

properties and Condor classads.  

With regard to the matchmaking algorithm proposed by RBS, the new LSI 

approach is effective and efficient [88]. However, in Grid resource description and 

matchmaking, the Condor classad notation is regarded as lingua franca; therefore, 

the LSI algorithm was integrated with the Condor matchmaking algorithm. A 

comparison between the RBS matchmaking algorithm and the Condor matching 

system described in [88] showed that the combined approach (LSI + Condor) 

exhibited better results in terms of effectiveness than the simple Condor matching 

system; however, the complexity of LSI calculus is a drawback in terms of 

performance, which places the RBS system in second place behind Condor. 

NAREGI  RESOURCE MATC HMAKER (NAREGI -RMM)  

As opposed to the first three matchmaking systems, which are examples of 

syntactic matchmaking algorithms, NAREGI-RMM is the first system that uses a 
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description based on semantic web technologies - in particular ontologies [93]. 

NAREGI-RMM enables complex and diverse descriptions of user requirements and 

resources in production Grid (e.g. complex workflow and co-allocation) which are 

mapped on ontologies developed using Protégé 2 [94] and the OWL standard.[95]  

Given that the NAREGI Grid middleware uses JSDL to express job requirements, 

the subsequent ontology is able to describe all information that can be found in a 

JSDL description (such as candidate hosts, i.e. a list of hosts that can be allocated; 

operating system; CPU architecture; individual CPU count; total CPU count; total 

physical memory; total virtual memory; executable; data staging; etc.). 

Furthermore, the NAREGI-RMM ontology can also be used to describe network 

bandwidth; network latency; time reservation-related attributes (i.e. the date after 

which the job must start, the date before which the job must end, the time the 

resource is reserved); cluster reservations; access policies; list of applications 

installed on the resource; user policies; and group policies. 

The resource matchmaking system is integrated with the NAREGI submission 

engine. Once a job is submitted, the request is translated into an XML document 

compliant with the NAREGI-WFML schema.[96] Because each system has a 

timetable of resource reservations, the next step is to check the time constraints of 

the request. If the time constraints are matched, the next step is to validate the 

user/group constraints against the policies enforced on the system (e.g. in a 

university, a student may not have the same permissions as a professor; or, the 

group of Grid site administrators may have different permissions and constraints 

than the group of Grid application users). Next, the matchmaker checks whether 

the user application is installed on the system and if not, the system does not match 

the request and will not be part of the solution. If the application is deployed and 

available, the NAREGI-RMM checks whether the resource requirements are 

satisfied and returns the first from a list of candidate resources. In the final step of 

the process the submission engine submits the job to the suggested resource and 

then delegates the job monitoring process and the result retrieval aspects to other 

Grid services.  
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OW LS-MX 

OWLS-MX is a hybrid semantic matchmaker used in Web service matching. The 

OWLS-MX matchmaker is based on LARKS [97, 98, 99, 100], but it differs from it in 

terms of the description language and description language logic (DL) used in the 

matching process. While LARKS uses a proprietary capability description language 

and logic, OWLS-MX uses the standard OWL-S and OWL-DL for service capability 

description and description logic. OWL-S is an OWL-based Web service ontology 

with three main components: the service profile for advertising and discovering 

services; the process model, which gives a detailed description of a service 

operation; and the grounding, which provides details on how to interoperate with a 

service via messages.[101]  

The service matching performed by the OWLS-MX matchmaker exploits both logic-

based reasoning and content-based IR techniques for OWL-S service profile I/O 

matching. OWLS-MX takes in consideration pairs of service advertisements and 

service requests and for each of them computes the matching degree by 

successively applying seven different filters: exact, plug-in, subsumes, subsumed-

by, logic-based fail, nearest-neighbour and fail. 

The OWLS-MX matchmaker takes any OWL-S-compliant request as a query, runs 

the filters against the service descriptions publicized by the providers and returns 

an ordered set of relevant services that match the query.  Each service returned by 

the matchmaker is annotated with the individual degree of matching with the initial 

request, as well as the syntactic similarity value between the service and the 

request. Furthermore, the client can specify a preferred matching degree as well as 

a syntactic similarity threshold. In particular, OWLS-MX also determines the 

syntactic similarity between the conjunctive I/O concept expressions (described in 

OWLLite [102]). OWLS-MX recursively unfolds each query and service I/O concept 

and includes the primitive components of a basic shared vocabulary in the local 

matchmaker ontology. Furthermore, if the degree of syntactic similarity between the 

respective unfolded service and request concept expressions exceeds a given 
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similarity threshold, OWLS-MX will tolerate any failure of logical concept 

subsumption produced by the integrated deductive language. 

INFOSL EUTH  

InfoSleuth is a generic agent-based information discovery and retrieval system, 

which bases its syntactic and semantic matching process on so-called broker 

agents.[103, 104, 105, 106, 107, 108, 109] The InfoSleuth matchmaking 

architecture defines three types of agents: operational agents, querying agents and 

broker agents. The operational agent is equivalent to the concept of service 

provider; the querying agent is equivalent to the service requester; and the broker 

agent matches querying agents against operational agents. 

The broker maintains a repository about the operational agents and their services 

and enables the querying agent to locate all available agents that can provide 

services that meet their interests. 

The InfoSleuth system can match requests to agents on the basis of the syntax of 

incoming messages used to wrap the requests (i.e. syntactic matchmaking). In 

addition to this, InfoSleuth can also match requests to agents on the basis of the 

requested agent capabilities or services (i.e. semantic matchmaking).   

The agent capabilities and services are described in a common shared ontology of 

attributes and constraints which uses a specific vocabulary. All operational and 

querying agents can use this vocabulary to specify advertisements and requests to 

the broker. The service capability information is written in LDL++ [110] and broker 

agents use a set of LDL++ deductive rules to support inferences about whether an 

expression of requirements matches a set of advertised capabilities. 

REUSABL E TASK STRUCT URE- BASED I NTELLIG ENT 

NETW ORK AG ENTS (RET S INA)  

RETSINA is a multi-agent infrastructure proposed and developed at Carnegie 

Mellon University in Pittsburgh, Pennsylvania (USA). Following the same structure 
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of agents as InfoSleuth, RETSINA proposes three general agent categories: the 

service provider, the service requester, and the middle agent. Mediation in this 

system also relies on service matchmaking, although in order to describe agent 

capabilities in the matching process they have defined a new agent capability 

description language called LARKS (Language for Advertisement and Request for 

Knowledge Sharing). LARKS offers the option to use application domain 

knowledge in any advertisement or request by using a local ontology, provided that 

the local ontology is written in ITL (Information Terminological Language). In that 

case, the ontology can automatically be incorporated in LARKS and can be 

processed by the RETSINA systems.  

The RETSINA matchmaking system allows service providers to register their 

capabilities in an advertisement, which provides a short description of the agent, a 

sample query, input and output parameter declarations, and other constraints. 

When the matchmaker agent receives a query from a service requester it searches 

its dynamic database of advertisements for providers that can fulfil the incoming 

request. Although RETSINA was developed for generic MAS (Multi-Agent 

Systems), the most known and used implementation deals with Web service 

discovery and matchmaking. In this case, each service provider advertisement 

gives a semantically-based view of the web service, including the abstract 

description of the capabilities of the service, the specification of the service 

interaction protocol, and the actual messages that it exchanges with other web 

services. The matchmaking system employs techniques from information retrieval, 

artificial intelligence and software engineering to compute the syntactical, string-

distance, and semantic similarity degree between different service capability 

descriptions. The matching engine of the matchmaking system contains five 

different filters for namespace comparison, word frequency comparison, ontology 

similarity matching, ontology subsumption matching, and constraint matching [111]. 

Users can select which filters to use and can also apply custom thresholds to these 

filters in order to improve the accuracy of the matchmaking and balance between 

the performance and the quality of the matching system. 
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2.4.3 Conclusions 

Other matchmaking systems exist which may be used to find similar applications in 

Grid repositories. Examples such as PromptDiff [112], Minersoft [113] or GridLET 

[114] employ matchmaking methods that can be adapted for Grid applications (e.g. 

token-based solutions with indexing and categorization methods based on term 

frequency), but they are similar to those already described. Therefore, their 

description was omitted, as they do not present any new method over the ones 

already mentioned in section 2.4.2. 

In Grid, syntactic matchmaking methods were successfully used in resource 

matching and therefore represent the first option when trying to match objects 

based on their formal descriptions. However, in cases like gLite/lcg-based Grids – a 

type of infrastructure widely used throughout the world – the formal description 

document of the application is usually missing from the repository. Furthermore, the 

metadata associated with the application does not contain the basic and advanced 

requirements of the application (i.e. as discussed in Section 2.3.1). Hence, the 

accuracy of syntactic matchmaking techniques is limited, as the most important 

application properties are not formally contained in a document that could be 

processed by such matchmaking systems.  

In such cases, the repository needs to rely on other forms of matchmaking, for 

example techniques which use string-distance or semantic methods that can 

process the free-text field Description from the repository model, as well as 

matching techniques which process application-related objects  other than the 

application description document itself (such as binaries or source code). 

Within the time constraints imposed by the lengths of a PhD, this research 

managed to analyze four matching methods – i.e. syntactic, string-distance, 

application running and binary matching – and proposed several others which may 

help identify similar applications stored in Grid repositories.  
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2.5. Challenges 

Applications play one of the most important roles in Grid, regardless of the methods 

used to describe such an application or to expose it to Grid users. 

Initially, Grid application repositories were regarded by Grid scientists as of 

moderate importance and were used mainly by Grid administrators for improved 

storage and management of applications. Moreover, since the information about 

applications was structured following a repository model, they were also used by 

administrators to present users with a uniform view of application metadata.  

However, as the number of Grid applications grew year by year, Grid application 

repositories became not only important, but a necessity. Between July 2008 and 

July 2009 the number of applications found on the University of Westminster 

application repository (represented by a GEMLCA resource) increased by 94%, 

from 18 to 35 Grid Applications; the number of applications found on the NGS 

Application repository increased by 51%, from 33 to 50 applications; and the 

number of Grid applications stored in the myExperiment repository increased by 

98%, from 321 to 635 applications. Meantime, repository technologies and 

distributed computing technologies evolved and nowadays Grid application 

repositories face a far more complex set of challenges.  

For a better understanding of the Grid application repository solutions and of the 

functionality and capabilities that these repositories must exhibit in order to 

interoperate with current and future distributed computing environments, the 

following requirements have to be met: 

(R1) APPLICATION PUBLISHING: The first and foremost requirement of any Grid 

application repository is to store and manage Grid applications. The repository 

model needs to be able to describe the application along with descriptions of 

related entities (such as author, access policies, provider, application-objects – 

binaries, documentation and licenses), as well as relations between them. 

Furthermore, any application repository needs an intuitive, user-friendly interface, 
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such as graphical clients or web-based solutions, which would make application 

publishing easy for both Grid administrators and users. Command-line solutions 

demand a much more thorough understanding of the underlying concepts and 

technologies, which users should not be required to have.  

(R2) APPLICATION DISCOVERY: Currently, each production Grid application 

repository stores tens or hundreds of Grid applications. It is obvious that for users 

or services interested in such applications, these repositories should be the first 

place to look for them. Therefore, a Grid application repository needs to provide 

means to discover the Grid applications it stores and this process should be made 

easy to both users and services. A Grid application repository should permit the 

discovery of applications it stores following several principles: 

 (R2.1) Expose their application to the Web: Grid application 

repositories should be built using technologies that interact with popular 

web search engines and web metadata harvesters. It is therefore desired 

that application repositories expose interfaces such as HTTP/REST [115, 

116] or OAI-PMH, which would make the application discovery process 

easier to both human users and services. Such protocols would permit 

services to retrieve Grid application metadata and Grid application 

objects from repositories using the ubiquitous HTTP clients and simple 

HTTP queries.  

 (R2.2) Interoperability with any OGSI/WSRF Grid service: Grid 

application repositories should expose an OGSI/WSRF Grid service 

interface, which would make them able to interact seamlessly with any 

other OGSI/WSRF Grid service in a standard, serviceable manner. In 

2005 Globus implemented the first Grid service-based middleware, 

based on OGSI/WSRF standards stack, and since then many Grid 

projects have been developing and using OGSI/WSRF Grid services 

(such as The Lattice Project, GEMLCA, D-Grid Projects, WS-

PGRADE/gUSE, and ARCS). From the application discovery point of 

view, by fulfilling R2.1 and R2.2, any application stored in such repository 

could be easily discovered by human users, Grid services and any other 
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service equipped with a simple HTTP client. However, having an 

OGSI/WSRF service interface also offers the possibility to manage the 

repository and the objects stored inside through a service interface. 

Moreover, by implementing OGSI/WSRF WS-Notifications providers, 

clients can be notified automatically when certain actions are performed, 

such as the addition/deletion/modification of a new Grid application in the 

repository. 

 (R2.3) Connection with other repositories: While various Grid 

application repositories are currently not connected in any manner, a 

service able to connect different repositories and to find whether a 

desired Grid application is stored in any of the connected repositories 

would prove extremely valuable to both human users and services. The 

lack of connectivity between Grid application repositories comes as a 

straightforward consequence of the different repository frameworks, 

which vary in terms of access interface, security system, implementation 

technology, communication protocols and transfer protocols. A service 

able to connect such repositories would simplify the application discovery 

process. 

 (R2.4) Ability to find similar applications: The set of applications found 

on two or more Grid application repositories might overlap (for example, 

no less than 29% of the Grid applications found on the NGS AR and 

CHARON/iSoftrepo are similar – July 2009). A service able to find the 

same application or similar applications on different repositories would be 

very helpful to users and services in cases when certain repositories 

become inaccessible or when the Grid infrastructure behind one given 

repository becomes unavailable. Such a service would also give users 

the choice between application description languages (for example if a 

user wants to use application AUTODOCK [117] and knows JSDL better 

than LCID, s/he would prefer to use the NGS AR, where this application 

is available in JSDL, rather than the Westminster GEMLCA repository, 

where the same application is described using LCID). 
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(R3) OBJECT EXCHANGEABILITY & REUSEABILITY: Grid application 

repositories should permit the exchange and re-usage of Grid application objects 

and application-related objects with other repositories.  

Repository technologies evolved rapidly during recent years and scientists put a lot 

of effort into trying to standardize communication between them to make them 

interoperable and permit automatic exchange of objects between them. In 

December 2007 Open Archive Initiative [118] publicly released the first version of 

such a standard (i.e. OAI-ORE [119]) and by December 2008 (the date of the last 

version) OAI-ORE was already adopted as a standard by two of the most important 

Open repository technologies (i.e. FEDORA [120], ePrints [121]). The third one, 

DSpace [122], is in the process of adopting it as well.[123] Should Grid application 

repositories allow object reuse and exchange (for example, by implementing the 

OAI-ORE standard), this would also allow administrators to easily find and relocate 

objects in fresh repositories in an automatic manner and would permit services to 

simultaneously extract metadata and objects from repositories. 

(R4) VERSATILITY IN USAGE: Grid application repositories should extend the 

scope of the distributed environments so that applications stored by them can be 

used to include computing concepts similar to Grid such as application-on-demand, 

cluster-on-demand and cloud computing. Traditionally, Grid application repositories 

used in current production environments are hard-wired to a Grid submission 

engine and can only be used on Grid architectures. In most cases these 

repositories store only descriptions of the applications written in an application 

description language processed by the underlying Grid, which effectively makes 

them usable only in that particular framework. However, emerging distributed 

computing concepts such as cluster-on-demand, virtual computer-on-demand and 

cloud computing are very similar to Grid. As applications stored in Grid application 

repositories are able to run on any of these architectures, these repositories should 

not limit themselves to Grid, but should try to extend the scope of the distributed 

environments where these applications can be used.  
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Application repositories could store application-related objects such as the 

executable, the source code, library dependencies, the documentation, licenses, 

etc., all in the same place, giving users and administrators countless possibilities to 

use them in different scenarios and on different distributed computing architectures. 

2.5.1 Architecture 

Based on the discussion in Section 2, the following table summarises existing Grid 

application repository solutions and how they comply with requirements R1-R4: 

Table 2-2: Current Grid application repository solutions vs. Requirements R1-R4 

 R1: PUBLISHING R2: DISCOVERY 

R3: 

EXCHANGE 
& REUSE 

R4: VERSATILITY 

B
D

II
 

- Publishing done by 

automated services via 

scripts that contain suites 

of console commands; 

- No graphical/web 

interface for human users. 

- Console commands containing LDAP 

queries; 

- No OGSI/WSRF Grid service 

interface; 

- No Web visibility; 

- No HTTP/REST interface; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

- GLUE attributes: name,  

version, location; 

- Used only to list EGEE sites 

where the application resides 

and can be run. 

C
H

A
R

O
N

 - Command-line only for 

human users; 

- No access support for 

services; 

- Collection of static Web pages; 

- No OGSI/WSRF Grid service interface 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

- Metadata for Application 

object only; 

- Used only to list EGEE sites 

where the application resides 

and can be run. 

G
E

M
L

C
A

 

- Graphical interface for 

human users; 

- OGSI/WSRF Grid 

service interface for 

services. 

 

- OGSI/WSRF Grid service interface; 

- Human users can find application 

information through PGRADE portals or 

using a GEMLCA Service Client; 

- No Web visibility; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

- Can store the application 

binary and application 

description documents only; 

- Permits the usage of different 

Grid submission systems. 

N
G

S
 A

R
 - Graphical interface for 

human users 

- No access support for 

services 

- JSR-168 web application interface – 

for human users; 

- No OGSI/WSRF Grid service 

interface; 

- No HTTP/REST interface; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

- Stores application  

description documents; 

- No support for distinctive 

application-related objects; 

-Can be used only in traditional 

Grid frameworks in conjunction 

with its submission system. 
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G
R

IM
O

IR
E

S
 

- Human users and 

services can register web 

services via UDDI clients. 

- Visible to UDDI clients; 

- Visible to human users through a 

collection of static web pages. 

N/A N/A 
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- User-friendly web 

interface for human users; 

- HTTP/REST interface for 

services. 

- Intuitive web interface for human 

users; 

- Exposes HTTP/REST interface; 

- No OGSI/WSRF Grid Service 

interface; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

- No support for distinctive 

application-related objects. 

 

Unfortunately, none of the current Grid application repositories that were discussed 

in this chapter can be seen as a comprehensive solution that meets all R1-R4 

requirements. Notably, the GEMLCA system highlights the importance of 

interoperability with Grid WSRF/OGSI Services and the myExperiment repository 

accentuates the value of application visibility on Web.  Currently, there is no 

connection between application repositories and there is no service which users or 

other services can inquire to find whether a desired Grid application is stored in one 

of the Grid repositories. In conclusion, at the time this research was carried out 

existing Grid application repository solutions only partly met requirements R1 – R4. 

2.5.2 Repository Model 

Traditional Grid application repository models revolve around two entities: the user 

who described the application and the application itself. While more advanced 

solutions do allow for the storage of application-related objects, they store them 

without any categorization or name-pattern tagging, which makes them 

indistinguishable for searches or meaningful automatic retrieval. 

According to requirement R2.4 an application repository solution able to connect 

multiple Grid application repositories to its system requires a new entity to be 

described in the model – the Provider. 

In addition to user, application and provider, any repository model is required to 

contain descriptions of different Access Policies, which deal with security, visibility 
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and permission attributes for each of the object they relate to. Moreover, in order to 

expand the area of usage of Grid application repositories, the repository model 

should not limit itself to the description of application-related objects, but should 

permit the modelling of user-related objects and provider-related objects. 

The Provider Related Objects refer to those objects that may have to be stored in 

Grid application repositories in order to give a comprehensive description of a 

provider and to ensure proper access and connectivity to it (e.g. PKI public 

certificate, software client, etc.).  

The User Related Objects refer to those objects that can be stored in Grid 

application repositories and can be used for identification, application running or 

data staging (e.g. X509 proxies, PKI public keys, username/password sets, etc.).  

Figure 2-8 shows the entities that need to be present in a Grid application 

repository model, in line with requirements R1-R4:  

 

Figure 2-8: Grid application repository model entities 

Table 2-3 below summarizes the critical analysis of the five repository models 

described in Section 2.2.2 (MyExperiment, NGS, GEMLCA, GUSE and 

CHARON/iSoftrepo) assessing their ability to describe the entities specified above: 
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user, user policies and user related objects; application, application policies and 

application-related objects; provider, provider policies and provider-related objects. 

Table 2-3: Traditional Grid application repository models and repository entities 

 
myExperiment NGS AR GEMLCA GUSE 

CHARON/ 
iSoftrepo 

User YES YES YES YES YES 

User-related 
objects 

no no no no no 

User 
access policies 

YES YES YES YES YES 

Application YES YES YES YES YES 

Application  
related objects 

YES
* 

YES
*
 YES

*
 YES

*
 YES

*
 

Application 
access policies 

YES YES YES YES YES 

Provider no no no no no 

Provider-related 
objects 

no no no no no 

Provider 
access policies 

no no no no no 

Note: YES* from Table 2-3 – current solutions store only a few types of application-
related objects; furthermore, these are stored without any meaningful categorization, 
which makes them indistinguishable for searches or automatic retrieval. 

In conclusion, none of the repository models currently in production is able to fully 

satisfy the requirements set out above.  

2.5.3 Application Description Language 

Based on the critical analysis of Grid application repositories from their early stages 

(e.g. BDII, CHARON/iSoftrepo) to the most recent available solutions (e.g. 

myExperiment, NGS Application Repository, GEMLCA), and in conjunction with the 

repository requirements R1-R4 (i.e. publishing; discovery; reuse and exchange; 
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and versatility), this research identifies the following life-cycle for a Grid application 

that resides in a Grid application repository: 

 

Figure 2-9: The life-cycle of a Grid application stored in an application repository 

Once the application is published in the repository, the application description 

document contains all the necessary values for the configuration parameters, which 

make it usable on Grid (e.g. machine architecture, minimum amount of RAM, 

default input files, required command parameters, etc.). The parameters are 

predefined by the application publisher that is responsible for providing the 

necessary values for those attributes. These attributes will have to remain 

unchanged and free from users‟ interference, otherwise the application may 

become unusable. When such a formal description skeleton is provided, the 

application is said to be in the Template state.  

The user can retrieve such an application template and can provide values for the 

rest of the parameters necessary for a particular run. At this stage the application 

enters the Instance state. In this state, the application is parameterized and ready 

to run. (Note: the parameterization can be specific to each run or to each user.) The 

application can then be submitted via a submission engine to run on Grid. 

However, before the actual run of the application, application deployment and data 

staging may occur. 
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In the Deploy state the application binaries and the application input files are 

retrieved from different locations (including the repository where the application 

resides), possibly using different authentication methods. Furthermore, these 

application objects could be staged from different Grids, using different X509 

certificates and possible different transport protocols. Moreover, it is advisable that 

the staged data benefit from data protection (e.g. hash sums) which would insure 

that the transferred data is genuine and would protect against data corruption that 

may occur during transfers.  Data are staged to the Grid resource where the 

application instance will run (stage in) but output can also be staged from the 

execution resource to storage servers (stage out).  

Next, once the staging is completed, the application starts running on the Grid 

infrastructure resource that has been commissioned for it. Currently, there are only 

two types of application running set up on Grid infrastructures: first, when the 

application binaries are already present on the resource and only the input files are 

staged on the resource; and second, when both the binaries and the input files are 

staged on the Grid resource. However, Grid applications stored on a Grid 

repository should benefit from the fact that many other application objects could be 

available, which would permit other types of application running such as: virtual 

machine-embedded applications that can be staged and run on the resource; 

source code staging (plus, possibly, software dependencies and libraries) and 

compilation directly on the resource; as well as running licensed software which 

would require license staging and acceptance prior to the actual application 

running. Nevertheless, whichever the type of application run, the results can be 

retrieved upon completion – and depending on their relevance to the description of 

the application, some of them can be published in the repository (for example, the 

publishing of a test suite – input set, running script, and expected output set – 

which would later help with testing the applications or with application 

matchmaking). 

Grid application description languages must be able to describe the states from the 

life-cycle described above, as well as the Legacy compatibility, Advanced 
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features, and Advanced parallel behaviour description requirements (see 

Section 2.3.1). 

The following table summarizes the critical analysis of the six application 

description languages repository models described in Section 2.3.2 (RSL, JDL, 

xRSL, WS-GRAM, LCID and JSDL) versus the requirements mentioned above: 

Table 2-4: Traditional Grid application description languages vs. requirements 

 
RSL JDL xRSL 

WS-
GRAM 

LCID JSDL 

Legacy compatibility 
 

YES YES YES YES YES YES 

Advanced features partly partly partly partly partly YES 

Advanced parallel 
behaviour 

partly partly partly partly partly YES 

Multi-Grid/ multi-
certificate secure data 
access 

no no no 
YES 

(service 
only) 

no no 

Multiple transfer 
protocols supported 
as URI definitions 

no no YES no no YES 

Data protection no no no no no no 

Template no no no no YES no 

Application run types 

Binaries 
already 

deployed 
on the 

resource  

Binaries 
already 

deployed 
on the 

resource  

Binaries 
already 

deployed 
on the 

resource  

Binaries 
already 

deployed 
on the 

resource  

Binaries 
already 

deployed 
OR 

Binaries 
staging  

Binaries 
already 

deployed 
on the 

resource  

Native extension no no no no no YES 

The conclusion of this analysis is that the languages currently used in Grid only 

partly meet the requirements identified above. From the table above it becomes 

obvious that JSDL is the language which comes closest to meeting the 
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requirements set before. JSDL has been lately gaining popularity on all major Grids 

and a lot of effort has been put in adopting JSDL as the default job description 

language on Grid (e.g. GridWay [125], GridSAM [54], NAREGI [126], GRIA [127] 

and Genesis II [128]). Moreover, the JSDL schema has the advantage of being 

extendible. Consequently, instead of creating a new language, a better solution 

would be to extend JSDL to add the missing parts.  

2.5.4 Matchmaking Systems 

Syntactic matchmaking methods were successfully used in resource matching in 

Grid and therefore represent the first option when trying to match objects based on 

their formal descriptions. However, in cases like gLite/lcg-based Grids – a type of 

infrastructure widely used throughout the world, such as in EGEE [129], SEE-Grid 

[130], EELA Grid [131], EUMedGrid [132], EU-India Grid [133], EUChinaGrid [134], 

Baltic-Grid II [135] – the formal description document of the application is usually 

missing from the repository. Hence, the accuracy of syntactic matchmaking 

techniques is limited. In such cases, the matching system needs to rely on other 

forms of matchmaking, for example techniques which use string-distance or 

semantic methods that can process the free-text field Description from the 

repository model, or matching techniques that process application-related objects  

other than the application description document itself (such as binaries or source 

code).  

In order to use any of the algorithms described in the critical analysis section (i.e. 

Condor, BDII, RBS, NAREGI-RMM, OWLS-MX, InfoSleuth and RETSINA) for grid 

application matchmaking, the following requirements need to be met: 

 Ability to process the ADL used for application description: Every 

matchmaking algorithm that searches for similarities between objects by 

processing their description documents relies on a formal description 

language. These description languages are used to express objects‟ 

properties and capabilities in a structured way. Although subsets of 
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matching methods and matching techniques may be common to many 

matchmaking systems, usually each matchmaking system is bound to 

only one description language and can process documents written in that 

particular formalism. Each of the algorithms described in the critical 

analysis section (see Section 2.4.2) is bound to such formalism. For 

example, Condor and RBS processes classads; BDII is linked to GLUE; 

NAREGI-RMM uses NAREGI-WFML and TRIPLE [136]; OWLS-MX and 

other similar algorithms such as those described in [137, 138] use DAML-

S/OWL-S; InfoSleuth understands LDL++; and RETSINA processes 

LARKS. 

In the case of Grid applications, the application description documents are written in 

a Grid ADL. The first and foremost challenge of any Grid application matchmaking 

system with the ability to process Grid application description documents is to be 

able to understand the language the documents are written in. Unfortunately, none 

of the existing matchmaking algorithms identified by this research (in Grid or similar 

areas, such as WS, semantic web, ontology matchmaking, etc.) can process any 

Grid ADL document.  

 Ability to process the application descriptions written in free-text:  As 

mentioned before, every description language has a field called 

[Application] Description, which usually contains a free-text description of 

the application history, application functionality and its purpose. The text 

contains information about the application but many matchmaking 

systems leave this information unprocessed, as it is written in natural 

language, with no formal constraints. Syntactic matchmaking systems 

usually omit this type of fields automatically. Among semantic 

matchmakers, only those with linguistic semantics capabilities (e.g. 

RETSINA, InfoSleuth) are able to process such paragraphs of free text. 

 [Ability to process sources of information other than the description 

document: Apart from the application description document, Grid 

application repositories can also store application-related objects such as 

binaries, source code, hash sums and test files. These objects can help 
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with the identification of similar applications and a Grid application 

matchmaking system should be able to process such objects.  

Table 2-5 below summarizes how the matchmaking solutions described in Section 

2.4.2 meet the requirements mentioned above:  

Table 2-5: Matchmaking systems vs. requirements 

 
Process ADL 

Syntactic and free-text 
processing 

Processing of 
application-related 

objects 

CONDOR 
No 

 (class-ads) 
YES no no 

BDII 
no  

(GLUE) 
YES no no 

RBS 
no  

(class-ads) 
YES pilot-LSI no 

NAREGI-MM 
No 

(NAREGI-WFML) 

YES 
(ontology 
approach) 

no no 

OWLS-MX 
No 

(DAML-S/OWL-S) 

YES no 

no (semantic ontology 
approach) 

InfoSleuth 
no  

(LDL++) 

YES YES 
no 

(IR functions) 

RETSINA 
no  

(LARKS) 

YES YES 
no 

(IR functions) 

Based on this analysis, we can conclude that each matchmaking system is bound 

to its own language. Therefore none of the current solutions is able to interpret the 

Grid application description languages described in Section 2.3.2. Furthermore, the 

matchmaking systems under discussion were designed specifically for document 

processing – therefore these solutions are not capable to use any other Grid 

application-related objects besides the application description document. However, 

as the string-distance functions used by some of these algorithms can be applied to 

any free-text paragraph, these functions could be applied to Grid application 

descriptions as well.  
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2.6. Objectives 

Since none of the repositories currently used on Grid can be regarded as a 

comprehensive solution to the requirements identified in Chapter 2 section 2.5  

(R1-R4), this research aims to design a Grid application repository able to meet all 

those requirements. The ultimate aim is to create a modular, easily extendible 

solution which is based on functional principles that can be followed not only by 

application repositories usable on Grid, but also by generic application repositories 

that reside in collaborating environments other than Grid. In order to achieve that, 

this research was aimed to fulfil de following objectives: 

OBJECTIVE O1: The first objective of this research was to design a service able to 

connect different types of Grid application repositories, but which would still function 

as a Grid application repository in its own right. By meeting this objective, the 

service would connect Grid application repositories notwithstanding their different 

implementation technologies, methods of access and authentication, 

communication protocols and transport protocols (R2.3), while at the same time 

human users and services could use an access interface to store and retrieve Grid 

applications directly from the service‟s repository (R1).The design of this service 

was also meant to provide a solution to the application discovery problem (R2) and 

make applications stored on Grid repositories accessible to other Grid services 

(R2.2) and also visible to the Web (R2.1). Therefore, achieving this objective would 

not only solve the current interoperability issue, but also expose the applications to 

Web search engines and through them, to a much larger community interested in 

Grid applications. Furthermore, the service would also employ methods and 

protocols for the exchange of objects, thus fulfilling the requirement (R3). 

OBJECTIVE O2: The second objective of this research was to propose a new 

model for application repositories, which would achieve uniformity in Grid 

application presentation and would extend the functionality of these repositories 

beyond Grid (R4). After reviewing all the major repository models used on Grid, 

results have shown that these models imposed limitations on the applicability 



R E L A T E D  W O R K  

82 

 

domains of Grid application repositories. The objective was therefore to design a 

new repository model that would provide a comprehensive description of an 

application along with a suggestion for a new categorization of application-related 

objects. This would allow Grid application repositories to be compatible and ready-

to-use in conjunction with newly emerging technologies such as virtualization, 

automatic virtual machine creation, cloud computing and automatic service 

deployments, as well as to be ready-to-use in future distributed computing designs. 

The final goal related to the repository model was to investigate how the objects 

stored in a repository following such a model can help with the identification of 

similar Grid applications (R2.4). 

OBJECTIVE O3: While the architecture described in objective O1 would be 

capable to connect multiple repositories with different types of application 

description languages (R2.3), the third objective of this research was to find an 

application description language, which would provide uniformity in the presentation 

of Grid application descriptions. Furthermore, the aim was to find (or create) an 

application description language which would allow for Grid application repositories 

and the applications stored by them to be used in scenarios other than Grid, such 

as virtualisation; source code staging and compilation; or automatic application 

deployment. (R4) Moreover, the proposed solution should also provide answers to 

several Grid interoperability problems, such as multi-Grid data staging and using 

different security certificates for job-submission and data staging. A secondary aim 

related to application description languages was to investigate and define a 

structured life-cycle for any Grid application that resides in a Grid repository, 

including the different states in which the application can be found (i.e. template, 

instance, deployment, running) and how these states can be accommodated in an 

application description language schema. The final goal related to the description 

language was to investigate how the information about a Grid application modelled 

by such a language can help with the identification of similar Grid applications 

(R2.4). 

OBJECTIVE O4: The fourth objective was to design a matchmaking methodology 

and an algorithm able to process information about applications stored in 
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repositories and identify similar or identical applications (R2.4). When one 

repository becomes unavailable, such a matchmaking service would help users 

and services to find a subset of the same applications on other repositories 

connected to the architecture proposed in O1. The aim was to identify or create 

matchmaking techniques that can process various application-related objects 

stored in repository and can be applied in different scenarios. The final goal was to 

analyze the performance of a subset of such matchmaking techniques when 

applied to real-case scenarios, using data found on production Grid repositories as 

well as objects stored following the repository model described in objective O2. 

Figure 2-10 shows the relations between the research objectives and the 

challenges identified in this research:  

 

Figure 2-10: Research objectives and their relations to requirements R1-R4 
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3. The Grid Application                  

Meta-Repository System  

his chapter describes the Grid Application Meta-Repository System 

(GAMRS) as the solution proposed by this research to respond to the 

challenges identified in the previous chapter. Chapter 2 highlighted the 

diversity of repository implementations currently found on Grid, as well as the 

problems posed by this heterogeneity in the area of Grid application repositories. 

The chapter concluded with the specification of a set of requirements (i.e. R1-R4) 

and four research objectives (i.e. O1-O4) essential for the design and functionality 

of a repository that would address the problem of heterogeneity.   

In order to meet the research objectives O1-O4, this research proposes a new Grid 

application repository called The Grid Application Meta-Repository System 

(GAMRS). In line with the four research objectives, this chapter covers the four 

repository aspects identified in Chapter 2: repository architecture, repository model, 

application description language, and Grid application matchmaking methods. Each 

aspect is described in a separate section, which presents a short overview, the 

design principles, the solution, and the functionality of that module. The chapter 

 Chapter 

3 

T 
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concludes with a summary of the novel capabilities of GAMRS, which allow it to 

meet requirements R1-R4. 

3.1. GAMRS Architecture 

3.1.1 Overview 

In line with the first objective (O1) of this research, GAMRS was designed to 

function as a Grid application repository with the additional capability to connect 

different types of Grid application repositories notwithstanding their different 

implementation technologies, methods of access and authentication, 

communication protocols, and transport protocols (R2.3).  

The GAMRS architecture specifies abstract interfaces that permit the connection, 

authentication, and retrieval of information about applications stored in repositories 

connected to GAMRS. The architecture specifies human- and service-friendly 

interfaces (i.e. GUI/web, HTTP/REST, OGSI/WSRF) that can be used to publish 

Grid applications directly in the service‟s repository (R1). These interfaces can also 

be used to retrieve information about Grid applications stored or referenced by 

GAMRS.  

Furthermore, the design of this service provides a solution to the application 

discovery problem (R2): Grid services can access information about applications 

via the standard OGSI/WSRF Grid interface, while through the HTTP/REST 

interface all the applications stored on GAMRS or referenced by it become visible 

to the Web and, therefore, available to a much larger community interested in Grid 

applications. 

The GAMRS architecture was also designed to be compatible with OAI standards, 

with support for OAI-PMH and OAI-ORE protocols, which facilitates 

communications with other OAI-compatible repositories and permits easy discovery 

of objects through metadata harvesting. Furthermore, the GAMRS architecture 
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suggests that objects stored in the repository are described in a language capable 

to embed (or refer to) metadata and associated datastreams (i.e. FOXML, OAI-

ORE implementations) – digital assets related to an object , i.e. files – which would 

allow for the straightforward relocation and exchange of repository objects (R3). 

The design of GAMRS had to take in consideration all the challenges identified by 

this research, including the system of identification of similar Grid applications. 

Consequently, the architecture design also contains the Matchmaking Service, 

which will be discussed in detail in Section 3.4. 

3.1.2 Design 

As none of the application repository architectures currently used in Grid is able to 

answer to the challenges identified by this research, a new architecture had to be 

designed for GAMRS. Figure 3-1 depicts the GAMRS architecture: 

 

Figure 3-1: GAMRS Architecture 
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The system consists of three core services: Publisher, Meta-Repository and 

Matchmaking. These core services are designed and implemented separately so 

that they can also be used independently and can easily be extended with new 

methods in the future.  

 Should new repository standards for publishing emerge in the future, they 

could always be added to the Publisher service.  

 Should new application repositories be added to Grid, the Meta-Repository 

service would already have a connection interface and new adapters could 

be written and integrated to it.  

 The Matchmaking service finds similar applications in repositories 

connected to GAMRS and is also implemented as a separate service in 

order to allow new matchmaking methods to be added to it.  

The three core services are backed up by the GAMRS Backend module, which is 

responsible for the actual storage of repository objects. 

GAMRS PUBLI SHER SERVICE 

This service is responsible for the publishing of Grid application information for 

various clients. It exposes all the necessary interfaces through which objects stored 

in the repository can be accessed or published: HTTP/REST, OAI protocols (i.e. 

PMH and ORE), and an OGSI/WSRF Grid Service interface. Examples of services 

that can access GAMRS are: HTTP clients, other OAI-ORE compliant repositories, 

any OGSI/WSRF Grid service, web crawlers, OAI-PMH harvesters, and WS-

Notification subscribers. Human users can use the graphical interface (GUI) to 

search, publish, and retrieve Grid application information and application-related 

objects from the repository. 

The following figure (i.e. Figure 3-2) offers an overview of the Publisher service 

architecture, highlighting the various modules that provide the GAMRS access 

interfaces:  
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Figure 3-2: GAMRS Publisher service architecture 

The GUI interface permits users to create, retrieve, update, and delete objects 

stored in repository and metadata associated with them. GAMRS differentiates 

between the metadata associated with an object and the actual file (also called 

datastream in literature), which represents the digital representation of the object. 

These are stored on the backend, with the help of a relational database – which 

maintains a coherent representation of the relations between objects, metadata, 

and datastreams – and a filesystem, which is used for file storage. In order to allow 

fast searches over the metadata associated with the objects, the Publisher service 

employs an Indexing Service, which indexes and sorts the information about the 

objects stored in the repository and which, ultimately, is used by all the other 

modules for querying and listing of such information. 

With the help of a Web builder module and a HTTP server users are provided with 

a suite of web pages in which they can perform in a graphical, human-friendly 
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manner the CRUD (create/retrieve/update/delete) actions mentioned above. In 

addition, the graphical interface offers search facilities to human users. These 

facilities are used to perform queries (with the help of the Indexing Service) on the 

metadata associated to applications stored or referred by GAMRS.  

The low-level transactions with the backend and the error handling system, as well 

as the authentication and policy assessment (i.e. permissions) systems are 

implemented in the Management module.  

The HTTP/REST service is built around the transfer of representations of 

resources. The resource in this case is a repository object, while the representation 

of a resource is represented by a document that captures the current state of a 

resource. The methods used in a HTTP/REST interface are the well-known HTTP 

GET, PUT, POST, and DELETE; and they correspond roughly to the CRUD verbs 

READ, UPDATE, CREATE, and DELETE. [139] A GAMRS object can be created 

with the help of a POST method and a document (usually written in XML) which 

contains together the datastream and the metadata associated with it. An object 

can be read with the help of a GET method, which retrieves the object‟s description 

document (i.e. metadata and datastream) from the repository. An update can be 

done via a PUT method plus an object description document, which will replace the 

one already stored in the repository; while an object purge can be done via a 

DELETE command. However, more complex actions can be performed with the 

help of HTTP/REST interface such as, for example, searching for a particular 

object. The HTTP/REST service used in GAMRS permits searching for repository 

objects by querying the Indexing Service.  

The following figure (i.e. Figure 3-3) gives the implementation details for an 

“application search” scenario. It shows the sequence of actions, the GAMRS 

Publisher‟s modules which participate to the scenario, and the message exchange 

between these modules. 
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Figure 3-3: Using the Publisher's HTTP/REST service to search for applications in GAMRS 

The OAI-PMH Provider is used for metadata harvesting and its functionality is very 

similar to that exhibited by the HTTP/REST Service. However, there are two major 

differences between the two services: first, as opposed to the HTTP/REST 

operations – where the names of actions can be user-defined (e.g. findObjects, 

ingestObject), the OAI-PMH uses standard names for its actions as defined in [37] 

(e.g. ListIdentifiers, ListRecords, GetRecord); second, while in a REST 

implementation one can use all the four CRUD actions, OAI-PMH limits itself only 

to the READ operation. The following figure (i.e. Figure 3-4) gives the 

implementation details for a “list all records in the repository” scenario using the 

OAI-PMH standard. 

 

Figure 3-4: Using the Publisher's OAI-PMH provider to list all the records stored in GAMRS 
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Both the OAI-PMH and HTTP/REST services help with application discovery for 

potential users, since these services are usually used by web crawlers and 

harvesters working behind web search engines. Ultimately, with the help of OAI-

PMH and HTTP/REST services, GAMRS helps improve the application‟s visibility 

on the Web. The following figure (i.e. Figure 3-5) gives the implementation details 

for a “search for a specific application” scenario using the OAI-PMH standard. 

 

Figure 3-5: Using the Publisher's OAI-PMH provider to retrieve a specific application (metadata 

only) from GAMRS 

The OAI-ORE Provider‟s functionality is very similar to GET actions implemented in 

the HTTP/REST interface; namely, it retrieves the object stored in the repository in 

a serialized form including metadata and datastreams. If the datastream (i.e. file) is 

represented by an XML-like structured document, the datastream will be 

automatically embedded in the serialized form of the object. Otherwise, the 

datastream is only referenced with its full URI in the serialized form of the object.  

The OAI-ORE standard introduces the concept of Aggregations and Aggregated 

Resources (i.e. an Aggregation is simply a set of Aggregated Resources, all of 
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which are represented by URIs). [140] The main difference from the document 

described in the HTTP/REST service is that the OAI-ORE provider works by 

building an XML document according to the OAI-ORE standard specifications, 

which maps the predicate ore:aggregates to metadata and datastreams.  

The OAI-ORE interface exposed by the GAMRS Publisher Service can be used by 

other OAI-ORE compliant repositories to easily exchange and reuse repository 

objects. Moreover, by handling the serialized form of the complete object (metadata 

and datastream), administrators can easily implement fail-over and backup 

solutions for their repository objects. The following figure (i.e. Figure 3-6) gives the 

implementation details for a “retrieve a specific application” scenario using the OAI-

ORE standard. 

 

Figure 3-6: Using the Publisher's OAI-ORE provider to retrieve a specific application (metadata 

and datastreams) from GAMRS 
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The OGSI/WSRF service is present in the Publisher Service‟s architecture in order 

to permit Grid services to interact with GAMRS in a serviceable manner in line with 

the OGSI/WSRF standard. This service allows the same actions as those 

described in the HTTP/REST service, only that their implementation is consistent 

with the specifications found in the WSRF standard suite. The serialized form of 

each repository object is seen as a WS-Resource and CRUD operations can be 

performed on these resources.  

While the majority of current Grid repositories cannot be queried directly by 

OGSI/WSRF Grid services, the applications stored in them become visible through 

the Publisher service‟s OGSI/WSRF interface if these repositories are connected to 

GAMRS. 

GAMRS MET A-REPO SITORY SERVI CE  

The Meta-Repository Service is responsible for connecting together various types 

of Grid application repositories, independent of the underlying technology these are 

built on, because it can negotiate through their different methods of access and 

authentication, communication and transport protocols. In this way the service 

grants access to any application stored in connected Grid repositories, 

notwithstanding the differences between various methods.  

Figure 3-7 shows the Meta-Repository service connecting four repositories, each of 

them employing different security methods (i.e. GSI, username/password, public 

access), different access interfaces (i.e. Grid Service access interface, JSR-168 

access interface, HTTP/REST interface, Web Service interface) and each of them 

storing different types of Grid applications (i.e. stand-alone jobs, workflows, web 

services), which in turn are described using different application description 

languages (JSDL, LCID, SCUFL, and WSDL). 
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Figure 3-7: Connecting different types of Grid application repositories 

Figure 3-8 shows the three-layered architecture of the Meta-Repository Service – 

the Access layer, the Management layer and the Storage layer.  

 

Figure 3-8: Meta-Repository Service architecture 
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The Access layer exposes an OGSI/WSRF interface through which users and 

client services can interact with the Meta-Repository service. Through it, users can 

authenticate within the system and can retrieve application description documents 

and application metadata from repositories connected to the Meta-Repository 

Service. 

The logic and the functionality associated with these actions are addressed by the 

Management layer:  

The first module in the management layer is Security. This module deals with 

authentication and authorization methods both on the Meta-Repository service and 

on connected repositories. The Meta-Repository service uses GSI to achieve full-

compatibility with other Grid services; however, authentication on repositories with 

security infrastructures other than GSI is achieved with an orchestrated effort of the 

Security module, the Core module and the Adapter responsible with 

communication with the corresponding repository. The Meta-Repository service is 

deployed in a web application container able to understand X509 certificate/proxy 

authentication. Users require a valid Grid certificate issued by well-known 

Certification Authorities in order to use the service. The security module maintains a 

list of the public certificates of these Authorities, as well as a white-list of X509 

distinguished names taken from the certificates belonging to users, which are 

allowed to use the service. When a user requests access to the service, s/he would 

be required to present his/her certificate. The Security module compares the 

distinguished name of the certificate with those maintained in the white-list. If a 

match is found (i.e. the user is allowed to use the service) the Security module 

compares the signature of the Certification Authority found on the user certificate 

against the signature of the Certification Authority already recorded in the list of 

public certificates. If the signatures match (i.e. the certificate is genuine) and the 

certificate is still valid (i.e. did not pass the expiration date), the user is permitted to 

use the service. 

The Core module is responsible for the integration and supervision of all the other 

Meta-Repository service modules. It specifies the interfaces of communications 
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between different modules; it translates the commands received from the access 

interfaces; it specifies the formal interfaces for repository queries and answers; it 

distinguishes between queries directed to the Meta-Repository service and queries 

intended for application repositories connected to the service; and it relays the 

query to the appropriate module. The Core module is therefore the centre point of 

the system and it coordinates all the activity between different modules of the Meta-

Repository service. The Meta-Repository service implements commands (e.g. 

COMM_ADD_APPLICATION, COMM_GET_APPLICATION, etc.) in order to 

provide access and allow CRUD actions on the repository objects, as well as to 

connect to other providers and update the list of applications they expose.  

The Adapter Management module is responsible for instantiating adapters, as well 

as for supervising and accounting for their actions. 

The Repository management module is responsible for communication with the 

Backend. This module provides access to the CRUD operations (i.e. 

Create/Retrieve/Update/Delete) exposed by the backend and also supervises the 

actions associated with these operations. This module contains the implementation 

of the Meta-Repository commands described by the Core module in conjunction 

with an implementation of the Backend API (i.e. driver implementation) necessary 

to run the database transactions and the file storage transfers of repository objects 

to and from the Backend. 

The Storage layer (Backend) is responsible for the actual storage of repository 

objects. It consists of a relational database and a filesystem (local or remote via a 

storage server). The database is used to store the metadata associated with each 

repository object, as well as the relations between such objects. The filesystem is 

used to store serialized forms of the repository objects and the datastreams such 

as binaries, source code, licenses, virtual machines etc. 

Users access the Meta-Repository service through its access interface, and before 

any command is issued, the Security module performs GSI authentication 

procedures on the user‟s credentials. If access is granted, users can interact with 

the application repository via Meta-Repository service commands. Once a 



S O L U T I O N  O V E R V I E W  

97 

 

command is issued, the Core module will interact with the storage layer through the 

Repository Management module, which implements the necessary drivers to 

communicate with the Backend. In this fashion, users can store, retrieve, modify, 

and delete objects from the repository. One particular command – 

COMM_UPDATE_PROVIDER – updates the list of applications from the 

repositories connected to the Meta-Repository service.  

The Meta-Repository service allows different types of repositories to be connected 

to it through the use of Adapters. From the service point of view, an adapter 

provides a uniform connection to other repositories. In order to accomplish that, the 

adapter implements the following four modules (see Figure 3-9 below): 

 The Communication protocol module is responsible for accessing the 

connected repository. This requires knowledge of the repository API. 

 The Authentication and authorization module helps the Meta-Repository 

service to mediate the authentication process on connected repositories. 

Usually, the authentication process differs from one Grid application 

repository to another (e.g. GSI, username/password, free access). This 

module is therefore required to implement the authentication process 

appropriate to each of the repository connected to the Meta-Repository 

service. 

 The Transport protocol module helps the service retrieve the application 

metadata and the application-related objects stored on connected 

repositories. Every repository can implement a different transport protocol 

(e.g. HTTP, SOAP, GridFTP). Subsequently, the adapter must implement 

the transport protocol that is appropriate to the respective repository 

technology. 

 The Meta-Repository interface is the module responsible for the 

management of commands received from the Meta-Repository service, 

as well as for formatting the responses according to those particular 

interface specifications accepted by the service. 
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Figure 3-9: Meta-Repository service Adapter architecture 

The Meta-Repository service defines the high-level command 

COMM_UPDATE_PROVIDER for interaction with connected repositories. This 

command updates the list of applications exposed by the repositories connected to 

the Meta-Repository service. The command accepts as arguments universal 

identifiers of the providers needed to be contacted for updates or, if provided with 

no arguments, will contact all the repositories connected to the service at that time.  

The adapter translates this command into five different subcommands defined in its 

interface:  

CONNECT 
 DISCONNECT 
 GET_APPLICATIONS 
 GET_APPLICATION_DESCRIPTION 
 RUN_QUERY 

The implementation of the adapter requires knowledge of the communication 

protocols, authentication methods, and transport protocols used in repositories 

connected to the Meta-Repository service. Using this knowledge, the commands 

enumerated above will be implemented to provide the following functionality: 
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 CONNECT – This command is used to connect to the remote system. Its 

implementation requires knowledge of the transport protocol and 

communication API employed on the remote system. This stage may 

require authentication from the remote repository service. The 

implementation of this function should provide all the remote retrieval 

locations (e.g. myproxy servers, voms servers) or files (i.e. PKI 

certificates/ keys; X509 proxies; username/password tuples) necessary to 

the authentication process.  

Note: Some systems delay the authentication process until a formal 

query is passed to the system – for example, to list applications or search 

for applications. In this case, the authentication phase is not implemented 

in command CONNECT, but is moved to the implementation of another 

command such as GET_APPLICATIONS or RUN_QUERY. The 

authentication system implemented on the remote service infrastructure 

needs to be known in advance.  

 DISCONNECT – This command is used to perform a clean disconnection 

from the remote system. In many cases the break of or the simple non-

utilization of the communication channel for a certain period of time 

eventually breaks down the connection with the remote server. However, 

most servers would implement a disconnect option, which gives them a 

better management over their resources, such as de-allocation of 

memory, closure of file descriptors, or cleanup of temporary files. If the 

disconnect feature is present in the remote server‟s API, then it should be 

used in the implementation of the Adapter. 

 GET_APPLICATIONS – This command is used to retrieve the list of 

applications from the remote server. The implementation of this 

command requires knowledge of the remote server‟s API in terms of the 

formal enquiry and formal response that the Meta-Repository sends to 

and receives from the remote server. The list contains tuples like the 

following: (the name of the application; the unique reference point that 

can be used to retrieve application metadata and datastreams from the 
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remote server). 

 GET_APPLICATION_DESCRIPTION – This command is used to 

retrieve the formal description document written in ADL, which is 

assigned to each application by the remote repository. Each application 

description document is added to the list created by the command 

GET_APPLICATIONS to an entry corresponding to the application it 

describes. This list is kept by the Adapter for further reference. After 

performing the next update the Adapter will compare for each application 

the description document received from the server with the ones kept in 

its list. If any differences exist, it will replace the old description document 

with the new one, at the same time instructing the Core module to modify 

the object stored in GAMRS accordingly. If the application does not exist 

anymore on the remote repository, the Adapter will remove it from its list 

and will instruct the Core module to delete the object stored in the 

GAMRS repository. Similarly, if the remote repository exposes new 

applications, the Adapter‟s list will be updated with the new entries and 

new objects will be added to the GAMRS repository. 

 RUN_QUERY – This command performs various personalized queries 

on the remote repositories. Under current requirements, the Meta-

Repository service only needs the list of applications and their formal 

descriptions from the connected repositories in order to make these 

applications visible in GAMRS. However, as repositories evolve, they 

begin to store more types of application-related objects and more diverse 

metadata. The RUN_QUERY command can give GAMRS the means to 

retrieve such objects and collect more information about an application, 

provided that such information is needed by future extensions or meta-

repository designs.  

Upon receiving the COMM_UPDATE_PROVIDER command, the Adapter will use 

the command CONNECT to establish a communication channel with the remote 

repository. Next, it will issue the GET_APPLICATIONS command and will create a 

list of applications, each entry containing the name of the application and its remote 
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access point reference. For each application reference point, the Adapter issues 

the GET_APPLICATION_DESCRIPTION command and retrieves the formal 

description document of the application, which is then used to update its list of 

applications. Next, the Adapter uses a transformation method to convert the formal 

description document retrieved from the remote repository into the application 

language used by GAMRS. After that, the GAMRS repository object document is 

created by adding metadata and two datastreams: the formal application 

description document written in the native language of the remote repository; and 

the formal application description document written in the language employed on 

GAMRS. 

The document of the repository object document is then passed on to the 

Repository Management module to be added to the GAMRS (or to modify an 

existing object). Upon a new addition, the unique GAMRS identifier of the object is 

passed back to the Adapter to be stored in its list of applications for further update 

actions. The following figure (i.e. Figure 3-10) gives the implementation details for 

the COMM_UPDATE_PROVIDER command. It shows the sequence of actions, 

the GAMRS Meta-Repository‟s modules which participate to the scenario, and the 

message exchange between these modules. 
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Figure 3-10: Meta-Repository service – Implementation of the COMM_UPDATE_PROVIDER 
command 
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GAMRS MATCHMAKING  SERVICE  

The Matchmaking service is a service used to find similar or identical applications 

stored on different repositories connected to GAMRS. This service has the ability to 

process application description documents written in the application language used 

by GAMRS and can also use application-related objects stored in GAMRS. The 

Matchmaking service uses different types of matchmaking techniques to analyze 

the description documents and its service architecture allows developers to extend 

it easily with further matchmaking methods. This service can also implement 

methods that are able to process not only description documents, but also other 

application-related objects such as hash sums, binaries, test files, source code, and 

list of dependencies.  

The limited timeline of a PhD research only allowed for the implementation and 

performance analysis of four matchmaking methods –  syntactic, string-distance, 

application-running, and binary matching. The syntactic algorithm processes 

description documents and relies on the application information contained in them. 

The string-distance methods can help with the identification of similar applications 

on the basis of the information contained in the free-text description of the 

application. This research proposes a new technique of improving the accuracy of 

string-distance metrics by using entropy-generated stop-lists and test results have 

showed that this can increase the performance of string-distance methods. The 

application-running method compares two applications by running two application 

binaries with a common set of input files (retrieved from one of the application test 

suites) and compares their output set. The binary matching method uses 

application binaries stored in GAMRS and hash sums to identify identical 

applications.  

The architecture proposed for the Matchmaking service and the algorithm used for 

that are extendable, hence future research can implement and analyze the 

performance of other matchmaking methods when applied to the objects stored in 

the GAMRS repository. 
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Section 3.4 in this chapter offers an in-depth overview of the GAMRS Matchmaking 

service. 

GAMRS BACKEND  

The backend is responsible for the actual storage of repository objects and the 

backend structure follows the layout of the GAMRS repository model. The backend 

consists of a relational database and a filesystem (i.e. local or remote via a storage 

server). The database is used to store the metadata associated with each 

repository object, as well as the relations between such objects. The filesystem is 

used to store serialized forms of the repository objects consisting of metadata and 

datastreams. As mentioned before, if the datastream is not represented by an 

XML-like structured document, it will be only referenced with its full URI in the 

serialized form of the object. Therefore, the filesystem can also be used to store 

non-XML datastreams, such as binaries, source code, licenses, or virtual 

machines.  

All services may access the backend directly; however, each module can also 

access the backend by using the interfaces provided by the Publisher service. In 

conclusion, if GAMRS is extended in the future with other services, there will be no 

need for these services to implement a new communication module with the 

backend because they could use existing interfaces provided by the Publisher 

service. 

3.1.3 Summary 

The following table (i.e. Table 3-1) is a reiteration of Table 2-2 from Chapter 2, 

Section 2.5.1, with the addition of GAMRS repository capabilities. This table 

summarizes the capabilities of existing Grid application repository architectures and 

those of the GAMRS architecture against requirements R1-R3, which correspond 

to objective O1 (see Chapter 2, Figure 2-10): 
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Table 3-1: Current Grid application repository architectures and GAMRS architecture vs. R1-R3 

 R1: PUBLISHING R2: DISCOVERY 
R3: EXCHANGE 

& REUSE 

B
D

II
 

- Publishing done by 

automated services via 

scripts that contain suites of 

console commands; 

- No graphical/web interface 

for human users. 

- Console commands containing LDAP 

queries; 

- No OGSI/WSRF Grid service interface; 

- No Web visibility; 

- No HTTP/REST interface; 

- No connection to other repositories; 

- No system of identification of similar Grid 

applications; 

- No support for OAI-PMH protocol. 

NO 

C
H

A
R

O
N

 - Command line only for 

human users; 

- No access support for 

services; 

- Collection of static Web pages; 

- No OGSI/WSRF Grid service interface 

- No connection to other repositories; 

- No system of identification of similar Grid 

applications; 

- No support for OAI-PMH protocol. 

NO 

G
E

M
L

C
A

 - Graphical interface for 

human users; 

- OGSI/WSRF Grid service 

interface for services. 

 

- OGSI/WSRF Grid service interface; 

- Human users can find application 

information through PGRADE portals or 

using a GEMLCA Service Client; 

- No Web visibility; 

- No connection to other repositories; 

- No system of identification of similar Grid 

applications; 

- No support for OAI-PMH protocol. 

NO 

N
G

S
 A

R
 - Graphical interface for 

human users 

- No access support for 

services 

- JSR-168 web application interface for 

human users; 

- No OGSI/WSRF Grid service interface; 

- No HTTP/REST interface; 

- No connection to other repositories; 

- No system of identification of similar Grid 

applications; 

- No support for OAI-PMH protocol. 

NO 

G
R

IM
O

IR
E

S
 

- Human users and services 

can register web services via 

UDDI clients. 

- Visible to UDDI clients; 

- Visible to human users through a 

collection of static web pages. 

N/A 



S O L U T I O N  O V E R V I E W  

106 

 

m
y
E

x
p

e
ri

m
e
n

t 

- User-friendly web interface 

for human users; 

- HTTP/REST interface for 

services. 

- Intuitive web interface for human users; 

- Exposes HTTP/REST interface; 

- No OGSI/WSRF Grid Service interface; 

- No connection to other repositories; 

- No system of identification of similar Grid 

applications; 

- No support for OAI-PMH protocol. 

NO 

G
A

M
R

S
 

- Graphical interface for 

human users; 

- HTTP/REST interface for 

services. 

 

- Intuitive web interface for human users; 

- Exposes HTTP/REST interface; 

- Exposes OGSI/WSRF Grid Service 

interface; 

- Supports connections to other 

repositories; 

- Exposes a system of identification of 

similar Grid applications; 

- Support for OAI-PMH protocol. 

 

- Support for OAI-

ORE protocol; 
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3.2. GAMRS Repository Model 

3.2.1 Overview 

The second objective of this research (O2) was to propose a new model for 

application repositories, which would achieve uniformity in Grid application 

presentation and would extend the functionality of these repositories beyond Grid 

(R4). Current major repository models used on Grid impose limitations on the 

applicability domains of Grid application repositories. Therefore, the objective was 

to design a new repository model that would provide a comprehensive description 

of an application along with a suggestion for a new categorization of application-

related objects. This will allow Grid application repositories to be compatible and 

ready-to-use in conjunction with newly emerging technologies such as 

virtualization, automatic virtual machine creation, cloud computing, and automatic 

service deployments, as well as to be ready-to-use in future distributed computing 

designs. 

Following the conclusions of Section 2.5.2, I decided to extend the traditional 

repository model with the necessary entities that would make it able to describe 

user-related objects; the provider and its associated policies; and provider-related 

objects (entities in dark grey in Figure 3-11).  

 

Figure 3-11: Grid application repository model entities 
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The User entity is required by the model to describe a repository user. Users can 

have user related-objects associated with them (e.g. PKI signature certificates, 

authentication certificates or username/password suites), which can be modelled 

and stored in the repository and would be available on demand for various 

scenarios. The user access policies describe the actions each repository user is 

permitted to perform on user entities (e.g. create new users, delete users, etc.). The 

Application entity is required by the model to describe a Grid application stored or 

referred by a repository. An application entity contains a reference to its application-

related objects (i.e. description document, binaries, source code, etc.) as well as a 

reference to the user who created it. The application access policies are used to 

describe those actions that repository users are permitted to perform on application 

entities and their related objects. The Provider entity is required by the model in 

cases when the repository is connected to other repositories. In a network of inter-

connected repositories, each of these repositories is described by a Provider entity. 

These providers can have provider related-objects associated with them (e.g. PKI 

signature certificates, software clients to facilitate access to them, etc.) which can 

be modelled and stored in the repository as well. A Provider entity contains a 

reference to its applications as well as a reference to the user who created it. The 

provider access policies are used to describe the actions repository users are 

permitted to perform on provider entities and their related objects. 

Moreover, the Application Related Objects had to be extended with new types of 

objects in order to help the GAMRS solution to meet the objectives set out in this 

research in Section 2.6 .  

The suggested set of application-related objects needed to be modelled in a Grid 

application repository includes:  

 Application description documents: These should be stored in Grid 

application repositories since they provide the link to submission systems 

that allow users to run the application on Grid. Administrators can create 

preconfigured description files (i.e. templates) in which resource attributes 

and other Grid specific attributes have already been filled (such as the 
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minimum CPU frequency, the minimum amount of memory, or the 

minimum number of file descriptors required for the application to run).  

 Application binaries: These are referenced in the application description 

document, but in most cases they are already deployed on a Grid site, 

and cannot be retrieved, only accessed. Once the application binary is 

stored in the repository, services which deal with automatic deployment 

or automatic virtual machine generation can make use of the binary. 

Furthermore, if the application deployed on a Grid site becomes 

unavailable but the user insists to use that particular site for personal 

reasons, the executable could still be staged and run on-demand. 

 Application source code: This can provide an additional information 

source for application matchmaking systems and can help with the 

automatic deployment of applications on heterogeneous machine 

architectures and operating systems, as it can be compiled directly on the 

target system. 

 Application libraries: Libraries should be stored on application repositories 

as they can help in those cases where compilation is needed. They can 

also help with automatic application deployment and automatic virtual 

machine generation. 

 Application dependency software: As with Application libraries, the 

dependency software is necessary in cases that require automatic 

application deployment. 

 Application documentation: This is a useful set of objects for users and 

administrators who want to know more about the application than the 

short summary available in the application description document under 

the attribute Description.  

 Application test files: These can help with matchmaking – matchmaking 

systems can run a candidate-match application with the set of test input 

files. If the output files prove to be the same as the test output files there 

is a high possibility that the applications are the same. 
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 Virtual Machine-embedded application: In order to make the application 

easily deployable in virtualized environments, one solution is to embed it 

from the outset in a virtual machine. That allows the application to run in 

its native environment, overcoming potential architecture- or operating 

system-related issues.  

 Hash sums: These were added to the model to help check the integrity of 

records after the completion of a data transfer. Hash functions are also 

used in matchmaking algorithms to speed up the matching process. 

 Application licenses: Since this repository model can also be used to 

accommodate commercial applications, the application license 

acceptance is a necessary prerequisite to any automatic deployment 

process or job submission involving commercial software. 

3.2.2 Design 

In order to provide a coherent structure for the description of the GAMRS repository 

a new entity has been added (i.e. the MetaRepository), which acts as a container 

for all the objects described in GAMRS. This entity also helps with the exchange 

and reuse requirement identified by this research (R.3), as it permits the 

serialization of all GAMRS entities under one root element. In this way, the whole 

repository can be effortlessly relocated to another repository framework. 

The user policy, provider policy and application policy entities have been unified in 

a single entity called Policy. Moreover, in order to permit the better management of 

users, the GAMRS repository model also employs a Group entity.  
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Figure 3-12: Entities in the GAMRS repository model  

Apart from the six main entities (i.e. MetaRepository, User, Application, Provider, 

Policy and Group) the repository model required the addition of seven new entities: 

PolicyRule, Authentication, Certificate, Asset, Hash sum, Relation, and RelPair. 

These describe the following aspects:  

 Describe and differentiate between policies related to users, groups, 

applications, providers or other private policies (i.e. PolicyRule). 

 Describe and differentiate between various types of authentication methods 

needed by users or requested by various providers (i.e. Authentication and 

Certificate). 

 Describe and differentiate between various types of objects related to 

applications, providers and users (i.e. Asset). 

 Describe and differentiate between various types of hash sums, which can 

be used to strengthen data integrity on GAMRS (i.e. Hash sum). 

 Describe the property of an application to be identical or similar to a certain 

extent to another application stored or referred by the repository (i.e. 

Relation, RelPair).  

Figure 3-12 above gives a general overview of the entities in the GAMRS 

repository model. Each of the entities in the GAMRS repository model will be 

explained separately below.  
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Figure 3-13 provides a more in-depth view of the GAMRS model with its six main 

entities and the relations between them: MetaRepository, User, Application, 

Provider, Policy and Group.  

 

Figure 3-13: The six main entities of the GAMRS repository model 
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Every entity in the GAMRS repository model contains five attributes and an 

association to the User entity, all of which are used for management purposes, i.e. 

to uniquely identify the objects, track changes and log their modification history:  

 UID (universal identifier): This attribute is needed for the unique 

identification of the object within the GAMRS. The UID is composed of 

two parts: The first part represents the fully qualified domain name (i.e. 

FQDN) of the server where GAMRS is hosted. The second part 

represents a string, unique to each object within one meta-repository 

system. The FQDN part of the UID helps with the identification of objects 

in a federated architecture of GAMRS. Since the architecture can be 

cascaded, one GAMRS system can be connected to another GAMRS 

system. Constructing the UID in this way ensures that the objects can be 

uniquely identified within the federated architecture. This attribute is 

mandatory and the attribute multiplicity is one. 

 Name: This attribute is used to model the name of the object. Its main 

purpose is to allow a friendly identification of objects by human users. As 

the unique identification of objects can be done via UID, this attribute is 

not mandatory. The multiplicity of Name is one.  

 Description: Each object may contain a paragraph of free-text, which 

represents a short description of the object properties and capabilities. 

This attribute is used to capture such descriptions of objects. The attribute 

is not mandatory and its multiplicity is 0 - 1. 

 Creation date: This attribute is used to model the date when the object 

was created. The attribute is mandatory and the multiplicity is one. 

 Update dates: This attribute represents the set of dates when the object 

was accessed and/or modified. It is used to help logging/audit systems to 

keep track of changes of the object. The attribute is non-mandatory and 

the multiplicity is 0 - multiple. 

 Author: With the exception of the MetaRepository entity, all other entities 

in the repository contain a relation to the user who created them. This is 
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represented by an association to the User entity called author. This 

attribute is mandatory and the multiplicity is one. 

The GAMRS model is extendible and GAMRS entities can be extended with other 

attributes and relations to other objects. This is done via two attributes – 

anyAttribute and any – that are present in each entity description contained in the 

model. The attribute anyAttribute may be used to add new attributes to an entity 

description, while the attribute any may be used to add new associations between 

GAMRS entities. 

THE MET AREPO SITORY ENTITY  

The MetaRepository is the central entity of the GAMRS repository model. The 

MetaRepository represents the container for the main entities of the repository: 

User, Group, Policy, Application and Provider.  

Figure 3-13 shows that the association between the MetaRepository entity and the 

User entity, as well as the association between the MetaRepository entity and the 

Policy entity, is a 1..* multiplicity, meaning that the meta-repository is bound to have 

at least one user (i.e. the default user) and one policy (i.e. the default policy). The 

default user represents the meta-repository administrator and the default policy 

represents the default administrator policy, which grants him/her permissions to 

create, modify, and delete other objects. From here on the default user is 

responsible for the creation and management of users, groups, and policies, as 

well as for the assignment of such policies to different entities. 

THE USER ENTITY  

The User entity captures the following information: name, address, affiliation and 

email. This can be often associated with human users. However, the entity can be 

extended to include further information about a user (such as telephone, fax, etc.) 

via the attribute anyAttribute. A quota is associated to each user on the repository 

storage system (modelled through the attribute Quota), which offers a better control 

over the repository backend and prevents a user from (intentionally or un-
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intentionally) filling up the storage, which would in turn make the system 

unavailable.  

A user can be part of one or more groups and can create his/her private group(s) of 

users (friends). A user can add applications, application-related objects, and 

provider objects to the system and can also create his/her private policies and 

apply them to the objects s/he owns.  

 

Figure 3-14: The User entity and its relations to the Group, Authentication, and Certificate entities 

As shown in Figure 3-14, the user object is associated with different types of 

authentication. Grids normally use GSI (Grid Security Infrastructure) for 

authentication – this is a type of Public Key Infrastructure implementation based on 

X509 certificates. GSI is captured in the GAMRS model on two objects: 

Authentication and Certificate.  The model permits users to own multiple 

authentication sets and therefore allows them to access various resources located 

in different Grid infrastructures. Furthermore, the authentication object also permits 
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the specification of (username, password) tuples that can be used with resources 

that accept such type of authentication.  

The Certificate entity is used to model all three types of X509 certificates: 

certificate, private key and delegated proxy. This entity contains an attribute called 

URI (Uniform Resource Identifier), which is used to indicate that the certificate is 

stored on a remote resource (i.e. usually a myproxy server). However, the GAMRS 

repository can be used to store the certificate as well. Therefore, the Certificate 

entity also contains the attribute Value, which points to the actual digital file stored 

in the repository. The GAMRS model also allows each user to choose one 

certificate and use it as digital signature.  

THE GRO UP ENTITY  

As mentioned before, the GAMRS model allows users to be organized in groups. 

The Group object ensures a better management of users and allows for a simpler 

and easily understandable design and association of policies. For example, a policy 

may specify that provider objects can be read, but are not open to modifications by 

users with non-administrative rights. Instead of creating all the associations 

between this policy and each one of the users with non-administrative rights, these 

users can be organized in one group and only one association is needed between 

this group and the policy. 

THE POLICY ENTITY  

The GAMRS model uses the Policy entity to model interactions between various 

objects in the repository. The GAMRS model defines four operations that can be 

applied to any object in the model, with the exception of the MetaRepository object, 

the default user and the default policy: create, read, modify and delete. These 

operations are defined within the structure of an enumeration entity, which also 

contains the literal other that makes the model extendible to permit further 

operations such as deploy, execute, etc.  
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The Policy entity acts as a container for PolicyRule objects. Each PolicyRule 

represents a rule, which, conceptually, follows the following pattern: “the Actor is 

allowed to perform the following operation(s) upon the Object.” 

In the GAMRS model the Actor is represented by a User object or by a Group 

object. The operations are represented by the four actions mentioned above 

(create, read, modify and delete) and the Object can be represented by any of the 

following entities:  User, Group, Provider, Application, Asset, ApplicationRelation 

and Policy.  

Each of these entities contains an association with the PolicyRule entity called 

ruleObject (i..e ruleObjectUser, ruleObjectGroup, ruleObjectProvider, 

ruleObjectApplication, etc). However, in the case of the User and Group entities, 

these two can function both as Actor and as Object of the policy rule. Therefore, the 

User entity and the Group entity each contain two associations to the PolicyRule 

entity – ruleActorUser and ruleObjectUser; ruleActorGroup and ruleObjectGroup.  

Figure 3-15 shows the two entities Policy and PolicyRule along with the 

enumeration entity Permissions used to model the four operations defined in 

GAMRS. 

 

Figure 3-15: The Policy entity and its associations to the PolicyRule entity 
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The PolicyRule entity permits the specification of Actors in the following ways: 

 all users: through the Boolean attribute All_users; 

 all groups: through the Boolean attribute All_groups; 

 all users with administrative rights: through the Boolean attribute 

All_admins; 

 all users with non-administrative rights: through the Boolean attribute 

All_nonadmins; 

 individual users: through ruleActor relations to User objects; 

 individual groups: through ruleActor relations to Group objects;  

 combined: by making combinations between c, d, e and f.  

The PolicyRule entity permits the specification of operations through the attribute 

Permissions and the specification of Objects through a set of applies-to Boolean 

attributes (Applies2user, Applies2group, Applies2provider, Applies2application, 

Applies2asset, Applies2appRelation, Applies2policy) and corresponding ruleObject 

relations to the entities User, Group, Provider, Application, Asset, 

ApplicationRelation and Policy.  

If one of the applies-to attributes is marked true and no ruleObject relations are 

specified to corresponding objects, then the rule will apply to all instances of that 

entity. Moreover, the use of an applies-to attribute does not imply the automatic 

exclusion of the other applies-to attributes. Like in the case of Actors, where the 

specification of different combinations of Actors is possible, the GAMRS PolicyRule 

object permits combinations between different Objects.  

The example below shows a possible GAMRS rule, which can specify both 

complex sets of Actors and complex sets of Objects:  

Example 
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Rule: “The users Alex, Steve and Gabor, plus the group CPC, are allowed to 
add, retrieve and modify applications, application-related objects and 
providers to GAMRS.”  

GAMRS Rule:  

“The Actors: Alex (entity User), Steve (entity User), Gabor (entity User) and 

CPC (entity Group) 

Operations: Create, Read, Modify  

Objects: Provider (all instances), Application (all instances) and 

ApplicationAsset (all instances).” 

GAMRS model XML excerpt:  
<MetaRepository, UID="https://161.74.69.171:4561/1", Description= 
"University of Westminster GAMRS" (...)>   
<Name>GAMRS ONE</Name>   
<users UID="https://161.74.69.171:4561/1001" (...)>    
             <Name>Alex</Name> (...)    </users>   
<users UID="https://161.74.69.171:4561/1002" (...)>  
             <Name>Steve</Name> (...) </users> 
<users UID="https://161.74.69.171:4561/1003" (...)> 
             <Name>Gabor</Name> (...) </users>   
(...) 
<groups UID="https://161.74.69.171:4561/101" Description="CPC Group",  
registeredUsers="//@users.3 //@users.4 //@users.5" (...)>     
             <Name>CPC</Name></groups> 
 (...) 
  <policies UID=https://161.74.69.171:4561/10000, Description= "CPC policy" 
(...)>  
             <Name>Example</Name>   
             <policyRules UID=https://161.74.69.171:4561/10001, 
 Applies2application="true", Applies2asset="true", Applies2provider="true",  
 ruleActorUser=//@users.0 //@users.1 //@users.2 
ruleActorGroup="//@groups.0"   (...)> 
                              <Name>First CPC rule</Name>      
                              <Permission>CREATE</Permission>  
                              <Permission>READ</Permission>  
                              <Permission>MODIFY</Permission>   
             </policyRules> (...) 
 </policies> (...) 
</MetaRepository> 
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The Policy entity also contains the attribute Priority, which is used internally by 

GAMRS to prioritize different policies that can be applied to an object. Users can 

define their own private policies to help regulate access to their own objects. 

However, these policies will always be superseded by any administrator-defined 

policy in force for that particular entity. For example, for security reasons an 

administrator-defined policy may permit a particular group of users to read, modify 

and delete any application asset in the repository (e.g. to remove virus-infected 

files). A user may create a private policy and try to restrict these permissions to 

read for this particular group in relation with his/her application assets. However, 

this private policy will never be enforced as the rules in the administrator-defined 

policy take precedence over the rules defined by common users. 

THE APPLICATION ENTITY 

The Application entity is used to capture information about the Grid application 

stored in GAMRS or in one of the application repositories connected to the system.  

The Application entity contains the five general attributes: UID, name, description, 

creation date, update date, and three specific attributes: template, version and URI.  

 The template attribute is used to provide users with preset values for 

certain application parameters – such as machine architecture, OS, 

minimum amount of memory, or environmental variables, which are 

necessary for a correct run of the application. 

 The version attribute helps distinguish between different versions of an 

application as the repository can accommodate several versions of the 

same application.  

 The URI refers to the webpage of the company that developed the 

application, which usually contains the most comprehensive description 

and documentation about the application.  

The Application entity contains an association with the Provider entity, which 

describes the repository from where the application originates. Figure 3-16 shows 

this relation, along with the containment association betweenthe Application entity 
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and its related objects (i.e. ApplicationAssets) and other relations between the 

following entities: Application, Provider, Asset, AppplicationAsset and Hash.   

 

Figure 3-16: The Application entity together with the Provider, Asset, Hash and ApplicationAsset 
entities 

THE ASSET ENTITY  

The Asset entity is used in the GAMRS model to describe application-related 

objects and provider-related objects. Beside the general attributes, an Asset object 

contains the following extra attributes: Version, Value, URI and Archive. The 

Version and URI attributes hold the same meaning as in the case of the Application 

object.  

The Archive attribute refers to the possibility of an asset object being stored in a 

compressed form. Since application assets can be quite large in size (for example, 

a virtual machine can be several GB in size), it is best that such objects are stored 
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in an archived form in order to save storage space. The Archive attribute is of type 

ARCHIVE_TYPE (see Figure 3-17). This type contains compression types most 

widely used in computer science (such as zip, rar, jar, arj, tgz, etc.) and the literal 

other, which allows for the specification of new methods.  

The Asset entity also contains the attribute Value, which is used to model the actual 

digital file stored in the repository backend (on the filesystem). 

The ApplicationAsset entity is derived from the entity Asset and, in addition to the 

inherited attributes inherited from Asset, contains the following attributes: AdlType, 

VMType and AssetType. The AssetType attribute is used to differentiate between 

different types of application-related objects. AssetType is of type 

APPLICATION_ASSET_TYPE (see Figure 3-17) and can be one of the following: 

default_input, document_description, executable, library, license, 

software_dependency, source_code, test_suite and virtual_machine. The literal 

other was also added to support future extensions, i.e. the specification of new 

types of application-related objects.  

 

Figure 3-17: Types used in the GAMRS repository model 

In cases when the ApplicationAsset object refers to the formal description 

document of the application, AdlType is used to designate the application 

description language in which the document is written. The AdlType attribute is of 

type ADL_TYPE (see Figure 3-17), which can be one of the language descriptions 
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that are extensively used in current Grid infrastructures: JDL, JSDL, LCID, RSL, 

SCUFL, WS_GRAM and xRSL. ADL_TYPE also contains the literal MRDL (Meta-

Repository Description Language), which designates the application language 

proposed in this research in Chapter 3, section 3.3. Similar to other types, the 

ADL_TYPE entity contains the literal other to ensure that additional application 

description languages can be added to the model in the future.  

In cases when the ApplicationAsset object refers to a virtual machine, the VMType 

attribute is used to identify the type of the virtual machine and, implicitly, of the 

virtual hypervisors able to run such a virtual machine. The VM_TYPE (see Figure 

3-17) specifies the virtual machine types that are used in current virtual 

environments (IBM-VM, KVM, ORACLE-VM, OVF, QEMU, SUN-XVM, SVISTA, 

VIRTUAL-BOX, VMWARE and XEN). However, because of the rapid evolution of 

virtualized infrastructures and the ongoing research efforts invested in this area, 

new virtual machine solutions emerge almost every day. Therefore, VM_TYPE 

contains the literal other, which allows for the addition of new virtual machine types 

in the future. 

THE HASH ENTITY  

In GAMRS one or more hash sums can be associated to any asset. The Hash 

entity is used to model the value of a hash algorithm when applied to an application 

asset. For example, an application binary can be stored in the repository as an 

application asset. One can use a hash function to calculate the hash sum for this 

binary and then store it as a hash object in the repository as well. The Hash entity 

contains two specific attributes: Type and Value.  

The Type attribute is used to identify the hash algorithm used to generate the hash 

sum. This attribute is of type HASH_TYPE (see Figure 3-17), which is used to 

specify the most widely used hash algorithms – cubehash, gost, jh, lane, md2, 

md4, md5, md6, nhash, ripemd, sha1, sha224, sha256, sha384, sha512, tiger and 

whirlpool. As in the case of the other types defined in the GAMRS model, 
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HASH_TYPE contains the literal other, which ensures that future hash types can 

be added to the model.     

The Value attribute represents the hash value of the digital object stored in the 

repository. 

THE APPLICATIONREL AT ION ENTI TY 

In Chapter 2, section 2.5, requirement R2.3 specified that a Grid application 

repository system should allow connectivity with other repositories. As a result of 

such connectivity, similar applications could be found throughout a network of inter-

connected Grid application repositories. To that end, the repository model needs to 

be able to capture the aspect that an application is identical or similar to a certain 

extent with another application stored elsewhere on such a network. In order to do 

that, the GAMRS repository model employs two entities: ApplicationRelation and 

RelationPair. Figure 3-18 shows these two entities and the associations between 

them, along with the Application entity and the relationships to it.  

 

Figure 3-18: The Application entity with the ApplicationRelation and RelationPair entities 
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The ApplicationRelation is used to model the relation of correspondence between 

two applications that are found to be similar. Each Application entity object may 

contain references to one or more ApplicationRelation entities. In return, the 

ApplicationRelation entity holds an association called referredApplication (of 

multiplicity one) to that Application entity object, which is considered similar to the 

first application. Each such ApplicationRelation object contains a reference to one 

or more RelationPair objects that record the similarity method used and the 

similarity score obtained.  

Example 

If applications A and B were compared using the TFIDF/Cosine string-

distance method and the result showed that they were similar, the following 

objects would be created: 

- First, a RelationPair object would record the Name of the method and the 

Score.  

- Second, an ApplicationRelation object would be created and a relationship 

added to the RelationPair object.  

- Finally, two more relationships would be added, linking the 

ApplicationRelation object to the Application objects A and B. 

 

THE PROVIDER ENTITY 

In GAMRS the Provider entity is used to model the place of origin of an application, 

an application-asset, or a certificate. In the case of applications, the provider 

represents a repository where the application is stored; in the case of application 

assets, the provider can be represented by any type of storage-servers; and in the 

case of certificates, the provider is usually represented by proxy servers (e.g. 

myproxy [67], voms [141]). The Provider entity may also be used to model pools of 

virtual machines on virtual servers used in clouds or other types of virtualized 

infrastructures. Finally, as GAMRS can be used as a repository in its own right, the 

Provider may be used to designate a GAMRS system as a place of origin for some 

applications. For a seamless integration in a PKI security environment, such as the 
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one used in Grid, the Provider can store its digital certificate and use it as signature 

for identification within the security infrastructure. The Provider entity has an 

association with the Asset entity, which is used to model provider-related objects 

that can help ensure proper connectivity and access to a provider – for example, a 

software client. 

The full GAMRS repository model containing all the types, entities and the 

associations between these entities can be found in Appendix A. 

3.2.3 Summary  

Table 3-2 and Table 3-3 below summarize the critical analysis of the five repository 

models described in Chapter 2, section 2.2.2 (MyExperiment, NGS, GEMLCA, 

GUSE and CHARON/iSoftrepo) assessing their ability to describe the entities 

specified at the beginning of this section (user, user policies and user related 

objects; application, application policies and application-related objects; provider, 

provider policies and provider-related objects) by comparison to the GAMRS 

solution. 

Table 3-2: Traditional Grid application repository models vs. proposed GAMRS model (except 
application-related objects) 

 
myExperiment NGS AR GEMLCA GUSE CHARON/ 

iSoftrepo 
GAMRS 

User YES YES YES YES YES YES 

User-related 
objects 

no no no no no YES 

User 
access policies 

YES YES YES YES YES YES 

Application YES YES YES YES YES YES 

Application 
access policies 

YES YES YES YES YES YES 

Provider no no no no no YES 

Provider-related 
objects 

no no no no no YES 

Provider 
access policies 

no no no no no YES 
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Table 3-3: Traditional Grid repository models vs. proposed GAMRS repository model (application-
related objects) 

 myExperiment NGS AR GEMLCA GUSE CHARON/ 
iSoftrepo 

GAMRS 

Description 
document 

YES YES YES YES no YES 

Binaries n/a reference YES no reference YES 

Source code n/a no no no reference YES 

Library 
dependencies 

possible 
(generic tag) 

no no no no YES 

Software 
dependencies 

possible 
(generic tag) 

no no no no YES 

Documentation reference no no no reference YES 

Test files 
possible 

(generic tag) 
no no no no YES 

VM 
embedded 

no no no no no YES 

Licenses YES no no no reference YES 

Hash sums no no no no no YES 
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3.3. GAMRS Application Description 
Language (MRDL) 

3.3.1 Overview 

The third objective set out in this research was to find an application description 

language, which would provide uniformity in the presentation of Grid application 

descriptions. The application description language should allow for Grid application 

repositories and the applications stored by them to be used in scenarios other than 

Grid, such as virtualisation, source code staging and compilation or automatic 

application deployment. At the same time, further research related to current 

language capabilities revealed other shortcomings, which can lead to Grid 

interoperability problems, such as their reduced ability to describe the use of 

different X509 certificates for staging data from different Grid infrastructures and 

their limited capacity to differentiate between the X509 certificate used for job 

submission and X509 certificates used for data staging.  

The conclusion of the critical analysis conducted in Section 2.5.3 was that, because 

JSDL passed most GAMRS requirements and its schema supported extensions 

natively, its further extension with the missing parts would be a better solution than 

creating a completely new language. 

 

Figure 3-19: JSDL‟s main entities 
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JSDL defines five core entities in its model: Structure, Identity, Application, 

Resource and Data staging (see Figure 3-19). The Structure entity is used only as 

a container for the other entities and represents the root element of the JSDL 

schema. The Structure entity contains the attribute Description, which is used to 

give a free-text description of the application.  

The Identity entity contains information about the project in which the application is 

used, along with identification fields that are used internally by JSDL 

processing/submission systems for management purposes.  

The Resource entity is used to describe the computational resources required by 

the application in order to insure a correct run. Initially, this entity only permitted the 

specification of basic requirements (as described in Section 2.3.1), such as:  

machine architecture, operating system, CPU requirements, memory requirements 

and disk requirements. However, the original JSDL schema [22] was immediately 

followed by an extension [69], which also permits the specification of advanced 

resource requirements, such as: core dump size limits, virtual memory 

requirements, pipe size limits, minimum network bandwidth requirements, open file 

descriptors limit. In time, the JSDL schema was also extended to describe 

parameter sweep applications and multi-process applications. 

The Data staging entity describes the data requirements of the application, namely 

which files are used as input (stage in) and which files are produced as output 

(stage out). It specifies the files that should be moved to the execution host before 

the application enters running stage and the files that should be moved from the 

execution host after the run. The JSDL schema employs no restrictions on the 

transfer protocol description used for data staging; therefore, any transfer protocol 

can be used in the application description document (e.g. http, ftp, gridftp, rfiod, srb, 

etc.). However, the JSDL processing/submission system should contain 

implementations of transfer clients able to understand such protocols and, 

subsequently, to perform the staging of required data from storage servers to the 

execution resource and the other way around.   
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The Application entity contains the attributes necessary to describe the name, 

version, executable, executable arguments, and environment variables. It also 

contains associations to the Data stage entity, which identify the input and output 

files used or created during the application execution. 

In correlation with the application description language requirements and the life-

cycle outlined in Section 2.5.3 , the JSDL model was extended during this research 

to provide the following capabilities: 

 Multi-Grid/multi certificate secure data access: 

o Distinction between the application instance submission certificate and the 

staging certificate: Current application description languages cannot 

describe a situation where an X509 certificate other than the one used for 

application instance submission needs to be used for data staging. WS-

GRAM [66] allows this kind of specification but only in the rare case where 

the certificate is stored into a MyProxy Grid service [67] and the submission 

engine knows how to make an OGSI/WSRF Service invocation.  

o Multi-Grid data staging with different X509 certificates: Existing description 

languages are not able to specify different X509 certificates for data staging 

from different Grids. This comes as a direct derivative of the point above, i.e. 

the impossibility of current languages to describe the following scenario: a 

user has two X509 certificates (A and B) and s/he uses two storage servers 

to keep their files (X and Y); one certificate (i.e. A) is used to authenticate on 

server X, and the other one (i.e. B) is used as a proof of authentication for 

server Y; if s/he needs to run an application that requires data to be staged 

from both servers, this would simply not be possible, because there would 

be no way to define the location of his/her X509 certificates within the 

application description document (except for the particular case where the 

ADL used is WS-GRAM and the certificates are stored on a myproxy 

server). 

 Data protection: 

o Hash sums for staged data: Current application description languages are 
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not able to specify any hash sums to files, whether this is an application 

binary or a file that needs to be staged. 

 Template: 

o Advanced parameter/attribute descriptions: Existing description languages 

have the capacity to describe the functionality of each attribute or parameter 

of an application and allow users to define values for them. However, in 

many cases a much more fine-grained usage of parameters and attributes 

is required. For example, many applications have a set of mandatory 

parameters that need to be specified at every run and this scenario cannot 

be described with the help of existing languages (mandatory). Moreover, the 

use of a certain parameter may require another parameter that needs to be 

specified as well (requires).  In many cases, the person responsible for the 

administration of a certain application would want to fix the value of a 

parameter or attribute; a common user is not supposed to know that a 

certain application needs 2GB of memory to run, but the application 

administrator might know it and may want to fix that value, so that when a 

user creates an application instance s/he should not be able to overwrite 

that parameter and cause unwanted outcomes at runtime. 

 Application type of running: 

o Additional information such as location of licenses, libraries, code for 

compilation: One of the main shortcomings of existing description languages 

is their inability to describe an application not only as a software executable, 

but as a complex set of application-related objects associated with the 

formal description of the application. The GAMRS set of application assets 

contains, but is not restricted to, the following digital objects associated with 

a Grid application: licenses, source code, executables, test files, 

libraries/software dependencies, user documentation, and images of virtual 

machines running the application inside them. 

o Virtual machine-embedded application: This requirement is based on the 

same inability of existing Grid application description languages to describe 

the application assets mentioned above. As virtualization gains terrain in 
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Grid, applications can be run in their native environment on a virtual 

machine, avoiding the problem raised by machine architecture-

incompatibilities, Operating System-incompatibilities, dependency-failings, 

etc. Hence, the GAMRS description language should be able to describe 

the case when the application is embedded in a virtual machine and 

therefore the whole virtual machine needs to be staged, not only the 

application executable. 

o Application pre-run prerequisites such as requires compilation, license 

acceptance, staging dependencies and VM-embedded: This requirement 

refers to the ability of a description language to model actions associated 

with application-related objects. This requirement needs to be met in order 

to address the following scenarios:  

 The application can be run by staging the source code and compiling it 

directly on the Grid resource selected for running the application. 

 The application requires license acceptance prior to submission and 

running on the Grid infrastructure. 

 The application requires additional dependency software to be staged on 

the Grid resource to ensure a correct run of the application. 

 The application will run as embedded in a virtual machine. 

In order to meet these requirements, JSDL was extended into an application 

description language called the Meta Repository application Description 

Language (MRDL), which can be used within the GAMRS framework. 

Figure 3-20 shows the JSDL extensions proposed in this research, highlighting the 

new entities added in MRDL, as well as the modifications made to existing (old) 

JSDL entities. The Structure and Identity entities remained the same as JSDL. The 

Application, Resource and Data staging entities were extended with the Advanced 

parameter/attribute descriptions additions, in order to permit MRDL to describe 

application templates. The Data staging entity was extended with data protection 

capabilities in terms of hash sums and also with the necessary attributes and 

associations to permit the description of secure data access from storage servers 
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located in different Grids with the use of different X509 certificates. The Application 

type of running was modelled in a single entity within the MRDL model, which also 

implements a concept borrowed from the LCID description language – the property 

of an application to run on different types of Grid middleware. 

 

Figure 3-20: JSDL extensions (MRDL entities) 

3.3.2 Design 

In order to satisfy the requirements related to Multi-Grid/multi certificate secure 

data access (multi-Grid data staging with different X509 certificates and the 

distinction between the application instance submission certificate and the staging 

certificate), JSDL was extended to include two new entities: Authentication and 

X509Credential.  The two entities in MRDL are similar to the entities Authentication 

and Certificate used in the GAMRS model. However, in the GAMRS model these 

types of objects were focused more on user actions (such as accessing other 

repositories for application retrieval), while in MRDL they are used to highlight the 

fact that an application requires different certificates for data staging and/or running. 

Moreover, in the GAMRS model, these entities were used for the actual storage of 
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the certificate in the repository (hence the presence of the attribute Value), while an 

application description language does not model such action. Thus, in MRDL, the 

X509Credential entity does not contain the attribute Value, only the attribute URI, 

which points to the location where the certificate is stored.  

 

Figure 3-21: Partial view of the MRDL model highlighting the Authentication, X509Credential and 
Hash entities 

With regard to the requirement regarding Data protection (hash sums for staged 

data), a new entity – Hash – was added to the original JSDL schema (see Figure 

3-21). This entity is mainly used to prevent data corruption that may occur during 

file transfers between the storage server and the resource where the application 

runs. It also guards against accidental damage that may occur to files while they 

are stored on servers. In MRDL, Hash objects are associated to JSDL‟s File entities 

(used to model files residing on the filesystem of the Grid resource where the 

application is submitted to run) and to the Source and Target entities, which are 

used to model remote files residing in repositories or dedicated storage servers and 

are used for data staging. 



S O L U T I O N  O V E R V I E W  

135 

 

The Template (advanced parameter/attribute descriptions) requirement was met 

through the addition of three attributes (Mandatory, Fixed and Requires) to the 

following JSDL entities: Resources, Filesystem, Operating system, Candidate host, 

Cpuarchitecture, Target, Source and Argument.  

The attribute Mandatory indicates whether the presence of that object in the 

description of an application is compulsory or not. It relates to the fact that specific 

information about an application may be needed in order to ensure an accurate 

description and a correct run of such an application on Grid. In structural terms, in a 

document written in MRDL, the field(s) that describes an object containing the 

attribute Mandatory has to be provided with values.  

The attribute Fixed denotes whether the value entered for a specific object is non-

changeable. This attribute should be used by application administrators who know 

the specific requirements needed by a particular application to run correctly. This 

would prevent users from entering wrong values for that field and from causing an 

erroneous run of the application. Moreover, the attribute Fixed can be used for the 

specification of default input files – usually configuration files that are required for 

each and every run of an application.  

The attribute Requires denotes that the presence of a value for a particular object 

requires the value of another object to be specified as well. For example, some 

applications which need remote connectivity to a service or server contain the 

argument Host, which points to the location of such server. In most cases, if a user 

specifies a value for Host, s/he is automatically required to introduce a value for a 

second parameter called Port. Therefore, the attribute Requires can be used to 

describe such particular scenarios, where the use of one object might require a 

follow-up object to be specified as well. 

Grid applications can run on various Grid infrastructures and each of these 

infrastructures may be serviced by a different Grid submission system. Grid 

description languages should be able to capture in their schema information about 

such submission systems, since it presents users with a comprehensive picture of 

the Grid infrastructures where the application can run. Currently, GEMLCA‟s LCID 
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is the only application description language able to describe the functional property 

of a Grid application to run on GT2, GT4 and gLite/lcg Grid infrastructures.  

The MRDL language proposed in this research uses this LCID concept to extend 

the JSDL schema with a new entity called SubmitterData. The SubmitterData entity 

along with its associations to other MRDL objects models the application running 

type additions: it can describe the additional information about a Grid application by 

including information such as location of licenses, libraries, code for compilation; 

can describe the staging of virtual machine-embedded applications; and can also 

specify application pre-run prerequisites, such as requires compilation, license 

acceptance or staging dependencies.  

In addition to the capabilities of LCID, through these extensions, an application 

description written in MRDL is able to model the following scenarios that are not 

currently available in any other application description language used in Grid:    

 An application can be presented as embedded in a virtual machine. Such 

applications can be easily deployed and run on distributed virtualized 

infrastructures either in Grid or in cloud computing environments.  

 With the help of libraries and source code an application can be 

deployed, compiled and run on Grid resources without needing the 

application binary. Furthermore, even when the binary is available, this 

scenario may prove helpful in cases when Grid resources employ 

machine architectures and operating systems different from the ones that 

the application binary was compiled for.  

 Applications that require license acceptance can be run on Grid 

infrastructures because MRDL allows the specification of license 

locations in its schema. 

Figure 3-22 shows the SubmitterData entity along with its relationships to the 

following JSDL/MRDL entities: JobDescription, Source and Argument.  
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Figure 3-22: The SubmitterData entity and its associations to the Argument, JobDescription and 
Source entities 

The JobDescription entity represents the parent element in the JSDL/MRDL 

schema to which the SubmitterData entity is related to.   

The SubmitterData entity has four associations with the Source entity – license, 

source code, VMsource and ApplicationDependecies, which are used to describe 

the specific locations of the following application-related objects: the application 

license, the application source code, the virtual machine in which the application is 

embedded, and, respectively, the application software dependencies (e.g. libraries, 

compilers).  

The two associations with the Argument entity – CompilerArgs and VMArgs – 

permit the specification of necessary arguments that are used for source code 

compilation or for running virtual machine-embedded applications.  
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In order to be able to describe the new scenarios mentioned above, the 

SubmitterData object contains the following attributes:  

Specified in LCID: 

 Submitter – this attribute specifies the type of submission system used;  

 Retries – if a submission error occurs, this attribute specifies how many 

times a submission system should try to re-submit the application on the 

designated Grid resources before reporting it as failure;  

 VirtualOrganization – specific to gLite/lcg Grids, this attribute specifies the 

group of Grid users allowed to run the application). 

New attributes: 

 LicenceAcceptance – this attribute is used to specify that a license 

acceptance is required before the actual submission and run of the 

application; 

 Compile – this attribute is used to specify whether the application requires 

to be compiled before the actual run of the application;  

 VM and VMType – the VM attribute is used to specify whether the 

application is embedded in a virtual machine; (the type of the virtual 

machine is specified by the attribute VMType)  

 any and anyAttribute – these attributes allow for future extensions to be 

added to the SubmittedData entity; 

The SubmitterData entity is linked to the other JSDL main entities through an 

association to the JSDL‟s JobDescription entity. The full MRDL application 

description language model can be found in Appendix B. 

3.3.3 Summary 

Table 3-4 summarizes the critical analysis of the application description languages 

discussed in Chapter 2, section 2.3.2 (RSL, JDL, xRSL, WS-GRAM, LCID and 
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JSDL), and assesses their ability to meet the application description language 

challenges identified in this research (legacy compatibility; advanced features; 

different submission certificate and staging certificate; multi-Grid data staging; hash 

sums; advanced parameter/attribute description; multiple transfer protocols 

supported as URI definitions; additional information – licenses, libraries, code for 

compilation; application pre-run prerequisites; virtual machine staging; advanced 

parallel behaviour; and native extension) by comparison to MRDL. 

Table 3-4: Traditional application description language capabilities vs. MRDL  

 
RSL JDL xRSL 

WS-
GRAM 

LCID JSDL MRDL 

Legacy 
compatibility 

YES YES YES YES YES YES 
YES/ 

inherited 

Advanced features partly partly partly partly partly YES 
YES/ 

Inherited 

Different 
submission 
certificate and 
staging certificate 

no no no 
YES 

(service 
only) 

no no YES 

Multi-Grid data 
staging 

no no no 
YES 

(service 
only) 

no no YES 

Hash sums no no no no no no YES 

Advanced 
parameter/attribute 
descriptions 

no no no no partly no YES 

Multiple transfer 
protocols 
supported as URI 
definitions 

no no YES no no YES 
YES/ 

inherited 

Additional 
information 
(licenses, libraries, 
code for 
compilation) 

no no no no no no YES 

Application pre-
run prerequisites 

no no no no no no YES 

Virtual machine 
staging 

no no no no no no YES 

Advanced parallel 
behaviour 

partly partly partly partly partly YES 
YES/ 

inherited 

Native extension no no no no no YES 
YES/ 

inherited 
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3.4. GAMRS Matchmaking Service 

3.4.1 Overview 

The fourth objective set out in this research was to design a matchmaking 

methodology and an algorithm able to identify similar or identical applications 

stored in Grid repositories connected to GAMRS. The aim was to identify or create 

matchmaking techniques that could: compare two applications stored or referenced 

by GAMRS; process their application-related objects found in the repository; and 

decide whether two applications are similar or not. The time contraints of a PhD 

research permitted the implementation and performance analysis of only a subset 

of the methods identified. Nevertheless, the architecture proposed for the 

matchmaking system and the algorithm used here are extendable, and future 

research can implement and analyze the performance of other matchmaking 

methods when applied to the objects stored in GAMRS repository. 

Following the critical analysis described in Section 2.5.4, I started with the design 

and testing of the most widely used approach to matchmaking: the syntactic 

algorithm. The syntactic algorithm was designed to process MRDL description 

documents and to extract the application information contained in them. Moreover, 

the syntactic approach also takes into consideration the new additions included by 

MRDL, such as data protection (i.e. hash sums) and template (i.e. advanced 

parameter description), in order to provide a more accurate answer to the Grid 

application matching problem.  

Due to the rigid logic of the syntactical approach and to the scarceness of 

information present in real-case application description documents, this method 

may often return inconclusive results. Moreover, in gLite/lcg-based Grids the formal 

description document of the application is usually missing from the repository. 

Hence, a scenario involving application information gathered from gLite/lcg-based 

Grid application repositories cannot use the syntactic matchmaking technique as 

there would be no formal description document to process.  
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However, all these applications come from a repository and they contain a 

metadata field called Description, in which information about the application is 

stored as a paragraph of free text. Consequently, since the syntactic method was 

not a suitable solution in such cases, I moved on to investigating how string-

distance methods could help with the identification of similar applications based on 

the information contained in the free-text description of the application. Based on 

reviews and successful case studies published in the specialised literature I 

selected eleven of the most widely-used string-distance techniques and applied 

them to Grid application descriptions. At the same time, this research proposed a 

new technique of improving the accuracy of string-distance metrics by using 

entropy-generated stop-lists. Following this investigation, I identified at least two 

string-distance methods that could be used to identify similar applications stored in 

Grid repositories and also showed that the new entropy-generated stop-list method 

proposed by this research can increase the performance of the string-distance 

methods. Furthermore, the entropy-generated stop list technique is generic and 

can be applied to other scenarios involving the usage of string-distance metrics, 

besides the identification of similar Grid applications. 

However, the string-distance approach has its limitations as well, especially 

because it bases its matching mechanisms on paragraphs of free-texts. Such 

paragraphs are always affected by the subjectivism of the author, as there are no 

formal constraints on what needs to be written in a Description field.  

Therefore, in an attempt to provide a more objective matchmaking result, I 

considered a different approach, which does not rely on the information found in the 

application description document or the metadata Description field, but on the 

ability of GAMRS to store application binaries and application test suites. 

The GAMRS repository permits the storage of application binaries and test suites. 

A test suite in this case is comprised of a complete set of input files (i.e. the testIN 

set); the complete set of output files corresponding to an application run with the 

input contained in testIN (i.e. the testOUT set); and a script providing the values for 

environment variables and the suite of commands necessary to run the application 
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with the input files contained in testIN (i.e. the run script). The method proposed 

(i.e. application-running) compares two applications by running two application 

binaries with a common set of input files (retrieved from one of the application test 

suites) and compares the output set.  

Another method of identifying identical Grid applications based on application-

related objects other than the description document is the binary matching method. 

This technique relies on the availability of application binaries stored in Grid 

repositories. The method implements a strong collision resistant hash algorithm 

and computes the hash sum for each application binary. It then compares these 

hash sums with each other and decides whether any two application binaries are 

the same (i.e. the applications are identical) or not. Whichever the result, the 

method also updates the application objects stored or referred in GAMRS with the 

newly computed hash sums. 

This research also suggests other matchmaking methods that can be used to 

identify similar or identical Grid applications stored in Grid repositories. However, 

due to existing time constraints, these could not be implemented and tested within 

the timeframe of this PhD research.   

3.4.2 Design 

Based on the available sources of information about an application stored in 

GAMRS, matchmaking techniques can be grouped in three categories: 

 techniques that extract and process application information contained in 

the formal application description document;  

 techniques that can extract information by processing application-related 

objects stored in GAMRS other than the description document (e.g. 

binaries, source code, dependency software);  

 hybrid techniques, which use combinations of methods from the first two 

categories. 
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Figure 3-23 shows the architecture of the GAMRS Matchmaking service, along with 

suggested matchmaking methods from the three categories listed above that can 

be used for finding similar applications stored in Grid repositories. 

 

Figure 3-23: GAMRS Matchmaking service architecture 

The architecture of the proposed Matchmaking service includes the following 

elements:  

 ACCESS INTERFACE: This interface allows communication between the 

Matchmaking service and users.  

 Modules that process application description documents:  

o SYNTACTIC MODULE: This module returns the degree of similarity 

between two applications by applying syntactical similarity functions to two 

application description documents written in MRDL. 

o STRING-DISTANCE MODULE: This module returns the degree of similarity 

between two applications by applying string-distance similarity functions to 

two application descriptions written in free-text (i.e. retrieved from the 

attribute Description associated with the applications in the GAMRS model). 
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This module can implement different types of string-distance method (i.e. 

edit-based, token-based and hybrid). The token-based functions that need 

training can use the TRAINING CORPUS for that. This module also 

contains the proposed method of entropy-generated stop-list, which helps to 

increase the accuracy of the string-distance methods. 

o SEMANTIC MODULE: This module returns the degree of similarity between 

two applications by applying semantic similarity functions to two application 

description documents written in MRDL or to application descriptions written 

in free-text. 

o SVD/LSA/LSI MODULE: This module returns the degree of similarity 

between two applications by applying latent semantic analysis methods to 

two application description documents written in MRDL or to application 

descriptions written in free-text. 

o TRAINING CORPUS: The training corpus is needed for token-based string 

similarity functions, which use statistics and probabilities in their 

computation. It can come as a separate entity or, because the Matchmaking 

service is connected to the GAMRS BACKEND, a training corpus can be 

created by retrieving the application descriptions stored there. 

 Modules that process application-related objects other than the application 

description document: 

o APPLICATION-RUNNING MODULE: The application-running module can 

find similar applications by executing jobs with test input files, retrieving the 

output files and checking for differences between output files.  

o BINARY MATCHING MODULE: This module can be used to optimize the 

accuracy of matching systems by comparing and analyzing two application 

binaries, provided these are stored in the repository. 

o SOURCE CODE MODULE: This module can be used to optimize the 

accuracy of matching systems by comparing and analyzing two application 

source codes, provided these are stored in the repository. 

o DEPENDENCY ANALYSIS MODULE: This module can be used to 
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optimize the accuracy of matching systems by comparing and analyzing two 

sets of application dependencies, provided these are stored in the 

repository. 

 HYBRID MATCHMAKING METHODS: This module contains an aggregation 

model able to combine together the scores returned by different matching 

modules with the aim of increasing the accuracy of the matchmaking system. 

 OTHER: The GAMRS Matchmaking service is extendible with other 

matchmaking modules, which could help with finding similar applications stored 

in Grid repositories. 

 GAMRS BACKEND: The backend stores the GAMRS repository objects. 

This investigation focused on the analysis of only four of the modules mentioned 

above: the syntactic module (because it is the most widely-used technique and 

the first choice of matchmaking method for documents formatted according to a 

formal structure); the string-distance module (because it is the first time this 

technique is used to identify similar applications stored in Grid repositories); the 

application-running module and the binary matching module (because the 

application binary is the most common type of application-related object likely to be 

stored in a repository – apart from the application description document). At the 

same time, a new method of entropy-generated stop-list was proposed in 

conjunction with the string-distance module in order to analyse to what extent the 

accuracy of string-distance methods could be improved through the use of such 

stop-lists. 

The rest of the methods suggested and their applicability in Grid environments 

could make the subject of further research – this could test the performance and 

accuracy of such techniques when applied to Grid applications. Should the results 

of such tests prove successful, these methods could be easily implemented at a 

later stage as modules in the GAMRS Matchmaking service.  
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THE SYNT ACTIC  MODUL E  

The syntactic module tries to identify similar or identical applications by comparing 

their description documents, which are written in MRDL – the GAMRS application 

description language. MRDL was chosen as the best candidate for the syntactic 

module for two reasons: first, it provides a uniform description of applications, 

bridging the discrepancies between the other ADLs currently used in Grid 

repositories, while it does not lose information in the translation process; and 

second, for applications published directly in the GAMRS repository, its new 

extensions provide more sources of information about the application than 

traditional Grid ADLs.  

The syntactic module uses a language parser to parse trough the structure of 

MRDL. The following attributes are processed by the syntactic function: name; 

version; all resource attributes (e.g. architecture, OS, RAM, disk, virtual memory 

…); default input files (name and path); mandatory attributes (i.e. resources and 

application arguments); designated running sites; binary paths; application 

arguments; and hash sums for binaries, for default input files and for test files. 

At the same time, the syntactic module defines fast-track subsets of attributes, 

which can help identify identical applications quicker. In this case, if the comparison 

of each of the following subsets of attributes returns the Boolean true, then the Grid 

applications are the same: {hashsums of binaries} and {designated running site, 

binary location, mandatory application arguments}.  

The following algorithm is proposed for the syntactic module: 

SYNTACTIC APPLICATION MATCHMAKER (      ,        ) 

1:  retrieve description documents MRDL1 and MRDL2 from GAMRS using       and 

        

2:  IF  MRDL1 or MRDL2 is missing 

3:      RETURN decision: “syntactic matching not possible in this case “ 

4:  END_IF 

5: IF MRDL1 contains the hash sum of the application binary 

6:           YES: HashType1   retrieve the type of hash sum from MRDL1    

7:    Hash1   retrieve the value of hash sum from MRDL1 
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8:  END_IF 

9: IF MRDL2 contains the hash sum of the application binary 

10:           YES: HashType2   retrieve the type of hash sum from MRDL2    

11:    Hash2   retrieve the value of hash sum from MRDL2 

12:  END_IF 

13: IF (HashType1, HashType2, Hash1, Hash2 exist) AND (HashType1 EQUALS 

HashType2) AND (Hash1 EQUALS Hash2) 

14:      RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are 

identical” 

15: END_IF 

16: DRS1   retrieve designated running site from MRDL1 

17:  DRS2   retrieve designated running site from MRDL2 

18: BLP1   retrieve binary location path from MRDL1 

19:  BLP2   retrieve binary location path from MRDL2 

20: AL1   retrieve the list of mandatory arguments and fixed value arguments from 

MRDL1 

21: AL2   retrieve the list of mandatory arguments and fixed value arguments from 

MRDL2 

22: IF (DRS1 EQUALS DRS2) AND (BLP1 EQUALS BLP2) AND (AL1 EQUALS AL2) 

23:      RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are 

identical” 

24: END_IF 

25: compare MRDL1 and MRDL2 over the following fields: application name, version, 

resource elements, list of application arguments and binary names 

26: IF the comparison (step 25) returned the Boolean true 

27:    RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are 

similar, but based on the information contained in their description documents the 

syntactic matchmaker cannot decide on their identicalness”  

28: END_IF 

----------------------------------------------------------------------------------------------------- 

28a: IF the test suite for the application identified by UID1 in GAMRS exists stored in       

the repository 

28b:      YES: retrieve the test suite from GAMRS using UID1   TestSuite1 

28c: END_IF 

28d: IF the test suite for the application identified by UID2 in GAMRS exists stored in       

the repository 

28e:      YES: retrieve the test suite from GAMRS using UID2   TestSuite2 

28f: END_IF 

28g:  D1   retrieve the value of attribute DeterministicType from MRDL1 

28h: D2   retrieve the value of attribute DeterministicType from MRDL2 

28i:  IF (TestSuite1 EQUALS TestSuite2) AND (D1 EQUALS D2 EQUALS „Boolean true‟) 
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28j:      RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are 

identical” 

28k: END_IF 

The notations used in the algorithm are as follows: 

 UID1, UID2: The two GAMRS universal identifiers (UIDs), which refer to 

the applications under comparison; 

 MRDL1, MRDL2: The application description documents corresponding to 

the two applications identified in GAMRS by UID1 and UID2; 

 Hash1, Hash2: Hash sums of binaries corresponding to the two 

applications identified in GAMRS by UID1 and UID2; 

 HashType1, HashType2: The type of hash sums Hash1, Hash2; 

 DRS1, DRS2: Designated running sites of the two applications identified in 

GAMRS by UID1 and UID2; 

 BLP1, BLP2: Full path to the location of application binaries of the two 

applications identified in GAMRS by UID1 and UID2; 

 AL1, AL2: List of executable arguments of the two applications identified in 

GAMRS by UID1 and UID2; 

 TestSuite1, TestSuite2: Application test suites (each consisting of a set of 

input files, a set of output files and a running script) associated with the 

two applications identified in GAMRS by UID1 and UID2; 

 D1, D2: DeterministicType – new attribute of Boolean type added by the 

MRDL to the original JSDL POSIXApplication entity, which has the value 

TRUE if the application exhibits a deterministic behavior (i.e. “Given a 

particular input, it will always produce the same output, and the 

underlying machine will always pass through the same sequence of 

states” [142]) and FALSE if the application behaves in a non-deterministic 

manner. D1 and D2 retrieve the values of this field from MRDL1 and 

MRDL2. 
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The algorithm starts by retrieving the application descriptions documents MRDL1 

and MRDL2 from GAMRS with the help of universal identifiers UID1 and UID2 (step 

1). If MRDL1 or MRDL2 is missing, then the syntactical technique cannot be applied 

(steps 2-4). The algorithm continues with the tests of fast-track subsets of 

attributes: first, it retrieves the hash sum types and the hash sums of binaries for 

the two applications under comparison (steps 5-12); second, it tests if the hash 

sums are of the same type and if they have the same value (step 13). If there is a 

match, then the binaries of the two applications are the same, meaning that the 

applications are identical (step 14). If the comparison returned Boolean FALSE, the 

algorithm continues with the retrieval of the designated running sites (steps 16-17), 

the binary location paths (steps 18-19), and the list of mandatory arguments and 

fixed value arguments (steps 20-21) from the description documents MRDL1 and 

MRDL2. If the designated running sites are the same, it means that the two 

applications are meant to run on the same Grid resource; if the binary paths are the 

same, it means that the applications point to the same location on a filesystem or a 

storage server. In combination, the designated running site and the binary location 

path could point to the same application that was probably exposed in two different 

Grid repositories connected to GAMRS. However, there is an additional test to be 

performed in order to decide whether the applications are truly the same: the list of 

mandatory and fixed value arguments. This test is required to pinpoint a specific 

application from groups of applications: in some cases, multiple Grid applications 

are exposed in batches as one single software package (i.e. BSoft, AMBER). The 

call to run one particular application from such packages includes the name of the 

package binary followed by the name of the application given as a fixed-value 

argument and followed by the list of mandatory arguments required by that 

particular application to run. Consequently, if the designated running sites, the 

binary location paths and the list of arguments (mandatory and fixed) match (step 

22), then the two MRDL documents actually describe the same application (step 

23). 

If the two fast-track subsets were unsuccessful in finding a match, the algorithm 

continues with the comparison of the following MRDL fields: application name, 
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version, resource elements, list of application arguments and binary names (step 

25). If the comparison returns a match (step 26), then the applications are similar; 

however, the algorithm cannot decide on their identicalness (step 27).  

In this form (steps 1-27, without steps 28a-28k), the syntactic algorithm has been 

designed to process information from MRDL description documents only. However, 

steps 28a-28k provide an addition to the algorithm, by adding a new fast-track 

decision set. 

One of the conclusions drawn after testing the application-running module (which 

will be discussed later in this section) was that the method cannot be applied to 

applications that exhibit non-deterministic behaviour. Moreover, none of the 

application description languages currently used in Grid contains such information 

about the deterministic nature of the application. Consequently, a new attribute, 

DeterministicType, was added in MRDL, and has the Boolean value TRUE if the 

application exhibits a deterministic behaviour. This addition helped enhance the 

syntactic algorithm with a new fast-track decision set: {test Suite files (input, output, 

running script), „DeterministicType =TRUE‟}. Namely, if two applications are 

deterministic and their test input files, test output files and running scripts are 

identical, then the applications are identical.  

The algorithm provides this test in steps 28a-28k: first, it retrieves the test suites 

from GAMRS for the two applications under comparison (steps 28a-28f); next, it 

retrieves the value of the DeterministicType attribute from the description 

documents of the two applications (steps 28g-28h); finally, it performs the test (step 

28i) and, if the test suites are identical and the applications are deterministic, it 

returns the decision that the applications are identical (step 28j).   

If used only with steps 1-28, the algorithm can be identified as the Syntactic module 

in the GAMRS Matchmaking service architecture shown at the beginning of Section 

3.4.2 in Figure 3-23. When the algorithm is used with the additional steps 28a-28k, 

it is categorized as a hybrid matchmaking method in the GAMRS Matchmaking 

service architecture because it processes not only the application description 
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document but also other application-related objects stored in repository (i.e. 

binaries and test suites).    

THE ST RING-D IST ANCE MODULE  

This research investigated eleven string-distance methods – four edit-based 

functions (Damerau-Levenshtein, Jaro-Winkler, Case and Fixed Weight), six token-

based functions (TFIDF/Cosine, Jaccard, Dice, Jensen-Shannon Divergence 

(JSD), Dirichlet JSD, Jelinek-Mercer JSD) and one hybrid method (Jaro-

Winkler/TFIDF). All these methods have been used successfully in matching 

paragraphs of free text in other contexts. [70, 81, 82, 83, 86, 97, 98, 103, 105] 

These eleven string-distance methods were implemented in the string-distance 

module of the GAMRS Matchmaking service and their performance in matching 

Grid application descriptions was analysed subsequently. The mathematical 

background and explanations of each of these methods can be found in Appendix 

C. The string-distance methods were used to identify similar applications by 

comparing the information contained in the free-text description of the application. 

This module was proposed as an alternative to other methods, in cases where the 

application description document or other application-related objects such as 

binaries or test suites were missing from the repository. This research also 

proposed a new technique for improving the accuracy of such string-distance 

methods by using entropy-generated stop-lists. 

A stop-list (sometimes called a block-list) is, by definition, a list of terms which are 

filtered out prior to (or sometimes after) the processing of natural language texts. A 

stop-list includes the most common parts of speech, which usually occur very 

frequently in any text. In most cases a stop-list includes punctuation marks, 

prepositions (e.g. of, to, in, for, with), conjunctions (e.g. and, but, or, nor), and 

articles (e.g. the, a, an).  

In this research I decided to expand the concept of stop-list and not to limit its 

contents to the elements enumerated above. The purpose of this extension was to 

optimize the matching abilities of the string-distance metrics used here by 
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generating a stop-list containing the terms with the lowest entropy levels in the 

whole corpus.  

The underlying assumption was that token-based methods, which depend on term 

frequency (such as TFIDF/Cosine, Jaro-Winkler/TFIDF and Jensen-Shannon 

variants), could improve their matching accuracy if the terms that occur most 

frequently in the corpus (but not only prepositions, conjunctions, articles and 

punctuation marks) were filtered out beforehand.  

In order to test this optimization solution via an entropy-generated stop-list, I 

proposed the following function to generate the stop-list: 

GENERATE_STOP-LIST (C, thd, S) 

1:  FOR each distinctive ti in C 

2:                    
      

    
 

3.                          log        

4:         IF  H(ti) ≤ thd  

5:               add  ti   to S 

6:        END_IF 

7: END_LOOP 

8: RETURN S 

The following notations were used:  

 t = term: basic entity in token-based analysis; the equivalent of a word in 

natural language; 

 d = document: a set of terms; in our case, a paragraph of text written in 

English, which represents a free-text description of a Grid application; 

 C = corpus: a collection of documents; 

 S: the stop-list returned by the function; 

 thd: the entropy threshold used for the generation of the stop-list; 

 H: Shannon entropy function; 
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        the number of occurrences of term t in the collection of documents C;  

                                          the number of terms in corpus C. 

The function above computes the probability of each term ti (step 2) as its 

frequency of occurrence in corpus C (i.e. maximum likelihood), and uses this 

probability to compute Shannon‟s entropy for term ti (step 3). If the entropy is lower 

than a threshold thd (step 4), it adds the term to the stop-list S (step 5). The entropy 

threshold thd can take any real value in the interval (0, 1). Each corpus C may have 

its own optimal values/interval for thd. Finding such values/interval takes into 

account the following two aspects:  

 First, if threshold thd is too low, then too many non-important terms would 

be processed by the matching methods; 

 Second, if threshold thd is too high, then too many important terms would 

not be processed by the matching methods.   

The stop-list S is then used in the process of matching two application descriptions. 

First, using the following function, the terms contained in the stop-list are removed 

from each description:  

TRIM_DESCRIPTION (d, S, δ ) 

1:  FOR each distinctive term ti contained in the description d 

2:      IF ti not contained in the stop-list S  

3:          add the term ti to the description δ  

4:     END_IF 

5: END_LOOP 

6: RETURN δ 

Second, the following function is used to match two application descriptions: 

MATCH_DESCRIPTIONS (d1, d2, M, S, result) 

1:  IF use the stop-list S 

2:      NO: result     apply M (d1, d2) 

3:     YES: δ1   TRIM_DESCRIPTION (d1, S, δ1)  
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4:               δ2   TRIM_DESCRIPTION (d2, S, δ2) 

5:  result     apply M (δ1, δ2) 

6: END_IF 

7: RETURN  result 

The following notations were used:  

 d1, d2:  the original, untrimmed descriptions of two applications;  

 S: the stop-list;  

 δ1, δ2: the descriptions d1, d2 without the low-entropy terms;  

 M: an implementation of a string-distance metric; 

 result: similarity returned by the string-distance method M. 

The MATCH_DESCRIPTIONS function can be used with any of the string-distance 

metrics considered in this research. Moreover, the function can be used both in 

cases were a stop-list is required, and in cases were matching is done without a 

stop-list. 

Finally, the string-distance algorithm applies the MATCH_DESCRIPTION function 

for each of the string-distance methods implemented: 

STRING DISTANCE APPLICATION MATCHMAKER (      ,        ,     , C, T,      
   ] ) 

1:  retrieve from GAMRS the free-text application description for UID1    d1 

2:  retrieve from GAMRS the free-text application description for UID2    d2 

3: IF d1 OR d2 does NOT EXIST 

4:  YES: RETURN decision: “string-distance algorithm cannot be applied in this case”  

5: END_IF 

6: FOR each string-distance method       

7:   IF      needs training 

8:      YES:  train       on T 

9:  END_IF 

10:   IF       method uses a threshold for stop-list 

11:       YES: Sk   GENERATE_STOP_LIST(C,      
   , Sk) 

12:    END_IF 

13:                    MATCH_DESCRIPTIONS (d1, d2,      , Sk, result)          

14: END_LOOP 

15: RETURN the list of tuples            result              
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The notations used in the algorithm are as follows: 

       ,        : The two input GAMRS application universal identifiers 

(UIDs), which refer to the applications under comparison; 

      : the string-distance method k; 

 C : the collection of application descriptions; 

 T : the collection of application descriptions used as training corpus; 

      
    : the entropy threshold used for the generation of the stop-list 

required by the string-distance method       . 

 d1, d2 : The two free-text description of the applications identified in 

GAMRS by UID1 and UID2; 

   : the stop-list used by the string-distance method      
 . 

        : the similarity score returned by the string-distance method      
;  

The algorithm starts by retrieving the free-text description of the applications 

identified as UID1 and UID2 in GAMRS from the metadata associated to them in the 

repository (steps 1-2). If one of these application descriptions is missing (steps 3-5), 

the string-distance methods cannot be applied and the algorithm stops. Next, the 

algorithm takes each string-distance method      (step 6) and executes the 

following steps: if the method needs training, then it uses the training corpus T to 

train it (steps 7-9); next, if the method can be applied with the entropy-generated 

stop-list (step 10), it generates the stop-list    (step 11) using the threshold      
    

given as argument for that particular string-distance method; finally, it runs the 

method using the MATCH_DESCRIPTIONS  function (step 13) described above 

and records the result. The algorithm finishes by returning the list of methods and 

the score of the comparison for each of them (step 15).    

APPLICATION-RUNNING MODULE 

The GAMRS repository permits the storage of application binaries and test suites. 

The application-running module compares two applications by running their 



S O L U T I O N  O V E R V I E W  

156 

 

application binaries with a common set of input files (retrieved from one of 

application test suites) and comparing their output sets. The proposed algorithm is 

presented below.  

APPLICATION RUNNING MATCHMAKER (      ,        ) 

----------------------------------------------------------------------------------------------------- 

1a: retrieve description documents MRDL1 and MRDL2 from GAMRS using       and

         

1b: D1   retrieve the value of attribute DeterministicType from MRDL1 

1c: D2   retrieve the value of attribute DeterministicType from MRDL2 

1d: IF D1 OR D2 EQUALS „Boolean false‟ 

1e:      YES: RETURN decision: “one or both applications identified in GAMRS by UID1                    

and UID2 is non-deterministic; the application running module cannot be applied in this 

case” 

1f: END_IF  

----------------------------------------------------------------------------------------------------- 

1:  IF the test suite for the application identified by UID1 in GAMRS exists stored in       

the repository 

2:      YES: retrieve the test suite from GAMRS using UID1   TestSuite1 

3:    IN1   retrieve the set of input files from TestSuite1 

4:    OUT1   retrieve the set of output files from TestSuite1 

5:     RUN1   retrieve the running script from TestSuite1  

6: END_IF 

7: IF the test suite for the application identified by UID2 in GAMRS exists stored in       

the repository 

8:      YES: retrieve the test suite from GAMRS using UID2   TestSuite2 

9:    IN2   retrieve the set of input files from TestSuite2 

10:    OUT2   retrieve the set of output files from TestSuite2 

11:     RUN2   retrieve the running script from TestSuite2  

12: END_IF 

13: IF (IN1 EQUALS IN2) AND (OUT1 EQUALS OUT2) AND (RUN1 EQUALS RUN2) 

14:     YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are identical” 

15: END_IF 

16: IF (IN1 EXISTS) AND (OUT1 EXISTS) 

17:     run application identified in GAMRS by UID2 with IN1   OUT 

18:     save IN1 and OUT in TestSuite2 

19:     update the application identified in GAMRS by UID2 with TestSuite2 

20:     IF (OUT EQUALS OUT1) 

21: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are identical” 
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22:   NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are NOT identical” 

23:     END_IF 

24: END_IF 

25: IF (IN2 EXISTS) AND (OUT2 EXISTS) 

26:     run application identified in GAMRS by UID1 with IN2   OUT 

27:     save IN2 and OUT in TestSuite1 

28:     update the application identified in GAMRS by UID1 with TestSuite1 

29:     IF (OUT EQUALS OUT2) 

30: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are identical” 

31:   NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are NOT identical” 

32:     END_IF 

33: END_IF 

34: IF (IN1 EXISTS) 

35:     run application identified in GAMRS by UID1 with IN1   OUT1 

36:      run application identified in GAMRS by UID2 with IN1   OUT2 

37:     save IN1 and OUT1 in TestSuite1; and save IN1 and OUT2 in TestSuite2 

38:     update the application identified in GAMRS by UID1 with TestSuite1; and  

    update the application identified in GAMRS by UID2 with TestSuite2 

39:     IF (OUT1 EQUALS OUT2) 

40: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are identical” 

41:   NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are NOT identical” 

42:     END_IF 

43: END_IF 

44: IF (IN2 EXISTS) 

45:     run application identified in GAMRS by UID1 with IN2   OUT1 

46:      run application identified in GAMRS by UID2 with IN2   OUT2 

47:     save IN2 and OUT1 in TestSuite1; and save IN2 and OUT2 in TestSuite2 

48:     update the application identified in GAMRS by UID1 with TestSuite1; and  

    update the application identified in GAMRS by UID2 with TestSuite2 

49:     IF (OUT1 EQUALS OUT2) 

50: YES: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are identical” 

51:   NO: RETURN decision: “the applications identified in GAMRS by UID1 and UID2 

are NOT identical” 

52:     END_IF 

53: END_IF 
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54: RETURN decision: “The application-running module could not reach a decision based 

on the information contained in the test suites of the applications identified in GAMRS 

by UID1 and UID2” 

The notations used in the algorithm are as follows: 

 UID1, UID2: The two input GAMRS application universal identifiers (UIDs), 

which refer to the applications under comparison; 

 MRDL1, MRDL2: The application description documents corresponding to 

the two applications identified in GAMRS by UID1 and UID2; 

 D1, D2: The values of the field DeterministicType from MRDL1 and 

MRDL2; 

 TestSuite1, TestSuite2: Application test suites (each consisting of set of 

input files, set of output files and running script) associated with the two 

applications identified in GAMRS by UID1 and UID2; 

 IN1, IN2: Sets of input files retrieved from the test suites TestSuite1, 

TestSuite2; 

 OUT1, OUT2: Sets of output files retrieved from the test suites TestSuite1, 

TestSuite2; 

 RUN1, RUN2: Running scripts retrieved from the test suites TestSuite1, 

TestSuite2; 

Initially, the application-running algorithm consisted only of steps 1-50. However, 

after testing the algorithm with real applications published in Grid repositories, the 

results showed that the method could not be applied to applications that exhibited 

non-deterministic behaviour. In conclusion, the algorithm was improved with steps 

1a-1f, according to which it retrieves the values of field DeterministicType from the 

two description documents of the applications identified in GAMRS by UID1 and 

UID2 and continues only if the two applications are deterministic. The algorithm 

continues with the retrieval from GAMRS of the two test suites corresponding to the 

two applications identified by UID1 and UID2. At the same time, from each of the 

test suites the algorithm extracts the set of test inputs, the set of test outputs and 
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the running script (steps 1-12). Next, it tests whether the two sets of inputs, the two 

sets of outputs and the running scripts are identical (step 13). Provided these are 

identical, it returns the decision that the applications are the same (step 14). Next, if 

one application has both the set of inputs and the set of outputs present (step 16 

/25), it runs the other application with the set of inputs and records the new set of 

outputs in OUT (step 17 /26). It then records the set of inputs used to run the 

second application in its test suite along with the OUT set of outputs (step 18 /27) 

and it updates the test suite in GAMRS (step 19 /28). The algorithm continues with 

the comparison of the set of outputs belonging to the first application (step 20 /29) 

against the OUT set of outputs belonging to the second one (i.e. the application 

which has been run). If there is a match, this means that both applications are 

deterministic and they produced the same set of output files after being run with the 

same set of input files; the algorithm therefore decides that the two applications are 

identical (step 21 /30). If the comparison failed and the two set of output files are 

not identical, the algorithm decides that the two applications are not the same (step 

step 22 /31). If only the set of input files is present (step 34 /44), then both 

applications are run with this set of input files and their set of output files are 

recorded in OUT1 (step 35 /45) and OUT2 (step 36 /46). Similar to the functionality 

explained above (steps 18-19), the test suite of each application is updated with the 

set of input files used for the run and the corresponding set of output files (step 37 

/47); and GAMRS is updated with the new test suites (step 38 /48). Next, the 

algorithm tests whether OUT1 is identical to OUT2 (step 39 /49), and if they are, it 

marks the two applications as identical (step 40 /50). Otherwise, the algorithm 

decides that the two applications are not the same (step step 41 /51). Finally, if all 

of the above tests fail (e.g. both two test suites are missing the set of input files), the 

algorithm acknowledges that it cannot reach a decision based on the information 

contained in the test suites of the applications identified in GAMRS by UID1 and 

UID2 (step 54). 
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BINARY MATCHING  MODU L E 

The binary matching technique is used to identify identical applications based on 

the comparison of their binaries. Consequently, it can be applied only when both 

application binaries are available in GAMRS. The proposed algorithm is presented 

below. 

APPLICATION BINARY MATCHMAKER (      ,        ) 

1:  IF the binary for the application identified by UID1 in GAMRS exists stored in the 

repository 

2:    YES: retrieve the binary from GAMRS using UID1   Binary1 

3:  compute hash sum of type SHA-512 of Binary1   Hash1 

4:  HashType1   SHA-512 

5:  update GAMRS application identified by UID1 with Hash1 and HashType1 

6:      NO: RETURN “The binary matching method cannot be applied in this case.” 

7: END_IF 

8: IF the binary for the application identified by UID2 in GAMRS exists stored in the 

repository 

9:     YES: retrieve the binary from GAMRS using UID2   Binary2 

10:   compute hash sum of type SHA-512 of Binary2   Hash2 

11:   HashType2   SHA-512 

12: update GAMRS application identified by UID2 with Hash2 and     

HashType2 

13:      NO: RETURN “The binary matching method cannot be applied in this case.” 

14:       END_IF 

15: IF Hash1 EQUALS Hash2 

16:      RETURN decision: “the applications identified in GAMRS by UID1 and UID2 are 

identical” 

17: END_IF 

18: RETURN decision: “the binaries of the applications identified in GAMRS by UID1 and 

UID2 are not identical”  

The notations used in the algorithm are as follows: 

 UID1, UID2: The two input GAMRS application universal identifiers (UIDs), 

which refer to the applications under comparison; 

 Hash1, Hash2: Hash sums of binaries corresponding to the two 

applications identified in GAMRS by UID1 and UID2; 

 HashType1, HashType2: The type of hash sums Hash1, Hash2; 
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 Binary1, Binary2:  Binaries corresponding to the two applications identified 

in GAMRS by UID1 and UID2; 

The algorithm commences with the retrieval from GAMRS of the application binary 

for the first application with the help of the universal identifiers UID1 (step 1). If the 

application binary is missing, then the binary matching technique cannot be applied 

in this case (step 6). If the application binary exists, it is retrieved from GAMRS 

(step 2) and then the algorithm computes a hash sum of this binary (Note: in this 

description the algorithm uses the SecureHashAlgorithm-512 to compute the hash 

sum; however, there is no restriction on the type of hash algorithm that can be used 

in implementation) – step 3. Next, the algorithm records the type of hash algorithm 

(step 4) used to generate the hash sum. It then updates the GAMRS application 

binary entity (step 5) with the hash type and the hash sum of the application binary.  

The algorithm repeats the same set of actions for the second application, which is 

identified in GAMRS by the universal identifier UID2 (steps 8-14). Next, it continues 

by comparing the newly computed hash sums of the two application binaries (step 

15). If these hash sums are the same, then the applications are identical (step 16). 

If the hash sums are not the same (step 18), the algorithm cannot decide over the 

similarity or the identicalness of the two applications (e.g. the application binary is 

dependent on the operating system of the target machine; hence, even though two 

binaries are different they might represent the same application but compiled to run 

under two different operating systems).    

THE G AMRS MATCHMAKER  

All the matchmaking techniques proposed as GAMRS Matchmaking modules in 

the architecture process information about applications stored in GAMRS and can 

help identify similar applications. The following matchmaking algorithm is proposed 

to be used in conjunction with the GAMRS Matchmaking service:  

GRID APPLICATION MATCHMAKER (      ,        ,      ,      ) 

1:  FOR  each  matchmaking  method       implemented 

2:   IF  application-related objects necessary for       are not retrieved yet 

3.      YES: retrieve objects from GAMRS repository using       and         
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4:    IF  the objects are missing 

5:        YES:  mark       as not-available in this case  

6:      CONTINUE from 1: 

7:   END_IF 

8:  END_IF 

9:   apply              

10:    record            as the partial score         

11: END_LOOP 

12: RETURN the set of tuples                                           

----------------------------------------------------------------------------------------------------- 

12a: calculate the final score                

12b: RETURN the tuple                               

The notations used in the algorithm are as follows: 

       ,        : The two input GAMRS application universal identifiers 

(UIDs), which refer to the applications under comparison; 

      : the matchmaking method k; 

       : the weight of the matchmaking method k; in the case of an 

aggregation model, it specifies how trustworthy the method k is, i.e. the 

level of confidence of the system in the accuracy of the method k; 

     = partial score: the score returned by the matchmaking method      
 

    = final score: the score returned by the aggregation model after 

combining the partial scores (   ) scaled with their corresponding 

weights (     ). 

The Matchmaking service architecture is extendible; consequently, the algorithm 

has to be generic enough to permit the usage of all suggested methods – including 

hybrid methods that use aggregation models.   

The algorithm starts by taking each matchmaking method       specified in the 

matchmaking request document and uses the universal identifiers of the two 

applications       ,         to retrieve the application-related objects necessary for 

      to run (steps 2-8). If any of the objects required for a correct run of      is 

missing (step 5), the method is marked as not-available and will not be used in the 
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matchmaking process. Next, the algorithm  runs the method and records the partial 

score (step 10). For each partial score    , the algorithm returns the score and the 

suggested decision regarding the similarity/dissimilarity of the two applications (step 

12). If an aggregation model is put in place, the algorithm computes a final score 

(FS) based on the partial scores     and their respective weights      . (step 12a) 

Finally, the algorithm returns the score FS and the suggested decision with regard 

to the similarity degree of the two applications (step 12b). The final result (FS) and 

the partial results (   ) can be recorded in a GAMRS RelationPair object, which 

can then be used in further matchmaking cases.  

3.4.3 Summary 

The GAMRS Matchmaking service proposes a matchmaking algorithm which aims 

to identify similar or identical Grid applications stored in repositories by processing 

various application-related objects stored in these repositories. This research 

identified the set of objects that could help in the process of application 

matchmaking (e.g. application description document, free-text descriptions of 

applications, application binaries, application binary hash sums, application test-

suites, application source code, application dependencies) and suggested several 

matchmaking approaches based on this set.  

Due to existing time constraints, only four matchmaking algorithms were proposed: 

the syntactic matchmaking, the string-distance matchmaking, the application-

running matchmaking and the application binary matching algorithm. The rest of 

the methods suggested in this research (i.e. semantic, LSI/LSA/SVD, source code 

matching, dependency analysis, and hybrid matchmaking based on aggregation 

models) remain to be implemented and analysed in future research. The question 

about how the latter set of methods can help with the identification of similar Grid 

applications stored in repositories remains open.  

The syntactic algorithm proposed in this research can be used in two forms: purely 

syntactic or hybrid. In its purely syntactic form, the algorithm processes application 
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description documents only. The choice of language was the GAMRS‟s MRDL 

which can help improve the algorithm‟s accuracy thanks to some of its new 

additions, such as hash sums and advanced parameter description. In its hybrid 

form, the algorithm can be extended to other scenarios and its performance can be 

increased by using application test-suite objects found stored in the repository.  

The string-distance algorithm is meant to be used in scenarios where the repository 

holds no application-related object that can be used by other application matching 

methods and the only available information is the free-text description of the 

application. The algorithm can process such paragraphs of free-text and return the 

degree of similarity between them. An important addition to the string-distance 

algorithm is the entropy-generated stop-list, which can increase the performance of 

the string-distance methods. Furthermore, the entropy-generated stop-list 

technique is not restricted to be applied to Grid descriptions only, but it can be 

applied to any scenario involving training-based string-distance metrics. 

The application-running algorithm compares two applications by running two 

application binaries with a common set of input files and compares the output set. 

This method is meant to be used in conjunction with two GAMRS application-

related objects: binary and test suite, and shows excellent results when matching 

deterministic applications. 

The binary matching algorithm compares two applications by computing hash sums 

of their binaries and testing whether they are identical or not. This method uses the 

binary and can be applied successfully in scenarios involving the matching of 

applications meant to run on Grid resources belonging to one Grid (e.g. all gLite 

Grid resources run Scientific Linux CERN v4/5).  
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3.5. Conclusions 

The architecture of the Grid Application Meta-Repository System specifies a 

collection of services that work together in a system meant to provide the functional 

specifications for a new generation of Grid application repositories.  

GAMRS provides an intuitive Web user interface, where users can easily publish 

applications and application-related objects into the repository. Furthermore, 

GAMRS provides an OGSI/WSRF Grid service interface that can be used by Grid 

Services to interact with the system, and a HTTP/REST interface that can be used 

by non-Grid services to publish applications directly onto GAMRS.  

GAMRS connects different Grid application repositories and allows users and 

services to discover the Grid applications stored in them. It provides web visibility 

for all applications in the repositories connected to GAMRS, even if the majority of 

connected repositories did not provide it initially. Furthermore, Grid applications 

stored or referenced by GAMRS can be discovered by any Grid service compliant 

with the OGSI/WSRF standards stack and the HTTP/REST interface mentioned 

above allows search engines to discover such applications. Moreover, GAMRS 

employs an OAI provider, which other services can use for application metadata 

discovery (through the OAI-PMH protocol). The OAI provider also allows the 

exchange and reuse of application-related objects between repositories by using 

the OAI-ORE protocol. Both the object metadata and the actual object can be 

imported as well as exported automatically using XML-like documents compliant 

with OAI-ORE specifications.  

GAMRS allows applications to be deployed embedded in virtual machines; 

therefore, the application runs in its native environment and can be used in 

application-on-demand, cluster-on-demand and cloud architectures. GAMRS can 

also embed commercial applications that require license acceptance and paid 

services. It offers a framework for deploying and running commercial applications 

provided a fee-based model is put in place to that end. Finally, GAMRS‟ 
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architecture and model allow Grid administrators to find and use all the required 

objects for Grid application deployment in one place - the GAMRS repository.  

In addition, the proposed GAMRS repository model extends traditional models 

allowing inter-operability between Grid application repositories and other Grid 

services. The GAMRS repository model proposes a more detailed description of a 

Grid application and is also able to function as a mediator between older 

application repository models. Furthermore, the GAMRS model is able to describe 

new types of objects (such as the application provider object, user-related objects 

and provider-related objects) and also suggests a new set of application-related 

objects that should be modelled by any Grid application repository model. These 

new categories of application-related objects allow for Grid application repositories 

to be used in conjunction with newly emerging technologies such as virtualization, 

automatic virtual machine creation, cloud computing and automatic service 

deployments. Furthermore, thanks to its novel model, GAMRS can be used in 

different scenarios, many of them not necessarily involving Grid infrastructures. For 

example, by exposing applications as virtual machines, Grid administrators and 

users can easily deploy these applications on virtualized infrastructures without 

being required to know or to perform any of the following procedures: Operating 

System installation, application installation, software dependency installation or 

even application configuration. Finally, these GAMRS application-related objects 

can also be used to help with the identification of similar or identical applications 

stored in the repositories connected to GAMRS. 

This research identified the structured life-cycle for a Grid application which resides 

in a Grid repository, taking in consideration the different states in which the 

application can be found (i.e. template, instance, deployment and running) and how 

these states can be accommodated in an application description language schema. 

The GAMRS application description language proposed here – MRDL – extends 

the list of capabilities of traditional languages in the following areas: multi-Grid/multi 

certificate secure data access, data protection, template, and application type of 

running. Moreover, MRDL is able to refer application-related objects in its schema, 

which makes it able to reflect the ability of a Grid application to be used in different 
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deployment and running scenarios – such as remote compilation of the source 

code; staging application binaries and software dependencies; as well as 

deployment and running of virtual machine-embedded application in virtualized 

infrastructures. Furthermore, the new elements of MRDL also improve the accuracy 

of application matchmaking methods when trying to identify similar or identical 

applications stored in the repositories connected to GAMRS. 

Finally, GAMRS also contains a matchmaking service able to process information 

about applications stored in repositories and identify similar or identical 

applications. The Matchmaking service architecture proposed in this research 

contains modules able to process not only application description documents, but 

also other application-related objects that can be found stored in Grid application 

repositories. The architecture of this service is extendible to other matching 

modules; the algorithm suggested in this research is generic and can 

accommodate multiple matching methods. The limited timeframe of this PhD 

restricted the implementation and testing of all matchmaking solutions proposed for 

Grid application matchmaking, so this research has focused on only four of them: 

syntactic, string-distance, application running and application binary matching. 

Furthermore, a new method of generating stop-lists based on term entropy has 

been proposed in conjunction with the string-distance algorithm. The analysis of 

test results shows that these methods can be applied successfully to Grid 

application matchmaking and lists both successful scenarios as well as scenarios 

where these methods have limited applicability or poor performance. 
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4. Implementation and Tests 

his chapter describes the implementation of the Grid Application Meta-

Repository System, as well as the suite of tests designed to demonstrate 

the novel capabilities of GAMRS and to show how this solution could be 

used to successfully meet some of the current challenges related to Grid 

application repositories. 

The chapter starts by discussing the implementation constraints resulted from the 

time limitations inherent to a PhD research. Next, it presents the design of the 

testbed and the implementation of the GAMRS experimental solution. It continues 

with the specification of the suite of tests used to prove GAMRS‟ capabilities and 

the metrics used for performance measurements as part of five different scenarios 

designed to test the functionality of GAMRS against the requirements set out at the 

beginning of this research. The chapter ends by presenting the conclusions drawn 

from the analysis of results obtained from the testbed.    

The chapter explains how the proposed GAMRS architecture was implemented in 

a pilot-solution that contains all three core GAMRS services (Publisher, Meta-

Repository and Matchmaking) along with the Backend and the access interfaces. 

Furthermore, it describes how the Meta-Repository service was implemented using 

Chapter 

4 

T 
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the OGSI/WSRF Grid service standard (R2.2) and how it was used to connect 

three different Grid application repositories (NGS AR, GEMLCA and 

myExperiment) to GAMRS. The pilot-solution provides access to these three 

repositories, as well as enables the retrieval of applications stored by them (R2.3).  

The chapter also describes a repository technology suitable to be used as the 

Publisher service for GAMRS. The technology supported the addition of OAI 

providers (both PMH and ORE) and provides a HTTP/REST API, which helps 

improve application visibility on the web (R2.1). At the same time, the repository 

stores objects in XML format, which embeds datastreams and hence allows for the 

exchange of objects between similar repositories (R3). Furthermore, the repository 

technology provides a friendly user interface which can be used to publish, search, 

modify and delete Grid applications (R1) and other GAMRS.   

The chapter moves on to explain how the GAMRS repository model and the 

proposed application description language (MRDL) were used to store a Grid 

application in GAMRS as a virtual machine-embedded application. Staging this 

scenario helped demonstrate the versatility requirement of GAMRS (R4) by 

deploying and running the virtual machine-embedded application on a virtualized 

infrastructure.  

Furthermore, the repository model and MRDL were used in conjunction with the 

Matchmaking service to help identify similar Grid applications in connected 

repositories (R2.4). This chapter includes the analysis of results obtained by using 

the matchmaking algorithms proposed in Chapter 3, Section 3.4.2, with a focus on 

string-distance module and the new entropy-generated stop-list, and makes 

suggestions regarding the methods which proved the most suitable to Grid 

application matchmaking.  
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4.1. Constraints 

Due to the time constraints inherent to a PhD research several restrictions had to 

be put in place in order to narrow down the implementation of the solution to a 

manageable timeframe. However, as discussed further in this chapter, these 

limitations do not hamper the results and contributions brought by this to scientific 

knowledge.  

First, apart from the six Grid application repositories described in the critical 

analysis section (BDII, CHARON/iSoftrepo, GEMLCA, NGS AR, GRIMOIRES and 

myExperiment), which are also the most widely used in Grid, other application 

repository solutions exist (e.g. EGEE Application Repository, gUSE Repository), 

which have not been discussed or tested in the course of this research. However, 

their functionality is usually similar to the functionality of at least one of the 

repositories analysed here.  

Second, with regard to the GAMRS Matchmaking service, one of the limitations of 

the pilot solution implemented is that it matches only applications described as 

standalone-job applications. However, the matchmaking methods employed here 

are not necessarily restricted to this type of Grid applications and could therefore be 

applied to workflows or Web Service-published applications in the future.  

Third, although many matchmaking methods were mentioned when designing the 

Matchmaking service, the GAMRS pilot solution did not test all of these due to the 

time constraints mentioned above. However, the Matchmaking service does allow 

for the expansion of its capabilities with any other new method in the future. For 

now, this research was focused on testing syntactical, string-distance, application-

running and binary matching techniques. Furthermore, it proposed and tested a 

new method of improving string-distance techniques by applying stop-lists based 

on the entropy of the terms contained in the corpus.    

Fourth, the number of string-distance similarity techniques (i.e. Damerau-

Levenshtein, Jaro-Winkler, Case, Fixed Weight, TFIDF/Cosine, Jaccard, Dice, 
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Jensen-Shannon Divergence (JSD), Dirichlet JSD, Jelinek-Mercer JSD and Jaro-

Winkler/TFIDF) used in the GAMRS string-distance module is by no means 

exhaustive. The methods used here were chosen after investigating the most 

commonly-used techniques described in the literature that can process paragraphs 

of free-text and, consequently, could be applied in the case of matching Grid 

application descriptions.  

Another limitation regarding the matchmaking system refers to the use of English 

language only in the descriptions of the applications. 

Finally, although at conceptual level both the GAMRS repository model and the 

GAMRS application description language are able to meet all the challenges 

described in Chapter 3, Sections 3.2 and 3.3, the limited timeframe of this research 

did not allow for the full description and implementation of test scenarios for each of 

the aspects considered in these challenges. Such scenarios and their functionality 

will instead be discussed in Chapter 5 (Contributions to Knowledge and 

Extensions) as suggested extensions for the future. 

4.2. Experimental Architecture 

The following GAMRS implementation Architecture was designed in order to test 

the functionality of GAMRS (see Figure 4-1):  

 

Figure 4-1: GAMRS implementation architecture 
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The architecture of the pilot implementation follows closely the theoretical GAMRS 

architecture, with one addition which does not alter the conceptual design and 

functionality of GAMRS. This modification is related to the inability of current 

repository technologies to store and handle efficiently files larger than 1GB in size. 

As the virtual machines can often exceed 1GB in size, a new storage service 

(Virtual Machine Storage) was added to the GAMRS Backend with the purpose of 

storing and managing large-size files. 

The Publisher service was built on the most acclaimed open repository technology 

currently in production, namely Fedora Commons [120]. Fedora was chosen as a 

suitable repository technology candidate for the GAMRS Publisher service based 

on a critical analysis performed on seven widely used repository frameworks: 

Fedora Commons, ePrints [121], Oracle 10g Warehouse Builder [143, 144], IBM 

WebSphere Service Registry and Repository module [145, 146], ACS [147], 

WebGRelC [148], and Java COG kit [149]. These repository frameworks were 

compared with regard to eight properties necessary to meet the GAMRS 

requirements: their availability for download and their commercial status (free/paid); 

their ability to comply with GSI or HTTPS, which would make them usable on Grid 

security infrastructure; their ability to offer the basic CRUD and Search operations; 

their ability to accustom a user-defined repository model (i.e. the GAMRS 

repository model); the availability of a user-friendly access interface; their ability to 

provide a HTTP/REST interface; and their ability to support OAI-PMH/OAI-ORE 

protocols. The result of this analysis (which can be seen in Appendix D) presented 

Fedora as the most suitable candidate for the GAMRS Publisher service. Fedora 

was also augmented with two additional modules, Islandora [150] and Drupal [150], 

which provide a very user-friendly web interface (GUI) required by GAMRS to 

satisfy the R1 challenge. These two software packages provide the web builder 

module and the web server (see Section 3.1.2, Figure 3-2) necessary to build and 

expose the Publisher GUI interface to human users.  

Fedora, Islandora and Drupal were installed, configured and adapted to GAMRS 

requirements in terms of security and repository access. The Fedora repository 

technology also provided the necessary database structure, which functions as the 
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GAMRS Backend service, as well as the management module able to 

communicate with the database. Fedora technology supports the addition of an 

indexing service called gSearch [151]. Following the installation notes found at 

[152], gSearch was installed and configured to be used by the Fedora repository 

instance used for this research. The HTTP/REST interface was provided by default 

by the Fedora technology. Once the GAMRS repository model was mapped onto 

the repository, objects could be stored, retrieved, modified and deleted using the 

HTTP/REST interface. 

Fedora was also chosen for the implementation of the GAMRS Publisher service 

because of its capability to support OAI-PMH and OAI-ORE protocols. The OAI-

PMH interface was implemented with the help of an OAI-PMH provider compatible 

with the Fedora technology [153]. The provider was configured following the 

installation notes found at [154] and the OAI-PMH interface was tested using OAI-

PMH queries directed to the GAMRS Provider service. The following snapshot 

shows the answer returned by the GAMRS Provider service to the OAI-PMH query 

ListRecords. (Note: The GAMRS solution ran on a private network under the IP 

192.168.1.68; since the service had no DNS resolve, the OAI provider appended 

the default “oai:example.org” to its answers. Provided the GAMRS runs under a 

public IP with a full domain name such as gamrs.cpc.wmin.ac.uk, the provider 

answers would look like “oai:gamrs.cpc.wmin.ac.uk”). The list shows a partial view 

of the applications stored in GAMRS, which are identified as 

gamrs:applicationXXX.     

http://192.168.1.68:8080/fedora/oai?verb=ListRecords&metadataPrefix=oai_dc 

oai:example.org:gamrs:application563 2009-10-27T03:17:52Z EMBOSS  

oai:example.org:gamrs:application564 2009-10-27T03:17:52Z EXONERATE 

oai:example.org:gamrs:application565 2009-10-27T03:17:52Z FASTA  

oai:example.org:gamrs:application567 2009-10-27T03:17:52Z GAMESS-UK 

oai:example.org:gamrs:application568 2009-10-27T03:17:52Z GAMESS(US) 

oai:example.org:gamrs:application569 2009-10-27T03:17:52Z GATE 

oai:example.org:gamrs:application578 2009-10-27T03:17:52Z mpiBLAST  

oai:example.org:gamrs:application579 2009-10-27T03:17:52Z NAMD 

http://192.168.1.68:8080/fedora/oai?verb=ListRecords&metadataPrefix=oai_dc
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oai:example.org:gamrs:application583 2009-10-27T03:17:52Z Octave  

oai:example.org:gamrs:application584 2009-10-27T03:17:52Z PC-GAMESS 

oai:example.org:gamrs:application586 2009-10-27T03:17:52Z R  

oai:example.org:gamrs:application587 2009-10-27T03:17:52Z Sabre(parallel) 

oai:example.org:gamrs:application588 2009-10-27T03:17:52Z Sabre(serial) 

..... 

Appendix E shows the answer of an OAI-PMH GetRecord query over the Dublin 

core [155] metadata associated to one of the applications stored in the GAMRS 

repository (i.e. AMBER application, identifier gamrs:application549). 

The OAI-ORE interface was implemented with the help of an OAI-ORE provider 

compatible with the Fedora technology [156]. The provider was configured 

following the installation notes found at [157]. This provider implementation follows 

the OAI-ORE implementation specifications of ResourceMaps as Atom feeds [158]. 

After successful configuration, the interface was tested using the Fedora 

administrative interface. Appendix F shows an example of a GAMRS application 

object serialized following OAI-ORE specification. Furthermore, the document 

shows the application description document written in MRDL, which was 

incorporated in the OAI-ORE representation, along with audit data and Dublin core 

metadata. (Note: The full document contains other information as well – i.e. 

application description written in original JSDL language, information about the 

collection of application-related objects, and other GAMRS model additions, but it 

has been reduced to show only the MRDL, Dublin core and audit metadata for the 

sake of compactness).  

The OGSI/WSRF interface was implemented in Java programming language and 

uses the REST API provided by Fedora. OGSI/WSRF commands were 

implemented by embedding a HTTP client and using the HTTP/REST commands 

to create, retrieve, modify and delete objects stored in GAMRS.   

The GAMRS Meta-Repository service and GAMRS Matchmaking service were 

developed from scratch, as described in the following sections of this chapter. 
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4.3. Test Scenarios 

Five scenarios were designed to test the functionality of the GRID Application 

Meta-Repository System. These scenarios were chosen in relation to the research 

objectives set out in this thesis. By staging these scenarios it can be assessed 

whether and how the GAMRS solution meets objectives O1-O4.  

The five scenarios were created to prove that GAMRS fully meets objective O1, by 

showing its ability to:  

 connect to different Grid application repository technologies and solutions 

and retrieve the applications stored in them;  

 be accessed by OGSI/WSRF Grid Services;  

 expose the applications to the web via the HTTP/REST interface;  

 support Search operations on metadata associated to objects stored in the 

repository;  

 be accessed on WWW by any service equipped with a HTTP client;  

 present the repository objects in a format that permits their exchange and 

reuse on other repositories built on technologies similar to that of GAMRS. 

The five scenarios also aimed to prove that GAMRS fully meets objective O2, by 

showing GAMRS‟s ability to:  

 function as a Grid application repository in its own right and allow users to 

publish objects inside GAMRS;  

 store application-related objects following the categorization designed in the 

GAMRS repository model;  

 be used on distributed infrastructures other than Grid. 

Moreover, the five scenarios were created to prove that GAMRS also fully meets 

objective O3, by showing GAMRS‟s ability to:  
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 convert application description documents in MRDL for a uniform 

presentation of applications;  

 facilitate the application matchmaking process;  

 be used in new scenarios (i.e. deployment, running, testing) previously 

unavailable in traditional solutions (such as source code staging and 

compilation, virtual-machine running and testing a correct application 

deployment and functioning with the help of test suites). 

Finally, the five scenarios were aimed to prove that GAMRS fully meets objective 

O4, by showing that:  

 the matchmaking modules proposed in this research are suitable for the 

identification of similar applications stored in Grid repositories;  

 the newly-proposed entropy-generated stop-list can improve the accuracy 

of string-distance methods when applied to matching applications stored in 

Grid repositories. 

Successful completion of the following five scenarios therefore proves that the 

GAMRS solution satisfies the objectives set out in this research:  

SCENARIO 1:  CONNECT I NG GRID APPLICAT IO N 

REPOSIT ORIES T O G AMR S  

Connect the following repositories to GAMRS: the NGS application repository; the 

GEMLCA application repository provided by the University of Westminster; and the 

myExperiment application repository (R2.3). Next, use the OGSI/WSRF interface 

and retrieve the application descriptions stored by the three repositories mentioned 

above (R2.2). Save the application description document (written in the formal 

language employed by the respective repository) in GAMRS. Finally, convert their 

application description document into a new document written in MRDL (to provide 

uniform description formalism suitable for further processing) and save this 

document in the GAMRS.  
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The purpose of this scenario is to test GAMRS‟ ability to connect different Grid 

application repositories exhibiting different communication protocols, different 

access protocols and different security protocols and then to retrieve information 

about the applications stored by them. This scenario also tests GAMRS‟ 

OGSI/WSRF interface – which allows any other Grid service built according to 

OGSI/WSRF specifications to access and use GAMRS through this interface. 

SCENARIO 2:  SEARCHIN G IN G AMRS  

Connect to GAMRS using the HTTP/REST interface (R2.1) and test the search 

function of GAMRS by introducing different keywords in the search field and 

directing the search to different metadata fields. The most widely used method for 

this is to search the Name field of applications; however, the search can also be 

directed to fields like Description or Author.  

The purpose of this scenario is to tests the HTTP/REST interface (can be tested 

from any web browser), which provides web visibility to applications stored in 

GAMRS and connected repositories. Furthermore, this scenario can also test the 

Search capability of GAMRS.  

SCENARIO 3:  ST ORING APPL ICAT ION-REL AT ED O BJECT S 

IN  G AMRS  

Use the GAMRS Publisher service to insert application-related objects into a Grid 

application stored in GAMRS. Next, test whether these objects can be accessed by 

users with the help of the graphical user interface (GUI) (R.1). Finally, check 

whether the formal FOXML documents associated with these objects contain/refer 

datastreams – this should make such objects easily exchangeable and reusable in 

other Fedora-based repositories (R.3).   

The purpose of this scenario is to test the ability of GAMRS to store application 

related-objects following the repository model. At the same time, this scenario tests 

the publishing requirement of GAMRS as well as its ability to exchange objects.  
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SCENARIO 4:  USE G AMR S IN D IST RIBUT ED 

INF RAST RUCT URES OT HER T HAN GRID  

Use a virtual-machine embedded application asset to deploy and use the Grid 

application on virtualized infrastructures. 

The purpose of this scenario is to test GAMRS‟ ability to be used on infrastructures 

other than Grid (R.4). This scenario required the deployment and configuration of a 

virtualized infrastructure at the Centre for Parallel Computing laboratory (University 

of Westminster) – hypervisors, servers and resource pools; as well as the creation 

of a new web service needed to deal with actions associated with the deployment 

and running of a new virtual machine on such infrastructure (e.g. virtual machine 

transfer, registration, cloning and start-up/shut-down).  

SCENARIO 5:  IDENT IFY  S IMIL AR O R IDENT ICAL  GRID  

APPLICAT IO NS USING G AMRS 

Using the GAMRS Matchmaking service, test the syntactic algorithm on the 

applications retrieved from the three repositories connected to GAMRS: NGS, 

GEMLCA and myExperiment. 

Create a training corpus of free-text application descriptions from the following 

three repositories: NGS, CHARON/iSoftrepo and EGEE. GEMLCA could not be 

used for this scenario as no free-text description was found in its application 

description documents for any of the applications exposed by this repository. The 

myExperiment repository stores Grid applications of the type workflow – as 

opposed to NGS and GEMLCA, which store Grid applications of type standalone – 

and no common set of applications was identified either with NGS or with 

GEMLCA. However, CHARON/iSoftrepo and EGEE both describe standalone Grid 

applications and a common set of applications was identified between the NGS 

repository and CHARON/iSoftrepo. Therefore, in order to make the testing of the 

string-distance method relevant, GEMLCA and myExperiment were replaced in this 

scenario with the free-text descriptions retrieved from CHARON/iSoftrepo and 

EGEE. The time constraints prevented the implementation of Meta-Repository 
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adapters for EGEE and CHARON/iSoftrepo. Consequently, the application 

descriptions were retrieved from these two repositories with the help of shell-scripts 

implemented specifically for this purpose.  

Next, use a subset of application descriptions retrieved from NGS and 

CHARON/iSofrepo repositories to build a test corpus. Test the string-distance 

module by applying the methods on the test corpus and analyze the results to 

decide which string-distance method is most suitable for finding similar or identical 

applications stored in Grid repositories. Further, apply the entropy-generated stop-

list method with different entropy thresholds and identify the cases when this 

method optimizes the performance of token-based string-distance techniques. 

Finally, construct three different training corpora from the application descriptions 

retrieved from the repositories; induce training of string-distance methods 

separately on each of these corpora; and analyze how this affects their accuracy in 

finding similar Grid applications. 

Create test suites for the applications found in NGS and GEMLCA and analyze the 

performance of the application-running technique.  

The purpose of this scenario is to test the ability of GAMRS to find similar 

applications that may reside in connected repositories (R2.4) using syntactic, string-

distance and application-running methods. (Note: The binary matching technique is 

explained theoretically.) Furthermore, this scenario tests a new method of 

generating stop-lists based on the entropy of terms and looks at how this method 

can optimize the accuracy of string-distance techniques. 

* * * 
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The following table shows the relation between each scenario, the Grid application 

repository challenge addressed, the research objective it relates to and the final 

goal of the test: 

Table 4-1: Scenarios, objectives and goals 

 CHALLENGE OBJECTIVE GOALS 

S
C

E
N

A
R

IO
 1

 

R2.2: Be interoperable with 
any OGSI/WSRF Grid 
services 
R2.3: Connect multiple Grid 
application repositories 

O1: Architecture 

O3: MRDL 

- To show GAMRS‟ ability to connect to 

different Grid application repository 

technologies and solutions (O1); retrieve 

the applications stored in them; and 

convert their description documents in 

MRDL for a uniform presentation of 

applications and to facilitate the 

application matchmaking process (O3). 

- To demonstrate GAMRS‟ ability to be 

accessed by OGSI/WSRF Grid Services 

(O1). 

S
C

E
N

A
R

IO
 2

 

R2.1: Expose Grid 
applications to the Web 

O1: Architecture 

- To show GAMRS‟ ability to support 

Search operations (O1) on metadata 

associated to objects stored in the 

repository. 

- To demonstrate GAMRS‟ ability to 

expose the applications to web via the 

HTTP/REST interface (O1). 

- To show GAMRS‟ ability to be 

accessed on WWW by any service 

equipped with a HTTP client (O1). 

S
C

E
N

A
R

IO
 3

 

 
R1: Application publishing 
R.3: Object exchangeability 
& reusability 

O1: Architecture 

O2: Repository 

model 

- To show GAMRS‟ ability to function as 

a Grid application repository in its own 

right and allow users to publish objects 

inside GAMRS (O2). 

- To demonstrate the storage of 

application-related objects following the 

categorization designed in the GAMRS 

repository model (O2). 

-To show GAMRS‟ ability to present the 

repository objects in a format that permits 

their exchange and reuse on other 

repositories which are built on 

technologies similar to that of GAMRS 

(O1). 
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S
C

E
N

A
R

IO
 4

 

R4: Versatility 

O2: Repository 

model 

- To demonstrate that GAMRS can be 

used on distributed infrastructures other 

than Grid (O2). 

- To show that the storage of application-

related objects following the 

categorization proposed in the GAMRS 

repository model (O2) helps expand the 

area of usage of GAMRS with new 

scenarios previously unavailable in 

traditional solutions. 

S
C

E
N

A
R

IO
 5

 

R2.4: Find similar 
applications 

O3: MRDL 

O4: Matchmaking 

- To show that matchmaking modules 

proposed in this research (O4) are 

suitable for the identification of similar 

applications stored in Grid repositories 

(O3). 

- To show that the newly-proposed 

entropy-generated stop-list can improve 

the accuracy of string-distance methods 

when applied to matching applications 

stored in Grid repositories (O4). 
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4.4. Testbed Results 

SCENARIO 1:  CONNECT I NG GRID APPLICAT IO N 

REPOSIT ORIES T O G AMR S 

 CHALLENGE OBJECTIVE GOALS 

S
C

E
N

A
R

IO
 1

 

R2.2: Be interoperable with 
any OGSI/WSRF Grid 
services 
R2.3: Connect multiple Grid 
application repositories 

O1:Architecture 

O3: MRDL 

- To show GAMRS‟ ability to connect to 

different Grid application repository 

technologies and solutions (O1); retrieve 

the applications stored in them; and 

convert their description documents in 

MRDL for a uniform presentation of 

applications and to facilitate the 

application matchmaking process (O3). 

- To demonstrate GAMRS‟ ability to be 

accessed by OGSI/WSRF Grid Services 

(O1). 

The implementation of this scenario was done in Java programming language, 

under the Eclipse Integrated Development Environment (IDE). The deployment of 

the Meta-Repository service was done in a globus-tomcat container, which was 

configured to accept GSI certificates for authentication. The implementation of the 

Meta-Repository service was done following the latest OGSI/WSRF specifications, 

version 1.2 [42], which permits automatic interoperability with any other Grid service 

implemented according to this standard.  

In this scenario the Meta-Repository Service connected the following three 

repositories to GAMRS: GEMLCA, NGS AR and myExperiment. Each of these 

repositories exposes an access interface different from the others: GEMLCA 

exposes an OGSI/WSRF Grid service interface; NGS is built on the JSR-168 

portlet standard and had to be modified with the addition of a web service interface 

in order to permit services an easy access for its contents; and myExperiment 

exposes a HTTP/REST interface.  Furthermore, the security systems of GEMLCA 

and NGS AR are based on GSI and HTTPS, while myExperiment is public, 

therefore no secure access is required to view and retrieve applications stored in it.  
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The Meta-Repository service implemented three adapters able to access the three 

repositories mentioned above. With the help of these adapters GAMRS was able to 

retrieve the application description documents stored by GEMLCA, NGS AR and 

myExperiment. GEMLCA was accessed with the help of an OGSI/WSRF Grid 

service client provided by the GEMLCA software package. NGS AR was accessed 

with the help of a Web service client written specifically for this research. 

myExperiment was accessed with the help of a HTTP client provided by the 

org.apache.commons.httpclient jar, which comes with the Apache server 

distribution [159]. For the secure access of GEMLCA and NGS AR, we used a GSI-

compliant X509 certificate, which was issued by the NGS Certification Authority UK 

[160].  

To provide uniformity in the way Grid applications are presented to GAMRS users, 

the information about all applications was formalized following the GAMRS 

repository model and the MRDL application description language. To accomplish 

that, the application description document of each application stored in the three 

repositories connected to GAMRS was retrieved and processed. (Note: The 

average size of a Grid application description document is around 4500B, therefore 

no strain was put on the GAMRS storage system during this process.) 

In order to extract the necessary information needed for GAMRS storage and 

translation into MRDL language, two language converters were implemented to 

translate from GEMLCA‟s LCID to MRLD and from myExperiment‟s Scufl to MRDL. 

NGS AR‟s JSDL needed no conversion to MRDL, because MRDL is itself an 

extension to the JSDL schema and accepts all JSDL objects and relations. The two 

converters, the GAMRS repository model, and MRDL were developed in Java 

under the Eclipse Modelling Framework (EMF) – a tool that allows users to 

combine graphical modelling with Java development. The EMF module is provided 

as a plug-in for the Eclipse IDE. Documentation and download locations for EMF 

can be found in [161].     

Following the processing of the application description document, all the 

information about the application (including the two description documents – one in 
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native language, the other in MRDL) was compiled in a FOXML document, which is 

the XML standard understood by the Fedora repository technology. Each object 

stored in a Fedora repository needs to be described in FOXML following a 

repository model. In this case, the FOXML document was created to describe 

objects according to the GAMRS repository model proposed by this research. An 

example of FOXML document describing the application BSoft retrieved from NGS 

repository is annexed in Appendix G. (Note: The BSoft FOXML document contains 

the Dublin core metadata; the RDF statements about the repository object (i.e. 

needed by Fedora internal management system); a thumbnail image (reference to 

a datastream of type IMAGE/JPEG stored in the repository); four application assets 

(one reference to a datastream of type pdf stored in the repository – installation 

notes; one reference to a datastream of type TAR_GZ-archive stored in the 

repository – source code; one reference to a datastream of type ZIP-archive stored 

in the repository – test suite; and one reference to a virtual machine stored by the 

Virtual Machine Storage Service – virtual machine); the GAMRS model metadata 

as a datastream of type XML, which is embedded in the FOXML document; the 

application description written in native application language (i.e. in this case JSDL) 

as a datastream of type XML, which is embedded in the FOXML document; and 

the application description written in MRDL as a datastream of type XML, which is 

embedded in the FOXML document.) 

Due to time constraints, the implementation of the Meta-Repository service was not 

extended with automatic insertion of the FOXML documents in GAMRS. The 

FOXML documents were inserted in the repository manually, with the help of a 

shell script that uses Fedora administrative command lines. After adding the 

documents to the repository, the applications became visible in GAMRS. 

Apart from Application objects, all the other GAMRS objects needed for this 

scenario (such as users, providers, policies) were created using the Fedora 

Administrative Web Interface. 
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Figure 4-2 represents a snapshot of the GAMRS graphical user interface which 

shows twelve applications out of the 505 retrieved from the three repositories 

(GEMLCA, NGS AR and myExperiment) connected to GAMRS: 

 

Figure 4-2: GAMRS applications retrieved from NGS, GEMLCA and myExperiment 

Successful completion of SCENARIO 1 permitted GAMRS to retrieve and store 

information about the applications stored in three Grid repositories: GEMLCA, NGS 

AR and myExperiment.  

SCENARIO 2:  SEARCHIN G IN G AMRS  

 CHALLENGE OBJECTIVE GOALS 

S
C

E
N

A
R

IO
 2

 

R2.1: Expose Grid 
applications to the Web 

O1: Architecture 

- To show GAMRS‟ ability to support 

Search operations (O1) on metadata 

associated to objects stored in the 

repository. 

- To demonstrate GAMRS‟ ability to 

expose the applications to web via the 

HTTP/REST interface (O1). 

- To show GAMRS‟ ability to be 

accessed on WWW by any service 

equipped with a HTTP client (O1). 
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The Fedora repository framework permitted the addition of an indexing service, 

which was configured to index the terms found in the metadata associated to 

GAMRS objects. The user interface includes graphical search fields that can be 

used to search for keywords contained in the metadata of a GAMRS object. 

Furthermore, the interface permits search combinations that can be directed 

concomitantly to up to three metadata fields (e.g. title, author, description) – see 

Figure 4-3. 

 

Figure 4-3: Example search for applications created by "Alex" that contain the word "amber" in title 
and the word "amber" in description 

SCENARIO 2 was completed successfully and users can search for Grid 

applications using the graphical web interface provided by the Islandora/Drupal 

module, which is part of the GAMRS Publisher. Services can also use the 

HTTP/REST interface and perform searches on the GAMRS. The following snippet 

is an example of such a query which can be issued by any service equipped with a 

HTTP client: 
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The results of this query can be seen in Figure 4-4: 

 

Figure 4-4: Example of a GAMRS HTTP/REST interface test  

 

 

 

 

Query: ”Search for all applications that contain the word amber in their 

descriptions and were created by any user whose name is Alex.” 

HTTP: 

http://X.X.X.X:8080/fedoragsearch/rest?operation=gfindObjects&query=dc.desc

ription"amber"+AND+dc.creator:"Alex" 
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SCENARIO 3:  ST ORING APPL ICAT ION-REL AT ED O BJECT S 

IN  G AMRS  
 CHALLENGE OBJECTIVE GOALS 

S
C

E
N

A
R

IO
 3

 

 
R1: Application publishing 
R.3: Object exchangeability 
& reusability 

O1: Architecture 

O2: Repository 

model 

- To show GAMRS‟ ability to function as 

a Grid application repository in its own 

right and allow users to publish objects 

inside GAMRS (O2). 

- To demonstrate the storage of 

application-related objects following the 

categorization designed in the GAMRS 

repository model (O2). 

-To show GAMRS‟ ability to present the 

repository objects in a format that permits 

their exchange and reuse on other 

repositories which are built on 

technologies similar to that of GAMRS 

(O1). 

In this scenario the repository administrative interface exposed by the GAMRS 

Publisher service was used to insert the following application assets to the BSoft 

Grid application [162]: source code, installation notes, test suite, and an OVF-

compliant virtual-machine, which contains the BSoft application deployed inside. 

Bsoft is a collection of software for image and molecular processing in structural 

biology, which was adapted and is used on the NGS Grid infrastructure.  

Figure 4-5 represents a screenshot of the GAMRS web interface showing the BSoft 

application and the metadata associated to it.  

The full name of this application is PFT3DR-Bsoft and a short description of it can 

be seen in the Description field. The field Owner points to the GAMRS user who 

added the application to the system. Further on, the Template attribute is true, 

which means that this application is to be used as template for future instances. 

The value of ADL Type is JSDL, which refers to the application description 

language in which the application was originally published. The Reference provides 

users and services with the URI where the application information can be retrieved 

from GAMRS. The Provider field points to the GAMRS Provider object, which 

describes the repository where the application was originally retrieved from.  
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Figure 4-5: BSoft application stored in GAMRS 

The External ref field contains the URI to the location of the application in its 

repository of origin (not in GAMRS). In this example, the URI (i.e. 

http://portal.ngs.ac.uk/JobProfiles.jsf) shows that this application was retrieved from 

NGS AR.  The Assets field contains the list of references to the application objects 

related to this application. The Relations field contains the set of similar 

applications: the Peer attribute stores the reference to a similar application and the 

Score attribute registers the name of the matching method and the degree of 

similarity between the two applications.  

Once GAMRS connects to a repository,  the description documents of all 

applications contained in that repository are translated into MRDL and stored in 

GAMRS – both in their native language (Application description – native ADL) and 

in MRDL (Application description – GAMRS ADL).  The Detailed list of content 

section contains the documents that refer to this repository object and are specific 

to the Fedora repository technology. Finally, the Application Assets icon shown at 
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the bottom of the figure represents the collection of application related objects 

linked to this application.  

Correct storage and exposure of these application-related objects was tested via 

the GAMRS graphical web interface and references to the four objects can also be 

seen in Figure 4-5 under the headline Assets. 

For this scenario, the virtual machine-embedded BSoft application was created with 

the help of the GAMRS pilot solution. First, the operating system was installed on 

the virtual machine. Next, from within the virtual machine, the Bsoft source code 

(see Figure 4-6) was downloaded via the HTTP/REST interface from GAMRS. 

Using the same interface, the BSoft installation notes were downloaded on the 

virtual machine as well. Following the instructions detailed in the installation notes, 

the source code was compiled and Bsoft was installed inside the virtual machine. 

 

Figure 4-6: BSoft source code – content download 

Further, the BSoft installation was tested with the help of the BSoft test suite, which 

had been downloaded from the GAMRS repository as well. The test suite contains 

three types of files: test input file(s); the running script – which represents the 

correct command line(s) needed to run the application correctly; and test output 
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files – which represent the correct output when the application is run with the test 

input file(s) found in the test suite. Tests have shown a correct installation of BSoft 

within the virtual machine.  

Finally, the virtual machine was stored on the Virtual Machine Storage server and a 

reference to it was added in GAMRS. 

SCENARIO 4:  USE G AMR S IN D IST RIBUT ED 

INF RAST RUCT URES OT HER T HAN GRID  

 CHALLENGE OBJECTIVE GOALS 

S
C

E
N

A
R

IO
 4

 

R4: Versatility 

O2: Repository 

model 

- To demonstrate that GAMRS can be 

used on distributed infrastructures other 

than Grid (O2). 

- To show that the storage of application-

related objects following the 

categorization proposed in the GAMRS 

repository model (O2) helps expand the 

area of usage of GAMRS with new 

scenarios previously unavailable in 

traditional solutions. 

SCENARIO 4 tests how virtual machine-embedded Grid applications stored in 

GAMRS can be run on virtualized infrastructures (and implicitly on cloud 

infrastructures).  

Figure 4-7 shows how GAMRS can be used in conjunction with virtualized/cloud 

infrastructures. The user can search GAMRS for a certain application (action 1) 

which s/he wants to deploy and run on a virtualized infrastructure. If the collection of 

application-related objects contains the virtual machine-embedded object, the user 

can then download it on his/her computer (action 2). Next, the user can connect to 

a cloud gateway or virtualization hypervisor access interface and upload the virtual 

machine on the virtualized infrastructure (action 3). The machine will remain saved 

in the pool of virtual machines and the user can instantiate it (even multiple copies, 

creating a cluster) any time s/he wants to use it to solve his/her problems (action 4). 
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Figure 4-7: Using GAMRS in virtualized architectures 

Traditionally, the transfer of the virtual machine from the repository to the user‟s 

computer and from the user‟s computer to the virtualized infrastructure represented 

a drawback. Virtual machines are usually large in size (i.e. several gigabytes) and 

they can be costly in terms of network usage and disk usage, hampering the 

normal utilization of the user‟s computer. However, this scenario implemented a 

solution, which overcomes this drawback. This involved the creation of a new 

service (VM Service), which is able to communicate both with GAMRS and the 

virtual infrastructure hypervisors.  

The virtual machine-embedded application object stored in GAMRS contains in its 

associated metadata the path to its storage location, the protocol needed for 

access and staging the object, and the virtualization technology type used in the 

creation of the virtual machine (in this scenario the standard Open Virtualization 

Format was used – a format known by most virtualization hypervisors currently in 

production). 
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The cloud/virtualized hypervisors can be stored as provider objects in the GAMRS. 

They too have metadata associated with them, such as location, methods of 

access, protocols and security information. The user submits to the VM-Service the 

information about the virtual machine-embedded application and about the 

hypervisor on which s/he would like to deploy the virtual machine (action A). The 

VM-Service finds the virtual machine archive on GAMRS (action B) and initiates a 

direct transfer of that archive between the GAMRS storage and the virtualized 

hypervisor storage (action C). Upon successful completion, the VM-Service 

connects to the hypervisor access interface (action D) and unpacks the virtual 

machine files. Next, it registers the virtual machine as a template in the pool of 

virtual machines and, if so specified by user, can also clone an instance for the 

user, power the instance on and, preferably, start a VNC (Virtual Network 

Computing) server [163] on the virtual machine to enable remote desktop 

connections to it. The user can then access the application through the cloud 

interface or directly through a VNC viewer. 

The suite of actions described above was successfully implemented using the 

following objects: the BSoft VM-embedded application specified in SCENARIO 3; a 

VMWare ESXi virtualization hypervisor [164] and VMWare server that were 

installed at the Centre for Parallel Computing (University of Westminster) and which 

acted as a gateway to the virtualized infrastructure; and the new VM Service, which 

was developed from scratch in the Java programming language and was deployed 

as a web service in a GlassFish_v3 container [165].  

Appendix H contains a snapshot taken after the successful completion of 

SCENARIO 4. On the column on the left-hand side it shows the BSoft virtual 

machine deployed as a template on the VMWare server (Template-Bsoft) and a 

powered-on clone of the virtual machine (alex-Bsoft). On the right-hand side one 

can see the desktop of the alex-Bsoft machine through which users can interact 

with the virtual machine. Moreover, the snapshot shows an example of such 

interaction: the user started a shell console and listed the contents of the BSoft test 

suite that was installed on the virtual machine in SCENARIO 3. 
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SCENARIO 5:  IDENT IFY  S IMIL AR O R IDENT ICAL  GRID  

APPLICAT IO NS USING G AMRS  
 CHALLENGE OBJECTIVE GOALS 

S
C

E
N

A
R

IO
 5

 

R2.4: Find similar 
applications 

O3: MRDL 

O4: Matchmaking 

- To show that matchmaking modules 

proposed in this research (O4) are 

suitable for the identification of similar 

applications stored in Grid repositories 

(O3). 

- To show that the newly-proposed 

entropy-generated stop-list can improve 

the accuracy of string-distance methods 

when applied to matching applications 

stored in Grid repositories (O4). 

The syntactical module of the GAMRS Matchmaking service was implemented in 

Java programming language under the Eclipse platform. Implementation of the 

MRDL parser was also implemented in Java using the MRDL model developed 

under the EMF plug-in of Eclipse. Since GEMLCA and NGS AR repositories share 

a common set of applications, the syntactic module was tested on their application 

description documents. myExperiment could not be used in this scenario because it 

did not have any set of applications common with either NGS AR or GEMLCA. 

The syntactic modules correctly identified the identical applications which fall under 

the fast-track comparison test {designated running site, binary location path, list of 

arguments}; namely, the algorithm identified the applications, which had their 

binaries already deployed on the NGS Grid infrastructure and were described both 

in GEMLCA and NGS AR. However, the algorithm failed to identify identical 

applications in the following scenario: the application exposed by NGS AR had its 

binary already deployed on the NGS Grid infrastructure; the same application was 

exposed by GEMLCA but required binary staging. 

Full MRDL comparisons returned inconclusive results due to the lack of information 

comprised in real-case application description documents. Furthermore, the extra 

functionality of the syntactical module (i.e. binary hash sums and test suites) could 

not be tested in real-life scenarios as it involves the usage of the new application-

related object additions proposed in the GAMRS repository model.  
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The matching of applications using test suites (GAMRS application-related objects) 

was tested in the application-running module.  

* * * 

The string-distance module of the GAMRS Matchmaking service was implemented 

in Java programming language under Eclipse platform. Implementation of the 

eleven string-distance functions used in this analysis was provided by two Java 

archives: Lingpipe [167] and Stringmetrics [168].   

This scenario used application descriptions that had been retrieved from three Grid 

application repositories: the NGS AR, the CHARON/iSoftrepo, and the EGEE 

application repositories. Given that NGS AR contained too few application 

descriptions to build a consistent training set, these application descriptions were 

grouped together with those from CHARON/iSoftrepo. Application descriptions 

were therefore grouped in three sets: corpus123 (containing 123 descriptions 

retrieved from NGS and CHARON/iSoftrepo), corpus246 (containing 246 

descriptions retrieved from EGEE) and corpus369 (containing 369 descriptions, i.e. 

all descriptions found on the three repositories). Techniques based on term 

frequencies and term importance probabilities were trained separately on each of 

these three sets in order to analyze the variance in the accuracy of string-distance 

methods when trained on different corpora.  

The test corpus was comprised of a subset of descriptions retrieved from 

CHARON/iSoftrepo and NGS repositories, which were compared in pairs of two: 

each application description against each one of the remaining descriptions. This 

resulted in 4372 comparison cases, out of which 631 represented cases of similar 

applications.  

Several decision groups were considered for each string-distance method and 

these groups were implemented with the help of match-intervals. If the score of a 

method had a value within the match-interval, the two application descriptions were 

considered similar, otherwise they were considered dissimilar. The match-intervals 

(i.e. decision groups) were constructed in an incremental way (e.g. [0.0, 0.1], [0.0, 
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0.2]... [0.0, 1.0]) and were used to analyse how the accuracy of the matching 

methods varied with the relaxation or restriction of decision rules. 

The accuracy of string-distance methods was compared with the help of the 

following measurements: 

 False positives = how many times the method had marked as similar two 

applications which were different from each other. 

 False negatives = how many times the method had marked as dissimilar 

two applications which were similar. 

 Precision = the number of true positives (i.e. the comparison cases that 

correctly marked the applications as similar) divided by the total number 

of comparison cases that marked the applications as similar (i.e. the sum 

of true positives and false positives). 

 Recall = the number of true positives divided by the total number of cases 

that compared two similar applications (i.e. the sum of true positives 

and false negatives).  

 F1 = the harmonic mean of precision and recall.  

In addition to the measurements mentioned above, the matchmaking methods 

were also compared using the average precision and the maximum F1 value of 

each method. Precision and recall need to be balanced, and when F1 is 

maximized, both precision and recall are set to acceptable values. 

All eleven string-distance methods were run with their respective matching-intervals 

and different entropy thresholds, using the three training corpora described above. 

The analysis of results collected in this exercise showed that overall, token-based 

matchmaking methods performed better than edit-distance metrics. This can be 

seen in the chart in Figure 4-8, which depicts the maximum F1 values obtained in 

the analysis:  

(Note: in the next figures, the following notations have been used for the string-

distance methods: TFIDF for TFIDF/Cosine; JW-TFIDF for Jaro-

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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Winkler_TFIDF/Cosine; JSD for Jensen-Shannon Divergence, JM-JSD for Jelinek-

Mercer/Jensen-Shannon Divergence; D-JSD for Dirichlet/Jensen-Shannon 

Divergence; CASE for Case edit-distance; DL for Damerau-Levenshtein distance; 

FIXED for Fixed Weight edit-distance; DICE for Dice distance; JACCARD for 

Jaccard distance; and JW for Jaro-Winkler distance). 

 

Figure 4-8: Maximum F1 value for string-distance methods 

TFIDF and JSD-related methods showed the best performance of all methods 

under analysis, their maxF1 score reaching values between 0.62-0.67. Although 

the Jaccard and Dice methods are token-based methods as well, they exhibited 

lower performances than TFIDF and JSDs techniques (i.e. maxF1 values between 

0.55-0.59).The explanation is that, as opposed to TFIDF and JSDs, which use 

probabilistic approaches in their calculus and base their decision on the frequency 

of terms (i.e. importance), DICE and JACCARD consider all terms of equal 

importance. Consequently, DICE and JACCARD methods record a higher number 

of false positives than in the case of TFIDF and JSD, thus recording a lower F1 

score than TFIDF and JSD. 

Edit-distance metrics (CASE, DL, FIXED, JW) performed poorer than the other 

methods, recording maxF1 values between 0.38-0.5. These methods base their 

decision on the number of operations with characters (i.e. insertion, deletion, 

substitution or transposition) needed to transform one string into the other. Edit-
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distance metrics (CASE, DL, FIXED, JW) seem more suitable for comparing short 

strings rather than whole paragraphs of text.  

The hybrid method (JW-TFIDF) showed the lowest performance out of all methods 

tested in the string-distance module (i.e. maxF1 value of 0.35). Even though the 

Jaro-Winkler coefficient used in this implementation (i.e. 0.9) was big enough to 

detect only small typos, the method wrongly coupled too many similar words. This 

determined a significant increase in the number of false positives, hence the low 

performance of the JW-TFIDF technique.  

In the case of TFIDF it was observed that the average precision increases with the 

relaxation of matching rules. For example, the best average precision was obtained 

when applied on the decision groups [0-0.8] and [0-0.9] (as shown in Figure 4.9). 

Moreover, the max F1 values were obtained in the same decision intervals. 

 
 

Figure 4-9: Variation within six matching intervals of the average precision of the 
TFIDF/Cosine method when trained on the three corpora 

The figure shows that, when trained on corpus123 or corpus369, TFIDF/Cosine 

recorded the best precision values (i.e. 0.56-0.57) for the decision group [0-0.9]; 

when trained on corpus246, the method recorded the best average precision 

value (0.54) for the decision group [0-0.8]. The analysis showed that for stricter 
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matching rules (e.g. decision intervals lower than [0-0.6]) TFIDF/Cosine 

recorded low average precision values (i.e. 0.18-0.35), the only exception being 

the case when the method was trained on the corpus123, from which the test 

corpus was created. 

The suite of JSD methods achieved the best average performance and the 

highest F1 score when applied to the [0.3-1] decision group (as shown in Figure 

4-10). The test corpus was constructed as a subset from the 123-application 

description corpus. Training the JSD on the 123-application description corpus 

showed a slightly better performance of the technique (i.e. average precision in 

the [0.3-1] decision group: 0.53-0.55) than when trained on the 246-application 

corpus, which does not contain descriptions found in the test corpus (i.e. 

average precision in the [0.3-1] decision group: 0.52-0.53). This is explained by 

the fact that a method trained on a corpus, which already contains the terms 

and description documents found in the test corpus, gives a more accurate view 

of the term importance and term probability distributions than when trained on a 

corpus which does not contain the application descriptions found in the test 

corpus. 

 

Figure 4-10: Variation within four matching intervals of the average precision of the suite of JSD 
methods when trained on the three corpora 

Moreover, the results showed that training the JSD functions on the 369-application 

corpus further optimized the accuracy of these methods (i.e. average precision in 
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the [0.3-1] decision group: 0.53-0.56) by giving a more comprehensive and more 

precise view of the term probability distributions in the corpus. 

The use of entropy-generated stop-list in combination with TFIDF showed no 

concluding results as the average precision and F1 scores were comparable 

between the cases where a stop-list was used and the cases where a stop-list was 

not used (i.e. best results were obtained for entropy threshold values in [0.06-0.1]). 

However, when applied in conjunction with JSD techniques, the entropy-generated 

stop-list using thresholds between [0.07-0.12] showed an improvement of both 

average precision and F1 scores throughout the cases considered in this analysis. 

An example can be seen in Figure 4.11, where the use of stop-list with such 

thresholds determined a significant increase in the average precision of JSD 

methods, notwithstanding what corpus was used for training. 

 

 
Figure 4-11: Comparison between the average precision of the JSD methods with no stop-list and 

the same JSD methods using a stop-list with a threshold between [0.07-0.12] 

For the decision group [0.3-1] the average precision of JSD and D-JSD methods 

applied without a stop-list recorded an average precision ranging between [0.37-

0.39]. For the same decision group, when using the entropy-generated stop-list with 

a threshold between [0.07-0.12], the same two methods recorded an overall 

increase in the average precision, with values ranging between [0.56-0.58]. The 
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JM-JSD method recorded better values than JSD and D-JSD even without the use 

of stop-lists (i.e. average precision [0.51-0.52]). Nevertheless, the entropy-

generated stop-list with a threshold between [0.07-0.12] improved slightly the 

average precision of JM-JSD to [0.52-0.53]. 

* * * 

Due to the time constraints of this research, the application-running module was not 

integrated in the GAMRS Matchmaking service. The tests involving this module 

were done manually using the NGS Grid infrastructure and the Grid user interface 

exposed on the NGS site [38] via a Java applet called gsiSSH-Term [169]. 

To that end, I analyzed the Grid applications exposed on the NGS Grid core sites 

and collected test suites (i.e. set of input files, running script and the set of output 

files) for 30 applications (out of 38 at the time the analysis has been made). Figure 

4-12 shows the list of applications for which a test suite was created.  

Each of these applications was run on Grid using the set of input files and the 

running script available in the test suite. The output was retrieved and compared 

against the set of output files available in the test suite using the diff Linux software 

[170] – a very common and reliable piece of software, which points out differences 

between files. For a better understanding of the results, the applications were run 

several times with the same set of input files and the process of output comparison 

was repeated after each run. 

The conclusion of the tests was that the application-running module can accurately 

identify identical applications that exhibit deterministic behaviour. Since for the 

same set of input files, the application always returns the same set of output files, 

identical deterministic applications are correctly identified by this method. However, 

the way the comparison of output files was implemented, identical non-deterministic 

applications could not be identified by the application-running method.  
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Figure 4-12: Grid applications used for testing the application-running module  

* * * 

Due to the scarceness of data (i.e. binaries) stored in the few production Grid 

application repositories capable of storing binaries, the binary matching module 

could not be tested in real-case scenarios. Nevertheless, its fundamental test of 

hash sums can be explained theoretically and is based on the property of collision 

resistance of hash algorithms (i.e. in our case, what is the probability that two 

different binaries generate the same hash sum). Tests on binary hash sums 

generated with strong collision resistant algorithms (such as SHA-512, which had 

no known collisions identified at the time this thesis was written) should identify 

correctly identical applications. Moreover, even those algorithms for which collisions 
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have been found (such as SHA-1 or MD5) have such a low probability of collisions 

(i.e.                          and                   .         ) 

[166], that they can be safely used to generate hash sums of Grid application 

binaries. In cases where such algorithms are used (for example SHA-1) if two 

binary hash sums are found to be identical, the mathematically-correct decision of 

the GAMRS syntactic module should be “The two applications are identical with a 

probability of        ”. However, for obvious practical reasons, the syntactic 

module returns just “The two applications are identical”.   

 

.  
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5. Conclusions 

 

ll the five scenarios designed in Chapter 4 in order to test the functionality 

of GAMRS were implemented successfully. The results of this testbed 

confirm that GAMRS brings relevant contributions to existing solutions in 

the area of Grid. With the combined capabilities of the three core services – 

Publisher, Meta-Repository and Matchmaking, GAMRS sets the milestone for a 

new generation of Grid application repositories able to support different distributed 

computing architectures, while being easily accessible to both human users and 

services.  

The GAMRS architecture shows that Grid technology can be combined with web 

technologies to provide a wide range of interfaces to make applications easily 

accessible both to human users and services. As part of SCENARIO 1, the pilot 

GAMRS solution implemented for this research was able to successfully connect 

three Grid application repositories (GEMLCA, myExperiment and NGS Application 

Repository) to the system, making their applications visible and usable through the 

GAMRS interfaces. SCENARIO 2 showed that GAMRS can also expose 

applications to the web via these interfaces and can support Search operations on 

metadata associated to objects stored in it. 

At the same time, the successful storage and deployment of the BSoft application 

on GAMRS as part of SCENARIO 3 proved that GAMRS can function as a 

Chapter 

5 

A 
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repository in its own right, by storing applications and application-related objects 

and exposing them to the web. 

The new repository model is richer than traditional Grid application repository 

models, and it expands the area of usage of Grid applications to other distributed 

architectures such as cloud architectures and application-on-demand architectures 

as demonstrated in SCENARIO 4. Moreover, GAMRS can store Grid application-

related objects such as binaries, source code, dependencies, documentation and 

test files. These objects can be used by Grid administrators for application 

deployment processes.  

In addition to that, the virtual machine-embedded approach allows applications to 

be run in their native environment making the porting of application on different 

machine architectures or different operating systems unnecessary. This research 

implemented a pilot VM-Service and used a VMWare virtualized infrastructure to 

successfully deploy and run applications that are stored as virtual machine-

embedded objects in the GAMRS, thus demonstrating the application‟s usability not 

only in Grid but also in cloud computing or other virtualized technologies. 

Finally, the successful implementation of SCENARIO 5 showed that the GAMRS 

Matchmaking service works and is able to find identical or similar applications 

among different Grid application repositories.  

The syntactic module can be successfully used to identify identical applications in 

the following scenarios: when the applications binary is present and stored in 

GAMRS; when the application binary hash sum is present in MRDL; when the 

application test suite is present in GAMRS; and when the full binary path 

referenced inside the two MRDL documents under comparison are pointing to the 

same Grid resource and application. Scenarios other than these four failed due to 

the lack of information present in real-case application descriptions – for example, 

none of the application description documents found stored in repositories 

connected to GAMRS contained values in the fields used for description of 

application resources. 
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The string-distance module can be used in scenarios where no application-related 

object needed by other matchmaking methods exists stored in the repository. It 

comes as a last resort in trying to identify similar applications based only on the free 

text-description of the application. The module implemented a set of the most 

popular string-distance methods, which were tested against their ability to identify 

similar applications stored in Grid repositories. Overall, token-based matchmaking 

methods performed better than edit-distance methods and the hybrid method. 

Based on the analysis of test results, it was concluded that TFIDF/Cosine and 

Jensen-Shannon Divergence methods would be the best candidates for finding 

similar applications by comparing their free-text descriptions. Moreover, the results 

showed that the accuracy of those methods can be improved through the selection 

of particular matching intervals.    

The same scenario also tested a new method of entropy-generated stop-list. The 

method proved to be very successful with Jensen-Shannon Divergence 

techniques: trimming the documents under comparison of their low-importance 

terms worked as an optimization method for JSD techniques, making them the 

most accurate method among the ones tested here.  

Results also showed that training on different corpora can influence the accuracy of 

the matching methods. The analysis suggested that in order to acquire a more 

precise view of the term probability distributions in Grid application descriptions, it is 

better to induce training on corpora that include as many descriptions as available. 

And preferably, the training corpus should include application descriptions from the 

repositories where the two descriptions under comparison were retrieved from. 

Moreover, to make the matching more accurate, the two descriptions should first be 

added to the training corpus, and only then one should induce training and apply 

the trained matching methods on those two descriptions. 

Nevertheless, due to the constraint-free aspect of what can be written in a free-text 

description of an application, even with the help of entropy-generated stop-list 

technique, the accuracy of these methods was around 60%. Consequently, my 
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suggestion is that this method is applied as a last resort, when no other methods 

(out of those tested by this research) can be used.   

The application-running module returned excellent results in matching deterministic 

applications. With the help of test suites this module manages to successfully 

identify applications which exhibit a deterministic behaviour. However, this requires 

the presence of test suites in the repository. Furthermore, due to the limitations of 

method implemented for the comparison of output sets, the module fails to identify 

identical applications which exhibit non-deterministic behaviour.  

Provided the application binaries are available in GAMRS, the binary matching 

method should successfully identify identical applications based on their hash 

sums. However, this method has its limitations, as it cannot identify identical 

applications which have their binary compiled for different operating systems. 

Nevertheless, many Grid infrastructures require their Grid sites to use only one or 

two operating systems on their execution nodes and this increases the chances 

that the binary matching can be used successfully. 

*  *  * 

As mentioned in Chapter 1, Section 1.2 this research started with an extensive 

critical analysis of the application repository solutions currently used in Grid, which 

resulted in the identification of a list of shortcomings associated with these 

solutions. I formally translated these shortcomings in a list of solution requirements 

related to the Grid application repository conceptual design and its functionality; 

while, at the same time, I took into consideration the roles such repositories would 

have on distributed computing frameworks other than Grid. Based on these 

specified requirements I set out four major research objectives:   

 Objective O1: to design a service able to connect different types of Grid 

application repositories, but which would still function as a Grid application 

repository in its own right.  
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 Objective O2: to propose a new model for application repositories, which 

would achieve uniformity in Grid application presentation and would extend 

the functionality of these repositories beyond Grid. 

 Objective O3: to find (or create) an application description language, which 

would provide uniformity in the presentation of Grid application descriptions; 

but would also allow Grid application repositories and the applications stored 

by them to be used in scenarios other than Grid, such as virtualisation; 

source code staging and compilation; or automatic application deployment.  

 Objective O4: to design a matchmaking methodology and an algorithm able 

to process information about applications stored in different repositories and 

identify similar or identical applications. 

In order to satisfy the four objectives mentioned above, I designed a novel type of 

Grid application repository – the Grid Application Meta-Repository System 

(GAMRS). GAMRS‟ theoretical design is described in Chapter 3 of this thesis.  

Objective O1 was successfully met by creating a new Grid application repository 

architecture. The following table summarizes GAMRS‟ architectural features by 

comparison to the features exposed by other repository solutions. 

Table 5-1: GAMRS architectural features vs. other solutions 

 APPLICATION 
PUBLISHING 

APPLICATION 
DISCOVERY 

REPOSITORY 
OBJECT 

EXCHANGE & 
REUSE 

G
A

M
R

S
 

- Graphical interface 

for human users; 

- HTTP/REST 

interface for services; 

- OGSI/WSRF Grid 

Service interface for 

Grid services. 

 

- Intuitive web interface for human 

users; 

- Exposes HTTP/REST interface; 

- Exposes OGSI/WSRF Grid Service 

interface; 

- Supports connections to other 

repositories; 

- Exposes a system of identification of 

similar Grid applications; 

- Support for OAI-PMH protocol. 

 

- Support for OAI-

ORE protocol; 

- Support for 

FOXML 

documents. 
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B
D

II
 

- Publishing done by 

automated services 

via scripts that 

contain suites of 

console commands; 

- No graphical/web 

interface for human 

users. 

- Console commands containing LDAP 

queries; 

- No OGSI/WSRF Grid service 

interface; 

- No Web visibility; 

- No HTTP/REST interface; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

C
H

A
R

O
N

 - Command-line only 

for human users; 

- No access support 

for services; 

- Collection of static Web pages; 

- No OGSI/WSRF Grid service 

interface 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

G
E

M
L

C
A

 

- Graphical interface 

for human users; 

- OGSI/WSRF Grid 

service interface for 

services. 

 

- OGSI/WSRF Grid service interface; 

- Human users can find application 

information through PGRADE portals or 

using a GEMLCA Service Client; 

- No Web visibility; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

N
G

S
 A

R
 - Graphical interface 

for human users 

- No access support 

for services 

- JSR-168 web application interface – 

for human users; 

- No OGSI/WSRF Grid service 

interface; 

- No HTTP/REST interface; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

G
R

IM
O

IR
E

S
 

- Human users and 

services can register 

web services via 

UDDI clients. 

- Visible to UDDI clients; 

- Visible to human users through a 

collection of static web pages. 

N/A 
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m
y
E

x
p

e
ri

m
e
n

t - User-friendly web 

interface for human 

users; 

- HTTP/REST 

interface for services. 

- Intuitive web interface for human 

users; 

- Exposes HTTP/REST interface; 

- No OGSI/WSRF Grid Service 

interface; 

- No connection to other repositories; 

- No system of identification of similar 

Grid applications; 

- No support for OAI-PMH protocol. 

NO 

Objective O2 was successfully met by creating a new Grid application repository 

model. The following two tables summarize the features of the GAMRS repository 

model by comparison to those exposed by other repository models. 

Table 5-2: GAMRS repository model features vs. other solutions 

 
myExperiment NGS AR GEMLCA GUSE 

CHARON/ 
iSoftrepo 

GAMRS 

User YES YES YES YES YES YES 

User-related 
objects 

No no no no no YES 

User 
access policies 

YES YES YES YES YES YES 

Application YES YES YES YES YES YES 

Application 
access policies 

YES YES YES YES YES YES 

Provider No no no no no YES 

Provider-related 
objects 

No no no no no YES 

Provider 
access policies 

No no no no no YES 

 

Table 5-3: GAMRS repository model features vs. other solutions (application asset types) 

 myExperiment NGS AR GEMLCA GUSE 
CHARON/ 
iSoftrepo 

GAMRS 

Description 
document 

YES YES YES YES no YES 
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Binaries n/a reference YES no reference YES 

Source code n/a no no no reference YES 

Library 
dependencies 

possible 
(generic tag) 

no no no no YES 

Software 
dependencies 

possible 
(generic tag) 

no no no no YES 

Documentation Reference no no no reference YES 

Test files 
possible 

(generic tag) 
no no no no YES 

VM 
embedded 

No no no no no YES 

Licenses YES no no no reference YES 

Hash sums No no no no no YES 

 

Objective O3 was successfully met by extending an existing application description 

language (i.e. JSDL) with a new set of features which resulted in a novel Grid 

application description language called MRDL. The following table summarizes the 

features of MRDL by comparison to the features exposed by other application 

description languages. 

Table 5-4: MRDL features vs. other solutions 

 
RSL JDL xRSL 

WS-
GRAM 

LCID JSDL MRDL 

Legacy 
compatibility 

YES YES YES YES YES YES 
YES/ 

inherited 

Advanced features partly partly partly partly partly YES 
YES/ 

Inherited 

Different 
submission 
certificate and 
staging certificate 

no no no 
YES 

(service 
only) 

no no YES 

Multi-Grid data 
staging 

no no no 
YES 

(service 
only) 

no no YES 

Hash sums no no no no no no YES 
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Advanced 
parameter/attribute 
descriptions 

no no no no partly no YES 

Multiple transfer 
protocols 
supported as URI 
definitions 

no no YES no no YES 
YES/ 

inherited 

Additional 
information 
(licenses, libraries, 
code for 
compilation) 

no no no no no no YES 

Application pre-
run prerequisites 

no no no no no no YES 

Virtual machine 
staging 

no no no no no no YES 

Advanced parallel 
behaviour 

partly partly partly partly partly YES 
YES/ 

inherited 

Native extension no no no no no YES 
YES/ 

inherited 

 

Objective O4 was successfully met by creating the first Grid application 

matchmaking service able to identify similar or identical applications stored in 

different Grid repositories. For the matchmaking process I successfully identified 

different sources of information within the application-related objects stored in 

GAMRS and designed four matchmaking algorithms which are able to process 

these sources and decide over the similarity or identicalness of two Grid 

applications. Due to the limited timeframe of this PhD I had to restrict the research 

to only four matchmaking methods: syntactic, string-distance, binary matching, and 

application-running. However, the GAMRS Matchmaking service is extendable with 

other matching modules subject to further research.  

The implementation of the pilot GAMRS-solution was subject to a series of 

constraints outlined in Chapter 4, Section 4.1. These constraints were put in place 

in order to simplify the development of the solution, but did not restrict the core 

functionality of GAMRS or its ability to meet the four objectives set out in this 

research.  
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The pilot-solution was used in five scenarios, which proved the GAMRS‟s novel 

features and showed how this solution met the research objectives. The following 

table gives an overview of the research objectives, the test scenarios designed to 

prove these objectives, and the results obtained. 

Table 5-5: Degree to which test results met the research objectives  

RESEARCH 
OBJECTIVE 

TEST 
SCENARIOS 

RESULT 

 

O1: ARCHITECTURE 

- to connect to different Grid 

application repository 

technologies and solutions and 

to retrieve the applications 

stored in them;  

- to be accessed by OGSI/WSRF 

Grid Services;  

- to expose the applications to 

web via the HTTP/REST 

interface;  

- to support Search operations on 

metadata associated to objects 

stored in the repository;  

- to be accessed on WWW by 

any service equipped with a 

HTTP client;  

- to present the repository objects 

in a format that permits their 

exchange and reuse on other 

repositories which are built on 

technologies similar to that of 

GAMRS. 

 

 

The following scenarios 

were used to test the 

functionality required by 

Objective O1: 

- Scenario 1: Connecting 

grid application 

repositories to GAMRS 

- Scenario 2: Searching 

in GAMRS 

- Scenario 3: Storing 

application-related 

objects in GAMRS 

 

 

OBJECTIVE 

SUCCESSFULLY MET 

- successfully connected 

three application 

repositories and retrieved 

the applications stored in 

them;  

- successfully tested the 

OGSI/WSRF Grid 

interface;  

- successfully tested the 

HTTP/REST interface;  

- successfully tested the 

search operation  

- successfully used the 

WWW access interface; 

- successfully tested the 

OAI-ORE and FOXML 

formats. 
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O2: REPOSITORY MODEL 

- to function as a Grid application 

repository in its own right and 

allow users to publish objects 

inside GAMRS;  

- to store application-related 

objects following the 

categorization designed in the 

GAMRS repository model;  

- to be used on distributed 

infrastructures other than Grid. 

 

The following scenarios 

were used to test the 

functionality required by 

Objective O2: 

- Scenario 3: Storing 

application-related 

objects in GAMRS 

- Scenario 4: Use 

GAMRS in distributed 

infrastructures other 

than Grid 

OBJECTIVE 

SUCCESSFULLY MET 

- Successfully published 

objects inside GAMRS;  

- Successfully stored 

objects following the 

GAMRS repository 

model; 

- Successfully used 

GAMRS to run a Grid 

application in a cloud 

virtualized environment 

 

O3: APPLICATION 

DESCRIPTION LANGUAGE 

- to convert application 

description documents in MRDL 

for a uniform presentation of 

applications;  

- to facilitate the application 

matchmaking process;  

- to be used in new scenarios (i.e. 

deployment, running, testing) 

previously unavailable in 

traditional solutions (such as 

source code staging and 

compilation, virtual-machine 

running and testing a correct 

application deployment and 

functioning with the help of test 

suites). 

 

 

The following scenarios 

were used to test the 

functionality required by 

Objective O3: 

- Scenario 1: Connecting 

grid application 

repositories to GAMRS 

- Scenario 5: Identify 

similar or identical Grid 

applications using 

GAMRS 

 

OBJECTIVE 

SUCCESSFULLY MET 

- Successfully converted  

three different types of 

ADL (i.e. LCID, Scufl and 

JSDL) to MRDL; 

- Successfully used 

description documents 

written in MRDL syntactic 

matchmaker and 

application running 

matchmaking module; 

- Successfully used a 

MRDL-formatted 

document to deploy a 

Grid application by 

staging the source code, 

followed by compilation 

and testing. 
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O4: APPLICATION 

MATCHMAKING 

- to identify sources of information 

for the matchmaking process 

within the application-related 

objects stored in repository;  

- to show that the matchmaking 

modules proposed in this 

research are suitable for the 

identification of similar 

applications stored in Grid 

repositories;  

- to show that the newly-

proposed entropy-generated 

stop-list can improve the 

accuracy of string-distance 

methods when applied to 

matching applications stored in 

Grid repositories. 

 

The following scenario was 

used to test the 

functionality required by 

Objective O4: 

- Scenario 5: Identify 

similar or identical Grid 

applications using 

GAMRS 

OBJECTIVE  

SUCCESSFULLY*  MET 

- Successfully identified 

the sources of 

information able to help 

with the matchmaking 

process (i.e. the 

application metadata, the 

application description 

document, binaries, test 

suites, the source code, 

hash sums, 

dependencies);  

- Successfully 

implemented and tested 

four matchmaking 

modules able to identify 

similar Grid applications. 

Result analysis 

concluded with several 

practical suggestions on 

the benefits and 

limitations of each 

module;  

- Successfully shown that 

the entropy-generated 

stop-list improved the 

accuracy of a whole 

class of string-distance 

methods (i.e. JSD) 

making them the most 

accurate from all the 

methods tested in this 

research, when applied 

to matching Grid 

applications 
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*Objective O4 was successfully met for the four matching modules described in this thesis. 

Implementation and analysis of other matchmaking techniques which may be suitable for 

identifying similar or identical applications stored in Grid repositories could be explored in 

future research. 
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6. Contributions to Knowledge 

and Extensions 

 

hapter 5 showed that the four research objectives set out in this thesis 

were met within certain limits. GAMRS is a service able to connect 

different types of repositories and expose them through various interfaces 

to both human users and services. Moreover, GAMRS offers a new repository 

model, which achieves uniformity in Grid application presentation and extends the 

functionality of these repositories beyond Grid; and it uses an application 

description language, which allows for Grid application repositories and the 

applications stored by them to be used in scenarios other than Grid, such as 

virtualisation, source code staging and compilation, or automatic application 

deployment. GAMRS also includes a matchmaking algorithm able to process 

information about applications stored in Grid repositories and identify similar or 

identical applications.  

This chapter summarizes the contributions brought by this research to the general 

knowledge of Grid application repositories and concludes with several suggestions 

on how this research could be extended in the future. 

  

Chapter 

6 

C 
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6.1. Contributions to Knowledge 

This research makes four contributions to scientific knowledge in the area of Grid 

application repositories: 

CONTRIBUTION 1: Novel architecture  

The Grid Application Meta-Repository System proposes an architecture, which 

allows different Grid application repositories to be connected to the service, 

independent of their underlying technology. This provides users with access to the 

applications stored in all connected Grid repositories, and also presents 

applications in a uniform manner, regardless of the differences between the specific 

models of each repository. Furthermore, as opposed to the majority of existing Grid 

application repositories, this solution provides a standard OGSI/WSRF Grid Service 

interface that allows seamless integration with all other Grid Services, allowing 

them to access the content of non-OGSI repositories through the GAMRS. At the 

same time, the GAMRS architecture exposes a HTTP/REST API (Representational 

State Transfer, Application Programming Interface), which makes applications from 

all connected repositories visible to search engines on the Web. While until now 

most applications stored on Grid application repositories were invisible to the Web 

(mainly due to limitations of repository technologies used in implementation), 

GAMRS makes the application discovery easier for users – the HTTP/REST API 

provides a much simpler form of access for non-OGSI services than the Grid 

Service interface. Furthermore, GAMRS‟ access interfaces allow for the discovery 

of Grid application repository objects and associated metadata through OAI-PMH 

and OAI-ORE protocols, at the same time making these objects exchangeable and 

reusable between OAI-compliant repositories. 

CONTRIBUTION 2: New application repository model 

The Grid Application Meta-Repository Service proposes a new application 

repository model, which allows for inter-operability between various Grid application 

repositories and Grid services and extends the functionality of these repositories 
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beyond Grid. The new model helps store together the application and application-

related objects, which makes them available to use across different Grid services. 

The proposed solution includes suggestions on the type of application-related data 

that repositories should store and also proposes scenarios where this model can 

be used in distributed computing designs other than Grid. The model gives a 

comprehensive description of a Grid application and is also able to function as a 

mediator between older application repository models. With the help of this model 

Grid applications can be easily deployed and ran on cloud systems. Furthermore, 

applications can be presented as embedded in virtual machines (VM) and therefore 

they can be run in their native environments. Also, by exposing applications as 

virtual machines, both administrators and users can easily deploy these 

applications on virtualized infrastructures. This procedure requires no prior 

knowledge of Operating System installation procedures, application installation 

procedures, the installation of software dependencies, or knowledge on how to 

configure the application. The new application repository model also contains the 

necessary description capability to allow users to describe and run commercial 

applications embedded in virtual machines, provided that a fee-based model is put 

in place for that. 

CONTRIBUTION 3: Improved application description language 

This research proposes a solution which enriches the functionality of old application 

description languages and provides answers to several interoperability problems, 

such as multi-Grid data staging and hybrid job-submission/data staging certificates. 

Furthermore, it proposes a life-cycle model for a Grid application describing the 

different states in which the application can be found (i.e. template, instance, 

deployment, and running) and sets a standard of how description languages can 

describe attributes, objects and actions associated with these states. The 

extensions to JSDL proposed by this research (such as the location of virtual 

machine-embedded application; the location of licenses, libraries and source code; 

and the new application running requirements: license acceptance, code 

compilation and VM-embedded) also allow for cross-operability with new 

generation technologies such as application-on-demand and virtualized systems. 
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MRDL, the new application description language obtained by expanding JSDL, 

provides the necessary description capabilities to refer to the application-related 

objects described by the GAMRS model. This permits Grid applications to be run 

using methods not employed on Grid until now, such as virtual machine-embedded 

or by source code staging and compilation. 

CONTRIBUTION 4: Novel Grid application matchmaking service 

This research also proposes a matchmaking service aimed at finding similar or 

identical applications stored in different Grid application repositories by analysing 

the information included in application description documents and application-

related objects. The research identifies and describes several methods of matching 

Grid applications based on the application-related objects and, in the 

implementation phase, focuses on four classes of matchmaking techniques: 

syntactic, string-distance, application binary matching and application running. In 

conjunction with the application-related objects mentioned under Contribution 2, 

and with the help of the application description language described in Contribution 

3 GAMRS proposes new algorithms for all four methods and analyzes the 

performance of these algorithms in real-case scenarios using data retrieved from 

production Grid repositories. Furthermore, GAMRS proposes and analyzes a new 

method of automatic processing of the training corpus through entropy thresholds 

for a better performance of the string-distance methods. This new method is not 

necessarily restricted to Grid applications; it can be used more broadly in natural 

language processing for the comparison of any two texts. Finally, based on the 

performance of the matchmaking modules, this research concludes with 

suggestions regarding which module would be suitable for which scenario and 

mentions the limitations or non-availability in other scenarios. 
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6.2. Future Extensions 

In this thesis we have shown the benefits of the Grid Application Meta-Repository 

System as efficient solution to several current challenges in the field of Grid 

application repositories. However, the dynamics of distributed computing 

technologies will continue to generate new challenges and requirements in the time 

to come. Consequently, all four aspects of GAMRS – the architecture, the 

repository model, the application description language and the matchmaking 

service - were designed to be modular and extendible so that new features can be 

added effortlessly in order to permit GAMRS to be integrated easily with future 

technologies. 

The following list contains several suggestions on how GAMRS can be extended in 

the future. The list is by no means exhaustive; it describes the immediate 

extensions that can be done from the current state of the pilot solution to enrich 

GAMRS‟ capabilities: 

ARCHITECTURE: 

 The GAMRS Meta-Repository service can be extended with new 

adapters which would connect other repositories currently on production 

on Grid, such as BDII, GRIMOIRES, EGEE, EDGeS and 

CHARON/iSoftrepo. 

 The GAMRS architecture is suitable to be cascaded in order to construct 

federated GAMRS regions. Multiple GAMRS can be connected together 

through their access interfaces (or each one can reference the others as 

Provider entities in its repository), thus helping users and services to 

discover and access Grid application stored by any of them. 

 GAMRS can be extended with a fee-based model to include commercial 

applications. GAMRS already stores virtual machine-embedded 

applications and application licenses. Once such a fee-based model is 

put in place, users could gain access to applications by accepting the 
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terms of the license and paying a fee proportionate with the length of time 

s/he uses the application for.   

 GAMRS can be extended with a submission engine able to process all 

MRDL extensions. This would allow GAMRS‟ submission engine to 

submit and run the application as virtual machine-embedded or by 

automatic source-code compilation. At the same time, the submission 

engine could be used to automatically process hybrid authentication for 

the deployment and running phases of the Grid application. 

REPOSITORY MODEL: 

 The GAMRS repository model can be extended to describe new 

authentication methods, which started to gain terrain in recent years and 

which are being considered for adoption on Grid infrastructures, such as 

Shibboleth or SAML/XACML implementations. 

APPLICATION DESCRIPTION LANGUAGE: 

 The GAMRS MRDL language schema can be extended to accommodate 

not only the description of stand-alone applications – as it does here, but 

also the description of applications presented as Web or Grid Services 

and applications exposed as workflows on the Grid infrastructure. 

APPLICATION MATCHMAKING: 

 The string-distance module of the GAMRS Matchmaking service is 

extendible and further string-distance methods can be added to the ones 

already implemented, such as Needleman-Wunsch, Witten-Bell, Katz and 

Knesser-Ney.  

 The GAMRS Matchmaking service can be extended with a module, 

which also implements semantic matchmaking methods (including Latent 

Semantic Analysis) that can help identify similar applications stored in the 

Grid repositories connected to GAMRS.  

 Another valuable extension of the GAMRS Matchmaking service would 
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be the design and implementation of an aggregation model able to 

combine together the scores returned by different matching modules, with 

the aim of delivering an even more accurate solution to the problem of 

finding similar applications stored in Grid repositories.
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Appendix C: String-distance Methods 

tested in GAMRS 

The Damerau-Levenshtein distance metric compares two finite sequences of 

symbols (i.e. strings) and returns the distance between them by counting the 

minimum number of operations needed to transform one string into the other. An 

operation is defined as an insertion, deletion, substitution or transposition of two 

characters. The lower the Damerau-Levenshtein score is, the more similar the 

strings are, with „0‟ meaning the strings are identical. 

The Case distance metric is a variation of Damerau-Levenshtein and computes the 

similarity score of two strings in the same fashion. The difference is that the Case 

metric is case-insensitive (i.e. makes no difference between uppercase and 

lowercase letters) and it does not count punctuation signs in its similarity score. Like 

the Damerau-Levenshtein score, the lower the Case distance is, the more similar 

the strings are. 

The Fixed Weight string metric is another variation of the Damerau-Levenshtein 

distance. While Damerau-Levenshtein makes no distinction between the 

importance of each operation, Fixed Weight metric allows the assignment of 

different weights to the four operations. In the tests done as part of this research it 

was used an implementation of Fixed Weight with the weights suggested for 

English text in [167]: 

              .                 .                     .    and                      .  

The Fixed Weight score is the same as in the methods discussed above: the lower 

the distance, the more similar the strings. 

The Jaro-Winkler similarity distance is also based on character matching.  For two 

strings s1,s2, the Jaro distance is defined as:  

j       
 

 
  

 

    
  

 

    
  

   

 
     (1) 
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where m is the number of matching characters; t is the number of transpositions 

needed to obtain the same sequence of matching characters in both strings; and |s| 

denotes the number of characters in string s. 

Winkler modified the Jaro distance so that the new distance gives better scores to 

strings that start identically for a prefix of length L. Mathematically, the Jaro-Winkler 

distance is defined in relation to the Jaro distance: 

j      
 j            j          (2) 

where  js1,s2 is the Jaro distance for strings s1,s2; L is the length of the common prefix 

at the start of the string (with a threshold value of 4 characters; L ≤ 4) and p is a 

constant used to adjust the score upwards for having common prefixes. The 

standard value for this constant is 0.1. The higher the Jaro-Winkler score is, the 

more similar the strings are. A score of 0 corresponds to no similarity, while 1 

equates to an exact match. 

The TFIDF (term frequency, inverse document frequency) is a weight widely-used 

in natural language processing and information retrieval, which gives a measure of 

how important a word (i.e. token or term) is to a document in a collection. TFIDF 

relates the importance of the word with the number of occurrences of that word 

both in the document under analysis and in the entire collection of documents (i.e. 

“corpus” in specialized literature). TFIDF specifies that: “The importance 

increases proportionally to the number of times a word appears in the document 

but is offset by the frequency of the word in the corpus.”[18] 

For the mathematical representation of TFDIF we have used the following 

notations:  

t = term; basic entity in token-based analysis; the equivalent of a word in natural 

language 

d = document; a set of terms; in our case, a paragraph of text written in English, 

which represents a free-text description of a Grid application 

http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
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C = corpus; a collection of documents 

        the number of occurrences of the term t in document d 

       

the number of occurrences of the term t in the collection of documents C 

                                         the number of terms in document d  

                                        the number of documents in corpus   

                                         the number of terms in corpus   

     
                                           = the number of documents in 

corpus C which contain the term t 

Given these, the term frequency of the term t in document d is the ratio between 

the number of occurrences of the term t in document d and the total number of 

terms contained in document d. 

        
     

    
      (3) 

The term frequency of the term t in a corpus C is the ratio between the number of 

occurrences of the term t in all documents in corpus C and the overall number of 

terms contained in all documents in corpus C. 

        
     

    
      (4) 

The inverse document frequency of a term t used in documents contained in a 

corpus C is a measure of the general importance of the term t in corpus C and is 

obtained by dividing the total number of documents in corpus C by the number of 

documents in C which contain the term t, and then taking the logarithm of 

that quotient. 

            
    

    
      (5) 

http://en.wikipedia.org/wiki/Documents
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Quotient
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The mathematical formula of TFIDF can now be obtained by combining formulas 

(3) and (5):  

         
    

     

    
   

    

    
    (6) 

This is the most widely-used formula for TFIDF and we also used this mathematical 

expression for the analysis of the paragraphs of free-text descriptions of Grid 

applications. However, mathematical variants such as (7) and (8) can also be 

encountered in the literature, but they are rare. 

         
    

     

    
   

          
 

    
      (7) 

         
    

     

    
   

    

      
     (8) 

As mentioned before, TFIDF is not a distance but a weight. Subsequently, from 

each document one can construct a vector of TFIDF weights relative to the 

frequency of the terms in the document. A common way to compare two vectors is 

to measure the cosine value of the angle between these vectors. Mathematically, if 

A and B are vectors over a vector space Ʋ (i.e. in our case Rn), the cosine of the 

angle between A and B is calculated as follows:       

cos    
   

      
    (9) 

where      represents the dot product between vectors A and B, and |x| 

represents the length of the vector.  

On Rn, the intuitive notion of the length of vector                is captured by 

the following formula: 

        
    

       
     (10) 
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The TFIDF/Cosine distance between two documents d1 and d2, (both elements of 

the same collection C) is defined as the cosine value of the angle between their 

vectors of TFIDF weights. Mathematically, using formulae (6), (9) and (10) the 

TFIDF/Cosine distance is calculated as:  

                
            

             
 

 

              
                  

    

    (11) 

An important consequence of using formula (6) for TFIDF is that its values will 

always be positive. Consequently, the cosine similarity of two documents will range 

from 0 to 1, with 1 meaning the same vectors of term frequencies, hence very 

similar documents. 

The hybrid similarity distance Jaro-Winkler/TFIDF uses the same logic as the 

TFIDF/Cosine method, except it tries to eliminate small typos that may occur in free 

texts. Specifically, for the first stage, it uses the Jaro-Winkler distance to compare 

the terms contained in two documents and suggests that pairs of terms with very 

high similarity scores (i.e. usually over 0.9) are considered as just one term. In a 

second stage, this method computes the TFIDF vectors and uses the cossim 

formula (11) to obtain the similarity score of the two documents. Essentially, this 

method tries to eliminate the cases when a word is misspelled and, in particular, the 

case where the error consists of just two consecutive characters being swapped – 

which would require just one transposition of those characters to make the word 

correct again.  

Example 

For example, the word Grid can be incorrectly written as Gird. In this case, using 

formula (1) with m =  s   =  s   = 4 and t = 1, it gives a Jaro distance j            

0.9167. Implicitly, using the formula (2) with p = 0.1 and L = 1 it gives a Jaro-Winkler 

score of j            0.9167 + 0.1 x 1 x (1 - 0.9167)   0.925.  

Because j            0.9, this solution suggest that, for any two documents 

contained within the corpus under analysis, instead of regarding Grid and Gird as two 
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different terms, they should be regarded as one and the same term and the frequency 

vectors should be constructed accordingly.  

The Jensen–Shannon Divergence (JSD – also known in literature as information 

radius or total divergence to the average) is a widespread method of measuring the 

similarity between two or more probability distributions.  

The general definition of the Jensen-Shannon divergence, which allows for the 

comparison of two or more distributions, is: 

                    
 
             

 
          (12) 

where {αi: i=1,2,...,n} are the weights for the probability distributions {Pi: i=1,2,...,n} 

and H(Pi) is the Shannon entropy for distribution Pi. However, in the majority of 

cases formula (12) is used to compare only two probability distributions at one time 

and the weights associated with them are selected as α1 = α2 = 1/2; hence,  

             
     

 
  

           

 
    (13) 

The Jensen-Shannon divergence relates to the concept of information entropy and 

the most popular entropy used in computer science is Shannon‟s entropy. The 

concept of Shannon‟s entropy relies on the concept of uncertainty: 

For a random variable X with n outcomes                 each with a probability 

of happening      , the uncertainty associated with each outcome is defined as: 

          
 

     
   log            (14) 

This definition captures the following idea: “the lower the probability       of an 

event to happen, the higher the uncertainty       associated with that event”. The 

logarithm is used to provide the additivity characteristic for independent uncertainty 

(i.e. log    ) = log      log     .  The average uncertainty associated with the 

random variable X is defined as: 

                    
 
            log       

 
       (15) 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Shannon_entropy
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For a random variable X with n outcomes {xi: i=1,2,...,n}, each with a probability of 

happening p(xi), Shannon‟s entropy H(X) is defined as “the average uncertainty 

associated with the random variable  X”. Hence, formula (15) gives the 

mathematical representation of the Shannon‟s entropy: 

             log       
 
        (16) 

This formula is used in natural language processing and information retrieval and is 

the one we used in our research for the comparison of Grid application 

descriptions. In our case the free-text paragraph that represents the description of a 

Grid application can be seen as a probability distribution of a set of terms {ti: 

i=1,2,...,n} (i.e. words), each having a probability of occurrence p(ti). Therefore, a 

solution to find similarities between two documents/paragraphs is to use the 

Jensen-Shannon divergence and find out to what extent the probability distributions 

of their terms differ from the average. If these probability distributions are close to 

the average, it is highly likely that the two documents describe similar applications. 

In our research we have analyzed three types of methods that use the Jensen-

Shannon divergence. These methods differ among each other in terms of the 

probability function they use to calculate the occurrence of a term in a document.  

The first one, the classic Jensen-Shannon divergence – or simply Jensen-

Shannon divergence – uses the term frequency (formula 3) as p(ti)d – probability of 

a term ti to occur in a document d: 

                
      

     
    (17) 

The second and third Jensen-Shannon methods are methods of interpolation, 

which combine the importance of the term in the document with the importance of 

the term in the whole corpus.  

The Jelinek-Mercer/Jensen-Shannon method uses the following technique of 

interpolating the term frequency in a document with the term frequency in the entire 

corpus:  
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                           (18) 

For natural language processing, usually the value of   is 1/2, which gives us the 

formula used by the Jelinek-Mercer/Jensen-Shannon method: Let C be a collection 

of documents {dj: j=1,2,...,n}. The probability of a term {ti: i=1,2,...,m}, to occur in dj  

is given by the formula:  

       

  
 

 
        

  
 

 
           (19) 

Formula (19) shows that instead of focusing just on the importance of the term in 

the document (i.e. tf(ti)dj), the Jelenik-Mercer method combines it evenly (i.e.   = 

1/2) with the importance of the term in the whole corpus (i.e. tf(ti)C ).   

The Dirichlet/Jensen-Shannon method uses a different technique of interpolation 

between the term frequency in a document and the term frequency in the entire 

collection: Let C be a collection of documents {dj: j=1,2,...,n}. The probability of a 

term {ti: i=1,2,...,m}, to occur in dj  is given by the formula:  

         

  
                 

       
        (20) 

where µ is a scaling factor. Usually, for natural language processing µ = 1. Thus, 

formula (20) becomes: 

       

  
                

       
 

       

       
  

       

       
     (21) 

In most of the cases encountered in natural language processing (1 + |dj|t) can be 

approximated with |dj|t (i.e. the number of terms contained in a document is big 

enough so that a small variation of (+1) cannot change the result significantly). 

Hence, the Dirichlet/Jensen-Shannon method uses the following formula:    

       

            
 

       

     
        (22) 
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Formula (22) shows that instead of focusing only on the importance of the term in 

the document (i.e. tf(ti)dj), the Dirichlet method combines it with the importance of 

the term in the whole corpus (i.e. tf(ti)C), scaled by the inverse number of the terms 

contained in the document (i.e. 1/|dj|t).   

Formulae (17), (19) and (22) are the most widespread forms of term occurrence 

probabilities that can be encountered in Jensen-Shannon divergence methods 

used in natural language processing. Consequently, we have used these forms for 

the analysis of the free-text part of application description documents. 

The Jaccard coefficient is a measure of the similarity between two sample sets 

and is defined as the size of the intersection divided by the size of the union of the 

sample sets:  

        
     

     
      (23) 

The Jaccard distance measures the dissimilarity between two sample sets and is 

obtained by subtracting the Jaccard coefficient from 1 – formula (24  

                         
           

     
         (24) 

Similar to the Jaccard coefficient, Dice's coefficient is a measure of the similarity 

between sample sets. In natural language processing, for documents X and Y the 

coefficient is defined as: 

        
      

       
         (25) 

The Dice distance measures the dissimilarity between two sample sets and is 

obtained by subtracting the Dice coefficient from 1: 

                    
      

       
          (26) 

The lower the Dice distance (or Jaccard distance) is, the more similar two strings 

are.

http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Union_(set_theory)


 

 

9. Appendix D: Repository Frameworks 

Name 
Description 

Usage 
Security 

CRUD  
Search 

User-defined 
meta-model 

User-friendly 
interface 

HTTP 
REST 

interface 

OAI-PMH OAI-ORE 

ePrints 
Open source  
Available for 

download  

HTTPS 
supported 

CRUD supported 
Search supported 

Supported Web-interface Supported Supported 
Not yet 

supported 

Fedora 
Open source 
Available for 

download  

HTTPS 
supported 

CRUD supported 
Search supported 

Supported 
Web-interface 

and JAVA client 
Supported Supported Supported 

ACS 
Open source 
Available for 

download  

GSI 
supported 

CRUD supported 
Search supported 

Supported Not provided 
Requires 

development 
Not 

supported 
Not 

supported 

Oracle 10g 
Open source 
Available for 

download 

HTTPS 
supported 

CRUD supported 
Search supported 

Supported 
Graphical client 

provided 
N/A 

Not 
provided 

Not 
provided 

IBM 
WebSphere 

Commercial 
software 

Available for 
download  

HTTPS 
Supported 

CRUD supported 
Search supported 

Supported 

No client 
provided by 

default; requires 
development 

N/A N/A N/A 

WebGRelC 

Open source 
No release 

candidate at the 
time this report 

was being written 

GSI 
supported 

CRUD supported 
Search supported 

Partial 
support 

JAVA client and 
JSR-168 

compliant client 
Not provided Not 

provided 
Not 

provided 

JAVA CoG 
Kit 

Open source 
Available for 

download  

* JAVA CoG Kit is a development environment; in theory, it supports all the requirements specified by this research. However, all of 
them have to be engineered from community–added code in combination with newly written code. 

 

Colour codes:  

 
 Requirement not fulfilled; needs further development 

 Requirement fulfilled 

 Requirement fulfilled, but a better alternative is preferred 
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Appendix E: OAI-PMH 

GetRecord query example 

http://192.168.1.68:8080/fedora/oai?verb=GetRecord&identifier=oai:example.org:g
amrs:application549&metadataPrefix=oai_dc 

<OAI-PMH xmlns=http://www.openarchives.org/OAI/2.0/ 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/ 
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">  
<responseDate>2010-05-26T14:56:36Z</responseDate>  
<request verb="GetRecord" metadataPrefix="oai_dc" 
identifier="oai:example.org:gamrs:application549">http://192.168.56.101:8080/fedo
ra/oai</request>  
<GetRecord>  
<record>  
<header>  
<identifier>oai:example.org:gamrs:application549</identifier>  
<datestamp>2010-05-26T15:35:54Z</datestamp> </header>  
<metadata>  
<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" 
xmlns:dc="http://purl.org/dc/elements/1.1/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ 
http://www.openarchives.org/OAI/2.0/oai_dc.xsd">  
<dc:title>AMBER</dc:title>  
<dc:creator>Alex Tudose</dc:creator>  
<dc:description>  
This is an example-job of Amber for parallel run.The input files required for this 
parallel example-run of sander.LES.MPI can be staged to your home (or working) 
directory by clicking on &quot;DataStaging&quot; page/tab. When you submit the 
job and have &quot;Stage all data when submitting job&quot; checked on, these 
files will automatically be uploaded to your selected directory on your selected run 
host. If your working directory will be different from your home directory, you can 
define a new directory on the &quot;Detail&quot; page/tab, 
&quot;WORKINGDIR&quot; box.The executable should be given as the FIRST 
argument (on the &quot;Arguments page) and not in the executable box. This box 
should always have the value /usr/ngs/AMBER or /usr/ngs/AMBER_9_0 if you want 
to run version 9.0. 
</dc:description>  
<dc:identifier>gamrs:application549</dc:identifier>  
</oai_dc:dc> </metadata> </record>  
</GetRecord></OAI-PMH>

http://192.168.1.68:8080/fedora/oai?verb=GetRecord&identifier=oai:example.org:gamrs:application549&metadataPrefix=oai_dc
http://192.168.1.68:8080/fedora/oai?verb=GetRecord&identifier=oai:example.org:gamrs:application549&metadataPrefix=oai_dc
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Appendix F: OAI-ORE document 

of a GAMRS object – example 

<?xml version="1.0" encoding="UTF-8"?> 
<feed xmlns="http://www.w3.org/2005/Atom"> 
  <id>info:fedora/gamrs:application549</id> 
  <title type="text">AMBER </title> 
  <updated>2010-05-26T19:35:54.370Z</updated> 
  <author><name>fedoraAdmin</name></author> 
  <category term="Active" scheme="info:fedora/fedora-
system:def/model#state"></category> 
  <category term="2009-10-29T21:38:20.329Z" scheme="info:fedora/fedora-
system:def/model# createdDate"></category> 
  <icon>http://www.fedora-
commons.org/images/logo_vertical_transparent_200_251.png</icon> 
<entry> 
  <id>info:fedora/gamrs:application549/DC</id> 
  <title type="text">DC</title> 
  <updated>2010-05-26T19:35:54.370Z</updated> 
  <link href="info:fedora/gamrs:application549/DC/2010-05-26T19:35:54.370Z" 
rel="alternate"></link> 
  <category term="A" scheme="info:fedora/fedora-
system:def/model#state"></category> 
  <category term="X" scheme="info:fedora/fedora-
system:def/model#controlGroup"></category> 
  <category term="true" scheme="info:fedora/fedora-system:def/model# 
versionable"></category> 
</entry> 
<entry xmlns:thr="http://purl.org/syndication/thread/1.0"> 
  <id>info:fedora/gamrs:application549/DC/2009-10-27T07:17:52.541Z</id> 
  <title type="text">DC1.0</title> 
  <updated>2009-10-27T07:17:52.541Z</updated> 
  <thr:in-reply-to ref="info:fedora/gamrs:application549/DC"></thr:in-reply-to> 
  <category term="http://www.openarchives.org/OAI/2.0/oai_dc/" 
scheme="info:fedora/fedora-system:def/model#formatURI"></category> 
  <category term="Dublin Core Record for this object" scheme="info:fedora/fedora-
system:def/model# label"></category> 
  <category term="378" scheme="info:fedora/fedora-
system:def/model#length"></category> 
  <content type="text/xml"> 
  <oai_dc:dc xmlns:oai_dc=http://www.openarchives.org/OAI/2.0/oai_dc/ 
xmlns:dc="http://purl.org/dc/elements/1.1/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
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xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ 
http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> 
  <dc:title>AMBER</dc:title> 
  <dc:identifier>gamrs:application549</dc:identifier></oai_dc:dc></content> 
</entry> 
(...) 
  <entry> 
    <id>info:fedora/gamrs:application549/MRDL</id> 
    <title type="text">MRDL</title> 
    <updated>2009-10-29T11:51:50.080Z</updated> 
 (...) 
    <id>info:fedora/gamrs:application549/MRDL/2009-10-29T11:51:50.080Z</id> 
    <title type="text">MRDL.0</title> 
    <updated>2009-10-29T11:51:50.080Z</updated> 
    <thr:in-reply-to ref="info:fedora/gamrs:application549/MRDL"></thr:in-reply-to> 
    <category term="Description in GAMRS ADL" scheme="info:fedora/fedora-
system:def/model#label"></category> 
    <category term="5380" scheme="info:fedora/fedora-
system:def/model#length"></category> 
    <content type="text/xml"> 
      <uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription (...)>         
        <JobIdentification> 
           <JobName>AMBER (parallel example)</JobName> 
           <Description>AMBER 
This is an example-job of Amber  for parallel run. The input files required for this 
parallel example-run of sander.LES.MPI  can be staged to your home (or working) 
directory by clicking  on "DataStaging" 
page/tab.(...)</Description></JobIdentification> 
            <Application> 
                  <ApplicationName>AMBER </ApplicationName> 
                  <ApplicationVersion>10.00</ApplicationVersion> 
                  <POSIXApplication> 
                     <Executable>/usr/ngs/AMBER</Executable> 
                     <Argument>sander.LES.MPI</Argument> 
                     <Argument>-O</Argument> 
                     <Argument>-i</Argument> 
                     <Argument>md.in</Argument> 
(...)       
        <ProcessCountLimit>4</ProcessCountLimit> 
             </POSIXApplication> 
        </Application> 
        <DataStaging> 
             <FileName>md.in</FileName> 
             <FilesystemName>WORKINGDIR</FilesystemName> 
             <CreationFlag>overwrite</CreationFlag> 
             <DeleteOnTermination>false</DeleteOnTermination> 
             <Source> 
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<URI>gsiftp://ngs.rl.ac.uk:2811/apps/amber/examples/parallel_example/md.in</UR
I> 
            </Source> 
        </DataStaging> 
(...) 
</uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription></content> 
</entry> 
<entry> 
    <id>info:fedora/gamrs:application549/AUDIT</id> 
    <title type="text">AUDIT</title> 
    <updated>2009-10-29T21:38:20.329Z</updated> 
(...) 
  </entry> 
  <entry xmlns:thr="http://purl.org/syndication/thread/1.0"> 
    <id>info:fedora/gamrs:application549/AUDIT/2009-10-29T21:38:20.329Z</id> 
    <title type="text">AUDIT.0</title> 
 (...) 
<category term="Audit Trail for this object" scheme="info:fedora/fedora-
system:def/model#label"></category> 
    <content type="text/xml"> 
      <audit:auditTrail xmlns:audit="info:fedora/fedora-system:def/audit#"> 
        <audit:record ID="AUDREC1"> 
          <audit:process type="Fedora API-M"></audit:process> 
          <audit:action>ingest</audit:action> 
          <audit:componentID></audit:componentID> 
          <audit:responsibility>fedoraAdmin</audit:responsibility> 
          <audit:date>2009-10-29T21:38:20.329Z</audit:date> 
          <audit:justification>Ingested from local file 
/root/foxml_all/apps/sec/gamrs_AMBER(parallel_example)_template_549</audit:ju
stification> 
</audit:auditTrail> 
    </content> 
  </entry> 
</feed>
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Appendix G: BSoft application – 

FOXML   

<?xml version="1.0" encoding="UTF-8"?> 
<foxml:digitalObject VERSION="1.1" PID="gamrs:application1" 
  xmlns:foxml="info:fedora/fedora-system:def/foxml#" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="info:fedora/fedora-system:def/foxml# 
http://www.fedora.info/definitions/1/0/foxml1-1.xsd"> 
<foxml:objectProperties> 
  <foxml:property NAME="info:fedora/fedora-system:def/model#state" VALUE="Active"/> 
  <foxml:property NAME="info:fedora/fedora-system:def/model#label" VALUE="BSoft"/> 
  <foxml:property NAME="info:fedora/fedora-system:def/model#ownerId" VALUE="fedoraAdmin"/> 
  <foxml:property NAME="info:fedora/fedora-system:def/model#createdDate" VALUE="2009-10-
26T14:53:01.233Z"/> 
  <foxml:property NAME="info:fedora/fedora-system:def/view#lastModifiedDate" VALUE="2009-10-
29T11:51:50.080Z"/> 
</foxml:objectProperties> 
<foxml:datastream ID="AUDIT" STATE="A" CONTROL_GROUP="X" VERSIONABLE="false"> 
  <foxml:datastreamVersion ID="AUDIT.0" LABEL="Audit Trail for this object" CREATED="2009-10-
26T14:53:01.233Z" MIMETYPE="text/xml" FORMAT_URI="info:fedora/fedora-
system:format/xml.fedora.audit"> 
  <foxml:xmlContent> 
  <audit:auditTrail xmlns:audit="info:fedora/fedora-system:def/audit#"> 
  <audit:record ID="AUDREC1"> 
    <audit:process type="Fedora API-M"/> 
    <audit:action>addDatastream</audit:action> 
    <audit:componentID>TN</audit:componentID> 
    <audit:responsibility>fedoraAdmin</audit:responsibility> 
    <audit:date>2009-10-26T19:13:46.259Z</audit:date> 
    <audit:justification></audit:justification> 
  </audit:record> 
  <audit:record ID="AUDREC2"> 
    <audit:process type="Fedora API-M"/> 
    <audit:action>addDatastream</audit:action> 
    <audit:componentID>ASSETS</audit:componentID> 
    <audit:responsibility>fedoraAdmin</audit:responsibility> 
    <audit:date>2009-10-26T19:59:26.524Z</audit:date> 
    <audit:justification></audit:justification> 
  </audit:record> 
(...) 
  </audit:auditTrail></foxml:xmlContent></foxml:datastreamVersion> 
</foxml:datastream> 
<foxml:datastream ID="DC" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true"> 
<foxml:datastreamVersion ID="DC.0" LABEL="Dublin Core Record for this object" 
CREATED="2009-10-26T15:18:12.424Z" MIMETYPE="text/xml" 
FORMAT_URI="http://www.openarchives.org/OAI/2.0/oai_dc/" SIZE="913"> 
<foxml:xmlContent> 
<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" 
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
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instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ 
http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> 
  <dc:title>BSoft</dc:title> 
  <dc:creator>Alex Tudose</dc:creator> 
  <dc:description>This is an example of running the PFT3DR supplied tutorial example, which uses a 
tcsh script &apos;iteration_01-09.tsch&apos; to run pft2, em3dr2 and Bsoft programs in a sequence 
of 9 steps to process an image file &apos;polyoma_images.pif&apos;.</dc:description> 
  <dc:publisher>NGS Application Repository</dc:publisher> 
  <dc:type>INSTANCE</dc:type> 
  <dc:format>v1.5.4</dc:format> 
  <dc:identifier>gamrs:application1</dc:identifier> 
  <dc:source>https://portal.ngs.ac.uk/JobProfiles.jsf</dc:source> 
  <dc:relation></dc:relation> 
</oai_dc:dc></foxml:xmlContent></foxml:datastreamVersion> 
</foxml:datastream> 
 
<foxml:datastream ID="RELS-EXT" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true"> 
<foxml:datastreamVersion ID="RELS-EXT.0" LABEL="RDF Statements about this object" 
CREATED="2009-10-26T14:56:10.562Z" MIMETYPE="application/rdf+xml" 
FORMAT_URI="info:fedora/fedora-system:FedoraRELSExt-1.0" SIZE="492"> 
<foxml:xmlContent> 
  <rdf:RDF xmlns:fedora-model="info:fedora/fedora-system:def/model#"   
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rel="info:fedora/fedora-
system:def/relations-external#"> 
    <rdf:Description rdf:about="info:fedora/gamrs:application1"> 
      <rel:isMemberOf rdf:resource="info:fedora/gamrs:applications"></rel:isMemberOf> 
      <fedora-model:hasModel rdf:resource="info:fedora/gamrs:ApplicationModel"></fedora-
model:hasModel> 
    </rdf:Description> 
  </rdf:RDF></foxml:xmlContent></foxml:datastreamVersion> 
</foxml:datastream> 
 
<foxml:datastream ID="TN" STATE="A" CONTROL_GROUP="M" VERSIONABLE="true"> 
<foxml:datastreamVersion ID="TN.0" LABEL="Thumbnail.png" CREATED="2009-10-
26T19:13:46.259Z" MIMETYPE="image/png"> 
  <foxml:contentLocation TYPE="INTERNAL_ID" 
REF="http://192.168.56.101:8080/fedora/get/gamrs:application1/TN/2009-10-26T19:13:46.259Z"/> 
</foxml:datastreamVersion> 
</foxml:datastream> 
 
<foxml:datastream ID="ASSETS" STATE="A" CONTROL_GROUP="E" VERSIONABLE="true"> 
<foxml:datastreamVersion ID="ASSETS.0" LABEL="Application Assets" CREATED="2009-10-
26T19:59:26.524Z" MIMETYPE="text/xml"> 
  <foxml:contentLocation TYPE="URL" 
REF="http://local.fedora.server/fedora/get/gamrs:appassets"/> 
</foxml:datastreamVersion> 
<foxml:datastreamVersion ID="ASSETS.1" LABEL="Application Assets" CREATED="2009-10-
26T20:27:04.786Z" MIMETYPE="text/xml"> 
  <foxml:contentLocation TYPE="URL" 
REF="http://local.fedora.server/fedora/get/gamrs:app1assets"/> 
</foxml:datastreamVersion> 
</foxml:datastream> 
 
<foxml:datastream ID="gamrsapplication" STATE="A" CONTROL_GROUP="X" 
VERSIONABLE="true"> 
(...) 
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<foxml:datastreamVersion ID="gamrsapplication.5" LABEL="GAMRS Statements about this object" 
CREATED="2009-10-27T07:35:35.273Z" MIMETYPE="text/xml" SIZE="1111"> 
<foxml:xmlContent> 
<gamrsApplication> 
  <name>PFT3DR-Bsoft</name> 
  <version>v1.5.4</version> 
  <description>This is an example of running the PFT3DR supplied tutorial example, which uses a 
tcsh script &apos;iteration_01-09.tsch&apos; to run pft2, em3dr2 and Bsoft programs in a sequence 
of 9 steps to process an image file &apos;polyoma_images.pif&apos;.</description> 
  <owner>http://192.168.56.101/fedora/repository/gamrs:user1</owner> 
  <template>TRUE</template> 
  <adltype>JSDL</adltype> 
  <reference>http://192.168.56.101/fedora/repository/gamrs:application1</reference> 
  <provider>http://192.168.56.101/fedora/repository/gamrs:provider1</provider> 
  <externalref>https://portal.ngs.ac.uk/JobProfiles.jsf</externalref> 
  <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets1</asset> 
  <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets2</asset> 
  <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets3</asset> 
  <asset>http://192.168.56.101/fedora/repository/gamrs:app1assets4</asset> 
  <relation> 
    <peer></peer> 
    <score></score> 
  </relation> 
  <other></other> 
</gamrsApplication></foxml:xmlContent></foxml:datastreamVersion></foxml:datastream> 
 
<foxml:datastream ID="ADL" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true"> 
<foxml:datastreamVersion ID="ADL.0" LABEL="Description in native ADL" CREATED="2009-10-
27T07:37:35.467Z" MIMETYPE="text/xml" SIZE="10549"> 
<foxml:xmlContent> 
  <jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"  
xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"  
xmlns:rsl="http://www.ggf.org/namespaces/2004/11/jsdl-rsl-1.0.xsd" 
xmlns:sweep="http://schemas.ogf.org/jsdl/2007/04/sweep" 
xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions"> 
  <jsdl:JobDescription> 
    <jsdl:JobIdentification> 
      <jsdl:JobName>PFT3DR / Bsoft Iteration</jsdl:JobName> 
      <jsdl:Description>PFT3DR - iteration_01-09.tsch Tutorial example. 
-------------------------------------------------------- 
------------------------------------------------------------------- 
template configured by J.Churchill (SCT,RAL,STFC) Sept 2008 
------------------------------------------------------------------- 
This is an example of running the PFT3DR supplied tutorial example, which uses a tcsh script 
&apos;iteration_01-09.tsch&apos; to run pft2, em3dr2 and Bsoft programs in a sequence of 9 steps 
to process an image file &apos;polyoma_images.pif&apos.This portal example is slightly different 
from other portal examples, as the staging step includes staging the &apos;executable&apos; , which 
in this case is a script. Unfortunately, at the time of writing (Sept 2008), the data staging uses an API 
which does not retain executable file permissions. So this example needs to be run in two steps 
where (a) Is the data staging step and (b) Runs the job. In between (a) and (b) you will need to login 
to the run host and change the file permissions  to executable (chmod +x file_name) on the iteration 
script and the script which starts it, called &apos;run_iteration&apos;. The script 
&apos;run_iteration&apos; simply loads the appropriate environment modules for PFT3DR (and 
Bsoft) so that these programs are in the environment path when it then runs &apos;iteration_01-
09.tcsh&apos;. These module load statements could be included in the iteration script but this 
example shows how you can run the tutorial unedited.For this example you need to create a small 
directory hierarchy on the system that will run the job. First create a top level sub directory for the job 



 

261 

 

to run in (you can use the &apos;Browse Host&apos; page in the portal or login to the run host). In 
this subdirectory create the &apos;maps&apos;, &apos;resolution&apos;, &apos;particles&apos; and 
&apos;run&apos; directories. This portal example is setup to stage data into these 4 directories. Each 
of these directory locations is determined on the &apos;File Systems&apos; page of the portal by the 
WORKINGDIR, MAPS, PARTICLES and RESOLUTION &quot;file system&quot;, where 
WORKINGDIR is set to the location of the &apos;run&apos; subdirectory and the others are self 
explanatory. The iterations script assumes it is in the &apos;run01 directory and the other 3 
directories are at the same hierarchy level as &apos;run01&apos;. This example assumes that the 4 
directories are located for a mythical user ngs0341 under /home/ngs0341/pft3dr/run. You need to 
change all 4 directory locations to your ngs user id (ngsXXX) and the location of your run (replace 
pft3dr/run in the path). To do this click on the folder icon next to &quot;WorkingDir&quot; then 
&apos;Browse for dir on a grid host&apos; on the &apos;File Systems&apos; page. This takes you to 
the &quot;Browse Host&quot; page. Connect to the host you will run the job on by selecting from the 
hosts lists then clicking &quot;Connect&quot;. Browse your files until you are in the directory you 
want as the working dir, then use the Actions drop down and select &quot;Apply as Working 
dir&quot; then click &quot;OK&quot; button. To create a new subdirectory to run in, use the Actions 
drop down and select &quot;Create subdir&quot; option. Find or create the other three directories 
and edit their locations directly into &apos;Mount Point&apos; for each on the File systems page.To 
run this example job (or another job based on this template) first go to the &apos;DataStaging&apos; 
page and click the &apos;Stage In Now&apos; button to upload the files for the example. Now login 
to the run host and change the permissions on run_iteration and itermation_01-09.tcsh files to 
executable (eg chmod +x run_iteration). Then go to the &quot;Submit/Run&quot; page and check the 
box next to &quot;Ok to overwrite the job status when re-submitting the job&quot; and uncheck the 
box &quot;Stage all data...&quot;. Then  click the &quot;Submit My Job&quot; button. The status of 
the job should appear on the &quot;Job Status&quot; line. First it will say &quot;Submitted&quot;. To 
update the status, click on &quot;Check Job Status&quot;.  When completed, go to the &quot;Data 
Transfer&quot; or &quot;Browse Host&quot; page and download your output. This example takes 
10-20 minutes to run.For more information about running PFT3DR jobs on the NGS, please refer to: 
http://www.ngs.ac.uk/sites/ral/applications/ImageAnalysis/pft3dr.html or use the links on the 
&apos;Files/Links&apos; page of this portal template.If you need help, please contact the NGS 
helpdesk (support@grid-support.ac.uk) 
    </jsdl:Description> 
  </jsdl:JobIdentification> 
  <jsdl:Application> 
      <jsdl:ApplicationName>PFT3DR / Bsoft</jsdl:ApplicationName> 
      <jsdl:ApplicationVersion>2.0.4 / 1.5.4</jsdl:ApplicationVersion> 
      <jsdl-posix:POSIXApplication> 
        <jsdl-posix:Executable filesystemName="WORKINGDIR">run_iteration</jsdl-posix:Executable> 
        <jsdl-posix:Output filesystemName="WORKINGDIR">iteration.out</jsdl-posix:Output> 
        <jsdl-posix:Error filesystemName="WORKINGDIR">iteration.err</jsdl-posix:Error> 
        <jsdl-posix:WorkingDirectory>/home/ngs0341/pft3dr/run/run03</jsdl-posix:WorkingDirectory> 
        <jsdl-posix:ProcessCountLimit>1</jsdl-posix:ProcessCountLimit> 
      </jsdl-posix:POSIXApplication> 
      <rsl:jobType>single</rsl:jobType> 
    </jsdl:Application> 
    <jsdl:Resources> 
      <jsdl:CandidateHosts> 
        <jsdl:HostName>ngs.rl.ac.uk:2119/lsf</jsdl:HostName> 
      </jsdl:CandidateHosts> 
      <jsdl:FileSystem name="WORKINGDIR"> 
        <jsdl:FileSystemType>normal</jsdl:FileSystemType> 
        <jsdl:Description>The working job directory</jsdl:Description> 
        <jsdl:MountPoint>/home/ngs0341/pft3dr/run/run03</jsdl:MountPoint> 
      </jsdl:FileSystem> 
      <jsdl:FileSystem name="MAPS"> 
        <jsdl:FileSystemType>normal</jsdl:FileSystemType> 
        <jsdl:Description>File system added by browsing host</jsdl:Description> 
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        <jsdl:MountPoint>/home/ngs0341/pft3dr/run/maps</jsdl:MountPoint> 
      </jsdl:FileSystem> 
      <jsdl:FileSystem name="PARTICLES"> 
        <jsdl:FileSystemType>normal</jsdl:FileSystemType> 
        <jsdl:Description></jsdl:Description> 
        <jsdl:MountPoint>/home/ngs0341/pft3dr/run/particles</jsdl:MountPoint> 
      </jsdl:FileSystem> 
      <jsdl:FileSystem name="RESOLUTION"> 
        <jsdl:FileSystemType>normal</jsdl:FileSystemType> 
        <jsdl:Description></jsdl:Description> 
        <jsdl:MountPoint>/home/ngs0341/pft3dr/run/resolution</jsdl:MountPoint> 
      </jsdl:FileSystem> 
    </jsdl:Resources> 
    <jsdl:DataStaging> 
      <jsdl:FileName>iterations_01-09.tcsh</jsdl:FileName> 
      <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/iterations_01-
09.tcsh</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>polyoma_00.star</jsdl:FileName> 
      <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/run/polyoma_00.star</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>polyoma_images.pif</jsdl:FileName> 
      <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/run/polyoma_images.pif</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>run_iteration</jsdl:FileName> 
      <jsdl:FilesystemName>WORKINGDIR</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/run/run_iteration</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>polyoma_3d.pif</jsdl:FileName> 
      <jsdl:FilesystemName>MAPS</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
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      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/maps/polyoma_3d.pif</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>polyoma_images.pif</jsdl:FileName> 
      <jsdl:FilesystemName>MAPS</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/maps/polyoma_images.pif</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>README</jsdl:FileName> 
      <jsdl:FilesystemName>PARTICLES</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/particles/README</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
    <jsdl:DataStaging> 
      <jsdl:FileName>README</jsdl:FileName> 
      <jsdl:FilesystemName>RESOLUTION</jsdl:FilesystemName> 
      <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
      <jsdl:DeleteOnTermination>false</jsdl:DeleteOnTermination> 
      <jsdl:Source> 
        <jsdl:URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/resolution/README</jsdl:URI> 
      </jsdl:Source> 
    </jsdl:DataStaging> 
  </jsdl:JobDescription> 
</jsdl:JobDefinition></foxml:xmlContent></foxml:datastreamVersion> 
</foxml:datastream> 
 
<foxml:datastream ID="MRDL" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true"> 
<foxml:datastreamVersion ID="MRDL.0" LABEL="Description in GAMRS ADL" CREATED="2009-
10-29T11:51:50.080Z" MIMETYPE="text/xml" SIZE="8620"> 
<foxml:xmlContent> 
<uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription 
xmlns:uk.ac.wmin.cpc.mrp.parsers.mrdl="http://schemas.ggf.org/uk.ac.wmin.cpc.mrp.parsers.mrdl/2
005/11/uk.ac.wmin.cpc.mrp.parsers.mrdl" xmlns:xmi="http://www.omg.org/XMI" xmi:version="2.0"> 
  <JobIdentification> 
    <JobName>PFT3DR / Bsoft Iteration</JobName> 
    <Description>PFT3DR - iteration_01-09.tsch Tutorial example. 
-------------------------------------------------------- 
------------------------------------------------------------------- 
template configured by J.Churchill (SCT,RAL,STFC) Sept 2008 
------------------------------------------------------------------- 
This is an example of running the PFT3DR supplied tutorial example, which uses a tcsh script 
&apos;iteration_01-09.tsch&apos; to run pft2, em3dr2 and Bsoft programs in a sequence of 9 steps 
to process an image file &apos;polyoma_images.pif&apos;This portal example is slightly different 
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from other portal examples, as the staging step includes staging the &apos;executable&apos; , which 
in this case is a script. Unfortunately, at the time of writing (Sept 2008), the data staging uses an API 
which does not retain executable file permissions. So this example needs to be run in two steps 
where (a) Is the data staging step and (b) Runs the job. In between (a) and (b) you will need to login 
to the run host and change the file permissions  to executable (chmod +x file_name) on the iteration 
script and the script which starts it, called &apos;run_iteration&apos;. The script 
&apos;run_iteration&apos; simply loads the appropriate environment modules for PFT3DR (and 
Bsoft) so that these programs are in the environment path when it then runs &apos;iteration_01-
09.tcsh&apos;. These module load statements could be included in the iteration script but this 
example shows how you can run the tutorial unedited.For this example you need to create a small 
directory hierarchy on the system that will run the job. First create a top level sub directory for the job 
to run in (you can use the &apos;Browse Host&apos; page in the portal or login to the run host). In 
this subdirectory create the &apos;maps&apos;, &apos;resolution&apos;, &apos;particles&apos; and 
&apos;run&apos; directories. This portal example is setup to stage data into these 4 directories. Each 
of these directory locations is determined on the &apos;File Systems&apos; page of the portal by the 
WORKINGDIR, MAPS, PARTICLES and RESOLUTION &quot;file system&quot;, where 
WORKINGDIR is set to the location of the &apos;run&apos; subdirectory and the others are self 
explanatory. The iterations script assumes it is in the &apos;run01 directory and the other 3 
directories are at the same hierarchy level as &apos;run01&apos;. This example assumes that the 4 
directories are located for a mythical user ngs0341 under /home/ngs0341/pft3dr/run. You need to 
change all 4 directory locations to your ngs user id (ngsXXX) and the location of your run (replace 
pft3dr/run in the path). To do this click on the folder icon next to &quot;WorkingDir&quot; then 
&apos;Browse for dir on a grid host&apos; on the &apos;File Systems&apos; page. This takes you to 
the &quot;Browse Host&quot; page. Connect to the host you will run the job on by selecting from the 
hosts lists then clicking &quot;Connect&quot;. Browse your files until you are in the directory you 
want as the working dir, then use the Actions drop down and select &quot;Apply as Working 
dir&quot; then click &quot;OK&quot; button. To create a new subdirectory to run in, use the Actions 
drop down and select &quot;Create subdir&quot; option. Find or create the other three directories 
and edit their locations directly into &apos;Mount Point&apos; for each on the File systems page.To 
run this example job (or another job based on this template) first go to the &apos;DataStaging&apos; 
page and click the &apos;Stage In Now&apos; button to upload the files for the example. Now login 
to the run host and change the permissions on run_iteration and itermation_01-09.tcsh files to 
executable (eg chmod +x run_iteration). Then go to the &quot;Submit/Run&quot; page and check the 
box next to &quot;Ok to overwrite the job status when re-submitting the job&quot; and uncheck the 
box &quot;Stage all data...&quot;. Then  click the &quot;Submit My Job&quot; button. The status of 
the job should appear on the &quot;Job Status&quot; line. First it will say &quot;Submitted&quot;. To 
update the status, click on &quot;Check Job Status&quot;.  When completed, go to the &quot;Data 
Transfer&quot; or &quot;Browse Host&quot; page and download your output. This example takes 
10-20 minutes to run.For more information about running PFT3DR jobs on the NGS, please refer 
to:http://www.ngs.ac.uk/sites/ral/applications/ImageAnalysis/pft3dr.html or use the links on the 
&apos;Files/Links&apos; page of this portal template.If you need help, please contact the NGS 
helpdesk (support@grid-support.ac.uk) 
    </Description> 
  </JobIdentification> 
  <Application> 
    <ApplicationName>PFT3DR / Bsoft</ApplicationName> 
    <ApplicationVersion>2.0.4 / 1.5.4</ApplicationVersion> 
    <POSIXApplication> 
      <Executable>/home/ngs0341/pft3dr/run/run03/run_iteration</Executable> 
      <Output>/home/ngs0341/pft3dr/run/run03/iteration.out</Output> 
      <Error>/home/ngs0341/pft3dr/run/run03/iteration.err</Error> 
      <WorkingDirectory>/home/ngs0341/pft3dr/run/run03</WorkingDirectory> 
      <ProcessCountLimit>1</ProcessCountLimit> 
    </POSIXApplication> 
  </Application> 
  <DataStaging> 
    <FileName>iterations_01-09.tcsh</FileName> 
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    <FilesystemName>WORKINGDIR</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/iterations_01-09.tcsh</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>polyoma_00.star</FileName> 
    <FilesystemName>WORKINGDIR</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/polyoma_00.star</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>polyoma_images.pif</FileName> 
    <FilesystemName>WORKINGDIR</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/polyoma_images.pif</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>run_iteration</FileName> 
    <FilesystemName>WORKINGDIR</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/run/run_iteration</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>polyoma_3d.pif</FileName> 
    <FilesystemName>MAPS</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/maps/polyoma_3d.pif</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>polyoma_images.pif</FileName> 
    <FilesystemName>MAPS</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-
09/maps/polyoma_images.pif</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>README</FileName> 
    <FilesystemName>PARTICLES</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
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    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/particles/README</URI> 
    </Source> 
  </DataStaging> 
  <DataStaging> 
    <FileName>README</FileName> 
    <FilesystemName>RESOLUTION</FilesystemName> 
    <CreationFlag>overwrite</CreationFlag> 
    <DeleteOnTermination>false</DeleteOnTermination> 
    <Source> 
      <URI>gsiftp://ngs.rl.ac.uk/apps/pft3dr/examples/iterations_01-09/resolution/README</URI> 
    </Source> 
  </DataStaging> 
  <Backend backendId="GT2" count="1" error="STDERR" jobType="single" output="STDOUT"> 
    <siteInfo id="0" jobManager="lsf"> 
      <site>ngs.rl.ac.uk:2119</site> 
      <executable stage="false"> 
        <value>/home/ngs0341/pft3dr/run/run03/run_iteration</value> 
      </executable> 
      <paramPrefix>.</paramPrefix> 
    </siteInfo> 
  </Backend> 
</uk.ac.wmin.cpc.mrp.parsers.mrdl:JobDescription> 
</foxml:xmlContent> 
</foxml:datastreamVersion> 
</foxml:datastream> 
</foxml:digitalObject>
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Appendix H: Snapshot of Bsoft 

application deployed in a 

virtualized environment using 

GAMRS 

 



 

 

 

 


