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ABSTRACT 

This thesis explores the possibilities of the design and realization of compact conventional 

and substrate integrated waveguide structures with improved performance taking advantage 

of recent cross-coupled resonator filters theory achievements such as the modular filter 

design approach using non-resonating nodes and inline extracted pole filters. Therefore, the 

core of the thesis presents the following stages of work: 

 

• Solution of electromagnetic problem for wave propagation in rectangular 

waveguide structures; overview of substrate integrated waveguides. 

 

• Review of available design procedures for cross-coupled resonator filters; 

realization of coupling matrix synthesis methods by optimization.  

 

• Investigation of the possibility to implement filtering modules using E-plane 

metallo-dielectric inserts in conventional rectangular waveguides. Application of 

the modules in configurations of bandpass and dual-band filters. Experimental 

verification of the filters. 

 

• Implementation of inline extracted pole filters using E-plane inserts in 

rectangular waveguides. Use of generalized coupling coefficients concept for 

individual or coupled extracted pole sections. Development of new extracted 

pole sections. Application of the sections in the design of compact cross-coupled 

filters with improved stopband performance. 

 

• Application of the techniques developed for conventional rectangular 

waveguides to substrate integrated technology. Development of a new negative 

coupling structure for folded substrate integrated resonators. Design of improved 

modular and extracted pole filters using substrate integrated waveguides. 
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CHAPTER 1 

INTRODUCTION 

The commercial success of the telecommunication industry has stimulated the quick 

development of modern wireless communication technologies. The rapid growth in 

wireless internet, ultra-wideband systems, mobile and broadband personal communications, 

satellite navigation and remote sensing systems has created a massive demand for new 

microwave and millimetre-wave components capable of meeting more stringent 

requirements. Filters, diplexers and multiplexers responsible for frequency selectivity, play 

crucial role in these systems. The problem of the efficient utilization of electromagnetic 

spectrum imposes new challenges to design and realization of microwave and millimetre-

wave filters. New solutions and techniques for the design of compact bandpass filters with 

low insertion loss, high selectivity, and wide stopband are required for the development of 

the next generation wireless and satellite systems. 

 

1.1.  Filters for Wireless Communications 

 

Electronic filters are indispensable components for many wireless systems and applications, 

where these devices play an important role as discriminators between wanted and unwanted 

signals [1-1]-[1-4]. In the frequency domain, filters are used to reject signals of certain 

unwanted frequencies and pass signals of desired frequencies within a frequency band 

specified for a certain application. 

 

Filters perform a variety of different functions in modern full duplex personal 

communications systems, which require transmit and receive filters for each transceiver 

unit at the base station level. These can be illustrated using a block diagram of a full-duplex 

superheterodyne transceiver with a single conversion stage, as shown in Figure 1-1 [1-5, 1-

6]. 
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Figure 1-1: Block diagram of a full-duplex superheterodyne transceiver with single 

conversion stage. 

 

In this scheme, the top sequence of blocks is combined into the receiver, while the bottom 

sequence constitutes the transmitter. These two systems have a common voltage-controlled 

oscillator, as well as an antenna with diplexer, which consists of two bandpass filters 

(BPF): BPF 1 and BPF 6. BPF 1 selects the receiver frequency band signals and removes 

interference caused by the leakage of the output signal from the transmitter. The main 

requirements of this particular BPF include low insertion loss and high attenuation at the 

transmitter band. BPF 6 reduces spurious radiation power from the transmitter and 

attenuates noise from the receiver band. Hence, this BPF should have low insertion loss and 

wide stopband. The BPF 2, placed after a low noise amplifier (LNA), is necessary for the 

suppression of the unwanted image frequency signal, which appears at the same 

intermediate frequency (IF) as the main signal after down-conversion. BPF 3, whose centre 

frequency is equal to IF, plays the role of a channel selection filter. Therefore, it should 

have a narrow bandwidth and a sharp attenuation skirt. In the transmitter part, a narrow-

band BPF 4 rejects unwanted components of the baseband signal received from the digital-

analog converter (DAC) before upconversion. The up-converting mixer generates unwanted 

mixing products, which are rejected by the BPF 5, placed before power amplifier (PA). 

Transmit filters should exhibit low insertion loss and high selectivity in order to prevent 

out-of-band intermodulation and adjacent channel interferences and satisfy certain 
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regulatory and efficiency requirements. For cellular systems, a typical transmit filter has an 

insertion loss of 0.8 dB and return loss of 20 dB in the passband; acceptable levels of 

adjacent channel interference are specified in GSM standards as C/A > –9 dB. 

 
The evolution of filter design techniques has been driven by the requirements of various 

wireless systems (for example, military, satellite or cellular). Operating frequencies used in 

modern communication systems have a very wide range; therefore, various types of 

resonators and filters have been developed for different frequency bands in order to provide 

optimal solution based upon certain application requirements [1-3].  

 

Several types of resonators are employed in the implementation of filters operating at 

microwave and mm-wave frequency ranges. These are usually grouped into three 

categories [1-1]: lumped-element LC resonators, planar resonators, and three-dimensional 

cavity-type resonators. Lumped-element resonators [1-2] are organized using chip inductors 

and capacitors. This type of resonators is used at low frequencies and has small size but 

relatively low Q-factor values. Microstrip and stripline resonators [1-4], constructed as 

sections of transmission lines, terminated in a short or open circuit, form a class of planar 

resonators. These sections may have various shapes: meander [1-7], hairpin [1-8], ring [1-

9] or patch [1-10] configurations. Microstrip and stripline filters are compact, cheap in 

fabrication and easy to integrate with other components, as they are usually printed on 

dielectric substrate. However, this type of resonators is quite lossy (Q-factors between 50 

and 300 at 1 GHz [1-1]) and has limited power handling capability. In contrast, cavity 

resonators such as coaxial, waveguide and dielectric have very high Q-factors (up to 30000) 

and are capable of handling high power levels. Coaxial and waveguide cavity resonators [1-

11]-[1-13] are organized as shorted λg/2-length transmission line sections, while dielectric 

resonators [1-14] are constructed as pieces of dielectric having different shapes (cube, 

cylinder, torus etc.), which are mounted on support structures inside metallic housings. The 

main disadvantage of this type of resonators is that they are massive and require a complex, 

expensive and time-consuming fabrication process. 
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With the advent of substrate integrated waveguide (SIW) technology [1-15], it has become 

possible to combine cheap and simple planar circuits’ fabrication processes with the main 

benefits of the waveguide cavity structures. The same combination can be realized using 

all-metal or metallo-dielectric inserts in waveguide housings, which may contribute to 

miniaturization of waveguide resonators and filters [1-16]. The rapid progress in filter 

design theory, which has resulted in the development of the non-resonating nodes (NRN) 

concept [1-17, 1-18] for use in cross-coupled filters, has provided new challenges to 

engineering solutions required to take advantage of the recent theoretical achievements. 

Improvements of full-wave electromagnetic simulators (EM) based upon quick 

development of computing techniques and environment enable accurate simulations of the 

advanced structures. This makes computer-aided design (CAD) tools absolutely 

indispensable for the efficient design and optimization of high-performance filters for 

modern wireless communications.  
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1.2. Rectangular Waveguide Filters 

 

Waveguide theory has been rigorously investigated over the past few decades and has 

suggested many ways to design various circuits and components, which use rectangular 

waveguide as the main guiding medium for the propagation of electromagnetic waves. 

Most filters at the microwave and mm-wave frequencies, therefore, are produced either in 

waveguide [1-19] (rectangular air-filled metal pipe, dielectric-filled or micromachined air-

filled) associated with bulkiness, or image guide and nonradiative dielectric guide [1-20] 

with high associated loss. Standard configurations of such filters use split block housing 

with resonating and non-resonating cavities, and corresponding transverse inductive and 

capacitive irises between them organized in the metallic blocks by milling. Despite the 

numerous advantages of the waveguide cavities, fabrication process, required for the 

implementation of these filters, is time-consuming and quite expensive. Moreover, each 

new filter to be implemented requires a full fabrication cycle in order to build its housing 

blocks. The dimensions of the cavities, which determine their resonant frequency, appear to 

be large for use at microwaves as well. This leads to a certain degree of bulkiness 

(extremely important for satellite applications) and inflexibility in the design, especially 

taking into account the growing demand for cheap, compact, and mass-producible devices. 

The classical way of waveguide miniaturization involves the use of a dielectric filling, 

which reduces the guide wavelength by a square root of its relative permittivity. However, 

lack of dielectrics with high permittivity and low loss significantly restricts practicability of 

this approach.  

 

To overcome the issues related to the expensive fabrication process, E-plane waveguide 

filters have been proposed by Konishi and Uenakada in 1974 [1-21]. This type of filter uses 

all-metal of metallo-dielectric inserts allocated within the E-plane of rectangular 

waveguide, represented as two identical halves of housing. These inserts contain a sequence 

of inductive obstacles, typically septa, at distance of approximately half the wavelength 

from each other. Such an approach is more flexible, as it does not require complex 

fabrication of new waveguide housing; same housing can be used for the implementation of 
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another filter just by replacing the E-plane insert. The inserts can be realized by employing 

cheap and mass-producible technologies for fabrication of planar structures. 

However, stopband performance of E-plane filters may be insufficient for some 

applications such as diplexers and multiplexers due to the low attenuation level in upper 

stopband (especially for low-order filters) and spurious resonance, which appears at a 

frequency of about 1.5 times the centre frequency. The low upper stopband attenuation can 

be improved by increasing the filter order, but this comes into conflict with the requirement 

of compactness, since coupling septa may have widths of up to half the length of the 

resonators, especially for narrow-band filters. 

 

 

Figure 1-2: Configuration of an improved E-plane resonator with embedded SRR. 
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Figure 1-3: Typical frequency response of the improved E-plane resonator with embedded 

SRR. 
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It has been shown in [1-22] that the stopband performance of E-plane resonators can be 

improved by using ridges, which alter the cutoff frequency of the waveguide, and 

periodically loaded resonators [1-23] embedded within the E-plane resonator, which 

introduce a lowpass effect. Later, E-plane resonators with embedded split ring resonators 

(SRR) [1-24] and S-shaped resonators [1-16] capable of generating a transmission zero in 

the upper stopband have been proposed in order to achieve compactness and stopband 

improvement. The phenomenon has been related to metamaterial effects produced by 

periodical lattice composed of SRR and S-shaped resonators. However, it can be seen from 

the typical configuration of the improved E-plane filter with embedded SRR (shown in 

Figure 1-2) that there is a single SRR available, which consists of two concentric split 

rings. Hence, it is impossible to consider the transmission zero, which appears in the upper 

stopband in the frequency response of this structure (presented in Figure 1-3), as an effect 

of a periodic lattice employed. Therefore, this structure has to be analyzed using standard 

filter theory. 
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1.3. Substrate Integrated Waveguide Filters 

 

Substrate integrated waveguides (SIW) have been developed as a compact, cheap, easy-to-

fabricate and mass-producible alternative to conventional rectangular waveguide structures. 

Rapid growth of the SIW research area has been driven by adaptability of very well 

developed theory of conventional waveguides. Consequently, the main successful 

approaches employed in waveguide filter design have been transferred to the SIW platform. 

It has been found that Q-factor and power handling that can be achieved with SIW 

resonators are much higher than that attainable with traditional planar microstrip or stripline 

solutions, which made the SIW cavities an attractive object for application in direct- and 

cross-coupled filters. However, the physical dimensions of SIW circuits may be too large 

for certain applications, especially those operating at low frequencies. Among the 

approaches to achieve size reduction of SIW resonators and filters there are ridged SIW [1-

26] and EBG-substrate [1-27] concepts. The use of advanced multilayer technologies, such 

as LTCC, stimulated development of new folded SIW (FSIW) structures, which not only 

reduce the area occupied by waveguides or resonators on a chip but also offer new 

engineering solutions to the realization of advanced cross-coupled filters with and without 

non-resonating nodes (NRN). Two types of compact FSIW resonant cavities have been 

proposed and compared in [1-28]; a quarter-wavelength FSIW cavity, obtained by the 

subsequent folding of a conventional λ/2-wavelength FSIW resonator, has been developed 

and successfully employed for the implementation of a cross-coupled filter in [1-29]; 

another miniaturization technique for FSIW resonators has been developed in [1-30], a 

directional filter based upon a half-mode SIW (HMSIW) has been proposed in [1-31]. 

 

At present, development of new SIW cavity resonators for available fabrication processes 

can be considered as completed. Nevertheless, the combination of SIW with different 

transmission lines and implementation of internal and external couplings between SIW 

cavity resonators for the design of cross-coupled filters still remain attractive areas of 

investigation problems for researchers. 
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1.4. Aims and Objectives of the Thesis 

 

The aims and objectives of this work are to develop compact filters with improved 

stopband performance for wireless applications using conventional and substrate integrated 

waveguide technologies. 

 

The first aim of the project is to develop a design procedure for direct-coupled filters with 

improved E-plane resonators with embedded S-shaped resonators and SRRs. The 

achievement of this aim requires the attainment of several objectives. The first objective is 

to develop a model of the improved E-plane resonators, which is compatible with standard 

filter synthesis procedures. This requires a comprehensive analysis of the structures; origin 

of the generated transmission zero in the upper stopband, as well as the origin of the 

resonant frequency’s shift in comparison with standard E-plane resonators are to be 

determined. The effects of the physical dimensions of the structures on transmission 

characteristics should be studied. The second objective is to establish the relationships 

between parameters of the model and behaviour of the real improved E-plane resonators, 

which requires the development of an extraction procedure. Such a procedure is also 

needed for parameters’ extraction for the model of interacting pairs of improved and 

conventional E-plane resonators. Next, improved filters with transmission zeros in 

stopband should be designed according to the design procedure in order to prove the 

feasibility of the presented model and procedure. Additionally, the possibilities of 

designing improved E-plane resonators with embedded resonators capable of generating 

transmission zeros in the lower stopband are to be studied. The opportunities offered by the 

developed theoretical model should be considered for this purpose.  

 

The second aim of this work is to study possible opportunities of realization of cross-

coupled filters with transmission zeros in conventional rectangular waveguides using all-

metal and metallo-dielectric E-plane inserts. The first objective is to determine the types of 

resonators and potential coupling schemes, which can be implemented in conventional 

rectangular waveguide, taking into account the technological constraints. Then a suitable 

design procedure should be determined or developed for the realization of the cross-
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coupled filter, which involves extraction of appropriate model parameters from simulated 

data. Another objective is to study the possibility to implement NRN and design cross-

coupled filters with NRN using the E-plane approach. 

 

Finally, the third aim of the work is to investigate possible solutions available for 

realization of cross-coupled filters with or without NRN using SIW technology. The main 

objective is to create new SIW filters with improved performance using the approaches 

developed in this work for conventional rectangular waveguides. An additional objective is 

to study the available SIW filter design and implementation techniques and find potential 

engineering solutions, which may improve their performance. 
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1.5. Outline of the Thesis 

 

This thesis presents the work, which has been carried out for a period of almost four years, 

between 2007 and 2010. It is organized into seven chapters. 

 

Chapter 2 presents a brief introduction into the principles of operation of conventional 

rectangular waveguide. It includes an overview of the basic electromagnetic field theory 

with regards to propagation in rectangular waveguides under specific boundary conditions. 

Analytical expressions for electromagnetic fields and main characteristics are derived for 

propagating modes. Also, an overview of advanced substrate integrated waveguide 

structures is given. 

 

Chapter 3 presents an overview of available filter design procedures. The chapter outlines 

methods of transfer function approximation and focuses on lowpass prototype synthesis 

techniques for direct- and cross-coupled filters. Coupling matrix representation is 

introduced for cross-coupled filters; methods of coupling matrix synthesis for filters with 

and without direct source-load couplings are presented. Advanced techniques employed to 

generate transmission zeros in filter stopbands are considered. Next, frequency mapping 

procedure and corresponding circuit transformations for lowpass filter prototypes are 

outlined. Finally, a brief overview of filter implementation and modern optimization 

techniques is presented. 

 

Chapter 4 is dedicated to the development of cross-coupled filters with improved stopband 

performance in conventional rectangular waveguide using E-plane metallo-dielectric 

inserts. Brief introduction into the concept of coupling coefficients and their extraction 

from transmission characteristics is given. Several filters based upon a combination of 

stripline resonators and E-plane septa are designed. Doublet structure for use in modular E-

plane filters with non-resonating nodes, which is capable of generating two transmission 

zeros, is introduced. Dual-band filter based on the doublet structures is realized using E-

plane metallo-dielectric inserts. 
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In chapter 5, a model of the improved E-plane resonators with embedded S-shaped 

resonators and SRR is developed and investigated. It is shown that the structure can be 

considered as an extracted pole section with NRN. The concept of generalized coupling 

coefficients for cross-coupled filters with NRN is outlined and applied to the design of 

extracted pole filters using the new E-plane structures. The extraction procedure for 

obtaining the generalized coupling coefficients from frequency responses of single and 

coupled extracted pole sections is developed. Configurations of new extracted pole sections 

are proposed as a result of the analysis. Investigations on the effects of dimensions on the 

generalized coupling coefficients, comparative analysis of stopband performances and 

losses of the proposed extracted pole sections are carried out. Dual-mode extracted pole 

section, which generates a transmission zero in the lower stopband, is synthesized based on 

analysis of the developed model. Finally, several filter design examples are presented in 

order to validate the analysis. 

 

Chapter 6 illustrates an application of the extracted pole section model in compact SIW 

filters with improved stopband performance. Singlet and doublet structures generating one 

and two transmission zeros respectively are proposed for use in SIW filters. Consequently, 

inline modular filters composed of these modules are designed. Additionally, a negative 

coupling structure for use in FSIW cross-coupled resonator filters is proposed and 

investigated. Hence, a bandpass filter with novel structure is designed in order to prove the 

feasibility of the approach. 

 

Finally, in chapter 7, the main conclusions of the thesis are presented; a summary of 

contributions of this work is given and some recommendations for future work are offered. 
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CHAPTER 2 

RECTANGULAR  WAVEGUIDES 

2.1.  Introduction 

 

Rectangular waveguides and components based upon them are widely used in various 

microwave and millimetre-wave communication  systems,  especially  airborne  platforms, 

communication satellites, earth stations, and wireless base-stations due to their numerous 

advantages such as high power handling capability and high Q-factor values revealed by 

waveguide cavities. However, conventional waveguides are bulky and unsuitable for high-

density integration, which greatly increases the cost of wireless systems. This poses the 

problem of waveguide miniaturization. An effective solution to this problem requires 

understanding of electromagnetic processes, which take place within the waveguides. 

 

In this chapter we will be concerned with the main principles of operation of conventional 

rectangular waveguide and its recently proposed substrate integrated analogues. Section 2.2 

presents an overview of the basic electromagnetic field theory with regards to propagation 

in rectangular waveguides. Maxwell’s equations are introduced and analytical expressions 

for fields in rectangular waveguide are derived on their basis. In section 2.3, an overview of 

substrate integrated waveguides is given. Configurations of advanced substrate integrated 

transmission lines are considered. The main properties of several single- and multilayer 

structures are briefly outlined.  
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2.2. Electromagnetic Theory of Rectangular Waveguides 

 

2.2.1. Maxwell’s Equations 

Electric and magnetic fields that vary with time are governed by physical laws described by 

a set of equations known collectively as Maxwell’s equations. The general form of time-

varying Maxwell’s equations can be written in differential form as [2-1]: 
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where the variables involved are described as:  

 

E
r

 (V/m) – Electric field intensity; 

H
r

 (A/m) – Magnetic field intensity; 

D
r

 (C/m2) – Electric flux density; 

B
r

 (W/m2) – Magnetic flux density; 

sJ
r

 (A/m2) – Electric current density; 

ερ  (C/m3) – Electric charge density; 

 

Each of the equations in (2.2-1) has its physical meaning. (2.2-1a), also known as Faraday’s 

Law, means that variations of magnetic flux with time or/and fictitious magnetic current 

play the role of sources of circulating electric field. Equation (2.2-1b) means that time 

variations of electric flux or/and electric current generate circulating magnetic field. This 

equation is also known as Ampere’s Law.  Equation (2.2-1c) is the Gauss’s Law, which 

shows that electric charges are sources of electric field. Gauss’s Law for magnetic field is 
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given in (2.2-1d).  Since magnetic charge is known not to exist, magnetic charge density is 

usually presented as zero. 

 

Another set of equations describes relationships between the above parameters in any 

medium in terms of its permittivity ε, permeability µ and conductivity σ: 
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EJ
rr

σ= ,             (2.2-2c) 

 

where ε = εrε0, µ = µrµ0. Here, εr and µr are the relative permittivity and relative 

permeability of the propagation medium respectively; ε0 and µ0 – permittivity and 

permeability in vacuum. 

 

The presented equations are valid for arbitrary time dependence; however, it is more 

convenient to consider sinusoidal (harmonic) time dependence with steady-state conditions 

assumed. In this case, all the field quantities can be represented in a form, where time 

derivatives get eliminated. Let us consider a sinusoidal electric field with x-component of 

the following form: 

 

)cos(),,,(),,,( ϕω += ttzyxAxtzyxE
rr

  (2.2-3) 

 

where A is a real magnitude, ω is a radian frequency, φ is a phase reference of the wave at 

t = 0. In phasor form, this field can be written as: 

 

ϕjetzyxAxtzyxE ),,,(),,,(
rr

=        (2.2-4) 
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Conversion from phasor to real time-varying quantities is given as: 

 

]),,(Re[),,,( tjezyxEtzyxE ω+⋅=
rr

   (2.2-5) 

 

Assuming tje ω+  time dependence, the time derivatives in expressions (2.2-1) can be 

replaced with jω. Therefore, Maxwell’s equations in phasor form with harmonic time 

dependence now become [2-2]: 

 

    BjE
rr

ω−=×∇     (2.2-6a) 

  sJDjH
rrr

+=×∇ ω    (2.2-6b) 

ερ=⋅∇ E
r

           (2.2-6c) 

 0=⋅∇ B
r

           (2.2-6d) 
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2.2.2. Electromagnetic Modes in Rectangular Waveguide 

y

x

z

a

b

 

Figure 2-1: Configuration of a conventional rectangular waveguide. 

 

Waveguides normally consist of a hollow or dielectric-filled conducting pipe with arbitrary 

cross-section. In ideal case, both conductor and dielectric filling of waveguides are assumed 

to be lossless. Analysis of possible configurations of fields, propagating in waveguides can 

be accomplished by solution of Maxwell’s equations. For steady-state time dependence, in 

a source-free, linear, isotropic and homogeneous region, Maxwell’s equations can be 

transformed into the following form: 

 

 HjE
rr

ωµ−=×∇     (2.2-7a) 

   EjH
rr

ωε=×∇     (2.2-7b) 

 

Taking curl of (2.2-7a) and using substitution from (2.2-7b), these expressions can be 

converted into Helmholtz equations (wave equations) for electric and magnetic fields: 

 

    022 =+∇ EkE
rr

    (2.2-8a) 

    022 =+∇ HkH
rr

   (2.2-8b) 

 

where constant µεω=k  is called the wavenumber. In free space, 000 εµω== kk . 
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Assuming that the time-varying fields in waveguide structures propagate along the z-axis 

(see Figure 2-1), the fields can be expressed in terms of the propagation constant γ as 

( ) ( ) zezyxfzyxE γ−= ,,,,
r

, and the method of separation of variables can be applied to 

equations (2.2-8). Consequently, the Helmholtz equations can be transformed into: 

 

    022 =+∇ EkE ct

rr
    (2.2-9a) 

    022 =+∇ HkH ct

rr
   (2.2-9b) 

 

where 
2

2

2

2
2

yxt ∂
∂+

∂
∂=∇  and 22 kkc += γ , referred to as the cutoff wavenumber. 

 

After applying the derivatives into the Maxwell’s curl equations, another form can be 

obtained, separating transverse electric and magnetic components of the field. Then the 

transverse field components in terms of Ez and Hz are defined as [2-3] 
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When the longitudinal component (z-component) of the electric field is Ez ≠ 0, while z-

component of the magnetic field Hz = 0, a particular set of solutions of equations (2.2-10) 

can be obtained. In this case it is clear that all the magnetic field components will be 

transversed to the direction of propagation. The mode of propagation associated with such 

field structure is, hence, called the transverse magnetic (TM) mode. Similarly, another set 

of solutions can be obtained when Hz ≠ 0, while Ez = 0. The mode of propagation in this 
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case does not have an electric field component along the direction of propagation and, 

therefore, is called transverse electric (TE) mode. Both sets are independent and can be 

used to characterize fields that propagate along the waveguide. For this purpose, the wave 

equations should be solved for the longitudinal components of the electromagnetic field 

with the specific boundary conditions [2-4]. Then, transverse field components can be 

found from (2.2-10). 

 

According to the method of separation of variables, the solution of Helmholtz equations can 

now be derived with the substituted Ez and Hz for the variables x and y [2-5]. For a set of 

solutions when Ez = 0, 

 

)()( yYxXH z ⋅=     (2.2-11) 

 

Where X(x) and Y(y) are functions of x and y respectively. 

 

From the new form of wave equations, boundary conditions along x- and y-axis determine 

the cutoff wavenumber kc. This number, under such conditions, can only take discrete 

values, each of which corresponds to a cross-sectional field distribution pattern propagating 

in the z-direction. 

 

For TM modes propagating in the rectangular waveguide, the solution procedure involves 

expressing the electric field Ez as a product of three functions, each of which is a function 

of one of the coordinate variables. Then, from the solutions of the Helmholtz equations, the 

functions X(x) and Y(y) are given by 

 

)cos()sin()( xkBxkAxX xx +=         (2.2-12a) 

)cos()sin()( ykDykCyY yy +=         (2.2-12b) 

 

Hence, the complete solution for the longitudinal component of the field component Ez is  
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z
yyxxZ eykDykCxkBxkAE γ−⋅+⋅+= )]cos()sin([)]cos()sin([     (2.2-13) 

 

where 

 

222
yxc kkk +=             (2.2-14) 

 

and A, B, C, D, kx and ky can be found by applying boundary conditions on the metallic 

walls of the waveguide so that the Ez field component on the walls is equal to zero. In this 

case, substituting x = 0, we get B = 0; similarly, y = 0 leads to D = 0; for x = a it can be 

derived that kxa = mπ; and y = b yields kyb = nπ, where m and n are integers. Hence, Ez can 

be re-written as: 
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where E0 is an arbitrary amplitude of the electric field to be determined based on the 

amount of input power to the waveguide, while m and n are the mode numbers, 

representing the number of sinusoidal half-wave variations in the field in the x and y 

directions. There is an infinite set of modes, referred to as TMmn modes. It can be shown 

that 
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where µεω=k . 

 

By considering the cross-section of the waveguide and calculating the number of half 

sinusoidal variations of the field patterns along the width and the height, we can define the 

distribution patterns by a recognizable nomenclature. Such field distribution patterns are the 

waveguide modes. The modes propagate independently and no coupling between them is 



 24 

observed. This characterizes that they are orthogonal to each other, according to the field 

patterns, by which they are formed. Therefore, the boundary conditions and physical 

characteristics of the waveguide, namely the width and the height of the uniform structure, 

define the number of half sinusoidal variations, also referred to as order of the mode, i.e. 

define certain values of the wavenumber, independent of the operating frequency of the 

waveguide. The general solution for the field configurations propagating in waveguides 

may be obtained from the superposition of the TE and TM modes. 

 

It has been shown in [2-4] that in a lossless waveguide, regardless of its type, wave 

propagation occurs at frequencies where the propagation constant γ = α + jβ is an imaginary 

number (γ = jβ). If, on the contrary, γ is real (γ = α), the wave decays with an attenuation 

factor e-αz along the z-direction. The waveguide, in this case, is characterized by 

exponentially decaying modes, also referred to as evanescent modes; in real waveguides the 

propagation constant has a complex value. Thus, in order to provide propagation of waves 

within the waveguide, the broad (a) and narrow (b) guide inner dimensions, and the 

frequency of excitation from (2.2-16) should satisfy the condition 22 kkc < . The lowest 

possible excitation frequency for a waveguide to allow propagation is the cutoff frequency, 

and is obtained when β = 0 from (2.2-16) as 
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      (2.2-17) 

 

It is evident that with the lower mode number, the cutoff frequency is reduced. At 

frequencies f > fc, the propagation constant is purely imaginary and is called phase constant 

β. In this case, in terms of the cutoff frequency it may be written by 
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Below the cutoff frequencies (f < fc), modes attenuate in the z-direction. At the cutoff 

frequency, modes neither propagate nor attenuate, but a standing wave is formed along the 

transverse coordinates, also known as transverse resonance. From (2.2-15) it is seen that 

neither m nor n can be set to zero, as this leads to a trivial solution with all zero 

components. Thus, the lowest-order TM mode is TM11. 

 

The guide wavelength is defined as the distance in the z-direction of propagation required 

for a phase change of 2π. Hence, for each propagating mode at operating frequency f0 
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where λ0 is the free space wavelength. The guide wavelength is longer than the length of 

the wave propagating in free space at the same frequency.  

 

The electromagnetic field transverse components for a propagating mode now can be 

obtained, using (2.2-15) and substituting γ in equations (2.2-10), for TM modes (Hz = 0) as 
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From the transverse field components, the wave impedance for the TM modes can be 

found. It is evident from (2.2-20) that 
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The obtained quantity is referred to as the wave impedance of the TM mode: 
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where 
ε
µη =  is the intrinsic wave impedance of a plane wave propagating in an 

unbounded medium of constitutive parameters µ and ε. 

 

The wave impedance is approaching the intrinsic impedance of the dielectric at infinite 

frequency and becomes imaginary (reactive) for non-propagating modes. Thus, below the 

cutoff frequency, where the wave impedance is imaginary, the wave is not capable of 

producing the average power transfer. At f = fc, wave impedance equals zero and the 

waveguide is effectively shorted. 

 

The wave impedance concept provides relation between electric and magnetic fields in 

vector form [2-7]: 
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t

Z

Ez
H

rrr ×=            (2.2-23) 

 

where z
r

 is the unit vector in the z-direction. 
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For TE modes propagating in the rectangular waveguide, Ez is equal to zero and Hz is finite; 

solutions for all the transverse components can be obtained in a similar way as for TM 

modes. The general expression for Hz after separation of variables in this case is given by 

 

z
yyxxZ eykDykCxkBxkAH γ−⋅+⋅+= )]cos()sin([)]cos()sin([      (2.2-24) 

 

Applying the boundary conditions on the metallic walls of the waveguide so that the 

transverse components of the electric field equal zero, Hz can be defined as 
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where H0 is an arbitrary amplitude of the magnetic field. 

 

The field components for propagating TE modes (Ez = 0, γ = jβ), consequently, can be 

written as 
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In order to illustrate the obtained expressions (2.2-26), a simulated distribution of electric 

and magnetic fields for TE10 mode in a rectangular waveguide is presented in Figure 2-2. 
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Figure 2-2: Field distribution for mode TE10 in a rectangular waveguide: 

(a) electric field; (b) magnetic field. 

 

Either m or n can be equal to zero at once in (2.2-26) but not both. Therefore, taking into 

account that a > b, the lowest cutoff wave mode is the TE10 mode. For this mode, the cutoff 

frequency becomes 
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where 
µε
1=v  is the velocity of light in the dielectric medium, and since v = λf, then 

ac 2=λ . Typical frequency response of a rectangular waveguide, which reveals the cutoff 

frequency at about 30 GHz is shown in Figure 2-3. 
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Figure 2-3: Typical frequency response of a rectangular waveguide. 

 

Thus, broad inner dimension (a) of the waveguide with a propagating TE10 mode is equal to 

half the free-space wavelength at the cutoff frequency. Some examples of configurations of 

the electromagnetic field in a rectangular waveguide and different types of propagating 

waves are illustrated in [2-7]. 

 

The wave impedance for the TE10 mode is given by 
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The corresponding relation between electric and magnetic fields in vector form can be 

written as 

 

  )( tTE HzZE
rrv

×⋅−=    (2.2-29) 

 

where z
r

 is the unit vector in the z-direction. 
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For both types of the wave modes, the power transfer along the waveguide below the cutoff 

frequency is zero if the conducting surfaces of the guide are perfect. Above the cutoff, for 

the propagating modes, power per unit of area transferred by the i th mode along the 

longitudinal direction of the waveguide is obtained by integrating the z-component of the 

Poynting vector over the cross-section of the waveguide: 

 

( )zHEP i
t

i
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i rrr
⋅×= Re    (2.2-30) 

 

where tE
r

 and tH
r

 are vectors of electric and magnetic field in terms of the transverse x and 

y coordinates. 
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2.3. Substrate Integrated Waveguides 

 

Classical waveguide theory can still be used in order to meet the modern requirements of 

component parts for communication systems. Rectangular waveguide filters are well-

known to be of highly-rated performance due to low losses and high power handling; 

however, their difficulty in integration and high cost makes them improbable for utilization 

in low-cost high volume applications. This can be solved by implementing design 

techniques where rectangular waveguide is integrated with planar circuits on the same 

substrate. Moreover, introduction of a dielectric substrate results in significant size 

reduction without considerably degrading its performance. 

 

2.3.1.  Conventional Substrate Integrated Waveguides 

Design technique, where a rectangular waveguide is integrated with other planar circuits on 

the same substrate using the microstrip-integrated-circuit (MIC) technology, is known as 

substrate integrated waveguide (SIW) technology. This approach allows overcoming of the 

major difficulties of standard rectangular waveguides. SIW structure preserves the guided 

wave properties of the corresponding conventional rectangular waveguide with certain 

equivalent width, which allows using the well-developed conventional waveguide 

techniques for design and analysis of these structures.  

 

Configuration of a SIW, introduced by Deslandes and Wu in [2-8], is presented in Figure 2-

4. The structure consists of a microstrip line, a microstrip-to-SIW transition, and a 

rectangular waveguide section, all integrated on a piece of a dielectric substrate. Generally, 

various configurations of the transition section are available for realization; in Figure 2-4 a 

taper transition is shown, which is designed in such a way that the microstrip input and 

output are 50 Ohm lines and the taper section provides matching by conversion of quasi-

TEM mode propagating in microstrip line into the quasi-TE10 mode in rectangular 

waveguide [2-8]. Side walls of the rectangular waveguide section can be realized using 

arrays of metallic via-posts, metallized grooves, paste side walls or other techniques. 

Ground plane of the microstrip line becomes the bottom wall of the waveguide, while the 

tapered microstrip line provides the top one.  
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Figure 2-4: Configuration of a conventional SIW with its dimensions (top view). 

 

Characteristics of the SIW have been studied experimentally in [2-9], where cutoff 

frequencies of the first and the second propagating modes of SIWs have been analyzed. 

Correspondence between the cutoff frequencies of the quasi-TE10 and quasi-TE20 modes of 

the SIW, with respect to diameter of metallized via-posts and spacing between them has 

been evaluated. Figure 2-5 presents the calculated results for the cutoff frequencies of the 

quasi-TE10 and quasi-TE20 modes of the SIW. 

 

The obtained curves can be approximated by the following relations, obtained by the least 

square approach: 
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Figure 2-5: Cutoff frequencies of the quasi-TE10 and quasi-TE20 modes of the conventional 

SIW vs. width W for various via diameters D [2-9]. 

 

where c is the speed of light in free space and b is a distance between centers of adjacent 

metallic posts forming side walls of the SIW. Note that (2.3-1) and (2.3-2) do not depend 

on thickness of the waveguide. The thickness will only affect the Q-factor of SIW 

resonators, since it is directly proportional to resonator’s volume. Inaccuracy of formula 

(2.3-1) appears to be within 5%. For (2.3-2), the inaccuracy better than +4%/–9% is 

possible. At the same time, it should be added that the presented approximations are valid 

for 
2

0 rb
ελ ⋅

<  and Db 4< . 

 

Consequently, the SIWs are equivalent to conventional rectangular waveguides, and for the 

fundamental propagating mode they can be analyzed as rectangular waveguides just by 

using an effective width of the SIW, provided that the spacing between the side wall posts 

is sufficiently small. This can be derived from (2.3-1) as follows 
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2.3.2. Folded Substrate Integrated Waveguides 

The concept of folded rectangular waveguides has been proposed and studied theoretically 

in [2-10] for conventional waveguides, and substrate integrated folded waveguides (FSIW) 

based upon this approach have been developed in by Grigoropoulos and Young [2-11]. The 

new structures keep nearly the same propagation and cutoff characteristics as the 

conventional SIW, and allow saving of almost 50% of area at the cost of introducing 

additional dielectric layer. The most popular configurations of the FSIW employed in 

microwave and millimetre-wave circuits using a double-layer substrate can be obtained by 

single or double folding of a standard SIW along certain longitudinal axes. These 

configurations are presented in Figure 2-6. The electromagnetic field in the resultant 

structures undergoes an appropriate folding together with the certain metallic boundaries. 

Hence, for the FSIW with single folding, its symmetry plane appears in horizontal plane 

between two dielectric layers, while for the doubly-folded FSIW this retains vertical 

position. Generally, FSIW with arbitrary folding configurations may exist, which provide 

saving of more than 50% of area, but these require more substrate layers for 

implementation. Some multilayer technologies, for example LTCC, give the best fit for this 

approach. 

 

g
h

a/2

h

 

(a)     (b) 

Figure 2-6: Configurations of double-layer FSIW: (a) with single folding; (b) with double 

folding. 

 

Transmission characteristics of the singly-folded FSIW, shown in Figure 2-6a, have been 

studied analytically and experimentally in [2-12]. The FSIW have been considered as a 

ridged waveguide with septum, represented by the metallization in symmetry plane, and 
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expressions for propagation constant β and cutoff frequency fc for quasi-TE10 mode have 

been derived as follows: 
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where cf = 1.3 and 
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The formulae (2.3-4) – (2.3-6) provide good accuracy (no more than 2% error) for FSIW 

with substrate thicknesses and spaces between via posts less than λc/20, where λc is the 

cutoff wavelength of the FSIW.   
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2.3.3. Half-Mode Substrate Integrated Waveguides 

Another modification of the SIW is a half-mode substrate integrated waveguide (HMSIW), 

which has been proposed by Hong et al. in [2-13]. Configuration of the HMSIW, which 

consists of half of a conventional SIW, is shown in Figure 2-7. Operation of the HMSIW is 

based on the following principle. For the quasi-TE10 mode of a conventional SIW, it is 

known that the symmetric plane along the direction of propagation (E-plane) is equivalent 

to a magnetic wall; therefore half of the SIW will keep the half field distribution unchanged 

if cutting plane is a magnetic wall. In fact, the open side aperture of the HMSIW is nearly 

equivalent to a perfect magnetic wall due to high ratio between width and height. 

 

W D s

 

Figure 2-7: Configuration of a HMSIW. 

 

Investigation of propagation properties of the HMSIW has been carried out in [2-14]. It has 

been shown that only quasi-TEp-0.5,0 (p = 1, 2, …) modes can propagate in the HMSIW due 

to large width-to-height ratio of HMSIW and discrete arrangement of metallic vias. The 

dominant mode in the HMSIW is similar to half of the fundamental quasi-TE10 mode in the 

conventional SIW; however mode nomenclature with index 0.5 is used for HMSIW in 

order to emphasize the half-mode type of the SIW, where this mode propagates. 

 

Despite that one of the narrow walls is removed in HMSIW, this type of SIW still retains 

the cutoff property in its frequency response. Cutoff frequency of the fundamental mode of 

the HMSIW can be calculated by 
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where Weff,HMSIW is an effective width of HMSIW, which can be approximated by the 

following set of empirical expressions 
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HMSIW allows achieving almost 50% more compact (in terms of occupied PCB area) SIW 

without addressing to multilayer solutions. At the same time, folded HMSIW using 

multilayer substrates, which have been recently reported [2-15] as a further development of 

this type of waveguides, is capable of further improving compactness of HMSIW. 
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2.4. Summary 

 

In this chapter, an overview of conventional and substrate integrated waveguide structures 

has been presented. 

 

In section 2.2 Maxwell’s equations have been introduced and briefly considered. Next, 

these equations have been applied to solving the electromagnetic problem for conventional 

rectangular waveguides. Analytical expressions for electromagnetic fields of TE and TM 

modes, propagating in rectangular waveguides, have been derived. The main parameters 

(propagation constant, cutoff frequency, wave impedance) of the fundamental propagating 

mode TE10 have been obtained from analysis. 

 

In section 2.3 the concept of substrate integrated waveguides has been overviewed. 

Conventional SIW has been introduced as a planar analogue of standard rectangular 

waveguide. Configurations of the half-mode and multilayer folded modifications of SIW, 

developed for the purpose of miniaturization, have been presented. The main characteristics 

and parameters of the SIW have been briefly reported. 
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CHAPTER 3 

DESIGN OF BANDPASS FILTERS 

3.1.  Introduction 

 

Filters are key components of modern communication systems, which provide frequency 

band separation. By passbands, the filters can be classified into five types: lowpass, 

highpass, bandpass, bandstop and multiband. Filter design is a complex engineering 

problem, which requires a well developed methodology. Generally, filter design procedure 

begins from a specification, and contains the following several steps: 

 

• approximation of the transfer function; 

• synthesis of the filter prototype; 

• scaling and conversion; 

• physical implementation. 

 

In this chapter we will be concerned with the available solutions for the first three steps of 

the filter design procedure. An overview of the transfer function approximation techniques 

will be presented in Section 3.2. Section 3.3 describes the filter prototype synthesis 

techniques for direct-coupled and cross-coupled filters. Coupling matrices synthesis 

techniques are considered. Several different approaches for the realization of transmission 

zeros in stopband are considered, together with design guidelines. In Section 3.4, the 

frequency mapping procedure required for transformation of the lowpass prototype is 

presented. Finally, Section 3.5 briefly describes the filter implementation techniques, 

together with the main ideas of modern optimization methods for filter design. 
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3.2. Transfer Function Approximation 

 

The design of a filter usually starts with the determination of the transfer function which 

satisfies a given filter specification. Since the physical processes in electrical circuits can be 

represented as integrals and derivatives of currents and voltages, it is convenient to use 

complex variables for analysis of the circuits with harmonic excitations in frequency 

domain, and the transfer function can be specified mathematically as a ratio of two 

polynomials of complex frequency s = σ + jω. The analytical expression of the transfer 

function provides an interface between the initial specification and a lowpass filter 

prototype with its cutoff frequency normalized to unity. In this section we will briefly 

outline the types of polynomials commonly used for approximation of filter’s frequency 

responses. 

 

3.2.1. Power Transfer Function and Characteristic Polynomials 

 

Lossless
Linear

Network
K(s)

Source Load

Pin Pout

Prefin Prefout

 

Figure 3-1: Doubly terminated lossless linear network. 

 

Figure 3-1 illustrates a doubly terminated lossless transmission network which can 

represent a lossless bandpass filter. Assume that Pin is the input power to be transmitted 

through the circuit, while Pout is the output power available at the load. Since in passive 

circuits Pout can not exceed Pin, it is convenient to denote, that: 
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where K(s) is a rational function in s with real coefficients. On the other hand, the inverted 

power ratio from (3.2-1) is a squared magnitude of the transmission coefficient, known in 

transmission line theory as scattering parameter S21(s): 
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Reflected power is characterized by the reflection coefficient, or scattering parameter 

S11(s), which is related (for lossless networks) to S21(s) through: 
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It can be shown that for linear, time-invariant networks S11(s) can be represented as a ratio 

[3-1]: 
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Thus, taking into account (3.2-3), for s = jω it is correct that: 
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Polynomials E(s), F(s) and P(s) are referred to as characteristic polynomials; determination 

of their coefficients from the given specification poses the approximation problem. 

Function K(s) is known as the characteristic function, which can be derived from the 

characteristic polynomials using the following expression: 
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In (3.2-7) the ripple constant ε is employed in order to normalize the maximum amplitude 

of the filter in passband. In synthesis procedure both polynomials are normalized so that 

their highest coefficients are unity and the resultant constant factor is absorbed in the ripple 

constant. 

 

Generally, various characteristic functions are available for approximation; however several 

classical functions are traditionally noted. These are Butterworth, or maximally flat; 

Chebyshev and inverse Chebyshev; Cauer, or elliptic; and their modifications. Properties 

and features of these characteristic functions are discussed in Sections 3.2.2-3.2.5. 
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3.2.2. Butterworth Approximation 

Butterworth, or maximally flat, approximation is the simplest to an ideal lowpass filter. 

This is an all-pole filter function which shows maximal possible flatness of the insertion 

loss curve in origin. The approximation is defined by: 

 

      ( ) nK ωω = ,     (3.2-8) 

 

where n is the degree of the prototype network.  This suggests that P(s) = 1 and  F(s) = sn. 

S-parameters of the filter prototype are determined as: 
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Consequently, the unknown coefficients of the polynomial E(s) can be obtained from [3-2]: 
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where k = 1, 2, …, 2n. 

 

The calculated maximally flat prototype transmission characteristics corresponding to 

different circuit orders are illustrated in Figure 3-2. 
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Figure 3-2: Maximally flat filter responses for various filter orders n. 
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3.2.3. Chebyshev Approximation 

Chebyshev approximation provides sharper slope for lower filter order n, in comparison 

with the maximally flat approximation, but introduces equal ripples in passband [3-2, 3-3]. 

Chebyshev characteristic function is defined as: 

 

( ) ( )ωεω nTK ⋅= ,             (3.2-12) 

 

where Tn(ω) is a Chebyshev polynomial of degree n. Thus, P(s) = 1, F(s) = Tn(s/j), and 

expressions for S-parameters yield: 

 

( ) ( )ωε
ω

22

2

21 1

1

nT
jS

+
= ,     (3.2-13) 

( ) ( )
( )ωε

ωεω
22

22
2

11 1 n

n

T

T
jS

+
= .     (3.2-14) 

 

Chebyshev polynomials can be defined by the following recursion relationship: 

 

( ) ( ) ( )xTxxTxT nnn 11 2 −+ −= ,     (3.2-15) 

 

where T0(x) = 1 and T1(x) = x. Alternatively, a trigonometric expression can be used: 

 

( ) ( )xnxTn arccoscos ⋅= .    (3.2-16) 

 

The characteristic polynomial E(s) can be derived as a product of the left half-plane roots 

(i.e. with σk < 0) sk = σk+jωk, where: 
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where k = 1, 2, …, 2n. 

 

Typical frequency response of the Chebyshev filter prototype is illustrated in Figure 3-3. 
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Figure 3-3: Lowpass prototype filter frequency response of Chebyshev type. 
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3.2.4. Generalized Chebyshev Approximation 

Generalized Chebyshev (or pseudo-elliptic) approximation makes possible the realization 

of the filters with equiripple insertion loss in passband and arbitrary placed transmission 

zeros in stopband. This enables synthesis of highly selective filters with sharp slopes and 

asymmetrical frequency responses required for certain applications, for example, base 

station transmit filters. The location of the transmission zeros is not restricted to being at 

real frequencies only, and the coefficient of the characteristic polynomials generally 

become complex values. 

 

The generalized Chebyshev characteristic function is defined as 
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Here, ω is the angular frequency variable and ωTZi is the position of the i th transmission zero 

to be realized. Consequently, the transmission coefficient is expressed as follows [3-2]: 
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Taking into account the equation (3.2-7), the filtering function CN(ω) can be rewritten as a 

ratio of two polynomials: 
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with the denominator directly composed from the transmission zeros 
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while the numerator FN(ω) is calculated using a recursive technique [3-4]: 
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where 12 −=′ ωω . 

 

In [3-5] an alternative recursive technique for obtaining the characteristic polynomials can 

be found. 
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Figure 3-4: Generalized Chebyshev (or pseudo-elliptic) frequency response with three 

transmission zeros in upper stopband. 



 51 

An example of a generalized Chebyshev filter prototype frequency response is shown in 

Figure 3-4. More examples of filters with generalized Chebyshev responses will be given in 

chapters 4 – 6 of this thesis. 
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3.2.5. Elliptic Approximation 

An elliptic approximation provides a solution with equal ripple of the insertion loss in both 

passband and stopband. Due to this property it has the sharpest possible attenuation slope. 

The characteristic function used for this type of approximation is dependent on the Jacobian 

elliptic function sn(x) and the complete elliptic integral of the first kind K. The 

characteristic function can be expressed as: 
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where ( )[ ] nvKav /sinsnsin θθ ⋅= , v = 1, 2, …, n. Here sinθ = ωp/ωs; ωp and ωs are the 

cutoff frequencies which determine the rippled intervals in the passband and stopband 

respectively. 

 

The unknown characteristic polynomial E(s) can be composed of the left half-plane roots 

calculated from the following equation: 
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Eventually, the transmission coefficient of elliptic filter with m zeros (ωZ1… ωZm) and k 

poles (ωP1… ωPk) can be presented in form 

 

   

))...((
))...((

1

1
)(

222
1

2

222
1

2

2

21

ZmZ

PkP

S

ωωωω
ωωωω

ω

−−
−−+

=   (3.2-30) 

 

where the location of all the poles and zeros is prescribed by filter specifications and 

therefore there is no flexibility in comparison with the generalized Chebyshev type. 
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Comprehensive explanation of filter approximation using elliptic functions can be found in 

[3-6, 3-7]. 
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Figure 3-5: Elliptic frequency response. 

 

A typical frequency response of the filter with elliptic approximation is presented in Figure 

3-5. 

 



 54 

3.3. Synthesis of Filter Prototypes 

 

The next step of the filter design procedure is the synthesis of the equivalent network 

prototype, which is capable of reproducing the transfer function derived as a result of 

approximation process. The filter prototype acts as an interface between an abstract 

filtering function and a structure to be realized. The equivalent circuit should model the 

electrical performance of the real construction that will implement the filter, so that 

dimensions of components can be obtained from element values of the prototype. Usually, 

the normalized lowpass filter prototypes are chosen as equivalent networks, which can 

further be converted into bandpass, bandstop, or high-pass filter prototypes by applying of 

the frequency transformation (or frequency mapping) procedure (see Section 3.4). In this 

section, a brief overview of the most popular equivalent circuits and their elements is given, 

as well as the available methods for network synthesis are presented.  

 

3.3.1. Elements of Filter Prototypes 
 

Generally, filter prototype networks are synthesized of several standard basic elements, 

which model electrical characteristics of a corresponding real component. Variety of 

different circuit elements is currently known to be created for the purpose of convenient 

filter design in different technologies; however only those elements used below in this 

thesis will be considered in the current section. The most commonly used elements can be 

collected in the following list: 

 

• resistors; 

• inductors; 

• capacitors; 

• impedance/admittance inverters; 

• frequency independent reactances. 

 

The schematic circuit representations of the elements on the above list are given in Figure 

3-6. 
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Figure 3-6: Schematic representations of the commonly used prototype elements: 

(a) resistor; (b) inductor; (c) capacitor; (d) FIR; (e) inverter. 

 

Resistors are usual frequency independent resistive elements, playing the roles of 

termination loads in filter prototype circuits. Obviously, the resistors are used to account  

for losses in prototype networks; however, prototypes are considered as lossless circuits in 

order to simplify analysis of the filters. In advanced lossy filters resistors are deliberately 

included in prototypes to form the required predistortions [3-8]. 

 

Inductors and capacitors represent standard lossless reactances directly and inversely 

proportional to frequency, with electrical characteristics modeled by formulae presented in 

Figure 3-6. 

 

Frequency invariant reactance (FIR) is a non-standard element introduced by Baum [3-9] to 

account for centre frequency shifts of the resonators in asynchronously tuned filters. This is 

an abstract lossless element with constant reactance throughout the entire frequency range, 
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which is widely applied in the recently developed concept of the filters with non-resonating 

nodes (NRN). 

 

An inverter is a lossless, reciprocal, frequency independent, symmetrical two-port network 

which inverts and scales any impedance connected to its output port, i.e. the impedance 

seen from the input of the inverter is inversely proportional to the load impedance (see 

circuit and expression in Figure 3-6). Very often the inverter is defined by its transfer (or 

ABCD-) matrix, which is convenient for analysis of filter circuits using matrix methods: 
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Impedance inverters are commonly used in filters based on distributed circuits such as 

microwave and millimeter wave filters which often can not be realized using lumped 

elements due to their very small size. It must be noted that impedance inverters with 

proportionality constant K are usually referred to as K-inverters, while admittance inverters 

with proportionality constant J are referred to as J-inverters. For admittance inverters 

loaded with admittance YL at output, the following equation is correct: 

 

L
in Y

J
Y

2

=            (3.3-2) 

 

Consequently, a K-inverter can be considered as a J-inverter using the simple 

transformation: 

 

K
J

1=           (3.3-3) 

 

An impedance/admittance inverter can be realized, for instance, as a discontinuity arranged 

between two sections of homogeneous transmission line, or as a quarter-wavelength section 
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of transmission line (known as quarter-wavelength transformer). More information about 

realization of impedance and admittance inverters can be found in [3-1, 3-2, 3-3]. 

 



 58 

3.3.2. Ladder Networks 
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Figure 3-7: Ladder network. 

 

One of the most commonly used circuits for the realization of rational functions in filter 

design is the ladder network. It is composed of shunt and series impedances in ladder 

configuration (shown in Figure 3-7). The element values of the prototype can be found 

from input impedance/admittance of the filter by employing standard analysis technique for 

ladder circuits [3-2]. Alternatively, for standard filtering functions (Butterworth, Chebyshev 

types), the element values can be found from tables or promptly computed based upon the 

main filter specifications.  
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Figure 3-8: Lowpass filter prototype with impedance/admittance inverters. 
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As mentioned above, at micro- and millimeter waves distributed circuits are preferred 

rather than lumped elements for simplicity, and thus it is more practical to transform the 

ladder network into the circuit shown in Figure 3-8, where shunt and series elements are 

connected through impedance or admittance inverters. 

 

Both types of circuits presented above are time invariant and belong to the class of linear, 

lossless and passive networks. In addition, the ladder circuits are minimum phase networks, 

where only one path for energy transmission between source and load is possible. Hence, 

the networks are capable of realizing frequency responses of Butterworth and Chebyshev 

types, without any transmission zeros revealed at real frequencies (also referred to as all-

pole filters). The continued fraction expansion method applied to the expression of input 

impedance/admittance is usually used for synthesis of these types of networks [3-3]. 

 

For the prototypes of generalized Chebyshev and elliptic filters, the modified inverter-

coupled ladder networks, including frequency invariant reactance elements are commonly 

used. Synthesis of these networks is carried out by employing extracted pole technique [3-

2, 3-10]. This synthesis method for the generalized Chebyshev filters with non-resonating 

nodes will be further discussed in details in Chapter 5. 
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Figure 3-9: Ladder prototype network of 4th order elliptic filter with symmetric response: 

(a) cross-coupled circuit; (b) direct-coupled equivalent circuit. 

 

An alternative technique of obtaining transmission zeros at finite frequencies is available 

using cross-coupled network topologies, where more than one path for the signal exists 

between source and load [3-11]. Transmission zeros are produced by interaction of signals 

which come to the load with different phase shifts; if the phase shifts at a certain frequency 

are opposite, then the signals cancel each other and transmission zero appears; alternatively, 

signals add up and no transmission zero reveals [3-12].  
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The simplest prototype of elliptic filter with symmetrically located transmission zeros can 

be realized as cross-coupled ladder network shown in Figure 3-9a. This type of filters can 

be synthesizes by employing even-odd-mode impedances/admittances technique [3-1, 3-2]. 

Extraction of the element values of the prototype can be significantly simplified by 

bisecting the circuit along its symmetry plane, which converts the initial cross-coupled 

ladder network into the simple inverter-coupled (direct-coupled) ladder circuit with 

frequency invariant susceptances shown in Figure 3-9b. Even and odd 

impedance/admittance of the prototype can be derived from the filtering function. More 

details on synthesis of ladder filter prototype networks can be found in [3-1, 3-2, 3-10]. 

 



 62 

3.3.3. Multiple Coupled Resonators Circuit Model 

As a development of the symmetric cross-coupled network topology, the multiple coupled 

resonator bandpass prototype circuit has been introduced by Atia and Williams [3-11, 3-13] 

in 1970s. The proposed model, which consists of N resonators coupled by transformers, is 

shown in Figure 3-10a. Each resonator is represented by capacitor of 1 F in series with the 

self inductance of 1 H within each loop, so the resonant frequency of all the resonators is 

1 rad/s. Generally, each loop couples to every other through mutual couplings between the 

inductors; all values of the couplings are normalized to a bandwidth of 1 rad/s. This circuit 

is limited to support filter prototypes with symmetric frequency responses only. 
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Figure 3-10: Models of the general coupled-resonator filter: (a) Atia-Williams [3-11];  

(b) Cameron [3-10]. 

 

The above model has been further modified by Cameron [3-10]; frequency independent 

reactance elements have been inserted in each loop in series in order to account for resonant 

frequency shifts of individual resonators, and enable the circuit to represent asymmetric 

characteristics. The network with FIR elements is shown in Figure 3-10b. 
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The multiple coupled resonators filter model can also be represented as a lowpass prototype 

circuit. In this model, couplings assumed frequency invariant are replaced by the 

impedance inverters of the same values, while the resonators are replaced by series 

inductors. Consequently, the FIR elements of the loops become connected in series with 

inductors. The lowpass prototype model of the cross-coupled filter is shown in Figure 3-11. 
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Figure 3-11: Lowpass prototype of the multiple-coupled resonators filter. 

 

Frequency responses of the bandpass and lowpass prototypes are related through the 

bandpass-to-lowpass frequency transformation, which will be discussed in detail in Section 

3.4. 

 

3.3.3.1.  Coupling Matrix Circuit Representation 

Let us consider the circuit presented in Figure 3-10b, which operates between a voltage 

source generating E volts with an internal impedance of RS and a load RL. By applying the 

loop currents method (Kirchhoff’s equations for each loop) leading to series of equations, 

the circuit can be represented with the following matrix equation: 

 

[ ] [ ] [ ]tN
t iiijMsIRE  ..., , ,0 ..., 0, ,1 21⋅++=⋅       (3.3-4) 

 

where R is the N×N matrix, which contains the values of the source an load impedances in 

top left and bottom right corners with all the other entries equal to zero; I is the identity 

matrix; s is the complex frequency variable (s = jω); and M is the coupling matrix 

containing values of mutual couplings between all the resonators: 
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Here, the entries of the main diagonal represent the values of the frequency independent 

reactance elements Xi, also referred to as self-couplings. 
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Figure 3-12: Lowpass prototype of the (N+2) cross-coupled filter. 

 

Usually it is more convenient to normalize the source and load impedances to unity 

connecting them to the first/last resonators through a transformer, or through an inverter for 

lowpass prototypes. Consequently, in this case the coupling matrix becomes (N+2)× (N+2). 

Moreover, it is possible to generalize the model by adding couplings between source/load 

and each other resonator, as well as the direct coupling between source and load. Hence, the 

generalized lowpass prototype of a cross-coupled filter with direct coupling between input 

and output can be represented by the network shown in Figure 3-12. The corresponding 

coupling matrix for the prototype presented in Figure 3-12, takes the following form: 
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3.3.3.2. Direct Synthesis of the N×N Coupling Matrix 

 

The problem of cross-coupled filter design lies in derivation of the coupling matrix M, 

which generates the transfer function able to satisfy the filter specification given in terms of 

the desired bandwidth, insertion loss, return loss, ripple constants, etc. The transfer function 

is set explicitly by means of characteristic polynomials discussed in Section 3.2. 
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Figure 3-13: Representation of the Nth -order cross-coupled filter as a two-port network. 

 

For the coupling  matrix  synthesis  procedure,  the  prototype  network  from  Figure 3-11 

is considered as a two-port block, which operates between a current source of IS amperes 

with internal impedance of RS, and load resistance RL (see Figure 3-13). The prototype 

network can be represented using the standard two-port admittance matrix Y, defined by 

equation: 
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Entries of the Y-matrix can be derived from the characteristic polynomials P(s), F(s) and 

E(s) through ABCD-matrix representation, or by employing the standard procedure [3-14], 

involving complex-even and complex-odd polynomials, to the expression for input 

impedance/admittance. 
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On the other hand, it can be shown that the elements of the Y-matrix can be written in terms 

of the N×N coupling matrix M to be determined [3-15], and the frequency variable s = jω 

as follows: 

 

( ) [ ] 1
1111
−−−= IMjsY ω       (3.3-8) 

( ) [ ] 1
22

−−−= NNIMjsY ω        (3.3-9) 

( ) ( ) [ ] 1
12112

−−−== NIMjsYsY ω            (3.3-10) 

 

The matrix M, real and symmetrical about its principal diagonal, can be decomposed using 

its eigenvalues Nii ,1 , =λ : 

 

   tTTM ⋅Λ⋅=−     (3.3-11) 

 

where T – is an N×N matrix with rows of orthogonal vectors; Tt – is the transpose of T such 

that ITT t =⋅ ; Λ – is a diagonal matrix containing the eigenvalues Nii ,1 , =λ : 
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Therefore, the entries of the admittance matrix can be rewritten as follows: 

 

( ) [ ] 1

22

−−⋅Λ⋅−= NN
t ITTjsY ω          (3.3-13) 

( ) [ ] 1

121

−−⋅Λ⋅−= N
t ITTjsY ω          (3.3-14) 

 

The solutions of the inverse eigenmatrix problems in equations (3.3-13) and (3.3-14) yield 

the following partial fraction expansions: 
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It is clear from (3.3-15) and (3.3-16) that the eigenvalues of the coupling matrix, multiplied 

by j, are equal to the roots of the denominator polynomial, common for admittances Y12(s) 

and Y22(s). On the other hand, the entries of the matrix T can be obtained from the residues 

of the partial fraction expansions of the Y-parameters: 
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Hence, 
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Generally, the terminating resistances are not normalized to unity; however the 

normalization can be performed by inserting inverters with values SS RM =1  and 

LNL RM = . These parameters can be obtained out of the known entries of the T-matrix:  
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The rest of the rows of the T-matrix can be reconstructed by applying the Gram-Schmidt 

orthonormalization process [3-16]. 
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3.3.3.3.  Reduction of Coupling Matrix 

The N×N coupling matrix obtained as a result of direct synthesis procedure generally 

contains all nonzero entries. Physically, this means that every resonator is coupled to each 

other, which is impossible or extremely difficult to implement by means of a practical 

circuit. In order to overcome this issue, similarity transformations (or rotations) are applied 

to the M-matrix for annihilation of the unwanted couplings until more convenient form is 

obtained [3-4]. This procedure preserves the eigenmodes and eigenvectors of the coupling 

matrix, which means that the transfer characteristics of the filter described by the new 

coupling matrix remain unchanged in comparison with the initial one. The last statement 

implies that the certain transfer characteristic may be realized by more than one unique 

coupling matrix. 

 

Similarity transformation with a pivot [i, j] is defined as follows: 

 

  tRMRM 1011 ⋅⋅=    (3.3-21) 

 

where M0 – is the initial coupling matrix; M1 – transformed coupling matrix; R1 – the N×N 

rotation matrix of the following format: 
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where Rmii = Rmjj = cosθm and Rmij = –Rmji = sinθm; θm – is the rotation angle. For example, 

the annihilation of a nonzero coupling element Mij (as well as symmetric element Mji) can 

be carried out by applying rotation with a pivot [k, j] with an angle ( )kikj MM /tan 1−−=θ . 

More equations for annihilation of specific elements of the coupling matrix are available in 

[3-10]. 
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The reduction procedure consists of a sequence of similarity transformations which 

progressively annihilate the unwanted entries of the coupling matrix. Usually the sequences 

of rotations are applied to certain rows or columns of the matrix, since a single rotation 

with a pivot [i, j] affects rows and columns i and j only; in addition, it is important that zero 

entries in affected rows and columns remain zero after the transformation. 

 

More information about physical interpretation of the similarity transformations can be 

found in [3-19]. Example of the coupling matrix derived by similarity transformations will 

be given further in Section 5. 

 

3.3.3.4. Direct Synthesis of the (N+2)× (N+2) Coupling Matrix 

 

The (N + 2)× (N + 2) coupling matrix is capable of representing the fully canonical filters, 

which may realize the maximum of N transmission zeros at finite frequencies for an Nth-

order network. This can be achieved by introducing a direct coupling between source and 

load.  

 

The synthesis of the (N + 2)× (N + 2) coupling matrix is carried out in two steps: first, the 

initial coupling matrix for a canonical transversal filter prototype is synthesized; then, the 

obtained transversal coupling matrix is converted to the desired configuration by means of 

a sequence of the similarity transformations [3-10, 3-17]. 

 

The canonical transversal filter prototype network, shown in Figure 3-14a, consists of N 

lowpass resonators (represented as a capacitor and a FIR connected in parallel), each 

coupled to source and load by inverters, while not coupled to each other. The equivalent 

circuit of each lowpass resonator with couplings is shown in Figure 3-14b. Direct coupling 

between source and load is represented by inverter MSL. 
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Figure 3-14: Canonical transversal array network: (a) Nth-order circuit with direct source-

load coupling; (b) Representation of the kth branch in the transversal array. 

 

It can be easily proved that the admittance matrix Y of the Nth-order canonical transversal 

array network may be written as: 
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On the other hand, the entries of the admittance matrix Y are rational functions, thus these 

can be represented as partial fraction expansions using poles and residues: 
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The constant K is equal to zero for all cases except for the fully canonical. The constant 

should be extracted from the Y21(s) function, which numerator and denominator are of the 

same degree. K is evaluated as follows: 

 

   ( )∞== jsYjK 21     (3.3-25) 

 

Consequently, the poles and residues for the equation (3.3-24) can be found from the new 

expression for the Y21(s): 

 

( ) ( ) jKsYsY −′=′ 2121    (3.3-26) 

 

From comparison of equations (3.3-23) and (3.3-24) it can be concluded that the elements 

of the canonical transversal network can be straightforwardly relayed to the obtained poles 

and residues: 
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The resultant (N + 2)× (N + 2) fully-canonical coupling matrix M for the transversal array is 

symmetric about the principal diagonal, and has the following structure: 
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The unnecessary couplings between source/load and resonators can be further annihilated 

by applying the rotation procedure (see Section 3.3.3.3). The similarity transformations 

employed for the transversal coupling matrix lead to the appearance of nonzero couplings 

between the resonators and affect their resonant frequencies. 

 

3.3.3.5. Coupling Matrix Synthesis by Optimization 

The (N + 2)× (N + 2) coupling matrix can be synthesized by optimization. The idea of this 

technique is to determine the coupling matrix M, which generates the frequency response of 

the filter, which minimizes a cost function composed to account for the difference between 

the response generated by the coupling matrix and the ideal one [3-5, 3-18].  

 

Standard Newton’s optimization procedure begins from determination of the topology 

capable of reproducing the required number of transmission zeros in the frequency 

response; hence, the entries of the coupling matrix, which are responsible for interaction of 

the uncoupled resonators, are set to zero. All the other couplings are generally set to 

arbitrary but reasonable values. The frequency response generated by the initial matrix is 

evaluated, as well as the corresponding cost function and gradients. Then, the coupling 

matrix of the next iteration is composed on the basis of the calculated gradients. The 

procedure repeats until the cost function is minimized according to a certain criteria. 

 

The optimization technique uses the lowpass coupled resonators model shown in Figure 3-

12. Analysis of the model using the loop currents method yields the matrix equation: 

 

( ) EjIAIMWjR ⋅−=⋅=⋅+Ω+−   (3.3-29) 

 

where R is a (N + 2)× (N + 2) matrix with two unity entries R11 and RN+2, N+2; W is a (N + 

2)× (N + 2) identity matrix, where W11 = WN+2, N+2 = 0; Ω is the normalized frequency; I is 

the vector of loop currents; E is the excitation vector.  
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Transmission and reflection coefficients of the model can be calculated by 
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    1
1,111 21 −⋅+= AjS     (3.3-31) 

 

The cost function used for optimization is constructed based upon the notion that the 

filtering functions for the generalized Chebyshev filters are determined by the positions of 

its poles and zeros; also, the ripple constant should be taken into account. Consequently, the 

cost function is composed by the following expression: 
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where Ziω  and Piω  are all the NZ zeros and NP poles of the filtering function. 

 

The gradients of the cost function include the derivatives of the transmission coefficients 

with respect to the nonzero entries of the coupling matrix. These can be expressed as [3-

18]: 
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3.3.3.6. Selection of Topology 

Topology of a cross-coupled filter is determined by the present couplings between its 

resonators. In the direct coupling matrix synthesis procedures the topology of the initially 

obtained matrix is strictly appointed (every resonator is coupled to each other, or coupled to 

source and load only), and the unwanted couplings can be further annihilated by rotations. 

In this case the filter topology to be designed can not be chosen in advance. In contrast, for 

the optimization based matrix synthesis method, the topology is appointed by designers. 

Thus, it is crucial to determine the topology, which is capable of generating the required 

filtering function. The problem leads to analysis of different topologies in order to find out 

the possible number and locations (in upper or lower stopband) of the transmission zeros 

generated by them. 

 

To find a solution for this problem, physical reasons for appearance of transmission zeros 

in cross-coupled filters must be examined. It is well known that a reactive electronic circuit 

introduces a phase shift into the incident signal propagating through it. If a signal flows 

between source and load through several paths, then, generally, each separate portion of the 

signal undergoes different phase shift at the load; hence, some signals may come to the load 

(generally, to a certain node) in phase or out of phase. In the latter case the signals 

compensate one another and a transmission zero appears.  

 

Therefore, for obtaining the positions of transmission zeros, an analysis of frequency shifts 

caused by certain pairs of signal paths is required. More information on the algorithm 

applied to cross-coupled networks for this purpose is given in [3-12]. 

 

The fundamental theorem for determining the maximum number of transmission zeros 

offered by a certain topology has been rigorously proved by Amari and Bornemann [3-20, 

3-21]. It states that a cross-coupled filter is capable of producing the maximum number of 

transmission zeros equal to the maximum number of bypassed resonators between source 

and load. This implies that an Nth order filter with direct coupling between source and load 

may generate no more than N transmission zeros. If source and load are uncoupled, then the 

maximum number of possible transmission zeros is reduced to N – 2. This rule also clearly 
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illustrates the fundamental reason why the direct coupled topology is unable to generate 

any transmission zero: only single path between source and load exists, and no resonators 

are bypassed. Hence, the direct coupled topology is a network for implementation of all-

pole filters. 

 

It must be specially noted that for some topologies the coupling matrix for the realization of 

a certain filter may be not unique, and many different matrices may reproduce the same 

filtering function. The solution to the uniqueness problem is available in [3-19], where it 

has been shown that the transversal matrix is a universal representation of coupled 

resonator filters of arbitrary orders, topologies and positions of the transmission zeros. 
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3.3.4. Extracted Pole Filters 
 
Often it is technically difficult or even impossible to realize coupling coefficients with 

negative values which appear in the synthesized coupling matrix. In these cases extracted 

pole filter networks are widely used. In these circuits transmission zeros appear due to the 

bandstop sections removed from the initial filter prototype; the remaining filter circuit does 

not require any cross-couplings and may be even an inline direct-coupled resonators 

network [3-22]. The bandstop section consists of a lowpass resonator represented as an 

inductor connected in series with a FIR element [3-10]. Bandstop section with its 

equivalent circuit with inverter is presented in Figure 3-15. 
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Figure 3-15: Schematic representation of a bandstop section. 
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Figure 3-16: Removal of a transmission line section from the filter network. 

 

The bandstop section is extracted out of the two-port ABCD-matrix of the filter, which can 

be easily composed from the known polynomials of the filtering function [3-2]. First, the 

two-port network is considered as cascade of a transmission line section with a remainder 

[ABCD]1-matrix, as shown in Figure 3-16. 
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The entries of the remainder matrix can be calculated as follows [3-10]: 
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where J is usually taken to be unity for simplification, and 
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Figure 3-17: Removal of the bandstop section from the remaining network. 

 

Next, the remaining network represented with [ABCD]1-matrix is considered as a bandstop 

section connected in series with another two-port network described by means of [ABCD]2-

matrix (see Figure 3-17). Consequently, the new remainder matrix can be calculated using 

the following equation: 
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where B0 can be extracted as a residue 
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If the rest of the circuit described by the [ABCD]2-matrix contains another bandstop 

sections to be extracted, then the procedure is repeated until all the poles are removed from 

the initial network. The remainder circuit, containing no extracted poles, can be synthesized 

using the techniques illustrated above in this chapter. 
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3.3.5. Filters With Non-Resonating Nodes 
 

Non-resonating node (NRN) is a shunt FIR element introduced within a prototype network. 

The NRN offer an opportunity to design cross-coupled filters with maximum number of 

transmission zeros without direct coupling between source and load. NRN, integrated 

within a cross-coupled network, introduces constant phase shift and provides new paths for 

the signal so as to organize more transmission zeros in a certain topology. Another major 

advantage of the NRNs is ability to reduce the overall size of filters. This happens because 

strongly detuned resonators with smaller dimensions are often used for implementation of 

the NRNs. 

 

One of the most attractive applications of the NRNs is the design of inline filters with 

cascaded topologies. The inline filters are implemented as separately designed modules 

with own source and load nodes. Then, the load nodes of the modules are connected to the 

source nodes of the next modules in such a way creating the intermediate NRNs. Use of the 

separate modules has an important advantage. Each module included in a filter is able to 

control its own poles and/or transmission zeros; this feature simplifies tuning of cross-

coupled filters and reduces their sensitivity to manufacturing tolerances. The described 

concept of filter design is often referred to as modular design. 

 

Several basic modules for cascading have been introduced in past years. Singlet [3-23], the 

simplest module (shown in Figure 3-18a), consists of a single resonator bypassed by direct 

source-load coupling; this scheme produces and controls a pair pole-zero, positions of 

which may vary depending on signs and values of the available three couplings. Doublet 

[3-24, 3-25, 3-26] is a more flexible scheme, since two different topological configurations 

are available (see Figures 3-18b and c), as well as three options for the arrangement of 

poles and zeros; it is capable of generating and controlling two poles and two zeros. 

Doublet scheme together with an introduced short resonator constitutes an extended doublet 

[3-27] (presented in Figure 3-18d); this structure offers three poles and two transmission 

zeros. The coupling scheme of a typical inline cascaded filter, designed using the modular 

concept, in given in Figure 3-18e. 
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        (a)   (b)           (c) 

 

        (d)          (e) 

Source/Load NRN Resonator 
 

Figure 3-18: Modules used for cascaded filter design:  

(a) singlet; (b) square doublet; (c) diamond doublet; (d) extended doublet;  

(e) scheme of a typical filter based on the modular design concept. 

 

Filter prototypes with NRNs can be synthesized by direct synthesis [3-28], by node 

insertion [3-29] or different reconfiguration of already synthesized network [3-23], and by 

optimization (see Section 3.3.3.5). For synthesis by optimization it is important to note that 

the coupling scheme of a filter should be selected in advance, as well as that the FIR 

elements forming NRN are frequency independent. The latter implies that in equation (3.3-

29) the entries of the principal diagonal of the matrix W, which correspond to the NRNs, 

should be modified into zeros. 

 

In this thesis several filter structures based upon the modular filter design principle 

(including singlets, doublets and extracted pole sections) will be demonstrated in 

chapters 4-6. 
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3.3.6. Filters with Frequency Dependent Couplings 
 

Use of frequency dependent inter-resonator couplings has become a less popular technique 

to improve stopband performance by generating transmission zeros. To illustrate the idea of 

the method, consider an inline admittance inverter-coupled lowpass filter prototype where 

the value of one of the inverters Ji is frequency dependent: Ji = Ji(Ω). The circuit is 

illustrated in Figure 3-19. 

 

1 1jB1
jBNJ1 J2

Ji JN

 

      ( )Ω= ii JJ  

Figure 3-19: Lowpass prototype of a direct-coupled filter with a frequency dependent 

admittance inverter Ji. 

 

Assume that at a certain normalized frequency Ω0 the value of inverter Ji turns into infinity. 

In that case the input impedance of the entire circuit at Ω0 yields zero, i.e. the circuit 

becomes short regardless of the values of all the other elements of the network. Hence, 

propagation of signals through the network becomes impossible at Ω0, and the transmission 

zero appears at that frequency. 

 

The design problem for this type of filters lies in the development of coupling elements 

which are capable of revealing the required frequency dependent properties. In [3-30] 

frequency dependent irises with two slots for conventional waveguide applications have 

been introduced. The inverters based upon such irises have linear frequency dependence 

and generate a single transmission zero in either the upper or lower stopband. The inverters 

described by linear functions of frequency offer attractive solutions for design of pseudo-

elliptic or elliptic filters; it has been shown in [3-31] that the cross-coupled filters which 

include such inverters can be represented by an equivalent cross-coupled network 

composed of conventional frequency independent inverters and resonators. 
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Another approach to introduce transmission zeros in an inline filter by employing the 

frequency dependent inverters has been realized in [3-32], where a mixture of irises and 

stubs has been organized for this purpose in a conventional rectangular waveguide section. 

 

Application of the frequency dependent coupling elements in the design of cross-coupled 

filters is being intensively investigated at the present time. Theoretically, use of such 

structures may lead not only to generating transmission zeros, but also to the design of a 

new class of broadband filters; thus, new developments are expected in this field, which 

makes this area of knowledge very attractive for researchers. 
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3.4. Frequency Transformation 

 

The lowpass filter prototype networks, previously considered in this chapter, operate 

between source with unity internal resistance and unity load having the normalized cutoff 

frequency of Ωc = 1. However, these restrictions are clearly unpractical for use in real 

applications; therefore elements of the lowpass prototypes are transformed and scaled into 

new networks which offer acceptable solutions for certain specifications. In this section 

frequency transformation (also referred to as frequency mapping) techniques required for 

conversion of filter responses from the lowpass frequency Ω domain into the real angular 

frequency ω domain, together with the impedance scaling method, are briefly reviewed. 

 

3.4.1. Lowpass-to-Lowpass Transformation 
 

To transform a lowpass filter prototype into a practical lowpass filter network with cutoff 

angular frequency of ωc, the following frequency mapping should be applied [3-2]: 

 

ω
ωc

cΩ=Ω             (3.4-1) 

 

Formula (3.4-1) assigns linear scaling; therefore, all the frequency dependent elements of 

the prototype retain their configuration, getting new values: 

 

c

cLL
ω
Ω→           (3.4-2a) 

c

cCC
ω
Ω→           (3.4-2b) 

 

Note that the impedance scaling is not included in expressions (3.4-2), as well as in other 

expressions relevant to the frequency mapping, listed further in this chapter. Additionally, 

the values of all the frequency independent prototype elements do not change as a 

consequence of frequency transformations of any type. 
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3.4.2. Lowpass-to-Highpass Transformation 
 

For highpass filters with real cutoff angular frequency of ωc, the frequency transformation 

is defined as [3-2]: 

 

    
ω
ωccΩ−=Ω     (3.4-3) 

 

It can be shown that as a result of lowpass-to-highpass transformation the inductors turn 

into capacitors and vice versa. In this case the new values of inductors and capacitors in the 

highpass filter network are: 

 

     
C

L
ccωΩ

→ 1
    (3.4-4a) 

     
L

C
ccωΩ

→ 1
    (3.4-4b) 
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3.4.3. Lowpass-to-Bandpass Transformation 
 

By employing the lowpass-to-bandpass transformation, the lowpass filter prototype can be 

converted into a bandpass filter with a passband of ω2 – ω1, where ω1 and ω2 are the 

passband-edge angular frequencies. The required mapping is defined by the following 

expression [3-1, 3-2]: 
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where ω0 is the center angular frequency calculated as 210 ωωω = . If this transformation is 

applied to the inductive and capacitive elements of the lowpass prototype, the inductors are 

transformed into the series LC resonant circuits with the values calculated as: 
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Similarly, the capacitors are converted into the parallel LC resonant circuits. The new 

parameters can be obtained from: 
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It is evident from equations (3.4-7) that the resonators have the resonance frequency, which 

coincides with the centre frequency of the filter: 
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0 =ω     (3.4-8) 

 

In the asynchronously tuned filters the lowpass resonators are often modelled as capacitor 

C connected in parallel with a frequency invariant susceptance B; this shifts the centre 

frequency of the resonator. For these circuits the bandpass transformation leads to the 

following results: 

 









+

−
Ω⋅=

2

1

12

0

0

BC
C c

res ωω
ω

ω
        (3.4-9a) 

1

12

0

0 2

1
−









−

−
Ω⋅= BC

L c
res ωω

ω
ω

        (3.4-9b) 

 

Hence, the angular resonant frequency of a real resonator in the bandpass filter is calculated 

as [3-1] 
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Using the equation (3.4-10), all the angular resonant frequencies of individual resonators 

which constitute an asynchronously tuned filter can be obtained. 
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3.4.4. Lowpass-to-Bandstop Transformation 
 

To transform a lowpass filter prototype into bandstop, one needs to apply the mapping 

scheme of the following form [3-1]: 
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In contrast with the lowpass-to-bandpass transformation, the inductive elements of the 

lowpass prototype are transformed into parallel LC resonant circuits with the values 

calculated by 
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The capacitive elements become converted into the series LC resonant circuits: 
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3.4.5. Lowpass-to-Multiband Transformation 
 

Transformation from lowpass prototype to multiband filter can be considered as a 

superposition of several bandpass and bandstop mappings. Generalized expression for the 

multiband transformation can be written as follows: 
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where NP is the number of passbands, and NS – number of stopbands in the multiband 

filter. 

 

In practice, the lowpass-to-multiband transformation leads to appearance of several new 

parallel or series resonant LC circuits connected through inverters instead of each lowpass 

resonator. Individual circuits, obtained as a result of the transformation from lowpass 

resonators are often referred to as multiband resonators. More information on the 

application of the multiband frequency mapping can be found in [3-33, 3-34]. 
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3.4.6. Impedance Scaling 
 
Impedance scaling is performed for the normalization of the unity source and load 

impedances to any required value Z0 (or inverse value of the termination admittance Y0). 

Hong and Lancaster in [3-1] introduce the impedance scaling factor γ0 for convenience of 

the procedure: 
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where g0 is a normalized source or load impedance of the lowpass prototype filter. 

Consequently, the values of the elements of the filter prototype are scaled using the 

following rules: 

 

• for impedance: RR 0γ→ ; 

• for admittance: 
0γ

G
G → ; 

• for inductance: LL 0γ→ ; 

• for capacitance: 
0γ

C
C → ; 

• for frequency invariant reactance: XX 0γ→ ; 

• for frequency invariant susceptance: 
0γ

B
B → ; 

• for impedance inverters: KK 0γ→ ; 

• for admittance inverters: 
0γ

J
J → . 
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Note that the impedance scaling procedure should be applied after the transformation of 

inductors and capacitors into their corresponding elements, in order to avoid possible 

errors. The scaling procedure does not affect the frequency characteristics of the filter. 
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3.5. Implementation and Optimization 

 

In the next stage of the design procedure the synthesized bandpass prototype filter should 

be implemented in a real physical structure. The implementation involves translation of the 

calculated circuit parameters into physical dimensions of components of the device to be 

realized. However, in engineering there is no guarantee that the obtained dimensions 

instantaneously give the perfect solution. This implies that the final dimensions of the 

filters have to be optimized in order to achieve results suitable for fabrication. 

 

3.5.1. Filter Implementation 
 

At present, a great variety of technologies and their hybrids are available to embody 

microwave or mm-wave filters (waveguide [3-35], coaxial [3-36], microstrip [3-37], 

substrate integrated [3-38], dielectric resonator [3-39] etc.); therefore numerous 

technologies for filter implementation have been developed for the long history of filter 

design.  

 

In general, the majority of implementation techniques for the class of coupled-resonator 

filters are built on the design of individual resonators with required resonant frequencies 

and finding solutions for realization of couplings between them [3-37]. The resonators may 

be realized as single-, double- or multimode [3-11, 3-22, 3-40]. Usually, sections of 

transmission lines are used at micro- and millimetre waves as resonators. The resonant 

frequencies of resonators are determined mainly by size; often, for tuning purpose, 

perturbations or other elements are included in resonator constructions. Dimensions of the 

resonators can be calculated for simple shapes, or modelled in electromagnetic simulators.  

 

Couplings, by definition, should be realized by elements capable of providing exchange of 

energy between resonators. These can be organized by posts [3-34, 3-38], irises [3-22, 3-

35], septa [3-41], perturbations [3-11], fringing fields [3-37], and by other means. To obtain 

dimensions of the coupling elements, corresponding to the coupling coefficient to be 

implemented, design curves based upon electromagnetic simulations or, rarely, direct 
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measurements are usually built. Sometimes analytical solutions are available for coupling 

elements design problem. 

 

In this thesis, several examples of filters implemented in hybrid microstrip and rectangular 

waveguide technology are presented. Integration of microstrips in the E-plane of a 

rectangular waveguide, leading to creation of extracted pole sections and other basic cross-

coupled modules, suitable for cascade filter design (see Section 3.3) is considered in 

chapters 4 and 5. In chapter 6 the problem of implementation of couplings between folded 

substrate integrated waveguide resonators is addressed; a new negative coupling structure 

for this type of technology is proposed and investigated. 
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3.5.2. Filter Optimization 
 

Dimensions of real structures obtained as a result of the implementation procedure do not 

guarantee that the fabricated filter has exactly the same frequency response as initially 

approximated. Therefore, optimization is necessary for finding new values which show 

better agreement with the theoretical model. 

 

At present, commercial EM-simulators are widely applied in filter design. These simulate 

the transmission characteristics of filters by modelling propagation of EM-waves in real 

structures, which is based upon numerical solving of the Maxwell’s equations using the 

finite element method (FEM), mode matching technique (MMT), finite difference time 

domain (FDTD) technique and others.  Therefore, all filter design procedures, starting from 

the implementation stage, are carried out with computer aid, i.e. only the fully verified 

device simulated with high accuracy is eventually fabricated. However, accurate EM-

simulation is a time and computational resources consuming process. Hence, gradient-

based optimization [3-42] using a full-field solver appears to be difficult and ineffective.  

 

Recently, new effective space mapping optimization techniques for EM-simulators have 

been proposed, which avoid the direct optimization of accurate (or fine) model by using 

coarse model as an intermediate step [3-10]. The coarse model offers lower accuracy and is 

time efficient, while the fine model provides high accuracy, however demands more 

computational time. The notion of the method lies in establishing the relationship between 

the parameters of the coarse and fine models, and performing the optimization in the coarse 

model parameter space. Then, the optimal parameters for the fine model can be found by 

applying the inversion to the optimal solution for the coarse model. In the first space 

mapping approach [3-43], linear mapping was assumed between two parameter spaces. 

More advanced aggressive space mapping approach deals with nonlinear mapping between 

these spaces; in this case nonlinear equations are solved by available numerical methods. 

More information on space mapping optimization techniques and examples of its use for 

filter design can be found in [3-44, 3-45]. 
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3.6. Summary 

 

In this chapter an overview of filter design and optimization procedures has been presented.  

 

In section 3.2 approximation techniques for derivation of the analytical expressions, 

representing the transfer functions which satisfy the initial filter specifications, have been 

presented. 

 

Filter prototype synthesis methods have been presented in section 3.3. The prototype 

circuits are synthesized as ladder or cross-coupled networks; coupling matrices have been 

introduced as a convenient tool for representation of the cross-coupled filter prototype 

circuits. Direct and optimization synthesis techniques for N×N and (N+2) ×  (N+2) 

coupling matrices have been considered, as well as the method of rotations used for 

elimination of unwanted entries from a coupling matrix. The main topologies of the cross-

coupled filters used for the generation of transmission zeros in filter stopband have been 

presented. 

 

In section 3.4 the frequency mapping techniques applied for conversion of the lowpass 

prototype filter into practical highpass, bandpass, bandstop and multiband prototype filters 

have been considered. Transformations of the lowpass prototype elements caused by the 

frequency mapping process have been presented.  

 

Filter implementation and optimization procedures have been briefly outlined in 

section 3.5. The problem of implementation will be further addressed in detail in 

chapters 4-6; more information about the optimization techniques used in filter design can 

be found in the references. 
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CHAPTER 4 

E-PLANE  CROSS-COUPLED FILTERS  IN  

CONVENTIONAL  RECTANGULAR  WAVEGUIDE 

4.1.  Introduction 

 

The standard E-plane waveguide filters are organized by means of the direct-coupled 

topology which provides a single path between source and load; this implies that these 

filters may have all-pole frequency responses, and transmission zeros can not be generated. 

Interaction between adjacent resonators in the E-plane filters is provided by metallic septa 

which, being combined, form E-plane inserts to be arranged within a waveguide. The 

inserts can be all-metal (for example, cut out of copper foil) or metallo-dielectric; the latter 

usually is a piece of dielectric substrate with septa etched on top metallization layer, while 

the bottom metallization is removed. However, bottom metallization can be used to realize 

cross-couplings in E-plane filters. For this purpose, a stripline resonator can be etched on 

the bottom side, opposite to a top side septum. This will introduce two new couplings with 

adjacent waveguide resonators, forming a triplet [4-1, 4-2] – the filtering module capable of 

generating a single transmission zero at finite frequency.  

 

This approach can be further generalized by substituting the waveguide resonators by NRN, 

which yields a singlet, the simplest filtering module introduced in [4-3]. More complex 

modules can be obtained by employing additional stripline resonators on the bottom side. 

Use of NRN makes possible arrangement of the filtering modules into a modular cross-

coupled filter, whose poles and zeros can be controlled independently by adjusting 

parameters of individual modules. 

 

In this chapter a problem of modular filter design using E-plane inserts in rectangular 

waveguide will be addressed. In section 4.2 several filtering modules composed of septa 

and stripline resonators are proposed. Their configurations and main properties are 
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outlined. Section 4.3 gives an overview of coupling coefficients traditionally used in the 

design of cross-coupled filters for characterization of degree of interaction between 

adjacent resonators. Methods of extraction of coupling coefficients from simulated or 

measured frequency responses are discussed. In section 4.4 design examples of single 

filtering modules and cross-coupled filters composed of these modules, and implemented in 

E-plane technology, are presented. Bandpass filters containing NRN are fabricated and 

tested in order to prove feasibility of the proposed approach. 
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4.2. Design of Cross-Coupled Filters Using E-plane Inserts 

 
In this section several modules for E-plane cross-coupled filters composed of septa and 

stripline resonators, and implemented using metallo-dielectric inserts, will be discussed. 

 

4.2.1. Singlets 

 

Singlet is the simplest filtering module which consists of a single resonator and generates a 

pole-zero pair due to bypass source-load coupling. 

 

4.2.1.1. Model of Singlets and Analysis  

 

Source Load

Resonator
s+jB1

JS1 J1L

JSL

 

 
Figure 4-1: Coupling scheme representation of a singlet. 

 

The coupling scheme of a singlet is presented in Figure 4-1. It contains three nodes 

representing source, load and a resonator. Solid lines connecting the nodes represent 

couplings between them; two of these couplings constitute the main path (source-resonator 

and resonator-load); the third one is a bypass coupling between source and load. According 

to Amari and Bornemann [4-4, 4-5], this coupling scheme generates a single transmission 

zero as only one resonator is bypassed. Coupling matrix of an arbitrary singlet, 

corresponding to the coupling scheme, has the following form: 
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For symmetrical singlets the matrix can be simplified by JS1 = J1L. 

 

Frequency domain performance of the singlet’s lowpass prototype equivalent scheme can 

be analyzed by applying formulae (3.3-30) and (3.3-31) to matrix M. The following 

expressions for S-parameters of an arbitrary singlet have been obtained: 
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where Ω – is a lowpass frequency variable. 

 

It is clear that variation of constant value of FIR B1 (variation of resonant frequency of the 

resonator in real-frequency domain) leads to corresponding shift of transmission 

characteristics, and the expressions can be analyzed for B1 equal to zero for simplicity.  

 

The singlet’s model has a transmission zero at ΩZ and a pole at ΩP:  
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Positions of singlet’s pole and transmission zero are determined by all three couplings 

available in its coupling scheme; the transmission zero always appears at a real frequency. 

If values of all the couplings are positive, then the transmission zero is located in the upper 

stopband, while its location in the lower stopband requires an odd number of negative 

couplings. From (4.2-5) it is clear that a general singlet has its pole at a complex frequency. 

However, it can be noticed that the pole frequency moves to real frequency for those 

singlets where |JS1| = |J1L|.  
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Discrepancy between positions of pole and zero for a singlet with its eigenmodes located at 

real frequencies can be evaluated as follows 
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This illustrates the flexibility of transmission zeros positioning with respect to passband 

offered by singlets, which is important for singlet-based modular filter design for a variety 

of applications. 

 

4.2.1.2. Implementation of Singlets  

  

 

(a)     (b) 

Figure 4-2: Configurations of E-plane singlets in rectangular waveguide:  

(a) with O-shaped resonator; (b) with I-shaped resonator. 

 

Two configurations of E-plane singlets are presented in Figure 4-2. Both of the singlet 

structures consist of a metallo-dielectric insert arranged in the E-plane of a conventional 

rectangular waveguide. The inserts are dielectric slabs of rectangular shape with a resonator 

etched on top side, and metallic septum placed on the other one. Separate all-metal insert 

can be used for realization of the septum as well. The septum acts as inverter and 

implements the direct source-load coupling. Resonators can be organized as a section of 

stripline of arbitrary shape. Couplings between source, load and the resonator are 

implemented by interaction between the resonating mode in resonator and the mode 

propagating in the waveguide; if the resonator is narrower than the septum, then evanescent 

mode in the septum region is utilized for this purpose.  
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In Figure 4-2 two variations of singlets with O-shaped and I-shaped resonators are shown. 

Generally, more variations including S-shaped, C-shaped and other resonators are 

available. The difference between these resonators is in their ability to provide various 

combinations of external couplings (JS1 and J1L); hence, selection of resonator for use in 

singlets mainly depends on external coupling required for a certain design. 

 

Simulated frequency responses of the proposed singlets, obtained using Ansoft HFSS™ 

EM solver, are presented in Figure 4-3. The S-parameters of the structures indicate that the 

singlets generate a transmission zero which is located at a frequency higher than the pole 

frequency. The singlets have been designed to exhibit the same pole frequency using septa 

of the same width for the purpose of comparison. Hence, it can be concluded from the 

simulated curves that transmission zero of singlet with O-shaped resonator is located 

further in the upper stopband than the transmission zero of the one with I-shaped resonator. 

This effect can be explained by the fact that the fast decaying evanescent mode, 

propagating in the waveguide through the septum region, interacts with the O-shaped 

resonator stronger than with the I-shaped resonator, as the O-shaped resonator is located 

closer to the septum’s ends than the I-shaped one. In support of this statement, formula 

(4.2-6) suggests that for singlets with constant bypass coupling the distance between pole 

and zero grows with increase external couplings. 
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Figure 4-3: Simulated frequency responses of the proposed singlets. 
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4.2.2. Doublets 

Doublet is a filtering module capable of generating two poles and two transmission zeros. 

The generation of transmission zeros in lower stopband using E-plane singlets presents 

some difficulty. E-plane doublet, introduced in this section, provides a neat solution for this 

problem. 

 

4.2.2.1. Configuration and Frequency Response  
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Figure 4-4: Configuration of an E-plane doublet with two hairpin resonators in 

rectangular waveguide. 

 

Configuration of the proposed E-plane doublet is shown in Figure 4-4. The structure 

consists of a metallo-dielectric E-plane insert arranged within a conventional rectangular 

waveguide. The insert is a rectangular piece of dielectric substrate with two hairpin 

resonators etched on its top side so that their open ends face one another. On the other side 

of the dielectric slab a metallic septum is placed which can be implemented by either 

etching bottom side of the dielectric substrate or by a piece of metallic foil placed between 
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two halves of waveguide housing. The septum is an inductive discontinuity which acts as 

an inverter in combination with short transmission line sections [4-6]–[4-8]. 

 

Transmission characteristics of the proposed doublet, simulated in commercial finite-

element-based electromagnetic solver Ansoft HFSS™, are presented in Figure 4-5. The 

obtained frequency response shows that the doublet structure acts as a bandpass filter with 

two poles and two transmission zeros placed asymmetrically in the upper and lower 

stopbands with respect to the doublet’s centre frequency. 
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Figure 4-5: Calculated from extracted coupling matrix and simulated frequency 

responses of the proposed doublet. 

 

4.2.2.2. Coupling Scheme and Analysis  

 

Source LoadResonator  
 

Figure 4-6: Coupling scheme representation of the proposed doublet. 
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The behaviour of the doublet in the frequency domain can be analyzed using its coupling 

scheme presented in Figure 4-6. It contains four nodes which represent source, load and 

two hairpin resonators. Couplings between them are shown as solid lines; it is evident that 

all the couplings in the doublet have non-zero values. Its coupling matrix has the following 

form: 
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For doublets with symmetrical geometry the matrix can be simplified by using equalities 

JS1 = J2L, JS2 = J1L, B1 = B2 = 0. 

 

Generalized doublets described by the coupling matrix M have been investigated 

theoretically in [4-9]. It has been shown that transmission zeros generated by the doublet 

may be arranged in different combinations according to values and signs of entries of 

coupling matrix M. General expressions for S-parameters of the doublet can be obtained by 

applying formula (3.3-30) and (3.3-31) to matrix M: 
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The resultant expressions are complex for comprehensive analysis; however some 

important conclusions can be made. First of all, it is seen from (4.2-8) and (4.2-9) that the 

network always reveals two poles and two zeros if coupling between source and load JSL is 

non-zero; at the same time it is evident that non-zero value of JS2 results in asymmetrical 

location of poles and zeros with respect to centre frequency, in contrast with symmetrical 

location for JS2 = 0. Degree of this asymmetry can be evaluated by discrepancy between 

vertices of parabola given by numerator polynomials in (4.2-8) and (4.2-9): 
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The proposed doublet structure has several design constraints which limit the variety of 

possible combinations. For example, inverter JSL implemented by a solid septum may have 

only positive values; consequently, the value of J12 will be always negative as it is 

implemented by capacitive coupling between hairpin resonators. This can be illustrated by 

extraction of coupling matrix elements from the simulated frequency response of a doublet 

using optimization technique outlined in section 3.3.3.5. The coupling matrix, 

corresponding to the calculated S-parameters presented in Figure 4-5, has been derived in 

MATLAB™: 
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4.2.3. Higher Order Modules 

The approach used for the implementation of doublet in the previous section can be 

extended to higher order modules. In the doublet structure hairpin resonators are coupled 

directly by means of capacitive interaction at the ends of stripline section. The idea of 

realization of higher order modules consists in placing additional resonators between the 

first and last ones. In that way, number of resonators in the main path grows thus increasing 

the order of the obtained filter. At the same time, bypass coupling implemented by a 

septum creates another path for the signal and makes possible generation of transmission 

zeros. However, not only these two paths are available in the structure being proposed. 

Evanescent mode which propagates between the septum and side wall of the waveguide, 

interacts with all resonators in the main path before extinction. As a result, additional 

couplings appear which introduce uncontrollable transmission zeros, sometimes located in 

the passband. 

 

To avoid this issue, the added resonators can be shielded by another septum arranged in 

parallel with the present one. Introduction of the additional septum reduces inductance of 

the system of parallel septa and alters its properties as an inverter. However, in a qualitative 

sense, these septa still provide direct coupling between source and load. The new septum 

can be implemented either as a separate all-metal insert or as a metallo-dielectric insert, 

combined with the present one or separated from it. The combined insert requires a 

multilayer structure with three metallization layers; top and bottom layers contain septa, 

while the middle one contains all the resonators which thus can be considered as symmetric 

stripline resonators. Use of separate insert leads to the same configuration but two dielectric 

slabs can be split. Configuration of a typical module with multilayer E-plane insert in 

rectangular waveguide is presented in Figure 4-7. The 3rd-order module shown in this figure 

contains an I-shaped resonator between two hairpins. This resonator interacts with the 

adjacent ones using electric coupling at its open ends. It is shown in [4-10] that this 

interaction can be characterized by negative coupling coefficient (considered in more detail 

in section 4.3). 
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Figure 4-7: Configuration of a 3rd-order filtering module using multilayer E-plane insert 

in rectangular waveguide. 
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Figure 4-8: Simulated frequency response of a 3rd-order E-plane filtering module. 

 

The simulated frequency response of the 3rd-order module, shown in Figure 4-7, is 

presented in Figure 4-8. The characteristic displays three poles and a single transmission 

zero in the upper stopband. It can be noticed that, in comparison with the response of the 

doublet considered in the previous section, the lower stopband transmission zero has 

disappeared after introducing an I-shaped resonator between two hairpins. The origin of 

this effect can be found by analysis of phase shifts caused by sequences of coupled 

resonators in the main paths of the two structures; this method, introduced by Thomas in 

2003 [4-11], makes possible the determination of the number of transmission zeros which 
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an arbitrary coupling scheme may produce. Also, it can be found whether these 

transmission zeros are located in the lower or upper stopband. 
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Figure 4-9: Coupling scheme of the proposed 3rd-order E-plane filtering module. 

 

The coupling scheme of the proposed 3rd-order module with corresponding phase shifts 

caused by its elements is depicted in Figure 4-9. It is seen that the phase shift in the main 

path for frequencies below the resonance is 270°; for frequencies above the resonance it is 

equal to –270°. Taking into account that the phase shift provided by direct source-load 

coupling is equal to –90°, it is clear that signals from both paths reach the load in phase at 

frequencies lower than resonant, but out of phase at frequencies higher than resonant (in 

fact, this condition is satisfied at a certain frequency where the transmission zero appears). 

Hence, the 3rd-order module generates a single transmission zero in the upper stopband.  

 

Coupling scheme of a doublet can be obtained from the scheme of the 3rd-order module by 

removing the middle resonator and one of its couplings to adjacent resonators. In this case, 

phase shift in lower stopband drops by 180°, while in upper stopband it retains its value in 

comparison with the initial shifts calculated for the 3rd-order module. This leads to 

appearance of another transmission zero in lower stopband, as signals are out of phase at 

these frequencies. Similarly, if another I-shaped resonator is added in the main path, phase 

shifts lower than resonant frequency increase by 180°, and remain unaffected higher than 

resonance; consequently, the new 4th-order module will generate two transmission zeros. 

Design example of such a module will be presented in section 4.4.1. Generally, for the class 

of structures with I-shaped and hairpin resonators being considered, it can be shown that 
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modules with even order generate one transmission zero in each stopband, while modules 

of odd order generate only one zero in the upper stopband.  
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4.3. Coupling Coefficients in Filter Design 
 

4.3.1. Coupling Coefficients 

In lowpass filter prototypes, discussed in section 3.3, coupling matrices described cross-

coupled filters with unity bandwidth at zero centre frequency in terms of normalized 

frequency variable Ω. Consequently, entries Mij of a coupling matrix characterize the 

degree of interaction between adjacent resonators required to satisfy these conditions. 

However, real filters are designed to perform at a certain centre frequency f0 with a 

specified bandwidth BW. Therefore, in order to provide link between the model and reality, 

coupling values are normalized to fractional bandwidth FBW = BW / f0. Values obtained as 

a result of this normalization are referred to as coupling coefficients.  

 

At the schematic circuit level, coupling coefficient between two resonators connected 

through admittance inverter Jij is introduced as follows [4-12] 
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represents total susceptance of the kth resonator.  

 

External couplings are defined by the external quality factor: 
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Figure 4-10: General representation of two coupled resonators. 

 

On the other hand, at the electromagnetic level, coupling is considered as transfer of power 

from one circuit to another. Hence, the coupling coefficient between two resonators is 

defined as a ratio of coupled energy to stored energy [4-13]: 
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Here, E
r

and H
r

 are vectors of electric and magnetic fields of resonators as it is shown in 

Figure 4-10. The fields are determined at resonance, and volume integrals are taken over 

the entire effective region with permittivity ε and permeability µ. Generally, the resonators 

1 and 2 may have different resonant frequencies. The first term in equation (4.3-4) 

represents electric coupling component, while the second one – magnetic coupling 

component. Coupling coefficient may possess positive or negative values due to dot 

multiplication of fields’ space vectors.  
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4.3.2. Extraction of Coupling Coefficients 

Coupling coefficients play very important role in filter design. In development of coupled 

resonators filters, a general technique is employed in order to relate values of coupling 

coefficients obtained theoretically to physical dimensions of structures which implement 

the couplings. Coupling between two resonators, synchronously or asynchronously tuned, 

can be characterised by two eigen frequencies that can be indentified by experiment or full 

wave EM simulation. Coupling coefficients extraction procedure from frequency responses 

for synchronously and asynchronously tuned resonators can be found in [4-14], [4-15].  

 

4.3.1.1. Synchronously Tuned Resonators  

Cm CCmC

-2Cm-2Cm

2Lm 2Lm

-Lm-LmL L

A

A'  

Figure 4-11: Schematic circuit representation of two synchronously tuned coupled 

resonators with mixed coupling. 

 

Network representation of two identical resonators with both capacitive and inductive 

couplings is presented in Figure 4-11, where C, L, Cm, and Lm are the self-capacitance, the 

self-inductance, the mutual capacitance, and the mutual inductance of the resonators 

respectively. Taking advantage of the circuit’s symmetry, electric and magnetic walls can 

be inserted in the symmetry plane A-A’, and even-odd mode technique can be applied to 

the schematic circuit. As a result of the analysis, two resonant frequencies of the equivalent 

circuit can be found as follows 
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Coupling coefficient k between these resonators is calculated as a superposition of its 

electric and magnetic components as 
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assuming that couplings are weak, which implies LCCL mm << . Combining equations (4.3-

5) and (4.3-6), an expression for extraction of coupling coefficient between synchronously 

tuned resonators can be obtained: 
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4.3.1.2. Asynchronously Tuned Resonators  

A similar method as shown in the previous section can be used for analysis of coupling 

coefficient between a pair of asynchronously tuned resonators. Assuming that one of the 
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where f2 and f1 are resonant frequencies of the obtained system of coupled resonators. 
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4.3.1.3. External Quality Factor  

External Q-factor of a resonator can be extracted by determining its 3dB-bandwidth from 

its frequency response. Consider an equivalent schematic circuit of a doubly-loaded 

resonator presented in Figure 4-12. 
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Figure 4-12: Schematic circuit representation of a doubly-loaded resonator. 

 

In this figure, A–A’ represents the symmetry plane and the single LC resonator has been 

separated into two symmetrical parts. Applying even-odd mode technique, one can obtain 

the following expressions for even- and odd-mode reflection coefficients [4-13]: 
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where LC/10 =ω  and ωωω ∆+= 0  with approximation )2/()( 2
0

2 ωωωω −=∆ , and singly-

loaded external Q-factor is denoted by 
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Therefore, after several manipulations, magnitude of transmission coefficient can be written 

as follows 
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It can be noticed from (4.3-11) that |S21| equals to 0.707 (or –3dB) when 
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ω
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Hence, 3dB-bandwidth and singly-loaded external Q-factor can be calculated as 

 

e
dB Q

0
3

2ωω =∆            (4.3-13) 

dB
eQ

3

02
ω
ω

∆
=           (4.3-14) 

 

Doubly-loaded external Q-factor is a half of the singly loaded one, and it can be extracted 

from frequency response as 
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Another extraction technique for the singly-loaded external Q-factor based on analysis of 

phase characteristic of reflection coefficient has been reported in [4-13]. In this case  
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ω
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where °±∆ 90ω  – is the absolute bandwidth between °± 90  points in phase response of 

reflection coefficient S11 against frequency. 
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4.4. Filter Design Examples 

In this section, two design examples of filters based upon the modules introduced 

previously in this chapter are presented. 

 

4.4.1. Design of a 4th-order Filter with Hairpin and I-shaped Resonators 

To demonstrate the design of an E-plane filtering module introduced in section 4.2.3, a 

fourth-order bandpass filter which, as shown previously, has two transmission zeros in both 

stopbands is implemented in conventional rectangular waveguide. The filter is designed to 

satisfy the following specifications: 

 

• centre frequency: 10.4 GHz; 

• ripple passband: 10.1 – 10.7 GHz; 

• return loss: 30 dB; 

• transmission zeros: 9.6 GHz and 11.9 GHz. 

 

4.4.1.1. Approximation and Synthesis  

Frequency response of the filter has been approximated by means of the standard technique 

for pseudo-elliptic filters, presented in section 3.2.4. The filter specifications yield the 

following expressions for the S-parameters of the lowpass prototype: 
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Figure 4-13: Coupling scheme of a 4th-order filter with two transmission zeros in both 

stopbands. 

 

Coupling scheme of the filter with corresponding coupling coefficients is shown in Figure 

4-13. The scheme has been obtained using analysis of physical structures proposed in 

section 4.2.3. It consists of five mainline couplings between adjacent resonators, a bypass 

direct source-load coupling, and two parasitic couplings between first and last resonators 

and source/load. The origin and effect of this coupling have been considered in section 

4.2.2. Coupling matrix of the filter has been obtained by optimization, using an adaptive 

algorithm (see section 3.3.3.5) realized in MATLAB™ by author. The denormalized matrix 

has the following form: 

 

     



























−
−−

−−
−

=

02727.1000311.00247.0

2727.101952.1000311.0

01952.108746.000

008746.001952.10

0311.0001952.102727.1

0247.00311.0002727.10

M    (4.4-5) 

 

Thereafter, coupling coefficients can be calculated from formulae (4.3-1) and (4.3-3). 

These values are: QextS = QextL = 10.701, k12 = k34 = –0.069, k23 = –0.05, kSL = 0.0014, 

kS4 = k1L = 0.0018. 
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4.4.1.2. Implementation  

The filter has been implemented using two hairpin and two I-shaped resonators etched in 

the middle layer of a metallo-dielectric insert placed between two septa, arranged in the E-

plane of a conventional rectangular waveguide. Configuration of the filter, together with a 

view of the metallo-dielectric insert containing stripline resonators, is presented in 

Figure 4-14. 

 

 

(a) 

 

HwgHi = Hc

Li Lc

d23 d12

Ldiel  

(b) 

Figure 4-14: Configuration of the proposed 4th-order filtering module: (a) 3D-view; (b) 

metallo-dielectric insert with stripline resonators. 

 

Design of the filter begins with determination of the required width of the double septum. 

This can be done by extraction of value of inverter implemented by the septum from its 

simulated reflection coefficient using the following expression: 
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To obtain the corresponding coupling coefficient kSL, the extracted value should be 

multiplied by FBW. 

 

Determination of dimensions of resonators has been done by analysis of frequency 

responses of doubly loaded hairpin and I-shaped resonators. I-shaped resonators have been 

examined as a stripline resonator with capacitive external couplings through a gap. Hairpin 

resonators are not pure stripline resonators as these are partially located between two septa; 

in this application, hairpin resonators can be considered as stepped-impedance resonators. 

Resonant frequency of these resonators depends on length of their fractions located 

between septa. For analysis of the hairpin resonator’s resonant frequency, it has been 

considered as a network operating between rectangular waveguide input and stripline 

output. For analysis of external Q-factor of these resonators, the stripline output has been 

removed, so the structure has been analyzed as a single-port network, and external Q-factor 

has been extracted using expression (4.3-16). 

 

Gaps d12 and d23 between the resonators have been determined by plotting dependencies of 

certain coupling coefficients, extracted from full-wave simulations, against physical 

dimensions of the insert’s elements for certain pairs of adjacent resonators. The coupled 

resonators have been simulated as two-port networks with stripline inputs for I-shaped 

resonators and rectangular waveguide inputs for hairpin resonators; it should be noted that 

the resonators should be weakly coupled to the inputs in order to keep accuracy of the 

procedure. A set of frequency responses used for extraction of coupling coefficient between 

hairpin and I-shaped resonators is presented in Figure 4-15. Coupling coefficients have 

been extracted from the frequency response using formula (4.3-7). Dependencies of 

extracted coupling coefficients against gaps d12 and d23 are shown in Figure 4-16. 
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Figure 4-15: Simulated frequency responses used for extraction of coupling coefficient k12. 
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Figure 4-16: Extracted coupling coeffcients k12 and k23 against gaps d12 and d23. 

 

The described procedure based upon coupling coefficients extraction gives initial 

dimensions of the filter structure for further optimization (see section 3.5.2) which, for this 

filter, has been carried in full-wave EM simulator Ansoft HFSS™ using quasi-Newton 

procedure. 

 

4.4.1.3. Experimental Verification   

The structure has been fabricated in order to demonstrate performance of the proposed filter 

and prove its feasibility. Due to restrictions of the available manufacturing technology, the 
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entire device has been realized using four separate components: two identical septa have 

been cut out of a sheet of copper foil with thickness TCu = 0.1 mm; and two pieces of 

dielectric have been cut out of a slab of Rogers Duroid RT/5880™ substrate (εr = 2.2, 

tanδ = 0.0009; thickness Tdiel = 1.5 mm). One side of both dielectric pieces have been 

etched: the pattern with hairpin and I-shaped resonators has been formed on the first piece, 

while the second piece has been patterned by a copper strip repeating the shape of septa in 

order to simplify the assembling process. The four components have been arranged 

between two halves of brass housing, in the E-plane of a standard waveguide WR90 

(22.86×10.16 mm2). Photograph of the components and assembled halves of the filter is 

presented in Figure 4-17. Dimensions of the filter are given in Table 4-1. 

 

 

Figure 4-17: Photograph of the fabricated filter 4th-order filter. 

 

Parameter Value, mm 
Hc 5.5 
Hi 5.45 
Lc 2.6 
Li 3.5 
d12 0.5 
d23 0.5 
Lsept 10.4 
Ldiel 20 

 

Table 4-1: Dimensions of the fabricated 4th-order filter (see Figure 4-14). 
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Figure 4-18:  Simulated and experimental frequency responses of the fabricated 4th-order 

filter with two transmission zeros. 

 

The filter has been tested using the Agilent Technologies E8361A network analyzer. 

Measured S-parameters are shown in Figure 4-18 in comparison with simulation results. 

Agreement of the curves is reasonable taking into account fabrication and measurement 

inaccuracies. The reason of good agreement of the simulated and measured transmission 

zeros is that their positions are mainly determined by the length of two septa which have 

been fabricated using the accurate PCB cutting process. On the other hand, the laboratory 

did not possess enough milling tools to remove the top and bottom metallization layers of 

the PCB slabs with high accuracy. Consequently, the metallization has been removed 

manually. As a result of this less accurate process, the hairpin resonators have been slightly 

damaged. This caused the shift of their resonant frequencies. At the same time, use of the 

separate copper inserts caused the issue of inaccurate alignment between the septa and the 

dielectric pieces, which has also resulted in shift of the hairpin resonators’ resonant 

frequencies. Taking into account high sensitivity of the filter to fabrication tolerances 

(particularly, to the resonators’ dimensions), the above issues have resulted in the severe 

degradation of the inband performance. 
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4.4.2. Application of E-plane Doublets in Modular Filters 

Doublets, as well as singlets, can be used as units for modular filter design which allows 

overcoming issues related with high sensitivity of cross-coupled filters to manufacturing 

tolerances. The doublet structure introduced in section 4.2.2 can be applied as a module to 

more complicated frequency selective devices. There are two possible ways to arrange two 

doublets in space in order to obtain advanced filter structure. Unit sections can be 

connected in series or in parallel. 

 

4.4.2.1. Inline Filter with NRN   

Connecting modules based on hairpin resonators and septum in series, an inline bandpass 

filter with four transmission zeros and four poles can be obtained. Since input and output 

nodes of doublets are non-resonating, cascading of modules has to be performed via NRN, 

role of which can be played by sections of waveguide with electrical length longer than 

wavelength about the centre frequency of the filter. For a bandpass filter composed of two 

doublets, design leads to the functional scheme presented in Figure 4-19.  

 

Source Non-resonating
node

Load

Resonator

 

Figure 4-19: Coupling scheme of a doublet-based inline filter with NRN. 

 

 

Figure 4-20: Configuration of a doublet-based inline filter with NRN. 
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Configuration of the inline filter with two doublets designed for centre frequency of 

10.2 GHz with 900 MHz bandwidth is shown in Figure 4-20. The structure contains two 

identical doublets connected via an NRN which is represented by a waveguide resonator 

with E-plane ridge, added in order to lower the spurious resonance frequency and thus 

improve lower stopband of the filter, maintaining its compactness. 

 

4.4.2.2. Dual-Band Filter   

 

Source Load

Resonator 

Figure 4-21: Coupling scheme of a doublet-based dual-band filter. 

 

 

Figure 4-22: Configuration of a doublet-based dual-band filter. 

 
 

Utilization of the doublet’s septum as a shield makes it possible to apply connection of 

doublets in parallel. Two pairs of capacitively coupled hairpin resonators placed on both 

sides of the septum can act independently and without interaction between different pairs 

due to shielding effect of the septum. As a result, resonant frequency of one of coupled 

pairs can be moved higher or lower maintaining the coupling scheme and signs of coupling 
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coefficients. Thus, two doublets are organized at different central frequencies 

simultaneously, and the structure acts as a dual-band filter with four poles and four 

transmission zeros. Coupling scheme of the filter is given in Figure 4-21. View of the dual-

band filter’s Ansoft HFSS™ model with passbands at 7.9 – 8.4 GHz and 10.4 – 10.8 GHz 

is presented in Figure 4-22. It must be noted that septum has additional fragments attached 

to its sides in order to prevent parasitic coupling between shielded resonators. 

 

4.4.2.3. Experimental Verification 

The proposed doublet inserts have been fabricated by etching the top side of a 1.524 mm 

thick Rogers RT/Duroid 5880 substrate (εr = 2.2, tanδ = 0.0009) with 0.017 mm copper 

cladding using a standard PCB process. Copper metallization has been completely removed 

from the bottom side of the dielectric inserts. The septum has been cut out of a copper foil 

sheet with thickness of 0.1 mm. Finished insertions have been placed into the E-plane of a 

rectangular waveguide WR90 (22.86×10.16 mm2) composed of two housing halves made 

of brass. Photograph of the E-plane inserts and septa used for experimental verification are 

presented in Figure 4-23. 

 

 

Figure 4-23: Metallo-dielectric waveguide inserts for implementation of the proposed 

doublet-based filters. 

 
Frequency responses of the doublets and filters have been measured with Agilent PNA 

(E8361A) network analyzer. Experimental frequency responses of the structures have been 

compared to those simulated in Ansoft HFSS™. In Figure 4-24 simulated and experimental 

transmission coefficients of the doublet with a passband of 7.9–8.4 GHz are presented. 
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Dimensions of the structure are given in Table 4-2. Experimental curve appears to be 

shifted upper by 0.25 GHz and to exhibit insertion loss of 1.5 dB. 

 

Parameters  Dimensions, mm 
Width of septum, Wsept 11.5 

Length of hairpin resonator, Lc 6 
Height of hairpin resonator, Hc 4.3 

Line width of hairpin resonator, Wc 1 
Gap between resonators, Gap 1.1 
Length of dielectric slab, Ldiel 25 

Length of waveguide section, Lwg 60 
 

Table 4-2: Dimensions of the fabricated doublet. 

 

Figure 4-24: Simulated and measured transmission coefficients of a single doublet. 

 

Comparison of measurement and simulation results for the inline filter is shown in Figure 

4-25. Dimensions of the filter are given in Table 4-3. The measured curve is again shifted 

to upper frequencies; the structure has all four predicted transmission zeros and shows 

insertion loss of 2 dB in passband. 
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Figure 4-25: Simulated and measured frequency responses of inline filter with NRN. 

 

Parameters Dimensions, mm 
Width of septa, Wsept 6.5 

Length of hairpin resonator, Lc 4.4 
Height of hairpin resonator, Hc 4 

Line width of hairpin resonator, Wc 0.8 
Gap between resonators, Gap 0.6 

Length of non-resonating node, Lnrn 16.9 
Length of dielectric slab, Ldiel 35 

Length of waveguide section, Lwg 60 
 

Table 4-3: Dimensions of inline filter with NRN. 

 

Dielectric slab with two hairpins has been added to the structure depicted in Figure 4-4 in 

order to realize a dual-band filter. Dimensions of the smaller hairpins are given as follows: 

Lc = 5.3 mm, Hc = 3 mm, Gap = 1.4 mm. In Figure 4-26 simulated and experimental 

responses of the dual-band filter are presented. Measured response is shifted and upper 

passband exhibits extra 2 dB insertion loss in comparison with simulation. 
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Figure 4-26: Simulated and measured transmission coefficients of the doublets-based dual-

band filter. 

 

It can be concluded from comparison of simulated and experimental results that agreement 

is quite good taking into account inaccuracies of manufacturing and measurement. 

However it can be suggested that experimental responses displays an offset to higher 

frequencies in all the plots. This can be explained by accuracy of a mill used and alteration 

of effective permittivity in waveguide due to removal of a quite thick layer of dielectric 

substrate by etching machine together with cladding. Higher insertion loss in the upper 

band of the dual-band filter occurred due to a fabrication error. Metallization of the 

dielectric inserts of the filter was first removed using the PCB milling machine, and then, in 

the areas where milling was unsuccessful, copper was removed manually. Frequency 

response of the filter in the upper passband is determined by the insert containing two small 

hairpin resonators (see Figure 4-23). In the area between the hairpin resonators the 

metallization was removed manually which resulted in shortening of the left resonator due 

to error. Therefore, the resonant frequency of the left resonator has shifted upper and this 

mismatch lead to increase of the insertion loss in passband. 
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4.5.  Summary 

 

In this chapter the problem of cross-coupled filters design using metallo-dielectric E-plane 

inserts in rectangular waveguides has been considered. 

 

In section 4.2 E-plane singlets, doublets and higher order filtering modules capable of 

generating transmission zeros in upper and lower stopbands have been introduced. 

Coupling schemes and corresponding coupling matrices of the modules have been analyzed 

theoretically. Implementation technique for the E-plane modules using stripline resonators 

and septa has been proposed. The introduced concept allows designing simple and compact 

filters with improved stopband performance in rectangular waveguides without using 

negative coupling elements. 

 

In section 4.3 the concept of coupling coefficients between coupled resonators has been 

discussed. Methods of coupling coefficients extraction from simulated or measured 

frequency responses of the coupled resonators have been derived for synchronously and 

asynchronously tuned resonators. 

 

Finally, in section 4.4 several design examples of cross-coupled filters have been presented. 

A compact 4th-order filter with two transmission zeros has been designed and implemented 

using a multilayer E-plane insert with hairpin and I-shaped stripline resonators. Utilization 

of doublets as basic modules for advanced cross-coupled filters has been illustrated by 

design of a 4th-order bandpass filter with NRN, which has four transmission zeros, the 

maximum possible number. Also, a dual-band filter realized using two doublets connected 

in parallel has been proposed. The filters have been fabricated and tested in order to prove 

adequacy of the introduced ideas. Frequency responses of all the fabricated filters have 

suffered from inaccurate fabrication process. The numerous errors have been related to lack 

of practical experience at the machine PCB fabrication, as well as to unavailability of tools 

required for the process. Unavailability of suitable waveguide housing with a thick channel 

has become an additional difficulty. Despite that, the obtained experimental results have 

shown reasonable agreement with the simulated data and prove validity of the approach. 
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CHAPTER 5 

E-PLANE  EXTRACTED  POLE FILTERS  IN  

CONVENTIONAL  RECTANGULAR  WAVEGUIDE 

5.1.  Introduction 

 

Inline extracted pole filters with NRN have become very popular in recent years due to 

their ability to produce the maximum number of transmission zeros equal to the order of the 

filter without direct coupling between source and load. The filters exhibit the property of 

modularity, since positions of transmission zeros can be controlled independently by 

adjusting parameters of separate extracted pole sections (EPS). 

 

In rectangular waveguide technology, extracted pole filters are implemented by means of 

coupled resonating and non-resonating cavities [5-1]–[5-3]. This approach is inflexible, as 

it excessively consumes time and resources due to fabrication of waveguide housing for 

each individual filter. In contrast, E-plane technology [5-4], where all-metal or metallo-

dielectric inserts are arranged in the E-plane of rectangular waveguides, offers more design 

flexibility due to its simplicity, inexpensiveness and the fact that it allows implementation 

of varieties of filters through utilizing the same housing. As long as E-plane inserts are 

arranged in longitudinal direction, the extracted pole filters with inline topology make the 

ideal solution suitable for implementation in the E-plane technology. However, to present 

day, very few works have been dedicated to the design of extracted pole filters in E-plane 

technology. In [5-5] the E-plane bandpass filter was implemented with EPS connected 

directly to input and output; internal EPS were used in [5-6] for realization of a bandstop 

filter. 

 

During the last decade, several investigations into methods of miniaturizing conventional 

E-plane filters, as well as making improvements to their stopband performance have been 

carried out. It has been shown that split ring resonators (SRR) [5-7], [5-8] and S-shaped 
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resonators [5-9], embedded within the E-plane resonators, cause shifting of fundamental 

resonance of the structure to lower frequencies and generate a transmission zero in upper 

stopband. The observed phenomena have been speculatively explained by metamaterial 

effects which occur in periodical lattices composed of SRRs or S-shaped resonators. 

However, no convincing explanations of the effects based upon the filter theory have been 

given yet. In this chapter, a comprehensive theoretical explanation of the observed effects is 

given; the E-plane resonator with embedded SRR of S-shaped resonator is considered as an 

EPS, capable of generating a single pole-transmission zero pair. 

 

In section 5.2 EPS containing NRNs are introduced as key components of inline extracted 

pole filters. Main properties of the circuit are outlined. Abstract generalized coupling 

coefficients, applied for design of filters with NRNs, are presented in section 5.3. 

Extraction techniques for generalized coupling coefficients within EPS and between them 

are given. In section 5.4 realization of EPS in E-plane technology is discussed. Several 

potential implementations are proposed. It is shown that the E-plane resonators with 

embedded resonators act as EPS; generalized coupling coefficients of the EPS are 

investigated as functions of physical dimensions. Finally, in section 5.5 several design 

examples of inline extracted pole filters implemented in E-plane technology are presented. 

Compact filters with transmission zeros in both lower and upper stopbands are designed 

and fabricated. Experimental verification of theoretical results and simulations is carried 

out in order to prove adequacy of the proposed model. 
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5.2.  Extracted Pole Sections 

 

Extracted pole sections originate from reconfiguration of the inline extracted pole filter 

prototype network discussed in section 3.3.4. The transmission line section, removed at the 

first stage of the synthesis procedure, can be represented as an equivalent circuit composed 

of an inverter and two FIR elements. Details of the transformation are presented in Figure 

5-1. 

 

jB jBY0

J

 

θtan
0Y

B −=   
θsin
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Figure 5-1: Transformation of a transmission line section in extracted pole filter prototypes. 

 

As a result of the above transformation, the prototype of the extracted pole filter can be 

reconfigured into an inline inverter-coupled network, which consists of EPS and single 

resonators. The EPS are composed of a bandstop section connected in parallel with an FIR 

element, as shown in Figure 5-2a. The shunt FIR element is also referred to as a non-

resonating node, and in coupling schemes it is usually denoted by a special symbol. In 

Figure 5-2b, an equivalent representation of an EPS is given as a coupling scheme 

composed of two resonating and non-resonating nodes. The inverter is presented as a line 

connecting the nodes. Generally, EPS may be removed from the circuit not only at the ends 

of the direct-coupled network, but also can be formed in the middle of a filter prototype [5-

1, 5-2, 5-10]. The entire coupling scheme of a 3rd-order extracted pole filter with two 

transmission zeros is depicted in Figure 5-3. 
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Figure 5-2: Extracted pole section: (a) schematic representation; (b) coupling scheme 

representation. 
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Figure 5-3: Coupling scheme of a 3rd-order extracted pole filter with two transmission 

zeros. 

 

Direct-coupled extracted pole filters can also be synthesized from input 

impedance/admittance rational functions by applying the direct synthesis technique, which 

is explained in [5-10, 5-11] in details. 

 

J0 J0

JN

jBNG G

s+jB1

 

Figure 5-4: Schematic representation of a doubly-loaded extracted pole section. 
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In Figure 5-4 an equivalent schematic circuit of single doubly-loaded EPS is presented, 

where J0 and JN represent admittance inverters, the resonator is modelled as unity 

capacitance connected in parallel with frequency invariant susceptance B1. Another 

frequency invariant susceptance BN represents a non-resonating node. The circuit is doubly 

loaded with unity loads G. Taking advantage of the circuit’s symmetry, even-odd mode 

technique can be applied to analyze the prototype. The reflection coefficient can be 

calculated as follows: 
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Here, Ω is a lowpass prototype frequency variable which can be obtained from real 

frequency f by standard bandpass to lowpass transformation: 
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where f0 is centre frequency of the filter to be designed and FBW – its fractional bandwidth. 

 

The frequency response of the prototype circuit has a transmission zero at ΩZ and a pole at 

ΩP: 
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Typical frequency responses of doubly loaded EPS which generate transmission zeros in 

upper and lower stopbands are shown in Figure 5-5. 
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(b) 

Figure 5-5: Frequency responses of EPS with a transmission zero in:   

(a) upper stopband; (b) lower stopband. 
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5.3.  Generalized Coupling Coefficients for Filters with NRN 

 

Classical coupling coefficients (see section 4.3) can not be used for denormalization of 

filter prototypes which include NRN, as these become meaningless due to the fact that the 

couplings involve FIR elements. In 2008, Macchiarella [5-12] introduced generalized 

coupling coefficients (GCC) which can be used for account of couplings between pairs of 

NRN and resonators. The parameters can be evaluated from the synthesized lowpass 

prototype of a filter with NRN, and then used for dimensioning of the physical structure 

similarly to the classical coupling coefficients. 

 

5.3.1. Generalized Coupling Coefficients 

 

jBN1 jBN2

jB3 jB4C3 C4

J12

J34

J13 J24

 

Figure 5-6: Possible couplings within a filter with NRN. 

 

Generalized coupling coefficients are abstract parameters which keep their values when a 

denormalized filter prototype with NRN is scaled. It has been recently found that in some 

circuits such as cascaded extracted pole filters these coefficients may be effectively used as 

design parameters. Figure 5-6 shows all the kinds of couplings possible in a cross-coupled 

filter with NRN: between two resonators (through inverter J12), between two NRN (inverter 

J34) and between resonator and NRN (inverters J13 and J24). According to Macchiarella [5-

12], GCC kij for these couplings is introduced as follows: 
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where Bi and Bj are susceptances of the corresponding resonators or NRN. It should be 

noted that the variables Bi and Bj have different meanings in eq. (4.3-1) and (5.3-1). In eq. 

(4.3-1) Bi and Bj are determined by the value of the derivative of the total susceptance at the 

resonant frequency (see eq. (4.3-2)). In case of the NRN this derivative is always zero, thus 

the denominator of eq. (4.3-1) equals zero and the entire expression becomes meaningless. 

 

To account couplings with external loads, a generalized external quality factor is defined by 
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where G0 is the external conductance. 

 

The GCC kij and external Q-factor Qext,i retain properties of the classical coupling 

coefficients keeping their values during denormalization of a prototype; this means that the 

GCC fully describe a prototype with NRN up to scaling factor. 

 

To calculate GCC of a certain normalized prototype, fractional bandwidth FBW of the filter 

should be taken into account. Assume a lowpass prototype, where resonators are 

represented by a pair of frequency invariant susceptance Bi and capacitance Ci; NRN are 

defined solely by a frequency invariant susceptance Bj; and couplings are represented by 

admittance inverters Jij. In this case the GCC can be calculated as follows: 
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The generalized external Q-factor for resonating node i can be calculated by 
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If node i is NRN, the expression for the generalized external Q-factor yields 
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5.3.2. Extraction of GCC for EPS 

GCC can be calculated from the synthesized normalized prototype; and also, these values 

can be extracted from full-wave simulations of the real structures to implement the filter, or 

from measurement results. The design problem lies in matching calculated and extracted 

values of the GCC. Solution to this problem gives the initial dimensions of the required 

filter. In this section, expressions for direct extraction of internal and external GCC of EPS 

from frequency response are derived. 

 

5.3.2.1. Extraction of Internal NRN–Resonator Coupling   

It can be noticed from (5.2-1) and (5.2-2) that the circuit from Figure 5-4 can be completely 

described by three parameters: two ratios NN BJ /2 , NBJ /2
0  and a frequency invariant 

susceptance B1. In terms of GCC, the first ratio connotates the squared coupling coefficient 

between resonating and non-resonating nodes, whereas the second ratio shows the reverse 

external quality factor: 
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Taking into account expressions (5.2-4) and (5.2-5), B1 and kN can be extracted from 

measured or simulated frequency responses using the following expressions: 

 

ZB Ω−=1          (5.3-10) 

ZPNk Ω−Ω=2              (5.3-11) 

 

It can be concluded from (5.3-8) and (5.3-11) that susceptance of the non-resonating node 

BN should be negative to arrange a transmission zero above the filter’s passband, and 

positive to place it below passband. At the same time, expression (5.3-11) shows that 

separation between two eigenmodes is determined by the absolute value of the GCC kN. By 
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finding solutions which allow obtaining higher kN, stopband performance of the designed 

filters can be improved by placing additional transmission zeros further from passband. 

 

5.3.2.2. Generalized External Quality Factor  

Similarly to the conventional resonators case [5-13], the generalized external quality factor 

can be extracted from evaluation of the 3dB-bandwidth of a single EPS. It is seen from 

(5.2-1) that magnitude of S11 equals –3dB when |F(Ω3dB)| = 1, and therefore the external 

quality factor can be rewritten as: 
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Taking into account that half of the 3dB-bandwidth can be approximated as 

∆Ω3dB/2 ≈ |Ω3dB – ΩP|, equation (5.3-12) can be simplified to: 
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Equations (5.3-10), (5.3-11) and (5.3-13) form a set of expressions for complete 

characterization of a single EPS with arbitrary implementation. This is particularly 

important for structures, in which values of inverters or susceptances can not be calculated 

directly or these calculations are bulky. Examples of such structures will be discussed in 

section 5.4. 
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5.3.2.3. Coupling Between Adjacent Asynchronously Tuned Sections   

JS1 J2LG G

J12
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s+jB2
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j2J12 j2J12

A

A'

J1

jBN1

s+jB1

YR

YL

 

Figure 5-7: Schematic circuit representation of two adjacent EPS coupled through 

admittance inverter. 

 

Assume that two arbitrary EPS are connected through admittance inverter of value J12 as 

shown in Figure 5-7. For analysis the inverter is replaced with its equivalent П-network, 

and condition for natural resonance of the circuit can be written as: 

 

   0
11 =+
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,    (5.3-14) 

 

where YR and YL are the input admittances when we look at the right and the left of the 

reference plane A–A’ in Figure 5-7. The input admittances can be expressed as follows: 

 

G

J
jJY

jJY SL
2
1

121
12

1

2

11

+−
+=         (5.3-15) 

G

J
jJY

jJY LR
2
2

122
12

1

2

11

+−
+=         (5.3-16) 

 

where 
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Let us denote the positions of poles and zeros revealed by both single sections examined 

individually as ΩP1, ΩZ1, ΩP2 and ΩZ2 respectively. Assuming that external couplings of the 

structure are very weak, i.e. JS1 = J2L ≈ 0, and applying substitutions from (5.2-4), (5.2-5) in 

(5.3-17), after several manipulations the following equation can be obtained: 
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where 
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is defined as squared GCC k12 between two asynchronously tuned EPS. 

 

Roots Ω1 and Ω2 of equation (5.3-18) correspond to two self resonances of the system in 

terms of normalized frequency. Solving (5.3-18) and combining roots, we obtain the 

expression for experimental evaluation of the squared GCC k12: 
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5.3.2.4. Coupling Between EPS and Resonator   

JS1 J2LjB1G G

J12
J2

jBN2

s+jB1

s -jJ12 -jJ12

j2J12 j2J12

A

A'

YL

YR  

Figure 5-8: Schematic representation of EPS coupled with resonator through admittance 

inverter. 

 

Schematic circuit used for extraction of GCC between arbitrary resonator with resonant 

frequency at normalized frequency Ω1 = –B1 and an EPS connected through admittance 

inverter J12 is shown in Figure 5-8.  

 

The circuit can be solved using the technique applied in the previous section, and formula 

(5.3-14)–(5.3-16) are correct for this case, as well as expression (5.3-17) is correct for i = 2. 

However, here we use Y1 = j(Ω + B1) in (5.3-15) to represent the resonating node. 

 

Making assumption that external couplings are weak, the initial eigenmode equation can be 

converted into the following one: 
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where 
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is the squared GCC between resonating node and NRN of EPS. 
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Expression for extraction of the GCC can be obtained by combining two roots Ω1 and Ω2 of 

equation (5.3-21): 
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5.4.  Implementation of EPS in E-plane Waveguide Filters 

 

Since EPS consist of pairs of resonators and NRN, it is convenient to implement the NRN 

as a strongly detuned standard E-plane resonator, which reveals the required susceptance at 

a certain narrow band, where this susceptance can be considered as frequency invariant. 

The E-plane resonator (referred to as the E-plane NRN below) contains homogeneous 

waveguide section between input and output septa. The configuration is presented in 

Figure 5-9. 

 

LNRN

Lsept

 

Figure 5-9: Configuration of an E-plane NRN in rectangular waveguide. 

 

The other part of an EPS is a resonator, which can be conveniently embedded within the E-

plane NRN, between two septa. This type of structures with embedded split ring resonators 

(SRRs) and S-shaped resonators has been investigated previously [5-9, 5-14], however the 

phenomena observed during the investigation were rather related to effects of 

metamaterials, and EPS were not addressed.  

 

In this section, EPS based upon E-plane NRN with several embedded resonators are 

considered. Investigation of dependences between extracted GCC and real dimensions is 

carried out. Then, the aspect of losses in the proposed EPS is discussed. Finally, stopband 

performance of EPS is studied theoretically. Comparison of the proposed E-plane structures 

by losses and stopband performance is done using full-wave simulations.  
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5.4.1. EPS with Embedded S-shaped Resonators 

 

LS
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WS

 

Figure 5-10: Configuration of an E-plane EPS with embedded S-shaped resonator in 

rectangular waveguide. 

 

7 8 9 10 11 12 13 14 15
Frequency, GHz

-80

-60

-40

-20

0

S
-p

ar
am

et
er

s,
 d

B

S11 - EPS

S21 - EPS

S11 - E-plane resonator

S21 - E-plane resonator

 

Figure 5-11: Comparison of frequency responses of an EPS with embedded  

S-shaped resonator and a hollow E-plane resonator. 

 

Configuration of an EPS with S-shaped resonator in rectangular waveguide is shown in 

Figure 5-10. The S-shaped resonator, located in the middle of the E-plane NRN, can be 

considered as a λg/2-long section of stripline folded into the S-shaped structure, which 

maintains field distribution of a conventional λg/2-wave stripline resonator: electric field 

has its maximum magnitude at the ends on the resonator, while maximum of magnetic field 

occurs at the middle. Due to angle discontinuities in the loop the S-shaped resonator reveals 

slightly lower resonant frequency than conventional λg/2-wave stripline resonator of the 

same length. 
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The structure can be realized using a metallo-dielectric slab with the S-shaped resonator 

and septa etched on its top side, which can then be inserted within the E-plane of a 

rectangular waveguide, between two halves of its housing. Typical simulated frequency 

response of the configuration is presented in Figure 5-11. It is evident from the plot, that the 

structure reveals two widely separated resonant modes and a transmission zero between 

them. Considering the low-frequency mode as a main resonance and high-frequency mode 

as a higher-order resonance, it can be concluded that the transmission zero improves 

attenuation at the upper stopband in comparison with the hollow E-plane resonator case 

(compared response shown in Figure 5-11). On the other hand, the pair of the first pole and 

zero can be considered as generated by the EPS being introduced. In this case, the higher-

order resonating mode can be explained by cross-couplings of two interacting resonators, 

one of which is the E-plane NRN. This effect will be comprehensively illustrated in section 

5.4.6. 

 

In the next several subsections, effects produced by variation of different dimensions of 

elements of the EPS with S-shaped resonators to its frequency response and GCC are 

investigated. 

 

5.4.1.1. Effect of NRN’s Length Variation   

To examine the effects caused by variation of the length of NRN in the EPS with embedded 

S-shaped resonator, a model of the EPS based upon a real structure has been developed. S-

parameters of the E-plane EPS with metallo-dielectric insert organized within a rectangular 

waveguide have been simulated in full-wave electromagnetic simulator CST Microwave 

Studio™ for several values of LNRN, while all the other dimensions have been fixed. The 

resultant family of curves is presented in Figure 5-12a. Key parameters of lowpass 

prototype of EPS have been extracted from the obtained responses using expressions for 

GCC extraction derived in section 5.3. Lowpass prototype values have been calculated for 

the centre frequency of 9.45 GHz and 0.4 GHz bandwidth, which will appear as filter 

specifications in section 5.5.3. Dependences of resonator’s frequency invariant susceptance 

B1 and squared internal GCC between NRN and resonator 2
Nk  on the length of NRN LNRN is 

shown in Figure 5-12b. 
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(b) 

Figure 5-12: Effect of variation of LNRN in EPS with embedded S-shaped resonator 

(Ls = 3 mm; Hs = 5.5 mm; Lsept = 5 mm): (a) simulated frequency responses; 

(b) extracted values. 

 

It can be observed from Figure 5-12 that the value of B1 remains almost unchanged for 

NRN’s longer than 5 mm, where this parameter very slowly decreases with increasing LNRN. 

Considerable increase of B1 for NRN shorter than 5 mm originates from capacitive 

interaction between input/output septa and embedded resonator, which results in decrease 

of its resonant frequency. From Figure 5-12b it is clear that the GCC 2Nk  decreases linearly 

with stretching of the NRN. 
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5.4.1.2. Effect of S-shaped Resonator’s Dimensions Variation   
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 (b) 

Figure 5-13: Effect of variation of Hs in EPS with embedded S-shaped resonator  

(Ls = 3 mm; LNRN = 7 mm; Lsept = 5 mm): (a) simulated frequency responses; (b) extracted 

values. 

 

Effects of varying the dimensions of S-shaped resonator in EPS are illustrated in Figures 5-

13 and 5-14. It can be noticed from comparison of extracted values of B1 in Figures 5-13b 

and 5-14b that increasing the height and length of S-shaped resonator causes similar linear 

increase of its resonant frequency and thus leads to an increase in the value of the 

susceptance. Comparison of dependences of GCC 2
Nk  on S-shaped resonator’s dimensions 

suggests that the value of GCC decreases with decreasing of both parameters. However, 
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variation of S-shaped resonator’s length LS appears to have more influence on the extracted 

GCC, particularly for realization of low resonant frequencies. 
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 (b) 

Figure 5-14: Effect of variation of Ls in EPS with embedded S-shaped resonator  

(Hs = 5.5 mm; LNRN = 7 mm; Lsept = 5 mm): (a) simulated frequency responses;  

(b) extracted values. 
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5.4.1.3.  Effect of Input/Output Septa’ Lengths Variation   
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(b) 

Figure 5-15: Effect of variation of Lsept in EPS with embedded S-shaped resonator 

(Hs = 5.5 mm; Ls = 3 mm; LNRN = 7 mm): (a) simulated frequency responses; 

(b) extracted Qext. 

 

In Figure 5-15 an effect caused by alteration of input and output septa lengths in EPS with 

embedded S-shaped resonator is presented. Variation of the septa’ length modifies the 

energy flow from the source to the system of the resonator and the NRN, and causes the 

same effect as in a doubly loaded resonator, which results in widening the 3dB-passband 

with decrease of the septa’ length. It is evident from Figure 5-15b that a wide range of 

generalized external Q-factors can be realized by changing the values of lengths of 

input/output septa. The Qext shows a nonlinear decrease with increase of Lsept. Also it can be 

noticed from Figure 5-15a that position of transmission zero remains practically unchanged, 

slightly drifting to higher frequencies with septa’ enlarging. 
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5.4.2. EPS with Embedded Split Ring Resonators 

LSRR

HSRR g

 

Figure 5-16: Configuration of an E-plane EPS with embedded SRR. 
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Figure 5-17: Comparison of frequency responses of an EPS with embedded SRR 

(LSRR = 2.7 mm; HSRR = 2.7 mm; g = 0.3 mm; Lsept = 1.5 mm; LNRN = 9 mm) and a hollow 

E-plane resonator. 

 

Similar results can also be achieved when the S-shaped resonator is replaced with a square-

shaped SRR in the middle of the E-plane NRN. An SRR is constructed as two concentric 

rings terminated by a narrow gap in their middle. Such a structure has found wide 

applications in metamaterial techniques [5-15] – [5-17] as arrays of SRR exhibit negative 

permeability in a narrow band. However, a single SRR does not possess metamaterial 

properties and in waveguide this structure should be analyzed as a system of two strongly 

coupled ring resonators, thus having two widely separated low- and high-frequency 

resonant modes. Also it is reasonable to pay attention to the low-mode only, as the high-

mode appears at a frequency above the cutoff frequency of the TE20 mode. 
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In an EPS with SRR, the SRR is usually arranged between two coupling septa on the top 

side of a dielectric slab as shown in Figure 5-16. Alternative configurations are also 

available, such as split rings arranged on different sides of the substrate [5-18]; however, 

this approach is more complex to realize. A simulated transmission coefficient of an EPS 

with SRR is shown in Figure 5-17 along with the previously considered frequency response 

of the hollow E-plane resonator. It is evident from the plot that the E-plane resonator with 

SRR insertion reveals a response similar to the one obtained using S-shaped resonator, 

where a transmission zero is located between two poles. However, stopband performance of 

this EPS is much worse than that of the EPS with S-shaped resonator. 

 

5.4.2.1. Effect of NRN’s Length Variation   
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Figure 5-18: Effect of variation of the length of LNRN in EPS with embedded SRR 

(LSRR = 2.7 mm; HSRR = 2.7 mm; g = 0.3 mm; Lsept = 1.5 mm). 

 

Effects caused by variation of NRN’s length in EPS with embedded SRR have been studied 

based on the same principle that has been discussed in section 5.4.1.1. Figure 5-18 presents 

a family of frequency responses of the EPS simulated for different values of LNRN. It can be 

concluded from analysis of the figure that separation between pole and zero slightly 

increases with enlarging the NRN, while the transmission zero retains its position. This 

suggests that the absolute values of GCC 2
Nk  in EPS with embedded SRR are smaller and 
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insensitive to variations of LNRN in comparison with the previously considered EPS with S-

shaped resonator. 

 

5.4.2.2. Effect of SRR’s Dimensions Variation   
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Figure 5-19: Effect of variation of LSRR in EPS with embedded square SRR 

 (HSRR = LSRR; LNRN = 8 mm; g = 0.3 mm; Lsept = 1.5 mm).  

 

Observation into the effects caused by varying the length of SRR in EPS has been carried 

out. Simulations for different values of LSRR have been conducted using CST Microwave 

Studio™. The resultant family of transmission characteristics is shown in Figure 5-19. It is 

noticeable from the simulated results that reduction of the SRR’s length leads to the 

transmission zero being drifted to higher frequencies. Due to numerous folds and, thus, the 

compactness of the SRR, position of the transmission zero is very sensitive to tolerances on 

SRR’s size, which may result in reproducibility issues at the fabrication stage. It should be 

noted that SRR of square shape has been chosen to illustrate this investigation, as effects of 

variation of HSRR and LSRR have appeared to be identical. Therefore, in general, it is possible 

to vary the ratio between height and length of SRR in order to generate a transmission zero 

at the required frequency, taking into account various design constraints, such as the height 

of the basic waveguide or length of NRN. 

 

The effect of input/output septa’ width for the EPS with SRR is similar to the one 

previously discussed in section 5.4.1.3. This effect is common for all the resonators to be 

considered below, thus it will not be analyzed in detail. 
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5.4.3. EPS with Embedded λ/4-wavelength Resonators 

Wres

Lres

 

Figure 5-20: Configuration of an E-plane EPS with embedded λ/4-wavelength resonator in 

rectangular waveguide. 
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Figure 5-21: Comparison of frequency responses of an EPS with embedded λ/4-wavelength 

resonator and a hollow E-plane resonator. 

 

Practicability of the use of S-shaped resonators and, especially, SRRs in the EPS is 

ambiguous. On the one hand, for realization of transmission zeros at high frequencies, these 

structures should be very small, which require precise fabrication process; on the other 

hand, for use at lower frequencies, these become large structures, occupying significant 

area. In this case, the width of these elements constraints the range of possible values of the 

length of NRN, which determines how close to the passband transmission zeros may be 

located.  
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The problems related to the resonators’ size can be overcome by using quarter-wavelength 

resonators, which consist of a λ/4-wavelength microstrip section with one of the ends open, 

and the other one shorted to the ground plane. The resonant frequency of this type of 

resonators is determined by their electrical length. Since the E-plane of rectangular 

waveguides crosses its top and bottom grounded walls, it is convenient to connect an end of 

the λ/4-wavelength resonator to one of these walls, as it is shown in Figure 5-20. 

Resonators of the λ/4-wavelength type have been widely used in filters using distributed 

commensurate and non-commensurate lines [5-19]–[5-22]. Simulated frequency response 

of an EPS with λ/4-wavelength resonator is compared to the one of a standard E-plane 

resonator in Figure 5-21, from which it is evident that the behaviour characteristic to EPS 

with S-shaped resonators is retained, as the pair of pole and transmission zero are clearly 

available. 

 

5.4.3.1. Effect of NRN’s Length Variation   
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Figure 5-22: Effect of variation of LNRN in EPS with embedded λ/4-wavelength resonator 

(Lres = 4 mm; Wres = 1.5 mm; Lsept = 5 mm). 

 

Figure 5-22 illustrates the effect of variation of the NRN’s length in EPS with embedded 

λ/4-wavelength resonator. The effect is similar to the effect of varying the same parameter 

of the EPS with S-shaped resonator discussed in section 5.4.1.1. Increasing LNRN leads to 

slight drift of transmission zero due to decrease of parasitic capacitance between the 

embedded resonator and septa, which results in reducing the resonant frequency of the λ/4-

wavelength resonator. 
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Simultaneously, space between pole and zero constantly widens with growth of LNRN. This 

can be explained by increase of interaction of electric fields together with corresponding 

decrease of magnetic coupling between the resonator and NRN due to alteration of their 

structure with variation of geometry. 

 

5.4.3.2. Effect of λ/4-wavelength Resonator’s Dimensions Variation   
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Figure 5-23: Effect of variation of Lres in EPS with embedded λ/4-wavelength resonator 

(LNRN = 9 mm; Wres = 1.5 mm; Lsept = 5 mm). 
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Figure 5-24: Effect of variation of Wres in EPS with embedded λ/4-wavelength resonator 

(LNRN = 9 mm; Lres = 4.5 mm; Lsept = 5 mm). 

 

Illustrations of effects of variation of Lres and Wres of λ/4-wavelength resonator in EPS are 

given in Figures 5-23 and 5-24. It is seen that variation of Lres leads to the effect observed 

in section 5.4.1.2. At the same time, the EPS is not that sensitive to variations of Wres, 

which can be used in tuning of filters with EPS. 
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5.4.4. Embedded Stepped-Impedance Resonators 

Stepped-impedance resonators (SIR) are often used in the design of microstrip bandpass 

filters. SIRs are employed to achieve miniaturization of resonators without degradation of 

the Q-factor. This feature can be used in E-plane EPS in order to generate transmission 

zeros at lower frequencies. 

 

5.4.4.1.  Stepped-Impedance Resonators   
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θ2 θ1Yin

θΤ  

(a) 

Z2 Z1

θ2 θ1

θΤ
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(b) 

Figure 5-25: Stepped impedance resonators: (a) λ/4-type; (b) λ/2-type.  

 

Stepped impedance resonator is a transmission line resonator that consists of two or more 

lines with different characteristic impedance [5-23]. Two most popular SIR are short-

circuited λ/4-type and open-circuited λ/2-type resonators shown in Figure 5-25. It is evident 

from this figure that the λ/4-type SIR consists of a short-ended line with characteristic 

impedance Z1 and electrical length θ1 connected to an open-ended line with characteristic 

impedance Z2 and electrical length θ2. This structure can be considered as a fundamental 

element of SIR; the λ/2-type resonators consist of two such elements connected to each 

other by short-circuited ends with grounding replaced by this connection. 

 

The input admittance of the λ/4-type SIR, shown in Figure 5-25a can be written as: 
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Short-circuited λ/4-type resonators behave like a parallel resonant circuit. Hence, the 

parallel resonance condition Yin = 0 applied to them, yields: 

 

zRZZYY ===⋅ 122121 tantan θθ   (5.4-2) 

 

Expression (5.4-2) shows that the resonant condition of SIR is determined by electrical 

lengths θ1, θ2, and impedance ratio RZ. Comparing to conventional uniform λ/4-wavelength 

resonators, analyzed in section 5.4.3, the resonance condition of which is solely determined 

by the electrical length, SIRs have an extra degree of freedom that can be used in future 

designs. 

 

Total electrical length of resonator, given in Figure 5-25a as θT, for resonant condition (5.4-

2) is equal to:  

 

( )1
1

121 tantan θθθθθ ZT R−+=+=               (5.4-3) 

 

 

Figure 5-26: Relationship between total electrical length and 1θ  for resonant condition 

given for different impedance ratios. 
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Figure 5-26 illustrates total electrical length of SIR in terms of θ1 for different impedance 

ratios RZ. It can be seen that total electrical length of resonator has maximum value when 

1≥ZR  and minimum value when 1≤ZR . Condition for these maximum and minimum 

values has been derived as [5-24]: 

 

                                                   ZR1
21 tan−== θθ                                         (5.4-4) 

 

Condition θ1 = θ2 is a special condition which gives the maximum and minimum length of 

SIR which can be expressed as [5-25]:  
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Equation (5.4-5) provides minimum value for θT when 0 < RZ < 1 and 0 < θT < π/2, and 

maximum value for θT when RZ > 1 and π/2 < θT < π. In practice, for microstrip SIRs, this 

means that the shorted section should be narrower than the open one in order to obtain 

lower resonant frequency, and wider than the open section to increase resonant frequency. 

 

The distinct feature of SIR in comparison with uniform ones is that the SIRs' length can be 

controlled by changing impedance ratio RZ. This can be used for designing SIRs, which are 

shorter then their conventional counterparts, resonating at the same fundamental resonance 

frequency. At the same time, SIRs can be employed to control the first spurious passband 

of bandpass filters. More information about this feature of the SIRs can be found in [5-26, 

5-27]. 
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5.4.4.2. EPS with Embedded SIR   
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Figure 5-27: Configuration of an E-plane EPS  

with embedded SIR in rectangular waveguide. 
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Figure 5-28: Comparison of frequency responses of EPS with embedded SIRs for different 

width combinations (impedance ratios). 

 

Configuration of an EPS with embedded SIR is presented in Figure 5-27. It is seen from 

this figure that the SIR is implemented as two sections of microstrip lines with different 

widths on top layer of dielectric substrate inserted in the waveguide’s E-plane. One of the 

sections is connected to the top ground plane of the waveguide just as the λ/4-wavelength 

resonator discussed in the previous section, and the other is left open.  

 

Let us consider an EPS with embedded SIR composed of two sections with the same 

electrical lengths (θ1 = θ2, the condition from (5.4-4) is fulfilled), but different widths (W1 ≠ 

W2). According to equation (5.4-5), if W1 < W2, the resonant frequency should decrease, 

therefore the transmission zero of the EPS should move towards lower frequencies; if W1 > 
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W2, the resonant frequency should decrease, hence the transmission zero shifts towards the 

higher frequencies; if W1 = W2, then the SIR turns into the conventional λ/4-wavelength 

resonator. For the latter case, the resonant frequency and the corresponding transmission 

zero appears between the transmission zeros for W1 < W2 and W1 > W2. The argumentation 

is illustrated by simulation results presented in Figure 5-28. 
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Figure 5-29: Effect of variation of SIR’s lengths ratio on transmission zero position in EPS 

with SIR (Ltotal = L1+L2 = 6 mm; W2 = 4 mm; Lsept = 5 mm). 

 

To study the effect of variation of lengths ratio in SIR, an EPS with 6 mm long SIR has 

been simulated for different widths and lengths of open and shorted sections and positions 

of the transmission zeros have been retrieved from the simulation results. Dependences of 

SIR’s resonant frequency on the length of the shorted section L1 for variable W1 and 

constant W2 and Ltotal are shown in Figure 5-29. It is evident that the form of the family of 

curves is similar to the one presented in Figure 5-26. However, the condition L1 = L2 for 

maximum and minimum electrical lengths is not retained in this case; in real structure this 

condition is fulfilled for L1 > L2 due to the effect of parasitic capacitive load not considered 

theoretically in section 5.4.4.1.   
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5.4.5. Analysis of Losses and Size Reduction in E-plane Waveguide EPS 

In order to carry out an analysis of losses in the previously introduced EPS and degree of 

size reduction achieved by them in comparison with a standard E-plane resonator, all the 

EPS in this section are considered as single resonators with main resonance at the pole 

frequency, while the transmission zero is ignored. This is required for applying the standard 

Q-factor approach commonly used for characterization of losses in resonant circuits [5-28].  

 

The analysis includes comparison of different EPS by unloaded Q-factors and other 

characteristic parameters. In order to keep consistency of comparison, EPS with embedded 

S-shaped resonator, SRR, λ/4-wavelength resonator and SIR, as well as a standard E-plane 

resonator have been designed to reveal the same pole frequency of 10 GHz and have the 

same 3dB-bandwidth, which may vary within 10%. This means that EPS may have 

different input and output septa lengths as well as the lengths of NRN section. All the 

structures have been analyzed in a full-wave electromagnetic simulator CST Microwave 

Studio™. The resultant transmission characteristics of the EPS are presented in Figure 5-

30. 
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Figure 5-30: Frequency responses of EPS of all types used for analysis of losses, size 

reduction and stopband performance. 

 

The following parameters of the resonators have been extracted from the available 

simulated frequency responses: the loaded Q-factor QL; the unloaded Q-factor QU, which 
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describes losses in resonators; and the external Q-factor, Qext, which shows the external 

coupling properties of resonators. Q-factors have been extracted from the simulated data 

using the well-known expressions [5-22]: 
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Summary of the Q-factors extracted from all the structures is presented in Table 5-1 

together with their total lengths, which show the degree of size reduction achieved by 

employing EPS approach. 

 

Type of resonator embedded in EPS 
Parameter E-plane 

resonator S-shaped SRR λ/4-wave SIR 

NRN’s length*, mm 13.8 7.2 9.1 5.9 6.0 

Total length, mm 24.8 17.1 13.5 13.9 14 

Unloaded Q 2660 674.6 309.7 1042 904.3 

Loaded Q 39.9 43.6 40.3 41.7 41.6 

External Q 40.5 46.6 46.3 43.4 43.6 

*Length of resonator excluding input/output septa for hollow E-plane resonator 

Table 5-1: Comparison of dimensions and Q-factors of E-plane resonator 

 and EPS at 10 GHz. 

 

It is evident from the table that lengths of the EPS are reduced by 31–43% in comparison 

with the length of hollow E-plane resonator, while unloaded Q-factor dropped by 61–88%.  

Losses in the EPS are concentrated in the embedded resonators realized by means of 

narrow striplines. The hollow E-plane resonator has the highest Q-factor as it does not 

contain any embedded resonator. Ohmic and skin-effect losses in the septa mainly 
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contribute into the overall losses in this case. In the EPS with λ/4-wavelength resonator 

additional high ohmic and skin-effect losses appear in the resonator. Therefore, the Q-factor 

of the EPS drops significantly. In the SIR resonator losses also occur due to the square 

corners. In the S-shaped resonator current flows twice longer distance than in the λ/4-

wavelength resonator, therefore the ohmic and skin-effect losses are almost twice as higher. 

The SRR has the lowest Q-factor due to the narrower conductors used in the rings (in order 

to reduce the SRRs’ size) and additional losses related to the proximity effect. The losses 

can be reduced by cutting off the available right angles and increasing conductor widths; 

however this approach leads to inability to realize small resonators for high resonant 

frequencies. 

 

Analysis of the values of external Q-factors suggests that for the EPS with SRR, the same 

external coupling can be realized by using narrower septa, which leads to additional size 

reduction of filters.  
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5.4.6. Analysis of Stopband Performance of E-plane Waveguide EPS 

In section 5.2 a model of EPS has been considered, which takes into account only one pole 

and one transmission zero produced by the EPS. However, real structures do not display 

ideal behaviour. In bandpass filters this becomes apparent as spurious resonances in 

stopband. In this section, stopband performance of the introduced EPS will be compared. 

Analysis of the effects in the stopband caused by resonant character of NRN used in E-

plane EPS will be presented. 

 

5.4.6.1.  Comparison of Stopband Performances of EPS  

Comparison of stopband performances of different EPS and a standard E-plane resonator 

have been carried out based upon the same principle as the comparison of Q-factors and 

lengths discussed in the previous section. All the EPS introduced in section 5.4 have been 

tuned to the same main resonant frequency of 10 GHz, and position of the second-order 

resonance has been extracted from the simulated frequency responses of these structures as 

an attribute showing the stopband performance. Therefore, Figure 5-30 can be used for the 

purpose of comparison of stopband performances of EPS. It is evident from this figure that 

transmission zeros in upper stopband significantly improve the stopband of EPS in 

comparison with the hollow E-plane resonator in the frequency range between two 

resonating modes. However, each of the proposed EPS exhibits the second-order resonant 

frequency lower than the first spurious resonance of the hollow E-plane resonator, which is 

located at a frequency slightly above 15 GHz. From Figure 5-30 it can be noticed that 

spurious resonance of the EPS with embedded S-shaped resonator appears at about 14.3 

GHz, which is the best result for the considered types of EPS. λ/4-wavelength resonator and 

SIR based EPS reveal their spurious resonances at 13.7 GHz, which are accompanied by a 

transmission zero at 14 GHz. This pair of pole and zero appears because of the second-

order resonance of the embedded resonator which forms another, spurious EPS, in 

combination with the NRN. EPS with embedded SRR shows the worst stopband 

performance as its spurious resonance appears at only 11.7 GHz. Theoretical explanation of 

observed behaviour of the considered EPS is given in the next section. 
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5.4.6.2. Theoretical Analysis of Stopband Performance of EPS  

s+jBN

JN

s+jB1

JSN JNL

JS1 J1L

Source Load 

Figure 5-31: Coupling scheme representation of an EPS used for stopband performance 

analysis. 

 

The higher-order resonances in EPS are determined by parasitic effects, which are not taken 

into account in the circuit model of EPS discussed in section 5.2. A more accurate model 

for analysis of spurious resonances should take into consideration the resonating character 

of the NRN represented by a strongly detuned standard E-plane resonator and parasitic 

couplings, taking place between source/load nodes and the embedded resonator. Therefore, 

the new model for analysis of stopband performance of EPS includes two resonators: the 

main E-plane resonator and the inserted one. The resonators are coupled to source, load and 

each other, while the only weak direct coupling between source and load is neglected. 

Coupling scheme of the resultant EPS is depicted in Figure 5-31. Couplings between 

elements of the functional scheme are defined by means of the following coupling matrix: 
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Analytical expression for S-parameters of the network can be obtained by processing the 

coupling matrix using the technique discussed in section 3.3.3.5. Applying formula (3.3-30) 

and (3.3-31) to the coupling matrix M, and assuming that the network under consideration 

is symmetrical (which implies JS1 = J1L and JSN = JNL), positions of poles ΩP1,2 and zeros ΩZ 

of the network can be calculated analytically as: 
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From (5.4-10) it is clear that locations of poles depend on self-resonance frequencies of 

both resonators, and on coupling between them. Separation between two global resonant 

modes of the considered doublet widens as the degree of detuning of the two resonators is 

increased, as well as with the increase of JN regardless of sign of coupling. The latter is 

particularly useful as it allows creation of a wide stopband without modifying the E-plane 

resonator, solely adjusting parameters of the embedded resonator, such as self-resonance 

frequency and shape in order to obtain the highest possible coupling coefficient. 

 

Concerning the EPS structures, which stopband performance has been compared in the 

previous section, it can be suggested, that the S-shaped resonator is strongly coupled with 

the E-plane resonator (NRN), as the available two poles are widely separated. This is 

because the S-shaped resonator is located in the area, where electric field of the E-plane 

resonator is concentrated. Thus, magnetic fields of two resonators are scarcely overlapping, 

and interaction between them becomes strongly capacitive. Same explanation is correct for 

the EPS with λ/4-wavelength resonator and SIR. In contrary, coupling coefficient of SRR 

with the E-plane resonator is smaller because the coupling coefficient has larger magnetic 

component due to stronger magnetic coupling of split rings and E-plane resonator’s mode. 

At the same time, electric coupling component becomes weaker as the gaps in split rings 

are shifted from the middle of NRN, where electric field is concentrated. Hence the 

resultant coupling coefficient decreases and the gap between two poles becomes much 

narrower. 

 

Equation (5.4-11) shows that position of transmission zero can be generally shifted by 

changing external coupling coefficients, keeping available poles unaffected. However, if 

(5.4-11) is simplified for analysis by division of numerator and denominator by 2SNJ , it can 
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be seen that the position of transmission zero is fully described by four parameters: inverter 

value JN, values of susceptances B1 and BN, and ratio JS1/JSN: 

 

2

2
1

2

2
1

1
1

1

2

SN

S

N
SN

S

SN

S
N

Z

J

J

B
J

J
B

J

J
J

+

−−
=Ω         (5.4-12) 

 

It is evident from (5.4-12) that weak parasitic coupling JS1 and strong main line coupling 

JSN lead to the same effect: the position of transmission zero ΩZ tends to –B1 in terms of 

lowpass prototype normalized frequency. In practice, both weak JS1 and strong JSN are 

combined and it can be assumed that the position of transmission zero is determined by the 

resonant frequency of the embedded resonator.  

 

Another important consequence of expressions (5.4-10) and (5.4-11) is that the 

transmission zero always appears between two poles. In can be easily proven that the 

following inequality is always true for the network under consideration: 
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Equation (5.4-13) also suggests that in order to design an EPS with transmission zero in 

lower stopband, the second-order resonance should be considered as the main resonance, 

while the first-order resonance becomes unwanted. Practically, a transmission zero in lower 

stopband can be obtained by changing the sign of the NRN’s susceptance, which can be 

realized by increasing its length. Therefore, the NRN’s self-resonance frequency decreases 

significantly, and the unwanted resonance appears in lower stopband. 
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5.5.  Filter Design Examples 

 

It has been shown in the previous section that use of E-plane EPS in rectangular waveguide 

results in improvement in size and selectivity in comparison with standard E-plane 

resonators. In this section, several design examples of extracted pole filters with the 

considered EPS are presented. The examples are organized according to the standard filter 

design procedure described in chapter 3.  

 

5.5.1. Design of a 3rd-order Filter with Single Transmission Zero 

To demonstrate the design of inline extracted pole filter by extraction of GCC between 

hollow E-plane resonators and EPS, a third-order bandpass filter with a single transmission 

zero in upper stopband is implemented in conventional rectangular waveguide. The filter is 

designed to satisfy the following specifications: 

 

• center frequency: 9.45 GHz; 

• ripple passband: 9.28 – 9.62 GHz; 

• return loss: 18 dB; 

• transmission zero: 11.33 GHz. 

 
5.5.1.1. Approximation and Synthesis  

Approximation of the required filter response has been carried out using the standard 

technique for filters with generalized Chebyshev response, discussed in details in section 

3.2.4. The filter specifications yield the following expressions for the S-parameters of the 

lowpass prototype: 
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Figure 5-32: Coupling scheme of a 3rd-order extracted pole filter with a single 

transmission zero. 

 

Equivalent circuit synthesis procedure and extraction of values of admittance inverters and 

frequency invariant susceptances have been made using the direct synthesis technique for 

inline filters with non-resonating nodes presented in [5-29], which results in the coupling 

scheme presented in Figure 5-32 with values of the circuit elements arranged in the 

following coupling matrix: 
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 (5.5-5) 

 

Thereafter, GCC to be realized can be calculated from formula (5.3-4), (5.3-6) and (5.5-5). 

Computed values of the GCC are: QextS = QextL = 26.33, 2
1Nk  = 2

3Nk  = –0.091, 2
2Nk  = –0.1. 
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Note that calculation of the GCC between NRN and resonators has been carried out without 

applying the fractional bandwidth FBW for simplicity. 

 

5.5.1.2. Implementation  

The filter has been implemented using two hollow E-plane resonators and an EPS with 

embedded SIR (see section 5.4.4). Configuration of insert, placed in the E-plane of 

rectangular waveguide in order to obtain the required coupling scheme is shown in Figure 

5-33. 
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L2
Hwg

WseptS WseptLLres1 LNRN2 Lres3Wsept12 Wsept23

L1W1

 

Figure 5-33: Configuration of the E-plane insert for implementation of the 3rd-order filter 

with single transmission zero. 

 

Determination of geometrical measurements of the insert is carried out by plotting 

dependencies of the required GCC, extracted from full-wave simulations, on dimensions of 

insert’s elements. Alternatively, the lengths of E-plane resonators and input/output septa 

can also be calculated using the standard approach described in [5-30]. Firstly, the 

resonator in EPS is designed by adjusting the widths and lengths of shorted and open 

sections of SIR, so the transmission zero is located at the required frequency. Then, the 

NRN’s length is adjusted until the required value of 2
2Nk  is reached. The value of 2 2Nk  is 

extracted from simulation results using expression (5.3-11). The resultant plots for this step 

of the design procedure are not shown in this section because these are similar to the results 

of EPS’ investigation made in section 5.4. It must be stressed that extraction of all the GCC 

here and below (except generalized external Q-factor) should be performed under weak 

external coupling condition. 
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Next, the width of coupling septa between EPS and E-plane resonators must be found. For 

this purpose, the pair of interacting components has been simulated with different values of 

the coupling septum. GCC 21Nk  has been extracted from the obtained frequency responses 

using formula (5.3-23). The dependence of the extracted 2
1Nk  on the width of the septum 

Wsept12 is presented in Figure 5-34. From this plot, a value of Wsept12, which corresponds to 

the required value of 21Nk  = –0.091, should be determined. 
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Figure 5-34: Dependence of extracted 2
1Nk  on septum width Wsept12. 

 

After the initial dimensions of the E-plane insert are found, the entire filter structure 

undergoes the optimization procedure in a full-wave electromagnetic simulator (see Section 

3.5.2 about optimization). The optimization of the filter under consideration has been 

carried out in Ansoft HFSS™ using quasi-Newton procedure. 

 

5.5.1.3. Experimental Verification 

The designed filter structure has been realized in standard E-plane waveguide technology. 

All-metal E-plane insert with the optimized dimensions, summarized in Table 5-2, has been 

cut out of copper foil (σ = 5.8×107 Sm/m) with the thickness of T = 0.1 mm, and placed 

between two halves of rectangular waveguide housing (WG-90, cross-section: 

22.86×10.16 mm2) made of brass. 

 

 

 

Wsept12 = 9 mm 
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Parameter Value, mm 
L1 1.0 
L2 3.4 
W1 1.0 
W2 4.8 

WseptS, WseptL 2.0 
Wsept12, Wsept23 7.0 

Lres1, Lres3 15.85 
LNRN2 8.7 
Ltotal 58.4 

 

Table 5-2: Dimensions of E-plane insert for the designed filter (see Figure 5-33). 

 

In order to validate the design procedure, the bandpass filter has been fabricated and tested. 

S-parameters of the filter, measured with an Agilent E8361A vector network analyzer, are 

shown in Figure 5-35 together with the simulation results for the purpose of comparison. 

The measured curves show insertion loss of 1.6 dB, and exhibit overall good agreement 

with the simulated ones, taking into account the manufacturing tolerances and fabrication 

errors. Photograph of the fabricated insert and waveguide housing is shown in Figure 5-36. 
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Figure 5-35:  Simulated and experimental frequency responses of the fabricated 3rd-order 

filter with single transmission zero. 
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Figure 5-36: Photograph of the fabricated insert and waveguide housing. 

 

In order to demonstrate the filter size reduction achieved by the proposed extracted pole 

filter, comparison with an equivalent filter containing only conventional E-plane resonators 

with the same filter order, passband and ripple is made. The total length of the conventional 

E-plane filter and proposed filter are 66.4 mm and 58.4 mm respectively. Therefore, size 

reduction of more than 12% is achieved by employing a single EPS. 
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5.5.2. λ/4-wavelength Resonators Based 3rd-order Filter with Three Transmission 

Zeros in Upper Stopband 

 

In order to demonstrate how inline extracted pole filters can be designed by extraction of 

GCC between individual EPS, a third-order bandpass filter with three transmission zeros is 

synthesized and implemented as an E-plane insert within a conventional rectangular 

waveguide. The filter specifications are defined as follows: 

 

• center frequency: 9.45 GHz; 

• ripple passband: 9.3 – 9.6 GHz; 

• return loss: 20 dB; 

• transmission zeros: 10.6 GHz, 11.6 GHz, 12.7 GHz. 

 
 
5.5.2.1. Approximation and Synthesis  

The generalized Chebyshev approximation technique applied to the filter specifications 

leads to the following characteristic polynomials: 

 

( ) 7.17814771.39 23 jssjssP +−−=   (5.5-6) 

( ) 0667.07427.01342.0 23 jssjssF −+−=        (5.5-7) 

( )
))8255.03661.2(

)4972.05202.3()1343.0358.2((711.23 23

j

sjsjssE

−+
+−+−+⋅=⋅ε

  (5.5-8) 

 

Extraction of admittance inverters’ and frequency invariant susceptances’ values from the 

derived characteristic polynomials, using the direct synthesis procedure for inline extracted 

pole filters with NRN [5-29], leads to the equivalent network presented in Figure 5-37 with 

the following values of the denoted element: JS1 = 1, BN1 = –11.15, J1 = 11.981, B1 = –

13.005, J12 = 1, BN2  = –7.988, J2 = 7.535, B2 = –7.251, J23 = 1, BN3 = –16.168, J3 = 17.425, 

B3 = –18.894, J3L = 1.0. Corresponding GCC to be physically realized can be calculated 

from the prototype values by applying formula (5.3-4), (5.3-5) and (5.3-7). The values of 

the GCC (which have the same indices as the corresponding J-inverters) and external Q-
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factors have been calculated from the synthesis results as follows: QextS = –11.15, QextL = –

16.168, 2
1k  = –12.873, 2

2k  = –7.83, 2
3k  = –16.07, 2

12k  = 0.0112, 2
23k  = 0.0077. 
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Figure 5-37: Coupling scheme of a 3rd-order extracted pole filter with three  transmission 

zeros. 

 

5.5.2.2. Implementation  

3rd-order filter with three transmission zeros in upper stopband has been implemented by 

three direct coupled EPS with embedded λ/4-wavelength resonators discussed in section 

5.4.3. Configuration of the corresponding E-plane insert is presented in Figure 5-38. 

 

Lres1 Lres2 Lres3

Hres1 Hres2 Hres3Hwg

LseptS LseptLLNRN1 LNRN2 LNRN3Lsept12 Lsept23  

Figure 5-38: Configuration of the E-plane insert for implementation of the 3rd-order filter 

with three transmission zeros in upper stopband. 

 

Determining the dimensions of each EPS and septa responsible for internal and external 

couplings is similar to the procedure used for filter implementation in the previous section. 

GCC within EPS or between adjacent EPS are extracted using expressions (5.3-10), (5.3-

11), (5.3-13) and (5.3-20) from their simulated frequency responses as functions of certain 
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geometrical parameters. GCC extraction is carried out according to the following 

procedure. First, dependence of the position of transmission zero versus the resonator’s 

height is examined for single symmetric EPS with arbitrary septa and length of NRN. Then, 

Hresi are fixed for all three sections, and LNRNi are adjusted until the projected coupling 

coefficient k2
i is reached. After this, external Q-factors are adjusted for input/output 

sections by changing lengths of input/output septa. Finally, coupling coefficients between 

adjacent sections are examined for the corresponding couplings by changing lengths of 

septa between them. Results of extraction for the designed filter are shown in Figure 5-39. 
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Figure 5-39: Extracted GCC as functions of insert dimensions (see Figure 5-38): 

 (a) Bi vs. Hresi; (b) 2
1k  vs. LNRNi; (c) 2

ijk  vs. Lseptij; (d) Qext vs. LseptS and LseptL. 

 

From the dependencies plotted as a result of extraction, the initial dimensions of the filter 

have been obtained. Filter with initial dimensions has been then optimized with respect to 

the manufacturing tolerances by means of the full-wave simulator CST Microwave 

Studio™. From comparison of initial and optimized dimensions of the designed filter, 
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presented in Table 5-3, it is evident that the design procedure based upon the proposed 

extraction of GCC provides good initial approximation of dimensions of the E-plane insert. 

 

Parameters Initial Optimized 
LseptS 1.3 1.5 
Lsept12 5.9 5.5 
Lsept23 6.4 5.2 
LseptL 1.7 1.0 
LNRN1 7.4 7.8 
LNRN2 5.8 5.9 
LNRN3 9.8 10 
Hres1 5.8 5.9 
Hres2 6.4 6.4 
Hres3 5.3 5.3 

Lresi, i = 1..3 2.0 2.0 
Ltotal 38.3 36.9 

 

Table 5-3: Dimensions of E-plane insert for the designed filter (see Figure 4-39). 

 

5.5.2.3. Experimental Verification  

In order to validate the analysis and confirm the introduced design approach, the filter 

structure has been realized using standard E-plane waveguide technology. The insert of the 

shape shown in Figure 5-38 has been cut out of copper foil (σ = 5.8×107 Sm/m) with 

thickness of T = 0.1 mm and placed between two halves of brass rectangular waveguide 

housing (WG-90, cross-section: 22.86×10.16 mm2). 

 

S-parameters of the filter have been measured using Agilent E8361A vector network 

analyzer. Figure 5-40 shows simulated and measured responses of the fabricated filter. The 

computed response reveals all three reflection and three transmission zeros, while 

experimental curve does not depict one of the poles. It is also clear that all three 

transmission zeros observed are close to that of the frequencies expected. The measured 

insertion loss at centre frequency is 1.2 dB.  Required return loss of greater than 20 dB at 

the passband has been successfully achieved. Overall agreement between computed and 

experimental responses is very good taking into account potential fabrication tolerances and 

measurement errors. Photograph of the fabricated structure is shown in Figure 5-41. 
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Figure 5-40: Simulated and experimental responses of the fabricated 3rd-order filter with 

three transmission zeros in upper stopband. 

 

 

Figure 5-41:  Photograph of the fabricated filter: insert and half of the waveguide housing. 
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5.5.3. Filters with S-shaped Resonators and SRR 

In this section, feasibility of the EPS with embedded S-shaped resonators and SRR is 

proven by fabrication of the corresponding 3rd-order filters with three transmission zeros in 

upper stopband. Detailed implementation procedure is not provided in this section, as this 

entirely coincides with the one used in Section 5.5.2. 

 

5.5.3.1. 3rd-order Filter with Three Transmission Zeros Using EPS with S-shaped 

Resonators  
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Figure 5-42: Configuration of E-plane filter with three S-shaped resonators. 

 

Configuration of the designed 3rd-order extracted pole bandpass filter with S-shaped 

resonators is presented in Figure 5-42. The filter has been designed to meet the following 

specifications: 

 

• center frequency: 9.45 GHz; 

• ripple passband: 9.25 – 9.65 GHz; 

• return loss: 22 dB; 

• transmission zeros: 10.5 GHz, 11.35 GHz, 11.65 GHz. 

 

The lowpass prototype of the filter has been obtained by direct synthesis technique, and the 

resultant coupling scheme is shown in Figure 5-37. Prototype elements in this network have 
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the following values: JS1 = 1, BN1 = –4.117, J1 = 4.533, B1 = –4.988, J12 = 1, BN2  = –9.471, 

J2 = 9.074, B2 = –8.705, J23 = 1, BN3 = –8.318, J3 = 9.137, B3 = –9.961, J3L = 1. 

 

The filter has been implemented using three EPS with S-shaped resonators and four septa, 

arranged as an E-plane metallo-dielectric insert. The dielectric block etched on its top side 

with the pattern has been placed in the E-plane of standard rectangular waveguide, between 

two halves of its housing. Dimensions of the metallo-dielectric insert, which have been 

found by extraction of GCC and optimization, are presented in Table 5-4. 

 

Parameters Values, mm 
Lsept1 1.0 
Lsept2 4.6 
Lsept3 4.8 
Lsept4 1.0 
LNRN1 8.4 
LNRN2 7.0 
LNRN3 9.6 
HS1 5.9 
HS2 6.4 
HS3 5.5 

LSi, i = 1..3 3.0 
Ltotal 36.4 

 

Table 5-4: Dimensions of the designed filter with three S-shaped resonators 

(see Figure 5-42). 

 

For experimental validation of the proposed structure, the metallo-dielectric insert has been 

fabricated using the standard PCB process (Rogers Duroid RT/5880™ substrate with 

relative permittivity εr = 2.2, tanδ = 0.0009 and thickness Tsub = 0.8 mm has been used; 

metallization thickness – Tmetal = 0.017 mm) and mounted inside a brass housing of the 

standard rectangular waveguide WG-90 (22.86 mm×10.16 mm). Frequency response of the 

fabricated filter has been measured using the Agilent PNA (E8361A) vector network 

analyzer. Corresponding measured insertion and return losses along with the simulated ones 

are shown in Figure 5-43. It is evident from this figure that measured results demonstrate a 

good agreement with the results of simulation. However, it is evident that one of the poles 
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is slightly shifted towards higher frequencies. At the same time, the first transmission zero 

is also slightly shifted from the predicted location. These shifts can be explained by a 

fabrication error in the area where the second S-shaped resonator is located, which would 

have resulted in an alteration of the S-shaped resonator’s resonant frequency. 

 

Photograph of the cross-section of waveguide housing with the metallo-dielectric insert 

containing the pattern for implementation of the 3rd-order filter with three S-shaped 

resonators is shown in Figure 5-44.  
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Figure 5-43: Simulated and measured S-parameters of the 3rd-order filter with  

S-shaped resonators. 

 

 

Figure 5-44: Half of waveguide housing with metallo-dielectric insert fabricated for the 

filter with S-shaped resonators. 
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5.5.3.2. 3rd-order Filter Using EPS with S-shaped Resonators and SRR  

In order to show feasibility of EPS with SRRs, a 3rd-order extracted pole filter with S-

shaped resonators and SRR has been designed to meet the following specifications: 

 

• center frequency: 9.45 GHz; 

• ripple passband: 9.25 – 9.65 GHz; 

• return loss: 20 dB; 

• transmission zeros: 10.5 GHz, 11.2 GHz, 11.8 GHz. 

 

Approximation and synthesis procedures result in a lowpass prototype with the coupling 

scheme shown in Figure 5-37 with the following element values: JS1 = 1, BN1 = –3.79, J1 = 

4.344, B1 = –4.988, J12 = 1, BN2  = –8.551, J2 = 8.297, B2 = –8.066, J23 = 1, BN3 = –8.104, J3 

= 9.29, B3 = –10.58, J3L = 1. The filter has been implemented in E-plane technology using a 

metallo-dielectric insert with two EPS with S-shaped resonators and a single EPS with 

SRR. Configuration of the E-plane insert for realization of the 3rd-order filter is presented in 

Figure 5-45. The EPS with SRR is arranged between the EPS with S-shaped resonators; 

however, generally an arbitrary sequence can be chosen. 
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Figure 5-45: Configuration of the E-plane filter with two S-shaped resonators and an SRR. 

 

Dimensions of the metallo-dielectric insert, obtained by extraction of GCC between EPS 

and refined by further optimization, are presented in Table 5-5. 
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Parameters Values, mm 
Lsept1 1.0 
Lsept2 4.5 
Lsept3 4.2 
Lsept4 1.0 
LNRN1 9.6 
LNRN2 7.0 
LNRN3 8.4 
HS1 5.5 
HS3 5.9 

LSi, i = 1, 3 3.0 
HSRR 7.6 
LSRR 5.2 

g 0.6 
Ltotal 38.6 

 

Table 5-5: Dimensions of the designed filter with two S-shaped resonators 

 and an SRR (see Figure 5-45). 

 

The metallo-dielectric insert has been fabricated using the same procedure as mentioned in 

the previous section. The frequency response of the fabricated filter, measured by the 

Agilent PNA (E8361A) vector network analyzer is shown in Figure 5-46, along with the 

corresponding simulated response. Measurement results demonstrate good agreement with 

the results of simulation, taking into account the shift of a pole and the first transmission 

zero to a higher frequency. The origin of this shift is suspected to be in fabrication errors 

occurred in the middle EPS containing the SRR, which is very sensitive to manufacturing 

tolerances. The pole available at 10.5 – 10.8 GHz frequency range is referred to the 

spurious resonance of the EPS with embedded SRR (see section 5.4.6). 

 

Photograph of the metallo-dielectric insert with etched EPS and septa, fabricated for 

implementation of the 3rd-order filter with S-shaped resonators and SRR and placed in a 

channel within a half of the waveguide housing is shown in Figure 5-47.  
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Figure 5-46: Measured and simulated S-parameters of the 3rd-order filter with  

S-shaped resonators and SRR. 

 

 

Figure 5-47: Metallo-dielectric insert with S-shaped resonators and SRR embedded in a 

half of the waveguide housing. 
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5.5.4. 4th-order Filter with a Dual-Mode EPS and a Transmission Zero in Lower 

Stopband 

In section 5.2 it has been mentioned that EPS are capable of generating a transmission zero 

not only in upper stopband, but in lower as well. In section 5.4.6 it has been shown 

theoretically that a real EPS reveals at least two poles and a transmission zero, which is 

always located between them. Expressions (5.2-4) and (5.2-5) suggest that to generate a 

transmission zero in lower stopband, it is necessary to realize an NRN with positive 

frequency invariant susceptance BN instead of the negative BN used for upper stopband 

transmission zeros in the previous filter design examples. In this section a development of 

an EPS with a transmission zero in the lower stopband compatible with E-plane insert 

technology is considered. A filter with transmission zeros in both lower and upper 

stopbands is designed based on the developed EPS. 

 

5.5.4.1. Dual-Mode EPS with Transmission Zero in Lower Stopband 

A strongly detuned standard E-plane resonator, which acted as an NRN in the previously 

reported designs, has negative susceptance at frequencies lower than self-resonant 

frequency and, on the other hand, positive susceptance at frequencies higher than self-

resonant frequency. This suggests that it is necessary to increase the length of the NRN in 

order to obtain much lower resonant frequency and, therefore, a positive value of BN. An 

embedded resonator in EPS, which determines the position of a transmission zero, retains 

the same configuration as in ordinary EPS.  

 

Let us examine a frequency response of an EPS with embedded λ/4-wavelength resonator, 

which has an enlarged NRN in order to obtain the lower stopband transmission zero. 

General configuration of this type of EPS is presented in Figure 5-20. Corresponding S-

parameters of the EPS, simulated in CST Microwave Studio™ are shown in Figure 5-48. It 

is evident from the frequency response of the EPS that beside the pair of pole and zero, an 

additional pole has appeared in the frequency range under consideration. Simulated field 

distribution at the pole frequencies suggests that the additional resonance corresponds to the 

second-order resonance (quasi-TE102 mode) of the E-plane resonator used as NRN. The 

second pole is the one produced by the EPS. Generally, the transmission zero still appears 
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between two poles generated by the EPS as it has been previously predicted in section 

5.4.6.2 (see eq. (5.4-13)). The lower-mode pole is located at a very low frequency and is 

not shown in Figure 5-48. 
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Figure 5-48: Simulated frequency response of an EPS with embedded  

λ/4-wavelength resonator, generating a transmission zero in lower stopband. 

 

It has been found that positions of the poles can be adjusted by changing the width of 

embedded λ/4-wavelength resonator Wres and the length of the NRN LNRN. Investigation of 

this property is illustrated in Figure 5-49.  

 

Variation of the Wres causes alteration of position of one of the poles, which becomes 

shifted by the same frequency as the transmission zero (see Figure 5-49a). At the same 

time, the other pole, which corresponds to the NRN’s self-resonance, retains its position. 

This effect can be explained by shifting of resonant frequency of the λ/4-wavelength 

resonator due to alteration of its internal inductance and capacitance.  

 

From Figure 5-49b it is evident that with variation of LNRN the transmission zero undergoes 

slight shifting due to alteration of capacitance between both septa and the resonator. At the 

same time, increasing LNRN leads to reduction of distance between the transmission zero and 

poles, as well as distance between the poles. Taking advantage of the considered effects, a 

real EPS can be tuned in order to achieve the desired performance. 
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(b) 

Figure 5-49: Adjustment of positions of poles and zero in EPS by changing geometrical 

dimensions of its elements: (a) effect of changing Wres (LNRN = 25 mm, Lres = 7 mm);  

(b) effect of changing LNRN (Wres = 4 mm, Lres = 7 mm). 

 

The EPS which exhibits two very closely located poles and a transmission zero in lower 

stopband can be defined as a dual-mode EPS. This structure has the properties of a standard 

EPS connected in cascade with a resonator. Therefore, it can be modelled using a lowpass 

prototype network with a coupling scheme presented in Figure 5-50. 

 



 196 

jBN

JN1

s+jB1

JSN JN2 J2L

Source Loads+jB2  

Figure 5-50: Coupling scheme of a dual-mode EPS. 

 

Analysis of the dual-mode EPS is a complex problem as the structure generates two 

resonating modes which can not be separated. Thus, GCC can not be extracted using the 

technique given in section 5.3, because it is generally impossible to distinguish the origin of 

two poles generated by the circuit. However, analysis and design of dual-mode EPS can be 

effectively carried out by optimization. Example of such an approach has been reported in 

[5-11]. 

 

5.5.4.2. Filter with Dual-Mode EPS. Approximation and Synthesis 

A 4th-order inline extracted pole bandpass filter with a transmission zero in lower stopband 

has been designed and implemented in E-plane technology in order to demonstrate the use 

of dual-mode EPS. Specifications of the filter are given as follows: 

 

• center frequency: 11 GHz; 

• ripple passband: 10.75 – 11.25 GHz; 

• return loss: 18 dB; 

• transmission zeros: 10.3 GHz, 11.7 GHz, 12 GHz. 

 

Characteristic polynomials P(s) and F(s) of the filter have been derived using generalized 

Chebyshev approximation. When the roots of F(s) have been found, these can be used for 

coupling matrix synthesis by optimization (see Section 3.3.3.5) as well as the known 

transmission zeros (roots of P(s)). The gradient-based optimization procedure applied to the 

polynomials leads to obtaining the lowpass prototype equivalent network shown in Figure 

5-51. Elements of the prototype have the following values: JS1 = 1.0, BN1 = –2.064, JN1 = 

2.599, B1 = –2.895, J12 = 1.0, BN2 = 3.131, JN2 = 2.657, J23 = 0.827, B2 = 2.716, B3 = 0.243, 
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J34 = 0.884, BN4 = –3.324, JN4 = 3.558, B4 = –3.833, J4L = 1.0. Therefore, corresponding 

GCC can be calculated as: QextS = –2.064, QextL = –3.3244, 2
1k  = –3.272, 2

2k  = 2.255, 2
4k  = 

–3.809, 2
12k  = –0.155, 2

23k  = 0.218, 2
34k  = –0.235. 
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Figure 5-51: Coupling scheme of the 4th-order extracted pole filter with dual-mode EPS. 

 

5.5.4.3. Filter with Dual-Mode EPS. Implementation 

The filter has been implemented by three direct coupled EPS with embedded λ/4-

wavelength resonators. Two of these sections are conventional EPS with negative BN, used 

for implementation of the filter in Section 5.5.2, each producing a transmission zero in 

upper stopband. The remaining section is the dual-mode EPS, responsible for the 

transmission zero in lower stopband. Configuration of the E-plane insert for this filter is 

presented in Figure 5-52. 

 

Dimensions of both single-mode EPS and input/output septa have been obtained by 

extraction of the corresponding GCC from simulated frequency responses of each 

individual EPS. Plots used for extraction are not shown here in order to save space, as the 

GCC’ extraction procedure has been explained in details in Section 5.5.2. Initial length of 

the embedded resonator in dual-mode EPS has been obtained by tuning Hres2 until the 

required position of transmission zero is reached. The remaining dimensions of the insert 

have been found by gradient optimization carried out with respect to the manufacturing 

tolerances in full-wave simulator CST Microwave Studio™. The dimensions of the insert 

obtained as a result of optimization process are summarized in Table 5-6. 
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Wres1 Wres2 Wres3

Hres1 Hres2 Hres3Hwg

LseptS LseptLLNRN1 LNRN2 LNRN3Lsept12 Lsept23  

Figure 5-52: Configuration of E-plane insert for implementation of the 4th-order filter with 

dual-mode EPS. 

 

Parameter Value Parameter Value 
LseptS 0.7 Hres1 4.5 
Lsept12 7.3 Hres2 6.3 
Lsept23 7.5 Hres3 4.3 
LseptL 0.5 Wres1, Wres3 1.5 
LNRN1 3.9 Wres2 2.5 
LNRN2 25.6 Hwg 10.16 
LNRN3 4.8 Ltotal 50.3 

 

Table 5-6: Dimensions of the designed filter with dual-mode EPS (see Figure 4-52). 

 

5.5.4.4. Filter with Dual-Mode EPS. Experimental Verification 

Feasibility of the dual-mode EPS and adequacy of the proposed approach have been 

verified experimentally. For this purpose the pattern presented in Figure 5-52 has been 

etched on the top side of a rectangular piece of standard PCB (Rogers Duroid RT/5880™ 

substrate with relative permittivity εr = 2.2, tanδ = 0.0009 and thickness Tsub = 0.8 mm; 

metallization thickness – Tmetal = 0.017 mm), while the bottom side of the substrate has 

been completely cleaned of metallization. The resultant metallo-dielectric insert has been 

placed in a channel within the E-plane of a standard rectangular waveguide (WG-90; cross-

section: 22.86×10.16 mm2), between two separate halves of a brass housing. Photograph of 

the fabricated structure is shown in Figure 5-53. 
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Figure 5-53:  Photograph of the fabricated filter: insert placed within a channel in a half of 

the waveguide housing 

 

S-parameters of the filter have been measured using the Agilent E8361A vector network 

analyzer. Comparison of simulated and measured responses of the fabricated filter is 

presented in Figure 5-54.  

 

The measured curves clearly display all three transmission zeros, however two zeros and 

two poles of four are shifted from the predicted positions due to high sensitivity of resonant 

frequencies of λ/4-wavelength resonators to fabrication tolerances. The measured insertion 

loss at centre frequency is 2.05 dB.  Required return loss in the passband of better than 18 

dB is successfully achieved. Overall agreement of computed and experimental responses is 

satisfactory taking into account fabrication tolerances.  

 

The second band of the filter is primarily determined by the cutoff frequency of the second 

propagation mode TE20 of the waveguide which appears at about 13 GHz for the waveguide 

WG-90 with the dielectric insert. It is clear that the second band is located too close to the 

passband of the filter. However the choice of the filter’s centre frequency which strictly 

determines the total length of the filter was limited by the available housing with the special 

channel for convenient arrangement of the dielectric insert. Use of a longer housing and/or 
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use of all-metal inserts will improve the stopband performance of the filter, as well as allow 

lowering the centre frequency of the filter. It should be noted that influence of fabrication 

tolerances should be less for filters designed for lower centre frequency. 
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Figure 5-54: Simulated and experimental responses of the fabricated 4th-order filter with 

dual-mode EPS. 
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5.6.  Summary 

 

In this chapter the problem related to extracted pole filters design using E-plane inserts in 

rectangular waveguides has been thoroughly discussed. 

 

In section 5.2 extracted pole sections have been introduced as modules which constitute 

inline extracted pole filters. Equivalent lowpass prototype and main properties of frequency 

responses of the EPS have been demonstrated. 

 

Generalized coupling coefficients have been introduced in section 5.3 as a convenient tool 

for representation and design of filters with NRN. Expressions for extraction of GCC from 

simulated or measured frequency responses of single EPS, EPS interacting with another 

EPS or resonator have been derived analytically for the first time. 

 

In section 5.4 several EPS with embedded resonators have been studied. Effects caused to 

frequency responses of EPS by varying of geometrical dimensions of its elements have 

been investigated using electromagnetic simulations. It has been found that position of the 

transmission zero may vary in a wide range which makes it possible to improve stopband 

performance of the filters drastically. Analysis of the EPS’ performance has shown that Q-

factor of the EPS with embedded resonators drops by more than 60% in comparison with 

hollow E-plane resonators, while total element’s length is reduced by more than 40%. 

 

In section 5.5 a set of inline extracted pole filters with EPS has been designed using the 

novel GCC extraction technique and fabricated. It has been found that this technique 

provides good initial values for CAD optimization of the filter structures. Experimental 

verification has shown excellent agreement for the filter with all-metal insert, while the 

filters with metallo-dielectric inserts have suffered from errors due to high sensitivity of the 

structures to fabrication tolerances. Additionally, a novel dual-mode EPS capable of 

generating a transmission zero in lower stopband has been achieved as a result of 

theoretical investigation. The results confirm the proposed ideas and prove adequacy of the 

EPS model and the filter design approach using the novel GCC extraction technique. 
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CHAPTER 6 

SUBSTRATE INTEGRATED  WAVEGUIDE  FILTER  

STRUCTURES 

6.1.  Introduction 

 

Active development of modern telecommunication technologies has created colossal 

demand for compact, inexpensive and high-performance bandpass filters with good 

selectivity and low insertion loss. Recently developed planar structures – substrate 

integrated waveguides (SIW), able to meet present specifications, have been proposed as a 

replacement of conventional rectangular waveguides which are expensive, difficult to 

fabricate and integrate [6-1]. SIW resonators have become attractive for design of 

microwave filters using cross-coupled topologies with elliptic and pseudo-elliptic responses 

[6-2], which have found wide application in microwave and mm-wave systems lately due to 

their ability to produce transmission zeros at predicted frequencies and create sharp slopes. 

 

Methods of miniaturization of SIW resonators have been thoroughly examined recently. 

Several techniques of size reduction for resonators and filters have been proposed: use of 

EBG-substrate structures [6-3]; ridged SIW resonators [6-4]; folded SIW (FSIW) 

resonators which occupy only half an area of equivalent SIW resonators [6-5]. Filter based 

on quarter-wavelength SIW cavities have been designed in [6-6], and another approach to 

miniaturization by folding has been developed and investigated in [6-7, 6-8]. 

 

In chapters 4 and 5 it has been shown that conventional waveguide filters can be 

miniaturized by employing modular filter design and extracted pole technique, taking 

advantage of using combinations of stripline resonators and rectangular waveguide 

transmission line. Historically, evolution of SIW structures has been driven by 

achievements made in research of conventional rectangular waveguides. Therefore, 
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application of the methods previously proposed in this thesis to SIW technology may lead 

to development of new planar filters retaining the advantages of their conventional 

waveguide analogues.  

 

In this chapter, attention will be paid to design of miniaturized SIW cross-coupled filters. In 

section 6.2 FSIW resonators are introduced; a new structure for implementation of negative 

coupling between FSIW resonators is proposed. The design example of a 4th-order cross-

coupled filter based on half- and quarter-wavelength FSIW resonators is presented. Section 

6.3 focuses on design of modular SIW filters. In this section, singlet and doublet modules 

with λ/4-wavelength stripline resonators are proposed for realization in multilayer SIW 

technology. Modular filter with NRN, which has three transmission zeros in both stopbands 

is designed. Finally, in section 6.4, an extracted pole section for multilayer SIW technology 

is introduced. Design example of inline extracted pole filter with NRN using the substrate 

integrated EPS is presented. 
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6.2. Design of Cross-Coupled SIW Filters 

 

6.2.1. SIW Cavity Resonators 

 

  

Figure 6-1: Configuration of a SIW cavity resonator and its frequency response. 

 

Waveguide cavity resonators are usually organized as a λ/2-wavelength section of a 

transmission line limited by conductive walls with slots for the purpose of excitation. 

Figure 6-1 shows a general configuration of a λ/2-wavelength SIW cavity resonator. If SIW 

is used as a basic transmission line, the conductive walls of the resonator are formed by via 

holes connecting top and bottom ground planes. Role of the excitation slot is performed by 

a gap in the wall, between vias. Side walls of the SIW can be realized within its substrate, 

either as an array of metallized posts, metallized grooves, or paste side walls. Feeding of 

the structure is realized by means of microstrip inputs; microstrip-to-SIW transition is 

organized using tapers [6-1, 6-9] which provide effective modal energy conversion from 

TE10 mode in waveguide to TEM propagating in microstrip line, and vice versa. 

 

Resonant wavelength λres of SIW resonators is related to their length Lres through the following 

equation: 
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where Weff is given by (2.3-3). Hence, the resonant frequency can be derived as 
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6.2.1.1. λ/2-wavelength Folded SIW Resonator 

In [6-10] Grigoropoulos and Young introduced a concept of new folded substrate-

integrated waveguides (FSIW). Further research have indicated that, when the width of 

FSIW is nearly half of width of original unfolded SIW, and its E-plane gap width is nearly 

the height of the SIW, the FSIW reveals nearly the same propagation and cutoff 

characteristics of the SIW structure. In this way, it is possible to design novel 

RF/microwave circuits using this new platform. Comprehensive theoretical investigation 

and experimental verification of FSIW can be found in [6-11].  

 

Consider a λ/2-wavelength long section of SIW folded along its longitudinal axis while 

maintaining its standing waves. Having two layers, the obtained structure occupies only 

half the area comparing to the conventional SIW resonator and is referred to as FSIW λ/2-

wavelength cavity resonator. Complete resonator contains a guiding part with a longitudinal 

slot made near the side wall which consists of several metallic posts. Some via connectors 

organize input and output apertures which are connected to input/output striplines. Typical 

configuration of a SIFW λ/2-wavelength resonator is presented in Figure 6-2. 
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Figure 6-2: Configuration of a λ/2-wavelength FSIW resonator. 

 

 

Figure 6-3: Magnetic field distribution in a λ/2-wavelength FSIW resonator. 

 

In Figure 6-3, distribution of magnetic field in the resonator at its resonant frequency is 

presented. It is seen that magnetic field has its maximum near the side walls. The field 

structure forms a magnetic line which passes the region near the side walls on top layer 

clockwise, goes through the slot near the resonator’s input, than passes the bottom side 

walls region anticlockwise returning to the top layer through the slot near the resonator’s 

output. 

 

FSIW resonator occupies half an area of a SIW resonator but requires stacking of two 

layers of substrate. Due to unusual field distribution, the FSIW resonators give new 

opportunities in design of microwave and mm-wave filters. 
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6.2.1.2. λ/4-wavelength Folded SIW Resonator 

 

Figure 6-4: Configuration of a λ/4-wavelength FSIW resonator. 

 

 

(a)                                                      (b) 

Figure 6-5: Field distribution in a λ/4-wavelength FSIW resonator:  

(a) electric field; (b) magnetic field. 

 

New structure of λ/4-wavelength FSIW resonator can be obtained by folding the λ/2-

wavelength FSIW resonator by 90° in the plane of substrate. The new FSIW resonator has 

been proposed in [6-12]. It has been recently shown that the novel type of compact FSIW 

resonators, stemming from the concept of folding standing waves of a conventional TE101-

mode SIW resonator, retains similar high Q-factor property of SIW resonator but has only a 

quarter of its footprint. 

 

Configuration of the λ/4-wavelength FSIW resonator is presented in Figure 6-4. Complete 

resonator contains a guiding part with L-shaped slot made near the side walls realized as 

metallized via-holes. Input/output striplines are used for feeding of the resonator through 
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input/output apertures in side walls. Distribution of electric and magnetic fields in the 

resonator at its resonant frequency, simulated in Ansoft HFSS™, is presented in Figure 6-5. 

Electric field is concentrated at the region of slot, while the magnetic field has its maximum 

near side walls where electric field has its minimum. Magnetic line has the same topology 

as the one for the λ/2-wavelength FSIW resonator case; its form is distorted due to the 

appropriate 90° folding. Direction of the line is clockwise in top dielectric layer and 

anticlockwise in bottom layer. 

 

Comparison of main parameters of conventional SIW, λ/2-wavelength and λ/4-wavelength 

FSIW resonators, adjusted for the same resonant frequency fres of 10 GHz is presented in 

Table 6-1. Calculation of unloaded Q-factor of the resonators has been performed using 

formulae (5.4-6) and (5.4-7). It is evident from the table that the λ/4-wavelength FSIW 

resonator occupies the smallest area, while the λ/2-wavelength FSIW resonator has the 

highest unloaded Q-factor. 

 

Type of resonator 
Parameter Standard SIW λ/2-wave 

FSIW 
λ/4-wave 

FSIW 
Width, mm 12 11.5 8.9 
Length, mm 15 8.9 8.9 
Area, mm2 180 102.4 79.2 

Unloaded Q-factor 255.2 389.4 356.1 
 

Table 6-1: Comparison of SIW resonators based on  

full-wave EM simulation results (Ansoft HFSS™). 
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6.2.2. Coupled FSIW Resonators 

Some types of cross-coupled filters require pairs of resonators which have positive and 

negative coupling coefficients. Several techniques are usually used for realization of the 

specified coupling coefficients. The simplest of them is coupling through irises in walls 

between integrated cavities. 

 

6.2.2.1. Positive Coupling Structure 

To realize a positive coupling coefficient between two folded resonators by means of 

coupling iris, it is sufficient to design a conventional pair of single-layer SIW resonators [6-

2] and fold them around their longitudinal axes.  

 

 

Resonator 1 Resonator 2

Input Output
Inductive

iris  

Figure 6-6: Configuration of coupled λ/4-wavelength FSIW resonators (top view). 

 

In case of direct coupling, the gap in the middle metallization layer runs from one resonator 

to another, while two halves of coupling iris formed using plated vias are located one upon 

another in different layers. This principle is used for coupling of λ/4-wavelength FSIW 

resonators, shown in Figure 6-6. Direct coupling can be also realized by the principle used 

for design of conventional E-plane filters in rectangular waveguide [6-13], where a septum 

placed in the E-plane acts as an inductive discontinuity. Taking into account that the E-

plane of a folded waveguide coincides with the gap in the middle layer, the coupling 

septum can be easily applied. However, realization of low coupling coefficients requires 

septa with significant widths. Nevertheless, narrow septa can be used in combination with 
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coupling irises to regulate values of coupling coefficients. In case of side coupling, folding 

does not affect the coupling iris and the coupling is provided by an inductive iris in regular 

way. 

 

6.2.2.2. Negative Coupling Structure 

Electric coupling provides negative coupling coefficient and it can be realized with a slot or 

gap at a region of a FSIW resonator, where maximum of electric field and minimum of 

magnetic field magnitudes appear. However, for the case of considered FSIW resonators, 

maximum of electric field appears in the slot and direct realization of the negative coupling 

coefficient is possible only if slots of two adjacent resonators are located by a common side 

wall. Such configuration becomes inapplicable when filter’s layout must be built so that the 

slots are located by opposite side walls. To overcome the issue, use of magnetic coupling 

through a slot between top and bottom layers of adjacent resonators is proposed in this 

thesis instead of electric coupling. 

 

It can be concluded from analysis made by Thomas in [6-14] that in two positively coupled 

resonators fields oscillate in phase at low resonant mode and have a shift of 180º at high 

mode. In contrast, in a pair of negatively coupled resonators fields are out of phase at low 

mode and not shifted at high mode. Consequently, the waves which have equal phases at 

the inputs of negative and positive coupling structures will be out of phase at the outputs. 

Thus, a negative coupling structure can be obtained from the positive one by reversing 

polarity at the output. One of advantages of folded resonators is that this effect can be 

achieved by folding both SIW resonators anticlockwise or clockwise (in the same direction) 

which is equal to swapping top and bottom ground planes of the output resonator. This 

procedure is also equivalent to swapping top and bottom layers of the second resonator. It 

should be emphasized that such approach is valid only for narrow-band circuits such as 

coupled resonators. 
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(c) (d)

Resonator 1 Resonator 2Iris
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(e)     (f) 

Figure 6-7: Folding process of a pair of resonators  

coupled by inductive iris (a–d: cross-section; e,f: 3-D view). 
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Figure 6-8: Phase responses of positively and negatively coupled resonators. 

 

Consider a pair of single-layer SIW resonators positively coupled by an iris in common 

side wall (Figure 6-7a). To create a positively coupled pair of double-layer FSIW 

Iris Slot 

Resonator 1 

Resonator 2 
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resonators, it is necessary to fold up both resonators around their axes of symmetry 

clockwise and anticlockwise (in opposite directions) as it is shown in Figure 6-7b. 3-D 

view of the positively coupled SIW resonators is shown in Figure 6-7e. Swapping of layers 

of the second resonator can be performed by folding it clockwise (in the same direction, 

Figure 6-7c). Resultant structure consists of three layers; their number can be reduced by 

shifting one of resonators up or down by thickness of substrate. Such procedure will cause 

deformation of area where the coupling iris is located, so the iris becomes a slot in the 

middle metallization layer (Figure 6-7d). It is extremely important that despite the 

deformation of the iris area, all the waves and currents keep their structures and the folding 

condition [6-5] is satisfied. 3-D view of the negatively coupled SIW resonators is shown in 

Figure 6-7f. The structure has the properties of a pair of negatively coupled resonators. This 

can be proven by comparison of phase responses of positive and negative coupling 

structures which have weak external couplings (Figure 6-8). Indeed, at the neighbourhood 

of the resonant modes, phases of S21 are shifted by 180º, while phases of S11 remain equal. 

Feasibility of the upside-down negative coupling structure in cross-coupled filter will be 

proven in section 6.2.3 by a filter design example. 
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6.2.3. Filter Design Example 

4th-order bandpass filter with λ/2- and λ/4-wavelength FSIW resonators has been designed 

in order to demonstrate feasibility of the negative coupling structure introduced in the 

previous section. The filter has been designed to satisfy the following specifications: 

 

• centre frequency: 10 GHz; 

• ripple passband: 9.75 – 10.25 GHz; 

• return loss: 30 dB; 

• transmission zeros: 9.2 GHz and 10.8 GHz. 

 

6.2.3.1. Coupling Matrix Synthesis 

k12

k23

k34

-k14

kS1

k4L

Source

Load

Resonator  

Figure 6-9: Coupling scheme of the proposed FSIW cross-coupled filter. 

 

Synthesis of a cross-coupled filter with synchronously tuned resonators lies in derivation of 

a coupling matrix for its lowpass prototype from known initial specifications. For pseudo-

elliptic filters, the matrix can be derived by optimization using the procedure presented in 

[6-15]. Coupling scheme chosen to realize the lowpass prototype of the corresponding filter 

(shown in Figure 6-9) with four poles and two transmission zeros at ±j3.2 leads to the 

following generalized coupling matrix M: 
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Program for calculation of the coupling matrix has been developed in MATLAB™ by 

author. 

 

Matrix M is then denormalized with respect to the required centre frequency f0 and 

bandwidth ∆f to obtain coupling coefficients kij and external quality factor Qext using the 

following formulae: 

 

ijij M
f

f
k

0

∆=               (6.2-4) 

2
4

0
2
1

0

LS
ext Mf

f

Mf

f
Q

⋅∆
=

⋅∆
=            (6.2-5) 

 

Therefore, the following design parameters can be obtained for the filter: k12 = k34 = 0.055; 

k23 = 0.043; k14 = –0.006; Qext = 13.46. 

 

6.2.3.2. Implementation 

When the coupling matrix is obtained, correspondence between theoretical coupling 

coefficients and dimensions of coupling slots and irises is to be established. This can be 

done using plots of coupling coefficients against the slot/gap dimensions made for various 

types of couplings between pairs of resonators, built during preliminary analysis. 

Alternative method is calculation of corresponding slot/gap dimensions theoretically. 

However, this approach usually leads to bulky calculations. 

 



 218 

To determine how coupling coefficients depend on dimensions of the irises and slots, 

coupled resonators have been simulated in EM full-wave simulator Ansoft HFSS™, and 

frequency responses have been obtained. Then, from each curve two peak frequencies have 

been identified as low mode flow and high mode fhigh frequencies. Coupling coefficients can 

be extracted using the modified expression (4.3-7): 

 

22

22

lowhigh

lowhigh
ij ff

ff
k

+
−

±=       (6.2-6) 

 

The filter contains three positive coupling structures which produce the main path for signal 

in combination with all four resonators. Among the resonators, two between which negative 

coupling is to be realized (1 and 4) have been chosen to be λ/2-wavelength for the reason of 

simple organization of input and output transitions. The rest (2 and 3) have been chosen to 

be quarter-wavelength due to their location at the bend of the structure. Top view of the 

filter layout is given in Figure 6-10. 
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Figure 6-10: Layout of the proposed FSIW cross-coupled filter (top view). 

 

 

Resonator 1 Resonator 2 

Resonator 3 Resonator 4 
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Coefficients k12 and k34 can be obtained from analysis of coupled λ/2- and λ/4-wavelength 

resonators. In this case, direct iris coupling without septum is used and the coupling is 

controlled by width W12 of the iris. Curve obtained as a result of this analysis is shown in 

Figure 6-11. 
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Figure 6-11: Coupling coefficients k12 and k34 against iris width W12. 

 

Analysis of iris-coupled λ/4-wavelength resonators (depicted in Figure 6-6) gives a similar 

curve for coupling coefficient k23, which is shown in Figure 6-12. Here, coupling control is 

realized by the iris of the width W23. 
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Figure 6-12: Coupling coefficient k23 against iris width W23. 

 

As it has been mentioned in section 6.2.2, the proposed negative coupling structure is also 

based on magnetic coupling but in this case coupling element is a rectangular slot of length 
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Lslot between top layer part of resonator 1 and bottom layer part of resonator 4. Dependence 

of coupling coefficient k14 on Lslot is shown in Figure 6-13. 
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Figure 6-13: Coupling coefficient k14 against slot length Lslot. 

 

It can be noticed from Figures 6-11, 6-12 and 6-13 that the wider the coupling elements, the 

stronger the couplings, and the larger the value of coupling coefficient. Such behaviour is 

characteristic to magnetically coupled cavities: in this case high-mode frequency drifts 

slightly, while low-mode frequency moves significantly with variation of the coupling 

value. In contrast, for electric coupling behaviour of low and high modes is opposite and 

thus coupling coefficient decreases with widening of coupling element, such as a capacitive 

gap. 

 

Variation of input iris width Win is used in order to control the external Q-factor. This 

parameter Qext can be extracted from the frequency response of doubly-loaded resonator 

using expression: 
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where ∆f3dB is a 3dB-bandwidth of the resonator. The resultant plot of external quality 

factor against the input iris width Win is presented in Figure 6-14. 

 

Lslot = 2.5 mm 
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Figure 6-14: External Q-factor Qext against input iris width Win. 

 

6.2.3.3. Simulation and Experimental Results 

 

The filter has been fabricated using two layers of Rogers Duroid RT/5880™ substrate 

(εr = 2.2, tanδ = 0.0009; thickness Tdiel = 0.5 mm), where two λ/2-wavelength and two λ/4-

wavelength FSIW resonators have been organized. Feeding of the filter has been realized 

by CPW input and output pads located on the top layer. These are connected to the middle 

layer stripline using a metallic post. The stripline is connected to the resonator 1; resonator 

4 is connected to the output stripline respectively. Drawing of the filter structure with 

dimension markings is presented in Figure 6-10; corresponding dimensions are collected in 

Table 6-2; photograph of the fabricated filter is shown in Figure 6-15.  

 

 

 

Table 6-2: Dimensions of the designed FSIW filter (see Figure 6-10). 

Parameter Value, mm Parameter Value, mm 
Lhw 10.9 W23 1.7 
Lqw 5.5 Lslot 2.8 
Wwg 5.5 Wtotal 17 
Win 3.3 Ltotal 22 
W12 2.2 Tdiel 0.5 

Win = 2.9 mm 



 222 

 

Figure 6-15: Photograph of the fabricated FSIW filter. 

 

Transmission characteristics of the designed cross-coupled filter, simulated in Ansoft 

HFSS™, are presented in Figure 6-16. The filter exhibits about 0.95 dB insertion loss in 

passband, and its return loss is better than required 30 dB. Spurious passband of the filter 

appears at about 15 GHz, however it is suppressed by 23 dB. It can be noticed that an extra 

transmission zero has been obtained in upper stopband at about 13.8 GHz. Theoretical 

analysis shows that the transmission zero appears because of very weak coupling available 

between source and load. At the same time the source-load coupling creates another 

transmission zero in lower stopband below 5 GHz which could not be caught by the 

simulator. Increase of source-load coupling leads to drifting of the extra transmission zeros 

closer to passband. 

 

5 10 15 20
Frequency, GHz

-80

-60

-40

-20

0

S
-p

ar
am

et
er

s,
 d

B

S21
S11

 

Figure 6-16: Simulated S-parameters of the FSIW cross-coupled filter. 
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Figure 6-17: Measured S-parameters of the fabricated FSIW cross-coupled filter. 

 

Measured S-parameters of the filter are shown in Figure 6-17. The experimental results 

show poor agreement with the simulated; however visible passband and good transmission 

zeros generally prove the concept and particularly applicability of the negative coupling 

structure. Measured insertion loss in passband is about 5 dB, return loss – 15 dB. The zero 

at 10.8 GHz has drifted to about 12 GHz. Two transmission zeros at 7.3 GHz and 13.3 GHz 

are the extra zeros generated by parasitic source-load coupling. The reason of the high 

losses is bad quality of fabrication; analysis of the failure has shown that electric contact 

between the vias and the middle metallization layer had not been established properly. This 

happened due to lack of practical experience at multilayer PCB fabrication and 

unavailability of special equipment for this type of fabrication. It should be emphasized that 

there were several attempts to fabricate this filter; however all of them had shown much 

poorer results than the presented one due to unavailability of electric contact between the 

vias connecting the input/output pads and the middle metallization layer. After obtaining 

the poor experimental results it has been decided to abandon further experimental 

verifications of the other circuits designed to be built using the multilayer PCB process and 

concentrate on the waveguide filters with E-plane inserts. It is expected that the proposed 

filter can be fabricated using the multilayer PCB process by experienced professionals or 

using alternative fabrication techniques as split-block waveguide housing with a horizontal 

all-metal insert or LTCC. These techniques will be attempted to prove feasibility of the 

filter in the future work. 
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6.3. Design of Modular SIW Filters 

 

In this section, a modular solution for design of an inline pseudo-elliptic bandpass filter 

with three transmission zeros using double-layer substrate integrated waveguide (DLSIW) 

will be proposed. New approach which involves stripline resonators arranged in common 

wall of two stacked SIW is introduced. Singlet and doublet structures based on the stripline 

resonators are presented as basic units for modular design of a filter with non-resonating 

node. 

 

6.3.1. SIW Filtering Modules 

Singlets and doublets, the simplest filtering modules capable of generating and controlling 

individual transmission zeros, can be implemented using SIW technologies. In this section, 

DLSIW singlet and doublet structures will be introduced. 

 

6.3.1.1. Singlet 

 

Figure 6-18: Configuration of a hollow DLSIW. 

 

Let us consider two conventional SIW arranged in parallel, sharing top/bottom ground 

plane. Such configuration has half the characteristic impedance of the single layer SIW and 

a wave can be easily excited by a stripline connected to the common wall of the 

waveguides. It worth mentioning that having equal magnitudes, electromagnetic fields in 

top and bottom halves of the waveguide propagate out of phase as a result of mode 

conversion from the TEM in the stripline to the quasi-TE10 in both parallel SIW. The 
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structure can be manufactured by stacking two layers of dielectric substrates. View of a 

complete computer model of the DLSIW section with stripline transitions and cylindrical 

via connectors forming side metallic walls is presented in Figure 6-18. 

 

 

Figure 6-19: Configuration of a DLSIW singlet  

with a λ/4-wavelength stripline resonator (top view). 

 

Slots of arbitrary shapes cut out in the common metallic plane of DLSIW provide coupling 

between top and bottom waveguides. For example, FSIW resonator [6-5] can be considered 

as a section of the DLSIW with a longitudinal coupling slot which provides magnetic 

coupling between two conventional cavity resonators located in top and bottom layers. 

Slots of some particular dimensions and shapes may have resonant properties. Let us 

consider a hairpin-shaped slot cut out in the middle metallic layer of the DLSIW, shown in 

Figure 6-19. This slot creates a λ/4-wavelength stripline resonator, which interacts with a 

wave, propagating in the waveguide, providing source-resonator and resonator-load 

couplings. Also the wave bypasses the resonator, in such a way forming direct source-load 

coupling. Hence, the structure can be represented as a singlet which has been discussed in 

section 4.2.1. Frequency response of singlets contains a reflection zero and a transmission 

zero placed in either upper or lower stopband depending on the sign of the product of three 

coupling coefficients. In Figure 6-20, typical S-parameters of the DLSIW singlet are 

presented. Position of the transmission zero can be modified by moving the hairpin slot in 

transversal direction: if open end of the resonator moves closer to the side wall, the source-

load coupling increases and the transmission zero drifts closer to the pole frequency. 



 226 

5 6 7 8 9 10 11 12 13 14 15
Frequency, GHz

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 o

f S
-p

ar
am

et
er

s,
 d

B

S11
S21

 

Figure 6-20: Typical S-parameters of a DLSIW singlet. 

 

6.3.1.2. Doublet 

 

Figure 6-21: Configuration of a DLSIW doublet 

with two λ/4-wavelength stripline resonators (top view). 

 

Doublet configuration consists of two λ/4-wavelength stripline resonators which are formed 

in the middle layer of a DLSIW using an S-shaped slot arranged in longitudinal direction 

(see Figure 6-21). In the obtained structure source and load interact with both resonators 

and with each other, generating a bypass coupling. At the same time, two stripline 

resonators are electrically coupled, which implies that this coupling can be considered as 

negative. The structure acts as a doublet with asymmetrical frequency response, which has 

been previously considered in section 4.2.2. Typical frequency response of a DLSIW with 

two λ/4-wavelength stripline resonators is presented in Figure 6-22. The doublet has an 

asymmetrical frequency response with two reflection zeros forming its passband, and two 

transmission zeros in upper and lower stopbands. The upper transmission zero is observed 
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much further from passband than the lower one. Adjustment of the doublet’s coupling 

coefficients in order to modify positions of the transmission and reflection zeros can be 

performed by changing gap width between two λ/4-wavelength stripline resonators and by 

introducing a coupling iris between source and load. 
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Figure 6-22: Typical S-parameters of a DLSIW doublet. 
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6.3.2. Filter Design Example 

It is seen from Figure 6-22 that the introduced doublet can be used as a bandpass filter 

individually. However, it does not provide enough lower stopband rejection and upper 

slope appears to be very flat. In order to improve stopband performance of the doublet and 

add extra transmission and reflection zeros, a bandpass filter can be built by connecting the 

singlet and doublet modules in series. 

 

To retain properties of the singlet and doublet in the modular filter configuration, these two 

sections must be connected through an NRN, which can be represented by a uniform 

section of the DLSIW with its length smaller than resonant wavelength at the centre 

frequency of the filter. Nevertheless, despite using the NRN, some parasitic effects leading 

to conflicting objectives take place. On the one hand, distance between singlet and doublet 

must be small enough to form an NRN; on the other hand, reduction of the distance 

increases parasitic coupling between the stripline resonators in singlet and doublet. This 

issue can be resolved by placing an inductive iris between singlet and doublet in order to 

provide certain reactance and reduce the level of parasitic coupling. Complete coupling 

scheme of the modular filter with NRN is presented in Figure 6-23. 

 

Resonator 1 Resonator 2

Source NRN

Resonator 3

Load            

Figure 6-23: Coupling scheme of the proposed modular DLSIW filter. 
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Following specifications have been used for design of the modular DLSIW cross-coupled 

filter:  

 

• centre frequency: 10 GHz; 

• ripple passband: 9.6 – 10.4 GHz; 

• return loss: 20 dB; 

• transmission zeros: 8.8 GHz, 11.2 GHz and 13 GHz. 

 

Generalized Chebyshev approximation and coupling matrix synthesis procedure yield the 

following coupling matrix for the required filter: 
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Figure 6-24: Layout of the proposed modular DLSIW filter (top view). 

 

Layout of the filter comprises of two layers of Taconic RF-35™ (εr = 3.5; tanδ = 0.0018) in 

which a DLSIW with slots are organized. Top view of the filter’s layout is presented in 

Figure 6-24. Input coplanar pad on top layer is connected to a stripline with the width of 

Wstr = 1 mm in the middle metallic layer. The stripline provides transition to the DLSIW 
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with its width and length of Wwg = 8 mm and Lwg = 10 mm respectively.  Widths of both 

slots in the middle metallization layer are S = 0.3 mm; lengths of the stripline resonators are 

Lres = 3.2 mm. Length of the NRN is LNRN = 6 mm. Width of the iris formed by via 

cylinders between the S-shaped and hairpin-shaped slots is Wiris = 6 mm. Radii of the vias 

equal Rvia = 0.3 mm. 
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Figure 6-25: Simulated frequency response of the proposed modular DLSIW filter. 

 

Transmission characteristics of the designed cross-coupled filter, simulated in Ansoft 

HFSS™, are presented in Figure 6-25. The filter exhibits insertion loss of about 0.9 dB and 

return loss better than 16 dB in passband. Adjacent channel rejection of 23 dB is achieved. 

The second passband of the filter appears at 14 GHz. The filter has not been verified 

experimentally due to inability of available fabrication process to guarantee electric contact 

between vias and middle metallization layer. 
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6.4. Design of Inline Extracted Pole SIW Filters 

 

In chapter 5 it has been shown that use of EPS in design of inline extracted pole filters leads 

to significant size reduction and stopband performance improvement of bandpass filters. In 

this section, an EPS for inline extracted pole SIW filters will be proposed and an example 

of this filter will be presented. 

 

6.4.1. SIW Extracted Pole Section 

Substrate

Metallic posts

Taper

Metallic plate

Microstrip input

 

Figure 6-26: Configuration of a SIW EPS. 

 

Configuration of a SIW EPS is presented in Figure 6-26. The proposed EPS consists of a 

mushroom-type resonator and an NRN arranged within a double-layer SIW. The resonator 

contains a rectangular metallic plate arranged on the middle metallization layer of the 

structure, and a metallized via hole which connects the plate with the SIW’s bottom ground 

plane. The NRN is formed by a SIW section which self-resonant frequency is significantly 

detuned from the frequency range of interest. Complete EPS contains microstrip inputs and 

a taper which provides transition from the microstrip line to the SIW, and performs 

corresponding matching.  

 

The proposed EPS, designed using double-layer Rogers Duroid RT/5880™ substrate 

(εr = 2.2, tanδ = 0.0009; thickness Tdiel = 0.8 mm) with copper metallization (σ = 5.8·107 

Sm/m), has been simulated in commercial EM simulator CST Microwave Studio™. 
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Simulated transmission characteristics of a single EPS are shown in Figure 6-27. It is clear 

from the figure that, in frequency domain, the proposed EPS retains the behaviour of EPS 

designed for conventional rectangular waveguides (see chapter 5) generating a pole-zero 

pair; the zero is located in upper stopband. 
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Figure 6-27: Typical frequency response of a SIW EPS. 

 

   

(a)    (b) 

Figure 6-28: Field distribution in the proposed EPS at pole frequency:  

(a) electric field; (b) magnetic field. 

 

Distribution of electric and magnetic fields in the EPS at the pole frequency is presented in 

Figure 6-28. It is seen that electric field is concentrated at the top layer of the EPS – 

between the metallic plate in the middle of the SIW and its top ground plane. Magnetic 

field oscillates at both top and bottom layers. Bottom layer magnetic field is caused by a 

current which flows in the post connecting the metallic plate with bottom ground plane. 
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The field reaches its maximum right near the post fading with approach to the resonator’s 

edges. The same magnetic field distribution can be observed in coaxial resonator. At the top 

layer of the structure, magnetic field has its minimum in the middle, where maximum of the 

electric field occurs, and further increases reaching maximum near the resonator‘s edges. It 

should be noted that in Figure 6-28 magnitude of the magnetic field at the bottom layer is 

much larger than one at the top layer. 
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6.4.2. Filter Design Example 

In order to prove feasibility of the proposed EPS, a 3rd-order inline SIW extracted pole filter 

has been designed using the generalized coupling coefficients approach introduced in 

chapter 5 for conventional rectangular waveguide E-plane extracted pole filters. The filter 

specifications are defined as follows: 

 

• center frequency: 7.5 GHz; 

• ripple passband: 7.25 – 7.75 GHz; 

• return loss: 15 dB; 

• transmission zero: 13.25 GHz (triple zero). 

 

Development of the filter follows the design procedure used for the 3rd-order extracted pole 

filter presented in section 5.2.2. Therefore, coupling scheme of the filter can be found in 

Figure 5-37. However, in this design three identical EPS are used in order to miniaturize 

the filter. Each of these EPS generates a transmission zero at the same frequency, and the 

filter has a single zero repeated three times. Generalized Chebyshev approximation and 

subsequent synthesis procedure result in the following coupling matrix for the SIW filter to 

be implemented: 
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       Figure 6-29: Layout of the inline SIW extracted pole filter (top view).  

 

 

 

Table 6-3: Dimensions of the inline SIW extracted pole filter (see Figure 6-28). 

 

Top view of the filter’s layout is presented in Figure 6-29 together with its main 

geometrical design parameters denoted; values of these parameters can be found in Table 6-

3. The structure contains two stacked layers of Rogers Duroid RT/5880™ substrate 

(εr = 2.2, tanδ = 0.0009) with thickness of Tdiel = 0.8 mm. Three identical mushroom 

resonators are organized within the bottom layer using rectangular metallic plates and via 

holes. Top wall metallization of the SIW with tapered microstrip-to-SIW transitions are 

formed on the top layer. Side walls of the SIW and inductive irises between adjacent EPS 

are represented by metallized via holes. 

 

Parameter Value, mm Parameter Value, mm 
A 2.4 W12 5 
B 4 Wms 2 

Wwg 10 Wtaper 4 
Lnrn1 6 Rvia 0.4 
Lnrn2 5.3 Ltotal 27.3 
Lnrn3 6 Tdiel 0.8 
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The filter has been simulated in Ansoft HFSS™ software; results of this simulation are 

shown in Figure 6-30. The filter shows about 1.4 dB insertion loss, and return loss better 

than 15 dB in passband. Adjacent channel 7.9 – 8.4 GHz is rejected by 20 dB. The filter 

exhibits wide upper stopband – the next passband occurs at about 17 GHz. 
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Figure 6-30: Simulated S-parameters of the inline SIW extracted pole filter. 
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6.5. Summary 

 

In this chapter a problem of development of miniaturized SIW cross-coupled filters with 

improved performance using advanced design techniques, outlined in the previous chapters, 

has been discussed. 

 

In section 6.2 compact FSIW resonators with high Q-factor have been introduced; a novel 

negative coupling structure for application in FSIW cross-coupled filters has been 

proposed. Performance of the negative coupling structure has been demonstrated in a 4th-

order cross-coupled filter with λ/2- and λ/4-wavelength FSIW resonators which has been 

designed, fabricated and tested. Experimental frequency response of the filter has shown 

poor agreement with the simulated one due to inaccurate fabrication. Particularly, failure 

analysis has shown that the middle metallization layer was not connected electrically to the 

vias. The main reason of this error is unavailability of practical experience at fabrication of 

the multilayer PCB. The experimental verification has been repeated several times; 

however the results did not show any further improvement. Therefore further fabrications 

of the multilayer SIW structures have been abandoned. Despite the unsatisfactory 

agreement of the curves, it can be concluded from the availability of good transmission that 

the proposed negative coupling structure shows adequate performance. 

 

In section 6.3 design of modular filters using SIW technology has been considered. Singlet 

and doublet modules with embedded λ/4-wavelength stripline resonators have been 

proposed and implemented using DLSIW. A 3rd-order modular filter with three 

transmission zeros in both stopbands has been designed by cascading the singlet and the 

doublet through an NRN. 

 

Finally, in section 6.4 an EPS with mushroom resonator has been proposed for realization 

in double-layer SIW technology. Inline extracted pole filter with NRN using the proposed 

EPS has been designed by the GCC extraction technique which has been previously 

presented in this thesis. Performances of the filters have not been verified experimentally 

due to numerous problems occurred with the multilayer PCB fabrication process. 
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CHAPTER 7 

CONCLUSION  AND FUTURE WORK 

7.1.  Conclusion 

 

The aim of this work was to develop miniaturized, high performance, and easy-to-design 

and fabricate filters for wireless applications using conventional and substrate integrated 

waveguide technologies. 

 

In chapter 2 an overview of electromagnetic theory with regards to wave propagation in 

rectangular waveguides has been given. Configurations, parameters and characteristics of 

conventional and substrate integrated waveguides have been briefly outlined. 

 

Chapter 3 has provided an overview of the filter design flow. Methods of approximation, 

lowpass prototype and coupling matrix synthesis for direct- and cross-coupled filters and 

subsequent frequency mapping have been presented. Problems of filter implementation and 

optimization using CAD have been considered. 

 

In chapter 4 a solution for inline modular filters implementation in conventional rectangular 

waveguide using E-plane metallo-dielectric inserts has been presented. Compact singlets, 

doublets and higher-order filtering modules, capable of improving filter stopband 

performance by generating transmission zeros have been introduced. Modular bandpass and 

dual-band filters using the filtering modules connected in cascade through NRN have been 

designed, fabricated and tested. Despite the fabrication errors occurred, the measurements 

have proven adequacy and applicability of the proposed solutions. 

 

In chapter 5 inline extracted pole filters have been designed and implemented in 

conventional rectangular waveguide using E-plane all-metal and metallo-dielectric inserts. 

Theoretical model of E-plane EPS structures has been developed; several E-plane EPS have 
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been proposed for implementation; the individual EPS have been thoroughly investigated; 

dual-mode EPS capable of generating a transmission zero in lower stopband has been 

developed as a result of theoretical investigation. Generalized coupling coefficients have 

been introduced and applied in design of extracted pole filters with NRN. For this purpose, 

expressions for extraction of the GCC from frequency responses of single and coupled EPS 

have been derived using the schematic circuit model of the EPS. Several design examples 

of compact bandpass filters with improved stopband performance have been presented. The 

measured transmission characteristics of the filters have shown quite good agreement with 

the simulated ones. Particularly, the experimental response of the extracted pole filter 

realized by means of an all-metal insert has shown excellent agreement with the simulation. 

Therefore it can be concluded that the proposed GCC extraction technique provides good 

initial values for the further CAD optimization of the filters with cascaded EPS. 

 

In chapter 6 attention has been paid to development of SIW filters using the design 

techniques employed in chapters 4 and 5 for conventional rectangular waveguide filters. 

FSIW cross-coupled filter with a new negative coupling structure has been designed, 

fabricated and tested. The obtained experimental results allow stating that the negative 

coupling structure performs adequately; however, agreement of the simulated and measured 

S-parameters has been clearly unsatisfactory due to repeating significant fabrication errors.  

Configurations of DLSIW singlet and doublet using stripline resonator have been proposed 

as filtering modules for SIW technology; modular filter with NRN using cascaded singlet 

and doublet has been developed. EPS with mushroom resonator for multilayer SIW has 

been presented; inline extracted pole bandpass filter with wide stopband has been 

successfully designed using the proposed GCC extraction technique. Performances of the 

latter filters have not been verified experimentally due to inability to fabricate the required 

multilayer PCB using the available equipment. 

 

This chapter concludes the thesis contributions and offers recommendations for future 

work. 

 



 242 

7.2. Contributions of the Thesis 

 

The following contribution has been made in this thesis: 

 

• Development of a new class of compact modular cross-coupled filters with 

improved stopband performance using NRN in conventional and substrate 

integrated waveguides. Singlets, doublets and higher-order module structures 

using stripline resonators and septa have been proposed. Coupling matrix 

extraction procedure by numerical optimization has been realized.  Compact 

filters composed of the developed modules have been designed. 

 

• Development of a model of improved E-plane resonators with embedded S-

shaped resonators and SRR, and its representation as a single EPS. Application 

of GCC to the model of EPS with NRN has been performed. GCC extraction 

procedure from measured or simulated frequency responses of single or 

interacting EPS has been developed. New EPS with quarter-wavelength and SIR 

stripline resonators have been proposed for conventional rectangular waveguide; 

new EPS with mushroom resonator has been developed for SIW. Dual-mode 

EPS with a transmission zero in lower stopband has been designed. Several 

inline extracted pole bandpass filters with stopband performance improved by 

transmission zero have been designed using the GCC extraction technique. 

 

• Development of a new negative coupling structure for FSIW cross-coupled 

resonator filters. The structure has been designed, investigated and successfully 

applied in design of a cross-coupled filter using FSIW resonators. 
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7.2.1. Modular Cross-Coupled Filters with NRN 

 

Several examples of modular cross-coupled filters with NRN have been designed and 

implemented in conventional and substrate integrated waveguide technologies.  

 

In conventional waveguide, a doublet with centre frequency of 8.15 GHz and passband of 

7.9 – 8.4 GHz with two transmission zeros in both stopbands has been realized using two 

electrically coupled hairpin resonators and a septum arranged on a metallo-dielectric E-

plane insert; a 4th-order cross-coupled module with two hairpin, two I-shaped resonators 

and two parallel septa has been designed for centre frequency of 10.4 GHz and ripple 

passband of 10.1 – 10.7 GHz using several metallo-dielectric inserts. The filtering modules 

have been designed using the coupling coefficients extraction procedure by optimization; 

the program for this extraction procedure has been developed in MATLAB™ by author. 

Implementation of internal couplings between hairpin and I-shaped resonators in the 4th-

order filtering module has been performed by the traditional coupling coefficient extraction 

technique. 4th-order inline modular E-plane filter with four transmission zeros has been 

designed by cascading two doublets through an NRN; a dual-band E-plane filter has been 

implemented taking advantage of parallel connection of two doublets shielded by a septum 

between them. 

 

In SIW, singlet and doublet structures have been developed using quarter-wavelength 

stripline resonators arranged within the middle metallization layer of a DLSIW. 3rd-order 

modular filter with three transmission zeros has been designed at centre frequency of 

10 GHz with 800 MHz ripple bandwidth by cascading these two modules through an NRN 

represented by a waveguide section with an iris. 

 

The presented filters exhibit enhanced stopband performance, improved by introducing 

transmission zeros, and compactness in comparison with their all-pole counterparts. 

However, this has been achieved at the cost of increased insertion loss due to use of basic 

stripline resonators with lower unloaded Q-factor.   
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7.2.2. E-plane and SIW Extracted Pole Filters 

 

Recently proposed compact E-plane resonators improved by embedding S-shaped 

resonators and SRR between their input and output septa have been successfully 

represented by an EPS model which contains a resonator and an NRN connected through 

admittance inverters. GCC concept introduced for characterizing couplings between 

resonating and non-resonating nodes has been applied to the EPS model. New expressions 

for GCC extraction from simulated or measured frequency responses of individual EPS, 

cascaded pairs of EPS or cascaded EPS and resonators have been developed as a result of 

analysis of the proposed EPS model.  

 

Several new EPS configurations have been proposed for use in conventional and substrate 

integrated waveguide filters. For conventional rectangular waveguide, compact E-plane 

inserts with embedded quarter-wavelength and SIR resonators have been developed. New 

dual-mode EPS for implementation of lower stopband transmission zero has been designed 

based upon analysis of the EPS model. For SIW applications, a multilayer mushroom 

resonator based EPS has been developed. 

 

The proposed EPS have been employed in design of advanced inline extracted pole filters 

with NRN. A few design examples have been presented in order to cover the whole range 

of the presented EPS. 3rd-order filter with three quarter-wavelength resonators based EPS 

connected in series has been designed for centre frequency of 9.45 GHz with 0.3 GHz 

ripple bandwidth using an all-metal E-plane insert in conventional waveguide; another 3rd-

order three-EPS filter with 0.4 GHz bandwidth at the same centre frequency has been 

implemented by employing EPS with embedded S-shaped resonators using a metallo-

dielectric insert. Dimensions of these filter structures have been found by applying the new 

GCC extraction technique. Extracted pole filter with the dual-band EPS has been partially 

designed by optimization. Compact SIW inline extracted pole filter with centre frequency 

of 7.5 GHz and 0.5 GHz bandwidth, exhibiting a wide stopband, has been developed using 

the new mushroom resonator based EPS. 
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7.2.3. Negative Coupling Structure for FSIW Resonators 

 

New configuration has been developed for implementation of negative coupling coefficient 

between adjacent FSIW resonators. The main advantage of the structure is that it allows 

diversifying a set of realizable cross-coupled topologies due to an opportunity to integrate 

the negative coupling element at all the regions where maximum amplitude of magnetic 

field is observed. 

 

In order to demonstrate feasibility of the proposed element, a 4th-order bandpass filter with 

centre frequency of 10 GHz and 500 MHz ripple bandwidth has been designed using half- 

and quarter-wavelength FSIW resonators. Implementation of the filter has been carried out 

by extraction of conventional coupling coefficients between pairs of adjacent resonators. 

Despite that the experimental frequency response has shown poor overall agreement with 

the simulated one, the evidently generated transmission zeros suggest that the presented 

configuration provides negative coupling between the corresponding resonators. 
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7.3. Suggestions for Future Work 

 

Ideas for further improvement of filter performances using the structures proposed and 

investigated in this thesis are divided into three groups. 

 

For modular filter design using conventional E-plane waveguide technology: 

 

• Design of modular filters with NRN using singlets; 

• Development of new singlets for generation of lower stopband transmission 

zeros using standard septa; 

• Investigation of new modules with split septa which should generate an 

additional transmission zero due to introducing a frequency dependent source-

load coupling; 

• Investigation of possibility to use O-shaped resonators in higher-order modules 

with parallel septa in order to provide magnetic coupling with adjacent 

resonators at both input and output; 

• Investigation of possibility to realize cross-coupled topologies in the main path 

of higher-order filtering modules with parallel septa in order to generate more 

transmission zeros in stopbands; 

• Investigation of possibility to design multimode filter described by transverse 

matrix using a single septum. 

 

For inline extracted pole filters with NRN: 

 

• Investigation of properties of E-plane EPS with new resonators (O-shaped, I-

shaped, etc.); 

• Development of rigorous GCC extraction procedure for dual-mode EPS; 

• Development of a GCC extraction procedure not requiring frequency 

normalization. 
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For SIW filters: 

 

• Design, investigation and application of multimode FSIW cavity resonators; 

• Investigation of possibility to design a balun filter using DLSIW and modular 

filter design principle. 
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