

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

Modelling strategic trade-offs - insights into the SESAR 'Vista' project

Cook, A.J., Delgado, L. and Gurtner, G.

This is an electronic version of a paper presented at the *AGIFORS 57th Annual Symposium,* London, 2 to 6 October 2017.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((<u>http://westminsterresearch.wmin.ac.uk/</u>).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

Modelling strategic trade-offs

Insights into the SESAR 'Vista' project

Drs Andrew Cook, Luis Delgado & Gérald Gurtner University of Westminster, London

AGIFORS 57th Annual Symposium London, 02-06 October 2017

UNIVERSITY OF WESTMINSTER[™]

Overview of presentation

- Objectives of Vista
- Overview of the model
 - principles and construction
 - The tactical layer
 - most mature presented elsewhere
 - The pre-tactical layer
 - key bridge
 - The strategic layer
 - focus today
- Trade-off analysis
- Next steps & discussion
 - not conclusions, rather an open dialogue

Objectives of Vista

Objectives of Vista

Objectives of Vista

- Market/business forces working with/against regulation unintended consequences?
 - cheaper to cancel a flight?
 - delay recovery v. emissions impact?
 - ANSP delay levels driven too low?
- Impact metrics
 - classical (e.g. average delay) & complexity (e.g. community detection)
 - monetised (e.g. cost of delay) and quasi-cost (NO_x, σ²_{arr})

- (Reg. 261) (ETS; Directive 2008/101)
- (SES PS; Reg. 549/2004)

AGIFORS 57th Annual Symposium, London, 02-06 October 2017

Overview of the model

- The forces/factors considered are subdivided into two main categories:
 - Business factors (37): cost of commodities, services and technologies, volume of traffic, etc. => demand and supply
 - Regulatory factors (22): from EC or other bodies, e.g. ICAO, => 'rules of the game'; some of these are enablers of the business factors
- 85 references consulted
- Further split into 'background' and 'foreground' factors:
 - Background
 - often drive fundamental system evolution
 - e.g. economic development of the EU-EFTA zone (high/medium/low)
 - Foreground
 - factors whose impact are to be studied explicitly, in more detail
 - e.g. cost of fuel

- Three-layer/stage:
 - Macro-economic model for demand & capacity
 - Generation of flight and passengers itineraries
 - Mobility model

Quantitative results
Level of detail adapted for phases

- Individual flights and pax itineraries generated for 2035 and 2050
- Number of
 executions required

	Sublayer & components								
Factors	Strategic lav	yer		Pre-tactical layer			Tactical layer		
	Economic model			Schedule	Passenger		Flight plan	ATFM reg.	Moreury
	Airport	ANSP	Airline	mapping	assignm	nent	generation	generation	wercury
ROR1			\checkmark	\checkmark	\checkmark				\checkmark
ROR3			\checkmark						\checkmark
ROR4	\checkmark			\checkmark				\checkmark	\checkmark
ROR9			\checkmark	\checkmark					
RAD1	\checkmark		\checkmark	\checkmark					
RAD2	\checkmark		\checkmark	\checkmark	\checkmark				
RAA1	\checkmark		\checkmark	\checkmark					

Background
scenario
definition

Period	Name		Description				
Current	Current		Default				
2035	L35	Low economic Low techno	Economic growth slow in Europe Technological & operational changes not supported				
	M35	High economic Low techno	Economic growth high in Europe Technological & operational changes not supported				
	H35	High economic High techno	Economic growth high in Europe Technological & operational changes are supported				
2050	L50						
	M50		(As per 2035)				
	H50						

Foreground factors

ID	Business factors
BTS5	4D Trajectory Management
BTS9	Traffic synchronisation
BTO4	Passenger reaccommodation tools
BEO1	Fuel prices
BEO2	Airspace charges
BEO3	Airline business models (output)
BEO4	Smart, integrated ticketing

ID	Regulatory factors
ROR1	Passenger provision schemes
ROR3	Emission schemes
ROR4	Noise pollution (implicit)
RAD1	Airport slots
RAD2	Regional airport development
RAA1	Airport access
ROR9	Operation of air services

Foreground groups			
EM: Environmental mitigation policies	PF: Passenger focus		
RI: Regional infrastructures	SES: Single European Sky		

What it is: **Project-tracking software** Why we're using it: Shared task definition environment Scrum/agile methodology Seamless integration with Confluence

High-level (object-oriented) language What it is: Why we're using it: Open source Extensive support libraries Large on-line community

GitHub What it is: Software development platform /repository Why we're using it: Allows collaborative software development Software development platform /repository Good re. branches & forks: parallel dvp'ment Common store / back-up of source code

What it is: Partially NoSQL*, cloud-hosted database Why we're using it: Partial modification ease (*lack of dependencies) Cloud service with backed-up data **Resources allocated automatically**

The tactical layer

The tactical layer

What is Mercury?

- Framework for EU mobility performance and assessment
- Flexible to implement almost any <u>scenario</u> (event-driven)
- Focus on explicit passenger itineraries (3.8m pax), c.f. flights
- Produces a wide ranges of metrics, not only delays
- Developed and tested over 7 years of research under several initiatives (SESAR*, H2020) with a range of stakeholders
- Mesoscopic (D2D) approach; stochastic modelling
- Airline decisions based on cost models (e.g. Reg 261) and rules (current, or 'what-if')
- Includes disruptions, cancellations, re-accommodation and compensation costs
- Incorporates ATM demand/capacity balance model (ATFM slots)

*SESAR Outstanding Project award, 2014 (POEM)

http://innaxis.org/mercury/portfolio/

 ${\color{black}\bullet}$

Smaller airports (more) implicated in delay propagation Back-propagation important in persistence of network delay

POEM, 'A1' scenario: cost-minimising aircraft wait rules, c.f. baseline

- CDG, MAD, FRA, LHR, ZRH, MUC: all > 100 hours (baseline day)
 Propagation contained within smaller airport communities
- ... but these communities more susceptible to such propagation
- Iargest persistent airports: Athens, Barcelona & Istanbul Atatürk

All scenarios: no statistically signif. changes in current flight-centric metrics!

avg. cost / flight (x27k > \leq 1m)

avg. arrival-delayed pax

reactionary delay

1 2%

€39

↓ 9.8 mins

The tactical layer

The tactical layer

Door-to-door context and 2050 (also courtesy DATASET2050)

Pax profiles linked with itineraries

Airport access: data-driven stochastic processes

Confidential access to airport process times

The pre-tactical layer

The pre-tactical layer

- Strategic layer economic model (takes into account macro-economic factors)
- Desired outputs:
 - main flows in Europe
 - market share of different airline types
 - capacities of ANSPs and airports
 - average prices for itineraries
- Need to take into account:
 - main changes in demand (volume, pax heterogeneity)
 - major business model differences and changes:
 - point-to-point v. hub-based (airlines)
 - competition v. cooperation (ANSP)
 - privatisation v. nationalisation (ANSP and airports)
 - capacity restrictions (congestion at airports; ATCO resource constraints)
 - major changes of commodity prices (e.g. fuel, airport and airspace charges)

- Turn-based, multi-agent model
- Currently features three types of agents:
 - airport (one agent per airport)
 - airline (one agent per airline)
 - passengers (one agent per OD pair, including all possible itineraries)
 - ANSPs (soon: able to adjust prices after several turns -> AO choice; Reg. 391/2013)
- Each agent has its own objective, with a specific cost function:

Turns:

- airlines
 - estimate prices of each itinerary (based on past prices)
 - estimate delays at airports (based on past delays)
 - set operated capacity by airport pair (based on est. delays & prices)
- airports
 - estimate their traffic
 - decide whether to expand capacity* (based on expected traffic, & costs)
- passengers choose between itineraries for given OD pairs
- selling price of each itinerary is updated
 - based on balance between supply & demand
- delays are updated (based on 'actual' traffic)
- airports and airlines compute final profit

* availability lagged by several turns

Simple scenarios to test / illustrate the model

AGIFORS 57th Annual Symposium, London, 02-06 October 2017

Simple scenarios to test / illustrate the model

AGIFORS 57th Annual Symposium, London, 02-06 October 2017

Simple scenarios to test / illustrate the model

Market share

Calibration is carried out in several steps:

• Direct calibration

- Extract values from historical data (including literature) and put them directly in the model (e.g. pax price elasticity)
- Assign phenomenological relationships obtained otherwise (e.g. airline cost of delay)
- Indirect calibration
 - Supervised learning: a parameter is swept (in a smart way) in order for another one to reach a value extracted from data (e.g. cost of capital for airlines is calibrated to produce historical flows of pax between airports)
 - Reinforcement learning: agents modify their behaviour to be selfconsistent across layers (e.g. cost of delay used to compute main flows should be the same as the actual tactical cost of delay)

Rather more detailed examples to share with you, but too time consuming to include within whole overview

- local increase in demand
- increase in fuel price
- local capacity increase

Trade-off analysis

Scenario

AGIFORS 57th Annual Symposium, London, 02-06 October 2017

Trade-off analysis

Trade-off analysis

Thank you ...

... next steps & discussion

- Dedicated Vista workshop, discussing stakeholder needs, hosted by Frequentis
 - 23 October, Vienna
 - <u>airspace-research@westminster.ac.uk</u>
- SESAR Innovation Days conference
 - full paper and presentation
 - 28-30 November, Belgrade
 - <u>http://www.sesarju.eu/sesarinnovationdays</u>
- Both free, but require registration

Discussion

- At this stage in the design process, we'd very much welcome your feedback
- Of course, we're fully open to any questions, too
- For the airlines in particular:
 - Can you quantify the trade-offs between KPIs, such as OTP and market share?
 - For which trade-offs do you have least insight now, but the greatest need?
 - What is your strategic business scanning 'horizon' (2020? 2035?) and why?
 - How do you do this in-house? Cross-alliance? Off-the-shelf? Consultancy?
 - Do you carry out modelling similar to that of Vista?
 - What are the major benefits and shortcomings of Vista's (holistic) approach?
 - What would be the key outputs of use to you, and is anything missing?
 - How do you calculate your cost functions (e.g. for a new aircraft OEM data?) and production functions (e.g. for a new type of operation)?

Stand-bys

Metrics

Stakeholder	Metrics	
Passengers	 Number / volume Delay (departure, arrival; reactionary) Gate-to-gate time Door-to-door time 	 Missed connections Hard / soft costs Value of time (utility)
Airlines	 Number / volume (flights, pax) Delay (departure, arrival; reactionary) Revenue and costs (incl. delay) 	 Gate-to-gate time (OTP) Missed connections Gate-to-gate time
ANSPs	Number / volume (flights)Delay (generated, mitigated)	Flight-km controlledRevenue and costs (incl. delay)
Airports	 Number / volume (flights, pax) Delay (departure, arrival; reactionary) Revenue and costs (incl. delay) 	Missed connections
Environment	• CO ₂	• NO _x

Trade-off example: LCC v. mainline

- steps 5-15: slowly increase demand on γ
- step 90: airport 3 increases its capacity
- step 170: increase of fuel price by 20%

Trade-off analysis

Approach	Key reference	Major advantage (new insights)	Greatest challenge	Alignment with model
Pareto frontier	Pardalos <i>et al.</i> (2008)	Defines an essential notion for efficiency	Hard to compute in real-word examples, there may be no Pareto points at all	The model could be used as a parameter-metric function, exploration of parameter space could be done in parallel using the cloud-based infrastructure
Expected utility and prospect theory, Bayesian networks	Wakker <i>et al.</i> (2010)	Creates maps and identifies dependencies	Links and conditional dependencies are hard to determine	Aligns very well with soft computing methods, dependences can be explicitly computed within the model
Granger causality	Hoover (2001)	Discerns between correlation and causality	Needs large time series to work	Already proven in POEM model (Cook <i>et al.</i> , 2013)
Precursor- successor analysis	POEM model (Cook <i>et al.</i> , 2013)	Determines causes and effects systematically to create a knock-on effects tree	Hypothesis testing for the random tree generated could be an issue	Naturally intrinsic to the model, thanks to the event-driven paradigm

Key point of interest: tipping points (e.g. between emissions cost & delay recovery)