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“The significance of experiments on organisms as individual wholes, as leading 

towards the proper object and final purpose of biological investigation, - the 

discovery of the laws of life. Growth, anabolic and accumulating, has its reverse in 

all forms of katabolism [sic].” 

As written by Stewart (1898; page 40) in the  American Journal of Physiology, volume 1, issue 1, during an 

examination on the effects of barometric pressure on activity levels of rats.  
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Abstract           

When exposed to chronic hypoxia by pathophysiological or environmental causes humans show 

muscle atrophy, challenging homeostasis and increasing mortality rate. Chronic hypoxia also 

presents with elevated myostatin peptide, a negative regulator of muscle size. This work induced 

acute hypoxia in healthy individuals; hypothesizing hypoxia would increase myostatin expression in 

both muscle and plasma in a concentration- and time-dependent manner. Hypoxia (1 % O2) reduced 

C2C12 myoblast migration and myotube size in vitro. Myotube atrophy was time-dependent, longer 

exposures showed greater atrophy. Intracellular myostatin peptide was decreased at every time 

point measured. Myostatin and downstream signalling pathways in muscle showed a high degree 

of percentage similarity between mouse and human, when amino acid sequences were directly 

compared. Healthy males (N = 8) were exposed to 20.9 % O2 or 11.9 % O2 for 2 hours. Following 

hypoxic exposure myostatin peptide was reduced in muscle but not plasma, relative to control 

conditions. A second cohort (N = 8) was exposed to 12.5 % O2 for 10 hours. Plasma myostatin was 

decreased following hypoxia, muscle myostatin trended towards increasing. A third cohort (N = 9; 

n = 8 lowlander, n = 1 Sherpa) was exposed to 10.7 % or 12.3 % O2 for 2 hours. Plasma myostatin 

was reduced at both concentrations with no difference between concentrations noted. In response 

to chronic hypoxia, individuals lose muscle mass. Counter to the hypothesis of an increase in 

myostatin in both muscle and plasma, here a consistent decrease in plasma myostatin following 

acute hypoxia is seen. Muscle myostatin shows a variable response, with decreasing intracellular 

expression seen following a 2 hour hypoxic exposure, and trends towards an increase following 10 

hours of hypoxia. Decreases in plasma and muscle myostatin may represent myostatin’s movement 

towards peripheral compartments in these acute timeframes. Hypoxia alone is capable of altering 

myostatin in healthy individuals; the effects of hypoxia on myostatin appear to differ between the 

acute timeframes examined here and chronic exposures in environmental or disease models.   
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1.1 Introduction 

Skeletal muscle tissue is ubiquitously found throughout all members of the Kingdom Animalia. 

There is evidence for maintenance of muscle tissue throughout evolutionary history, with fossilized 

evidence for striated muscle tissue dating 560 million years (Liu et al., 2014). In the non-obese 

human, skeletal muscle is the largest tissue type by volume and the only tissue capable of producing 

locomotion via mechanical contraction (Janssen et al., 2000, Rennie et al., 2004). In the adult 

human, muscle mass shows sexual dysmorphism, with males (20 – 30 years of age) normally 

showing 40 – 45 % of body mass as lean muscle mass, while females of a matching age tend towards 

30 – 35 % (Janssen et al., 2000). The proportion of lean muscle mass decreases with age, with males 

showing a more rapid decrease than females (Janssen et al., 2000). In addition to its role in 

locomotion, skeletal muscle is key in thermoregulation, metabolism and endocrinology (Rennie et 

al., 2004). 

 

Muscle is a highly plastic tissue and adapts to external stimuli to better suit its altered environment. 

Galan (AD ca. 129 – 200) wrote of the hardening of tissues and increases in strength seen in 

exercised individuals. Further, Galen states that exercise is “extremely beneficial for health” 

increasing metabolism and respiration, and preventing sickness (Singer, 1997). It can be seen 

therefore that the plasticity of muscle mass and the importance of muscular tissue in the 

maintenance of health has long been recognised. Indeed, as will be examined in the literature 

review of this thesis, chronic pathophysiological disorders typically show losses in muscle mass and 

this loss of muscle mass correlates with reduction in quality of life and increased mortality.  

 

Hypoxia is a challenging physiological stimulus to any obligate aerobe, which must therefore adapt 

to survive or perish. Hypobaric hypoxia results in a reduction of body mass (Hoppeler et al., 1990, 

Rose et al., 1988), alters activity levels (Stewart, 1898), inhibits regeneration following injury 
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(Chaillou et al., 2014), and as Robert Boyle demonstrated, can be detrimental to life. Small insects, 

birds and mice rapidly lose consciousness in a low pressure environment, but can be revived if 

returned to ambient atmospheric pressure quickly enough (Boyle, 1660). A similar effect was seen 

on the 1st of December, 1893 when Jacques Charles ascended to ~ 3,000 m in his new invention, a 

hydrogen balloon. He records feeling faint and dizzy, and experienced a painful popping in his ears. 

Panicked by this experience, he rapidly descended (Mainardi et al., 2013). Charles inadvertently put 

himself in the same position as Boyle’s mice, experiencing hypobaric hypoxia without suitable time 

to adapt.  

 

It is now well understood that oxygen is a necessary step for metabolism in obligate aerobes, for 

the oxidation of freed hydrogens from Krebs cycle (reviewed by Kalckar, 1991, Pollock et al., 2015, 

Harridge et al., 1999). Death, by the majority of causes, ultimately results from a lack of oxygen 

supply, either focally or globally. Individual tissues vary in resilience to hypoxic stressors. Neural 

and cardiac tissues are metabolically demanding, thus a lack of oxygen supply rapidly results in 

cellular death. In comparison, cartilage in vivo is avascular and metabolically undemanding; 

chondrocytes in vitro can survive at least 7 days without oxygen supply (Grimshaw and Mason, 

2000). Muscular tissue is constantly stressed by variations in oxygen supply (Marshak and Maeva, 

1956), and is capable of surviving to and adapting to moderate hypoxic insults. As will be discussed 

in detail below, repeated or prolonged exposure to hypoxic conditions result in adaptation, altering 

metabolic and structural factors to better cope with future hypoxic events. 

 

Thus, the study of the consumption of oxygen by metabolic tissues and the response to a lack of 

oxygen is central to the understanding of physiology. A central premise of this thesis is that muscle 

tissue adapts rapidly to hypoxic stressors with hypoxia instigating processes that, if left unchecked, 

will result in a loss of muscle mass. 
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In the review of literature to follow, an examination of the research surrounding muscle and the 

regulation of muscle size will be conducted. Particular focus will be given to myostatin and its role 

in the regulation of muscle mass. Following this, this thesis will examine hypoxia and its effects on 

the human. The physiological differences between normobaric and hypobaric hypoxia are 

examined. Finally, interactions between hypoxia and muscle mass are discussed, before the central 

aims and hypothesis are presented. 

 

Chapter Three of this work presents a series of experiments conducted in C2C12 myoblasts and 

myotubes in vitro. Cells were stimulated with 1 % O2 for varying lengths of time and myoblast 

chemotaxis and myotube atrophy was directly quantified. Changes in myostatin and other 

downstream cell signalling markers of atrophy were examined and comparison of these variables 

between normoxic and hypoxic conditions performed. As in vitro work was performed in the murine 

C2C12 myoblast cell line (Yaffe and Saxel, 1977), and the following Chapters used hypoxia in healthy 

humans as a research model, a bioinformatic analysis is also presented in Chapter Three examining 

the structure differences and similarities between myostatin protein in the mouse and the human, 

as well as the cell surface receptors and intracellular signalling pathways associated with 

myostatin’s activity. 

 

In Chapters Four, Five and Six healthy humans were exposed to hypoxic environments of varying 

concentrations and durations in an attempt to extend those findings shown in Chapter Three into 

a human research model. Specifically, Chapter Four examines the effect of 2 hours hypoxia, Chapter 

Five extends this to 10 hours to examine the effect of time in hypoxia and Chapter Six uses 2 hours 

but varies concentration of O2, to examine the effect of oxygen concentration. Plasma myostatin 

concentration is quantified by ELISA and intracellular myostatin peptide expression is semi-
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quantified by Western blot from skeletal muscle biopsies. Downstream markers of proteasomal 

activity are investigated within muscle biopsies, with particular focus on ubiquitin binding. 

 

Finally, Chapter Seven of this work draws comparisons of findings between experimental Chapters. 

As myostatin is a significant regulator of muscle mass, alterations in myostatin expression in 

response to hypoxia in the models researched here is likely to be relevant across a number of 

hypoxic conditions. A discussion of the meaning of these findings with relevance to hypobaric 

hypoxia in mountaineering, pathological hypoxia in disease states, and with regards to wider 

physiology follows. Limitations of this work are discussed then recommendations for future work 

are presented. Finally, conclusions are drawn. As proposed by Stewart (1898), and through the 

examination of ‘organisms as individual wholes’, this work aims to add to the knowledge of the 

regulation of homeostasis and further the understanding of the laws of life. 
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2.1 Scope of Review 

In the review of literature to follow, the form and function of skeletal muscle and its plasticity will 

be examined, which will lead into a discussion of the regulation of muscle size by the hypertrophy 

or atrophy of myocytes, and the major intracellular signalling pathways involved in this. With the 

uncovering of myostatin as a key regulator of muscle mass (McPherron et al., 1997) and subsequent 

understanding of its importance in muscle homeostasis (Allen et al., 2011, Rodriguez et al., 2014), 

particular focus will be placed on the role of myostatin signalling in the regulation of the size of 

myocytes.  

 

In conditions where oxygen supply to skeletal muscle is reduced, atrophy of this muscle 

subsequently occurs (Bernard et al., 1998, Hoppeler et al., 1990, Rose et al., 1988). Section 2.5.1 

and 2.5.2 of this work therefore focus on different causes of peripheral tissue hypoxia, both in 

health and disease states, and the homeostatic reaction to hypoxic stimuli, both phenotypically and 

with reference to the cellular signalling response within myocytes. Tissue hypoxia as caused by 

decreases in barometric pressure, ambient oxygen concentration and pathophysiological 

impairments will be considered, and the comparisons between will be drawn. This review, and the 

greater thesis as a whole, concentrates on tissue hypoxia as caused by impairment of oxygen 

delivery (hypoxemic hypoxia). As such, histotoxic hypoxic disorders of oxygen usage, as caused by 

narcotics, cyanide and similar cytotoxic substances, are not considered. 

 

Finally, some recent work examining the effect of hypoxia, both ambient and pathophysiological, 

on muscle mass and myostatin signalling will be examined. This will lead to an identification of 

current knowledge gaps within the field, before logically arising experimental aims and hypothesis 

driving the subsequent experimental Chapters of this thesis will be presented.  
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2.2 Skeletal Muscle 

2.2.1 Form and Function 

Individual skeletal muscles are typically found peripherally, superficial to the skeletal frame of the 

human body. In the human and other mammalian species, muscle can be sub-divided into three 

distinct tissue types; skeletal muscle, cardiac muscle and smooth muscle, each with differing 

phenotype and roles. Unless otherwise specified, in this work the term muscle is in reference to 

skeletal muscle. Mature myocytes in adult human muscle are found as multinucleate, terminally 

differentiated myofibers, arranged in striated bands (Figure 2.1A). Myofibers are terminally 

differentiated and increases in muscle mass are therefore primarily the result of cellular 

hypertrophy (Chambers and McDermott, 1996). 

 

The internal structure of a myofiber is approximately 90 % sarcomeres by volume, formed into 

parallel strands of myofibrils. Within a sarcomere, myosin heads cycle in an ATP-dependent 

manner, applying force on actin filaments, and thereby contracting and shortening the sarcomere 

(Figure 2.1B and C), a process known as cross bridge cycling. Sarcomeric contraction, both in parallel 

and serial, thus results in contraction of muscle (Gordon et al., 2000).  
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Figure 2.1: Sarcomere of skeletal muscle.  A) Electron microscope image. B) A single sarcomere. C) Schematic of actin 
(red), myosin (blue), Titin (green) and α-actinin (grey). D) Individual myofiber shown, transversely sectioned and viewed 
by scanning electron microscope. Artificially coloured, yellow strands represent sarcomeres. Pink wall indicates the 
cellular sarcolemma.  A) and B) taken from Sugi and colleagues (1998). D) taken from (Srivastava et al., 2012) 
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Whilst actin and myosin make up the large majority of sarcomeric proteins (Figure 2.1d), acting 

together to produce mechanical force, a number of other key structural proteins have been 

identified. Titin forms the third most abundant structural protein, after actin and myosin, and also 

forms the largest protein found in humans, with a mass of 3.5 MDa (Baranano and Hartman, 2008). 

Titan anchors to the M-line, extending from the end of a myosin filament, connecting to the Z-disk. 

Titin contributes to the electric property of muscle, acting as a molecular spring (Cox and Clarke, 

2014). In cardiac muscle, loss of function mutations of titin results in restrictive cardiomyopathy, 

reflecting the role of titin in elasticity (Peled et al., 2014). Myomesin is primarily found on the M-

line band of sarcomeres. It shows an affinity for both titin and myosin (Horscroft and Murray, 2014), 

and as such, is thought to play a role in anchoring titin to the M-line.  

 

The lateral edge of each sarcomere (assuming convention of sarcomere aligned left-right, as shown 

in Figure 2.1a - c), primarily consists of overlapping actin filaments of two neighbouring sarcomeres 

cross-linked by α-actinin, allowing transmission of force between sarcomeres (Edwards et al., 2014). 

Four sub-grouping of α-actinin exists (1 - 4), with α-actinin-2 and -3 being found within sarcomeres 

of both cardiac and skeletal muscle (Lexell et al., 1983). Mutations of α-actinin-3 are common, 

suggesting some interchangeable roles between the α-actinins (Owen et al., 1974).  

 

Dystrophin forms structural links between actin filaments and the sarcolemma, allowing the 

transfer of sarcomeric mechanical force from the interior of the cell to the exterior (Hoffman et al., 

1987). Dystrophin nonsense or loss of function mutations are associated with myodystrophic 

disorders that result in reduction in muscle function, fragility of myofibers and death (Alchin, 2014).  

 

Individual myofibers within a muscle express differences in metabolic consumption and force 

output. Historically, muscles were characterised as red or white; these visual differences in colour 
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arising through differences in internal myoglobin content. Red muscles, with a higher amount of 

myoglobin content are a more oxidative type than white muscle, which are more glycolytic in both 

characteristic and function (Cassens and Cooper, 1971). Muscles and their individual component 

myofibers can be distinguished by expression of myosin heavy chain (MHC) isoforms. Individual 

myofibers within muscle express different MHC isoforms (Figure 2.2A and B) and subsequently 

make up the muscle ‘type’, with slow type muscles having a higher proportion of type I fibres and 

fast fibres having a higher proportion of type II fibres (Josephson, 1993). Force production of 

individual myofibers varies, with stimulation of isolated type I fibres producing a twitch force less 

than type II (Close, 1965).  

 

Current evidence suggests myofibers contain four different MHC isoforms. Rat muscle contains four 

detectable MHC isoforms that can be isolated by Western blot, type I, IIA, IIX and IIB (Schiaffino et 

al., 1989). Individual excised fibres from the rat have four different contraction phenotypes that 

correspond to these isoforms (Bottinelli et al., 1994a, Bottinelli et al., 1994b). In the human MHC 

type I, IIA and IIX have been identified, with IIX replacing the historically mislabelled IIB isoform 

(Ennion et al., 1995). 

 

 

 

 

 

 

 



  Chapter Two – Review of Literature 
 

12 
 

 

 

Figure 2.2: Myosin heavy chain differences between individual myofibers. A) Single fibre Western blot from human 
vastus lateralis, probed for MHC I and II. Individual gel lanes numbered 1 – 8, lane 3 shows negative control, no protein 
loaded (Murphy, 2011). B) Immunohistochemistry of rat tibialis anterior, stained for succinate dehydrogenase 
(Bloemberg and Quadrilatero, 2012). 

 

The primary function of skeletal muscle is to induce movement. Voluntary stimulation from the 

somatic nervous system results in coordinated contraction of muscle to induce movement of one 

aspect of the body relative to another. Another function of skeletal muscle is thermoregulation, as 

human muscle is only ~ 25 % efficient in converting chemical potential energy into mechanical 

contraction (Andersen and Saltin, 1985), the majority of this remainder of energy is lost as heat 

which helps maintain the optimal internal body temperature for enzymatic reactions. Muscle also 

forms a major store of amino acids (AA) within the body, with atrophy of muscle releasing AA which 

can be used metabolically (Murray and Montgomery, 2014). 
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2.2.2 Plasticity 

Skeletal muscle myofibers show a high degree of plasticity, and are capable of hypertrophy or 

atrophy as challenging environments or stimuli dictate. In the presence of available amino acids, 

the application of mechanical load over time results in an increase in the size of muscle mass 

(Goldspink et al., 1983, Koong et al., 1994b), resulting from hypertrophy of individual cell 

components, and is driven primarily by an Akt-mammalian target of rapamycin (mTOR) dependent 

pathway (Rennie et al., 2004; reviewed below). 

 

Phenotypic increases in muscle mass results from increases in myofiber size (Goldspink, 1986). This 

increase in size results from increases in protein synthesis for the construction of new sarcomeres, 

which can be added in parallel, increasing force production, or in serial, increasing length and speed 

of myofiber contraction (Goldspink, 1986, Goldspink et al., 1983). Force production by individual 

myofibers is a function of cross sectional area (Figure 2.3), representing the increase in sarcomere 

number (Krivickas et al., 2011). Phenotypic atrophy results in a reverse process, with loss of 

sarcomeric proteins resulting in reductions in myofiber size and ultimately losses in muscle mass. 

One noted exception to this is in sarcopenia, where both hypoplasia and atrophy are noted (Lexell 

et al., 1983, Green et al., 1989). 
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Figure 2.3: Force production in isolated myofibers as a function of cross-sectional area (CSA).  Force production (µN) as 
a function of CSA (µm-1) form young (circles) and old (triangles) individuals. Muscle biopsies taken from vastus lateralis. 
Taken from Krivickas and colleagues (2011). 

 

This hypertrophy primarily occurs in a muscle specific manner in response to repeated mechanical 

loading, with loaded but not unloaded muscle groups showing adaptation (Housh et al., 1992, 

Wilkinson et al., 2006). Power lifters are noted to have larger myofiber cross-sectional area than 

control participants, however the hypertrophy is notably greater in the type IIa and IIb fibres (~ 100 

% over control) than in type I (~ 50 % over control), and proportion of type II fibres is increased over 

type I (Kadi et al., 1999). These results are also found with short term resistance training in 

untrained humans (Widrick et al., 2002) and mice (Matsakas et al., 2006). These changes are 

stimulus dependent, as aerobic exercise training (60 minutes session, 4 × week, 5 months in 

untrained individuals) increases type I but not type II fibre cross sectional area (Gollnick et al., 1973). 

Adaption of muscle can be seen therefore to occur in a specific manner in response to specific 

stimuli.  
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During times of physiological stress, starvation or disease, losses in muscle mass often occur 

(Jackman and Kandarian, 2004). While all proteins in mammalian cells are constantly being 

degraded and replaced (Mitch and Goldberg, 1996), elevated protein degradation rates (above 

those of the rate of synthesis) result in losses of muscle mass, primarily via increased protein 

breakdown by the proteasomal pathway (reviewed below). Inhibition of proteasomal activity 

offsets muscle atrophy during denervation (Tawa et al., 1997). Disuse following lower limb surgery 

or fracture causes losses in both type I and II fibres size that are approximately equal in magnitude 

between fibres (MacDougall et al., 1991, Coyle, 2005, Hirofuji et al., 1992). With aging-induced 

muscle loss atrophy is fibre dependent, predominantly affecting type II fibres (Jobin et al., 1998, 

Lexell et al., 1988, Sullivan et al., 1997). This disparity between disuse atrophy and aging-induced 

atrophy suggests sarcopenic atrophy results from more than simple disuse alone. 

 

Muscle can be seen therefore to have a high degree of plasticity in response to external stimuli. 

These adaptations can be seen phenotypically, decreasing organ size in response to physiological 

stressors, and increasing in size in response to repeated mechanical loading, and result from cellular 

alterations, with changes in fibre type, metabolic function and vasculation. 
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2.3 Regulation of the Size of Muscle 

2.3.1 Amino Acid Liberation and Metabolism  

Amino acids within muscle tissue, as with all tissues, are in constant flux (Mitch and Goldberg, 

1996). Freed amino acids from muscle protein breakdown are either reused in the synthesis of new 

proteins locally, oxidised for the production of energy or released for either systemic usage or 

removal from the body (Figure 2.4). Entry of freed amino acids into Krebs cycle is either via direct 

deamination (such as glutamate), or in the majority of amino-acids, indirect transamination yielding 

a glutamate and ketone (Murray and Montgomery, 2014). The balance of protein turnover is 

governed by the rate of muscle protein degradation and muscle protein synthesis. The rate of each 

is altered dynamically, with the balance between the two placing an individual cell, tissue or whole 

body within a rate of net synthesis or breakdown (Phillips, 2004, Phillips et al., 1997). 

 

 

Figure 2.4: Protein turnover and metabolic fates of amino acids in skeletal muscle  (Taken from Phillips, 2004). 

 

Situations where muscle wasting occurs are noted to involve elevated liberation amino acids via 

muscle atrophy. Mice with implanted C26 adenocarcinoma cells show a progressive loss of both 

body mass, muscle mass and muscle total protein content (Bonetto et al., 2011). In otherwise 
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healthy humans, 14 days bedrest suppresses rate of protein synthesis without altering rate of 

protein breakdown, shifting individuals to a state of net catabolism (Ferrando et al., 1996). In a 

differing model of atrophy, 64 hours of cortisone (140 mg.kg.hour-1) results in elevated protein 

breakdown (Darmaun et al., 1988). Cachexic COPD patients are noted to have reduced muscle mass 

and elevated concentration of multiple amino acids, suggesting liberation from muscle wasting 

(Pouw et al., 1998) 

 

The quantification of the rate of protein synthesis and degradation relies on isotope tracer based 

methodologies. Rare but stable isotopes of elements are incorporated into amino acids then 

administered to individuals, with the rate of appearance or disappearance from bodily 

compartments monitored over known period of time. Traditionally, two techniques for the delivery 

of labelled isotopes amino acids have existed, either a continuous infusion at a constant rate or a 

bolus ‘flooding’ dose. Whilst a bolus approach does offer simpler experimental design of a single 

time point isotope infusion, it has been noted that bolus injections of essential amino acids can 

directly stimulate rate of protein synthesis (Smith et al., 1998). However, constant infusion 

protocols require long infusions protocols (3 -5 hours), and precludes the simultaneous 

measurement of fractional breakdown rate, unless a second isotope tracer is separately infused, as 

breakdown calculation relies on rate of decay on tracer enrichment on cessation of infusion (Wolfe, 

1984). More modern bolus approaches have recently been developed that use a smaller total bolus 

of amino acids, thereby giving the benefits of shorter timeframe without affecting measures of 

protein synthesis (Tuvdendorj et al., 2014), which may allow for flexible experimental designs in 

future work. 
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2.3.2 Proteasomal Activity 

The 26S proteasome represents the principal mechanism for the destruction of intracellular 

proteins (Saeki and Tanaka, 2008). The proteasome represent a large barrel shaped machine which 

contains proteolytic enzymes responsible for degradation of delivered proteins into their amino 

acid components (Kriegenburg et al., 2008, Rosenzweig and Glickman, 2008).  

 

2.3.3 Proteasomal Activity 

The 26S proteasome represents the principal mechanism for the destruction of intracellular 

proteins (Saeki and Tanaka, 2008). The proteasome represent a large barrel shaped machine which 

contains proteolytic enzymes responsible for degradation of delivered proteins into their amino 

acid components (Kriegenburg et al., 2008, Rosenzweig and Glickman, 2008).  

 

Destruction of proteins is a carefully regulated process which involves, in order, an E1 (activating), 

E2 (conjugating) and E3 (ligating) enzyme with the end result being a transfer and tagging of 

targeted protein with the ubiquitin protein marker (Figure 2.5). Ubiquitin is found throughout 

eukaryote cells (Goldstein et al., 1975), and is required for protein degradation (Hershko et al., 

1980). Subsequent polyubiquitinated targets are recognized by the proteasome and are 

subsequently broken down into resultant amino acids for reuse in the synthesis of new proteins or 

entry into metabolic pathways (Coux et al., 1996, Schreiner et al., 2008).  
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Figure 2.5: The ubiquitin-proteasomal pathway of proteolysis.  Taken from Mitch and Goldberg (1996). 

  

Where the proteasomal system is ubiquitous throughout different cell types, the E3 stage of 

ubiquitination allows for the regulation of target protein specific degradation. Within muscle at 

least two specific E3 ligases exist, namely atrogin and MuRF1 (Bodine et al., 2001a, Gomes et al., 

2001). Atrogin and MuRF1 are only found within heart and muscle tissue, and induction of skeletal 

muscle atrophy via denervation, immobilization or hind limb suspension in rat results in rapid 

increases in expression of both ligases within muscle (Bodine et al., 2001a). Stimulation of muscle 

cells with E1, E2 or MuRF1 in isolation results in no increase in ubiquitin binding rate, but 

combination of all three results in increased ubiquitin expression. Conversely, genetic knockout (-

/-) of atrogin or MuRF1 results in mice that are resistant to muscle wasting in response to 

denervation or septic shock (Bodine et al., 2001a). Combined, the necessary role of the E3 ligases 

for proteasomal activity can be seen. 
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Transcription factor Forkhead box protein, O sub-family, (FoxO1) is capable of binding to and 

increases atrogin and MuRF1 expression (Waddell et al., 2008). Transgenic overexpression of FoxO1 

in mice results in increased atrogin expression and muscle atrophy (Southgate et al., 2007). 

Inhibition of FoxO transcription factors specifically within muscle prior to injection with carcinoma 

cells prevents tumour induced atrophy and in control mice (sham tumour injection), induces 

hypertrophy (Reed et al., 2012). 

 

2.3.4 Akt-mTOR Signalling 

Insulin and insulin-like growth factor (IGF) act to promote protein synthesis, increase glucose 

uptake and inhibit apoptosis in muscle, thereby regulating growth and regeneration (Dent et al., 

1990, Fryburg and Barrett, 1993, Lawlor and Rotwein, 2000, Le Roith et al., 2001). IGF binds to and 

induces activity of the IGF-Akt pathways via the IGF receptor (IGF-R) while mutation of this receptor 

prevents IGF-induced increases in myoblast differentiation (Cheng et al., 2000). Binding of IGF to 

the IGF-R induces phosphorylation of the phosphoinositide 3-kinease (PI3-K) into an active state, 

phosphorylating cell surface molecule phosphatidylinositol-(3,4,5)-bisphosphate (PIP2) to 

phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). PIP3 binds with the Akt Pleckstrin homology 

domain, rotating and positioning it within the cell membrane to allow for phosphorylation by 

phosphoinositide-dependent kinase-1 at Threonine 308 (Thr308) and Serine 473 (Ser473), putting 

Akt into its fully active state (Alessi, 2001, Alessi et al., 1997, Li et al., 2006).  

 

Akt phosphorylation promotes phosphorylation of glycogen synthase kinase 3β (GSK-3β) on its N-

terminus regulatory domain, promoting cellular protein synthesis (Cross et al., 1995) and 

upregulates mTOR complex 1 (mTORC1) activity, which promotes two downstream signalling 

factors, an S6 kinase of 70 kDa (p70S6K) and 4E-BP1. Inhibition of either mTOR phosphorylation or 

p70S6K in the presence of phosphorylated Akt prevents cellular protein synthesis that Akt 

phosphorylation alone promotes (Ohanna et al., 2005). Inhibition of p70S6K does not prevent GSK-
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3β phosphorylation, suggesting divergence of this signalling at this point (Cross et al., 1995), 

however phosphorylation of GSK-3β can selectively inactivate 4E-BP, showing further negative 

control of synthesis (Sharples et al., 2012). 

 

Knock-down of Akt signalling in mice results in a reduction in body mass relative to wild type mice, 

and a reduction in lean muscle mass, but not fat mass. This global loss of total muscle mass is 

mirrored in atrophy across individual muscles (Goncalves et al., 2010). Alternatively, functional 

overload in mice induce muscular hypertrophy and increases pAkt (Ser473) expression, while 

inhibition of mTOR reduces hypertrophy but maintains pAkt (Ser473), showing the role of mTOR 

downstream of Akt (Bodine et al., 2001b). Similarly, conditionally over-activation of Akt in mice 

results in rapid (~2 weeks) hypertrophy of peripheral muscle (Borsi et al., 2015). 

 

This effect of Akt activity on muscle protein synthesis appears to be driven by the above mentioned 

effects on mTORC1 and GSK-3β. Targeted mTOR inhibition via rapamycin treatment of myotubes in 

vitro decreases p70S6K activation in the presence of IGF and activated Akt, and offset muscle 

hypertrophy in the rat (Zhang et al., 2010). Similarly, phosphorylation and inhibition of GSK-3β 

results in myotube hypertrophy, either via Wnt1 stimulation (McFarland, 1971) or GSK-3β inhibitor 

stimulation (Vyas et al., 2002).  

 

Impairment of IGF-R offsets IGF-1 driven atrophy. Wild-type mice show ~ 25 % increase in myofiber 

diameter in muscle from the quadriceps following IGF-1 infusion, while mice with a deletion of the 

IGF-R associated protein myoferlin show a lack of muscle hypertrophic response following a 

matching IGF-1 infusion. Mice with a muscle specific deletion of the IGF-R show muscle atrophy 

relative to wild type mice, but show a maintained muscular hypertrophy response following 7 days 

of functional overload relative to wild type mice, while pAkt (Ser473) phosphorylation is maintained 
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(Spangenburg et al., 2008). These results suggest that while important for normal growth of muscle 

mass in vivo, IGF-R activity is not necessary for mechanical load-induced hypertrophy.  

 

Finally, links between proteasomal activity and Akt-mTOR signalling have been noted, suggesting 

cross-regulation between the two pathways. Phosphorylation of Akt induces phosphorylation and 

exclusion of the FoxO transcription factors to the cytoplasm, preventing FoxO1 dependent 

increases in atrogin and MuRF1 in response to atrophic stimuli (Stitt et al., 2004), while alternatively 

mTOR activation increases proteasomal activity (Zhang et al., 2014). FoxO1 overexpression is also 

capable of inhibiting 4E-BP1 via mTOR inhibition, demonstrating some cross talk between FoxO and 

Akt pathways (Southgate et al., 2007).  

 

2.3.5 Inflammation and Cytokine Activity 

In response to challenge from an external pathogen, the innate immune response follows a well-

characterized response involving canonical pro-inflammatory cytokines such as tumour necrosis 

factor alpha (TNFα), the interleukins and interferon gamma (IFNγ). Common to several pro-

inflammatory cytokines pathways is the nuclear signalling factor kappa beta (NF-κB), which is held 

in an inactive state in the cytosol by its inhibitor (inhibitor of kappa B alpha [IκBɑ]) . In response to 

external signalling and activation, NF-κB is released from IκBɑ by a specific kinase Iκk (Traenckner 

et al., 1994). Freed of IκBɑ by IκK, NF-κB can translocate to the nucleus, binding promoter regions 

and increasing transcription of multiple pro-inflammatory cytokines, including TNFα and IFNγ (Frost 

et al., 2002), which may then act in an auto/paracrine manner or enter the circulation and act in an 

endocrine manner.  

 

Pro-inflammatory models show rapid atrophy of skeletal muscle. Induction of sepsis in rats 

decreases muscle protein synthesis and reduces muscle weight, while pre-treatment with TNFɑ 
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inhibitors prevents this (Cooney et al., 1999), which may in part act via Akt-mTOR signalling, as 

septic rats have depressed mTOR activity, which is again prevented with pre-treatment by TNFɑ 

inhibitors (Lang and Frost, 2007). These effects are NF-κB dependent, overexpression of IκBɑ 

prevents NF-κB activation in response to TNFα, and stimulated cells do not show atrophy (Li and 

Reid, 2000). Conversely, overexpression of a muscle specific IκK causes NF-κB to be constitutively 

active within muscle and substantial muscle atrophy (Cai et al., 2004) 

 

2.3.6 Satellite Cells  

During an examination of the sarcolemma of myocytes excised from frogs, Mauro (1961) noted the 

presence of a previously unknown type of cell embedded superficially to the plasma membrane 

(Figure 2.6A). As myofibers are terminally differentiated, Mauro (1961) hypothesized that 

activation of these cells induces proliferation of precursor myoblasts that are capable of fusing to 

pre-existing myofibers to provide new or replacement nuclei (Figure 2.6B). 
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Figure 2.6: Satellite cells and their function. A) Visualisation of satellite cell, showing placement below the basement 
membrane but separate to the myofiber. sp = satellite cell membrane, mp = muscle cell membrane, bp = basement 
membrane. Taken from Mauro (1961). B) Schematic of satellite cell replication and fusion. On activation (top left), satellite 
cells proliferate (middle) and migrate to site of action, fusing to existing myofiber (bottom right) and increasing myofiber 
nuclear number.  

 

Satellite cell differentiation is regulated by MyoD and Pax7, with quiescent cells staining positive 

for Pax7, proliferating cells positive for both Pax7 and MyoD, and differentiating cells positive for 

MyoD only (Motohashi and Asakura, 2014, Seale et al., 2000). Pax7 -/- mice show smaller muscle 

mass than wild type mice, and lack of satellite cells within muscle (Seale et al., 2000). Biopsies from 

human vastus lateralis suggest satellite cells are typically found in the quiescent state (Beauchamp 
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et al., 2000). In humans, increased satellite cell activity (as indicated by MyoD activation) is seen 

following resistance training (Kadi et al., 2004). The impaired muscle mass of Pax7 -/- mice and the 

activation of satellite cells following resistance training in humans is suggestive for a role for 

satellite cell activity in load induced hypertrophy.  

 

In response to stretch or exercise in the rat, satellite cells are activated and proliferate (Rosenblatt 

and Parry, 1992, Smith and Merry, 2012), then migrate to their fusion site via chemotaxis (Hawke 

and Garry, 2001). It was initially proposed that satellite cells are required for the inducement of 

muscular hypertrophy. Low doses of gamma-radiation in mice cause reproductive death of satellite 

cells without perceivable damage to myofibres. Subsequent mechanical overload of muscles does 

not induce measurable hypertrophy (Rosenblatt and Parry, 1992, Rosenblatt et al., 1994), 

suggesting satellite cell activity is a necessary step in muscle hypertrophy.  

 

The role of satellite cells in muscular hypertrophy in the healthy human has recently been 

questioned by McCarthy and colleagues (2011), who used an adult-onset knock-down model to 

inactivate satellite cells in adult mice, paired with a synergist ablation model, and showed similar 

hypertrophy of agonist muscles in both control and knock-down mice. As would be expected, 

myonuclei domain increased, indicating that no increase in myonuclei number was seen (McCarthy 

et al., 2011). 
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2.4 Myostatin 

2.4.1 Discovery and Phenotypic Effects 

McPherron and colleagues (1997) first identified the role of myostatin while investigating the effect 

of previously uncharacterized growth and differentiation factor (GDF) family members. Generated 

myostatin (previously GDF-8) knockout mice were viable and showed a 30 % increase in body 

weight over wild type mice at 2 months of age. This phenotype appears to result from increases in 

muscle mass. Myostatin -/- mice showed significant muscle hypertrophy of 200 – 260 % across 

different muscles and reductions in subcutaneous fat mass. Mass gained appeared to be via cellular 

hypertrophy, with no visible evidence of hyperplasia.  

 

The phenotypic effect of myostatin deletion appears to be maintained throughout Mammalia. 

Belgium blue cattle naturally present with significant increases in muscle mass and reduced 

subcutaneous fat over other bovine species. Multiple research groups simultaneously identified 

that Belgium blue cattle naturally presented with an 11 nucleotide deletion resulting in a lack of 

mature muscle myostatin peptide expression (Grobet et al., 1997, Kambadur et al., 1997, 

McPherron and Lee, 1997). ‘Bully whippets’, a subset of the whippet breed of dog, show significant 

muscular hypertrophy over common whippets due to a mutation of the myostatin gene, with both 

homozygous and heterozygous mutations presents, and hypertrophy greatest in the homozygous 

variant (Mosher et al., 2007). This role of myostatin on muscle size appears to be maintained in 

humans. A spontaneously occurring myostatin -/- infant has been reported; this individual showed 

heightened amounts of muscle mass relative to normative values when measured 6 days post birth, 

which was maintained up to at least 4.5 years of age (Schuelke et al., 2004).  
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The myostatin protein is coded for by the myostatin gene, a 7,033 base pair, located on 

chromosome 2, position q32.2. Baseline myostatin transcription is higher in fast twitch muscles, 

relative to slow twitch muscles (Allen and Unterman, 2007), which may link to the fibre type specific 

roles of myostatin.  

 

The myostatin promotor region contains binding sites for FoxO and SMAD transcription factors. 

Myostatin transcription appears directly controlled by FoxO1, over-activation of FoxO1 induces a 

~100 fold increase in myostatin mRNA in myoblasts and ~500 fold increase in myotubes (Allen and 

Unterman, 2007). SMAD transcription factors 2 and 3 (SMAD 2/3) both increase myostatin mRNA 

expression in C2C12 myotubes (Allen and Unterman, 2007), in a similar manner to other TGF- β 

family members. Inhibition of myostatin transcription can occur via binding of micro-interfering 

RNA-27a (miR-27a), which can direct bind and block the myostatin promotor region. 

Overexpression of miR-27a reduces myostatin mRNA expression and muscle hypertrophy, whilst 

miR-27a targeted degradation increases myostatin expression and muscle atrophy (McFarlane et 

al., 2014). 

 

Myostatin is initially translated as a 376 amino acid prepropeptide in the human (375 in the mouse). 

In a similar manner to other TGF-β family members, two cleavage events at amino acid 240 – 243  

produce a C-terminus signalling peptide (Figure 2.7A, yellow) and a larger latency associated 

propeptide (Figure 2.7A, dark blue) that is capable of binding to, and inhibiting the C-terminus 

myostatin peptide (McPherron et al., 1997).  The peptide cleavage protease appears to be a 

member of the metalloproteinase family as stimulation of C2C12 myotubes with metalloproteinase 

inhibitors promotes cellular hypertrophy, the accumulation of unprocessed prepropeptide 

myostatin (denoted in Figure 2.7A-1) and a decrease in myostatin peptide (Figure 2.7A-4 and Figure 

2.7B) expression (Huet et al., 2001).  
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A three dimensional structural ribbon diagram (Figure 2.7B) demonstrates the dimerization of two 

myostatin peptide monomers post cleavage of the inhibitory propeptide. To date, no x-ray 

crystallography data for the full length myostatin prepropeptide has been published, precluding 

visualisation of the full length myostatin precursor. 

 

 

Figure 2.7: Processing of the myostatin protein. A) Schematic of myostatin homodimer formation, showing cleavage 
events. Following synthesis of the full length protein, 1) myostatin undergoes two proteolytic events, removing the N-
terminus (light blue) and cleaving the C-terminus (yellow). The C-terminus peptide forms a disulphide-linked homodimer. 
2) The cleaved C-terminus remains inactive (latent) in a non-covalent bond with the propeptide (dark blue), preventing 
activity. Cleavage of this latency associated propeptide (3 - 4) results in a bioactive peptide with receptor binding abilities 
(Lee, 2004).  B) Ribbon diagram of myostatin peptide homodimer, with individual monomers coloured. (blue and green; 
sequence data modified from Cash et al., 2012). UniProt sequence access #O08689-mouse myostatin peptide 
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Three major compartments exist for the myostatin peptide in vivo. A 26 kDa band, representing the 

myostatin peptide is detected by Western blot, and this band size is halved in size under strong 

reducing conditions, representing the myostatin peptide monomer (disulphide bond broken; 

McPherron et al., 1997, Zimmers et al., 2002). Under non-reducing conditions, a further band at 

100 kDa can be seen representing unprocessed myostatin. An antibody raised against the myostatin 

LAP will detect a band at ~40 kDa. Antibodies with a paratope crossing the C-terminus have been 

reported in the literature, resulting in Western blots that detect both the 26 kDa, the 40 kDa and 

the 100 kDa bands in muscle tissue (McFarlane et al., 2005). 

 

Myostatin peptide is also detected circulating in plasma at 26 kDa and 40 kDa (Gonzalez-Cadavid et 

al., 1998, Walker et al., 2004), which again is halved in size under reducing conditions (Zimmers et 

al., 2002), and this 26 kDa band is absent in myostatin -/- animals (Szulc et al., 2012). Myostatin is 

also found in the intercellular space, where is primarily expression appears to be in an inactive form, 

with the myostatin peptide not witnessed by Western blot (Anderson et al., 2008). 

 

Myostatin DNA as measured by Southern blot is present in muscle samples from multiple species, 

including humans, and faintly present in chicken, but is not seen in either zebrafish or frog 

(McPherron et al., 1997, Palstra et al., 2010). Rainbow trout show two separate myostatin coding 

regions (MSTN-1a and -1b, respectively), and unlike mammalian species, myostatin is ubiquitous in 

tissues, with expression highest in brain, testes, eyes, spleen and muscle. Thus, it would appear that 

myostatin’s evolutionary conservation and function may differ outside of Mammalia. 

 

In the Human, the myostatin protein is found in both muscle and plasma. Plasma myostatin 

concentration negatively correlates with muscle mass in healthy and sarcopenic older individuals 

(Yarasheski et al., 2002) and also in healthy and cachexic HIV patients (Gonzalez-Cadavid et al., 
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1998). Muscle myostatin peptide is elevated in sarcopenic older individuals, relative to younger 

control participants (Leger et al., 2008). Humans undergoing 10 weeks of resistance training show 

decreased plasma myostatin (Walker et al., 2004) and 9 weeks of a similar resistance training 

program reduces muscle myostatin mRNA (Roth et al., 2003). Combined these results suggest 

anabolic stimuli-induced changes in myostatin may underlie muscle mass growth in the heathy 

human. Conversely, 25 days of bed-rest induces loss of muscle mass and increases plasma 

myostatin concentration (Zachwieja et al., 1999), and disuse due to osteoarthritis increases muscle 

myostatin mRNA (Reardon et al., 2001). It would seem therefore that myostatin plays a role in the 

adaptation of muscle mass to both hypertrophic loading and atrophic disuse.  

 

Myostatin appears to alter muscle size via a direct regulation of myofiber size. Incubation of C2C12 

myotubes with myostatin in vitro induces cellular atrophy in a dose-dependent manner (McFarlane 

et al., 2006). These effects are maintained in vivo, mice with a Chinese hamster ovary (CHO) 

implanted tumour modified to generate and secrete myostatin show elevated systemic myostatin 

and muscular atrophy at muscles distal to the tumour implantation site, while those animals with a 

control CHO tumour do not (Zimmers et al., 2002). Myostatin -/- mice show a reduced 

representation of type I fibres compared to wild type mice (Gentry et al., 2010, Savage and 

McPherron, 2010), and a reduced aerobic exercise capacity relative to wild type mice (Matsakas et 

al., 2010, Savage and McPherron, 2010). Myostatin expression and activity is thought to act 

primarily on type II (fast) fibres, myostatin -/- mice are noted to have a higher representation of 

type II muscle fibres (Matsakas et al., 2010) and myostatin mRNA is higher in type II muscles of 

normal mice (Allen and Unterman, 2007). While not noted by McPherron and colleagues (1997) in 

the initial description of myostatin -/- mice, it has since been reported that adult myostatin -/- mice 

may show some indication of increased muscle fibrosis (Gentry et al., 2010).  
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A number of proteins act to inhibit or modulate the activity of myostatin. The mature myostatin 

peptides own propeptide competitively binds to and prevents receptor binding of myostatin (Thies 

et al., 2001), in a similar way to that of several TGF-β family members. Overexpression of the 

myostatin propeptide induces muscle growth in mice, increased muscle fibre area and an increase 

in total body weight that is greater in males than female mice (Jiang et al., 2004, Wang et al., 2013). 

Indeed, myostatin peptide expression is reduced in male mice relative to female mice of matching 

age, suggesting myostatin regulation may be involved in sexual dysmorphism. Despite these 

differences at the muscular level, no alteration in plasma myostatin is seen by gender (Oldham et 

al., 2009). However, the gene expression of part of the myostatin receptor (ALK4), is increased in 

human females relative to males (Welle et al., 2008), suggesting a higher sensitivity to myostatin 

may also exist in females. Titin-cap is capable of binding to and inhibiting myostatin’s activity 

(Nicholas et al., 2002), as does Follistatin (Lee and McPherron, 2001, Nakatani et al., 2008), 

follistatin related gene protein (FLRG; Hill et al., 2002) and growth and differentiation factor-

associated serum protein-1 (GASP-1; Hill et al., 2003).  

 

Finally, it should be recognized that myostatin is not the only factor regulating muscle size. 

Follistatin overexpressing mice show muscular hypertrophy (Lee, 2007), as expected due to the 

above mentioned role of follistatin in myostatin inhibition (Nakatani et al., 2008). Myostatin -/- 

mice crossed with follistatin overexpressing mice showing significant hypertrophy over that of 

myostatin -/- mice alone (Lee, 2007), suggesting follistatin interacts with other muscle size 

regulating mechanisms besides myostatin. These ‘off-myostatin’ effects may involve activin, 

another TGF-β family member, as follistatin is recognised to bind and inhibit activin’s actions (Patel, 

1998, Sugino et al., 1997). Further, inhibition of follistatin’s activin-binding ability prevents 

hypertrophy in myostatin -/- mice (Parslow, 2014).  
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2.4.2 Mechanisms Underlying Myostatin’s Atrophic Effect 

In the unstimulated myotube in vitro, the myostatin protein is localized to the nucleus. Application 

of an atrophic stimulus increases myostatin expression and induces translocation into the 

cytoplasm and then into the intracellular media (Artaza et al., 2002). In the cytoplasm, myostatin is 

found cleaved into its C-terminus biologically active peptide and bound to its inhibitory propeptide 

(Hill et al., 2002). In vivo, myostatin is found in three compartments; in the intracellular space, 

intercellularly and within the plasma (Anderson et al., 2008, Gonzalez-Cadavid et al., 1998, 

McPherron et al., 1997), where it is suspected to have an endocrine role (section 2.4.7).  

 

The myostatin peptide induces an intercellular signalling cascade by binding to the external portion 

of the target cells transmembrane receptor activitin receptor IIB (Rebbapragada et al., 2003), which 

induces ActRIIB homodimerization with either activity receptor-like kinase-4 or -5. Blockage of the 

myostatin receptor ActRIIB increases body mass and decreases fat mass (Goncalves et al., 2010), 

similar to the phenotype seen in myostatin -/- mice (McPherron et al., 1997). 

 

Internally to the muscle cell, myostatin signalling appears to target three separate mechanisms in 

the regulation of cellular size. Myostatin activation down regulates satellite cell activity, increasing 

proteasomal activity and decreases Akt-mTOR complex activity (sections 2.4.2 – 2.4.5). Degradation 

of protein is a metabolically expensive process (Mitch and Goldberg, 1996). Myostatin appears to 

also directly increase glucose metabolism, as direct stimulation of C2C12 myotubes with myostatin 

increases glucose transporter type 1 and 4 (GLUT1 and GLUT4) mRNA, increases glucose uptake in 

a concentration dependent manner, decreases intracellular ATP and increases AMPK activity (Chen 

et al., 2010), potentially to help offset the metabolic cost of its actions.  
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2.4.3 Regulation of Satellite Cell Activity by Myostatin 

As an in vitro model of satellite cells, myoblast differentiation into mature myotubes is offset in the 

presence of endogenous myostatin in a dose-dependent manner (Rios et al., 2002, Taylor et al., 

2001, Thomas et al., 2000). Satellite cell differentiation is regulated by MyoD and Pax7, with 

quiescent cells staining positive for Pax7, proliferating cells positive for both Pax7 and MyoD, and 

differentiating cells positive for MyoD only (Motohashi and Asakura, 2014). As mentioned above, 

myostatin signals via activated SMAD2,3,4 complex, which decreases MyoD expression (Langley et 

al., 2002). Stimulation of myoblasts with myostatin prevents Pax7-MyoD co-localization, 

maintaining cells in a quiescent state (McFarlane et al., 2008). Myostatin -/- mice show a decreased 

number of satellite cells per fibre, and hypertrophy of muscle in adult mice does not alter satellite 

cell number. Furthermore, satellite cells from adult wild type mice do not appear to express ActRIIB 

(Amthor et al., 2009), suggesting, at least in the adult, that myostatin’s atrophic effects are not via 

satellite cell inhibition, or myostatin’s’ effects on satellite cells is not a direct one. However, a role 

in developmental influences cannot be ruled out.  

 

Under physiologically normal conditions, proliferating satellite cells fuse to existing myotubes to 

aid hypertrophy. Differentiating myoblasts in vitro that overexpress myostatin show a reduction in 

MyoD expression and a reduced rate of differentiation in satellite cells derived from both mice and 

sheep muscle (Langley et al., 2002, Liu et al., 2012), the effect of which is reversed dose-

dependently if the cells are co-cultured in the presence of suramin (1 – 100 µg.mL-1), a peptide 

which appears to down-regulate myostatin activity via an undescribed mechanism (Nozaki et al., 

2008). 

  

In response to myostatin binding to the ActRIIB receptor, phosphorylation of intracellular signalling 

proteins SMAD2 and SMAD3 occurs, which then induces binding with SMAD4. The SMAD2,3,4 

complex then translocates to the nucleus where it directly binds to and blocks the MyoD promoter 
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region (Zhu et al., 2004). However, counter to what may be expected, SMAD4 -/- mice show 

significant muscle atrophy that is fibre-type independent, a reduction in force output, and notable 

hyperplasia (Sartori et al., 2013), which outlines the joint role of SMAD signalling not just in 

myostatin signalling, but across TGF-β family members as a common intracellular signalling 

pathway (Corrick et al., 2015). 

 

2.4.4 Regulation of Degradative Pathways by Myostatin 

Stimulation of C2C12 myotubes with myostatin sufficient to induce ~ 50 % atrophy increases atrogin 

but not MuRF1 and increases ubiquitin binding, while inhibition of FoxO1 prevents these increases 

(McFarlane et al., 2006). Injection of dexamethasone into mice in vivo induces rapid atrophy and 

increases in atrogin and MuRF1 expression. This atrophy is reduced in myostatin -/- mice, as is the 

increases in atrogin and MuRF1 (Gilson et al., 2007). Conversely, atrogin or MuRF1 -/- mice maintain 

muscle mass in response to disuse atrophy relative to wild type mice (Bodine et al., 2001a). This 

consistent and necessary role of atrogin and MuRF1 for muscle atrophy makes them useful markers 

of muscle catabolism. In what appears to be a feedback mechanism, the myostatin promoter region 

contains a FoxO1 binding site, and FoxO1 activation increases myostatin expression (Allen and 

Unterman, 2007). 

 

Following injury of myofibers in vivo, elevated myostatin protein expression is co-localized with 

necrotic fibres, suggesting a role in the necrotic process. Conversely, zones of myoblast fusion show 

a lack of myostatin expression and reduced myostatin expression during hypertrophy (Kirk et al., 

2000), suggesting an acute and time-dependent role of myostatin in regeneration following injury. 
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2.4.5 Regulation of Akt-mTOR Dependent Anabolism by Myostatin 

Synthesis of structural proteins within a number of cells, including muscle cells, is governed 

primarily by the Akt-mTOR signalling pathway, as described above (Section 2.3) and visualised 

below (Figure 2.8). Myostatin stimulation of C2C12 myoblasts inhibits proliferation, and this process 

is dependent on activity of myostatin receptor ActRIIB and phosphorylation of Akt at Ser473, but 

not SMAD3 (Yang et al., 2007), indicating the intracellular signalling pathway by which myostatin 

alters Akt activity is independent of its SMAD2,3,4 pathway. Increased Akt-mTOR activity regulates 

p300 expression, a transcriptional co-activator necessary for cell cycle progression (Ogryzko et al., 

1996). Myostatin decreases p300 expression via targeted ubiquitination, and both IGF-1 stimulation 

and constitutively active Akt rescues this effect, suggesting myostatin is capable of inhibition of IGF-

1 activity, and this effect is upstream of Akt (Ji et al., 2008). Such an activity could be of interest in 

the balance of synthesis and degradation pathways, an inhibition of synthesis via differentiation of 

new myoblasts in parallel with increased degradation would result in the efficient loss of muscle 

mass.  

 

Mice overexpressing myostatin following plasmid promoter electro-transfer into tibialis anterior 

show down-regulation of Akt phosphorylation (Ser473) and downstream Akt targets p70S6k 

(Ser235/236) and 4E-BP1 (Thr37/46; Figure 2.8). Interestingly, ubiquitin binding was not changed 

in these animals (Amirouche et al., 2009). Blockage of the myostatin receptor ActRIIB increases 

body mass while showing a trend towards decreased fat mass in both wild type and Akt knockdown 

mice, suggesting the effects of myostatin on Akt-mTOR are not the only way by which myostatin 

alters muscle size (Goncalves et al., 2010). 
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Figure 2.8: Summary of Myostatin intercellular signalling pathways.  MyoD, myogenic determination; ActRIIB, activin 
receptor type two beta; FoxO1, Forkhead box protein type O one; MuRF1, muscle ring finger protein 1;IGF-1, insulin-like 
growth factor one; mTOR, mammalian target of rapamycin; p70s6k, ribosomal protein S6 kinase; 4E-BP1, 4E Binding 
protein; GSK-3β, glycogen synthase kinase 3 beta. Taken from Elliott et al. (2012).  

 

2.4.6 Alteration of Myostatin in vivo 

Myostatin protein concentration is decreased in plasma of human participants following 6 weeks 

of resistance exercise training (Walker et al., 2004), but not in the muscle following a similar 

exercise training intervention, despite a decrease in mRNA transcription (Jespersen et al., 2011). 

Inhibition of myostatin, via a systemically administered monoclonal antibody targeting the 

myostatin peptide, increases muscle mass and exercise capacity in aged mice, which is further 

enhanced by exercise training (LeBrasseur et al., 2009).  
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Individual variation in the myostatin gene may alter muscle phenotype. Coding differences in the 

myostatin gene is associated with muscle function and force production, particularly the K153R 

polymorphism. An analysis of 286 older (70 – 79 years of age) females suggested that R 

polymorphism containing individuals tend to show lower force production than K individuals 

(Seibert et al., 2001). In human males of Han Chinese origin, opposing findings are seen, with the 

presence of the R polymorphism associated with greater muscle size, and greater gains in muscle 

mass in both biceps and quadriceps following 8 weeks resistance training (Li et al., 2014). A link 

between maintenance of muscle mass and myostatin isoforms may be seen with aging; the R 

polymorphism displays an increased association with centenarians from Spanish and Italian 

populations than the K polymorphism (Garatachea et al., 2013). 

 

The myostatin response to disuse is less well defined. No change in myostatin mRNA expression is 

seen following lower limb casting in healthy individuals for 14 or 23 days (de Boer et al., 2007), nor 

with lower limb casting for 4 – 11 days following lower limb fracture (Chen et al., 2007). Counter to 

these results, 5 days casting induces increases in myostatin mRNA expression (Dirks et al., 2014) as 

does chronic disuse (as induced by total hip arthroplasty) in elderly female patients (Reardon et al., 

2001). Plasma myostatin is increased following 25 days head-down bed rest amongst healthy young 

males (Zachwieja et al., 1999). An unclear picture emerges as to the role of myostatin in disuse 

atrophy therefore. The length  of disuse may be key with regards to myostatin mRNA changes, with 

increased transcription seen in the shortest study (Reardon et al., 2001), but not in the longer term 

studies (de Boer et al., 2007, Chen et al., 2007) resulting in an increased basal concentration of 

plasma myostatin, as is seen by Zachwieja and colleagues (1999). 

 

While inhibition of myostatin offsets disuse atrophy in mice (Murphy et al., 2011), absence of 

myostatin does not preclude loss of muscle mass. It is noted that 7 days of hind-limb unloading in 
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myostatin -/- mice induces greater loss of muscle mass than in wild-type mice (McMahon et al., 

2003b). Myostatin -/- mice who undergo 7 days hind-limb unloading show elevations in atrogin and 

MuRF1 relative to control unloaded mice, however after 7 days of reloading these effects are 

dissipated, and myostatin -/- mice show greater recovery (Smith et al., 2014). Conversely, atrophy 

as a result of glucocorticoid injection is seen in wild-type mice, but not in myostatin -/- mice (Gilson 

et al., 2007), suggesting the atrophic mechanism underlying the two processes is different, where 

glucocorticoids require myostatin signalling activity to induce atrophy, disuse does not.  

 

A number of chronic disorders are associated with loss of muscle mass and may involve myostatin-

dependent regulation. Myostatin is elevated in patients with chronic heart failure and exercise 

training can decrease muscle myostatin expression in this population (Lenk et al., 2012). Mouse 

models of chronic heart failure present with elevated plasma myostatin, and genetic deletion of 

myostatin expression in cardiomyocytes reduces heart failure induced muscle atrophy in mice 

(Breitbart et al., 2011). Myostatin is increased in the muscle of chronically hypoxemic COPD patients 

(Hayot et al., 2011), and elevated in the muscle of a rat model of cancer cachexia (Costelli et al., 

2008). The findings of Hayot and colleagues (2011) may be clouded by differences in physical 

activity behaviours between the patient population and healthy controls. Further, Hayot and 

colleagues (2011) make no mention of treatment regimens of the COPD population, potentially 

confounding as glucocorticoids induce muscle atrophy via myostatin signalling (Gilson et al., 2007). 

Starvation of sheep involves both a loss of muscle mass and increase in muscle myostatin 

expression (Jeanplong et al., 2003). The most common interpretation of these findings is for a 

causative role of myostatin in the muscle atrophy seen in these disorders. Conversely, as plasma 

myostatin concentration is noted to correlate with muscle mass (Gonzalez-Cadavid et al., 1998), a 

reversal of causality could be suggested, where pathology reduces muscle mass thereby altering 

basal myostatin concentration.  
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2.4.7 Myostatin as an Endocrine Hormone 

Myostatin’s actions are both paracrine and endocrine. While the control of secretion of myostatin 

is not well understood, it appears to involve the protein titan-cap; titan-cap is capable of binding 

the myostatin peptide and C2C12 myoblasts that overexpress titin-cap show reduced myostatin 

secretion, but not altered myostatin production or processing intracellularly (Nicholas et al., 2002).  

 

 Early evidence for myostatin having an endocrine role came from Gonzalez-Cadavid and colleagues 

(1998), who noted a negative correlation between plasma myostatin and muscle mass across a 

cohort of healthy individuals, non-cachexic and cachexic HIV patients. Similar results are seen in 

aging individuals where muscle mass negatively correlates with serum myostatin (Yarasheski et al., 

2002). Conversely, Ratkevicius and colleagues (2011) show no variation in serum myostatin 

concentration between young and elderly men. Differences in the ELISA protocol between 

publications may explain these results, while both groups generated custom ELISA for their work, 

Ratkevicius and colleagues (2011) do not report a plasma acidification step, the function of which 

is to break any antigen – binding protein bonds that may prevent antigen – antibody interaction.  

 

An interventional model examining the endocrine hypothesis was completed by Zimmers and 

colleagues (2002), implanting mice with Chinese hamster ovary (CHO) myostatin expressing 

tumours. Subsequently mice showed significant atrophy relative to control (tumour only) mice and 

this atrophy was seen globally. Introduction of a soluble form of the ActRIIB systemically into the 

plasma binds circulating myostatin and results in increased strength and muscle function in mice 

(Whittemore et al., 2003), and can delay the atrophy of muscle in disuse models in mice (Murphy 

et al., 2011). In healthy mice, injection of an anti-myostatin antibody increases mass of tibialis 

anterior, quadriceps and gastrocnemius while injection of recombinant myostatin decreases 

muscle mass (Stolz et al., 2008).  
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Interaction between ‘classical’ hypertrophic pathways and myostatin appear to exist. Stimulation 

of C2C12 myotubes with increasing doses of growth hormone induces a decrease in myostatin 

expression in a dose-dependent manner, while treatment with a growth hormone antagonist gives 

the opposite effect (Liu et al., 2003). Further, growth hormone deficient adults show a decrease in 

myostatin expression with growth hormone stimulation (Liu et al., 2003). Growth hormone 

deficient animals show increased myostatin expression relative to control animals, but a larger 

decrease in myostatin mRNA expression following 3 days of compensatory muscle overload 

(Yamaguchi et al., 2006). While no relationship is seen between myostatin mRNA and growth 

hormone in men (Marcell et al., 2001), it should be remembered that there is a poor relationship 

between muscle myostatin peptide and mRNA in male mice (McMahon et al., 2003a), potentially 

clouding these results. 

 

2.4.8 Acute Alterations in Myostatin  

Examinations of changes in myostatin protein in acute timeframes (less than 24 hours) are lacking 

in the published literature. A lack of reliable tools for the measurement of plasma ELISA may have 

historically precluded the study of systemic myostatin, while the difficulties associated with 

repeated muscular biopsies (both scientifically and logistically) increase the difficulty of examining 

muscle peptide changes. One report exists that managed to collect eight muscle biopsies over a 

period of 24 hours following an acute resistance or endurance exercise session (Louis et al., 2007). 

These authors demonstrated a time-dependent decrease in myostatin mRNA, but did not examine 

the myostatin peptide (Louis et al., 2007). Alternative results were shown in rats following an 

eccentric exercise protocol, with an increase in myostatin mRNA expression peaking at 3 – 6 hours 

following exercise (Peters et al., 2003). These results suggest an exercise dependent effect, 

whereby complex multi-muscle exercise induces a differential result on muscle myostatin 

transcription than eccentric exercise alone. A single bout of resistance exercise decreased the 

expression of vastus lateralis myostatin mRNA one hour post and 48 hours post exercise in healthy 
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humans (Hulmi et al., 2008). Again, no attempt to measure myostatin peptide was made. No 

examinations examining myostatin peptide alterations in response to atrophic or hypertrophic 

stimuli over acute time-frames have taken place, leaving a clear gap in the literature. 
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2.5 Hypoxia  

Within the human, transfer of oxygen (O2) from the external environment into the mitochondria as 

a key ingredient of oxidative metabolism involves coordinated responses of the mechanical act of 

breathing, diffusion of O2 across the alveolar membrane, O2 transfer via circulation, capillary 

perfusion of peripheral tissue, O2 dissociation from haemoglobin and diffusion into the cellular and 

then mitochondria for mitochondrial respiration (Figure 2.9), before metabolically produced CO2 is 

expelled in a reversal of this process.  

 

Figure 2.9: Oxygen partial pressure from the external environment to muscle mitochondria.  Simplified model of oxygen 
transport and partial pressures of oxygen (PO2) in either normoxic or hypoxic conditions (~ 4000 m). Taken from Hoppeler 
and colleagues (2003). 

 

A reduction in the tissue oxygen supply (hypoxia) can result either from an alteration in ambient 

oxygen concentration (normobaric hypoxia) or a reduction in ambient pressure (hypobaric hypoxia; 

Figure 2.9). A reduction in barometric pressure reduces alveolar partial pressure O2 (PAO2), and 

subsequently PO2 at every stage of the O2 delivery cascade, thereby reducing availability of O2 to 

peripheral tissue mitochondria. Hypobaric hypoxia primarily occurs in situations where individuals 

are exposed to high altitude, such as mountaineering sojourns, but can result from specialised work 
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environments such as astronomy or high-altitude mining (West, 2002). Reductions in ambient 

oxygen concentration do not normally occur outside of research settings in the human, but do form 

a useful research model. Hypoxia in a research setting as induced by normobaric and hypobaric 

stimuli may produce differences in physiological response. Further, a diverse set of disorders where 

cardiorespiratory function is impaired results in reductions in arterial oxygen content (hypoxemia) 

also presents with peripheral hypoxia. Hypoxia is associated with loss of body mass that appears to 

preferentially targets muscle mass, evidence for this and possible reasons underlying hypoxic-

induced atrophy are discussed in the following sub-sections. Finally, possible links between the 

myostatin signalling system and hypoxic conditions are presented.  

 

2.5.1 Normobaric & Hypobaric Hypoxia 

Induction of hypoxia in a research laboratory setting can be done either by a reduction of ambient 

O2 (normobaric hypoxia) or by a reduction of ambient atmospheric pressure (hypobaric hypoxia), 

such as is experienced during increases in altitude. Both normobaric and hypobaric hypoxia result 

in a reduction in arterial oxygen supply (hypoxemia) leading to peripheral tissue hypoxia, however 

these two techniques can have difference in their physiological effect. For the comparison between 

the two models of hypoxia, a mathematical equivalency can be maintained (Figure 2.10; Appendix 

Thirteen). 
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Figure 2.10: Equivalency between normobaric and hypobaric hypoxia.  Modelled by Wagner (personal communications), 
the relationship between altitude and equivalent atmospheric O2 intake under normoxic barometric pressure (mmHg) 
within normal human habitation is approximately logarithmic. Mathematical proof provided in Appendix Thirteen. 

 

Normobaric (14.7 % O2) or hypobaric (3,000 m, PO2 ~ 102 mmHg) hypoxic exposure for 24 hours in 

healthy young males induces similar responses in saturation of capillary haemoglobin with oxygen 

(SpO2), blood pressure (systolic or diastolic), heart rate, breath frequency, RER, or partial pressure 

of end tidal O2. Expired ventilation rate (VE) is not altered in hypobaric hypoxia compared to 

normobaric hypoxic before 8 hours but is reduced in hypobaric hypoxia between 8 and 24 hours 

(Faiss et al., 2013). Similar results were shown by Richard and colleagues (2014) who showed no 

difference in VE, heart rate or SpO2 between hypobaric and normobaric hypoxia. Heyes and 

colleagues (1982) examined urine production and cortisol, antidiuretic hormone (ADH) and 

prolactin in males following normobaric (n = 4) or hypobaric hypoxic (n = 8) exposure (10.5 % O2 at 

745 mmHg or ambient O2 at 400 mmHg), each of 1 hour. A variable response was noted following 

hypobaric hypoxia with one subgroup (n = 4) showing no alteration in urine production, cortisol or 

plasma ADH concentrations, whilst the second hypobaric subgroup showed substantially increased 

ADH and cortisol production and decreased urine output. Normobaric hypoxic individuals showed 
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a decrease in urine production and increased cortisol expression, but not of the same magnitude 

of the hypobaric responders (Heyes et al., 1982). 

 

Partial pressure of end tidal CO2 (PETCO2), while lower relative to baseline, is elevated at every time 

point (1, 8, 16, 24 hours) in hypobaric hypoxia, when compared to normobaric hypoxia (Faiss et al., 

2013). This difference appears to results from a reduced respiratory drive in hypobaric hypoxia, the 

same work showed decreased VE at rest under hypobaric hypoxia, relative to normobaric hypoxia. 

Differences in end tidal PCO2 are unlikely to result from metabolic alterations; VO2 and RER show 

no difference between hypoxic conditions (Faiss et al., 2013). Symptoms of acute mountain sickness 

(AMS), as measured by the Lake Louise AMS questionnaire, are lower in normobaric hypoxic relative 

to hypobaric hypoxic during altitude exposure (Roach et al., 1996), suggesting the effect of both 

reduced hypobaric pressure and ambient hypoxia combine during AMS at altitude.  

 

2.5.2 Pathological Hypoxemia 

Hypoxemia can result from a number of conditions, summarized below (Table 2.1) and in further 

detail in subsequent sub-sections. Where present, evidence for muscle atrophy co-presenting with 

hypoxia is also given.  

 

 

 

 

 

 



  Chapter Two – Review of Literature 
 

46 
 

 

Table 2.1: Hypoxic pathologies. 

Condition Brief description Presence of atrophy Reference 

Chronic obstructive  
pulmonary disease 

Non-reversible loss of 
lung function via 
emphysema, 
bronchitis or both  

✔ (Bernard et al., 1998, 
Di Francia et al., 1994) 

Chronic heart failure Progressive reduction 
in cardiac output via 
loss of cardiac 
contractile force 

✔ (Libera and Vescovo, 

2004) 

Lung Cancer Loss of lung function 
due to tumour mass  

✔ (Op den Kamp et al., 

2013) 

Obstructive sleep 

apnoea 

Intermittent 
pharyngeal collapse 
during sleep 

✘  

 

2.5.2.1 Chronic Obstructive Pulmonary Disease  

Patients with chronic obstructive pulmonary disease (COPD) present with a decrease in lung 

function, as measured by forced expiratory volume over 1 s relative to forced vital capacity (FEV1 / 

FVC ratio), resulting from emphysema, bronchitis or a combination of the two. This loss of function 

is not reversible (Maltais et al., 2014). This disorder also presents with increased systemic 

inflammation, reductions in aerobic capacity and peripheral tissue hypoxia (Wagner, 2008) and with 

loss of muscle size and strength in approximately 25 % of patients (Bernard et al., 1998, Di Francia 

et al., 1994). This loss of size and function correlates with a reduction in quality of life and is 

predictive of mortality (Marquis et al., 2002, Plant et al., 2010, Swallow et al., 2007). Protein 

expression of FoxO1, atrogin and MuRF1 within vastus lateralis is elevated in COPD patients relative 

to age matched controls, but in a counterintuitive finding, pAkt (Ser473) is also increased, and 

activity of this pathway was higher amongst COPD patients with muscle wasting than those without. 

The authors speculate this represents a failed protective response attempting to counter the 

increased proteasomal activity (Doucet et al., 2007).  
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As is described in the following section (2.5.6 Environmental Hypobaric Hypoxia), peripheral 

hypoxia can also result from ascent to high altitudes, due to the decrease in ambient PO2. 

Epidemiological studies suggest COPD patients who reside at high altitudes show increased 

mortality (Sauer, 1980, Cote et al., 1993, Moore et al., 1982), suggesting additional hypoxic 

negatively affects disease progression. During acute and mild hypoxic exposures, such as travel by 

airline, decreased PaO2 is witnessed in COPD, without obvious hypoxemia symptoms (Schwartz et 

al., 1984). However, variation in resting PaO2 and SpO2 are noted in COPD patients, and prior 

screening is recommended before flight, with the requirement for supplemental oxygen based on 

a combination of SpO2 measured during rest and 6 minute walk test (Edvardsen et al., 2012). 

 

2.5.2.2 Chronic Heart Failure 

Chronic heart failure (CHF) presents with loss of muscle mass in 16 – 36 % of individuals (Anker et 

al., 2003, Tan and Fearon, 2008), reduced SpO2 (Yoshihisa et al., 2011) and reduced oxidative 

metabolic capacity (Leyva et al., 1997). This population group also presents with reductions muscle 

mass (Libera and Vescovo, 2004), elevated expression of MuRF1 and atrogin within muscle (Kung 

et al., 2011). Plasma myostatin concentration is also elevated in CHF patients relative to sex-

matched healthy controls (Gruson et al., 2011). However, CHF patients were notably older than 

controls (68 vs 57 years of age) and authors do not state if participants were matched for body 

composition. Thus, the age difference could contribute to the differences in muscle mass, and 

therefore the reduction in muscle mass may result in the observed increase in myostatin. 

 

2.5.2.3 Lung Cancer 

Lung cancer patients show significant cachexic atrophy, typically 5 – 10 kg lighter than non-cachexic 

cancer patients, with reduced fibre size from muscular biopsies of vastus lateralis and a reduction 

in isometric force output in both flexion and extension (Op den Kamp et al., 2013), however it is 

unclear whether the atrophy seen in this group is due to either the reduced lung function and 
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subsequent hypoxia or a tumour released factor. Indeed, cultured colon cancer cells (C26) express 

myostatin in vitro (Lokireddy et al., 2012). The data of Op den Kamp and colleagues (2013) also 

shows cachexic patients have a counterintuitive increase in p-Akt/Akt ratio, similar to that of Doucet 

and colleagues (2007) in cachexic COPD patients. 

 

2.5.2.4 Obstructive Sleep Apnoea 

Obstructive sleep apnoea (OSA) presents with intermittent pharyngeal collapse during sleep, 

resulting in intermittent hypoxemia and reduced quality of sleep (Malhotra and White, 2002). 

Intermittent hypoxic stimuli appear to differ with regards to the physiological effects seen in 

individuals. OSA patients do not appear to present with muscle wasting, with no reports in the 

published literature.  

 

In a similar manner to the intermittent hypoxic stimulus seen in OSA, a number of intermittent 

hypoxic + resistance exercise studies suggest beneficial effects of intermittent hypoxia during 

mechanical loading. Muscle hypertrophy following 6 weeks training with and without intermittent 

local hypoxia (upper arm pressure cuff) is greater following the intermittent hypoxia condition 

(Nishimura et al., 2010), and acute resistance training stimuli under a similar intermittent hypoxia 

protocol induces greater GH response than exercise in normoxic conditions (Kon et al., 2010), as 

well as a decrease in myostatin mRNA expression (Drummond et al., 2008). 

 

Thus, the consideration of hypoxia on any physiological response should differentiate between 

continuous and intermittent hypoxia, as the physiological response to intermittent hypoxia appear 

different than those of chronic hypoxia.  
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2.5.3 Environmental Hypobaric Hypoxia 

Atmospheric pressure, and subsequent partial pressure of oxygen (PO2), decreases as a function of 

altitude (Figure 2.11). With some notable exceptions (Figure 2.13, pg. 48), humans prefer habitation 

at or near sea level, and it is hypothesized that humanity evolved and developed at or near sea level 

conditions (Walter et al., 2000).  

 

Lowlander individuals are capable of sojourning to the highest peak available, Mt Everest, at an 

altitude of 8,848 m, with prior time to allow for adaptation. Mt Everest does appear to be at, or 

about, the physiological limit for humanity (Figure 2.12), with individuals successfully summiting 

without external oxygen supply showing impaired physical function and severe hypoxemia (Grocott 

et al., 2009, West and Wagner, 1980). The arterial oxygen saturation (measured by direct arterial 

sampling) in functional humans at the Everest summit ranges from 68.1 % to 34.4 % (mean 54.0 %; 

Grocott et al., 2009), showing the problems with attempting to model the ‘typical’ response to 

hypoxia.  
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Figure 2.11: The relationship between altitude and pressure of oxygen in the atmosphere. Note barometric pressure 
and PO2 are given in kilopascals (kPa). Taken from Peacock (1998). 

 

Figure 2.12: Prediction of VO2max as a function of altitude. Horizontal dashed line indicates suggested minimal oxygen 
update for survival in the average man. Taken from West and Wagner (1980).  
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Exposure to hypobaric hypoxic environments at altitude greater than the Everest summit can occur 

during manned, unpressurised flight. Hoffman and colleagues (1946) demonstrated that individuals 

moving from a supra-maximal supply of oxygen (100 % oxygen via a nose and mouth covering non-

rebreathing mask) to hypobaric hypoxic environments of between 8,000 – 12,000  m (as a 

simulation of aeroplane cabin depressurisation) demonstrate a rapid loss of mental function, 

reduced motor control and unconsciousness. The speed of this loss of function occurs as a function 

of degree of hypoxia, with decreasing atmospheric pressure resulting in more rapid loss of function. 

Specifically, 8,534 m (authors report 28,000 ft, or ~ 7.1 % O2 equivalent) exposure leads to reduced 

mental function in 110 s, hand tremor after 106 s and loss of consciousness within 141 s while 

11,582 m (38,000 ft, ~ 4.1 % O2 equivalent) reduces mental function and increases hand tremor in 

35 s, while loss of consciousness occurs in 47 s (Hoffman et al., 1946). 

 

2.5.6.1 Adaptation to Hypoxia 

Given sufficient time, humans can adapt to significant physiological extremes. Indeed, adaptation 

ultimately is “gross physiological responses that attempt to maintain a constant intracellular 

environment” (Murray, 2014). These adaptations differ as a result of duration of exposure, and are 

explored here first examining hours, days and then weeks, through to intergenerational adaptation 

as seen in Tibetan and Sherpa individuals.  

 

Early research into adaptation to hypoxic exposure focused on phenotypic, metabolic or oxygen 

transport chain changes. Exposure to a hypobaric hypoxic chamber (equivalent to 4,300 m) for 2 

hours increases plasma glucose clearance following an oral glucose tolerance test in healthy young 

males and females (Kelly et al., 2010) as does normobaric hypoxia at a similar concentration and 

time in type 2 diabetic individuals (Mackenzie et al., 2011). Similar effects are maintained after 9 

days stay at 4,300 m (Brooks et al., 1991). These effects are enhanced by exercise in hypoxia 
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(Mackenzie et al., 2012b), and appear to be long lasting, with reductions in fasting glucose seen 24 

hours after 2 hours of moderate hypoxic exposure (Mackenzie et al., 2012a). 

 

Immediately on exposure to hypoxia (variable FiO2, locked to 80 % SpO2), depth and rate of breath 

increases. This hypoxic ventilatory response (HVR) occurs in two phases, with phase one (0 – 5 

minutes) characterised by an immediately ventilation increase, whilst phase two (5 – 25 minutes) 

is characterised by a decline of the HVR back to normoxic baseline (Easton et al., 1986). Central 

respiratory drive is altered by long term, but not acute exposure. Carotid body chemoreceptor 

sensitivity is increased following 28 days of hypobaric hypoxia, but not 3 hours (Barnard et al., 

1987). Despite an elevated respiratory rate, SpO2 is reduced as a function of degree of hypoxia. 

Mäntysaari and colleagues (2011) note reductions in SpO2 to 58 % within minutes of exposure to 8 

% O2. This effect is FiO2 dependent; decreasing ambient O2 % (21, 14, 12 and 10 % O2) reduces SpO2 

and increases systolic BP (Duplain et al., 1999).   

 

In response to hypoxic exposure, increased erythropoietin (EPO) concentrations are seen after 2 

hours at 3,000 m simulated normobaric hypoxia (Mackenzie et al., 2008, Eckardt et al., 1989), and 

90 minutes at 4,000 m simulated normobaric hypoxia, which continues for at least 5.5 hours 

(experimental duration; Eckardt et al., 1989), and between 6 – 24 hours at 2,454  - 2,800 m (Ge et 

al., 2002). Elevated EPO concentrations return towards baseline over 7 – 21 days (Richalet et al., 

1994, Friedmann et al., 2005).  

 

Elevated EPO directly contributes to hypoxia-induced haematopoiesis (Yoon et al., 2011). 

Erythroblasts cultured in vitro in the presence of EPO show EPO internalisation after 0.5 – 1 hour 

and erythrocyte-like morphology after 12 hours (Krantz, 1991). However, in acute timeframes of 

hours, this does not appear to effect haematological variables in the healthy human. Increases in 
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haemoglobin and haematocrit are not witnessed in passive assents to 4,541 m (reported as 14,900 

ft) over 6 hours, but do occur following 48 hours (Reynafarje et al., 1959).  

 

Reductions in plasma volume are witnessed after 3 – 12 days exposure to hypobaric hypoxia across 

a range of simulated altitudes (Surks, 1966, Hannon et al., 1969, Frayser et al., 1975, Singh et al., 

1986), but not in an acute timeframe of 12 – 24 hours at an altitude of 4,350 m, despite an increase 

in renal filtration rate (Hansen et al., 1996), or at 4,500 m after 6 hours (Reynafarje et al., 1959).  

 

Excluding the hyper-acute hypoxic ventilatory response, cardiorespiratory changes are noted in 

timeframes of days. Individuals show an increase in ventilatory equivalence (VE / VO2) after only 4 

days of acclimatization to high altitude exposure (Lenfant and Sullivan, 1971). Haematocrit shows 

a time dependent increase in healthy young males at 3,800 m, increasing between days 3 - 8 and 

plateauing by day 10 (Jung et al., 1971). Changes in red cell mass are noted at 4 weeks with exposure 

to 2000 – 25000 m, but not 2 weeks (Rusko et al., 2004), and increases in VO2max requires 4 weeks 

at 2500 m, but is not present at 2 weeks (Levine and Stray-Gundersen, 2006).  

 

Exposure to a hypobaric hypoxic chamber (equivalent to 4,300 m) for 2 hours increases plasma 

glucose clearance following an oral glucose tolerance test in healthy young males and females (Kelly 

et al., 2010) as does normobaric hypoxia at a similar concentration and time in type 2 diabetic 

individuals (Mackenzie et al., 2011). Similar effects are maintained after 9 days stay at 4,300 m 

(Brooks et al., 1991). These effects are enhanced by exercise in hypoxia (Mackenzie et al., 2012b), 

and appear to be long lasting, with reductions in fasting glucose seen 24 hours after 2 hours of 

moderate hypoxic exposure (Mackenzie et al., 2012a). These changes are hypothesized to occur as 

the individual moves metabolic pathway usage to involve greater reliance on non-oxidative 

glycolytic mechanisms, providing ATP via less efficient means.  
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Short stays at altitude (9 - 11 days at 4,559 m) do not alter isolated mitochondrial function, despite 

substantial changes in systemic markers of adaptation (Jacobs et al., 2013). Longer stays (66 days 

summiting of Mt Everest) induce a 21 % loss of muscle mitochondrial density (Levett et al., 2012) 

and significant loss of body mass (Holloway et al., 2011). Over the course of 8 days at 3,800 m heart 

rate increases while stroke volume decreases, maintaining cardiac output at sea level values 

(Lenfant and Sullivan, 1971). Rats exposed to hypoxia for 3 – 14 days show a time dependent 

decrease in running endurance time on return to normobaric conditions, with greater decreases 

following longer exposures (Chaudhary et al., 2012). Rats exposed to moderate hypoxia (12.6 % O2 

for 44 days) show a fibre type shift in gastrocnemius from slow to fast (authors report shift from 

‘red to white'; Sillau and Banchero, 1977). Body weight of rats exposed to hypoxia for an extended 

period of time is consistently shown to be lower, when controlling for hypoxic induced impairments 

to satiety (El-Khoury et al., 2012, Sillau and Banchero, 1977). These losses in body mass, and 

especially muscle mass, may be linked to the alterations in metabolism seen, as muscle tissue is a 

relatively metabolically expensive tissue (Murray and Montgomery, 2014). 

 

Haemoglobin concentration increases with increases in altitude during a summit sojourn of Mt 

Everest up to 6,400 m, then plateaus with increasing altitudes up to the summit (8,848 m), despite 

continued drops in SaO2 and arterial oxygen content (Grocott et al., 2009). Plasma volume changes 

are less consistent, with some individuals showing a decrease in plasma volume, while other 

participants showed no change (Stokke et al., 1986), however it is worth noting that plasma volume 

is a variable measure amongst individuals and dependent on hydration status.  

 

 



  Chapter Two – Review of Literature 
 

55 
 

 

Figure 2.13: Populated high altitude regions of the world. Taken from Moore and Regensteiner (1983). Note also the 
Antarctic plateau, which could be considered for inclusion on this figure, as Amundsen-Scott Base has a semi-permanent 
population of 50 – 200, and an average elevation of ~ 3,000 m. 

 

Distinct regions exist where permeant human habitation has allowed for chronic exposure and 

adaptation to hypobaric hypoxia (Figure 2.13). The highest permanent human settlement is 

currently La Rinconada, Peru at an altitude of 5,100 m, which has existed for 40 years (West, 2002). 

These regions have allowed for some of the most chronic examples of adaptation in humans, where 

Sherpa and Tibetans, who have had a sustained presence on the Tibetan plateau (average 4,500 m 

altitude) have lived for 7,000 to 20,000 years (Su et al., 2000, Zhao et al., 2009). Tibetans who have 

migrated to and live at sea level maintain an altered hypoxic response relative to Han Chinese, with 

a greater ventilatory increase and a decreased HIF response (Petousi et al., 2014). Tibetans show 

haemoglobin concentrations that are comparable with sea level individuals (Petousi et al., 2014, 

Simonson et al., 2010). Interestingly, Andean individuals who have also adapted to living at a similar 

high altitude, and do show elevated haemoglobin (Beall, 2007). Tibetans also show elevated 

capillarity of muscle, while Andeans do not (Beall, 2007, Hoppeler et al., 2003), suggesting divergent 

evolutionary adaptation to coping with high altitude.  
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Table 2.2: Adaptation of physiological systems as a function of time of exposure.  

Timings Adaptations References 

Minutes - Hours ↑ Respiratory rate and depth, EPO ↑,  (Lenfant and Sullivan, 1971, 

Mackenzie et al., 2008) 

Days  ↓ Oxidative metabolism, ↑ red cell mass,  

↑ haematocrit  

(Jung et al., 1971, Mackenzie 

et al., 2011) 

Weeks ↓ body/muscle mass, ↓ mitochondrial density (Hoppeler et al., 1990, Levett 

et al., 2012) 

Generations ↑↓HIF sensitivity, ↑↓ haemoglobin, 

↑↓capillary density 

(Beall, 2007, Simonson et al., 

2010) 

EPO; Erythropoietin; HIF, hypoxic-inducible factor; ↑, increased;↓, decreased; ↑↓, increased or decreased (both 

witnessed).  

 

2.5.4 Hypoxia Inducible Factor Activity 

In response to hypoxic stimuli, activation of the hypoxia inducible factors (HIF) allows the cell to 

alter gene expression to adapt and survive the challenge. The HIF family consists of three major 

isoforms (HIF1, HIF2 and HIF3 [Table 2.3]). 

 

HIF1 is a heterodimer formed of two constituent parts, HIF1α and HIF1β. Where HIF1β is stable in 

the cytosol, HIF1α, while consistently translated and expressed, is rapidly broken down via 

proteasomal degradation under physiological normal conditions (Figure 2.14). Under normal 

concentrations of oxygen, the HIF1α protein is hydroxylated by one of three prolyl hydroxylases 

(PHD1,2 or 3; Appelhoff et al., 2004) and factor inhibiting HIF (FIH-1; Zhang et al., 2010), allowing 

binding of the HIF1α-specific E3 ligase von Hippel-Lindau protein (pVHL). During cellular hypoxia, 

the rate of HIF1α hydroxylation is reduced, therefore reducing pVHL binding, allowing for increased 

binding of the HIF1β and HIF1α subunits and translocation of the complete HIF complex to the 

nucleus (Fandrey et al., 2006). Increased HIF1 translocation increases transcription of a number of 
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factors regulating adaptation and survival (Figure 2.15), including glucose metabolism, cellular 

survival, erythropoietin and angiogenesis (Semenza, 2003). 

 

 

 

 

Figure 2.14: Regulation of HIF1 activity under normoxic and hypoxic conditions.  HIF1α, Hypoxia inducible factor 1 alpha; 
HIF1β, hypoxic inducible factor 1 beta; OH, proline hydroxylation sites; VHL, von Hippel Lindau protein; Ub, ubiquitin. 
Hypoxic response elements outlined in Figure 2.15. 
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Table 2.3: HIFα isoforms, tissues of expression and known roles.  

 Tissues Roles Reference 

HIF1α Ubiquitous  Activation of hypoxic regulated 

genes, apoptosis 

(Raval et al., 2005, Stroka et al., 

2001, Wang and Semenza, 1993a, 

Wang and Semenza, 1993b) 

 

 

HIF2α Placental, 

endothelium, 

lung, heart  

↑ Proliferation, tumour role? 

↑ VEGF mRNA expression 

(Giatromanolaki et al., 2001, Raval 

et al., 2005, Wiesener et al., 2003) 

 

 

HIF3α Kidney, 

epithelial, 

endothelial, 

smooth 

muscle, brain 

3 sub-isoforms characterized 

(HIF3α1,2,3), responsive to 

hypoxia. Suppression of hypoxic 

regulated gene expression  

(Augstein et al., 2011, Hara et al., 

2001) 

HIF, Hypoxia inducible factor; VEGF, vascular endothelial growth factor. 
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Figure 2.15: Factors transcriptionally activated by HIF1.  Taken from from Semenza (2003). ADM, L-arginine; AMF/GPI, 
autocrine motility factor / glucose phosphate isomerase; c-MET, hepatocyte growth factor; DEC1, 2, deleted in 
oesophageal cancer 1, 2; EPO, erythropoietin; ENO1, Enolase 1; ET1, Endothelin 1; ETS-1, E26 transformation-specific; 
GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GLUT1, Glucose transporter type 1; HK1, 2, Hexokinase 1, 2; IGF-
BP, Insulin-like growth factor binding protein; KRT14, 18, 19, Keratin 14, 18, 19; LDHA, Lactate dehydrogenase A; LEP, 
Leptin; LRP1, Low density lipoprotein receptor-related protein 1; MDR1, multidrug resistance protein 1; MIC2, 
Transmembrane glycoprotein p30/32; NIP3, nineteen kDa interacting protein-3; NIX, Bcl-2 homology only protein; NOS, 
Nitric oxide synthase; NUR77, nerve growth factor IB; p35srj, protein 35, serine rich junction; PFKBF3, 6-phosphofructo-
2-kinase/fructose-2, 6-bisphosphatase-3; PFKL, 6-phosphofructokinase - liver type; PGK, Phosphoglycerate kinase; PKM, 
Pyruvate kinas M; RTP801, Regulated in development and DNA damage responses; TGF, Transforming growth factor; TPI, 
Triose-phosphate isomerase; VEGF, Vascular endothelial growth factor; VIM, Vimentin; WAF1, Protein p21. 
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Both HIF1α and HIF2α are expressed within skeletal muscle. While the role of HIF1α in response to 

hypoxic stimuli in muscle is well characterized (Lundby et al., 2009), the response of HIF2α is less 

well defined, with reports differing on its response to hypoxic stimuli within muscle (Ameln et al., 

2005, Lundby et al., 2006), thus this review is focused on HIF1 and its roles within muscle tissue.  

  

HIF1α -/- deletion in mice is fatal in utero (Iyer et al., 1998). Muscle-specific HIF1α -/- mice show 

reduced respiratory exchange ratio at rest relative to control mice (0.8 vs 0.85), with no differences 

noted in muscle fibre type from gastrocnemius, while in soleus HIF1α -/- mice showed a decrease 

in type IIa fibre expression (Mason et al., 2004), suggesting an increased reliance on glucose 

metabolism. Following endurance exercise training, control mice show a shift from fast to slow 

muscle phenotype, while this shift is blunted in HIF1α -/- mice (Mason et al., 2007). 

 

Chuvash polycythaemia is seen in individuals primarily from the Chuvash regions of the Russian 

Caucasus. A single nucleotide polymorphism (SNP) of C → T in the VHL coding region results in an 

arginine-to-tryptophan shift in pVHL, thereby reducing the affinity of pVHL to HIF1α (Ang et al., 

2002). Chuvash polycythaemic individuals present with increased EPO and elevated haemoglobin 

(Bushuev et al., 2006), but demonstrate reduced work rate during submaximal cycling, relative to 

age and body mass matched individuals (Formenti et al., 2010), suggesting a reduction in muscle 

mass as a ratio total body mass. 

 

2.5.5 Hypoxia and Muscle Size  

L6 myotubes exposed to 1 % O2 for 12 or 24 hours show an elevation in actin breakdown, a marker 

of muscle protein degradation (Caron et al., 2009, Workeneh et al., 2006), paired with an increase 

in atrogin, but not MuRF1 expression. Rate of protein synthesis, as measured by labelled 

phenylalanine incorporation, is supressed at 24 hours and pAkt (Ser473) is decreased at 48 hours 
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(Caron et al., 2009), suggesting a suppression of protein synthesis is taking place following an acute 

hypoxic stimulus. Rats exposed to 6 hours of 11 % O2 show depressed rates of protein synthesis in 

multiple tissues (heart, diaphragm, bone, skin, brain and kidney) but not in any peripheral muscle 

(gastrocnemius, soleus or plantaris) (Preedy et al., 1985). Combined, these results suggest, at least 

in the initial 24 hours, proteasomal pathways dominate, with decreases in synthesis requiring 

longer time frames. 

 

Humans exposed to acute normobaric hypoxia (2 hours at 12 % O2) show no alteration in fractional 

protein synthesis (FPS) or changes in phosphorylation of Akt (Ser473) at any time point measured, 

but do show a blunted response to post-resistance training increases in FPS (Etheridge et al., 2011). 

Conversely, following 4 hours of normobaric hypoxia (11 % O2) pAkt (Ser473) is reduced in both 

hypoxia and control conditions, but the reduction following hypoxia is blunted (D'Hulst et al., 2013). 

Differences exist between these studies that may explain the disparity of findings. Where Etheridge 

and colleagues (2011) examined their participants in a fasted state, those of D’Hulst and colleagues 

(2013) consumed a meal 40 minutes prior to the start of the experimental trial. Thus, the results of 

D’Hulst and colleagues (2013) may suggest hypoxia blunts changes seen post feeding.  

 

In endurance trained swimmers, 3 weeks at 2,300 m altitude does not alter muscle mass, but does 

reduce fat mass by 11.4 %, relative to pre-exposure mass (Chia et al., 2013). The effect appear to 

be maintained at 4,599 m, as a 9 day sojourn to the Margherita Hut of Mt Rosa, Italy, does not 

cause loss of muscle mass (Vigano et al., 2008) despite decreases in muscle mTOR expression. Stays 

at 5,300 m for 8 – 10 weeks interspersed with ascents to the summit of Lhotse (8,516 m) or Mt 

Everest (8,848 m) induces loss of muscle cross-sectional area and individual fibre size area, but do 

not change capillary-fibre ratio (Hoppeler et al., 1990). This atrophic effect is maintained if the 

exposure is reduced to 5,300 m, and the stay is only 13 days, without summiting attempts (Wing-
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Gaia et al., 2014). Combined, these results may suggest an effect of altitude, and thus effective PO2, 

where exposures of up to 4,500 m (equivalence ~ 12 % O2) show no muscle atrophy, while greater 

than 5,000 m (equivalence ~ 10.7% O2) induces atrophy. Alternatively, activity levels may account 

for differences seen, as the Mt Rosa cohorts ascent was partially by cable car, while access to the 

Everest base camp is a significant hike over multiple days, so differences in exercise stimuli have 

likely occurred.  

 

Rats exposed to severe hypobaric hypoxia (~ 7000 m) show no difference in soleus muscle wet 

weight after 1 – 5 days, but do show significant atrophy after 13 days (Magalhaes et al., 2005). Rats 

exposed to 5,000 m equivalent of hypobaric hypoxia for 7 days show loss of body mass, with control 

rats weighing 196.0 (2.0) g and hypoxic treated rats weighing 184.9 (1.9) g. Although not measured 

at 7 days, a reduction in excised soleus mass is also seen at 14 days (Chaillou et al., 2014). Rats 

exposed to severe hypobaric hypoxia (7620 m) for 3 – 14 days show time-dependent decreases in 

muscle protein content, muscle wet weight / length ratio and an increase in protein degradation / 

synthesis ratio, paired with increases in Chymotrypsin-like and calpase-like activity and increased 

bound ubiquitin in dissected muscle (Chaudhary et al., 2012). Peak force output of excised soleus 

muscle from rats exposed to 6 weeks of hypobaric hypoxia (450 mmHg, ~ 4,500 m) is unchanged, 

but rate of fatigue is increased (El-Khoury et al., 2012). These rats showed a loss of body mass, 

however changes in muscle mass were not quantified (El-Khoury et al., 2012). It can be seen 

therefore that an effect of time may be seen, with 1 day insufficient to induce measurable muscle 

atrophy in rats. Further, 4,500 m does not appear to alter contractile properties of excised muscle 

suggesting no muscle atrophy had taken place, which, if true, suggests an effect of altitude, where 

at least 5,000 m equivalent is required for muscle atrophy to occur. While all performed in animal 

models, these studies are of interest in comparison to the above human studies, as they examine 

similar equivalent altitudes (4,500 m – 7000 m) as those seen during healthy human studies in 

mountaineering sojourns. Further, such animal models have a reduced effect of confounding 
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factors seen in these human studies, as they do not involve the heightened levels of physical activity 

and cold exposure required during mountaineering. 

 

It can be seen therefore that in response to a chronic hypoxic stress of sufficient magnitude and 

time, muscle mass is lost as a result of cellular atrophy. This response has been proposed to be a 

protective response (Murray and Montgomery, 2014), both reducing metabolic cost of the 

individual by removal of metabolically costly muscle tissue, freeing of amino acid component for 

metabolic use, and also reducing diffusion distance for oxygen within individual myofibers. Indeed, 

as Harvey (1928) modelled, required PO2 for diffusion is a function of the square of the radius 

supplied (Figure 2.16A). Thus, with a reduction of capillary PO2 and reduction in supplied area, the 

most efficient solution is for a reduction of cellular cross sectional area (Figure 2.16B).  
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𝑃𝑂2 = 𝑉𝑂2𝑟2/6𝐾 

(Where VO2 indicates rate of oxygen consumption, r indicates radius and K the diffusion constant) 

 

 

Figure 2.16: Modelling of cellular responses to reduced partial pressure of oxygen. A) Model of diffusion into the cell, 
as proposed by Harvey (1928), PO2 refers to partial pressure of oxygen within supplying capillaries, r to radius and K a 
gas-specific diffusion constant. B) Visual representation of this model within a single myofiber (red circle) supplied by 
three capillaries (small blue circles) and their corresponding diffusible potential (dashed larger circle). A reduction in PO2 
reduces potential diffusion distance, thereby to maintain supply cellular atrophy must occur. The alternative, increasing 
capillary density in the absence of atrophy, cannot resolve cellular hypoxia.  

 

 

B) 

A) 
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2.5.6 Potential Atrophic Cell Signalling Pathways during Hypoxia 

If hypoxia is directly altering muscle size, either as a dysregulatory or as a protective response, then 

alterations in HIF signalling may alter muscle phenotype. One commonly identified single 

nucleotide polymorphism (SNP) in the HIF1α gene is rs11549465 C > T, occurrence of which 

produces an amino acid substitution from proline to serine at position 582, and results in increased 

stabilisation of the HIF1α subunit (Yamada et al., 2005). Russian elite strength athletes (power 

lifters and wrestlers) show significantly increase expression frequency of the rs11549465 SNP (13.1 

% and 15.7 % of respective sub-population) over a control group (7.5 % expression frequency) 

suggesting a selection advantage to this mutation (Gabbasov et al., 2013). However, this associative 

study does not suggest any causative reason for this finding.  

 

HIF1α protein expression varies by muscle in the healthy male human at baseline normoxic 

conditions. Protein expression of HIF1α is similar in vastus lateralis and soleus, but notably lower in 

triceps brachii (Mounier et al., 2010). Care should be taken in the interpretation of HIF1α mRNA 

expression, as Mounier and colleagues (2010) notes a lack of correlation between HIF1α mRNA and 

protein expression across muscles. 

 

2.5.7 Role of Myostatin 

A link between regulation of myostatin and regulation of hypoxia may explain the response of 

humans to hypoxic environments; little work has been published to examine this hypothesis. 

However, a series of disparate models and experiments have reported alterations in myostatin 

expression with hypoxic conditions or models, which are noted below. 

 

Chronically hypoxemic and cachexic COPD patients show elevated muscle myostatin peptide 

expression, as do otherwise healthy rats exposed to severe hypoxia (10 % O2) for 5 weeks (Hayot et 
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al., 2011). Myostatin mRNA elevated in muscle of COPD patients (Plant et al., 2010) and in mice 

following a gradual exposure increasing from sea level to 8,200 m over 7 days, followed by 7 further 

days at this altitude (Hauerslev et al., 2014). Chronic smokers (≥ 20 cigarettes per day, ≥ 20 years) 

with reduced lung function show increased muscle myostatin, atrogin and MuRF1 mRNA and 

impaired muscle fractional protein synthesis (Petersen et al., 2007). 

 

Cobalt chloride binds and stabilizes HIF1α expression, mimicking intracellular effects of hypoxia. 

Stimulation of myotubes in vitro with cobalt chloride increases myostatin peptide expression, and 

co-incubation of myotubes with the myostatin propeptide offsets the atrophy (Hayot et al., 2011), 

providing indirect evidence that myostatin and hypoxia may be linked.  

 

Myostatin mRNA expression is noted to be present in cardiomyocytes taken from cardiac biopsies 

of sheep. Following a severe hypoxic insult (induced infarct) increases in myostatin protein 

expression are found 12 – 48 hours post infarct in the hypoxic zone surrounding the infarct site 

(Sharma et al., 1999). This finding suggests a role of myostatin either in cell atrophy or apoptosis 

surrounding the hypoxic infarct site, assuming similarity of the role of myostatin in closely related 

cardiomyocytes.  

 

Severe pre-eclampsia can present with reduced SpO2 and intrauterine hypoxia (Millman et al., 

2011). Pre-eclampsia has been noted to present with elevated plasma myostatin, and plasma 

myostatin concentration increases as severity of pre-eclampsia increases (Guo et al., 2012). Whilst 

a link between reductions in SpO2 and adverse birthing outcomes exists (Millman et al., 2011), any 

relationship between this and increased plasma myostatin concentrations is unclear, as is the role 

that myostatin may play. 
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Thus, a disparate group of conditions that present with alterations in oxygen uptake and transfer, 

HIF stabilisation, or respiratory function are also paired with alterations in myostatin expression. 

Hypoxia is linked with losses of muscle mass, it could be hypothesized that hypoxia regulates 

myostatin expression, thereby resulting in the observed muscle atrophy.  
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2.6 Summary 

It is well established that individuals placed into a hypoxic state for a sufficient length of time, either 

due to hypobaric hypoxia or pathophysiological hypoxia, will lose muscle mass. This loss of muscle 

mass may represent a protective response, reducing cross-sectional area of individual myofiber to 

aid oxygen diffusion, however left unchecked causes significant mortality in chronic disorders such 

as COPD and CHF, independent of markers of disease progression. Losses appear to be a function 

of the concentration of hypoxia and time spent hypoxic. Whilst dependent on timing of hypoxia, 

atrophy appears to involve both pro-synthesis Akt-mTOR signalling and pro-degradative 

proteasomal signalling, with pro-degradation pathways dominating in the initial 24 hours.  

 

Myostatin is a central regulating factor of the size of muscle mass. Myostatin decreases activity of 

the Akt-mTOR pathway while also increasing activity of the ubiquitin-proteasomal pathway. 

Further, evidence suggests that myostatin is elevated in the muscle of COPD patients with chronic 

hypoxemia, and is also elevated in a disparate group of conditions where hypoxia is also present. 

 

If hypoxia alone is capable of inducing muscle loss, then hypoxia alone may be sufficient to increase 

myostatin expression. However, the effects of hypoxia on muscle atrophy may be additive when 

combined with other atrophy causing stimuli in chronic disease states as activity level, disease, 

inflammation or nutrition status. Care should be taken therefore to minimise these effects when 

investigating the effects of hypoxia.  

 

It would appear therefore that an examination of the effect of hypoxia on myostatin signalling is 

required in the isolation of confounding factors due to environmental or disease factors. This work 

should examine the effect of time and magnitude of hypoxia on both myostatin and downstream 

markers of myostatin’s atrophic actions with respect to both anabolic and catabolic mechanisms. 
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2.7 Aims & Hypotheses 

The primary aim of this research project is to determine the role of acute hypoxia in the regulation 

of myostatin. Specifically, the objectives of this work are to; 

1. determine the effects of hypoxia on the migration of myoblasts and the diameter of 

myotubes in vitro 

2. ascertain the effect of acute hypoxic exposure on myostatin signalling in vitro 

3. ascertain the presence or absence of a time-dependent effect of hypoxia on myotubes in 

vitro 

4. determine the acute effect of hypoxia on myostatin signalling in vivo in healthy humans 

5. ascertain the acute effect of hypoxia on whole body protein synthesis and degradation in 

vivo in healthy humans  

6. demonstrate the presence or absence of a time dependent effect of hypoxia on myostatin 

signalling in vivo in healthy humans and 

7. demonstrate the presence or absence of a concentration dependent effect of hypoxia on 

myostatin signalling in vivo in healthy humans. 

 

The primary hypothesis presented here is that hypoxia will increase atrophy of muscle via increases 

in myostatin activity which subsequently activates proteasomal activity, independent of IGF-1-Akt 

pro-anabolic pathways. Specifically, it is hypothesized that; 

1. hypoxia will decrease the migration of myoblasts and the diameter of myotubes in vitro 

2. hypoxia will increase myostatin expression in vitro 

3. the effect of hypoxia on myotubes diameter in vitro will be time-dependent 

4. hypoxia will increase expression of intra-muscular myostatin and concentration of plasma 

myostatin in vivo 
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5.  hypoxic exposure will increase whole body protein degradation but not alter protein 

synthesis in vivo 

6. the effect of hypoxia on myostatin in vivo will be time-dependent, with increased myostatin 

both within muscle and in plasma with longer hypoxic exposure and 

7. the effect of hypoxia on myostatin in vivo will be concentration dependent, with increased 

myostatin seen with lower concentrations of oxygen. 



 

 

 

 

 

 

Chapter Three – The Effect of 

Hypoxia on Myoblast Migration and 

Myotube Size 
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3.1 Introduction 

Myofibers in vivo are dependent on a near-continuous supply of oxygen from external vasculation, 

with a complete impairment of perfusion resulting in rapid cellular death (Pang et al., 1995). In 

times of partial restriction, such as during whole body hypobaric hypoxia, one adaption that muscle 

shows over chronic timeframes (days – weeks) is the loss of muscle mass. A chronic reduction in 

barometric pressure results in increased atrophy of skeletal muscle in otherwise healthy humans 

during mountaineering (Hoppeler et al., 1990) and extended stays in hypobaric chambers (Rose et 

al., 1988). In a similar manner, ~ 25 % of COPD and chronically hypoxemic chronic heart failure 

patients show atrophy of muscle mass (Anker et al., 2003, Bernard et al., 1998).  

 

When resting healthy individuals are exposed to acute hypoxia (12 % O2 for 2 hours) whole body 

protein synthesis is not altered, however the anabolic effect of  an acute resistance exercise session 

appear to be blunted (Etheridge et al., 2011). Caron and colleagues (2009) demonstrated that 

myotubes exposed to hypoxia for 24 hours had reduced intracellular protein concentrations and 

increased expression of ubiquitin ligase atrogin, but no alteration in pAkt expression. Combined, 

this evidence suggests that acute hypoxia alone (< 24 hours) may preferentially target increased 

activity of atrophic pathways, and not suppression of hypertrophic pathways. 

 

Exposure of C2C12 myoblasts in vitro to hypoxic conditions prevents differentiation into mature 

myotubes and increased proteasomal degradation of MyoD (Beall, 2006). Expression of HIF1α 

protein is increased under non-hypoxic conditions during C2C12 myoblast differentiation, and 

inhibition of HIF1α protein formation prevents myotube formation (Kallman et al., 1990), 

suggesting while HIF1α signalling is a necessary step in normal muscle function and growth, hypoxic 

exposure can prevent myoblast maturation.  Variations in other atmospheric conditions may also 

alter cellular morphology and function. Where 5 % CO2 is in mammalian cultures is standard in vitro, 
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increasing CO2 towards 10 % results in suppression of myotube formation, whilst removal of 

atmospheric CO2 results in increased time in G1 phase and delayed mitosis of precursor myoblasts 

(Przybylski et al., 1979). Similarly, enzymatic-dependent processes, such as ubiquitin-dependent 

protein degradation, is altered by temperature. C2C12 myotubes exposed to 40 C show elevated 

proteasomal activity and protein degradation relative to myotubes at 37 C (Morita et al., 1996). 

Thus, in vitro investigations standardize these variables where possible, whilst recognizing that 

metabolically active tissues, such as muscle, show minor variations around such standardized 

conditions in vivo.  

 

Myostatin is a central regulator of muscle size (reviews by Lee, 2004, Rodriguez et al., 2014). 

Increases in myostatin expression can alter muscle mass by reducing protein synthesis pathways 

(Amirouche et al., 2009), increasing protein degradation via the ubiquitin-proteasomal pathway 

(McFarlane et al., 2006) and reducing the maturation of precursor satellite cells (McCroskery et al., 

2003, McFarlane et al., 2008). Rats exposed to 10 % O2 for 6 weeks show increased expression of 

myostatin in both soleus and gastrocnemius muscles and increased muscle atrogin expression 

(Hayot et al., 2011). Hypoxemic COPD patients also show an increase in muscle myostatin peptide 

expression relative to healthy controls (Hayot et al., 2011), suggesting myostatin may underlie 

atrophy in hypoxic conditions. Concentration of plasma myostatin correlates with muscle mass 

across healthy and cachexic patients (Gonzalez-Cadavid et al., 1998), thus a question of cause and 

effect arises. Either hypoxia increases myostatin concentration, thereby resulting in a loss of muscle 

mass, or, hypoxia decrease muscle mass, thereby increasing basal myostatin concentration. 

Evidence for a direct hypoxia – myostatin link was given by Hayot and colleagues (2011) who 

demonstrated that chemical hypoxia (cobalt chloride [CoCl2] treatment) resulted in increased 

myostatin protein expression in a dose-dependent manner. This effect demonstrates an effect of 

HIF signalling, as CoCl2 stabilises HIF1α expression (Epstein et al., 2001), but may not be a true 

representation of hypoxia per se.  
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The function of myostatin appears to be maintained between species, with myostatin deletion 

(either naturally occurring or experimentally induced, showing similar hyper-muscular phenotype 

in mice (McPherron et al., 1997), cattle (Grobet et al., 1997, Kambadur et al., 1997, McPherron and 

Lee, 1997), dogs  (Mosher et al., 2007, Zou et al., 2015), sheep (Proudfoot et al., 2015) and one 

human case study (Schuelke et al., 2004). However, outside the case study of Schuelke and 

colleagues, there is limited direct evidence for the maintenance of myostatin’s effect in the human, 

and no published examples to date examining myostatin differences between non-human and 

human species. Work examining myostatin between species may need to address this.  

 

Cells from multiple cellular lineages, including myotubes, cultured in hypoxic conditions show 

elevated NF-κB activation relative to control cells (Koong et al., 1994a, Osorio-Fuentealba et al., 

2009), whilst inhibition of TNFα activity prevents the hypoxia-induced loss of myotube protein 

content in vitro (Caron, M, personal communications) suggesting a hypoxia – inflammatory 

signalling link. Indeed, stimulation of myotubes with TNFα induces cellular atrophy, whilst NF-κB 

prevents this (Li and Reid, 2000). In alveolar macrophages, elevated TNFα expression is seen 

following hypoxic treatment (1.8 % O2) (Leeper-Woodford and Detmer, 1999). In chronic disorders 

elevated pro-inflammatory signalling results in significant loss of muscle mass (Frost et al., 2007, 

Lang et al., 2006, Op den Kamp et al., 2013), and it has been suggested that hypoxia and 

inflammatory signalling pathways may interact during muscle atrophy in COPD (Wagner, 2008). 

Thus, any hypoxic induced atrophic effect may occur via the canonical NF-κB pathway.  
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3.1.1 Aims & Hypothesis 

The aim of this Chapter was therefore to examine the acute temporal response of myocytes to 

hypoxic exposure. Further, to aid translation between these in vitro experiments utilizing a murine 

cell line and following Chapters in vivo in humans, a bioinformatic comparison between myostatin 

signalling pathways in both the human and mouse was planned. Specifically, this work aimed to; 

1. determine the effects of hypoxia on the migration of myoblasts and the diameter of 

myotubes in vitro, and the relationship between NF-κB and myoblast migration / myotube 

size in response to hypoxia in vitro 

2. establish what effect acute hypoxic exposure has on myostatin signalling in vitro  

3. establish the presence or absence of a time-dependent effect of hypoxia on myotubes in 

vitro and 

4. examine in silico similarities and differences between the structure of myostatin and 

downstream signalling proteins in the human and the mouse. 

The hypothesis of this Chapter is that hypoxic exposure will result in reduced myoblast migration 

and increased myotube atrophy via a NF-κB dependent increase in myostatin activity. Specifically, 

it is hypothesized that; 

1) hypoxia will decrease the migration of myoblasts and also decrease the diameter of 

myotubes in vitro, and inhibition of NF-κB activity will offset this 

2) hypoxia will increase myostatin expression, inhibition of NF-κB will offset this  

3) the effect of hypoxia on myotubes diameter and myostatin expression in vitro will be time-

dependent and 

4) myostatin and signalling proteins downstream of myostatin will show a high percentage 

similarity between humans and mice.  
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3.2 Methods 

3.2.1 Initial Stock 

Myoblasts from the well characterised murine muscle-derived C2C12 (Yaffe and Saxel, 1977) cell 

line (ATCC, # CRL 1772) were gifted by Professor Stephen Harridge, Centre for Human Aerospace 

Physiological Sciences, Kings College London. C2C12 cells were provided as 1,000,000 cells in a 1 mL 

volume containing 10 % foetal bovine serum (FBS) and 10 % Dimethyl sulfoxide (DMSO) for freezing, 

and were provided at passage 10 (p10). Cells were rapidly defrosted from – 196 °C to 37 °C and 

gently mixed in 10 mL of growth media (GM) consisting of Dulbecco’s modified Eagle’s media 

(DMEM ; Gibco, 22320), supplemented with 10 % FBS (Hyclone, 10175573), Penicillin and 

streptomycin (50 µg.mL-1; Gibco, 15140) and seeded into a T175 flask. DMSO was removed 24 hours 

after seeding, cells were washed once in Dulbecco’s phosphate buffered saline (dPBS) pre-heated 

to 37 °C and 10 mL GM replaced. Cells were incubated in standard conditions (37 °C, 5 % CO2, 100 

% humidity) with GM changed every 24 hours until cells reached 80 % confluence; typically taking 

96 hours. Confluency was visually established by inverted light microscopy daily. Confluent cells 

were trypsinized (2 minutes, 2 mL TrypLE [Gibco, 12605.036] at room temperature), resuspended 

into 10 mL of GM + 10 % DMSO and aliquoted into 1 mL volumes. The majority (n = 7) were 

aliquoted into 1 mL cryogenic tubes (Nunc, 368632), slowly frozen to -80 °C (Thermo, 5100-0001 

[‘Mr Frosty’]) over 24 hours before being stored at -196 °C while the remainder of the aliquots (n = 

3) were reseeded into T175 flasks, grown to confluence again as described above before samples 

were aliquoted and storage as described above, to give a stock experimental bank of C2C12 

myoblasts at p11-12, which were used for all experiments described below.  
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3.2.2 Growth 

For experimental conditions, an aliquot was defrosted rapidly from -196 °C to 37 °C and gently 

mixed with 10 mL of GM before seeding into a T175 flask. After 24 hours, cells were washed once 

in dPBS after which GM was replaced, to remove excess DMSO. GM was changed every 48 hours 

until cells reached 80 % confluency, after which cells were trypsinized (2 mL TrypLE at room 

temperature), diluted 1:10 in GM and seeded for experimental conditions. All experiments were 

either run in 10 cm dishes or 6 - well plates. After seeding into plates for experimental conditions, 

myoblasts were grown to confluence for the scratch assays on precursor myoblasts (described 

below, section 3.2.2) or grown to 80 % confluency and differentiated (described below, section 

3.2.4) for experiments on mature myotubes (sections 3.2.4 – 3.2.6). During this growth phase, cells 

were grown in standard conditions (37 °C, 5 % CO2, 100 % humidity).  

 

3.2.3 Differentiation 

For experiments on mature myotubes, myoblasts at 80 % confluence in 10 cm dishes were washed 

once in dPBS then incubated in a differentiation media (DM) of DMEM with 2 % equine serum 

(Thermo, HYC-001-342B) penicillin and streptomycin (50 U.mL-1 [Gibco, VX15140122]) for 96 hours 

with DM changed every 24 hours. After differentiation, DM was changed one final time prior to 

stimulation introduction.  

 

3.2.4 Myotube Diameter Microscopy 

The diameters of myotubes from collected photographs were quantified using open-source 

software ImageJ (NIH, version 1.48i). Diameter was quantified three times per myotube, 

perpendicular to the longitudinal sarcolemma of the cell; only cells with a long, thin morphology 

representative of myotubes were included in analysis. A total of 10 random myotubes were 

measured per photo, giving 30 myotubes measured per plate and time-point. The mean of 30 

myotubes ± SEM is reported here. All experiments were done in triplicate in separate cultures. 
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Measurements were checked by a blinded individual, comparison by Pearson’s correlation show a 

strong linear relationship (r = 0.651, p < 0.001 – Appendix Two).  

 

3.2.5 Scratch Assay 

For analysis of chemotaxis, confluent myoblasts in 6-well plates were scratched in a vertical straight 

line, using a single smooth motion, with a 200 µL sterile pipette tip, as described by Liang and 

colleagues (2007). Immediately after scratching, cells were washed once in dPBS to remove cellular 

debris then 10 mL GM replaced.  Cells were stimulated with either control (no stimulation), hypoxic 

(1 % O2 environment) or hypoxic + PS1145 (1 % O2 environment plus addition of 10 µmol NF-κB 

inhibitor PS-1145 dihydrochloride [Sigma, P6624]).  

 

After 15 hours, cells were removed and photographed three times per well in the same manner as 

above. Scratch diameter was quantified 50 times per photo and an average value taken, giving three 

measures per well. The regrown ‘edge’ was defined as those cells that maintained connection to 

the main body of seeded cells, isolated ‘islands’ of cells were ignored. All experiments were 

performed in triplicate in three separate cultures. The mean of three measures ± SEM are reported 

here. Hypoxic stimulation was provided using a separate standard incubator, pre-set to 1 % O2, 5 % 

CO2, with the balance of N2, maintained at 37 °C. The concentration of O2 used (1 % O2) was chosen 

based on previous reports (Caron et al., 2009) which corresponds approximately to a PiO2 of 7 

mmHg, similar to that predicted within muscle of patients with peripheral arterial disease or healthy 

individuals in severe hypoxia (Landgraf et al., 1994). 
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Figure 3.1: Scratch Assay Methodology Confluent C2C12 myoblasts were scratched and photographed pre- and post-
treatment (± hypoxia [1 O2] or hypoxia + PS1145 [10 µM], 15 hours). 

 

3.2.6 Hypoxic stimulus  

Differentiated mature myotubes (section 3.2.3) and precursor myoblasts (section 3.2.2) were 

stimulated ± hypoxia (1 % O2) or hypoxia (1 % O2) + PS1145 (10 µM). Hypoxic stimulation was 

provided with a standard incubator, pre-set to 1 % O2, 5 % CO2, with the remainder balance of N2 

from tanked supply, maintained at 37 °C, 100 % humidity throughout. The concentration of O2 used 

(1 % O2) was chosen based on previous reports (Caron et al., 2009). 

 

Immediately prior to and post stimulation, myotubes were photographed at three random 

locations per plate using an inverted light microscope (2.5 × zoom, 1.3 megapixel digital camera 
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attachment) for quantification of cell size (section 3.2.5), then total protein was extracted in a 

standard manner. Cells were washed once with ice-cold dPBS then lysed in a lysis buffer (10 mmol 

Tris-HCI, 150 mmol NaCI, 2 mmol EDTA, 2 % Triton X-100, protease inhibitor [Sigma, P8340] & 

phosphatase inhibitor [Sigma, P6624], Appendix One) for 20 minutes on ice. Cells were then 

manually scraped with a sterile spatula, transferred into 1.5 mL eppendorf tubes and centrifuged 

at 6000 rpm for 6 minutes at 4 °C. Subsequent supernatant of total protein was aliquoted and frozen 

at -80 °C 1:4 in Laemmli’s loading buffer (Appendix One) for future analysis by western blot (section 

3.2.7). An aliquot of 30 µL was saved for analysis of total protein content, described below (3.2.7 

Protein Quantification).  

 

3.2.7 Protein Quantification 

Quantification of total protein in cellular lysate was performed in the method of Lowry (Appendix 

Five; Biorad, 500-0116). Whole lysate aliquots were diluted 1:10 in lysis buffer and loaded in 

triplicate into a clear-bottomed 96 well plate. Bovine serum albumin (BSA) was used as a standard, 

with a range of 0.09 - 1.44 µg.mL-1. Coefficient of variability of standards and samples were 0.086, 

and 0.084, respectively.  

 

3.2.8 Western Blot 

For all samples, 40 µg of total protein was analysed by Western blot in a standard manner. Collected 

lysate was run on precast 10 % polyacrylamide gels (Invitrogen, NP0301) and transferred to 

nitrocellulose membrane by electroblotting (3 hours, 25 V, on ice). Confirmation of successful 

loading was done by ponceau rouge stain (2 minutes, 2 mL with gentle agitation), an image of which 

was also digitised for later normalization. Membranes were blocked in 5 % BSA then probed with 

appropriate primary antibody. After a wash cycle (4 × 5 minutes, TBS-T), an anti-rabbit HRP-tagged 

secondary was applied, then visualised with 2 minutes treatment of enhanced chemiluminescence 

(ECL; Biological Industries, 20-5000-120). Individualized conditions for blocking, primary, and 
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secondary antibodies are given in Table 3.1. All primary antibodies were utilized in a 1:1,000 

dilution, secondary antibodies were utilized 1:10,000.  A wash stage from primary to secondary and 

secondary to developing was performed with tris-buffered saline with tween (TBS-T, 4 × 5 minutes, 

agitation, Appendix One). Films (Fujifilm, AUT-300-040D) were developed by hand, with 5 minutes 

treatment in developer (Kodak, P7042-1GA) with gentle agitation, 1 minute wash in running tap 

water, 5 minutes in fixer (Kodak, P7167-1GA), and a final 1 minute was performed in running tap 

water. Films were air dried and digitised before specific blot density was quantified with ImageJ 

open source software (NIH, version 1.45s). Blot density was normalized to the lanes total protein, 

as stained for by ponceau rouge, using the method of Romero-Calvo and colleagues (2010). Similar 

to the results of Romero-Calvo and colleagues (2010), this work found this method to produce 

repeatable, linear results for total protein per lane in the range of protein loading used here 

(Appendix Eight). 

 

Table 3.1: Western blot characteristics by target protein. Blocking, primary and secondary conditions are diluted into 
tris-buffered saline with tween (TBS-T). Primary dilution 1:1000, secondary dilution 1:10,000. 

Target Supplier (code) Blocking  Primary 

antibody  

Secondary antibody  

Myostatin  BIOSS antibodies 

(2227G) 

5 % BSA, 1 hour, 

RT 

0.5 % BSA o/n,  

4 °C 

0.5 % BSA, 1 hour, 

RT 

Ubiquitin  Cell Signalling 

(3933) 

5 % BSA, 1 hour, 

RT 

0.5 % BSA o/n, 

 4 °C 

0.5 % BSA, 1 hour, 

RT 

TNFα Sigma 

(T8300) 

5 % BSA, 1 hour, 

RT 

5 % BSA o/n,  

4 °C 

0.5 % BSA, 1 hour, 

RT 

Bovine serum albumin (BSA). Room temperature (RT). Overnight (o/n).  
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3.2.9 Bioinformatic Analysis of Myostatin and Downstream Pathways  

As a translational step from the in vitro work utilising the Mus musculus C2C12 cell line and the 

work done in Homo sapiens presented later in this work, a bioinformatic analysis was used to 

compare the percentage similarity of amino-acid sequence of myostatin and several downstream 

members of myostatin’s signalling pathway. A basic local alignment search tool (BLAST) protein-

protein analysis was performed using the technique of Altschul and colleagues (1997) and the 

National Centre for Biotechnology Information (NCBI) BLAST system. Specifically, the pathways 

examined were the specific proteins and accession numbers showed in Table 3.2. Results are 

expressed as a percentage similarity of candidate amino acid sequences. 

 

Table 3.2: Proteins compared by BLAST and accession numbers.  

Protein Homo sapiens Mus musculus 

Myostatin ABI48514 AAO46885 

ActRIIB NP_001097 NP_031423 

ALK4 AAH40531 AAI45778 

SMAD2 AAC39657 AAH89184 

SMAD3 AAL68976 AAB81755 

SMAD4 BAB40977 AAM74472 

Akt NP_001014432.1 NP_001103678 

mTOR NP_004949.1 NP_064393.2 

GSK-3β NP_001139628 NP_062801 

p70S6k NP_003152 NP_001107806 

4EBP-1 NP_004086 NP_031944 

FoxO1 NP_002006 NP_062713 

Atrogin ABO37797 AAL49563 

MuRF1 NP_115977 CAM25927 

Ubiquitin CAA28495 CAA35999 

ActRIIB, Activin receptor type Two B; ALK4, Activin like kinase type 4; mTOR, mammalian target of rapamycin; GSK-3β, 
glycogen synthase kinase three beta; p70s6k, kinase phosphorylating S6 protein; 4EBP1, binding protein 1 to 4E protein; 
FoxO1, Forkhead box protein, O sub-family; MuRF1, muscle ring finger type 1.  
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3.2.10 Statistical Analysis 

Results are presented here as mean ± SEM or SD as appropriate, and written as ‘mean (SEM / SD) 

units’. Significance was set at p < 0.05 throughout. Two-way or repeated measures analysis of 

variance (ANOVA) was used as appropriate, with post hoc analysis performed in the method of 

Bonferroni. Effect size is given by Cohen’s d (d), magnitude of effect size is considered small (> 0.09), 

moderate (> 0.29) or large (> 0.49). Results from bioinformatic analysis comparing amino acid 

sequence similarity are expressed as a percentage value of Homo sapiens relative to Mus musculus.   
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3.3 Results 

3.3.1 Effect of Hypoxia and NF-ᴋB Inhibition on Myotube Size 

The effect of hypoxia on myotube size was examined by two-way (condition [control, hypoxic] × 

time [2, 24, 48 hours]) ANOVA. A condition × time interaction was noted for the effect of hypoxia 

on myotube diameter (p = 0.08). Post hoc analysis reveals incubation of myotubes in 1 % hypoxia 

significantly reduced myotube diameter at 2 hours relative to matching control time point by 18.4 

(0.7) arb. units to 15.6 (0.3) arb. units (p = 0.013, d = 5.20). Myotube diameter was further reduced 

at 24 and 48 hours relative to matched control time points by 7.0 arb. units (p < 0.001, d = 8.26) 

and 5.8 arb. units, respectively (p = 0.001, d = 5.76; Figure 3.2A). Further, an effect of time is noted 

during hypoxia, with myotube size decreasing between 2 hours and 24 hours by 3.2 arb. units (p = 

0.007, d = 3.58). Similar effects are maintained when myotube diameter in hypoxic conditions is 

normalized to time point controls (14.2 %, 36.9 % and 34.2 % reduction relative to matching control, 

respectively, (Figure 3.2B) although post hoc analysis reveals the effect of hypoxia at 2 hours is 

removed (p = 0.45, d = 2.89). While not directly quantified, an increased number of undifferentiated 

myoblasts is visually noted in hypoxic treated conditions (Figure 3.2C), suggesting either impaired 

differentiation or increased apoptosis. 
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Figure 3.2: Effect of Hypoxia on myotube cross-sectional area. C2C12 myotubes were treated with control (20.9 % O2) 
or hypoxic (1 % O2) conditions for 2, 24 or 48 hours. Cells were photographed under light microscopy three times per 
plate with phase contrast. Cell diameter was quantified three times per cell, with 10 random cells per image measured, 
giving a total of 30 cells per plate, utilizing ImageJ. N = 3 separate cultures per condition. A) Results expressed as absolute 
data (Arb. Units) ± SEM. B) Results expressed as percentage of individual controls ± SEM. White bars represent control 
conditions, black stimulated with 1 % hypoxia. Significance is indicated by between conditions as marked (*), or from time 
point control (Λ; p < 0.05). C) Representative images of conditions and time points.  
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The effect of NF-κB inhibition on myotube diameter size during hypoxia was examined by two-way 

(condition [hypoxic, hypoxic + PS1145] × time [2, 24, 48 hours]) ANOVA. No condition × time 

interaction was noted on the effect of NF-κB inhibition on myotube diameter during hypoxic 

exposure (p = 0.29). A main effect of both time and group was noted (group p = 0.001, time p < 

0.001, respectively), suggesting PS1145 consistently offset myotube atrophy in hypoxia (Figure 

3.3A). When normalized to time point control, a similar effect is noted, with no group × time 

interaction (p = 0.37), but a main effect of group (p = 0.005; Figure 3.3B). 
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Figure 3.3: Effect of NF-κB inhibition on myotube cross-sectional area during hypoxia. C2C12 myotubes were incubated 
in hypoxic (1 % O2) conditions for 2, 24 or 48 hours ± 10 µmol PS1145 (NF-κB inhibitor). Cells were photographed under 
light microscopy three times per plate with phase contrast. Cell diameter was quantified three times per cell, with 10 
random cells per image measured, giving a total of 30 cells per plate, utilizing ImageJ. N = 3 separate cultures per 
condition. A) Results expressed as absolute data (Arb. Units) ± SEM. B) Results expressed as percentage of time point 
controls (%) ± SEM. Black bars represent hypoxia alone, grey stimulated with 10 µmol PS1145. C) Representative images 
of conditions and time points. 
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The effect of hypoxia on myotube cellular protein content was analysed by two way (condition 

[control, hypoxic] × time [2, 24, 48 hours]) ANOVA. A condition × time interaction was noted for the 

effect of hypoxia on myotube protein content (p = 0.006). In the control condition, post hoc analysis 

shows myotube total protein content was significantly increased (3.3 (0.6) µg.mL-1 to 5.0 (0.8) 

µg.mL-1) at 48 hours, relative to 24 hours (p = 0.007, d = 1.36). Conversely, in the hypoxic condition 

myotube total protein content was significantly reduced at 48 hours to 1.2 (0.4) µg.mL-1, relative to 

both 2 hours hypoxic (4.5 (0.6) µg.mL-1) and 48 hour control conditions (p = 0.003, d = 3.77 and p = 

0.03, d = 3.58 respectively; Figure 3.4A). When results are expressed relative to matching time point 

controls, a condition × time interaction is maintained (p = 0.021), with post hoc analysis revealing a 

reduction of total protein content in hypoxia to 26.4 (10.0) % of matching control time point at the 

48 hour point (p = 0.009, d = 6.00; Figure 3.4B). 
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Figure 3.4: Effect of time in hypoxia on cellular total protein content.  C2C12 myotubes were incubated in control (20.9 
% O2) or hypoxic (1 % O2) conditions for 2, 24 or 48 hours. Total protein content of cell lysate was quantified in triplicate 
in the method of Lowry. N = 3 separate cultures per condition. Results are expressed as A) absolute concentrations ± SEM 
or B) change relative to matching time point control ± SEM. White bars represent control conditions, black stimulated 
with 1 % hypoxia. Significance between groups as marked (*) or from matching time point control (Λ; p < 0.05).  
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The effect of NF-κB inhibition on myotube total protein content in hypoxia was examined by two-

way (condition [hypoxic, hypoxic + PS1145] × time [2, 24, 48 hours]) ANOVA. No condition × time 

interaction was noted on the effect of NF-κB inhibition (PS1145, 10 µM) on protein concentration 

from cultured myotubes (p = 0.335). Consistent with the results of Figure 3.4, a main effect of time 

on protein concentration was noted (p < 0.001), however, no effect of NF-κB stimulation was noted 

(p = 0.242), therefore hypoxia and hypoxia + PS1145 conditions were pooled for further analysis. 

Subsequent post hoc analysis on pooled groups reveals hypoxia has a time dependent effect on 

total protein concentration, with a (pooled) reduction from 3.9 (0.1) µg.mL-1 to 2.7 (0.2) µg.mL-1 

then 1.7 (0.05) µg.mL-1, at 2, 24 and 48 hours respectively (each p < 0.001, d = 3.28 and 3.04, 

respectively; Figure 3.5A). As would be expected, this effect is removed if results are expressed 

relative to time point controls, with no interaction (p = 0.21) or main effects being present. 
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Figure 3.5: Effect of NF-κB inhibition on total protein content during hypoxia. C2C12 myotubes were incubated in 
hypoxia (1 % O2) for 2, 24 or 48 hours ± 10 µmol PS1145 (NF-κB inhibitor). Total protein content of cell lysate was 
quantified in triplicate in the method of Lowry. N = 3 separate cultures per condition. Results are expressed as A) absolute 
concentrations ± SEM or B) change relative to matching time point. Black bars represent hypoxic conditions, grey hypoxia 
stimulated with 10 µmol PS1145. Significance is indicated by * between groups as marked (p < 0.05).  
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3.3.2 Effect of Hypoxia on Myostatin Peptide Expression and Downstream Signalling in 

vitro 

The effect of hypoxia on myostatin peptide expression in myotubes was examined by two-way 

(condition [control, hypoxic] × time [2, 24, 48 hours]) ANOVA. No condition × time interaction was 

noted (p = 0.07). A main effect of condition was noted (p = 0.04), suggesting myostatin was reduced 

following hypoxic exposure in all time points. Pooled myostatin peptide response following hypoxic 

stimulus was 59.86 % of control (p = 0.04, d = 1.64; Figure 3.6A). No condition × time interaction 

was noted on with regards to the myostatin latency associated propeptide (LAP; p = 0.10), nor was 

any main effects noted (Figure 3.6B). No difference in LAP / myostatin peptide was noted at any 

time point (p = 0.909; Figure 3.6C). 

 

The effect of NF-κB inhibition on myostatin expression was examined by two-way (condition 

[control, hypoxic] × time [2, 24, 48 hours]) ANOVA. No condition × time interaction was noted (p = 

0.23). No main effect of condition was noted (p = 0.32) or group was noted (each p = 0.64; Figure 

3.7A). In a similar manner, no condition × time interaction (p = 0.4610 or main effect of treatment 

(each p = 0.147) was noted for the effect of NF-κB inhibition on the myostatin LAP in hypoxia (Figure 

3.7B). No difference in LAP / myostatin peptide was noted following NF-κB inhibitor treatment in 

hypoxia (p = 0.315; Figure 3.7C).  
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Figure 3.6: Effect of hypoxia on myostatin peptide expression in vitro.  Western blots of myostatin A) peptide at 26 - 30 
kDa, B) LAP at 45 kDa (bs1288R, BIOSS), and C) Ratio of LAP / Myostatin from C2C12 myotubes after 2, 24 or 48 hours in 
control (20.9 % O2) or hypoxic (1 % O2) environment. Blot density quantified in ImageJ and normalized to individual lane’s 
total protein, detected by ponceau stain. All results expressed relative to matching time point control condition. N = 3 
per condition. 40 µg total protein loaded per well. Error bars represent SD. Insert, Representative Western blot image, 
showing myostatin peptide (28 kDa) and LAP (45 kDa). Hypoxic condition shown in black (relative to control [white]), with 
exposure time (hours) as marked.  
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Figure 3.7: Effect of NF-κB inhibition on myostatin expression during hypoxia.  C2C12 myotubes were incubated in 1 % 
O2 for 2, 24 or 48 hours ± 10 µmol PS1145 (NF-κB inhibitor). A) Myostatin peptide at 26 - 30 kDa, B) LAP at 45 kDa, and C) 
Ratio of LAP / Myostatin. Hypoxic + PS1145 conditions shown in grey, relative to hypoxic only (control). All results are 
expressed as percentage of individual controls ± SD. Insert) Representative Western blot image showing myostatin 
peptide and LAP. Hypoxic and hypoxia + PS1145 conditions with exposure time (2, 24 or 48 hours) as marked. 
Recombinant myostatin peptide (RPB653Hu01, USCN). N = 3 per condition. 
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The effect of hypoxia on ubiquitin (both bound and free) was examined by two-way (condition 

[control, hypoxic] × time [2, 24, 48 hours]) ANOVA). No condition × time interaction was noted with 

respect to the effect of hypoxia on free ubiquitin (p = 0.573), nor was a main effect of group (p = 

0.573) or condition (p = 0.096; Figure 3.8A). While a trend was noted towards a condition × time 

interaction respect to the effect of hypoxia on bound ubiquitin (p = 0.08; Figure 3.8B), no main 

effect of condition (p = 0.175) or time (p = 606) was noted. 

 

Similarly, no condition × time interaction was noted with respect to the effect of NF-κB inhibition 

(10 µmol PS1145) in hypoxia on free ubiquitin (p = 0.798), nor was a main effect of condition (p = 

0.814) or time (p = 0.798 – Figure 3.9A). With regards to the effect of NF-κB inhibition on bound 

ubiquitin (10 µmol PS1145) no group × time interaction (p = 0.0758), nor main effect of condition 

(p = 0.974) or time was noted (p = 0.758 – Figure 3.9B). 
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Figure 3.8: Effect of hypoxic exposure on ubiquitin expression. C2C12 myotubes were incubated in 20.9 % or 1 % O2 for 
2, 24 or 48 hours. A) Free ubiquitin (6 kDa), B) bound ubiquitin. Hypoxic condition in black, shown relative to matching 
control. All results are expressed as percentage of individual controls ± SD. Insert, Representative Western blot image 
showing free ubiquitin peptide (6 kDa) and total bound ubiquitin (remaining lane). Control and hypoxic conditions with 
exposure time (hours) as marked.  
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Figure 3.9: Effect of NF-κB inhibi on ubiquitin expression during hypoxia. C2C12 myotubes were incubated in 1 % O2 for 
2, 24 or 48 hours ± 10 µmol PS1145 (NF-κB inhibitor). A) Free ubiquitin (8.5 kDa), B) bound ubiquitin. Hypoxic + PS1145 
condition shown in grey. All results are expressed as percentage of individual controls ± SD. Insert, Representative 
Western blot image showing free ubiquitin peptide (6 kDa) and total bound ubiquitin (remaining lane). Control and 
hypoxic conditions with exposure time (hours) as marked.  
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The effect of hypoxia on TNFα expression was examined by two-way (condition [control, hypoxic] 

× time [2, 24, 48 hours]) ANOVA. A condition × time interaction was noted with respect to the effect 

of hypoxia on TNFα expression (p = 0.33; Figure 3.10). Post hoc analysis reveals a time dependent 

effect of hypoxia on TNFα expression, with TNFα at the 2 hour time point 67.0 (15.79) %, and at the 

48 hour time point 237.98 (50.91) % of control (p = 0.041, d = 2.62). No condition × time interaction 

was noted for the effect of NF-κB inhibition on TNFα expression (p = 0.358), nor was any main 

effects seen (condition p = 0.80, time p = 0.36; Figure 3.11). 
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Figure 3.10: Effect of hypoxia on TNFα expression.  C2C12 myotubes were incubated in 20.9 % or 1 % O2 for 2, 24 or 48 
hours. Hypoxic condition in black, expressed as percentage of individual controls ± SD. * indicates significant difference 
between marked conditions. Insert, Representative Western blot image showing TNFα control and hypoxic conditions 
with exposure time (hours) as marked.  
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Figure 3.11:  Effect of NF-κB inhibition on TNFα expression during hypoxia. C2C12 myotubes were incubated in 1 % O2 
for 2, 24 or 48 hours ± 10 µmol PS1145 (NF-κB inhibitor). Hypoxic + PS1145 condition grey, expressed as percentage of 
individual controls ± SD. Insert, Representative Western blot image with times as marked (hours) and absence (-) or 
presence (+) of PS1145. 
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3.3.3 Effect of Hypoxia on Myoblast Chemotaxis 

The effect of hypoxia on myoblast chemotaxis was examined by two-way (condition [pre, post, post 

+ ps1145) × (treatment [control, hypoxic] ANOVA. A significant condition × treatment interaction 

was noted (p < 0.001). Post hoc analysis revealed the control condition showed a large effect, 

reducing scratch diameter to 36.2 (1.59) % relative of the pre time point (p = 0.0001. d = 32.75). 

Control cells in the PS1145 condition did not show altered scratch diameter closure relative to pre 

time point (p = 0.47, d = 0.65; Figure 3.12A). Whilst exposure of scratched myoblasts to hypoxic 

condition still resulted in significant scratch closure, this effect was impaired relative to normoxic 

control [hypoxic 60.3 (0.63) % vs. control 36.2 (1.59) % closure, relative to individual baselines; p = 

0.003, d = 11.73]. Furthermore, pre-treatment of hypoxic cells with PS1145 offset the effect of 

hypoxia on scratch closure [hypoxic 60.3 (0.63) % vs hypoxic + PS1145 51.0 % (0.29) % relative to 

individual baselines; p = 0.0003, d = 3.61; Figure 3.12A]. 
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Figure 3.12: Effect of hypoxia on scratch diameter closure.C2C12 myoblasts were scratched, photographed (3 random 
locations per scratch) at 2.5× zoom (pre) with phase contrast filter and incubated for 15 hours in growth media (GM) in 
either control (20.9 % O2), hypoxic (1 % O2) conditions or hypoxic + PS1145 (10 μM). Scratch diameter was quantified 50 
times per image, utilizing ImageJ. A) Bar graph of closure expressed as percentage of individual control condition ± SEM. 
Pre in white, post in black, post + PS1145. Significance is indicated either between groups as marked by asterisk (*) or 
between matching treatments across conditions by lambda (ᴧ). N = 3 per condition. B) Representative images by condition 
and time point.  

B)  
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3.3.4 Structural comparison of Myostatin between  Mus musculus and Homo sapiens 

As a translational step between the preceding in vitro work completed in the mouse derived C2C12 

line and the human work in following Chapters, a bioinformatic protein - protein BLAST analysis was 

performed on myostatin and members of its downstream signalling pathways to provide evidence 

supporting the hypothesized maintenance of myostatin function within humans. 

 

 

 

Figure 3.13: Amino acid sequence alignment of myostatin between Homo sapiens & Mus musculus.Top line indicates 
Homo sapiens (ABI48514), bottom Mus musculus (AAO46885), middle bolded and showing alignment where present. 
Non-aligned sequences identified by # symbol, conservative substitutions marked with a +. Note also RSRR region 
(underlined) indicating the end of the pro-peptide and start of the C-terminus peptide (‘DFGLD….’). 

 

The full length myostatin protein shows a 96 % percentage identity between Mus musculus and 

Homo sapiens form (Access numbers, Homo sapiens ABI48514, Mus musculus AAO46885; Figure 

Score = 760 bits (1963), Expect = 0.0, Method: Compositional matrix 

adjust.Identities = 361/375 (96%), 

Positives = 368/375 (98%), Gaps = 0/375 (0%) 

 

Query 1 MMQKLQLCVYIYLFMLIVAGPVDLNENSEQKENVEKEGLCNACTWRQNTKSSRIEAIKIQI 60 

         MQKLQ+#VYIYLFMLI#AGPVDLNE#SE++ENVEKEGLCNAC#WRQNT+#SRIEAIKIQI 

Sbjct 2  MQKLQMYVYIYLFMLIAAGPVDLNEGSEREENVEKEGLCNACAWRQNTRYSRIEAIKIQI 61 

 

Query 61 LSKLRLETAPNISKDVIRQLLPKAPPLRELIDQYDVQRDDSSDGSLEDDDYHATTETIIT 120 

         LSKLRLETAPNISKD#IRQLLP+APPLRELIDQYDVQRDDSSDGSLEDDDYHATTETIIT 

Sbjct 62 LSKLRLETAPNISKDAIRQLLPRAPPLRELIDQYDVQRDDSSDGSLEDDDYHATTETIIT 121 

 

Query 121 MPTESDFLMQVDGKPKCCFFKFSSKIQYNKVVKAQLWIYLRPVETPTTVFVQILRLIKPM 180 

          MPTESDFLMQ#DGKPKCCFFKFSSKIQYNKVVKAQLWIYLRPV+TPTTVFVQILRLIKPM 

Sbjct 122 MPTESDFLMQADGKPKCCFFKFSSKIQYNKVVKAQLWIYLRPVKTPTTVFVQILRLIKPM 181 

 

Query 181 KDGTRYTGIRSLKLDMNPGTGIWQSIDVKTVLQNWLKQPESNLGIEIKALDENGHDLAVT 240 

          KDGTRYTGIRSLKLDM+PGTGIWQSIDVKTVLQNWLKQPESNLGIEIKALDENGHDLAVT 

Sbjct 182 KDGTRYTGIRSLKLDMSPGTGIWQSIDVKTVLQNWLKQPESNLGIEIKALDENGHDLAVT 241 

 

Query 241 FPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWIIA 300 

          FPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWIIA 

Sbjct 242 FPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWIIA 301 

 

Query 301 PKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQII 360 

          PKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQII 

Sbjct 302 PKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQII 361 

 

Query 361 YGKIPAMVVDRCGCS 375 (Homo Sapiens) 

          YGKIPAMVVDRCGCS 

Sbjct 362 YGKIPAMVVDRCGCS 376 (Mus musculus) 
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3.13). The percentage identity of the bioactive C-terminus peptide is 100 % between Mus musculus 

and Homo sapiens (Figure 3.13 – beginning ‘DFGLDC….’ immediately post the RSRR region).  

 

The receptor for myostatin is the Activin receptor type two B (ActRIIB), a 512 amino acid protein 

(Lee and McPherron, 2001). ActRIIB shares a similar percentage identity of 94 % with the mouse 

form (Homo sapiens NP_001097, Mus musculus NP_031423) with the only significant difference 

being a lengthening of the mouse form to 536 amino acids, occurring between positions 169 - 202 

of the mouse form. On myostatin binding to ActRIIB, dimerization to ALK4 occurs in myocytes (Lee 

and McPherron, 2001). ALK4 shares 98 % identity between the human and mouse form (Homo 

sapiens AAH40531, Mus musculus AAI45778). 

 

On binding of myostatin to ActRIIB, phosphorylation of signalling proteins SMAD2 and SMAD3, 

which subsequently induce binding with co-SMAD4 to induce nuclear translocation and activation 

(Zhu et al., 2004). BLAST analysis reveals SMAD2, SMAD3 and SMAD4 share 99 %, 99 % and 97 % 

identity, respectively (SMAD2 Homo sapiens AAC39657, Mus musculus AAH89184; SMAD3 Homo 

sapiens AAL68976, Mus musculus AAB81755; SMAD4 Homo sapiens BAB40977, Mus musculus 

AAM74472).  

 

Myostatin can inhibit protein synthesis in muscle via its inhibitory effects on Akt (Trendelenburg et 

al., 2009). Both Akt and its downstream effector mammalian target of rapamycin (mTOR) share high 

percentage similarity at 88 % (Akt) and 99 % (mTOR), respectively (Akt Homo sapiens 

NP_001014432.1, Mus musculus NP_001103678; mTOR Homo sapiens NP_004949.1, Mus 

musculus NP_064393.2). Akt directly upregulates expression of GSK-3β, which shows 99 % identity 

between species (Homo sapiens NP_001139628, Mus musculus NP_062801). Downstream of 
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mTOR, both p70S6k and 4EBP-1 show 99 % and 91 % (p70S6k Homo sapiens NP_003152, Mus musculus 

NP_001107806; 4EBP-1 Homo sapiens NP_004086, Mus musculus NP_031944). 

 

Activation of ActRIIB also induces activity of the 26-S proteasome via Forkhead box 1 (FoxO1) 

activation of atrogin and MuRF1, two muscle specific E3 ligases (McFarlane et al., 2006). FoxO1 

shares 91 % (Homo sapiens NP_002006, Mus musculus NP_062713) while atrogin and MuRF1 

record 95 % and 93 % respectively (atrogin Homo sapiens ABO37797, Mus musculus AAL49563: 

MuRF1 Homo sapiens NP_115977, Mus musculus CAM25927). Finally, the ubiquitin peptide itself it 

well conserved, showing 99 % similarity between species (Homo sapiens CAA28495, Mus musculus 

CAA35999). 
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Figure 3.14: Myostatin and downstream intracellular signalling proteins and percentage identities between Mus 
musculus and Homo sapiens homologs. Protein accession numbers for both Homo sapiens and Mus musculus can be 
found in Table 3.2. 
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3.4 Discussion 

It has been well described that chronic hypoxic exposure results in muscular atrophy in vitro and in 

vivo. Here the mechanisms by which hypoxia has its atrophic effect on skeletal muscle have begun 

to be explored. In vitro, the novel demonstration that hypoxic exposure specifically slows 

chemotaxis in precursor myoblasts and directly induces cellular atrophy in mature myotubes is 

observed for the first time. Further, these effects are both partly dependent on NF-κB activation, 

as inhibition of NF-κB activity by the selective inhibitor PS1145 offset both the impaired chemotaxis 

and cellular atrophy seen post-hypoxic exposure. These witnessed effects may be in part via 

myostatin signalling, as alterations in cellular myostatin content was observed. 

 

Counter to the hypothesis that an increase in myostatin expression would be observed following 

an acute hypoxic stimulus, here a decrease in myostatin peptide expression is seen. Therefore, the 

hypothesis as originally presented may be incorrect and myostatin increases do not drive hypoxic-

induced atrophy. Conversely, myostatin may be acting in its endocrine manner (Gonzalez-Cadavid 

et al., 1998, Zimmers et al., 2002), and decreases in cellular myostatin peptide content may reflect 

secretion of myostatin into the extracellular media. Conformation or rejection of the role of 

myostatin could be performed in future work using a myostatin inhibitor in culture in combination 

with hypoxic exposure, or the use of myostatin detecting ELISA for the examination of myostatin 

concentration in the media of cultured myotubes +/- hypoxic exposure, thus demonstrating an 

increase (or not) of excreted myostatin by exposed myotubes. 

 

Of interest is the intracellular signalling link between hypoxic stress and myostatin expression. The 

in vitro results presented here suggest an NF-κB dependent link, as inhibition of NF-κB activity offset 

atrophic effects in myotubes and cellular migration in myoblasts. It has previously been suggested 

that myostatin expression is linked to pro-inflammatory signalling, as stimulation of L6 myotubes 
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with LPS causes an increase in myostatin expression, and stimulation with the anti-inflammatory 

pharmaceutical Thalidomide prevented this in a concentration-dependent manner (Elliott et al., 

2009). Increased myostatin expression is of interest to this study as myostatin activity inhibits 

myoblast proliferation and induces myotube atrophy via increases in ubiquitin and proteasomal 

activity (reviewed by Elliott et al., 2012). Under conditions of inadequate oxygen supply, 

stabilisation of HIF1α in myotubes induces a signalling cascade that activates NF-κB (Osorio-

Fuentealba et al., 2009), separating it from its binding inhibitory protein Iκ-Bα and allowing 

translocation to the nucleus where it binds to promoter regions of multiple pro-inflammatory 

cytokines (Frost et al., 2002). The results presented here suggest that inhibition of NF-κB offsets 

both the atrophy of myotubes in vitro and chemotaxic migration of myoblasts in vitro. This suggests 

that the effect of hypoxia on muscle size may be in part dependent on inflammatory signalling. 

 

The NF-κB dependent alterations in myotube size appear to be independent of any myostatin 

signalling, as addition of the NF-κB inhibitor PS1145 to cultures does not alter cellular myostatin 

content, yet does offset myotube atrophy under hypoxic conditions. These results suggest that the 

effect of hypoxia on myostatin expression may be independent of the effects of hypoxia on NF-κB 

and pro-inflammatory signalling. 

 

If myostatin is acting in a bioactive manner, an increase in atrophic pathways downstream of 

myostatin should be seen. Whilst these results did not witness increases in bound ubiquitin, they 

did approach significance (Figure 3.8). Similarly, Caron and colleagues (2009) showed trends 

towards atrogin increases after only 4 hours of exposure to 1 % O2, with further, significant 

increases after 24 hours in 1 % O2. The role of these E3 ligases is to ‘tag’ proteins for destruction via 

ubiquitination & the 26S proteasome (Mitch and Goldberg, 1996). It may be that rate of ubiquitin 

binding is not the limiting step in hypoxic cellular atrophy, or the witnessed cell atrophy and loss of 
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cellular protein was via not via only ubiquitin / proteasomal pathways. Indeed, as Reid notes (2005), 

NF-κB activation can be used as a marker of ubiquitination. Thus, it is noteworthy that NF-κB 

inhibition induced as small, but significant protection against cellular atrophy and total protein loss 

(Figure 3.3Aand Figure 3.5A, respectively).  

 

Other candidates for the rapid and significant cellular atrophy and loss of cellular protein seen here 

(Figure 3.2 and Figure 3.4, respectively) that future work could examine include lysosomal, 

autophagic and calcium-dependent (calpain) proteases, or the effect of cellular apoptosis on 

surviving myotubes. Severe hypoxia (7,620 m equivalent hypobaric hypoxia) in mice induces calpain 

activity 3 days after exposure that is further increased after 7 days exposure. No changes in activity 

of lysosomal activity was witnessed in the same group (Chaudhary et al., 2012). HIF-dependent 

autophagy is seen in multiple cell lines in vitro following 24 hours in 1 % O2 (myogenic cells lines not 

reported; Bellot et al., 2009), and in human muscle in hypoxia, where it is increased relative to 

normoxic conditions both at rest and following moderate exercise (Deldicque et al., 2014).  

 

Visual examination of the hypoxic myotubes used in here suggested elevated apoptosis, which has 

been previously reported in differentiated C2C12 myotubes in 1 % O2, and also noted myotube 

atrophy and elevated LDH leakage (Joshi et al., 2011). Myotubes are noted to be more resistant to 

apoptosis than myoblasts (Xiao et al., 2011), potentially because they can regulate their metabolic 

demand and survival via degradation methods and loss of cytosolic structural proteins.   

 

Conversely to the rapid induction of catabolic mechanisms, the effects of hypoxia on pro-synthesis 

pathway inhibition would appear to require greater time. Caron and colleagues (2009) note 

reductions in Akt phosphorylation at 48 hours, but not 24 hours. Unfortunately, protein 

phosphorylation of Akt pathway members was not able to be measured in the current study 
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The effect of time on these results is also of interest. Myotube atrophy was witnessed after only 2 

hours, which is further increased after 24 hours (Figure 3.2), however measurable alterations in 

cellular protein content was not apparent until 48 hours of hypoxic exposure (Figure 3.4). The 

combination of these results suggests that the 2 hour alterations in myotube size are via a separate 

cause. The metabolic challenge of hypoxia decreases cellular ATP of C2C12 myotubes after 30 

minutes (Matsuki et al., 2002), and in healthy humans, decreases muscle Na+ / Ka+ ATPase activity 

(Green et al., 1999). Subsequent changes in osmotic pressure may explain the rapid changes in 

cellular size seen here in the 2 hour time frame, while the longer term changes in size seen at 24 

and 48 hours reflective of catabolic processes. Separation of the effects of each (osmosis vs. 

catabolism) would be possible with the addition of protease inhibitors in the presence of hypoxia, 

and could form part of future work. 

 

One critique of the translation of the above findings from a mouse-derived cell lines into human 

models in vivo is the potential differences in mouse and human physiology, and specifically 

maintenance of intracellular signalling pathways, both in form and function. To help address this, a 

novel bioinformatics comparison was conducted in silico. This demonstrated the high percentage 

similarity between mouse and human myostatin protein, as well as its downstream signalling 

proteins. Markedly, this analysis revealed 100 % amino acid sequence agreement between the 

myostatin signalling peptide in mice and Humans. These results are in line with physiological 

observations, the phenotypic effect of myostatin deletion appears well maintained across 

mammalian species, including mouse (McPherron et al., 1997), dog (Mosher et al., 2007), cow 

(Grobet et al., 1997, Kambadur et al., 1997, McPherron and Lee, 1997) and human (Schuelke et al., 

2004), suggesting a maintenance of function that is evolutionally conserved amongst Mammalia. 

These findings add weight to extrapolation of findings in small animal, and small animal derived cell 

lines, into human models, as are used in later chapters of this thesis.  
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The relevance of incubation of myocytes in 1 % O2 as a model of intramuscular hypoxia does have 

limitations. This value was chosen based on previous reports (Caron et al., 2009, Li et al., 2013), and 

is based on the modelling of Flueck (2009) who suggests PO2 of at least 8 mmHg is required for HIF-

1α stabilisation and subsequent increase in activity of HIF-1α dependent pathways. A PO2 of 8 

mmHg gives an approximate equivalent of 1 % O2 if normobaric hypoxic conditions are used 

(Appendix Thirteen). Similarly, where cell culture as used here is a model of muscle tissue in 

isolation, in vivo results may vary, as systemic endocrine responses from different tissues, combined 

with the ability of cardiovascular components to adapt to hypoxic stimuli, could alter the atrophic 

response seen here. 

 

In conclusion, this Chapter demonstrates that hypoxia results in a rapid decrease in myoblast 

migration and myotube size in vitro. This decrease appears to be at least partly NF-κB dependent, 

and may also involve activity of myostatin and its downstream effects on the proteasomal activity 

during the later phases of this acute stimuli. While results should be considered in context of the 

restrictions of an in vitro model, if these results can be translated into an in vivo research model, 

they may help explain the underlying link between hypoxia and muscle atrophy witnessed in 

chronic cardiorespiratory disorders.   
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4.1 Introduction  

Loss of peripheral muscle mass is seen during hypoxia in humans. Hypobaric hypoxia during 

mountaineering in healthy individuals induces muscle atrophy greater than that expected due to 

increased energy expenditure and reduced diet alone (Boyer and Blume, 1984, Hoppeler et al., 

1990, Cruz-Jentoft et al., 2010), while approximately 25 % of COPD patients show significant muscle 

atrophy relative to BMI matched healthy controls (Bernard et al., 1998). Hypoxia is one 

hypothesised cause underling the poorly understood muscle atrophy seen in conditions such as 

cachexia (reviewed by Wagner, 2008). During cachexia in COPD, muscle atrophy alone is a predictor 

of mortality (hazard ratio of 3.68), independent of disease severity (Marquis et al., 2002). A greater 

understanding of the mechanisms underlying hypoxic induced muscle atrophy is therefore clearly 

necessary. 

 

The ability of hypoxia to reduce muscle mass in vivo in the adult human must either be via a 

reduction in protein synthesis, an increase in degradation, or some combination of the two. Indeed, 

hypoxic emphysemic patients demonstrate decreased global protein synthesis, with no alteration 

in local (muscle) degradation when compared with healthy, age-matched controls (Morrison et al., 

1988). Exposure to a hypoxic stimulus (1 % O2) significantly reduces phosphorylation of Akt in 

differentiating myotubes at 48 – 72 hours post exposure, but not 24 hours post exposure (Ren et 

al., 2010). Myotubes exposed to 1 % O2 for 48 hours hypoxia show reduced protein synthesis, while 

those exposed for 24 hours do not (Caron et al., 2009). Similarly, rats exposed to 11 % O2 for six 

hours do not show a reduction in protein synthesis (Preedy et al., 1985), and humans exposed to 

12 % O2 for two hours do not show altered rates of Akt phosphorylation or fractional synthesis rates 

(FSR; Etheridge et al., 2011). Combined, this data suggests hypoxia is capable of supressing protein 

synthesis, but only if the length of exposure is sufficient. 

 



  Chapter Four – Hypoxia in vivo 
 

113 
 

The activity of proteasomal mechanisms appear to increase rapidly after hypoxic exposure. 

Elevated actin breakdown is apparent after 12 hours in 1 % O2, and elevated atrogin expression is 

seen after 24 hours, with trends towards increases after only 8 hours (Caron et al., 2009). These 

results are consistent with those of Chapter Three of this thesis, where trends towards elevated 

bound ubiquitin was seen at 2 hours and 24 hours post-hypoxic exposure, but not at 48 hours post 

hypoxia. Combined, these results suggest that while chronic hypoxia both suppresses synthesis 

pathways and increases activity of the proteasome, acutely proteasomal activity dominates in the 

initial 24 hours while protein synthesis pathways become involved after 48 hours. This hypothesis 

holds intrinsic logic; rapid loss of myocyte size (i.e. atrophy) decreases necessary O2 diffusion 

distance from supplying capillaries, and the increase in rate of catabolism would result in a more 

rapid change in cellular atrophy relative to impairment of anabolism.  

 

Limited investigations of the effects of hypoxia on organ level protein synthesis have taken place, 

using rate of enrichment of labelled protein isotope methods as originally described by Wolfe 

(1984). Etheridge and colleagues (Etheridge et al., 2011) note no alteration in rate of protein 

synthesis in healthy males exposed to 2 hours of hypoxia at 12 % O2, but on introduction of an 

exercise stimulus with hypoxia, note a blunting of post-exercise protein synthesis, relative to 

normoxic exercise. A longer exposure in a similar population (male, healthy, young) after 7 – 9 days 

at 4,559 m altitude results in elevated rates of muscle protein synthesis (Holm et al., 2010). Care 

must be taken with interpretation of data from alpine climbing cohorts, Imoberdorf and colleagues 

(2006) demonstrated no change in muscle protein synthesis rate following passive assent to 4,559 

m (by helicopter) whilst the summiting group showed increases similar to those of Holm and 

colleagues (2010), suggesting the addition of the exercise stimulus may be key. In vitro, suppressed 

rates of protein synthesis are seen in myotubes cultured at 1 % O2 for 24 hours (Caron et al., 2009), 

suggesting either a time-dependent response of muscle cells to hypoxia, or an intrinsic difference 
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between in vitro and in vivo responses. It would seem therefore that in vitro observations should 

be paralleled in vivo where possible. 

 

With regards to measurement of muscle protein degradation by isotope tracer, as first described 

by Zhang and colleagues  (1996), no direct measures have taken place in hypoxia. Holm and 

colleagues (2010) did estimated whole-body protein degradation by the method of leucine rate of 

appearance (unlabelled) and noted this estimate of degradation appeared to be elevated at 4,559 

m. 

 

Myostatin has well recognised effects on major protein synthesis and degradation pathways in 

skeletal muscle (Amirouche et al., 2009, McFarlane et al., 2006, Trendelenburg et al., 2009). Both 

rats exposed to 10 % O2 for 6 weeks and hypoxemic COPD patients (> 6 months post diagnosis) 

show elevated myostatin peptide expression at the muscle level (Hayot et al., 2011). Two possible 

hypotheses emerge from this finding. It could be proposed that hypoxia directly increases 

myostatin expression. Alternatively, as plasma myostatin concentration is noted to correlate with 

muscle mass across both healthy and cachexic individuals (Gonzalez-Cadavid et al., 1998), this 

alteration in myostatin expression could be an indirect change, whereby hypoxia results in a 

reduction in skeletal muscle mass thereby reducing myostatin expression. 

 

The two most commonly used research models for in vivo human hypoxic research are 

mountaineering, where healthy humans are exposed to hypobaric hypoxia, and chronic disorders 

such as COPD, where emphysema and / or pulmonary fibrosis result in hypoxemia. Both groups 

present as limited research models with numerous confounding factors. COPD patients present 

with elevated systemic inflammation (which may or may not be related to the disease-induced 

hypoxia), reduced physical activity, altered anabolic hormonal expression patterns and altered 
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energy input (reviewed by Wagner, 2008). Mountaineering involves chronic disruptions to sleep 

patterns, cold exposure, reduced satiety, increased physical activity and takes place in a difficult 

research environment (Wagner, 2010). Further, both occur over chronic timeframes of weeks – 

months. Therefore, these can be difficult research models, with several confounding factors besides 

the hypoxic stimuli and questions of causality. Healthy humans can be placed into normobaric 

hypoxic environments to induce hypoxemia and subsequently peripheral tissue hypoxia (Heyes et 

al., 1982). It should be recognised that the use of normobaric hypoxia does differ in physiological 

effect to hypobaric hypoxia, with a larger increase in VE and decrease in arterial pH seen in 

normobaric hypoxia over hypobaric hypoxia (Faiss et al., 2013). Alternatively, normobaric hypoxia 

chambers represent practical advantages over hypobaric chambers, with greater safety, increased 

flexibility and reduced cost of usage. 
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4.1.1 Aims & Hypothesis  

The aim of this Chapter was therefore to establish what effect acute normobaric hypoxia would 

have on plasma and muscle myostatin, fractional breakdown rate (FBR), and FSR. Specifically, the 

aims of this Chapter were; 

1) determine the acute effect of hypoxia on myostatin signalling in both muscle and plasma 

in vivo in healthy humans and  

2) establish the acute effect of hypoxia on FSR and FBR in vivo in healthy humans. 

 

The hypothesis for this Chapter was that hypoxia would increase plasma myostatin concentration 

and muscle myostatin expression, and increase FBR without altering FSR. Specifically, this Chapter 

hypothesizes that; 

1) plasma and muscle myostatin will be elevated following acute hypoxia exposure and  

2) FBR will be elevated following acute hypoxic exposure but no alteration in FSR will be 

witnessed.  
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4.2 Methods 

4.2.1 Ethical Approval 

Ethical approval for the work described in this Chapter was provided by the University of 

Westminster Research Ethics Sub-committee (10/11/24) and the University of Brighton Faculty 

Research and Governance Committee (FREGH/29/09). Written informed consent was obtained 

from all participants prior to participation. All work described within this Chapter was completed 

within the Physiology Lab of Dr Peter Watt, University of Brighton, whom also collected the muscle 

biopsies described below.  

 

4.2.2 Participant Recruitment 

A cohort of healthy male participants was recruited for this study. Inclusion criteria for participation 

was male, 18 – 40 years of age with no exposure to altitude or hypoxic environments exceeding 

3000 m within 3 months of participation, a body mass index (BMI) of 20 – 30 kg.m-2. Exclusion 

criteria was presence of any cardiovascular, respiratory, metabolic or coagulation disorders, regular 

smoker (as defined by the World Health Organisation as daily usage of a tobacco product), or 

currently taking prescription medication. Participants were also excluded if they had a known 

allergy to lidocaine. Participants were asked to abstain from strenuous exercise for 48 hours prior 

to attending the laboratory, and abstain from caffeine for 24 hours prior to attending. A group of 9 

participants were recruited who both met the above criteria and were able to comply with 

experiment protocols. One participants withdrew during the course of the investigation due to non-

specified personal reasons; N = 8 participants completed this experiment (characterized in Table 

4.1). 
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Table 4.1: Participant characteristics. N = 8.  

Age  

(years) 

Height 

(cm) 

Weight 

(kg) 

BMI 

(kg.m-1) 

Fasting 

Glucose 

(mM.L-1) 

Resting SpO2 

(%) 

26 (2.0) 178 (0.50) 72.37 (0.67) 22.81 (1.92) 4.29 (0.51) 98 (0.54) 

Expressed as mean (standard deviation). Body mass index (BMI). Oxygen saturation (SpO2). 

 

4.2.3 Experimental Design 

After initial screening and consent was obtained, participants attended twice, with each session 

separated by at least 14 days. On presentation to the laboratory, a muscle biopsy was taken utilizing 

the conchotome technique (Dietrichson et al., 1987). Biopsies were taken from the belly of vastus 

lateralis, approximately halfway between the palpable greater trochanter of the femur and the 

lateral epicondyle of the femur. After site sterilization (chlorhexidine gluconate 0.5 %) and 

subcutaneous lidocaine injection (100 mg), a 10 mm incision through skin and underlying facia of 

the lateral mid-thigh was made (Figure 4.1). All biopsies in this chapter were taken by Professor 

Peter Watt (University of Brighton).  

 

Figure 4.1: Incision prior to vastus lateralis muscle biopsy. Photo showing biopsy site, mid-thigh, lateral.  
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A 4 mm conchotome (Tilley Henckel) needle with jaws closed was advanced 4 – 6 cm, opened and 

advanced a further 1 cm before jaws were closed and sample removed. If necessary, this process 

was repeated to ensure total sample size collected was ~ 100 mg. Collected muscle tissue was 

immediately rinsed in ice-cold saline, trimmed of visible fat and frozen in liquid nitrogen before 

being stored at -80 °C for future analysis.  

 

One cannula was placed into an antecubital vein of the non-dominant arm for the administration 

of primed constant infusion of isotopes phenyl-D5-alanine (D5-Phe; 615870, Sercon) to allow for the 

determination of protein synthesis, and L-phenylalanine-15N (15N-Phe; 490105, Sercon) for the 

determination of protein degradation. Isotopes were dissolved on the morning of experiments into 

10 mL of 0.9 % NaCl sterile saline under sterile conditions, and twice filtered through 0.22 µm 

syringe filters before use. A second cannula was placed in an retrograde manner into a dorsal hand 

vein of the same arm, with the hand heated to 60 °C to allow mixed arterialised blood samples in 

the method of Sonnenberg and Keller (1982). While traditionally isotope calculations require 

arterial blood collection, heating of the hand to 60 - 70 °C has been demonstrated to induce venous 

shunting and allow less-invasive collection of blood closely replicating that seen from arterial 

cannulation, with no reported differences in concentration of glucose, lactate, PCO2, or labelled 

tracer enrichment (McGuire et al., 1976, Sonnenberg and Keller, 1982).  

 

Immediately following the baseline blood sample and muscle biopsy (time = -30 minutes) the 

labelled isotope tracer D5-Phe (priming dose 2 µmol.kg-1, constant infusion rate 0.05 µmol.kg-1.min-

1) in 0.9 % saline was started. After three more blood samples (-20, -10 and 0 minute mark) to 

achieve a steady state enrichment of D5-Phe, participants were introduced to the experimental 

chamber (11.9 % or 20.9 % O2, indicating hypoxic or control, respectively) for 120 minutes. This 

concentration of O2 was chosen based on previous similar reports (Etheridge et al., 2011). Order of 
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exposure (control or hypoxic) was randomised. While attempts to blind participants to control or 

hypoxic condition were made, this proved unsuccessful due to the perceivable effect of hypoxia 

and so blinding attempts were discontinued.  

 

Arterialised blood, heart rate (HR), SpO2 (Nonin, palmSAT 2500) and modified Lake Louise acute 

mountain sickness (mLLAMS) was obtained every 30 minutes during the hypoxic exposure. LLASM 

questionnaire was modified for acute usage by removal of the sleep question as described by 

Richard and colleagues (2014; Appendix Four). For the measurement of SpO2, the index finger of 

the dominant hand was used, as recommended by O’Connor and colleagues (2004).  

 

At the conclusion of the 2 hour experimental stimulus (time point 120 minutes) participants were 

removed from the chamber environment, the second biopsy was immediately taken and a 2 hours 

primed constant infusion of 15N-Phe was commenced (prime 2 µmol.kg-1, 0.05 µmol.kg-1.min-1 

infusion rate) for 2 hours (ending at time point 240 minutes). At the 300 minutes and 320 minute 

time point, biopsies 3 and 4 were taken (as described above) for the calculation of decay of 15N-Phe 

and calculation of protein degradation. After the 4th biopsy, all infusions were stopped; the 

participant was fed and left the laboratory. This experimental protocol is summarized in Figure 4.2. 
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Figure 4.2: Schematic diagram of the experimental protocol, Chapter Four. Isotope infusions (15N-Phe and D5-Phe) start 
and finish times as shown. Hypoxic (~ 11.9 % O2) or control (20.9 % O2) between time point 0 – 120 minutes. Arrows 
indicate biopsy (MB) time points; arrow heads indicate blood sample (BS) time points. Time given in minutes. 

 

4.2.4 Isotope Tracers 

For calculation of FSR and FBR 500 µL of plasma was brought to room temperature, briefly vortexed 

and incubated with 10 µL urease (10 mg.mL-1; U1500-20KU, Sigma) for 5 minutes. Plasma proteins 

were precipitated in 10 µL of 12 mol perchloric acid, vortexed and incubated with gentle agitation 

for 10 minutes at room temperature. Samples were then spun (6000 rpm, 10 minutes, 4 °C) and 

400 µL supernatant extracted. Supernatant was incubated with 100 µL 1 mol potassium bicarbonate 

on ice for 20 minutes. Samples were then spun again (6000 rpm, 10 minutes, 4 °C), to remove excess 

potassium crystals, and 400 µL supernatant removed and neutralized with 10 µL concentrated 

(~11.5 mol) hydrochloric acid. Resultant samples were dried overnight at 50 °C in a rotary 

evaporator. Dried samples were derivatized with 50 µL pyridine (1 mol and 50 µL N-tert-

Butyldimethysilyl-N-methyltrifluoro-acetamide (NTBSTFA; Sigma, 3948820) at 70 °C for 60 minutes. 
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Muscle samples from time points -30, 120, 300 and 320 minutes were used for calculation of both 

FSR and FBR post hypoxic exposure. An aliquot of each biopsy (~ 60 mg) were powered by mortar 

and pestle in liquid nitrogen, then resuspended in 0.5 mL ice cold perchloric acid (0.2 mol) and 

centrifuged (6000 rpm, 10 minutes). Resultant pellet was washed in 0.2 mol perchloric acid, spun 

and subsequent pellet run as above. First supernatant was incubated with 100 µL 1 mol ice cold 

potassium bicarbonate and incubated on ice (15 minutes), after which incubated with 10 µL urease 

(10 mg.mL-1), as above and treated in the same manner as plasma samples. 

 

Derivatized samples were analysed by gas chromatography mass spectrometer (GC-MS; Delta Plus 

XP, Perkin Elmer). Amino acid derivatives were measured for mass fragment peaks of the tracee 

(234 mHz, unlabelled phe) and two tracers (235 mHz, 15N-Phe) and 239 (239 mHz, D5-Phe; Figure 

4.3). 
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Figure 4.3: Peaks of tracer (t) and tracee (T). Isotope peak examples from with A) human muscle extract (234 mHz) B) 
15N-Phe (235 mHz; 490150, Sercon) and C) D5-Phe (239 mHz; 615870, Sercon). 
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Calculations for Q, FSR and FBR were used as outlined previously, and are given below (Fearon et 

al., 1988, Phillips et al., 1996, Zhang et al., 1996). Net protein balance (%.hr-1) is given by FSR – FBR, 

with positive values indicating positive balance. A more complete description of both methodology 

and formula can be found in Appendix Six. 

𝑄. 𝑘𝑔−1 =   𝑣̇ × (𝑑
𝐸⁄ ) 

Q.kg-1, whole body turnover per kilogram body mass; v̇, rate of flow 

(µmol.min-1); d, enrichment; E, enrichment at plateau).   

 

𝐹𝑆𝑅 (%. 𝐻𝑟−1) = (
∆𝐸𝑡

[𝐸𝑝 × (∆𝑡)]
) × 100 

FSR, Fractional synthesis rate (in percent per hour); ∆Et, change in tissue 

enrichment; Ep mean plasma enrichment; t, time (hours). 

(Phillips et al., 1997) 

 

𝐹𝐵𝑅 =  
𝐸𝑀(𝑡2) − 𝐸𝑀(𝑡1)

𝑃 ∫ 𝐸𝐴
𝑡2

𝑡1
(𝑡)𝑑𝑡 − (1 + 𝑃) ∫ 𝐸𝑀

𝑡2

𝑡1
(𝑡)𝑑𝑡

× (
𝑄𝑀

𝑇
) 

FBR, fractional breakdown rate; EM, enrichment muscle; EA, enrichment 

arterial; t, time; ∫ 𝐸𝑋
𝑡2

𝑡1
(𝑡)𝑑𝑡 gives area of decay curve of x (muscle or 

arterial); QM/T, ratio of intracellular free trace verses protein-bound 

trace content in the sample.  

(Zhang et al., 1996) 

 

𝑁𝑒𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(%. ℎ𝑜𝑢𝑟) = 𝐹𝑆𝑅 (%. ℎ𝑜𝑢𝑟) − 𝐹𝐵𝑅 (%. ℎ𝑜𝑢𝑟) 

FSR, Fractional synthesis rate; FBR, fractional breakdown rate 
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4.2.5 Protein Quantification 

Approximately half of each biopsy (~ 40 mg) was powered by mortar and pestle in liquid nitrogen 

before being resuspended in 125 µL lysis buffer (10 mmol Tris-HCI, 150 mmol NaCI, 2 mmol EDTA, 

2 % Triton X-100, protease & phosphatase inhibitor cocktail [Sigma, P8340], Appendix One), and 

shaken for 30 minutes at 4 °C. Samples were then spun (6000 rpm, 6 minutes, 4 °C) to fractionate 

total soluble protein from insoluble debris. 

 

An aliquot of lysed muscle tissue extract were further diluted 1:10 in ice-cooled lysis buffer 

(Appendix One), before 5 µL of each sample and standards were loaded into U-bottomed clear 96-

well plates in triplicate. Total protein content was measured in the method of Lowry (Appendix 

Five; 500-0116, BioRad). Bovine serum albumin (BSA) was used as a protein standard. Coefficient 

of variability of standards and samples was 0.13 and 0.08, respectively. 

 

4.2.6 Western Blot 

Western blots were run as described in the Chapter Three. Briefly, 40 µg total protein was run per 

lane on precast 10 % polyacrylamide gels (Invitrogen, NP0301), and transferred for 3 hours on ice 

to nitrocellulose membrane. Primary antibody conditions are given in Table 4.2. Primary antibodies 

were used 1:1000, secondary antibodies 1:10,000. Secondary antibody was anti-rabbit, and 

membranes were developed by hand onto film before being digitized and analysed with ImageJ 

open source software (ImageJ, version 1.45s). Blots were normalized to total protein stained for by 

ponceau rouge, using the method of Romero-Calvo and colleagues (2010). 
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Table 4.2: Western blot characteristics by target protein. Blocking, primary and secondary conditions are diluted into 
tris-buffered saline with tween (TBS-T). 

Target Supplier (Code) Blocking Primary antibody Secondary antibody 

Myostatin 

Millipore 

(ab3239) 

 

5 % BSA, 

1 hour, RT 

5 % BSA o/n, 

4 °C 

0.5 % BSA, 

1 hour, RT 

Ubiquitin 

Cell Signalling 

(3933) 

 

5 % BSA, 

1 hour, RT 

0.5 % BSA o/n, 

4 °C 

0.5 % BSA, 

1 hour, RT 

IκBα 

Cell Signalling 

(9242) 

 

5 % BSA, 

1 hour, RT 

5 % BSA o/n, 

4 °C 

0.5 % BSA, 

1 hour, RT 

Bovine serum albumin (BSA). Room temperature (RT). Overnight (o/n).  

 

4.2.7 ELISA  

ELISA for plasma myostatin was performed according to manufacturer’s instructions (DGDF80, R&D 

Systems). Aliquoted plasma samples were defrosted from – 80 °C to room temperature before 100 

µL plasma was activated for the removal of myostatin binding proteins (60 µL HCl, 6 M, 10 minutes 

at room temperature), then neutralized (40 µL NaOH + 1.2 mol HEPES), and finally diluted into 200 

µL calibrator diluent (R&D, 895525) to give a prepared sample at a 1:4 dilution. Prepared samples 

were loaded in duplicate into pre-coated 96 well plates. Recombinant myostatin was used as a 

standard (range 31.3 – 2,000 pg.mL-1), and calibrator dilutant used as a blank control. Plates were 

incubated at 37 °C with gentle agitation for 2 hours, washed 4 times (R&D, 895003) before 

myostatin conjugate (R&D, 894409) was added (200 µL) and plates incubates for 2 hours at room 

temperature. Wells were washed again (4 times) before 200 µL substrate solution was added and 

plates incubated (30 minutes, room temperature, protected from light). Colorimetric reaction was 

stopped with 50 µL 2 N sulphuric acid. Samples were read spectrophotometrically at 450 nm and 

blanked to 570 nm using a microplate reader (VersaMax, Molecular Devices, USA). Coefficient of 

variability of standards and samples were 0.03 and 0.13, respectively. 
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4.2.8 Statistical Analysis 

Results are presented in figures as individuals data points, as outlined by Drummond and Vowler 

(2012) and written in text as ‘mean (SD) units’. Repeated measures analysis of variance (ANOVA) or 

paired sample t-tests were used as appropriate. Friedman’s ANOVA was utilized for mLLAMS data. 

Post hoc analysis performed where needed in the method of Bonferroni, utilizing SPSS (IBM, version 

20.0). Where a deviation from sphericity of groups was noted in repeated measures ANOVA, this 

was corrected for in the method of Greenhouse and Geisser. Linear correlations were determined 

in the method of Pearson. Significance was set at p < 0.05 throughout.  
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4.3 Results 

4.3.1 Effect of Hypoxia on Homeostatic Measures 

The effect of hypoxia on SpO2 was examined by two-way (condition [control, hypoxic] × time [-10, 

0, 30, 60, 90, 120, 130 minutes]) repeated measure ANOVA. A significant condition × time 

interaction was noted for the effect of hypoxia on SpO2 (p < 0.001). Subsequent post hoc analysis 

reveals hypoxia significantly reduces SpO2 at every time point during hypoxic exposure (Figure 

4.4A). Mean SpO2 during hypoxia was 77.7 (0.7) %, while control values remained unperturbed at 

97.8 (0.4) %. Independent of time this effect is maintained, with paired sample t-test showing area 

under the curve of hypoxia being significantly reduced relative to control values (p < 0.001; Figure 

4.4B). 
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Figure 4.4: Effect of hypoxia on fingertip capillary haemoglobin oxygen saturation.  A) Fingertip capillary haemoglobin 
oxygen saturation (%) as a function of time (minutes). Hypoxic exposure (11.9 % O2) from time point 0 to 120 minutes, 
control condition in ambient air (20.9 % O2).  indicate significant difference between conditions at given time point (p 
< 0.05). N = 8 males per condition. Error bars represent SD. Grey line indicates control contidion, black hypoxic. B) Area 
under curve of SpO2 by condition in hypoxia (black square) and control (open grey circle).  indicate significant difference 
between groups (p < 0.05). Mean of individual groups given by horizontal black line. N = 8 individuals. 
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The effect of hypoxia on heart rate was examined by two-way (condition [control, hypoxic] × time 

[-10, 0, 30, 60, 90, 120, 130 minutes]) repeated measure ANOVA. A significant condition × time 

interaction was noted for the effect of hypoxia on heart rate (p = 0.021). Subsequent post hoc 

analysis shows hypoxia significantly increased heart rate at 60 minutes relative to the control values 

(122 [17.6] vs 97.8 [12.1] % in hypoxic and control respectively; p = 0.03, Figure 4.5A), but not at 

other time points during hypoxia. Independent of time, this effect is maintained, with area under 

the curve heart rate showing trends towards an increase relative to control values (p = 0.053, Figure 

4.5B). 
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Figure 4.5: Effect of hypoxia on resting heart rate. A) HR (bpm) as a function of time (minutes). Hypoxic exposure (11.9 % 
O2) from time point 0 to 120 minutes, control condition in ambient air (20.9% O2). Hypoxic condition shown as closed 
black squares, control as open circles. Error bars represent SD.  indicate significant difference between group at 
indicated time point (p < 0.05). Error bars represent SD. B) Area under curve of hearte rate (black square) and control 
(open grey circle).Mean of individual groups given by horizontal black line. N = 8 individuals. 
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Friedman’s ANOVA suggests a significant difference in mLLAMS occurred in the participant 

population (p < 0.00105). Post hoc analysis with Wilcoxon signed-rank test corrected in the method 

of Bonferroni revealed hypoxia significantly reduced mLLAMS symptoms at the 90 minute time 

point, relative to control conditions (p =< 0.03105) but not at 0 (p = 0.500) or 60 minutes (p = 0.063; 

Figure 4.6(Figure 4.6). 
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Figure 4.6: Effect of hypoxia on symptoms of acute mountain sickness.  Modified Lake Louise Acute Mountain Sickness 
questionnaire (mLLAMS) score (arb. unit) as a function of time (minutes).LLAMS questionnaire modified for acute usage 
by removal of sleep specific questions. Hypoxic exposure (11.9 % O2) from time point 0 to 90 minutes, control condition 
in ambient air (20.9 % O2). Median of individual groups given by horizontal black line. N = 8 males per condition per time 
point. Open grey circles represent control condition, black squares hypoxic condition. 
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4.3.2 Effect of Hypoxia on Muscle and Plasma Myostatin 

The effect of hypoxia on muscle myostatin was examined by two-way (condition [control, hypoxic] 

× time [-30, 120, 300, 320 minutes]) repeated measures ANOVA, with treatment order considered 

as a between-participant effect. No treatment order × group × time interaction was noted (p = 

0.126).  A significant condition × time interaction was noted for the effect of hypoxia on muscle 

myostatin peptide (p = 0.005) when results are expressed as a percentage change from baseline (-

30 minutes). Subsequent post hoc analysis reveals hypoxia significantly decreased myostatin 

peptide at the 320 minute time point relative to the control condition (p = 0.047), but not at other 

time points during hypoxia (Figure 4.7A). When data is expressed as a function of control time 

points, this effect is maintained with a similar condition × time interaction (p =< 0.035), and post 

hoc effect of hypoxia noted at the 320 minute mark (p = 0.002), but no other time point (Figure 

4.7B).  

 

The effect of hypoxia on muscle myostatin LAP was examined by two-way (condition [control, 

hypoxic] × time [-30, 120, 300, 320 minutes]) repeated measures ANOVA. No condition × time 

interaction was noted (p = 0.647). No main effect of either group (p = 0.854) or time was noted (p 

= 0.647; Figure 4.7C).  The effect of hypoxia on the ratio of LAP to myostatin was examined by two-

way (condition [control, hypoxic] × time [-30, 120, 300, 320 minutes]) repeated measures ANOVA. 

No condition × time interaction was noted (p = 0.212). No main effect of either group (p = 0.868) or 

time was noted (p = 0.102; Figure 4.7D).  
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Figure 4.7: Effect of hypoxic treatment on myostatin expression. Western blot of myostatin peptide (ab3239, Millipore) 
at 26 kDa from vastus lateralis muscle biopsy prior and post 2 hours control (ambient) or hypoxic (11.9 % O2) exposure. 
A) Individuals normalized to baseline values (-30 minutes).  indicate significant difference between groups (p < 0.05). 
B) normalized to matching timepoint control. C) Myostatin latancy associated peptide normalized to matching timepoint 
control. D) LAP / myostatin ratio. N = 8 males per condition. 40 µg total protein loaded per well. Normalized to total 
protein per lane by ponceau rouge. Open circles represent control condition, black squares hypoxic condition. E) 
Representative image. 
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The effect of hypoxia on plasma myostatin was examined by two-way (condition [control, 

hypoxic] × time [-30, 120, 240, 320 minutes]) repeated measures ANOVA, with treatment order 

considered as a between-participant effect. No treatment order × group × time interaction was 

noted (p = 0.064). No effect of acute hypoxia was noted on plasma myostatin, with no condition 

× time interaction (p = 0.69), nor a main effect of group (p = 0.11) or time (p = 0.28) observed 

(Figure 4.8A). This effect is maintained if plasma myostatin during hypoxia is expressed as a 

function of matching time point control (Figure 4.8B), with no effect of group (p = 0.09) or time 

witnessed (p = 0.95). 
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Figure 4.8: Effect of hypoxic exposure on plasma myostatin. ELISA for plasma myostatin (DGDF80, R&D Systems) 
concentration from venous plasma prior (-30 minutes), or following (120 minutes, 240 minutes or 320 minutes) a 11.9 % 
O2 hypoxic stimulus administrated between time points 0 to 120 minutes. A) Absolute myostatin concentration (pg.mL-1) 
in control (grey open circles) or hypoxic (black squares) conditions. B) Relative myostatin concentration in hypoxic 
conditions, expressed as a function of matching control time point (%). Black line indicates mean. N = 8.  
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4.3.3 Effect of Hypoxia on Proteasomal Activity 

The effect of ubiquitin (both free and bound) was examined by two-way (condition [control, 

hypoxic] × time [-30, 120, 300, 320 minutes]) repeated measures ANOVA. No condition × time 

interaction was noted for the effect of hypoxia on muscle free ubiquitin (6 kDa), when results are 

expressed as a percentage change from baseline (-30 minutes; p = 0.875), nor is a main effect of 

group (p = 0.846) or time (p = 0.345) noted (Figure 4.9A). This effect is maintained if hypoxic results 

are expressed relative to matching time point control, with no effect of time on free ubiquitin 

expression (p = 0.212, Figure 4.9B).  

 

In a similar manner, no condition × time interaction was noted for the effect of hypoxia on muscle 

bound ubiquitin, when results are expressed as a percentage change from baseline (-30 minutes; p 

= 0.356), nor is a main effect of group (p = 0.25) or time noted (p = 0.99, Figure 4.10A). No effect of 

time is noted if hypoxic results are expressed relative to matching time point controls (p = 0.274, 

Figure 4.10B), however a clear outlier can be seen at the -30 time point (517 % increase at baseline 

above control condition, greater than 3 SD from the mean). Removal of this outlier alters the result 

of statistical analysis, with a significant effect of time (p = 0.002). Subsequent post hoc analysis with 

this outlier removed suggests bound ubiquitin is increased following hypoxia, with bound ubiquitin 

at 320 minutes 198.5 % higher than matching time point controls (p = 0.006, d = 1.95; Figure 4.10B). 
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Figure 4.9: Effect of hypoxia on free ubiquitin.  Western blot of free ubiquitin (3933, Cell Signalling) at 6 kDa from vastus 
lateralis muscle biopsy prior and post 2 hours control (ambient) or hypoxic (11.9 % O2) exposure. A) Individuals normalized 
to baseline values (-30 minutes; dashed line). B) Hypoxic condition normalized to matching control time point value. N = 
8 per condition. 40 µg total protein loaded per well. Normalized to total protein per lane by ponceau rouge. Open grey 
circles represent control condition, black squares hypoxic condition. Insert – representative image of ubiquitin blot show 
ubiquitin binding across proteins.  
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Figure 4.10: Effect of hypoxia on bound ubiquitin. Western blot of bound ubiquitin (3933, Cell Signalling) at from vastus 
lateralis muscle biopsy prior and post 2 hours control (ambient) or hypoxic (11.9 % O2) exposure. A) Individuals normalized 
to baseline values (-30 minutes). B) Hypoxic condition normalized to matching control time point value. N = 8 per 
condition. 40 µg total protein loaded per well. Normalized to total protein per lane by ponceau rouge. Open grey circles 
represent control condition, black squares hypoxic condition (open black square indicates removed outlier). A 
representative image can be seen in Figure 4.9.  



  Chapter Four – Hypoxia in vivo 
 

140 
 

 

The effect of hypoxia on IκBα was examined by two-way (condition [control, hypoxic] × time [-

30, 120, 300, 320 minutes]) repeated measures ANOVA. No condition × time interaction was 

noted for the effect of hypoxia on muscle IκBα, when results are expressed as a percentage 

change from baseline (-30 minutes, p = 0.27), nor is a main effect of group (p = 0.58) or time (p = 

0.76) noted (Figure 4.11A). No effect of time was noted if hypoxic results are expressed relative 

to matching time point controls (p = 0.98, Figure 4.11B). 
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Figure 4.11: Effect of hypoxia on IκBα expression. Western blot of IκBα (9242, Cell Signalling) at from vastus lateralis 
muscle biopsy prior and post 2 hours control (ambient) or hypoxic (11.9 % O2) exposure. A) Individuals normalized to 
baseline values (-30 minutes; dashed line). B) Hypoxic condition normalized to matching control time point value. N = 8 
per condition. 40 µg total protein loaded per well. Normalized to total protein per lane by ponceau rouge. Open grey 
circles represent control condition, black squares hypoxic condition. Insert – representative image. 
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4.3.4 Correlations between Oxygen Delivery and Myostatin  

A weak linear relationship is seen between the change in plasma myostatin concentration (pg.mL-

1) from baseline to 120 minutes (∆ plasma myostatin) and the change in SpO2 (%) from baseline to 

120 minutes (∆ SpO2; r2 = 0.34). Person’s correlation suggests this relationship is not significant (p 

= 0.13 Figure 4.12). 

 

As a proxy of total oxygen delivery (DO2), the correlation between HR × SpO2 during hypoxia and ∆ 

plasma myostatin was examined. No relationship was noted between these variables (r2 = 0.07; 

data not shown).  
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Figure 4.12: Correlation between ∆ SpO2 and ∆ plasma myostatin. ∆ SpO2 calculated from difference between baseline 
and 120 minutes. ∆ plasma myostatin calculated from difference between baseline and 120 minutes. Plasma myostatin 
concentration value (ng.mL-1) from pooled baseline values between conditions, as measured by ELISA (DGDF80, R&D 
Systems). N = 8 individuals. Dashed lines indicate 95 % confidence limits. 
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No correlation is seen between the change in SpO2 (%) from baseline to 120 minutes (∆ SpO2) and 

the change in muscle myostatin peptide (%) either from baseline to 120 minutes (p = 0.70, Figure 

4.13A) or from baseline to 320 minutes (p = 0.98, Figure 4.13B).  
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Figure 4.13: Correlation between ∆ SpO2 and ∆ muscle myostatin. Change in muscle myostatin (%) measured by Western 
blot A) from baseline to immediately following hypoxic exposure or B) from baseline to 320 minutes (200 minutes 
following hypoxic exposure). Results expressed as a percentage change from control values. Average of SpO2 during 120 
minutes at 11.9 % O2. N = 8 individuals. Dashed lines indicate 95 % confidence limits.  
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4.3.5 Effect of Hypoxia on Global and Muscle Protein Turnover 

Whole body protein turnover (Q) was examined by two-way (condition [control, hypoxic] × time [-

30, 120, 300 minutes) repeated measures ANOVA. No condition × time interaction is noted (p = 

0.227), nor is an effect of time (p = 0.306) or condition (p = 0.1; Figure 4.14), suggesting protein 

turnover was not altered by acute hypoxic exposure (Figure 4.14). 
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Figure 4.14: Whole body protein turnover per kilogram (Q.kg-1) as a function of time (minutes). D5-phenylalanine 
infusion (prime 2 µmol.kg-1, rate 0.05 µmol.kg-1) started at 0 minutes for 320 minutes. Tracer (t) D5-Phe, tracee (T) 
phenylalanine. Control (20.9 % O2) indicated by open grey circles, hypoxic (11.9 % O2). Hypoxic stimulus delivered 
between 0 – 120 minutes. N = 8.  

 

FSR was directly quantified in a limited sub-group (n = 5) of the experimental cohort. The effect of 

hypoxia on FSR was examined by two-way (condition [control, hypoxic] × time [-30, 120, 300 

minutes) repeated measures ANOVA. No condition × time interaction is noted (p = 0.327), nor is an 

effect of time (p = 0.0.981) or condition (p = 101; Figure 4.15), suggesting FSR was not altered by 

hypoxic exposure. 
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Figure 4.15: FSR (%.hr-1) as a function of time (minutes). D5-phenylalanine infusion (prime 2 µmol.kg-1, rate 0.05 µmol.kg-

1) started at 0 minutes for 320 minutes. Tracer (t) D5-Phe, tracee (T) phenylalanine. Control (20.9 % O2) indicated by open 
grey circles, hypoxic (11.9 % O2). Hypoxic stimulus delivered between 0 – 120 minutes. N = 5.  

 

Quantification of FBR requires the quantification of isotope tracer within three compartments, 

protein bound, unbound (free) and plasma, for subsequent quantification of dilution of free tracer 

(t) from protein and plasma tracee (T) (section 4.2.4). Repeated attempts to quantify 15N-Phe t in 

plasma have been unsuccessful to date, precluding calculation and reporting of FBR results here.  
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4.4 Discussion 

When humans are exposed chronically to a hypoxic environment, losses of muscle mass are often 

witnessed. The results demonstrated here show that 2 hours of hypoxia is sufficient to reduce the 

expression of the myostatin peptide within muscle in vivo in healthy males, and further, this is 

coupled with evidence for increased ubiquitin activity but no apparent alteration in pro-synthesis 

events. 

 

These results represent the first report of changes in muscle myostatin peptide expression in any 

in vivo model in an acute timeframe. The acute alteration in myostatin signalling following 2 hours 

of hypoxic exposure in healthy humans suggests that hypoxic exposure alone may be sufficient to 

induce muscle atrophy, independent of the cause of hypoxia. Counter to the initial hypothesis, here 

a decrease in muscle myostatin expression following hypoxic exposure is seen. One interpretation 

of this result is that myostatin is acting in its endocrine manner, as first suggested by Gonzalez-

Cadavid and colleagues (1998), and this decrease represents secretion of the myostatin peptide. An 

alternative hypothesis is that myostatin cellular content may be being degraded in an attempt to 

save muscle mass, potentially via the ubiquitin proteasomal pathway, the activity of which was 

shown here to be increased. This effect would be similar in nature to that shown by Doucet and 

colleagues (2007), who showed significantly increased expression in downstream members of the 

pro-synthesis Akt pathway, albeit in a different model of hypoxia (chronically hypoxic COPD 

patients).  

 

If myostatin is acting in an endocrine manner, then it would be expected that an increase in plasma 

myostatin concentration would be seen. The results presented here do not support this, with no 

increase in plasma myostatin seen at any time point measured. However, it should be noted that 

the decrease in muscle myostatin was seen at the final measured time point (t = 320 minutes). It 
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may be physiologically unreasonable to expect any movement of an endocrine hormone out of 

muscle to appear immediately in plasma, although this has not been examined by published 

literature to date. The delay between leaving the intracellular space and appearing systemically at 

a measurable concentration may have resulted in the missing of an increase in the model studied 

here, suggesting examination of longer timeframes may be of interest. 

 

Increased activity of the proteasomal pathway fits with the preceding Chapters in vitro results and 

with those of Caron and colleagues (2009). It therefore seems that in acute timeframes, the effect 

of hypoxia on muscle size is regulated primarily via degradative pathways, not inhibition of pro-

synthesis activity. Unfortunately, methodological constraints prevented the measurement of 

phosphorylated proteins, therefore this Chapter was unable to quantify changes in Akt signalling. 

The results of Etheridge and colleagues (2011) provide support for a lack of change in pro-Akt 

signalling, with no change in Akt pathway members (p70s6k, pAkt [Ser473] or mTOR [S448]).  

 

Supporting these results, acute hypoxic does not appear to alter FSR, as shown by Etheridge and 

colleagues (2011) immediately after 2 hours normobaric hypoxia (12 % O2), by Imoberdorf and 

colleagues after 24 hour at 4,559 m altitude (Imoberdorf et al., 2006), and by the FSR results 

presented in this Chapter (2 hours normobaric hypoxia, 11.9 % O2). These findings both confirm 

previous results (Etheridge et al., 2011), and extended this finding up to 3 hours following hypoxic 

exposure. It is tempting to speculate changes in FBR may have occurred in this acute time frame, 

and indeed, whole body protein turnover trended towards an increase in the hypoxic group. Such 

a finding would be consistent with the results of Caron and colleagues (2009) in vitro and also the 

proposed initiation of atrophic processes due to the hypoxic stimulus used here, explaining the 

method of atrophy of muscle during severe hypoxic stimulation. It should be noted that whole body 

turnover is not representative of muscle atrophy, but all tissues’ protein turnover systemically. 
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Confirmation by successful measurement of FBR, to balance the lack of response on FSR, is needed 

to confirm this hypothesis.  

 

The results presented here suggest no link between acute hypoxic exposure and increased 

inflammatory signalling, indicated by no decrease in IκBα expression. Similar findings were found 

Koong and colleagues (1994b) in vitro, who showed decreased IκBα in the acute phases (30 minutes 

– 4 hours) of the hypoxic response in NIH3T3 (fibroblast cell line). Conversely, Burki and Tetenta 

(2014) showed no change in interleukin (IL) 1 and 6, or C-reactive protein following either 30 or 60 

minutes of normobaric hypoxia (11 % O2) in a similar population examined here. Chronic disorders 

such as COPD are associated with body mass loss and increased pro-inflammatory cytokine 

expression (Eid et al., 2001), however a number of confounding factors associated with the disease 

mean causality cannot be attributed to hypoxia alone. Further, Chapter Three of this work showed 

increased TNFα expression following 24 and 48 hours of hypoxic exposure in vitro, but not 2 hours, 

suggesting time of exposure used in this Chapter, and by Burki and Tetenta (2014), may be 

insufficient to induce a pro-inflammatory reaction in vivo.  

 

Finally, the weaknesses associated with such an acute study in a healthy model should be noted. 

This Chapter attempted to model the initial changes in myostatin in response to a hypoxic 

stimulation in an attempt to model the changes seen in chronic disorders such as COPD, CHF and 

mountaineering in healthy individuals. Future work should extend either the duration of time in 

hypoxia, or the magnitude of hypoxia delivered, to examine what effect concentration of oxygen 

and time in a hypoxic state have on the response to hypoxia. One downside of specifically choosing 

an acute model of hypoxia is no direct measure of phenotypic muscle atrophy is possible as the 

timeframes are too rapid to induce measurable losses in muscle size.  
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In conclusion, this Chapter demonstrates that a 2 hour hypoxic exposure is sufficient to reduce the 

expression of muscle myostatin peptide, but not alter plasma myostatin concentration. Further, 

rate of phenylalanine uptake into muscle cells is not altered by acute hypoxic exposure. These 

results suggest hypoxia alone is sufficient to alter myostatin signalling, but not acutely alter protein 

synthesis. Alteration in myostatin signalling may in part underlie the atrophy seen in hypoxic 

disorders such as COPD and CHF, as well as environmental conditions such as mountaineering. 



 

 

 

 

 

 

 

Chapter Five – The Effect of Time in 

Acute Hypoxia on Plasma Myostatin  
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5.1 Introduction  

Homo sapiens are obligate aerobes, and as such a reduction or impairment of oxygen supply results 

in a number of physiological adaptations. These adaptations are dependent on the magnitude of 

the hypoxic stimulus. One phenotypical example of hypoxic adaptation is a loss of muscle mass. 

These effects are seen in healthy individuals during mountaineering, where a greater degree of 

muscle mass is lost than would be expected due to alterations in diet and energy expenditure alone 

(Hoppeler et al., 1990, Wagner, 2010) or in approximately 25 % of patients with chronic disorders 

such as COPD and CHF, where cachexic loss of muscle mass co-presents with systemic hypoxemia 

(Baarends et al., 1997, Bernard et al., 1998). 

 

A time-dependent adaptive effect of hypobaric hypoxia is seen across physiological systems. Acute 

exposure to hypobaric hypoxia of ~ 4,000 m in healthy adults increases ventilatory frequency to 

approximately 200 % of sea level values, over the course of 100 hours exposure. The morphology 

of this shift is approximately exponential, with greater increases seen at later stages (Lenfant and 

Sullivan, 1971). Carotid body chemoreceptor sensitivity is increased following 28 days of hypobaric 

hypoxia, but not 3 hours (Barnard et al., 1987), while HR increases and mean arterial pressure (MAP) 

decreases in a time dependent manner following chronic intermittent hypoxia (1 minute of 10 % O2 

: 3 minutes of 21 % O2) over 14 days (Marcus et al., 2009). Finally, and importantly for this work, a 

proteomic investigation of trout (Oncorhynchus mykiss) exposed to hypoxia show time dependent 

decreases in a number of muscle structural proteins including Myosin and Tubulin, and increases in 

proteasomal proteins, including ubiquitin and proteasomal subunits, at 1, 2 and 24 hours (Wulff et 

al., 2012). While caution should be made in the extrapolation of results from fish, if these results 

are maintained in humans, then a similar time-dependent effect may be seen in regulatory 

mechanisms of muscle size. 
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The role of myostatin as a negative regulator of muscle mass is also well described. First identified 

by McPherron and colleagues (1997), myostatin directly alters myocyte size by inhibiting the actions 

of the Akt-mTOR signalling pathway (Trendelenburg et al., 2009) and thus preventing Akt-

dependent protein synthesis, as well as increasing activity of the ubiquitin-proteasomal system 

(McFarlane et al., 2006), a regulator of the rate of protease activity and protein degradation within 

cells (Mitch and Goldberg, 1996). Myostatin is known to respond to various atrophic and 

hypertrophic stimuli, as discussed in Chapter Two. Further, interactions between proteasomal 

activity, canonical pro-inflammatory cytokines and hypoxia have previously been reported (Murphy 

et al., 2011, Reardon et al., 2001), suggesting examinations of hypoxia and atrophy of muscle should 

consider cytokine responses. The concentration of plasma myostatin is reduced in response to 

resistance training (Walker et al., 2004) and increased in response to starvation (Jeanplong et al., 

2003) and disuse (Murphy et al., 2011, Reardon et al., 2001). As such, myostatin is thought to play 

a central role in the regulation of muscle size in Mammalia (Lee, 2004, Rodriguez et al., 2014).  

 

It was recently noted that both rats exposed to 10 % O2 for 6 weeks and human COPD patients who 

are chronically hypoxemic show increased muscle myostatin expression (Hayot et al., 2011), 

suggesting hypoxia may induce increased myostatin expression. It is difficult to directly compare 

severity of hypoxic insult between models. Desaturation in severe COPD (FEV1 < 50 %) is reported 

to be ~90 %, however (relatively) moderate activity can reduce this to 70 – 80 % (Phillips, 2004). 

Further, causality can be questioned with regards to chronic changes in myostatin in COPD patients. 

It could be hypothesized that hypoxia has induced a loss of muscle mass, which has therefore 

resulted in a reduction in myostatin, as myostatin negatively correlates with muscle mass across 

both healthy and cachexic patients (Gonzalez-Cadavid et al., 1998). Further, COPD presents a 

difficult research model, with altered nutritional intake, systemic inflammation and altered levels 

of physical activity (Wagner, 2008), all of which could conceivably alter myostatin.  
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Chapter Three of this thesis therefore examined the muscle and plasma myostatin response to 2 

hours of hypoxia in healthy humans, hypothesizing an increase in myostatin would be seen. Counter 

to this hypothesis, myostatin expression within muscle decreased following acute hypoxic 

exposure. If the myostatin response to acute hypoxia is to decrease expression, while chronic 

hypoxia increases expression, this suggests a time-dependent effect is present. One hypothesis 

explaining these results seen in Chapter Four is the decrease in myostatin peptide expression 

represents myostatin leaving the muscle to act in its endocrine manner before increases in 

myostatin peptide production can compensate for this endocrine loss. If healthy individuals spend 

a longer period in hypoxic conditions, they thus may show the originally hypothesized increase in 

myostatin concentration at the plasma and increased expression at the muscle cellular level. 
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5.1.1 Aims and Hypothesis 

The aim of this Chapter was therefore to examine what effect time of hypoxic exposure has on 

myostatin expression in muscle and concentration in plasma. Specifically, this Chapter aimed to; 

1. demonstrate the presence or absence of a time dependent effect of hypoxia on myostatin 

signalling in vivo in healthy humans. 

 

The hypothesis for this Chapter was that myostatin would increase at both the muscle and plasma 

level after 10 hours of 12 % O2. Specifically, it is hypothesized that; 

1. the effect of hypoxia on myostatin in vivo will be time dependent, with increased myostatin 

both within muscle and in plasma following 10 hours, but not 2 hours, of hypoxic exposure.  
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5.2 Methods 

5.2.1 Ethical Approval 

Ethical approval for the work described in this Chapter was provided by the University of 

Westminster Research Ethics Sub-committee (12/13/46) and conformed to the guidelines laid out 

by the Declaration of Helsinki. Written informed consent was obtained from all participants prior 

to participation. All work described within this chapter took place within the physiology labs of Dr 

Richard Mackenzie at the University of Westminster, London. Muscle Biopsies were collected by Dr 

David Howard, University College London.  

 

5.2.2 Participant Description 

A cohort of healthy male participants was recruited for this study. Inclusion criteria for participation 

was male, 18 – 40 years of age with no exposure to altitude or hypoxic environments exceeding 

3000 m (or equivalent) within 3 months, with a body mass index (BMI) of 20 – 30 kg.m-2. Exclusion 

criteria used was the presence of any cardiovascular, respiratory, metabolic or coagulation 

disorder, regular smoker, or currently on prescription medication. Participants were also excluded 

if they had a known allergy to lidocaine. Participants were asked to abstain from strenuous exercise 

for 48 hours prior to attending the laboratory, and abstain from caffeine for 24 hours prior to 

attending. 

 

Screening of participants took place after a 12 hour fast, and involved measurement of resting 

metabolic rate by indirect calorimetry (Cortex, metalyser II) followed by body composition by air 

displacement plethysmography (BodPod, A/T2002A). Participants spent 40 minutes in a darkened 

room in a supine position during which expired gas fractions and volumes were measured. The 

initial 10 minutes of resting data was discarded, giving a 30 minute average for calculation of resting 

metabolic rate (Haugen et al., 2007), a complete protocol of which is given in Appendix Eleven. For 
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body composition measurement, participants wore minimal, tight-fitting clothing and a standard 

latex swim cap. After initial screening of 14 individuals, eight participants who met all criteria and 

were able to comply with study requirements were invited to participate in this study and are 

characterized in Table 5.1 and Table 5.2. 

 

Table 5.1: Participant characteristics. N = 8. 

Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

BMI 

(kg.m-1) 

FFM 

 (%) 

FFM 

 (kg) 

Resting 

SpO2 

(%) 

29.8 (4.7) 
180 (0.70) 78.99 (9.83) 

24.22 

(1.79) 
85.1 (7.19) 

66.85 

(6.53) 
97.9 (1.1) 

Expressed as mean (standard deviation). Body mass index (BMI). Fat free mass (FFM).  

 

Table 5.2: Participant indirect calorimetry data. N = 8.  

VO2 (L.min-1) VCO2 (L.min-1) RER EE (kj.h-1) 

0.29 (0.02) 0.24 (0.02) 0.81 (0.05) 346.66 (19.20) 

Expressed as mean (standard deviation). Volume of oxygen consumed (VO2) and Volume of carbon dioxide (VCO2). 
Respiratory exchange ratio (RER). Energy Expenditure (EE).  

 

5.2.3 Experimental Design 

Normobaric hypoxia was delivered inside of a commercial hypoxic chamber (Figure 5.1). Two 

hypoxic generator pumps (Hypoxico, Summit II) utilizing activated carbon molecular sieves were 

used to reduce the percentage of oxygen from ambient 20.9 % towards a target of 12 % O2. The 

average concentration across individuals was 12.5 (0.3) % O2. Participants were exposed to this 

hypoxic stimulus for 10 hours. Physical activity was restricted to habitual activities within the 

chamber environment (standing and sitting).  
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Figure 5.1: Commercial hypoxic chamber utilized and hypoxic gas generators. Hypoxic gas generators seen to left of 
image. 

All but one participant left the chamber environment once per 10 hour stay to use the bathroom. 

During this time hypoxia was maintained utilizing a modified reverse Douglas bag system for 

breathing of hypoxic air at a matching O2 % to that of the chamber environment. A total of four 

bags were connected in circuit, each filled to ~ 1/4 capacity to maintain ambient pressure. This 

system was connected via a ~ 1 m flexible hose to a non-rebreathing, nose-mouth covering 

facemask (Figure 5.3).  
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Figure 5.2: Modified Douglas bag system. Four 100 L bags are interconnected and partially filled to provide a large 
reservoir of hypoxic gas at atmospheric pressure. A non-rebreathing, nose-and-mouth mask is attached to allow 
inspiration of hypoxic gas and expiration into atmosphere.  

 

 

Figure 5.3: Schematic representation of experimental protocol.. Thick arrows indicate timing of blood sample and muscle 
biopsy, thin arrow blood sample only. Time (24 hour clock, not to scale) indicated in the horizontal axis.  
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Measurement of SpO2 and HR was carried out using a pulse oxymeter (Pulsox-3iA, Konica) attached 

to the left index finger. SpO2 and HR were recorded every 30 minutes for the first 120 minutes, then 

every 60 minutes for the remainder of the hypoxic exposure. The participant’s response to mLLAMS 

was recorded at matching time points (Figure 5.3). In an identical manner as described in Chapter 

Three, a conchotome biopsy was taken from all participants just prior to (0 hours) and within 10 

minutes of exiting the hypoxic environment (10 hours). Biopsies were taken by Professor David 

Howard (University College London). Biopsies were rapidly rinsed in ice-cold saline, separated from 

any visible fat and immediately frozen in liquid nitrogen for future analysis. Venous blood samples 

were taken immediately prior to (0 hours), 2 hours into (2 hours), and within 10 minutes of exiting 

the hypoxic environment (10 hours). Whole blood was drawn from a convenient antecubital vein 

into 10 mL lithium heparin tubes and spun (10,000 rpm, 10 minutes, 4 °C) to separate plasma from 

cellular material. Collected plasma was stored at -80 °C for future analysis. 

 

Water was provided ad libitum throughout the exposure. Participants were fed once during their 

stay in the hypoxic environment, immediately post the 2 hour blood sample. Participants’ meal 

contained a macronutrient distribution of ~ 55 % carbohydrate, ~ 30 % fat and ~ 15 % protein, with 

an energy content of 1 / 3rd of their predicted daily energy requirement, as established from the 

following equation. A physical activity level factor (PAL) of 1.4 was selected, as participants would 

remain sedentary during the trial (Bonetto et al., 2011).  

 

𝐷𝑎𝑖𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑘𝑗) =
[(𝑅𝑀𝑅 (𝑘𝑗. ℎ𝑜𝑢𝑟) × 24 ℎ𝑜𝑢𝑟𝑠) × PAL] 

3
 

RMR, Resting metabolic rate; PAL, physical activity level factor. 
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5.2.4 Protein Quantification 

Biopsies from 0 and 10 hours (~ 100 mg) were powered by mortar and pestle in liquid nitrogen 

before being resuspended in 125 µL lysis buffer (10 mmol Tris-HCI, 150 mmol NaCI, 2 mmol EDTA, 

2 % Triton X-100, protease inhibitor [Sigma, P8340] and phosphatase inhibitor [Sigma, P6624], 

Appendix One), and shaken for 30 minutes at 4 °C. Samples were then spun (6000 rpm, 6 minutes, 

4 °C) to fractionate total protein supernatant from insoluble debris. 

 

An aliquot of lysed muscle tissue extract was further diluted 1:10 in ice-cooled lysis buffer (Appendix 

One), before 5 µL of each sample and standards were loaded into flat-bottomed clear 96-well plates 

in triplicate. Total protein content was measured in the method of Lowry (BioRad, 500-0116; 

Appendix Five). Bovine serum albumin (BSA) was used as a protein standard. Coefficient of 

variability of standards and samples was 0.13 and 0.078, respectively. Aliquots of lysed supernatant 

were diluted to 2 mg.mL-1 into Laemmli’s loading buffer (Appendix One). Subsequent samples were 

frozen and stored at -80 °C for later analysis by Western blot.  

 

5.2.5 Western Blot 

Western blots were run as described in Chapter Three. Briefly, 40 µg of total protein was run per 

lane on precast 10 % polyacrylamide gels (Invitrogen, NP0301), and transferred for 3 hours on ice 

to nitrocellulose membrane (GE, RPD30320). Blocking and primary antibody conditions are given in 

Table 5.3. All primary antibodies were used 1:1000. Secondary antibody was anti-rabbit, used 

1:10,000. Membranes were developed by hand onto film (Appendix Seven) before being digitized 

and analysed with ImageJ open source software (ImageJ, version 1.45s). Blots were normalized to 

total protein stained for by ponceau rouge, using the method of Romero-Calvo and colleagues 

(2010).  
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Table 5.3: Western blot characteristics by target protein. Blocking, primary and secondary conditions are diluted into 
tris-buffered saline with tween (TBS-T).  

Target Supplier (code) Blocking  Primary 

antibody 

secondary 

antibody 

Myostatin 
BIOSS antibodies 

(2227G) 

5 % BSA, 1 hour, 

RT 

0.5 % BSA o/n, 

4 °C 

0.5 % BSA, 1 hour, 

RT 

Ubiquitin 
Cell Signalling 

(3933) 

5 % BSA, 1 hour, 

RT 

0.5 % BSA o/n, 

4 °C 

0.5 % BSA, 1 hour, 

RT 

pAkt (Ser473) 
Cell Signalling 

(9271) 
5 % BSA, O/N, RT 

0.5 % BSA, 1 

hour, 4 °C 

0.5 % BSA, 1 hour, 

RT 

TNFα 
Sigma 

(WH0007124M2) 

5 % BSA, 1 hour, 

RT 

5 % BSA o/n, 

4 °C 

0.5 % BSA, 1 hour, 

RT 

Bovine serum albumin (BSA). Room temperature (RT). Overnight (o/n).  

 

5.2.6 ELISA 

ELISA for plasma myostatin was performed according to manufacturer’s instructions (DGDF80, R&D 

Systems). Aliquoted plasma samples were defrosted from – 80 °C to room temperature before 100 

µL plasma was activated for the removal of myostatin binding proteins (60 µL HCl, 6 M, 10 minutes 

at room temperature), then neutralized (40 µL NaOH + 1.2 mol HEPES), and finally diluted into 200 

µL calibrator diluent (R&D, 895525) to give a prepared sample at a 1:4 dilution. Recombinant 

myostatin was used as a standard (range 31.3 – 2,000 pg.mL-1; R&D, 894410), and calibrator diluent 

used as a blank control. Plates were incubated at 37 °C with gentle agitation for 2 hours, washed 4 

times (R&D, 895003) before myostatin conjugate (R&D, 894409) was added (200 µL) and plates 

incubates for 2 hours at room temperature. Wells were washed again (4 times) before 200 µL 

substrate solution was added and plates incubated at room temperature, protected from light. 

Colorimetric reaction was stopped with 50 µL 2 N sulphuric acid. Samples were read 

spectrophotometrically at 450 nm and blanked to 570 nm using a microplate reader (VersaMax, 

Molecular Devices, USA). Coefficient of variability of standards and samples were 0.09 and 0.05, 

respectively. 
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5.2.7 Statistical Analysis 

Results are presented in figures as individual data points, as outlined by Drummond and Vowler 

(2012) and written in text as ‘mean (standard deviation) units’. Repeated measures analysis of 

variance (ANOVA), Friedman’s or single-sample t-tests were used as appropriate, with post hoc 

analysis performed where needed in the method of Bonferroni, using SPSS (IBM, version 20.0). 

Where a deviation from sphericity of groups was noted, this was corrected for in the method of 

Greenhouse and Geisser (1959). Linear correlations were determined in the method of Pearson. 

Significance was set at p < 0.05 throughout.  
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5.3 Results 

5.3.1 Effect of Hypoxia on Homeostatic Measures 

The effect of hypoxia on SpO2 was examined by repeated measures (0, 30, 60, 90, 120, 300, 360, 

420, 480, 540, 600, 610 minutes) ANOVA. A significant effect of time on SpO2 (p < 0.001) was noted. 

Post hoc analysis shows SpO2 is significantly reduced at every time point except at 240 (p = 0.052) 

and 610 minutes (p = 1.0; Figure 5.4). Mean SpO2 immediately prior to hypoxic exposure was 97.9 

% (1.1 %), decreasing to mean of 84.4 % (1.2 %) during hypoxia and returning rapidly to baseline 

values following hypoxic exposure. 

 

One participant recorded a notably higher value at time point 240 minutes of 96 % SpO2 (where 

mean results is 87 (5.0) %) giving p = 0.052 at this time point. This data point was not removed as it 

did not meet this dissertations definition of an outlier (> 3 SD from the sample mean) (Hopkins et 

al., 2011). 
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Figure 5.4: Effect of hypoxia on fingertip capillary haemoglobin oxygen saturation.  Fingertip capillary haemoglobin 
oxygen saturation (%) as a function of time (minutes). Hypoxic exposure (12.5 % O2) from time point 0 to 600 minutes.  
indicate significant difference from baseline with bonferroni correction (-10 minutes, p < 0.05). N = 8 males. Error bars 
indicate SD.  
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The effect of time in hypoxia on HR was examined by repeated measures ANOVA (0, 30, 60, 90, 120, 

300, 360, 420, 480, 540, 600, 610 minutes). A significant effect of time on HR was noted (p < 0.001). 

Post hoc analysis reveals heart rate increased from baseline (- 10 minutes) at the 180 (p = 0.003) 

and 240 minute (p = 0.012) time points (Figure 5.5A). When heart rate results are expressed as a 

percentage change from baseline, similar effects are seen, with a significant effect of time on HR (p 

< 0.001), and post hoc analysis revealing hypoxia increases HR at the 180 minute time point (p = 

0.002, Figure 5.5B).  
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Figure 5.5: Effect of hypoxia on resting heart rate. A) Absolute HR (bpm) B) Relative to baseline (%). Hypoxic exposure 
(12.5 % O2) from time point 0 to 600 minutes. * indicates significant difference from baseline at indicated time point (p < 
0.05). Error bars represent SD. N = 8 males. 
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Figure 5.6:  Effect of hypoxia on acute mountain sickness symptoms. Median of mLLAMS score (arb. units, thick line) as 
a function of time (minutes). Open circles indicates individuals data points, horizontal lanes indicate time point median. 
Hypoxic exposure (12.5 % O2) from time point 0 to 600 minutes. N = 8 males. 

 

Friedman’s test suggests there is an effect of time in hypoxia on the occurrence of acute mountain 

symptoms, as measured by the mLLAMS questionnaire (p = 0.045, Figure 5.6). Significant variability 

of responses is noted, with one individual indicating a score of 0 arb. unit at every hypoxic time 

point except one, which scored 1 arb. unit (Table 5.4).  

 

Table 5.4: Lake Louse acute mountain sickness questionnaire score (arb. units) by participants (A – H) during (time = 30 
minutes – 600 minutes) hypoxic exposure (12.5 % O2). 

Participant A B C D E F G H 

median 2 2 2.5 1 0 2 1 1 

maximum 4 3 3 2 1 2 2 2 

minimum 1 0 1 1 0 0 0 0 
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5.3.2 Effect of Hypoxia on Plasma Myostatin  

The effect of 10 hours hypoxia on plasma myostatin was examined by repeated measures (0, 2, 10 

hours) ANOVA. A significant effect of time was noted on plasma myostatin (p < 0.001). Subsequent 

post hoc analysis shows plasma myostatin concentration is maintained from 0 hours to 2 hours, 

with a concentration of 2.96 (1.12) ng.mL-1 and 2.91 (1.14) ng.mL-1, respectively (p = 1.0, d = 0.04), 

but decreased following 10 hours of hypoxic exposure to 2.45 (1.03) ng.mL-1 (p = 0.022, d = 0.48; 

Figure 5.7A). One data point for plasma myostatin concentration is noticeably higher at every time 

point (0 hours = 5.42 ng.mL-1, 2 hours = 5.56 ng.mL-1, 10 hours 4.92 ng.mL-1, (Figure 5.7A). These 

values are from the same individual and removal does not alter the results shown here. 

 

The effect of hypoxia on plasma myostatin is maintained if data is expressed relative to individual 

baseline values (time = 0 hours). A repeated measure ANOVA suggests time in hypoxia alters plasma 

myostatin (p = 0.004). Post hoc analysis suggests no effect of hypoxia after 2 hours, with mean 

plasma myostatin 99.2 (9.9) % of baseline (p = 1.0, d = 0.11). Following 10 hours of hypoxia, plasma 

myostatin is decreased to 83.9 (12.6) % of control values (p = 0.026, d = 1.28, Figure 5.7B).  
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Figure 5.7: Effect of hypoxia on plasma myostatin concentration.  ELISA for plasma myostatin from venous plasma prior 
(0 hours), during (2 hours), or following (10 hours) 12.5 % O2 hypoxic stimulus. A) Absolute concentration (pg.mL-1) B) 
Relative to individual 0 hour concentration (%).* indicates differences between times as marked. Closed circles indicate 
0 hours, squares indicate 2 hours and triangles indicate 10 hours. Black line indicates mean. N = 8. 
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5.3.3 Correlations between Desaturation and the Plasma Myostatin Response 

No correlation is seen between the desaturation of SpO2 during 2 hours of hypoxia (∆SpO2) and the 

change in plasma myostatin from baseline to 2 hours (∆ plasma myostatin; Figure 5.8A; r2 = 0.038), 

with Pearson’s correlation suggesting no significant relationship between the two variables (p = 

0.65). In a similar manner, no correlation is seen between the desaturation of SpO2 during 10 hours 

of hypoxia (∆SpO2) and the change in plasma myostatin from baseline to 10 hours (∆ plasma 

myostatin; Figure 5.8B; r2 = 0.062). Again, Pearson’s correlation suggests no significant relationship 

between the two variables (p = 0.55). 

 

As a proxy of DO2, the correlation between HR × SpO2 during hypoxia and ∆ plasma myostatin was 

examined. A strong correlation is noted between HR × SpO2 during hypoxia and ∆ plasma myostatin 

(r2 = 0.677), with Pearson’s correlation suggesting a significant relationship between these two 

variables (p = 0.0121; Figure 5.8C).  
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Figure 5.8: Correlation between ∆ SpO2 and ∆ plasma myostatin during hypoxia. Myostatin (pg.mL-1) from venous 
plasma pre and post hypoxia (∆ plasma myostatin) as a function of decrease in average SpO2 during hypoxic stimulus 
relative to baseline (∆SpO2). A) ∆ plasma myostatin over 2 hours as a function of ∆SpO2 over 2 hours (squares) B) ∆ plasma 
myostatin over 10 hours as a function of ∆SpO2 over 10 hours (triangles). C) ∆ plasma myostatin over 10 hours as a 
function of SpO2 × HR. Hypoxic stimulus of 12.5 % O2. N = 8 males.  
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5.3.4 Effect of Hypoxia on Muscle Myostatin Expression 

Single sample t-test suggests a trend towards increased myostatin peptide expression following 10 

hours of hypoxic exposure, with a mean result of 144 (71) % of baseline values and a large effect 

size seen (p = 0.06, d = 0.62; Figure 5.9A). No effect of hypoxic exposure is seen on myostatin LAP 

expression (p = 0.34, d = 0.42; Figure 5.9B). No effect of hypoxic exposure is seen on the ratio of 

LAP to myostatin peptide (p = 0.40, d = 0.31, Figure 5.9C). 
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Figure 5.9: Effect of 10 hours of hypoxic exposure on myostatin expression. Western blot of myostatin (Bioss, 1288R A) 
peptide (26 kDa), B) latency associated propeptide (LAP; 45 kDa) and C) ratio of LAP to myostatin peptide from vastus 
lateralis muscle biopsy prior (baseline) and post 10 hours hypoxic (12 % O2) exposure. Results are expressed as individual 
percentage change from baseline. N = 8 males. 40 µg total protein loaded per well. Blot density normalized to total protein 
per lane by ponceau rouge. Insert) Representative image. 
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Single sample t-test shows no change in free ubiquitin at 10 hours post hypoxic exposure, with a 

mean post hypoxia of 98.8 (33.8) % of baseline (p = 0.93, d = 0.03; Figure 5.10A). Single sample t-

test show a trend towards a change in bound ubiquitin, with a mean post hypoxia of 147.4 (90.7) 

%, relative to baseline (p = 0.09, d = 0.52; Figure 5.10B). A single visually high value for bound 

ubiquitin can be seen (Figure 5.10B) which does not meet this works requirement as an outlier, 

therefore this value was not removed from analysis.  

0

50

100

150

200A)

F
re

e
 u

b
iq

u
it

in

(%
 c

o
n

tr
o

l)

 

 

0

100

200

300

400B)

B
o

u
n

d
 u

b
iq

u
it

in

(%
 c

o
n

tr
o

l)

 

Figure 5.10: Effect of 10 hours hypoxic exposure on ubiquitin (bound and free) expression. Western blot of ubiquitin 
(Cell Signalling, 3933) A) Free peptide (6 kDa) B) protein bound (all other weights) from vastus lateralis muscle biopsy 
prior (baseline) and post 10 hours hypoxic (12.5 % O2) exposure. Results are expressed as individual percentage change 
from baseline. N = 8 males per condition. 40 µg total protein loaded per well. Blot density normalized to total protein per 
lane by ponceau rouge. Insert) Representative image. 
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A single sample t-test shows no change in phosphorylation of Akt at serine 473 (pAkt [Ser473]). 

Following 10 hours hypoxia, mean pAkt (Ser473) is 95.2 (37.9) % of baseline values (p = 0.73, d = 

0.13; Figure 5.11). 

 

0

50

100

150

200

p
A

k
t 
S

e
r4

7
3

(%
 c

o
n
tr

o
l)

 

Figure 5.11: Effect of 10 hours hypoxia on phosphorylation of Akt (Ser473). Western blot of pAkt Ser473 (Cell Signalling, 
9271) from vastus lateralis muscle biopsy prior (baseline) and post 10 hours hypoxic (12.5 % O2) exposure. Results are 
expressed as individual percentage change from baseline. N = 8 males per condition. 40 µg total protein loaded per well. 
Blot density normalized to total protein per lane by ponceau rouge. Insert) Representative image. 
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Single sample t-test shows no change in TNFα expression following hypoxic exposure. TNFα 

expression was 121.2 (115) % of baseline expression, with a small effect size noted (p = 0.62, d = 

0.18; Figure 5.12). A notably exceptional data point occurs (382 % increase above control) that 

meets this works definition of an outlier (> 3 SD from group mean). Removal of this data point 

reduces mean increase to 89.4 (50.6) % of baseline, does not change the statistical outcome (p = 

0.43), but increases the effect size magnitude from small to moderate (d = 0.31).  
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Figure 5.12: Effect of 10 hours of hypoxia on TNFα expression.Western blot of TNFα (Sigma, T83000) from vastus lateralis 
muscle biopsy prior (baseline) and post 10 hours hypoxic (12.5 % O2) exposure. Results are expressed as individual 
percentage change from baseline. N = 8 males per condition. 40 µg total protein loaded per well. Blot density normalized 
to total protein per lane by ponceau rouge. Open circle, removed outlier data point. Horizontal line represents mean 
(excluding outlier). Insert) Representative image. 
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5.4 Discussion 

The induction of peripheral tissue hypoxia, either by reductions in atmospheric pressure (such as 

during mountaineering sojourns) or pathological impairment of systemic oxygen supply 

(hypoxemia), results in atrophy of muscle. This Chapter aimed to examine the effect of 10 hours of 

hypoxia on plasma and muscle myostatin. The primary finding presented here is a trend towards 

an increase in muscle myostatin and significant decrease in plasma myostatin concentration in 

response to 10 hours hypoxia. 

 

While caution should be applied in interpretation of results across Chapters, with differing 

methodologies and participant populations, broad comparisons can be made. Chapter Four and this 

Chapter used similar population groups (healthy young males). Further, hypoxia was delivered in 

the same mechanism, by a molecular sieve pump into an enclosed chamber space to reduce the 

ambient percentage of oxygen. The most striking finding when comparing between Chapters was 

the differing effect of time in hypoxia on muscle myostatin expression. Whereas Chapter Three 

showed a decrease in muscle myostatin peptide following 2 hours of hypoxia, the current study 

utilising a 10 hour exposure showed a trend towards an increase in muscle myostatin. Furthermore, 

where no effect of 2 hours hypoxia on plasma myostatin is seen in Chapter Four, the current work 

suggests that 10 hours of hypoxic exposure results in a decrease in plasma myostatin.  

 

Alterations in plasma volume have been reported in the literature following acute hypoxic 

exposures of similar magnitudes and participants populations as reported here. Healthy male 

participants show a decrease in plasma volume of 10.3 % (3.39 L to 3.04 L) following passive assent 

to 4,350 m by helicopter (Poulsen et al., 1998), whilst an exposure of 1 hour in a similar population 

to 12.6 % O2 results in a 2.7 % decrease in plasma volume (Miles et al., 1981). Thus, any effect of 

hypoxia on plasma volume would likely have been to decrease volume, artificially inflating 
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concentration measures of circulating hormones. In context of the decreases reported here of 

plasma myostatin (Figure 5.7) it would appear likely that this results may have been conservative, 

and correction for changes in plasma volume could increase the magnitude of this reduction.  

 

The physiological meaning of the muscle myostatin finding is difficult to interpret, but of interest 

here. The concentration of a given endocrine peptide within a cell is a function of both the secretory 

loss and production gain of that peptide by the cell(s) sampled. It is proposed here that the initial 

decrease in cellular myostatin content following 2 hours of hypoxia (as seen in Chapter Three) 

represents the secretion of the basal myostatin peptide with a temporal delay before replacement 

peptide can be synthesized. The result of this Chapter following 10 hours of hypoxia then represents 

the increased production of myostatin peptide over the secretory loss.   

 

 

Figure 5.13: Proposed temporal muscle myostatin peptide response acute hypoxia. Myostatin peptide concentration as 
a function of time. Arrows indicate significant events; dotted line indicates unknown response of myostatin peptide. 
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The loss of muscle mass is seen both in response to chronic hypoxia (Bernard et al., 1998, Hoppeler 

et al., 1990) and starvation (Medina et al., 1995). No alteration is seen in plasma myostatin, nor 

muscle myostatin RNA expression, after 15 or 40 hours of fasting in otherwise healthy individuals 

(Larsen et al., 2006). Similarly, no significant alterations in muscle myostatin peptide expression are 

seen in response to 5 - 20 weeks underfeeding in sheep (Jeanplong et al., 2003). It is noted that 

starvation and hypoxia appear to regulate muscle size via different signalling pathways. Chronic 

severe hypoxia (8 % O2 for 2 – 21 days) in mice activates several steps in the ubiquitin proteasomal 

pathway but not in a model of semi-starvation (de Theije et al., 2013). Importantly, in the work of 

de Theije and colleagues (2013) the semi-starvation model used was a pair-feed group to the 

hypoxic group. This pair feed-group, while demonstrating significant atrophy, showed lesser 

atrophy than the hypoxic group, suggesting a cumulative effect of both starvation and hypoxia. 

Therefore, the rational in the current study was to feed participants after 2 hours to dissect the 

effects of hypoxia in the absence of any effects of starvation. This feeding time point allowed the 0 

hour biopsy and plasma sample, and the 2 hour plasma sample, to be taken in a fasted state to 

maintain consistency with Chapter Four. 

 

Besides the work of the previous Chapter, there are no reports in the literature examining 

myostatin protein changes over the course of hours. For this reason, Chapter Three included a 

control visit, whereby participants visited on two separate occasions and repeated the experiment 

without the hypoxia stimulus. The control group results of Chapter Three suggest that myostatin 

expression within muscle, and concentration within plasma, does not vary in healthy male 

individuals, at least during the 6 hours of the study interval (08:00 to 14:00). Indeed, no change in 

muscle myostatin protein expression is seen in the control group of a human disuse study (Dirks et 

al., 2014), suggesting that myostatin peptide expression is relatively stable. These results, combined 

with the inherent difficulty involved in including a control group for the 10 hour exposure period, 

lead to the exclusion of a control session from the experimental design. 
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One limitation of this Chapter was the inability to take a muscle biopsy at the 2 hour time point, 

when the participant was within the chamber environment. This biopsy time point would have 

allowed us to directly compare results from this Chapter with the preceding Chapter’s results. 

Further, a decision was made to not include a control group, whereby individuals would return to 

the lab with a biopsy pre- and post-10 hours following exposure to normal environmental 

conditions. This was justified in part due to the results of Chapter three, showing no change in 

muscle or plasma myostatin in the control group between baseline (time = -30 minutes) and the 

final biopsy (time = 320 minutes), a period of almost 6 hours. Furthermore, no alteration is seen in 

serum myostatin in healthy individuals over 4 or 8 weeks (Saremi et al., 2010), however no measure 

of muscle myostatin was performed. These results combined suggest resting myostatin is stable in 

the absence of external factors. 

 

It is of interest to note that there was no difference in ubiquitin binding after 10 hours of hypoxic 

exposure. During preceding Chapters, an increase was noted following 2 hours of hypoxia in healthy 

individuals in vivo, and a trend towards an increase was seen at 2 hours in vitro that appears to 

disappear at longer timeframes (24 and 48 hours). Caron and colleagues (2009) noted a time 

dependent effect of hypoxia on atrophic pathway members, with elevated activity in the initial 24 

hours. Rats exposed to chronic hypoxia for 3 weeks show depressed mTOR protein activity, as do 

chronically hypoxemic COPD patients, yet neither group shows elevation in ubiquitin binding (Favier 

et al., 2010). Thus, it would appear that the atrophic effects of hypoxia are time-dependent, with 

the acute actions occurring via activation of degradative mechanisms, while the longer-term 

remodelling is via a reduction in activation of pro-synthesis mechanisms. 

 

No change in pAkt (Ser473) protein expression was seen following experimental hypoxia. This 

finding is in line with previous reports, Etheridge and colleagues (2011) noted no change in pAkt 
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(Ser473) or several other Akt-mTOR family members, including phosphorylation of mTOR and 4E-

BP1 after 2 hours of hypoxia at a matching concentration to that used here. Similarly, rats exposed 

to 10 % O2 for 6 hours show no change in muscle protein synthesis (Preedy et al., 1985). Finally, 

Caron and colleagues (2009) showed changes in pAkt (Ser473) at 24 hours, but not earlier time 

points. Thus, it would appear that acute hypoxic stimuli, extended to the 10 hours utilized here and 

possibly as far as 24 hours, does not impair markers of protein synthesis.  

 

It is surprising to note a lack of immediate response to heart rate following hypoxia exposure, with 

elevations in heart rate only becoming apparent after 120 minutes exposure (Figure 5.5). It has long 

been recognised that acute hypoxic exposures tends to increases HR at rest, but substantial 

individual variation in response exists as to the magnitude of this response (Jennett, 1969). The 

results reported here recorded HR by SpO2, whilst SpO2 and ECG have been reported to have a high 

level of agreement with regards to HR (Dawson et al., 2013), these results may have been improved 

by directly measuring HR by ECG. Indeed, it is noteworthy that SpO2 variability can be increased by 

variables such as skin colour, blood temperature and gender (Feiner et al., 2007, Ralston et al., 

1991). Participants were fed immediately post the 120 minute blood sample, and 7 of 8 participants 

left the chamber (whilst remaining in a hypoxic environment with a portable reservoir of hypoxic 

gas), in the hour post feeding to use a bathroom. This feeding and activity stimulus, in the presence 

of hypoxia, may have resulted in the witnessed HR spike at the 200 minute mark.  

 

In conclusion, this Chapter notes a significant decrease in plasma myostatin concentration and a 

trend towards increases in muscle myostatin peptide expression after 10 hours of hypoxic 

exposure. This decrease in plasma myostatin appears time-dependent, with no change seen 

following 2 hours of hypoxia. These acute changes in the temporal profile of myostatin are 

intriguing and may influence future experimental design. Finally, such alterations in myostatin 
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expression may in part explain the losses of muscle mass seen during longer hypoxic exposures, 

such as those seen in hypoxemic COPD patients and healthy individuals during mountaineering 

expeditions. 
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6.1 Introduction 

It is well recognised that a chronic reduction in the supply of oxygen to peripheral muscle mass 

results in muscular atrophy, as has been discussed in previous Chapters. This atrophy can result 

from either a pathological reduction of oxygen uptake, as seen during COPD (Bernard et al., 1998) 

or during exposure to high altitude, where hypobaric hypoxia occurs (Hoppeler et al., 1990, Rose et 

al., 1988). While this atrophy occurs across hypoxic conditions by varying causes, the mechanism 

inducing muscle atrophy is uncertain.  

 

Myostatin is a significant and powerful negative regulator of muscle mass (Lee, 2004), and so forms 

an excellent candidate for the causative inductor of muscle atrophy during hypoxic exposure. 

Indeed, myostatin peptide is elevated in the muscle of chronically hypoxemic (greater than 6 

months post diagnosis) COPD patients relative to healthy control individuals (Hayot et al., 2011). A 

similar result is also shown in rats exposed to 5 weeks of severe hypoxia (10 % O2), with significant 

loss of muscle mass and elevated myostatin peptide expression (Hayot et al., 2011). 

 

The effect of hypoxia on a biological system is dependent on the magnitude of hypoxic stimulus 

delivered. With regards to hypoxia, magnitude is formed by a combination of duration in hypoxia 

and the ambient PO2, as either reduced due to a reduction of ambient pressure or concertation of 

O2. The effect of hypobaric hypoxia is known to have an altitude-dependent effect on aerobic 

metabolism in the healthy human. Above 1500 m (~17.5 % O2 equivalency) a non-linear decrease 

in maximal aerobic metabolism is noted, and the rate of decrease is greater as altitude increases 

(Brooks et al., 2005). Acute exposure (The exact length of time not given by authors, but an 

acclimatisation trial is repeated after 4 days, suggesting ‘acute’ in this context is less than 4 days) in 

unacclimatized individuals results in altitude-dependent ventilatory equivalent (VE / VO2) changes, 

with no effect seen up to 3,000 m, but an exponential increase in ventilatory equivalent between 
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3,000 and 6,000 m (Lenfant and Sullivan, 1971). If the effect of hypoxia on cardiovascular and 

respiratory factors is altitude-dependent, then it would be logical to hypothesize that the hypoxic-

induced changes to myostatin and other endocrine mechanisms would also be affected in a similar 

manner.  

 

No rigorous attempt has been made to examine the effect of the magnitude of hypoxia (either 

normobaric or hypobaric) in healthy individuals on body composition changes. Hoppeler and 

colleagues (1990) showed a 10 % loss in thigh muscle cross sectional area following a climb to 

>5,000 m. A simulated ascent of Everest (5,000 to 8,800 m over 40 days) within a hypobaric 

chamber induces significant muscular atrophy (Rose et al., 1988). Conversely, high performance 

swimmers at a high altitude training camp (3,000 m, 3 weeks) do not show losses in muscle mass 

(Chia et al., 2013). Furthermore, healthy individuals trekking to 3,255 m also show no loss of lean 

body mass (Schena et al., 1992). While one report (Cruz-Jentoft et al., 2010) does note loss of 

muscle mass during a summit attempt of Denali / Mt McKinley which reached 4,300 m, it should be 

noted that the authors note the climb to be difficult with weather and food shortages preventing a 

successful summit, potentially confounding results.  

 

Thus, it would seem that a threshold may occur for hypoxic-induced atrophy in the healthy 

individual during hypobaric hypoxic exposure. If exposure to differing altitudes differentially alters 

muscle mass, it is reasonable to hypothesize that the response of mediators of atrophy, such as 

myostatin, would be affected in a PO2 dependent-manner in vivo.  
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6.1.1 Chronic Adaptation to Altitude 

The most chronic example of adaptation to a hypoxic environment in Homo sapiens is in Tibetan 

and Sherpa individuals, who are thought to have lived at altitudes of 3,000 - 4,500 m for 7,000 to 

20,000 years (Su et al., 2000, Zhao et al., 2009). These individuals show several genetic variations 

that are thought have arisen through positive selection pressures, such as EPAS1 (coding for HIF2) 

(Yi et al., 2010), EGLN1 and PPARA (coding for hypoxia-inducible factor prolyl hydroxylase 2 [HIF-

PH2] and peroxisome proliferator-activated receptor alpha [PPARα], respectively (Simonson et al., 

2010). Sherpa maintain excellent metabolic function at high altitude relative to lowlander 

populations (Beall, 2007), and do not demonstrate decreased muscle mass relative to lowlander 

populations (Sloan and Masali, 1978). Further, when challenged with an acute extreme hypoxia 

stimulus (hypobaric hypoxia ~ 10,000 m), high altitude Peruvian natives show an increased time to 

loss of consciousness than unacclimatized lowlanders (Velasquez, 1959). Thus, if the acute response 

of atrophy inducing mediators, such as myostatin, is dependent on the magnitude of the hypoxic 

stimuli received, then it could be hypothesized that such adapted individuals would show an altered 

response to acute hypoxic-induced alterations in atrophy mediators. 
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6.1.2 Aims and Hypotheses 

The aim of this Chapter was therefore to examine the effect of O2 concentration on plasma 

myostatin concentration. Further, due to the unexpected availability of a participant of Sherpa 

origin, a second post hoc aim and hypothesis was added (herein aim and hypothesis 2). Specifically, 

the aims of this Chapter were to; 

1) determine if the effect of hypoxia on myostatin is O2 concentration-dependent in vivo in 

healthy lowlander humans and 

2) examine any difference in the response of myostatin between a Sherpa case study 

participant to that of lowlander controls.  

 

The hypothesis for this Chapter was that myostatin would be increased in an O2 concentration--

dependent manner. Specifically, it is hypothesized that; 

1) the effect of hypoxia on plasma myostatin concentration in vivo will be O2 concentration-

dependent, with increased myostatin concentration seen following 10 %, but not 12 % O2 

for 2 hours and 

2) the effect of hypoxia on plasma myostatin will be reduced in an individual of a Sherpa 

origin.  
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6.2 Methods 

6.2.1 Ethical Approval  

Ethical approval for the work described in this Chapter was provided by the University of 

Westminster Research Ethics Sub-committee (12-13-46) and the University of California, San Diego 

Institutional Review Board (131521). Written informed consent was obtained from all participants 

prior to participation. The work described in this Chapter took place in the physiology laboratory of 

Professor Peter Wagner, University of California, San Diego. 

 

6.2.2 Participant Descriptors 

A cohort of healthy male participants was recruited for this study. Inclusion criteria for participation 

was male, 18 – 40 years of age with no exposure to altitude or hypoxic environments exceeding 

3,000 m (or equivalent) within 3 months, with a BMI of 20 – 30 kg.m-2. Further exclusion criteria 

included known history of cardiovascular, respiratory, metabolic or coagulation disorder, regular 

smoker, or currently on prescription medication. To maintain continuity with previous experimental 

Chapters, participants were also excluded if they had a known allergy to lidocaine. Participants were 

asked to abstain from strenuous exercise for 24 hours prior to attending the laboratory, and abstain 

from caffeine on the day of the experimental protocol. Screening of participants involved a 

questions regarding health and physical performance and brief examination administrated by a 

registered medical doctor of the State of California. A total of 11 participants were recruited for this 

study, 9 of whom were able to comply with the study requirements were screened and participated 

in this study (Table 6.1).  
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6.2.3 Case Study Descriptors 

Of the 9 participants, one is herein further described individually. Whilst meeting all criteria for 

participation, this participant was noteworthy due to his ethnic heritage. This case study was a 

Sherpa individual, born in Nepal, and lived at an altitude of ~ 3,000 m, until migrating to a sea-level 

location on the West Coast of the United States of America 8 years prior to participation in this 

study. During this time, he has not ascended to any altitudes > 1,000 m nor has he returned to 

Nepal. This case study was shorter than the participant group, with a height 2 SD below the 

participant mean, and also had a notably low resting blood pressure of 99 / 58 mmHg (5.1 and 2.4 

SD below participant group), but did not demonstrate any symptoms of hypotension. All other 

baseline characteristics were non-remarkable. These characteristics are summarized in Table 6.1. 

 

Table 6.1: Participant characteristics (N = 9).  

 Lowlander Characteristics (n = 8) Sherpa case study (n = 1) 

Age 

 

27.5 (8.1) 

 

26 

height (cm) 

 

174.6 (7.7) 

 

160.0 

Weight (kg) 

 

76.9 (12.9) 

 

70.3 

BMI (kg.m-2) 

 

22.3 (8.7) 

 

27.5 

BP S / D (mmHg) 

 

130.8 / 75.1 (6.2 / 7.2) 

 

99 / 58 

Resting SpO2 

 

98.8 (1.0) 

 

98.5 

Expressed as mean (SD). Body mass index (BMI). Blood pressure (BP) expressed as systole (S) over diastole (D). 
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6.2.4 Experimental Design 

Whole body normobaric hypoxia was delivered via a non-rebreathing facemask connected to a 

pressurised bottle supply of 12.3 (0.1) % or 10.7 (0.2) % O2, which was generated from atmospheric 

air diluted with 100 % N2. A 100 L latex balloon was used to dissipate the bottled gas pressure before 

participants inhaled from this balloon via a standard mask set-up, to ensure inspired gas was at a 

normobaric pressure.  

 

A venous blood sample was drawn from all participants immediately prior to, immediately post- 

and 2 hours-post exposure to the hypoxic stimulus. A venous cannula was placed into an antecubital 

or forearm vein and kept patent by flow of 0.9 % sterile saline with 2,000 U.L-1 heparin throughout 

the experiment. Whole blood was collected into lithium heparin tubes and spun (10,000 rpm, 10 

minutes, 4 °C) to separate plasma. Collected plasma was aliquoted (100 µL) and stored at -80 °C for 

future analysis. SpO2, HR and mLLAMS was recorded immediately prior to, every 15 minutes during 

and 10 minutes post hypoxic exposure. Participant’s order of exposure was randomised and 

participants were blinded to hypoxic condition received. A schematic of this experimental design 

can be seen in Figure 6.1. 

 

  

Figure 6.1: Schematic representation of experimental protocol. Arrows indicate timing of blood samples. Time (hours) 
indicated on the horizontal axis. 
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6.2.5 ELISA 

ELISA for plasma myostatin was performed according to manufacturer’s instructions (DGDF80, R&D 

Systems). Aliquoted plasma samples were defrosted from – 80 °C to room temperature before 100 

µL plasma was activated for the removal of myostatin binding proteins (60 µL HCl, 6 M, 10 minutes 

at room temperature), then neutralized (40 µL NaOH + 1.2 mol HEPES), and finally diluted into 200 

µL calibrator diluent (R&D, 895525) to give a prepared sample at a 1:4 dilution. Recombinant 

myostatin was used as a standard (range 31.3 – 2,000 pg.mL-1; R&D, 894410), and calibrator diluent 

used as a blank control. Plates were incubated at 37 °C with gentle agitation for 2 hours, washed 4 

times (R&D, 895003) before myostatin conjugate (R&D, 894409) was added (200 µL) and plates 

incubated for 2 hours at room temperature. Wells were washed again (4 times) before 200 µL 

substrate solution was added and plates incubated at room temperature, protected from light. 

Colorimetric reaction was stopped with 50 µL 2 N sulphuric acid. Coefficient of variability of 

standards and samples was 0.067 and 0.057, respectively. 

 

6.2.6 Statistical Analysis 

Results are presented in figures as individual data points, as outlined by Drummond and Vowler 

(2012) and written in text as ‘mean (SD) units’. Two-way repeated measure analysis of variance 

(ANOVA) or paired-sample t-tests were used as appropriate, with Friedman’s ANOVA used for non-

parametric mLLAMS data. Where a deviation from sphericity was noted for repeated measures 

ANOVA, this was corrected for in the method of Greenhouse and Geisser. Post hoc analysis was 

performed where needed in the method of Bonferroni, using SPSS (IBM, version 20.0). Linear 

correlations were determined in the method of Pearson. Significance was set at p < 0.05 

throughout.  
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6.3 Results 

6.3.1 Effect of Hypoxia on Homeostatic Measures 

The effect of hypoxic condition on SpO2 was examined by two-way (condition [10.7, 12.3 % O2] × 

time [0, 2, 4 hours]) repeated measures ANOVA. A significant condition × time interaction was 

noted with respect to the effect of hypoxia on SpO2 (p < 0.001). Subsequent post hoc analysis 

suggested that hypoxia was reduced in both conditions from baseline (time = -10 minutes). Further, 

the 10.7 % O2 condition showed a reduction in SpO2 that was greater than the 12.3 % O2 condition 

at every time point except 15 minutes, during hypoxic exposure (Figure 6.2A). Paired sample t-test 

on AUC SpO2 noted no difference between these two variables (p = 0.079; Figure 6.2B). The 

response to 10.7 % O2 is noted to appear more variable, with two sub-groups spread either side of 

the mean response (Figure 6.2B). 

 

The Sherpa case study participant showed a variable response to desaturation, with a near-lack 

of desaturation response during the 12.3 % O2 condition (mean SpO2 of 94.3 %). Conversely, 

during the 10.7 % O2 condition, where the lowlander participant population showed variation in 

response (Figure 6.2B, black triangles), this participants results were within the larger magnitude 

response group, with a mean SpO2 desaturation of 62.6 % (open triangles, Figure 6.2A and B).  
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Figure 6.2: Comparison of effect of two different O2 concentrations on SpO2 in lowlanders and a case study 
individual. A)  SpO2 (%) as a function of time (minutes). Hypoxic exposure of either 10.7 % O2 (tirangle) or 12.3 % O2 
(square) from time point 0 to 120 minutes. N = 8. Error bars represent SE. Case study (n = 1) shown by open symbols 
and dashed lines, with data points offset by 3 minutes for clarity. * indicates difference between lowlander group at 
given timepont. B) Area under curve of SpO2 in 10.7 % O2 (triagle) and 12.3 % O2 (square) with paired samples linkd by 
gray line. Mean indicated by black horizontal lines. N = 8. Case study (n = 1) indicatd by open symbols. * indicates 
difference between lowlander group.  
 

 

 

 



  Chapter Six – Effect of O2 concentration in vivo 
 

193 
 

 Friedman’s test suggests a trend towards altered mLLAMS occurred in the lowlander population (p 

= 0.053, Figure 6.3). Noticeably more variability is noted in the 10.7 % O2 condition, with occurrence 

of symptoms first occurring at the 30 minute mark (median = 0.75), while the 12.3 % O2 shows 

occurrence of symptoms first occurring by the 60 minute mark (median = 0). Of interest, the case 

study individual showed no response of mLLAMS, indicating 0 throughout each hypoxic condition 

(data not shown). 
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Figure 6.3: Effect of two different O2 concentrations on mLLAMS symptoms.  mLLAMS as a function of time in hypoxia 
at either 10.7 % O2 (triangle) or 12.3 % O2 (square). Horizontal line indicates median. N = 8.  
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The effect of O2 concentration on HR was examined by two-way (condition [10.7, 12.3 % O2] × time 

(0, 2, 4 hours) repeated measures ANOVA. No significant condition × time interaction was noted 

with respect the effect of hypoxia on HR (p = 0.63). A main effect of time was noted (p = 0.001), but 

no effect of condition was noted (p = 0.71; Figure 6.4A). This result is mirrored by paired sample t-

test on AUC HR, with no difference noted between condition (p = 0.62, d = 0.13; Figure 6.4B).  No 

alteration in the HR response of the case study individual relative to the control group response is 

seen (Figure 6.4A and B) 
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Figure 6.4: Comparison of the effect of two different O2 concentrations on HR between lowlanders and a case study 
individual. A) HR (bpm) as a function of time (minutes). Hypoxic exposure of either 10.7 % O2 (tirangle) or 12.3 % O2 
(square) from time point 0 to 120 minutes. Control participants (n = 8) with closed symbols, case study (n = 1) with open 
symbols.  Error bars represent SD. B) Area under curve of hearte rate in 10.7 % O2 (triagle) and 12.3 % O2 (square). Control 
participants (n = 8) with closed symbols, case study (n = 1) with open symbols. Mean of lowlander responses given by 
horizontal black lines.  
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6.3.2 Effect of Two Different O2 Concentrations on Plasma Myostatin  

The effect of O2 concentration on plasma myostatin was examined by two-way (condition [10.7, 

12.3 % O2] × time [0, 2, 4 hours]) repeated measures ANOVA, with treatment order considered as 

a between participant effect. No treatment order × group × time interaction was noted (p = 0.704).  

No effect of hypoxic condition is seen on plasma myostatin, with no condition × time interaction (p 

= 0.73), nor a main effect of condition (p = 0.28). A main effect of time was seen (p = 0.02), therefore 

individual’s values across conditions were averaged for post hoc analysis. Subsequent post hoc 

analysis showed plasma myostatin values unchanged between 0 and 2 hours (p = 0.17, d = 0.28), 

but significantly reduced at 4 hours, relative to 0 hours (p = 0.004, d = 1.21) and 2 hours (p = 0.005, 

d = 2.94; Figure 6.5A).  

 

This result is maintained if plasma myostatin concentration is expressed relative to baseline (time 

= 0 hours), with no interaction (p = 0.80), nor a main effect of condition (p = 0.74), but an effect of 

time (p = 0.002). Subsequent post hoc testing (pooled values) showed plasma myostatin is 

unchanged between 0 and 2 hours (p = 0.017, d = 0.49), but significantly reduced at 4 hours, relative 

to 0 hours (p = 0.017, d =5.62) and 2 hours (p = 0.002, d = 1.81; Figure 6.5B). 

 

The case study participant’s plasma myostatin response to hypoxia does not appear to be grossly 

different to that of the lowlander population group presented here. Baseline (time = 0 hours) 

plasma myostatin was 3423.6 and 4103.0 pg.mL-1 at 10.7 % and 12.3 % O2, respectively, which falls 

0.15 and 0.67 of a SD away from the mean response, respectively. Following the 10.7 % condition, 

this case study gives plasma myostatin concentrations that are 0.16 and 0.08 of a SD from the mean 

at 2 and 4 hours, respectively (Figure 6.5A). Following the 12.3 % O2 condition, the case study 

plasma myostatin response is 0.93 and 1.25 of a SD above the group mean. However, when 

expressed relative to baseline, no significant alteration of myostatin at the 4 hour time in the 12.3 

% O2 condition is noted for the case study (Figure 6.5B).  
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Figure 6.5: Effect of differing O2 concentration on plasma myostatin. ELISA for plasma myostatin from venous plasma 
prior (time = 0 hours), immediately post (time = 2 hours) or 2 hours following (time = 4 hours hours) either 10.7 % O2 
(triangles) or 12.3 % O2 (squares) hypoxic stimulus. A) Absolute concentration (pg.mL-1) B) Relative to individual 0 hour 
concentration (%). Black horizontal line indicates mean. Dashed line indicates 100 %. Lowlander individuals (n = 8) closed 
symbols, case study (n = 1) open symbols.  * indicates significance (p < 0.05) between lowlander groups as marked. 
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6.3.3 Correlations between Desaturation and Plasma Myostatin 

A weak positive linear relationship is noted between the mean desaturation in SpO2 during hypoxic 

stimulus from baseline (∆ SpO2) and the subsequent decrease in plasma myostatin between 0 and 

4 hours (∆ plasma myostatin; Figure 6.6; r2 = 0.083). Pearson’s correlation suggests no significant 

relationship between the two variables (p = 0.25).  

 

As a proxy of DO2, the correlation between HR × SpO2 during hypoxia and ∆ plasma myostatin was 

examined. No relationship was noted between these variables (r2 = 0.03; data not shown).  
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Figure 6.6: Correlation between ∆ SpO2 and ∆ plasma myostatin in both lowlanders and a case study individual. SpO2 
desaturation during hypoxia from baseline (∆ SpO2) as a function of change in plasma myostatin between 0 and 4 hours 
(∆ plasma myostatin). Plasma myostatin measured by ELISA with recombinant myostatin used for generation of standard 
curve. Average of SpO2 from 0 – 2 hours at either 10.7 % (triangles) or 12.3 % O2 (squares), with open triangle and square 
indicates case study at 10.7 % or 12.3 %, respectively. Dashed lines indicate 95 % confidence limits. 
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6.4 Discussion 

The primary novel result of this Chapter is the lack of an O2 concentration-dependent effect on 

plasma myostatin concentration in healthy lowlander males, within the range of O2 concentrations 

examined here. Further, it appears that the plasma myostatin response of a case study Sherpa 

individual does not differ to that seen in lowlanders, despite inherent genetic adaptation to 

hypoxia.  

 

Human physiological adaption to high altitude is altitude-dependent between 0 – 6000 m. 

Respiratory, cardiovascular and plasma volume changes during mountaineering occur as a function 

of altitude (Brooks et al., 2005, Lenfant and Sullivan, 1971). No rigorous attempt has been made to 

examine the effect of magnitude of hypoxic stimulus on loss of muscle mass. Individuals up to ~ 

4,500 m above sea level tend to not show atrophy of muscle (Chia et al., 2013, Holm et al., 2010), 

while those at 5,000 m and higher lose significant muscle mass (Hoppeler et al., 1990, Rose et al., 

1988). These results are confounded by experimental group differences. Where the population 

examined by Chia and colleagues (2013) were elite swimmers participating in a training camp, 

Hoppeler and colleagues (1990) examined mountaineers during technically challenging summit 

attempts. Both groups participated in large volumes of aerobic exercise, but the nature of the 

exercise performed (swimming vs. climbing) is fundamentally different as a mechanical and 

metabolic stimulus. Further, environmental differences such as nutrition and sleep cannot be ruled 

out. Finally, these studies have examined changes in response to chronic exposure. This Chapter 

examined two concentrations of O2 (10.7 % and 12.3 % O2) with an approximate equivalent of 5,500 

and 4,500 m, respectively, hypothesizing a concentration-dependent effect of hypoxia on plasma 

myostatin. By inducing hypoxia in the manner reported in this chapter, the effect of these 

confounding factors has been removed. 
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One critique of this work could be the concentrations used were too similar to distinguish a 

noticeable difference. Indeed, those studies showing a lack of atrophic effect were at ~ 3,000 m 

(Chia et al., 2013, Schena et al., 1992), whilst those showing atrophic effects were completed at > 

5,000 m (Hoppeler et al., 1990, Rose et al., 1988). This Chapter used 12.3 % and 10.7 % O2 as the 12 

% condition was used throughout previous Chapters and the 10.7 % was considered the lowest 

ambient O2 individuals could be safely introduced to without acclimatisation. While humans are 

capable of withstanding greater altitudes for acute timeframes following adaptation, acute 

exposure to equivalent altitudes of 7000 meters or higher produce rapid loss of cognitive function 

and conscious (McFarland, 1971), whilst prolonged exposure to altitudes greater than 6,000 m 

results in death, even in altitude adapted individuals (Gleason et al., 2011). While a significant 

difference in SpO2, and trends towards difference in mLLAMS were seen in the O2 concentrations 

examined, a further intervention group at a lower (3,000 m equivalent, ~ 14.5 % O2) or higher (6000 

m equivalent, ~ 9.5 % O2) may have been a useful addition to this work. 

 

The results of Chapter’s Three, Four and Five of this thesis showed similar results to those found 

here. Chapter Five showed no change in plasma myostatin following 2 hours of hypoxic exposure, 

but a decrease in plasma myostatin after 10 hours hypoxic exposure at 12 % O2 in a similar 

population group to that examined in this Chapter (Appendix Fourteen). Thus, it would appear that 

in response to acute hypoxic stimulus plasma myostatin begins to be sequestered from plasma. 

Detection of this effect takes more than 2 hours, but is present by at least 4 hours, and maintained 

for up to 10 hours. Presumably, the movement of plasma myostatin is into muscle tissue, its primary 

site of action. Indeed, the results of Chapter Five suggest this, with a trend towards increased 

muscle myostatin peptide. Finally, Chapter Three also showed a time dependent effect of hypoxia 

on myotube size, with 2 hours showing a decrease in myostatin peptide expression. These 

contrasting results could arise due to differences between in vitro and in vivo models, an in vitro 
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model is less able to respond to significant homeostatic challenges with the systemic metabolic 

resources available in vivo.  

 

Unfortunately, the work performed within this Chapter had practical limitations preventing the 

collection of muscle biopsies. Had muscle biopsies been collected, it is tempting to speculate 

matching findings with respect to those seen in Chapter Four would be seen, with a maintained 

reduction at the two hour time point. This work also make the decision not to include a third control 

group in a blinded ambient conditions. This decision was based on findings of Chapter Four, showing 

no alteration in plasma myostatin in resting males under ambient conditions over a 6 hour time 

period. Further, myostatin does not vary in healthy young males at rest, when examined hourly 

over 24 hours with no administrated stimulus (Vamvini et al., 2011). 

 

It is of interest to note the variation in SpO2 response to hypoxic exposure witnessed, both within 

individuals, and between stimulus conditions. It seems apparent that variation of the SpO2 

desaturation response was greater in the 10.7 % O2 than the 12.3 % O2 condition (Figure 6.2B). Due 

to nonlinearity of the haemoglobin dissociation curve at a lower PO2, small changes in in PaO2 can 

result in large changes in SpO2 (Miller, 2010), as does individual variation within individual’s in vivo 

haemoglobin dissociation curve. In N = 10,079 independent arterial samples at a similar PaO2 (60 

[+/- 4] mmHg), significant individual variation in SaO2 (as directly measured) was noted, with values 

between 69.7 and 99.4 % reported (Gothgen et al., 1990). Further, increased error of SpO2 values 

is noted as arterial saturation approaches 70 % (Feiner et al., 2007).  

 

The availability of a Sherpa case study was an unexpected addition to this work. Positive genetic 

selection, especially with regards to metabolic and hypoxic sensing processes (Huerta-Sanchez et 

al., 2014, Simonson et al., 2010) may underlie the ability of Sherpa and Tibetan populations to 
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maintain aerobic metabolism during high altitude exposures, despite reduced mitochondrial and 

haemoglobin mass (Hoppeler et al., 2003). It was hypothesized that the Sherpa would be relatively 

protected against hypoxia, and thus would not show hypoxia-induced changes in plasma myostatin. 

The results presented here do not suggest this to be the case, with results typically within one SD 

of the lowlander group. The only exception to this was during the 12.3 % O2 condition at the 4 hour 

time point, where the case study individual showed a 1.25 SD increase in plasma myostatin 

concentration relative to the lowlander group. However, any potential effect is not maintained 

when plasma myostatin data is examined as a relative change from baseline. The SpO2 response of 

the Sherpa individual is notable, a mean desaturation of 94.3 % at 12.3 % O2 is similar in nature to 

the hypoxic response seen in native Sherpa at 4,000 m (Beall, 2007). Indeed, Sherpa showing 

preserved SpO2 (relative to lowlanders) at moderate altitudes (similar to the 12 % condition) both 

at rest and during exercise have been reported by others (Hackett et al., 1980, Park et al., 2014). 

One case study reports a similarly severe SaO2 desaturation response to acute exposure to 5,500 

meters hypobaric hypoxic in a Sherpa case study relative to a case study lowlander, with the Sherpa 

showing approximately 50 % desaturation, whilst the lowlander SaO2 was approximately 70 % 

(exact values not given; West et al., 1984), very similar to the values reported here.  

 

However, despite this blunted response relative to the lowlander cohort, his plasma myostatin 

matched that of the lowlanders. The mechanistic effect underlying decreased in plasma myostatin 

in healthy males may be separate to the adaptations highlanders show. Due to the inherent caution 

required in interpretation from n = 1, larger cohorts are needed to examine this hypothesis. 

 

In conclusion, here this Chapter show no difference in the plasma myostatin response to two 

different concentrations of O2. The response in both hypoxic conditions examined here is a 

decrease in plasma myostatin concentration, suggesting myostatin is leaving the plasma. While it is 
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tempting to speculate this movement is towards peripheral muscle to begin the hypoxia-induced 

atrophy seen in chronic models of hypoxia, further work is needed to establish this. Finally, 

intergeneration adaptation to hypoxic environments does not appear to alter this response, as the 

case study Sherpa individual presented here does not notably vary in his response to acute hypoxic 

stimuli.  
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This thesis aimed to examine the acute effects of hypoxia on myostatin in vitro and in healthy male 

adults. It was hypothesized that myostatin peptide would increase in response to acute hypoxic 

stimuli, both intracellular myostatin in the C2C12 cell line in vitro, and in muscle and plasma in vivo. 

The primary finding from this thesis is the consistent response of myostatin to an acute hypoxic 

stimulus across models, and in the absence of other confounding factors. Counter to the above 

hypothesis, decreased intracellular myostatin peptide expression was noted in C2C12 myotubes 

following 2 – 48 hours hypoxic exposure.  This decrease in muscle myostatin peptide was 

maintained in healthy males following 2 hours of hypoxic exposure in Chapter Four, but not 

following 10 hours of hypoxia in chapter Five. Concentration of plasma myostatin was reduced 

following 10 hours of hypoxic exposure (Chapter Five), and 2 hours hypoxia (Chapter Six), each time 

by ~ 20 % of baseline. It is well described in the literature that chronic tissue hypoxia, by either 

environmental or pathological cause, results in the atrophy of muscle. As myostatin is a significant 

regulator of muscle mass, alterations in myostatin expression following hypoxia are likely to be 

involved in this atrophy. It is therefore proposed that this acute myostatin response to hypoxia 

contributes as an early regulator of the atrophic response, the effect of which is capable of being 

induced by hypoxia alone, independent of confounding factors. 

 

Previous work on hypoxia-induced atrophy has taken place over chronic time frames of weeks or 

months, and has typically used clinical models such as COPD or CHF, or hypobaric environments 

such as the mountaineering sojourn by unacclimatized lowlanders. Patients with COPD typically 

present with increased systemic inflammation, inactivity, malnutrition, and frequently smoking 

behaviour (Debigare et al., 2001). Mountaineering individuals typically undergo strenuous exercise, 

cold exposure, reduced food intake and a reduction in sleep duration and quality (Wagner, 2010). 

Thus, the models used (in vitro culture and the healthy individual) were explicitly chosen as research 

models, as they present with the minimum of confounding factors. 
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Chapter Three of this thesis examined the effects of varying times in hypoxia on myostatin 

expression in both myoblasts and myotubes. Atrophy of muscle in vivo is a function of both protein 

balance within mature myocytes and renewal (or lack thereof) of myonuclei from precursor satellite 

cells. This work therefore examined both the chemotaxic response of myoblasts in vitro to damage 

and showed an impairment of this response in a hypoxic environment compared with a normoxic 

environment. Further, myotubes showed significant atrophy in response to a matching hypoxic 

stimulus in a time-dependent manner. Thus, a mechanism for the regulation of muscle mass in 

mammalian cells that both regulated satellite cell activity and myotube size was sought. Myostatin, 

with its well defined roles in the regulation of both myotube size and satellite cell activity, was 

hypothesized to underlie these witnessed effects, and indeed, myostatin peptide was suppressed 

at every time point studied during the in vitro work in Chapter Three.  

 

Chapter Four, Five and Six exposed healthy, unacclimatized young males to hypoxic environments 

for varying acute times and O2 concentrations. Each Chapter was completed within different 

physiology laboratories, with Chapter Four completed in the laboratory of Dr Peter Watt, University 

of Brighton, Chapter Five completed at the University of Westminster in the laboratory of Dr 

Richard Mackenzie, while Chapter Six was completed in the laboratory of Dr Peter Wagner, 

University of California, San Diego, USA. As such, differences in experimental design exist, which 

are described below. Despite the variation of time and the concentrations used, consistent trends 

in results occurred, both in relation to other in vivo Chapters, the in vitro work of Chapter Three, 

and in similar work found in the existing literature.  
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7.1 Between Chapter Comparison  

The populations used in each Chapter were homogenous in terms of their demographics (age, 

height, weight, BMI, HR, resting SpO2 and SpO2 desaturation response; Appendix Fourteen) which 

increase confidence in the comparison of results between experimental Chapters.  In all Chapters, 

hypoxia was induced via a normobaric method, whereby ambient O2 availability was reduced, by 

replacement with alternative gas(es).The work of Chapters Four and Five utilized hypoxic chambers, 

with hypoxic air provided via a molecular sieve pump. Oxygen concentration of the chamber space 

was controlled via a constant feedback mechanism, thereby maintaining the ambient concentration 

of O2 at ~ 12 %. The delivery of hypoxic gas in Chapter Six differed; atmospheric air was bottled 

under pressure and diluted with 100 % nitrogen to give a pressurised bottled supply of hypoxic 

gases. Thus, while every participant in Chapter Six received an identical O2 concentration, this 

differed slightly from the targeted 10 % or 12 % for each condition.  

 

The molecular sieve approach preferentially filters and removes oxygen, due to its larger molecular 

mass, leading to a slightly hypercapnic environment. The bottled gases model results in slight 

hypocapnea, due to the dilution of ambient atmospheric CO2 with 100 % N2. An elevation in FiCO2 

results in hypercapnia, leading to an increased respiratory rate and depth (Schaefer, 1958), while 

hypocapnea reduces respiratory rate (Corne et al., 2003). Hypercapnia, as induced by increasing 

ambient CO2 from normal (0.03 %) to 12 %, results in decreased protein synthesis (Caso et al., 2005). 

However, the increase in CO2 is significantly higher than anything seen in this work, and the authors 

do not report changes in protein synthesis with 4 % or 8 % CO2.  

 

The respiratory response of participants (while not measured) may therefore have differed 

between Chapters Four and Five (chamber-induced hypoxia) and Chapter Six (mask-induced 

hypoxia). As identified in Appendix Fourteen, the mean desaturation response between Chapters 
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does not differ, as identified by the SpO2 decrease over 2 hours (initial 2 hours in Chapter Five) in 

each studies equivalent 12 % O2 condition. Thus, while the method of inducing hypoxia between 

chapters does differ, the end hypoxemic result was similar. 

 

Whilst mean SpO2 was noted to be reduced under hypoxic conditions to a similar magnitude 

between Chapters (Appendix Fourteen), intra-individual variation in the magnitude of this response 

is noted to occur, especially within the lower O2 % condition of Chapter Six. Individuals response to 

hypoxic exposure is known to vary significantly (Martin et al., 2010), with some speculating to a 

‘responder / non-responder’ effect based on retrospective analyses of training data from ‘live-high-

train—low’ models of adaptation to low-moderate hypoxia (for example Chapman et al., 1998). 

Monozygotic twins are noted to have more similar hypoxic ventilatory responses than dizygotic 

twins (reviewed by MacLeod et al., 2013), suggesting this variance is responses may have a genetic 

aspect. Indeed, Ogata et al (2011) noted 12 hours exposure to 15.4 % O2 results in alterations in the  

plasma EPO, and the magnitude of this response between individuals was linked to a common HIF1-

α polymorphism. Whilst this same cohort also showed significant variation in their SpO2 

desaturation response (80 % - 97 %) this response was not a polar responder / non-responder 

grouping, instead being evenly spread within the reported range (Ogata et al., 2011). Further, whilst 

annual 19 day visits to a 2100 m training camp by an elite Australian-Rules Football team show 

responder / non-responder responses with increases in EPO and haemoglobin concentrations, the 

individuals who ‘responded’ differed with each years visit (McLean et al., 2013), suggesting the this 

response factor is not simply genetic alone. 

 

With regards to the findings of this thesis, it is however worth considering the range of variation of 

hypoxic responses that can occur within individuals, and what effect this may have on this works 

primary measures. Indeed, Etheridge and colleagues (2011) noted a moderate correlation between 

SpO2 desaturation and suppression of FSR following an exercise stimulus. This work noted no 
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correlation between SpO2 desaturation and changes in myostatin expression, nor did it not a 

difference in myostatin response to the two differing O2 % of Chapter Six, suggesting, at least within 

the range examined here, the magnitude of the desaturation response does not affect the 

magnitude of the myostatin response.  

 

This significant intra-individual variation in the hypoxic ventilatory response, which while primarily 

driven by PaCO2, is also influenced by magnitude of hypoxia, prior adaptation and neuro-endocrine 

factors (Powell et al., 1998). As such it was recently proposed that the use of isocapnic hypoxic 

models, inducing a drop in atmospheric PO2 while holding end-tidal partial pressure CO2 constant 

(end-tidal PCO2), may provide a better research model. Such a model removes the intra-individual 

hypoxic ventilatory response by removing the variation in respiratory alkalosis (Howard et al., 

1995), and may be applicable for future work, as the argument could be presented that the changes 

witnessed were due to respiratory alkalosis, not hypoxia per se. Such a research model, while useful 

for removing individual variation in the hypoxic response, does result in a stimulus that is a step 

further removed from the physiological effects of hypoxic via pathophysiological or hypobaric 

stimuli. Alternatively, a SpO2 clamp approach could be used in future work, varying environmental 

oxygen to produce a matching SpO2 desaturation between individuals, to ensure the oxygen 

desaturation received was identical. This research model, done in parallel with a control group of 

hypoxic exposure only (no clamp) would be of interest, establishing the role of desaturation alone.  

 

7.1.1 Consistent Trends 

The primary hypothesis presented for this work was that an increase in myostatin (at both the 

muscle and plasma level) would be seen following an acute hypoxic exposure. One of the most 

consistent findings here was counter to this hypothesis, with a decrease in plasma myostatin seen 

following 10 hours of hypoxia in Chapter Five, and 2 hours following a 2 hour hypoxic exposure in 

Chapter Six, with no change seen in Chapter Four.  
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The underlying biological process regulating this decrease in plasma myostatin peptide 

concentration is of interest to the interpretation of these results. A decrease could represent either 

a) an increase in myostatin removal from plasma, b) a decrease in production of myostatin or c) 

some combination of the two. It is unlikely that this process represents an increase in plasma 

myostatin binding proteins, such as follistatin and FLRG, as the plasma myostatin ELISA used here 

involved a binding protein removal step (Appendix Ten). Thus, it would appear that either removal 

of myostatin from the plasma is increased, or production is decreased. Myostatin acts in an 

endocrine manner, an increase in exogenous myostatin induces atrophy, both in terms of muscle 

weight across multiple muscles (35 – 50 % wet weight loss) and cellular diameter within 

gastrocnemius (25 % reduction; Zimmers et al., 2002). Therefore, the hypothesis presented here is 

this decrease in myostatin in the plasma represents the movement of myostatin from the plasma 

into the peripheral muscle where it can instigate its classic atrophic pathways. The alternative 

hypothesis, that plasma myostatin is being degraded and then excreted cannot be ruled out; as yet 

there is no published research on the degradation or filtration of plasma myostatin for removal of 

function.  

 

At the muscular level, Chapter Four showed a decrease in myostatin peptide in the hours following 

2 hours hypoxic exposure, where a trend towards increased muscle myostatin peptide immediately 

following 10 hours hypoxic exposure was seen in Chapter Five. Similarly, the in vitro results of 

Chapter Three show a decrease in intracellular myostatin peptide following 2 hours hypoxic 

exposure (1 % O2); however this decrease was maintained at during 24 and 48 hours of hypoxic 

exposure. This difference could arise due to differences in the model studied. Myotubes in vitro do 

not have the integrative or protective physiological feedback mechanisms against hypoxia that 

humans can utilize in vivo, such as alterations in metabolism, respiratory rate, CO2 buffering and 

endocrine responses. In response to a hypoxic stimulus, humans increase breath frequency and 

depth, engage in significant fluid shifts to increase plasma volume and systemically alter cytokine 



  Chapter Seven – General Discussion 
 

210 
 

production in tissues that are not muscle (Corne et al., 2003, Eltzschig and Carmeliet, 2011, Poulsen 

et al., 1998). If myostatin-induced atrophy occurs to reduce metabolic cost then cross tissue 

metabolic mechanisms may be involved. The lack of a intercellular lactate shuttle mechanism or 

Cori cycle, (Brooks, 1986), whereby excess glycolytically produced lactate can be transported to 

distant tissues and metabolically utilized, may also alter the response of myotubes in vitro. 

 

The results of Chapter Five could be interpreted to support a net flux of myostatin from plasma to 

muscle, with a decrease at the plasma level and trends towards an increase at the muscular level 

following a 10 hour hypoxic exposure. While possible, this interpretation should be viewed with 

caution. Myostatin acts as an intercellular signalling peptide (Figure 7.1), thus this witnessed trend 

towards an intracellular increase may represent either a) an increase in myostatin production by 

muscle cells in response to the hypoxic stimulus or b) decreased myostatin secretion from the 

muscle cells as a protective response (e.g. increased cytoplasmic sequestration of myostatin). 

 

Figure 7.1: Myostatin protein by compartment.  Myostatin transcription in the myofibril space (left) and can be found 
either bound to its latency associated peptide (LAP, blue) bound to the bioactive peptide (green). Secretion of myostatin 
into the intercellular space (middle) where myostatin can then act in an autocrine or paracrine manner, or further 
secreted into the plasma (right) where myostatin can be found biologically active (unbound) or inactive (bound to either 
its LAP or various binding proteins). Intercellular myostatin demonstrated by Anderson and colleagues (2008). 
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7.1.2 Inconsistencies between Studies 

Chapter Four (2 hours of hypoxia or control) notes no change in plasma myostatin peptide 

immediately post or in the in the hours following 2 hours of hypoxic exposure at 12 % O2, while 

Chapters Five (10 hour hypoxic exposure) and Six (2 hour hypoxic exposure at 2 difference 

concentrations) showed a decrease in plasma myostatin at similar O2 concentrations and times in 

hypoxia. It is unclear as to why this difference occurs, plasma samples were taken from similar 

populations and participants showed a similar desaturation response to similar hypoxic stimuli 

(Appendix Fourteen). The measures of plasma myostatin across Chapters were performed using 

matching commercial ELISA kits and production lots (R&D, DGDF80, lot #318772). Budgetary 

constraints required plasma samples from Chapter Four to be run in duplicate, whilst results from 

Chapters Five and Six were run in triplicate. Relative power of each measure may influence results 

obtains, this consideration is discussed below. 

 

The differing response of muscle myostatin peptide following hypoxia is also of interest, with a 

decrease seen following 2 hours of hypoxia and a trend towards increased expression following 10 

hours of hypoxic. This differing response, and suggestions regarding physiological meaning, are 

discussed below (7.1.3 Modelling of the Temporal Effect of Acute Hypoxia on Myostatin). 

 

7.1.3 Modelling of the Temporal Effect of Acute Hypoxia on Myostatin 

As previously mentioned, the experiments described within this thesis are the first to describe 

changes in plasma and muscle myostatin in response to an acute hypoxic stimulus. Hayot and 

colleagues (2011) showed increases in muscle myostatin peptide expression in COPD patients with 

chronic hypoxemia (PaO2 64 [2] mmHg), suggesting this hypoxemia may result in elevated myostatin 

and the subsequent loss in lean muscle mass seen in approximately 25 % of COPD patients. These 

authors also found elevated muscle myostatin peptide in rats exposed to 5 weeks hypobaric 

hypoxia (equivalent to ~ 4500 m), and in human primary cell culture exposed to cobalt chloride 
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(HIF-1α stabilizer) for 24 hours. Counter to these findings, this thesis shows myostatin decreases 

across times and concentrations examined. Differences in vitro could arise due to the research 

model used as Hayot and colleagues (2011) used cobalt chloride to model a hypoxic stimuli in vitro, 

whereas this thesis utilized normobaric hypoxia within the incubator environment. Cobalt chloride 

mimics a hypoxic stimuli via stabilisation of the HIF-1α protein (Goldberg et al., 1988). However, 

HIF-independent regulation of VEGF in response to hypoxic stimulation has been seen in C2C12 

myotubes and in rat neurons (Arany et al., 2008, Ndubuizu et al., 2010), thus cobalt chloride forms 

a HIF activator, but not necessarily a hypoxic mimic. Further, a question of hypoxic equivalency 

arises, as a cross comparison between the relative hypoxia stimulus induced by cobalt chloride by 

Hayot and colleagues (2011) and the 1 % ambient O2 used in this work is difficult to quantify. Finally, 

when directly examining the effect of cobalt chloride versus hypoxia in yeast, hypoxia (0 % O2) was 

noted to differentially affect a number of cell signalling process relative cobalt chloride treatment, 

including protein degradation (Gleason et al., 2011). Thus, where possible, investigation of the 

effects of hypoxia in vitro should attempt to use hypoxia where possible. 

 

An attempt to model the acute changes in myostatin in both muscle and plasma based on the 

results of this thesis is presented in Figure 7.2A. The results of Chapter Six show a decrease in 

plasma myostatin following 2 hours of hypoxia at both 10.7 % and 12.3 % O2, which Chapter Five 

suggests is maintained following 10 hours of hypoxia (12.5 % O2). Conversely, the decrease in 

muscle myostatin following 2 hours of hypoxia in Chapter Four is not maintained in Chapter Five, 

where following 10 hours of hypoxia, trends towards increased muscle myostatin peptide are seen. 

The integration of these results suggests that an acute (2 hour) hypoxic stimuli induces a decrease 

in muscle myostatin and may induce a matching decrease in plasma myostatin. In response to this 

acute atrophic stimulus, myostatin’s flux is thought to be from the plasma into peripheral tissues 

(LeBrasseur et al., 2009, Zimmers et al., 2002). However, as outlined in Figure 7.1, a third 

compartment of biological relevance exists that was not measured here, the intercellular space. 
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Anderson and colleagues (2008) suggested, at least in mice, that this compartment represent the 

major storage site of myostatin in its biologically active form, however this work has yet to be 

repeated in humans. Similar work to those presented within this thesis, with the addition of 

microdialysis for collection of intercellular samples as well as plasma and muscle samples at 

matching time-points, are needed. In light of the results reported here, and the work of Anderson 

and colleagues (2008), it is hypothesised that the reduction of myostatin concentration in plasma 

represents the movement of myostatin into this space for myostatin to have its biological effect 

(Figure 7.2B). It should however be noted that the degradation or removal of plasma myostatin by 

some inactivating mechanism cannot be ruled out.  
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Figure 7.2: Hypothesized responses of plasma and muscle myostatin to acute and chronic hypoxic stimulus. A)  Plasma 
myostatin indicated in red, muscle myostatin peptide in blue. Dashed black line indicates baseline without external 
stimulus. Labels indicate experimental evidence and associated Chapters. B) Intracellular, intercellular and endocrine 
movement in response to acute hypoxic stimuli. Black arrows and labels refer to findings of this thesis, grey indicates 
hypothesized responses.  
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The relative change in muscle myostatin peptide is to decrease following 2 hours of hypoxia and 

trend towards an increase following 10 hours. The original hypothesis was for an increase following 

2 hours; however an expectation for a detectable increase in myostatin transcription and 

translation within 2 hours of an atrophic stimulus may have been ambitious. Conversely, a 10 hour 

period may allow sufficient time for an increase in myostatin translation to occur, hence the relative 

increase in muscle myostatin expression seen in Chapter Five. 
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7.2 Findings in Relation to the Literature  

No reports of acute changes in myostatin peptide in either muscle or plasma have been reported 

in published literature. The range of plasma results compared here are in line with those of others, 

where plasma myostatin concentrations from healthy humans are reported between 1,000 to 5,000 

pg.mL-1 (Kim et al., 2007, Szulc et al., 2012), with one report (Kim et al., 2007) noting a range of 

serum myostatin peptide from a large cohort of healthy adults ranging between < 1000 pg.mL to > 

100 ng.mL. 

 

One report examined the effect of an acute exercise stimulus (N = 6, 3 × 10 bilateral knee extensions 

at 70 % of one-repetition maximum) on catabolic signalling pathways and showed a reduction in 

myostatin mRNA 1 – 24 hours following training which peaked at 8 hours post exercise (Louis et al., 

2007). If an acute anabolic stimulus decreases myostatin mRNA, then it could be speculated that 

an acute catabolic stimulus would increase it, however measurement of this is required to confirm 

any increase in protein translation. While an increase in transcription would be reasonably expected 

to result in increased translation, the work of McMahon and colleagues (Oldham et al., 2009) should 

be noted, where a lack of association between myostatin mRNA and protein was shown. 

 

Published literature has examined the effect of acute hypoxic stimuli on markers of protein 

synthesis and degradation. Rats show decreases in various body tissues protein synthesis rates 

(heart, bone, skin, brain kidney) following 6 hours hypoxia (10 % O2), but no change in synthesis 

rate of muscle in this time frame (Preedy et al., 1985). Humans exposed to 12 % O2 for 2 hours show 

no change in FSR or phosphorylation of pAkt (Ser473) while at rest (Etheridge et al., 2011). This lack 

of effect of 12 % O2 on pAkt (Ser473) is in agreement with the results of Chapter Five. Furthermore, 

humans flown from an altitude of 550 m to 4,559 m above sea level by helicopter (to remove the 

exercise stimulus of climbing) show no alteration in FSR of muscle after a 24 hour period 
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(Imoberdorf et al., 2006). These results suggest, at least in the acute timeframes of 2 – 24 hours, 

that hypoxia alone (within the range examined here) is insufficient to impair protein synthesis at 

the muscular level, and are in agreement with the findings presented within Chapter Four of this 

work, with no alteration in Q or FSR of muscle.  

 

Counter to the acute effects of hypoxia on protein synthesis, cellular markers of protein 

degradation are elevated in acute hypoxia (Caron et al., 2009). Both protein synthesis and 

degradation are elevated in an exposure time-dependent manner in response to chronic hypobaric 

hypoxia in rats, but the increase in degradation outweighs that of synthesis (Chaudhary et al., 2012). 

Rate of ubiquitination binding is elevated as is calpain and chymotrypsin-like enzyme activities 

(Chaudhary et al., 2012). The E3 ligase atrogin, but not MuRF1, is elevated in response to 12 hours 

hypoxia in L6 myotubes (Caron et al., 2009) while rats exposed to 5 days of hypobaric hypoxia (~ 

5,500 m) show increases in atrogin and MuRF (Chaillou et al., 2012), in agreement with the 

consistent increases in bound ubiquitin seen throughout Chapters Three – Five of this thesis. 

Furthermore, while Etheridge and colleagues (2011) examined the effect of acute hypoxia on 

protein synthesis, this work expanded from these findings by examining both the synthesis and 

degradative response to acute hypoxia. As muscle atrophy can result from either an increase in 

degradation, or a decrease in synthesis, it is important to examine both aspects where possible. 

Whilst it is tempting to speculate that FBR would have been increased, a lack of a clear 15N-Phe 

signal from plasma collected in this work has precluded quantification FBR. 

 

Gender specific effects of hypoxia exist, but this has yet to be fully examined in the human. 

Retrospective data suggests males and females have similar success rates when summiting Mt 

Everest (Huey et al., 2007). Female rats survive up to 30 minutes of 2 % O2, where male rats have a 

reduced survival time (Wood and Stabenau, 1998). Female rats exposed to hypoxia (equivalent to 
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5,500 m) may be resistant to atrophy, with no loss of body mass after 3 days in hypoxia, and non-

significant trends towards loss of muscle mass of plantaris after 56 days in hypoxia (Chaillou et al., 

2012). However, no male comparison group was included in the work of Chaillou and colleagues 

(2012). Female rats show a larger increase in respiratory rate in response to hypxioa than male rats, 

and these gender differences are maintained following ovariectomy (Phillips et al., 1997). Thus, this 

work chose to examine male participants only, an attempt to minimise potential confounding 

factors. However, future work needs to be performed examining both males and females; if the 

protection against hypoxic stimuli observed in female rats extends to humans may protect against 

hypoxic-induced myostatin alterations.  

 

7.2.1 Results with Respect to Chronic Disease States 

Chronic cardiorespiratory disorders often present with atrophy of muscle. Loss of muscle mass is 

seen in approximately 25 % of COPD (Bernard et al., 1998) and CHF (Libera and Vescovo, 2004) 

patients. Such disorders present with a number of confounding factors besides peripheral tissue 

hypoxia, including a reduction in energy input, reduced physical activity, and increased systemic 

inflammation (Wagner, 2008). Myostatin was noted recently to be elevated in the muscle of 

chronically hypoxemic COPD patients (Hayot et al., 2011), suggesting myostatin increases may in 

part underlie the observed atrophy. Thus, this thesis attempted to apply a hypoxic stimulus in a 

model of healthy individuals, in the absence of these confounding factors. 

 

While the results of this thesis suggest hypoxia alone is sufficient to induce alterations in myostatin 

peptide that may be partially causative of atrophy, it is recognised that myostatin signalling is 

unlikely to act in isolation. Chronic inflammation is noted across chronic hypoxic disorders (Di 

Francia et al., 1994, Zhao and Zeng, 1997), and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and 

IFN-γ) directly induce muscle atrophy (Guttridge et al., 2000, Lang and Frost, 2007, Langen et al., 

2001) and may regulate myostatin peptide expression (Elliott et al., 2009). Physical activity is noted 



  Chapter Seven – General Discussion 
 

219 
 

to be reduced in COPD as a function of disease severity (Ferrando et al., 1996), while chronic disuse 

is associated with increased muscle myostatin expression and losses of muscle mass (Bunn et al., 

2011, Murphy et al., 2011). Therefore, any hypoxic-induced changes in myostatin are likely to act 

in parallel with a number of other atrophic mechanisms. 

 

7.2.2 Results with Respect to the Mountaineering Environment 

As with the chronic hypoxic disorders discussed above, chronic exposure to a hypobaric hypoxic 

environment is also associated with loss of muscle mass (Hoppeler et al., 1990). This environmental 

stimulus is required to be of a sufficient magnitude, studies examining altitudes below 5,000 m tend 

not to show changes in muscle mass (Chia et al., 2013, Schena et al., 1992), while those climbing 

above this altitude do exhibit muscle atrophy (Hoppeler et al., 1990, Rose et al., 1988). As with 

chronic disease states, this altitude-induced atrophy of skeletal muscle occurs in the presence of a 

number of confounding factors. High-altitude sojourns involve reductions in food intake, a 

reduction in the amount and quality of sleep, increased physical exercise, and elevations in cosmic 

radiation exposure (George et al., 2010, Wagner, 2010). These effects increase with altitude gain, 

and as such any confounding factors are likely to be magnified as the climber increases in altitude. 

 

Indeed, in mountaineering models where passive and active ascents to altitudes similar to those 

examined here are compared, differences in adaptive responses are noted. Reductions in PO2 with 

increasing altitude results in reductions in absolute workload, and thus physical performance 

(Fagraeus et al., 1973, Wehrlin and Hallen, 2006). Mirroring this, fractional protein synthesis is not 

altered 24 hours following passive ascent to 4,559 m by helicopter, but it is increased in a matching 

group following active ascent (Imoberdorf et al., 2006).  In an acute model, 2 hours at 12 % O2 does 

not alter fractional protein synthesis, but 12 % O2 with the addition of moderate intensity exercise 

suppresses the (normoxic) exercise-induced increase in protein synthesis (Etheridge et al., 2011).  
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Finally, it should be noted that positive adaptations to acute hypoxic exposure in endurance athlete 

models, such as the live-high-train-low models, all occur at equivalent altitudes of 2500 – 3000 m 

(Gore et al., 2001, Wehrlin et al., 2006). Atrophic effects of moderate – severe hypoxia, as described 

in this work, should not be extrapolated into training models conducted at these lower altitudes.  

 

This atrophic response is traditionally seen as a maladaptive response to a reduction in oxygen 

supply, but may confer several physiological advantages. A reduction in size of muscle both reduces 

metabolic cost to the individual when the energy input from oxidative metabolism is limited and 

reduces oxygen diffusion distance from supplying capillaries parallel to individual myofibers. 

Furthermore, myofiber breakdown releases essential amino-acids that are metabolically functional 

for rapid energy provision and modulation of oxidation metabolism (Murray and Montgomery, 

2014). Thus, while inhibition of myostatin signalling may be proposed for minimization of hypoxic-

induced muscle loss, caution should be applied, as this atrophy may represent a necessary 

functional adaption in such physiologically challenging situations 

 

7.2.3 Results with Respect to Wider Physiology 

Loss of muscle mass in response to hypoxia is maintained across species, with few exceptions 

(Hopkins and Powell, 2001). A well maintained response suggests a selective advantage. Loss of 

muscle size in humans in vivo is paired with no change in capillary density, at least in a timeframe 

of weeks (Hoppeler et al., 1990), resulting in a relative increase in capillary density and a decreased 

capillary diffusion ratio and diffusion distance at the muscle level. Furthermore, as would be 

expected in a hypoxic environment, a shift towards non-oxidative metabolism rapidly occurs 

(Mackenzie et al., 2012a), at the cost of decreased energy efficiency. In such a condition, a 

minimization of basal metabolic demand would be advantageous, and so loss of metabolically 

demanding (muscular) tissue takes place.  
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Links between hypoxia and altered myostatin may involve HIF-1 dependent signalling. Studies on 

HIF-1α deficient cells and or in vivo models may be useful in determining this. Indeed, Chuvash 

Polycythaemic individuals show a homozygous mutation in exon 3 of the VHL gene, impairing VHL 

– HIF biding, reducing the rate of HIF breakdown under normoxic conditions (Ang et al., 2002, 

Bushuev et al., 2006). Whilst no published examination of body composition appears to have been 

conducted in these individuals, Chuvash Polycythaemic individuals show a reduced maximal work 

rate relative to control individuals when matched to body weight, as well as an earlier onset of 

lactate threshold, but no change in muscle fibre type proportion, suggesting a reduced lean mass 

content relative to total body mass (Formenti et al., 2010). Conversely, adult-onset muscle specific 

HIF-1α knock-down mice show a fast – to – slow fibre type switch and an increase in endurance 

during swimming and uphill running (Mason et al., 2004). The maintenance of HIF signalling is 

clearly important in the regulation of muscle homeostasis.  
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7.3 Limitations 

7.3.1 In vitro Model 

One potential critique of the in vitro work is the question of relevance of 1 % O2 to in vivo conditions. 

PO2 at the myofibril level is 2 – 3 mmHg, and at the mitochondrial level is essentially zero (Hoppeler 

et al., 2003). This value of 1 % ambient O2 is widely used when examining the hypoxic response of 

myotubes in vitro (examples include Caron et al., 2009, Joshi et al., 2011, Li et al., 1998, Pescador 

et al., 2010, Wang and Semenza, 1993a), and indeed is more likely to be physiologically relevant 

than the use of 20.9 % O2 for control conditions throughout the field. Intramuscular oxygen 

concentration is a dynamic value that is affected by blood flow, pH, 2,3-disphosphoglyceric acid, 

haemoglobin and myoglobin mass, and local PO2 and PCO2 pressures, thus the use of a single 

constant value may not represent physiological conditions and is a recognised weakness of an in 

vitro model.  

 

7.3.2 Comparison between Normobaric and Hypobaric Hypoxia  

A normobaric hypoxic model was chosen for this work as the capacity for hypobaric hypoxia was 

not available. Similarities and differences exist in the response to these two models of hypoxia, and 

it is important to be aware of these when examining changes in response to hypoxic stimuli. Faiss 

and colleagues (2013) examined normobaric or hypobaric hypoxia for 24 hours in a similar cohort 

of healthy young men as used here and showed no differences in SpO2, blood pressure (systolic or 

diastolic), heart rate, breath frequency, RER, or partial pressure of end tidal O2. VE was not altered 

in hypobaric hypoxia compared to normobaric hypoxic before 8 hours, but was reduced in 

hypobaric hypoxia between 8 and 24 hours. End tidal partial pressure CO2, while lowered relative 

to a control baseline condition, is elevated at every time point examined (1, 8, 16, 24 hours) in 

hypobaric hypoxia, when compared to normobaric hypoxia (Faiss et al., 2013). Similar results were 

shown by Richard and colleagues (2014) who showed no difference in VE, heart rate or SpO2 

between hypobaric and normobaric hypoxia. The Lake Louise acute mountain sickness 
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questionnaire is recognized to under-report scores in normobaric hypoxia relative to real altitude 

exposure by ~ 1 arb. unit (at 432 mmHg, ~ 4,500 m vs 11.5 % O2) but no difference between 

normobaric and hypobaric hypoxia (within a chamber) is noted (Roach et al., 1996). Thus, while 

hypobaric hypoxia and normobaric hypoxic models do show respiratory differences, these tend to 

become apparent after longer time frames (> 8 hours), which supports comparison of the findings 

of this thesis with those during hypobaric exposures. 

 

Heyes and colleagues (1982) compared changes in plasma arginine vasopressin and cortisol and 

showed similar responses between individuals exposed to a matching PO2 stimulus, but delivered  

under normobaric or hypobaric conditions. This finding is of interest as no difference was seen in 

response of two endocrine hormones in either model of hypoxia. With specific reference to the 

experiments presented in this thesis, where the primary measure in the three in vivo results 

Chapters was plasma myostatin, this provides some support for cross comparison with hypobaric 

hypoxic environments. Further work directly comparing normobaric with hypobaric hypoxia may 

be necessary to confirm this. 

 

7.3.3 Extrapolation of Findings into Chronic Models 

This thesis was in part driven by the inherent confounding factors found in the two major 

occurrences of hypoxia in Homo sapiens, namely disease models such as COPD and mountaineering 

models in healthy lowlanders, and driven by the common observation that both groups show 

muscle atrophy and hypoxia. However, by choosing such an acute research model to study this 

phenomenon, this work has run the risk of removing itself from applied conditions where hypoxia 

occurs. Thus, it would be of interest to examine further models where those factors that have been 

considered here as confounding are reintroduced. Such an example could be a small animal models 

+/- hypoxia, LPS (or other pro-inflammatory stimuli) and dietary restriction, all in isolation, and 

combined together, to begin to build research models of chronic clinical disorders, and the 
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combined effects of these factors. Furthermore, an examination of acute-to-chronic timeframes in 

an animal model to bridge the results presented in this thesis with those reported in the literature 

may be called for.  

 

7.3.4 Absolute Oxygen Delivery 

Whilst no correlations were noted between the SpO2 desaturation response to hypoxia and changes 

in muscle or endocrine myostatin (Chapters Four, Five & Six), it should be noted that SpO2 does not 

directly measure the amount of oxygen delivered to peripheral tissues. Oxygen delivery (DO2) can 

be calculated by the following formulae (McLellan and Walsh, 2004).  

 

𝐷𝑂2 =  𝑄̇  × 𝐶𝑎𝑂2  × 10 

DO2, delivery of oxygen (mL.min-1); Q, cardiac output (L.min-1); CaO2, 

arterial oxygen content (%).  

 

Where CaO2 is given by  

 

𝐶𝑎𝑂2  = (𝐻𝑏 × 1.35 × 𝑆𝑎𝑂2) + (𝑃𝑎𝑂2  × 0.003) 

CaO2, arterial oxygen content (%); Hb, haemoglobin (g.dL-1), SaO2, 

arterial oxygen saturation (%); PaO2, partial pressure oxygen (mmHg).  

 

In the absence of measurement of haemoglobin, arterial oxygen tension and cardiac output (Q), a 

simple estimation of DO2 can were made by HR × SpO2. No relationship was noted in Chapter Four 

between this proxy of DO2 and Δ plasma myostatin at 2 hours, nor was any relationship between 

this measure and Δ plasma myostatin in Chapter Six. However a positive, linear trend is noted 
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between SpO2 × HR and Δ plasma myostatin following 10 hours of hypoxia in Chapter Five. This 

relationship suggests that the ability to maintain absolute peripheral oxygen delivery is associated 

with greater decreases in plasma myostatin in hypoxia. What physiological meaning can be 

prescribed to this is unclear, future work should directly measure DO2 and associate this against 

both acute changes in myostatin and chronic changes in muscle mass.  

 

7.3.5 Statistical Considerations 

Financial and practical limitations restricted the size and therefore subsequent statistical power of 

in vivo work presented in this thesis. With a lack of any published work examining acute changes in 

myostatin in vivo in any model, a priori power calculations in the manner of Cohen (1988), were not 

possible. Post hoc calculations of observed power of plasma myostatin across Chapters Four, Five 

and Six give observed power of 0.061, 0.99 and 0.76 respectively (condition × time for Chapters 

Four and Six, time for Chapter Five). While observed power should be interpreted cautiously, and 

should not be used for post hoc calculation of sample size suitability (O'Keefe, 2007), a valid use of 

observed power is for comparison between experiments (Erturk, 2005). Thus, it is of note that there 

is substantially decreased observed power in Chapter Four. 

 

 Power is a function of 1) sample population size 2) magnitude of effect size and 3) precisions of the 

measure used (Jones et al., 2003). Sample size was consistent between experiments, and effect size 

would be expected to be reasonably consistent given the hypoxic stimulus was maintained between 

Chapters, therefore precision is the most likely variable giving this low power score. More 

confidence should therefore be placed in the findings of Chapters Five and Six. Furthermore, as is 

stated by the (anonymous) statistics editor in commentary to the work of Erturk (2005), the 

likelihood of any type one error is substantially reduced (but not removed) in the case of statistically 

significant results, giving further support to the findings of Chapters Five and Six.   
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7.4 Recommendations for Future Work 

Based on the outcomes of the studies described herein, and in light of the discussion points raised 

within this Chapter, the following recommendations for future research are made; 

 

1) Confirmation of a role of myostatin in the hypoxic induced atrophy seen in myotubes in 

vitro by a) examination of any increase in plasma myostatin in the media of cells exposed 

to hypoxia and b) exposure of myotubes to hypoxia or control environment before 

exchanging media between models as well as c) co-incubation of cells in hypoxia with 

myostatin inhibitors and / or HIF-1α destabilisers and d) exposure of myostatin knock down 

cells to hypoxia. 

2) An examination of the intercellular space within muscle by microdialysis in parallel with 

muscle biopsies and plasma collection in healthy humans. 

3) An examination of the a) strength, b) muscle atrophy and c) mortality of an in vivo model 

when exposed to decreasing concentrations of O2 with / without a systemic myostatin 

inhibitor (or wild type and myostatin -/- mice). 

4) A comparison of the effect of gender, age, fibre type variation and chronic or evolutionary 

adaptation on the effects seen here. 

5) An examination of hypoxic participants or patients over longer timeframes, bridging the 

gap between acute time frames examined here and chronic models discussed in the 

literature.  
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7.5 Conclusions  

Here the effect of acute hypoxia on muscle in vitro and in vivo is examined in isolation of peripheral 

confounding factors. The novel findings of this work are; 

- Acute hypoxia reduces myoblast migration in vitro, and this effect is partially dependent on 

NF-κB signalling. 

- Acute hypoxia reduces myotube size in vitro in a time dependent manner, the effect of 

which may be partially dependent on NF-κB signalling. 

- Two hours of hypoxia (11.9 % O2) decreases muscle myostatin expression following the 

termination of the hypoxic stimulus, while trends towards increases muscle myostatin 

expression immediately following 10 hours of hypoxic exposure are seen. 

-  Plasma myostatin concentration is reduced after 10 hours hypoxia (12.5 % O2), and also 2 

hours following a 2 hours exposure to hypoxia. 

- The reduction in plasma myostatin 2 hours after a 2 hour hypoxic stimulation does not 

appear to be O2 concentration-dependent within the range of hypoxia measured here (10.7 

% or 12.3 % O2). 

- The response of plasma myostatin in a case-study of a high-altitude native Sherpa individual 

in response to acute hypoxic stimuli is not different from that of unacclimatized lowlander 

individuals. 

In conclusion, it would seem that plasma myostatin concentration is decreased in response to an 

acute hypoxic exposure in the healthy human. The response of muscle myostatin appears to be 

time-dependent, with a decrease following 2 hours and a trend towards an increase following 10 

hours of hypoxia. These findings suggest hypoxia alone is sufficient to alter myostatin peptide 

expression; these changes could in part underlie hypoxic-induced atrophy. While future work could 

examine the role of myostatin inhibition in the prevention of hypoxic-induced atrophy, caution 

should be applied as this atrophy may be a protective adaption to a limited supply of oxygen. 
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Appendix One – Solutions and Buffers  

TBS-T 10 × (1 L) 

Tris-HCI 1 mol pH 8.0 100 mL 

NaCl   87.6 g 

Tween   5 mL 

Make up to 1 L in dH2O. Dilute 1:10 in dH2O for usage. Store at room temperature. 

 

Total protein lysis buffer (1X) 

Tris HCl pH 7.4 1 M 400 µL 

NaCl 1 M  6 mL 

EDTA 100 µL  800 µL 

Triton   800 µL 

Make up to 40 mL in dH2O. Store at 4 °C. Add protease and phosphatase inhibitors (1:100) just prior 

to usage. 

 

Laemmli’s loading buffer (4X) 

Tris-HCl 1 mol pH 6.8  2.4 mL 

SDS   0.8 g 

Glycerol   4 mL 

 – mercaptoethanol  1 mL 
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dH2O   2.8 mL  

Bromophenol blue trace 

For use at 4X concentration, do not further dilute. Store at room temperature. 

 

Running buffer 20 × (1 L) 

NuPAGE SDS running buffer (20X) (NP0001 – Invitrogen). Store at room temperature.  

Dilute 1:20 in dH2O for immediate usage. 

 

Transfer buffer 10 × (1 L) 

Glycine    90 g 

Tris   19.3 g 

Make up to 1 L in dH2O. Dilute (1 part 10 ×, 2 parts methanol, 7 parts dH2O) for usage. Keep 1 × 

solution at 4 °C. 
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Appendix Two – Blinded Analysis of Myotube Diameters 
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Appendix figure 1: Myotube diameter (arb. units) as measured by researcher B as a function myotube diameter (arb. 
units) as measured by Researcher B.   

 

A researcher blinded to treatment and time checked analysis of myotube diameters in a matching 

manner to the doctoral candidate (detailed in Chapter Three). A strong positive correlation was 

noted between paired myotube diameters as measured by researcher A and researcher B (r = 

0.651). Pearson’s correlation shows this relationship to be significant (p < 0.001). 
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Appendix Three – Ethical Approval of Research Involving Human 

Participants 

Ethical approval for the work described in Chapter Four of this thesis was obtained from the 

University of Westminster Research Ethics sub-committee (10/11/24) and the University of 

Brighton Faculty Research and Governance Committee (FREGH/29/09).  

 

Ethical approval for the work described in Chapter Five was provided by the University of 

Westminster Research Ethics Sub-committee (12/13/46).  

 

Ethical approval for the work described in Chapter Six was provided by the University of 

Westminster Research Ethics Sub-committee (13/14/22) and the University of California, San Diego 

Institutional Review Board (131521).  
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Chapter Four Letter of Approval 
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Chapter Five Letter of Approval  
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Chapter Six Letters of Approval 
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Appendix Four – Lake Louse Acute Mountain Sickness Questionnaire  

Questionnaire was modified from standard (Appendix figure 2) to exclude the final question 

regarding sleep patterns, as outlined by Richards and colleagues (2014).  

 

 

Appendix figure 2: Lake Louise Acute Mountain Sickness Questionaire.  
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Appendix Five – Calculation of Total Protein in the Method of Lowry 

Taken from manufactures instructions (Bio-rad DC protein assay).  

1) Prepare AI. Add 20 µL reagent S to 1 mL reagent A, mix. Scale amount to required AI total 

volume. 

2) Lysed muscle or cellular extract defrosted to 0 °C on ice 

3) BSA standards diluted from stock (1.44 µg.mL-1) to following concentrations in total protein 

lysis buffer (0.72 µg.mL-1, 0.48 µg.mL-1, 0.36 µg.mL-1, 0.288 µg.mL-1, 0.18 µg.mL-1, 0.09 

µg.mL-1). 

4) Samples, standards and blank (lysis buffer only) loaded in triplicate into 96 - well U 

bottomed plate, 5 µL per well.  

5) 25 µL reagent AI added to each well 

6) 200 µL reagent B added to each well 

7) Cover and seal plate, 15 minutes at room temperature 

8) Absorbance quantified, read at 750 nm.  

9) Standard graphed for quantification of unknowns  

 

 

 

 

 

 

 

 

  
Appendix figure 3: Representative standard curve.   
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Appendix Six – Extraction of Amino Acids from Muscle and Plasma for 

Quantification of Label Enrichment by GCMS 

Plasma: 

1) 500 µL plasma (room temperature), vortex and incubate with 10 µL urease (10 mg.mL-1; 

U1500-20KU, Sigma), 10 minutes. 

2) Precipitated, 10 µL perchloric acid (12 mol), on ice, 15 minutes. 

3) Spin, 6000 rpm, 10 minutes, 4 °C. 

4) Extract 400 µL supernatant, add 100 µL potassium bicarbonate (1 mol), incubate on ice for 

20 minutes 

5) Spin, 6000 rpm, 10 minutes, 4 °C. 

6) Supernatant extracted, add 10 µL concentrated hydrochloric acid. 

7) Dried overnight, 50 °C , rotary evaporator. 

 

Muscle samples: 

1) ~ 100 µg powered by mortar and pestle on liquid nitrogen. 

2) Resuspended in 0.5 mL ice cold perchloric acid (0.2 mol). 

3) Centrifuged, 6000 rpm, 10 minutes, 4 °C. 

4) Supernatant 1 incubated in 100 µL 1 mol ice cold potassium bicarbonate on ice, 15 minutes, 

then 10 µL urease (10 mg.mL-1). 

5) Pellet washed in 0.2 mol perchloric acid, spun, resultant pellet and supernatant 1 dried, 50 

°C, rotary evaporator, overnight. 

 

For calculation of whole body protein synthesis 250 µL of plasma was brought to room temperature, 

briefly vortexed and incubated with 10 µL urease (10 mg.mL-1; U1500-20KU, Sigma) for 5 minutes. 

Samples were precipitated of plasma proteins in 1 mL ice-cold perchloric acid (0.2 mol), on ice for 

15 minutes. Purified samples were then spun (6000 rpm, 10 minutes, 4 °C) and subsequent 

supernatants were extracted and dried overnight at 50 °C in a rotary evaporator. Dried samples 
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were derivatized with 50 µL pyridine (1 mol) and 50 µL N-tert-Butyldimethysilyl-N-methyltrifluoro-

acetamide (MTBSTFA; Sigma, 3948820) at 70 °C for 60 minutes. 

 

Muscle samples from time points -30, 120, 300 and 320 minutes were used for calculation of protein 

degradation rate post hypoxic exposure. An aliquot of each biopsy (~ 50 mg) were powered by 

mortar and pestle in liquid nitrogen, then resuspended in 0.5 mL ice cold perchloric acid (0.2 mol) 

and centrifuged (6000 rpm, 10 minutes). Resultant pellet was washed in 0.2 mol perchloric acid, 

spun and subsequent pellet run as below. First supernatant was incubated with 100 µL 1 mol ice 

cold potassium bicarbonate and incubated on ice (15 minutes), after which incubated with 10 µL 

urease (10 mg.mL-1), as above and treated in the same manner as plasma samples. 

 

Dried amino acid samples were resuspended into equal volumes of dH20 and 12 mol HCI, and 

heated overnight (100 °C) then read via gas chromatography mass spectrometry (GCMS). 

Enrichment of samples was determined by gas chromatography-combustion-isotope ratio mass 

spectrometry for mass fragment peaks of 234 mHz (unlabelled tracee [T]), 235 mHz (15N-Phe tracer) 

and 239 mHz (D5-Phe tracer). 

 

𝐹𝑆𝑅 (%. 𝐻𝑟−1) = (
∆𝐸𝑡

[𝐸𝑝 × (∆𝑡)]
) × 100 

FSR, Fractional synthesis rate (in percent per hour); ∆Et, change in tissue 

enrichment; Ep mean plasma enrichment; t, time (hours). 

 

 

Calculation of fractional breakdown rate (FBR) was performed as described by Zhang and colleagues 

(Zhang et al., 1996) and refined by Phillips and colleagues (Simonson et al., 2015), and is based on 

the principle of decay of tracer (phenylalanine) to tracee (15N-Phe) in the muscle intracellular pool 

following termination of isotope infusion. 
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𝐹𝐵𝑅 =  
𝐸𝑀(𝑡2) − 𝐸𝑀(𝑡1)

𝑃 ∫ 𝐸𝐴
𝑡2

𝑡1
(𝑡)𝑑𝑡 − (1 + 𝑃) ∫ 𝐸𝑀

𝑡2

𝑡1
(𝑡)𝑑𝑡

× (
𝑄𝑀

𝑇
) 

FBR, fractional breakdown rate; EM, enrichment muscle; EA, enrichment 

arterial; t, time; ∫ 𝐸𝑋
𝑡2

𝑡1
(𝑡)𝑑𝑡 gives area of decay curve of x (muscle or 

arterial); QM/T, ratio of intracellular free trace verses protein-bound 

trace content in the sample.  

 

Subsequent net protein balance can be calculated as follows 

 

𝑁𝑒𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(%. ℎ𝑜𝑢𝑟) = 𝐹𝑆𝑅 (%. ℎ𝑜𝑢𝑟) − 𝐹𝐵𝑅 (%. ℎ𝑜𝑢𝑟) 

    FSR, Fractional synthesis rate; FBR, fractional breakdown rate 

 

 

Etheridge and colleagues (2011) noted human FSR (%.hour-1) to be ~ 0.02 – 0.1. Thus, expected 

ranges of ∆E can be proposed, and a standard curve built to examine signal / noise. Simulated 

ranges of FSR (%.hour-1; Appendix table 1) were examined by spiking samples of phenylalanine 

(phe) with known amounts of labelled phenylalanine (D5-Phe) to give a known ∆E (% enrichment) 

calculating resultant % increase over phenylalanine only. Subsequent examination of the increase 

in D5-Phe over baseline as a function of spiked enrichment (% of total phe) indicates a strong linear 

relationship (r2 = 0.9926, Pearson’s p < 0.001; Appendix figure 4).  
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Appendix table 1: Specific peak area under the curve for Phe (234 mHz) and D5-Phe (239 mHz), resultant enrichment 
rate and % increase over baseline enrichment.  Value of 0 = phe only and 1 = d5-phe only, other values represent ratio 
of D5-Phe / Phe. 

Simulated FSR (%.hr-1) 234 mHz 239 mHz % enrichment % increase 

0 (phe only) 273226 1096 0.4011 0 (baseline) 

0.0125 168945 1850 1.095 0.693898 

0.025 315800 5465 1.7305 1.329393 

0.05 1137457 34215 3.008 2.606893 

0.1 569943 32461 5.6955 5.294349 

0.2 213910 25059 11.715 11.31361 

1 (D5-Phe only) 305 62485 100 99.51424 

FSR, fractional synthesis rate; Phe, phenylalanine. 

 

 

Appendix figure 4: Percentage increase in D5-Phe over baseline (phe only) for known enrichment amounts, as a function 

of percent enrichment of D5-Phe. 
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Appendix Seven – Detection of Specific Proteins by Western Blot 

Before starting: 

- Sample total protein content calculated in method of Lowry (Appendix Five) 

- Either - Samples are pre-diluted 1:4 in Laemmli’s loading buffer (4 ×)  

- OR - Samples are pre-diluted into Laemmli’s loading buffer (4 ×) to 2 µg.mL-1. 

Protocol: 

1. Boil samples at 95 °C, 5 minutes on plate heater 

2. Remove gel(s) from package (Invitrogen - NP0301), rinse in dH2O. 

3. Assemble gel cassette (2 gels, or 1 gel and one blank). 

4. Fill cassette with running buffer (Appendix One). 

5. Rinse wells in loading buffer with repeated bursts of ~ 100 µL running buffer via loading tip 

6. Load: 40 – 60 µg total protein per well (can be varied by expected protein concentration) 

plus protein ladder and any standards (positive or negative). 

7. Run: 30 - 45 minutes, 200 volts, dependent on molecular weight of target protein(s). 

8. Transfer: After assembling cassette (Appendix figure 5), transfer 25 V, 60 mA, 3 hours, on 

ice. Pre-soak all components in transfer buffer (Appendix One), pre-chilled to 4 °C.  

 

 

 

 

 

9. Ponceau s, 1 mL, 2 minutes. Scan and save image for normalization. 

Appendix figure 5: Assembly of transfer cassette for one gel.  Repet gel – nitrocellulose – filter paper if 
needed for two gels. 
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10. Block: 5 % BSA or 5 % milk in TBS - T (Appendix One). 1 hour, room temperature, gentle 

agitation. Gentle agitation. 

11. Primary antibody: 1:1000 (or as pre-determined) in protein solution of choice (milk or BSA, 

0.5 – 5 %) in TBS - T. Overnight, 4 °C, gentle agitation. 

12. Wash – 4 × 5 minutes, ~ 10 mL TBS - T. Gentle agitation. 

13. Secondary – 1:10,000 in 0.5 % BSA in TBS - T. 1 hour, room temperature. Anti-rabbit (Cell 

Signalling, 7074). Gentle agitation. 

14. Wash – 4 × 5 minutes, ~ 10 mL TBS - T. Gentle agitation. 

15. ECL (20-5000-120, Biological Industries). One part component A and B, approximately 300 

mL total volume per membrane for 2 minutes. Immediately expose to film in dark room for 

1 – 5 minutes. Develop as standard. 

16. Scan and save film digitally. Quantify in ImageJ. 
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Appendix Eight – Normalisation of Detected Proteins by Ponceau S 

For the normalization of total protein loadings per well this work utilizes the method of Romero-

Calvo and colleagues (2010). Where traditionally a ‘house-keeping’ protein has been used, such as 

β-actin or α-tubulin, Romero-Calvo and colleagues (2010) suggests instead the use of ponceau S 

stain, as is normally performed for the confirmation of successful electro-transfer during 

immunoblotting, as it shows greater sensitivity to alterations in loading, is quicker and cheaper than 

repeated probes and avoids inherent assumptions regarding a lack of change of house-keeping 

proteins. Most importantly, ponceau S non-specifically stains for any protein, as such directly 

measures protein transferred, without extrapolating from measures of an individual protein.  

Protocol: 

1) After transfer stage of Western blot (Appendix Seven) wash membrane (1 min, TBS - T) 

2) Ponceau S stain, 1 mL, 2 minutes at room temperature, gentle agitation. 

3) Wash briefly (TBS – T, < 1 min) 

4) Scan and save digitally each lane of interest, plus at least one blank lane. 

5) Quantify lane density and blank lane density, resultant (= lane – blank) gives normalisation 

value.  
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Appendix figure 6: Ponceau S stains in a linear repeatable manner. Total protein (20, 40 and 60 µg).from lysis of C2C12 
myotubes was loaded in triplicate into wells, ran and transferred as outlined in Appendix Eight and densitometry 
quantified in in ImageJ. Error bars represent standard error.  
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Appendix Nine – Comparison of ELISA kits for the Measurement of 

Plasma Myostatin 

Two commercially available ELISA kits were trialled for the measurement of plasma myostatin. 

Matching plasma samples from Chapter Four were analysed according to manufacturer’s 

instructions. The kits trialled were provided by R&D (DGDF80, UK) and UCSN (SEB653Hu, China). All 

samples and standards were run in duplicate. Resultant concentrations of matching samples were 

directly compared, as were coefficient of variability measures of samples and standards between 

assays. 
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Appendix figure 7: A comparison of commercial ELISA kits from differing manufactures. 

 

A significant lack of similarity was noted in matching measures of plasma myostatin between the 

USCN and the R&D assay (Appendix figure 7), with no association between matching values (r2 = 

0.031) and no correlation between measures is noted (Pearson’s p = 0.20). Data from one 
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participant is not present on this figure, as concentrations reported by the USCN ELISA kit were 

consistently below zero, a physiologically unlikely occurrence.  

 

An examination of the coefficient’s of variability between assays from data produced in house 

suggests the R&D ELISA shows greater reliability over the USCN, with the R&D ELISA reporting 3.18 

and 13.75 for samples and standards, while the USCN ELISA reports 9.11 and 18.50 for samples and 

standards, respectively. 

 

The reduced variability of the R&D ELISA combined with the repeated intermittent lack of detection 

of plasma myostatin with the USCN ELISA resulted in the selection of the R&D ELISA for 

measurement of plasma myostatin in this thesis.  
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Appendix Ten – Detection of Myostatin by ELISA 

Taken from manufactures instructions (R&D, DGDF80). 

1) Samples and standards brought to room temperature. 

2) Plasma samples activated (to break myostatin – binding protein links). To 100 µL plasma 

add 60 µL 1 N HCl, gentle agitation 10 minutes room temperature.  

3) Plasma samples neutralized, 40 µL 1.2 N NaOH + 0.5 mol HEPES.  

4) Plasma samples (now 200 µL total volume) diluted into 200 µL calibrator diluent (total 1:4). 

5) Standards 2000, 1000, 500, 250, 125, 62.5, 31.3 pg.mL-1 generated from serial dilution of 

standard (20,000 pg.mL-1) into calibrator diluent. 

6) 50 µL assay diluent added to each well. 

7) Standards and samples loaded in triplicate into clear U bottom plate. 

8) 2 hours room temperature incubation, gentle agitation. Covered with plate sealer. 

9) Wash wells, 4 × ~ 400 µL wash solution, with complete removal of wash at each step. 

10) 200 µL GDF-8 conjugate added to each well.  

11) 2 hours room temperature incubation, gentle agitation. Covered with plate sealer. 

12) Wash wells, 4 × ~ 400 µL wash solution, with complete removal of wash at each step. 

13) 200 µL substrate solution, 30 minutes incubation, room temperature, protected from light. 

14) 50 µL stop solution to each well.  

15) Read optical density of each well within 30 minutes at 450 nm, and blank to 570 nm.  

16) Calibration curve of known standards constructed (Appendix figure 8). 
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Appendix figure 8: Myostatin ELISA standard curve.  Recombinant myostatin (pg.mL-1) as a function of optical density 
(450 – 570 nm). All samples read in triplicate. 
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Appendix Eleven – Calculation of Resting Metabolic Rate by Indirect 

Calorimetry 

Protocol modified from the recommendations of Haugen and colleagues (2007). Fasted and rested 

participants presented to the research laboratory on the morning of testing. Participants were 

asked to fast for 12 hours, and avoid exercise and active methods of transportation on the morning 

of testing. Expired gas fractions and volumes were collected for indirect calorimetry (Cortex 

Metalyzer 3B). 

 

1) Calibrate Cortex for volumes (3 L syringe standard), expired fractions (standards of 17 % O2 

and 5 % CO2), ambient pressure and temperature.  

2) Fit participant with a standard mask, for both fit (seal) and comfort. 

3) Record continuous data (VE, FEO2, FECO2) recorded for at least 40 minutes in a darkened, 

quiet room. 

4) Discard first 10 minutes data, giving (at least) 30 minutes continuous data 

5) VO2, VCO2 and RER calculated as standard.  

6) With reference to the tables of Lusk (1924), caloric equivalent per L O2 determined. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 (𝑘𝑗) = (𝑉𝑂2 (𝐿. 𝑚𝑖𝑛) × 𝑐𝑎𝑙𝑜𝑟𝑖𝑐 𝑒𝑞𝑢𝑖𝑙𝑖𝑣𝑒𝑛𝑡)  × 4.12 

 

 



  Appendices 
 

300 
 

 

Appendix figure 9: Representative example of indirect calorimetry result.  VO2 (L.min-1) in blue crosses, VCO2 (L.min-1) 
in red squares. Five minute rolling ball average for each group shown (VO2 thick line, VCO2 thin line). Vertical dotted line 
indicates separation between discarded data (0 – 600 s) and data used for calculation of resting metabolic rate (600 – 
2400 s, 10 – 40 minutes). 
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Appendix Twelve – Calculation of Bottled Gas Concentration 

For Chapter Five of this work hypoxic gas was mixed from stock solutions and delivered by gas mask 

system. A calibration curve was determined by atmospheric air, diluted with N2, and read through 

an oxygen analyser (Vacuumed – 1760) in duplicate, with analogue output into a chart recorder 

(Gould, mark 200).  
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Appendix figure 10: Calculation of bottled gas concentration. A) Oxygen content (%) as a function of divisions (Arb. Units) 
of 100 mL ambient room air. Ambient air was collected into a glass syringe and diluted with 100 % N2. A Gould chart reader 
was pre-zeroed to 100 % N2 [FiO2 of 0 - 0 divisions (Arb. Units)] and 100 % atmospheric air (FiO2 of 0.2193, 50 divisions (Arb. 
Units)]. B) Representative image of chart output. 

A) 
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Appendix Thirteen – Calculation of Equivalent Altitude from 

Percentage of Ambient Oxygen Concentration 

  

Appendix figure 11: Alterations in barometric pressure (mmHg), PiO2 and modelled equivalence in FEO2 (%) at sea level 
and increasing altitude. As modelled by Wagner, P (personal communications). 

 

Atmospheric pressure decreases as a function of altitude in a non-linear manner, due to the 

decreasing force of gravity and subsequent decrease in atmospheric mass applying force below 

itself. Inspired partial pressure of O2 (PiO2) is a linear function of atmospheric pressure, as given by 

Daltons Law. Correction for alveolar vapour pressure of water (PAH2O), allows for the calculation of 

equivalence of inspired oxygen (%) as inspired fraction of O2 (FiO2).  

𝑃𝑖𝑂2 = (𝑃𝐵 − 𝑃𝐴𝐻2𝑂) × 𝐹𝑖𝑂2 

Where PiO2 represents partial pressure of inspired O2, PB represents barometric pressure, PAH2O the 

partial pressure of water vapour (47 mmHg at 37 C°) and FiO2 the fraction inspired O2. 

 

Two possible checks can be applied. At standard pressure (760 mmHg), standard O2 content is 20.9 

% (FiO2 = 0.2093), while at an atmospheric pressure of 0 mm Hg, equivalent O2 content must also 

be 0 %. 
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Appendix Fourteen – Comparison of Participant Populations 

A comparison of participant descriptive variables is presented below (Appendix table 2). Values are 

presented here as mean (SD) and are rounded to one decimal place. Direct comparison between 

Chapters is performed by one-way (Chapter Four, Five, Six) ANOVA, with post hoc comparison 

where necessary in the method of Bonferroni.  

Appendix table 2: Comparison of participant descriptors across Chapters. 

 Chapter  

 Four Five Six p 

Age (years) 26 (2.0) 29.8 (4.7) 27.3 (7.6) 0.386 

Height (cm) 178.0 (5.1) 180.3 (7.0) 172.7 (8.7) 0.117 

Weight (kg) 72.2 (7.3) 79.0 (9.8) 76.0 (12.3) 0.074 

BMI (kg.m-2) 22.8 (1.8) 24.2 (1.8) 25.3 (2.6) 0.211 

Resting SpO2 98.0 (0.6) 97.9 (1.1) 98.9 (0.9) 0.102 

SpO2 desaturation (%)ᴧ 77.5 (5.5) 84.3 (3.5) 82.7 (7.5) 0.071 

Resting HR (bpm) 59.1 (6.9) 71.5 (9.8) 64.3 (9.5) 0.288 

O2 concentration (%)ᴧ ᴧ 11.9 (0.4) 12.5 (0.3) 12.3 (0.1) 0.006* 

BMI, body mass index; SpO2, capillary haemoglobin oxygen saturation; HR, heart rate. ᴧ SpO2 desaturation represents the 

mean desaturation over the 2 hours (initial 2 hours in Chapter Five) in 12 % O2. ᴧ ᴧ Represents mean O2 % over duration 

of stimulus (2 hours for Chapters Four, 10 hours for Chapter Five, 2 hours for Chapter Six [12.3 % conditions only]).  
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Appendix figure 12: Ambient O2 exposure (%) for equivalent 12 % conditions by Chapter number (Four, Five, Six).O2 % 
over duration of stimulus (2 hours for Chapters Four, 10 hours for Chapter Five, 2 hours for Chapter Six [12.3 % conditions 
only]). N = 8 individuals for Chapters Four and Five, N = 9 for Chapter Six.  

 


