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Highlights 

 Joining two natural motifs: hyaluronan (HyA) and poly(3-hydroxyalkanoates) (PHAs)  

 Hydrolysis of PHAs yielded oligomers suitable for HyA covalent grafting 

 1,1, Carbonyldiimidazole allowed hyaluronan modification under mild conditions  

 Water soluble copolymers as potential carriers for drug delivery 

Abstract 

This work reports the synthesis and characterisation of new amphiphilic hyaluronan (HA) grafted with 

poly(3-hydroxyalkanoates) (PHAs) conjugates. Hydrolytic depolymerisation of PHAs was used for the 

synthesis of defined oligo(3-hydroxyalkanoates)-containing carboxylic terminal moieties. A kinetic 

study of the depolymerisation was followed to prepare oligomers of required molecular weight. PHAs 

were coupled with hydroxyl groups of HA mediated by N, N'-carbonyldiimidazole (CDI) or HSTU 

Tetramethyl-O-(N-succinimidyl) uronium hexafluorophosphate. For the first time, the covalent 

bonding of oligo derivatives of P(3-hydroxybutyrate), P(3-hydroxyoctanoate), P(3-hydroxyoctanoate-

co-3-hydroxydecanoate) and P(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-

hydroxydodecanoate) and HA was achieved by “grafting to” strategy. Achieved grafting degree was a 

function of hydrophobicity of PHA, Mw and polarity of the solvent. The most suitable reaction 

conditions were observed for oligo (3-hydroxybutyrate) grafted to HA (grafting degree of 14 %). Graft 
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copolymers were characterized by FT-IR, NMR, DSC and SEC-MALLS. Graft copolymers can be 

physically loaded with hydrophobic drugs and may serve as drug delivery system.  

 

Abbreviations: 

3T3-NIH: standard fibroblast cell line; CDI : 1,1'-Carbonyldiimidazole; DMAP: 4-

dimethylaminopyridine; DOSY: diffusion ordered spectroscopy; DSC: Differential Thermal calorimetry, 

Fourier transform infrared spectroscopy (FT-IR) ; HSTU: Tetramethyl-O-(N-succinimidyl)uronium 

hexafluorophosphate; HPLC, high-performance liquid chromatography; HSQC, heteronuclear single 

quantum coherence; IPA, isopropyl alcohol; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide; P(3HB): P(3-hydroxybutyrate), P(3HO): P(3-hydroxyoctanoate), P(3HO-3HD): 

P(3-hydroxyoctanoate-co-3-hydroxydecanoate), P(3HO-3HD-3HDD): P(3-hydroxyoctanoate-co-3-

hydroxydecanoate-co-3-hydroxydodecanoate), SEC-MALLS, size exclusion chromatography coupled 

to multi angle laser light scattering; TEA, triethylamine; 

 

Keywords : Hyaluronan; ; ; ; , polyhydroxyalkanoates, esterification, graft copolymers, hydrolysis 

Chemical compounds studied in this article:  

Sodium hyaluronate (PubChem CID: 53447380), Curcumin (PubChem CID: 101736865), 

Resveratrol (PubChem CID: 445154)  
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1. Introduction 

Polymers have played an integral role in the advancement of drug delivery technology by 

providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, 

and tunable release of both hydrophilic and hydrophobic drugs (Liechty, Kryscio, Slaughter, & Peppas, 

2010). The latest developments have specially shown that hydrophobic drugs can be physically 

encapsulated into polymeric micelles via hydrophobic interactions formed by amphiphilic polymers. 

Particularly, polymeric micelles have attracted interest in the development of drug delivery systems 

for cancer therapy (Chu et al., 2016).  

Hyaluronan or hyaluronic acid (HA), is a glycosaminoglycan composed of repeating 

disaccharide units of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic (GlcA) linked by glycosidic 

bonds ([4)-β-D-GlcpA-(1 <InlineImage1>3)-β-D-GlcpNAc-(1 <InlineImage2>]n), which is widely 

used in anticancer drug delivery due to its ubiquitous presence in the human body and thereby its 

biocompatibility, biodegradability, and non-toxicity. With the increasing demands of smart 

nanomicelles or vesicles, it is essential to modify the structure of HA, increase its stability and shelf-

life i.e. by grafting with synthetic aliphatic polyesters such as poly(lactic acid) (PLA) (Pravata et al., 

2007), poly(lactide-co-glycolide) (PLGA) (Son et al., 2014) or poly(caprolactone) (PCL) (Chen et al., 

2017). Unfortunately, these conjugates often suffer from several drawbacks due to the use of 

synthetic blocks, often giving problems due to the presence of unreacted monomers, catalysts, toxic 

degradation or side-products (Maitz, 2015). 

To address these issues, biologically derived polymers created by living organisms are 

advantageous. Poly(3-hydroxyalkanoates) (PHAs) are excellent candidate biomaterials due to their 

exceptional biodegradability and biocompatibility. They comprise a family of natural (aliphatic) 

polyesters produced by microorganisms. However, PHAs are characterized by high crystallinity and its 

hydrolytic degradation requires months (Z. Li, Yang, & Loh, 2016). PHAs need to have tunable 

hydrophilicity, chemical functionalities, and appropriate hydrolytic stability to expand their 
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therapeutic applications towards more advanced areas (Z. Li & Loh, 2015). Although, blending of PHAs 

and hydrophilic polymers have been proposed, these blends are brittle due to the incompatibility 

between the second polymer and the PHA matrix (Hsu, Wu, Liao, & Cai, 2015). Water soluble PHAs 

also show great potential in controlled drug release, cancer therapy, DNA/siRNA delivery and tissue 

engineering. Previously, PHA-based water soluble polymers were prepared by i) block 

copolymerization with hydrophilic components such as polyethylene glycol (PEG) (J. Li et al., 2006) or 

Poly (N-isopropylacrylamide) (PNIPAA) (Ma, Wei, Yao, Wu, & Chen, 2016);  ii) graft copolymerization 

with biopolymers such as chitosan (Arslan, Hazer, & Yoon, 2007), cellulose (Wei, McDonald, & Stark, 

2015), but also synthetic polymers: poly(ethylene imine) (PEI) (Zhou et al., 2012) or PEG (Babinot, 

Guigner, Renard, & Langlois, 2012). However, the exogenous nature of the polymers is still a drop out 

for biomedical applications (Mitragotri et al., 2015).  

Herein, we describe the synthesis of water-soluble conjugates containing PHAs and HA 

attached covalently by esters bonds. Partial depolymerisation of PHAs under acidic conditions was 

used for the preparation of oligomeric PHA derivatives-containing carboxylic moieties at the terminal 

end. Screening of coupling reagents for binding PHAs to HA has been conducted.  The resulting 

conjugates were characterized by FT-IR, SEC-MALLS, and NMR and thermal analyses. We hypothesized 

that these materials can self-assemble in aqueous media. Therefore, the potential application of these 

conjugates as drug delivery carriers was explored by encapsulation of two hydrophobic drugs: 

curcumin and resveratrol.  

2. Materials and Methods 

2.1 Materials  

Sodium hyaluronate (laboratory grade, Mw: 13,700 g/mol and polydispersity of 1.5, further 

description is provided in supplementary part S.1.1) was provided by Contipro a.s. (Dolni Dobrouc, 

Czech Republic). Poly(3-hydroxybutyrate) (P(3HB) was extracted from biomass of Bacillus cereus SPV 

after fermentation in the Kannan and Rehacek medium with glucose (20 g/L) as the sole carbon source 
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(Basnett et al., 2013). Three medium chain length PHAs (mcl-PHAs) were used in this study, identified 

as the homopolymer of 3-hydroxyoctanoate (P3HO), copolymer of 3-hydroxyoctanoate and 3-

hydroxydecanoate (P(3HO-3HD)) and terpolymer of 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-

hydroxydodecanoate (P(3HO-3HD-3HDD)). These medium chain length PHAs were produced by 

Pseudomonas mendocina CH50 (NCIMB 10542) as reported in a previous work (Rai et al., 2011). 

Tetrahydrofuran (THF, 99.5%), isopropanol (IPA, 99.7%), triethylamine (TEA, 98%) and dimethyl 

sulfoxide (DMSO, 99.9%) were purchased from Lach-Ner (Czech Republic). Benzoyl chloride (BC, 99%), 

2, 4, 6-trichlorobenzoyl chloride (TBC, 97%), N, N, N′, N′-Tetramethyl-O-(N-succinimidyl) uronium 

hexafluorophosphate (HSTU), N, N′-Carbonyldiimidazole (CDI, 97%) and acetic acid (≥ 99.5%) were 

purchased from Sigma–Aldrich. Analytical grade CHROMASOLV® solvents were used for 

chromatographic analysis. Deuterium oxide (D2O) was purchased from CortecNet (France). 4-

(Dimethylamino) pyridine (DMAP, 99.5%) was purchased from Merck. 3-(4, 5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) and ethidium homodimer were purchased from Life 

Technologies.  

2.2. Hydrolytic depolymerisation of polyhydroxyalkanoates (PHAs) 

Partial depolymerisation of PHAs was used for the preparation of oligo(3-hydroxyalkanoates). 

In brief, 3.0 g of the respective (dry) PHA was suspended in a mixture of 166 mL of glacial acetic acid 

and 34 mL of distilled water. Hydrolysis was carried out at 100-105°C under reflux for up to 30 hours. 

In this work, a detailed kinetics of depolymerisation was studied for P(3HB) (supplementary part 

Figure S1). In this experiment, 5 mL aliquots were withdrawn periodically and polymer was 

precipitated in cold methanol and used for further characterisation. The obtained oligo(3-

hydroxybutyrate) shorten as oligo(3HB) was purified by washing several times with distilled water until 

neutral reaction of the supernatant was obtained. 

2.3. Synthesis of conjugates based on hyaluronan and PHAs 
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Sodium hyaluronate (2 g, 5 mmol of dimers) was dissolved overnight in distilled water (40 mL) 

under stirring. After the solution was homogeneous, TEA (triethylamine, 0.7 mL, 5 mmol) was added, 

followed by 0.003 g of DMAP.  At the same time and in a second reaction flask, the PHA was activated. 

The respective molar equivalents of PHA based on a monomer unit as shown in Table 1 were dissolved 

in 40 mL of DMSO, followed by the corresponding equivalents of CDI or the respective activator (Table 

1) and 0.7 mL of TEA (5 mmol). The formation of the imidazolide (activation) was carried out at room 

temperature or 60°C (Ta) for the activation time (ta) described in Table 1. Then, the solution of the 

corresponding activated PHA was added to the solution containing HA at temperature (THA) for the 

time (tHA) resumed in Table 1. The crude product was isolated by precipitation adding a saturated 

solution of sodium chloride (5 mL). After that the product was washed with an excess of anhydrous 

isopropanol (300 mL). The product was washed again with solutions of isopropanol: water (85% v/v, 

4 x 100 mL). Finally, the precipitate was washed 4x with 100 mL of absolute isopropanol, filtered and 

dried in an oven for at least 24h. To ensure reproducibility of the reaction, each synthesis was repeated 

for at least three independent times. In general, the procedure is reproducible up to 15 g scale (data 

not shown). In all the cases, products with identical structural characteristics, consistent degree of 

grafting (GD), yield and purity were obtained. The reaction conditions used for the preparation of HA 

(acid and TBA form are described in supplementary section S2 and S3) and the grafting of HA in 

supplementary S4.  

2.4. Characterization of modified hyaluronan 

The methods used for the characterization of the modified HA as infrared spectroscopy (IR), 

nuclear magnetic resonance (NMR), SEC-MALLS (Size-Exclusion Chromatography Combined with 

Multiangle Laser Light Scattering), Gel permeation chromatography (GPC) and differential scanning 

calorimetry (DSC), are described in supplementary part.  

2.5. Encapsulation of hydrophobic drug  
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Resveratrol or curcumin (~5 mg) were dissolved in 3 mL of 2-propanol and mixed with aqueous 

solution of hyaluronan graft-oligo (3-hydroxybutyrate) (Oligo (3HB)-g-HA) or sodium oleyl hyaluronate 

(HA-C18:1). Solvents were removed under reduced pressure. Resulting film was rehydrated with 

water, filtered through a 0.1 µm glass fiber to remove unincorporated compound and freeze-dried. 

The loaded amount of resveratrol or curcumin was quantified by HPLC. 

3. Results and discussion 

3.1. Synthesis of oligomeric derivatives of PHAs 

The biologically-synthesized PHAs exhibit a molecular weight about 1.5 MDa. These high 

molecular weight, PHAs can be depolymerised (hydrolysed), to yield a PHA having a molecular weight 

as low as 2 kDa. In this work, depolymerisation was employed to obtain low molecular weight 

derivatives of PHAs. The hydrolytic cleavage of PHAs was performed using acetic acid solutions of high 

concentration (above 80%) and elevated temperature (110°C). Except for hydrolysis, these conditions 

ensured homogenous conditions for the depolymerisation facilitating predictive preparation of both 

low molecular weight PHA (Mw about 15 kDa) and oligo(3-hydroxyalkanoates) (Mw about 2 kDa) 

products. Detailed description of PHA depolymerisation, including degradation kinetics and product 

characterization was exemplified for P(3HB), one of the shortest polyesters from PHA family. P(3HB) 

depolymerisation was studied monitoring the evolution of degree of depolymerisation during the 

hydrolysis. As can be seen from Figure S1, P(3HB) hydrolysis in acetic acid solution results in 

exponential decay of molecular weight with the time. Depolymerisation/degradation processes have 

been modelled as random scission of macromolecular chains for different types of polymers (Cran, 

Gray, Scheirs, & Bigger, 2011; Martens et al., 2011; Staggs, 2002). Kinetic data for P(3HB) hydrolysis 

are reported in Figure S1. The random chain scission corresponded to the first-order kinetics which 

was presented in a term of number-average degree of polymerization by Ekenstam equation: 

(1/DPt − 1/DP0) = kt      (A)  
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where DP0 and DPt are the initial degree of polymerization and degree of polymerization at time t 

respectively, and k is the rate constant (Martens et al., 2011).  The high degree of linearity of this plot 

demonstrates the applicability of an overall first-order kinetic analysis to this system as a good 

approximation. The rate constant derived from the line slope is 1.87x10-3 h-1. The established relation 

between degree of depolymerisation and hydrolysis times allows for the selection of hydrolysis 

duration to obtain oligo(3-hydroxybutyrate) of required molecular weight starting from P(3HB) of 

different initial molecular weight. 

Oligo (3-hydroxybutyrate) obtained after hydrolysis for 20 h is completely soluble in THF or 

DMSO at room temperature. Solubility in these solvents is achieved when weight-average molecular 

weight is below 2.2 kDa, making the polymer suitable for grafting to other polymers, including HA. As 

it can be expected, decrease of molecular weight leads to change in thermal properties. DSC 

thermograms presented in Figure 1 demonstrate that glass transition and melting temperature shifted 

to lower temperatures with the decrease of molecular weight. Table S1 summarizes dependence of 

thermal properties on molecular weight for partially depolymerised P(3HB). Glass transition decreased 

from 2.5oC for initial high molecular weight P(3HB) (Mw~273.5 kDa) to -11.1 °C when weight average 

molecular weight reduced to ~2.2 kDa. Even more significant decrease is observed for melting 

temperature. Oligo(3HB) with number-average molecular weight of ~2.2 kDa melts below 100oC 

compared with almost 174.5oC for initial high molecular weight P(3HB). Interestingly, Oligo (3HB) 

shows a complex melting event with a relatively narrow peak at lower temperature (Figure 1). The 

ratio of peak area of this peak to area of a doubled peak of higher temperatures increases with the 

decrease of degree of polymerisation. This implies that first peak is due to a fraction of lower 

molecular weight which increases for more hydrolysed samples. All hydrolysed samples remain highly 

crystalline like the parent P(3HB), if enthalpy of fusion is assumed as not dependent on molecular 

weight as observed for the 100% crystalline material (Domínguez-Díaz et al., 2015). 
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    P(3HB) acidic hydrolysis allowed the formation of oligomers with terminal functionalities onto the 

degraded PHA polyester. In this case, hydroxyl group at one end of molecule and carboxyl group at 

another end (Figure 3, STEP A). 1H NMR shows end-monomer units as additional peaks with small 

differences in chemical shifts compared with peaks of corresponding protons in main chain (Figure 2). 

As an example, inserts in Figure 2 show expansions for sextet of   ̶ O ̶ CH- at 5.2 ppm. 1H NMR reveals 

end hydroxyl groups at  = 4.2 ppm in oligo(3-hydroxybutyrate), which are not detectable in initial 

P(3HB) due to a low content. An additional singlet at  = 2.0 ppm appears in 1H NMR for oligo(3HB). 

This is assigned as methyl protons of acetyl. Thus, a part of hydroxyl groups in oligo(3HB) is esterified 

with acetic acid. End group NMR analysis indicates that around 40% of hydroxyl groups of oligo (3HB) 

were esterified.  

3.2. Preparation of hyaluronan graft-poly(3-hydroxyalkanoates)  

At the beginning, the physical combination of HA and PHAs (blending) was tested as a part of 

the development of novel materials. However, the physical mixture was not possible due to poor 

interfacial interactions between the two polymers. Therefore, a second alternative was the chemical 

bonding. Different approaches were tested for the conjugation. The formation of an ester bond 

between a carboxylic acid moiety of PHA and hydroxyl moiety of HA is the core reaction of this work. 

The first step of this condensation reaction, the activation of the carboxyl moiety is the critical one. 

There are several methods available for activating carboxyl moieties for coupling to the hydroxyl 

moiety in HA, such as the generation of carboxylic halides, mixed anhydrides or the use of 

carbodiimides (Montalbetti & Falque, 2005). At first, we applied the mixed anhydride methodology 

using benzoyl chloride as an activating agent (Huerta-Angeles et al., 2016). Although several reaction 

conditions involving different solvents, bases and reaction times were tested, the chemical bonding 

was not successful (Table 1, entries 13-15). Second, we tried to use the coupling approach. Reagents 

used in peptide coupling such as the phosphonium-and the uronium -(imonium-) type reagents, may 

be useful for carboxyl activation. In contrast to activation by carbodiimides, these compounds achieve 
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high coupling rates accompanied by few undesired side reactions (El-Faham & Albericio, 2011). 

Consequently, N, N, N′, N′-Tetramethyl-O-(N-succinimidyl) uronium hexafluorophosphate (HSTU) was 

tested in this work. Although HSTU mediated the coupling between PHA and HA the reaction efficiency 

was lower (Table 1, entries 9,10) compared to CDI. The synthetic steps used for the preparation of the 

copolymers containing HA and PHAs mediated by CDI are depicted in Figure 3.  CDI-coupling reaction 

is usually carried out in polar organic solvents (i.e. THF, formamide, DMF or DMSO), which is important 

because the solvent is expected to be miscible with the solvents commonly used for chemical 

modification of HA (or its salts). In fact, CDI was successfully used for the esterification of HA with 

ferulic acid in formamide (Cappelli et al., 2014). However, similar reaction conditions were not 

applicable for HA chemical modification with alkanoates (Table 1, entry 16). When we replaced 

formamide with DMSO, PHA terminal -carboxyl moiety was activated by CDI yielding imidazolide 1 

(Figure 3, STEP B), which reacted in the next step with the primary hydroxyl group in aqueous-organic 

solvent system (water/DMSO) or DMSO, yielding esterified HA (Figure 3, STEP C). The activation can 

be performed as one-pot reaction. The rate of imidazolide formation was followed by NMR 

spectroscopy in the presence of TEA (Figure S2) in DMSO. After 4h, conversion larger than 98 % of the 

Oligo(3HB) to the imidazolide intermediate was achieved at 25 °C (Figure S2). Also, the presence of 

TEA was found to accelerate the reaction (data not shown). To ensure complete consumption of the 

CDI for all types of PHAs, the reaction towards the imidazolide was carried out at 60 °C with equimolar 

ratios of PHAs/CDI (Heinze, Liebert, & Koschella, 2006). However, based on the NMR data, we found 

that the imidazolide unexpectedly degraded at 60 °C and reaction sub-products also appeared i.e. a 

new signal was detected at 4.6 ppm (Figures S3), which probably explains the lower degree of grafting 

when high temperature is used (Table 1, entries 1, 17 and 19).  

In the second reaction step, the esterification of HA was studied. The esterification reaction 

can be carried out in water (HA sodium salt) or in an aqueous-organic solvent system (i.e. DMSO or 

THF). Alternatively, the esterification reaction can be performed in organic solvents, such as 

dimethylsulfoxide (DMSO) or dimethylformamide (DMF). In this case, the commonly used HA sodium 
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salt must be converted into either its acidic form or a tetrabutylammonium (TBA) salt for solubilisation 

in organic solvents (see supplementary part).  The results in Table 1 demonstrated that Oligo (3HB) 

reacts efficiently at room temperature and independently on the polarity of the reaction solvent, 

probably because it is the least hydrophobic of the four oligomers tested in this work (Table 1, entries, 

19-22). In contrary, DMSO and high temperature (60°C) was needed for the HA esterification with PHA 

having medium chains, including Oligo (3HO), (3HO-co-3HD) and (3HO-co-3HD-co-3HDD) copolymers 

(Table 1, entries 2-6 compared to entries 23-28). Therefore, the conversion of HA in its salts was 

necessary for the reactivity of medium chains alkanoates in organic solvent. However, it should be 

reminded that the conversion is always accompanied by degradation of HA backbone, which is not 

desirable for some applications. When HA sodium salt and DMSO/water solvent was used, an 

increased reactivity was found for Oligo (3HB) compared to the smaller grafting degree obtained for 

low molecular weight P(3HB) probably due to limited chain mobility (Table 1, entries 11, 12, 17 and 

19). Furthermore, the reaction requires at least an equimolar ratio of PHA/HA (Table 1, entries 19-22), 

while lower molar ratio produces lower grafting degree (Table 1, entry 18). The highest grafting degree 

(14%) was reached for Oligo (3HB) after 24 h of activation with CDI at room temperature, followed by 

24 h of esterification reaction carried out in DMSO/H2O mixture at room temperature (Table 1, entry 

22). 
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1 P3HB; Mw =15.3 kDa (Table S1), 2 Oligo (3HB); Mw = 2.3 kDa  

aChemical structure of the PHA used in the reaction is depicted in Figure 3.  

bThe reaction with HA (13.7 kDa), 2.5 % (w/v) concentration. 

cThe activation is carried out for time (ta) at temperature (Ta). 

dthe activated PHA reacts with HA for time (tHA) at the temperature (THA). 

e GD was determined by 1H NMR spectroscopy; nr stands for non-reaction. 

Compared to the literature data, the presented methodology is robust and economically 

feasible for synthesis of PHAs grafted to HA mediated by CDI-coupling agent. The main advantages of 

the presented methodology are: (i) possible coupling of two natural polymers, (ii) applicability on 

industrial scale mainly because of the mild reaction conditions and short activation time, (iii) usage of 

CDI coupling agent which is non-toxic, available at low price and stable for long term storage.  

3.3. Structural characterization of sodium hyaluronate graft-alkanoates 

 The chemical structure of copolymers was characterized by a combination of analytical 

techniques NMR, FTIR and SEC-MALLS. NMR was also used for the determination of grafting degree, 

expressed in % and defined as an average number of PHA chains attached to 100 disaccharide HA 

dimers. For example, grafting degree = 5.2 % indicates that 5 out of 100 disaccharide HA dimers were 

modified (See Table 1, entry 8). grafting degree was determined using normalized integral intensity 

of 1H NMR signals of the three N-acetyl protons of HA located at 2.1 ppm and signals of the terminal 

methyl group in PHA within the range of 1.2–1.8 ppm. A representative HSQC (heteronuclear single 

quantum coherence) spectrum of Oligo (3HB) grafted to HA is shown in Figure 4. This derivative will 

be used as an example to demonstrate the covalent bonding of P(3HA) to HA. The edited mode which 

allows the discrimination of CH3 and CH from CH2 groups in the structure was used to assign all the 

proton resonances in copolymers. Characteristic peaks of HA i.e., N-acetyl group (3H, -COCH3), skeletal 

(10H, 2a,2b,3a,3b, 4a, 4b, 5a,5b and 6a) and anomeric protons (1a,1b) of the HA chain appeared at 

2.03, 3.04–3.98 and 4.46-4.55 ppm, respectively. Remaining signals detected in the spectrum of 

modified HA at 1.54 (3H,d -CH3), 3.04 (2H, -OCH2-C=O) and 5.12 ppm (1H, -CH-) were attributed to 
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Oligo (3HB) coupled to HA. Additionally, the 1H NMR of oligo ((3HO-3HD-3HDD)-g-HA) is also included 

in Figure S4. 

 The formation of the linkage between alkanoates and HA was further confirmed by diffusion 

ordered NMR spectroscopy (DOSY). The DOSY map establishes diffusion of all proton signals in 1H NMR 

spectrum. In case of covalent linkage between HA and alkanoates, 

similar diffusion behaviour is expected to be observed for all signals (examples of oligo (3HB-g-HA and 

oligo (3HO-3HD-3HDD-g-HA are shown Figure 5 and S5). In contrast, the presence of free Oligo (3HB), 

which is only physically mixed with HA derivative, yields different diffusion pattern for the two entities. 

As it shown in Figures S6, signals corresponding to unbound Oligo (3HB) had faster diffusion compared 

to HA signals.  

 We also tried to confirm the formation of covalent bond between Oligo (3HB) and HA by IR 

spectroscopy. The characteristic IR spectrum of HA (Figure S7) shows absorptions at 3421, 2894, 1667, 

1376, 1079,1038 and 611 cm−1 as reported in our previous work (Matelová et al., 2016). The IR 

spectrum Oligo (3HB) shows typical bands of methyl and methylenes in the region 2993, 2972 and 

2930 cm-1. The asymmetric and symmetric CH3 stretching was also confirmed at 1465 and 1381 cm-1, 

respectively. Additionally, a sharp band located at 1724 cm1 was associated with (O-C=O) stretching 

deformation (Domínguez-Díaz et al., 2015). Unfortunately, due to overlap of signals corresponding to 

the HA esterification (in substituted HA (GD ≥ 10%)) and stretching deformation of (O-C=O) in PHA, 

the peak at 1725 cm−1 is not a clear indicative for covalent linkage between HA and PHA. It is worth to 

mention that the signal at 1272 cm-1 corresponding to the crystalline component of Oligo (3HB) 

(Domínguez-Díaz et al., 2015) vanished after conjugation with HA. In fact, unlike the pure P3HB 

component, the conjugate Oligo (3HB) grafted to HA displayed no crystallization when cooled from a 

melt state during the DSC non-isothermal crystallization run (Figure S8). 
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 The weight average molecular weight (Mw) increased slightly as effect of the chemical 

modification (Table S2). Additionally, the polydispersity of the graft copolymers slightly increased in 

comparison with the parent HA but remained relatively low (≤ 1.7).  

3.4. Cytocompatibility assay of hyaluronan graft-alkanoates  

The interaction of cells with modified HA derivatives is essential to be investigated for 

potential biomedical applications. After chemical modification of HA, the produced derivatives should 

not be cytotoxic when incubated with healthy cells. The cytotoxicity was assessed by flow cytometry 

using direct contact assay (supplementary S5) using as a control untreated cells. Native HA used for 

the modification was found to be not cytotoxic (data not shown). Derivatives of entries 2, 6, 19 and 

25 (Table 1) were assayed and found not to be cytotoxic up to concentration of 1,000 µg mL-1 (Figures 

6 and Figures S9 and S10). Negligible effects and no significant differences in cell viability after 24 and 

48 h were detected in the whole concentration range tested indicating a good cytocompatibility of 

the novel derivatives.  

3.5. Encapsulation of hydrophobic models. 

To demonstrate the potential application of the prepared derivatives, resveratrol and curcumin 

were used as hydrophobic model compounds for evaluation of encapsulation efficiency of (Oligo 

(3HB-g-HA)). Resveratrol is a hydrophobic but light sensitive compound, used for decreasing acne 

vulgaris signs (Fabbrocini et al., 2011). On the other hand, curcumin is a natural compound with anti-

inflammatory and anti-oxidant properties. However, limiting factors such as its extremely low oral 

bioavailability hampers its application as therapeutic agent (Liu et al., 2016). Both, resveratrol and 

curcumin were separately loaded in Oligo (3-hydroxybutyrate)-g-HA (grafting degree: 5.2 %). Loading 

capacity was calculated and compared with previously reported results published by our group where 

different HA derivatives were used (Matelová et al., 2016; Nešporová et al., 2016). The loading 

capacity of curcumin in Oligo (3HB-g-HA) was more than 4 times larger compared with encapsulation 

by sodium oleyl hyaluronate (HA-C18:1), reported in our previous work (Nešporová et al., 2016). 
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However, these two HA-based amphiphiles showed similar loading capacities for resveratrol. These 

results can be explained by differences between the compatibility of the nanomicellar core and the 

used model compound (Table 2). However, encapsulation is a very complex process and it is difficult 

to predict the drug-binding affinity of a novel carrier.  

4. Conclusions 

 The synthesis of novel hydrophobized hyaluronan derivatives, containing oligomers of 

polyhydroxyalkanoates (Oligo PHA) was successfully achieved for the first time. The method described 

in this work allows the synthesis of a family of novel copolymers of well-defined structures, which are 

soluble in water. To extent the use of these materials in biomedical applications, grafting was 

envisioned through labile esters bonds to ensure in vivo biodegradability. The solvent was found to be 

determinant for the success of the coupling reaction. Although substitution reactions on HA by 

hydrophobic oligomers/polymers are challenging, in this study, CDI was confirmed to be an excellent 

acylation agent, which can be applied for conjugation of homopolymers of PHA characterized by short 

and medium chain length, as well as for copolymers of two or three of medium chain length. The 

chemical modification of HA by Oligomers of PHAs yielded a grafting degree up to 14%. The main 

advantages of the proposed methodology are the mild reaction conditions and relatively short 

reaction time i.e. more than 98 % conversion was reached after 4h. HA did not undergo any 

degradation. HA and oligo (3-hydroxyalkanoates) copolymers were successfully used to encapsulate 

hydrophobic drugs. In this study, we demonstrate the synthesis and characterization of set of novel 

biocompatible conjugates and take the first exploratory step towards application in drug delivery. The 

convenience of both biopolymers is opening a myriad of new applications.  
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<InlineImage3>        

Figure 1. DSC thermograms depicts the initial P(3HB) (dotted line) and hydrolysed for 3 (short dashed 

line), 8 (long dashed line), 20 (dot-dashed line) or 30 (solid line) hours, respectively. 
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<InlineImage4> 

Figure 2. 1H NMR spectra of (A) initial P(3HB) and (B) Oligo(3HB) obtained for 30 hours of hydrolysis 

recorded in CHCl3 
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<InlineImage6>  

Figure 3. Chemical reactions involved in the synthesis of HA copolymers containing-PHAs (A) 

hydrolysis of P(3HB) (B) Activation of the terminal carboxylic acid of PHA via imidazolide formation 

(PHACO-Im or 1) mediated by CDI and (C) coupling step with hyaluronan.  
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<InlineImage7> 

Figure 4. Edited Heteronuclear single quantum coherence (HSQC) spectrum corresponding to Oligo 

(3HB grafted – HA), (GD = 8.4 % and Mw =13,700 g/mol) recorded in D2O. 
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Figure 5. DOSY NMR spectra of hyaluronan grafted with oligo 3-hydroxybutyrate (Oligo (3HB-g-HA)) 

recorded in D2O (Entry 22, Table 1), c=12.5 mg/ml). 

 

<InlineImage9> 

Figure 6. Cell viability of Oligo (3-hydroxybutyrate)- grafted to sodium hyaluronate  

 

Table 1. Reaction conditions for the synthesis of conjugates oligo (3HA-g-HA).  

Entry  Polymera Coup. 

agent 

Solventb ta (h)
 c Ta 

(°C) c 

HA/PHA 

(%) 

tHA 

 (h)d 

THA 

(°C) d 

GD e 

(%) 

HA (acid form) 

 

1 Oligo (3HB)2 CDI DMSO 4 60 100 12 25 2.5 

 

2 Oligo (3HO) CDI DMSO 4 60 100 12 60 4.1 

3 CDI DMSO 4 60 100 48 60 6.6 

 

4 Oligo (3HO-

3HD-3HDD) 

CDI DMSO 4 60 100 12 60 2.6 

5 CDI DMSO 8 60 100 48 60 4.5 

6 CDI DMSO 4 60 100 48 60 5.3 

HA-TBA 

7 Oligo (3HO) HSTU DMSO 8 60 100 48 60 0.8 

8 Oligo (3HO-

3HD) 

HSTU DMSO 8 60 100 48 60 0.9 

9 Oligo (3HO-

3HD-3HDD) 

HSTU DMSO 8 60 100 48 60 1.4 

10 CDI DMSO 8 60 100 48 60 2.4 

Sodium salt of HA 
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11 P(3HB)1 CDI DMSO/H2O 4 60 100 12 60 0.4 

12 CDI DMSO/H2O 24 25 100 24 25 0.5 

13 Oligo (3HB)2 BC DMSO/H2O 2 25 100 12 25 nr 

14 BC THF 2 25 100 12 25 nr 

15 TBC DMSO/H2O 2 25 100 12 25 nr 

16 CDI formamide 2 25 100 12 25 nr 

17 CDI DMSO/H2O 4 60 100 12 25 2.1 

18 CDI DMSO/H2O 4 25 50 12 25 0.1 

19 CDI DMSO/H2O 4 25 100 12 25 5.2 

20 CDI DMSO/H2O 4 25 150 24 25 7.1 

21 CDI DMSO/H2O 4 25 200 24 25 8.4 

22 CDI DMSO/H2O 24 25 200 24 25 13.8 

 

23 Oligo (3HO) CDI DMSO/H2O 4 60 100 12 25 1.2 

24 CDI DMSO/H2O 4 60 100 12 60 0.8 

 

25 Oligo (3HO-

3HD) 

CDI DMSO/H2O 4 60 100 12 25 1.5 

26  CDI DMSO/H2O 4 60 100 12 60 0.9 

 

27 Oligo (3HO-

3HD-3HDD) 

CDI DMSO/H2O 4 60 100 12 25 0.6 

28 CDI DMSO/H2O 4 60 100 12 60 0.3 

 

Table 2. Loading capacity of derivatives Oligo (3HB-g-HA) and HA-C18:1 evaluated for curcumin and 

resveratrol. 

Resveratrol 

(Oligo (3HB-g-HA)) 

(mg/mg) 

solvent Loading 

capacity 

(wt. %) 

HA-C18:1 
(mg/mg) 

Loading 

capacity 

(wt. %) 

100:5 IPA 0.8 100:5 1.3 

Curcumin 

(Oligo (3HB-g-HA)) 

(mg/mg) 

solvent Loading 

capacity 

(wt. %) 

HA-C18:1 
(mg/mg) 

Loading 

capacity 

(wt. %) 

100:5 IPA 3.3 100:5 0.7 

 


