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A B S T R A C T

The construction industry plays a crucial role in the global economy, contributing approximately $10 trillion and 
employing over 220 million workers worldwide, but encounters numerous productivity challenges with only 1 % 
annual growth compared to 2.8 % for the global economy. These challenges span various processes, including 
design, planning, procurement, inspection, and maintenance. Generative artificial intelligence (GenAI), capable 
of producing new and realistic data or content such as text, images, videos, or code from given inputs or existing 
knowledge, presents innovative solutions to these challenges. While there is an increasing interest in the ap
plications of GenAI in construction, a detailed analysis of its practical uses, advantages, and areas ripe for 
development is still evolving. This study contributes to this emerging area by offering an insightful analysis of the 
current state of generative AI in construction. It has three objectives: (1) to identify and categorize the existing 
and emerging generative AI opportunities and challenges in the construction industry via a Delphi study; (2) to 
propose a framework enabling construction firms to build customized GenAI solutions; and (3) to illustrate this 
framework through a case study that employs GenAI model for querying contract documents. Through sys
tematic review and expert consultation, the study identified 76 potential GenAI applications across construction 
phases and 18 key challenges distributed across domain-specific, technological, adoption, and ethical categories. 
The case study’s findings show that retrieval augmented generation (RAG) improves the baseline large language 
model (LLM), GPT-4, by 5.2, 9.4, and 4.8 % in terms of quality, relevance, and reproducibility. The study rec
ommends a structured approach to GenAI implementation, emphasizing the need for domain-specific custom
ization, robust validation protocols, and careful consideration of ethical implications. This study equips 
academics and construction professionals with a comprehensive analysis and practical framework, facilitating 
the integration of GenAI techniques to enhance productivity, quality, safety, and sustainability across the con
struction industry.

1. Introduction

The construction industry is a cornerstone of the global economy, 
contributing approximately $10 trillion or 13 % to the global GDP in 
2019 [1–3]. It is also a major employer, providing jobs to over 220 
million workers worldwide and acting as a key driver of employment[4]. 
This industry is composed of various sub-sectors, including 

infrastructure engineering, residential, commercial, and industrial 
building construction [1–3]. Building construction stands out as the 
largest and most varied sub-sector, representing around 40 % of the 
global construction output and half of the construction employment 
globally [5].

Building construction is recognized for its complexity and dyna
mism, involving a wide array of stakeholders such as owners, architects, 
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engineers, contractors, subcontractors, suppliers, and regulators[6,7]. 
The construction process demands coordinating and integrating 
numerous activities, including design, planning, scheduling, procure
ment, fabrication, installation, inspection, and maintenance [8,9]. 
Additionally, it involves the generation and utilization of a vast amount 
of data, ranging from drawings and specifications to contracts, reports, 
invoices, and photographs[10–12]. The quality, efficiency, and sus
tainability of building construction are heavily dependent on the effec
tive management and use of these activities and data. Despite its 
significance, the construction industry encounters numerous challenges 
that impede its performance and productivity. These challenges are 
prevalent across all lifecycle stages of construction, such as design, 
construction, procurement and supply chain, fabrication and installa
tion, and inspection and maintenance, as illustrated in Fig. 1 [13–15]. 
Each stage is characterized by complex and dynamic processes that 
necessitate the coordination and integration of diverse resources, dis
ciplines, and stakeholders while also managing a variety of constraints, 
uncertainties, and changes. These challenges present considerable dif
ficulties and risks to the construction industry, leading to reduced pro
ductivity, increased costs, prolonged delays, diminished quality, and 
greater environmental impact. According to a report by McKinsey, the 
global construction industry has an average annual productivity growth 
of only 1 %, compared to 2.8 % for the total world economy and 3.6 % 
for manufacturing. The report also estimates that the global construction 
industry could save up to $1.6 trillion per year by improving its 

productivity to the level of other sectors [1].
Addressing these challenges and improving the performance and 

productivity of the building construction industry requires innovative 
and disruptive solutions that can leverage the power of data and tech
nology. One of the most promising and emerging solutions is generative 
artificial intelligence (AI) [16–18]. Generative AI (GenAI) is a branch of 
AI that aims to create novel and realistic data or content, such as text, 
image, video, audio, or code, based on some input or prior knowledge 
[19–21]. GenAI can be seen as the opposite of discriminative AI, which 
aims to classify or recognize data or content, such as identifying objects 
in an image or translating text from one language to another. More 
elaboration on the foundational concepts of GenAI relevant to this 
discourse is provided in the supplementary material.

GenAI encompasses large language models (LLMs) and multimodal 
GenAI models (multimodal GenAI), both of which are neural network 
models trained on extensive datasets. LLMs, such as those trained on 
texts from books, articles, websites, and social media, are adept at 
capturing natural language’s semantic and syntactic nuances [22–24]. 
Multimodal GenAI, on the other hand, is an advanced algorithm that can 
generate not only text but also images, audio, video, or code. They learn 
general representations from large corpora of varied content during 
pretraining, which allows them to produce original outputs across 
different modalities. GenAI models are built upon the foundational al
gorithms discussed in the supplementary material of this study and 
include examples like GPT-4 and Codex, which generate coherent text 

Fig. 1. Major activities and challenges encountered at each phase of a building construction cycle.

R. Taiwo et al.                                                                                                                                                                                                                                   Alexandria Engineering Journal 116 (2025) 672–698 

673 



and functional code, respectively [25,26]. Similarly, DALL-E 3 and 
Imagen can create photorealistic images from text descriptions [27,28], 
while models trained on audio can synthesize natural human speech or 
music. Multimodal GenAI models’ versatility extends to multimodal 
generation, such as pairing input stories with appropriate images or 
matching lyrics with suitable music compositions. The hallmark of 
multimodal GenAI is its colossal scale in terms of model size, compu
tational requirements, and training data volume, which facilitates a 
wide-ranging and inventive generative capacity that spans text, images, 
video, code, and integrated multimodal outputs. This positions them as a 
comprehensive generative toolbox, pre-trained on diverse big data for 
multifaceted applications. GenAI’s adoption across various disciplines 
demonstrates its versatility: in healthcare, it generates synthetic medical 
images for privacy and dataset augmentation [29]; in pharmaceuticals, 
it aids in developing new molecular structures for drug discovery [30, 
31]; in business, it supports generative design for product ideation [32]; 
in social sciences, it assists in historical document restoration and syn
thetic population data generation [33]; and in academia, it contributes 
to personalized educational tools and interactive simulations [34]. 
Table 1 provides an overview of recent GenAI models, detailing their 
developers, training parameters, release years, and accessibility.

Although GenAI applications are still at an infant stage in the con
struction industry, a few studies exist on their usage for construction- 

related work [25,58]. As such, [59] reviewed applications of GenA I 
for developing and enhancing structural designs and how they could 
help improve accuracy in the design process. [26] presented an over
view of the potential applications of Generative Pre-trained Transformer 
(GPT) models across the lifecycle of a construction project and a case 
study for material selection. Further, text-based opportunities and a 
limited number of challenges of adopting GenAI in the construction 
industry were presented by [60]. These studies have laid important 
groundwork, but their scope remains limited to specific applications or 
narrow aspects of GenAI implementation.

Despite the potential and promise of GenAI for the construction in
dustry, more systematic and comprehensive literature needs to be 
compiled that identifies and analyses the current state, opportunities, 
and challenges of GenAI in this domain. Most existing literature focuses 
on specific applications or aspects of GenAI (such as GPT models or text- 
text models) without considering the broader and holistic picture of 
GenAI in the construction industry. Moreover, there is an urgent need 
for practical and actionable guidance on implementing and deploying 
GenAI solutions in the construction industry. This is particularly crucial 
for construction firms that may lack sufficient data, expertise, or re
sources to develop their own GenAI models from scratch. The industry 
requires a framework that bridges the gap between theoretical possi
bilities and practical implementation, addressing everything from data 
collection and preprocessing to model deployment.

Therefore, this study aims to provide a holistic analysis of GenAI in 
the construction industry, with the following objectives: 

• To provide opportunities and challenges of applying GenAI in the 
construction industry.

• To propose a framework enabling construction firms to build 
customized GenAI solutions using their data by describing and 
explaining the key steps and components of the framework.

• To demonstrate the proposed framework via a practical use case of 
developing a tailored GenAI for contract documents.

This study’s unique contribution lies in its comprehensive approach 
that combines theoretical analysis with practical implementation guid
ance, supported by expert insights and validated through an original 
case study. Unlike previous works focusing on specific applications or 
theoretical possibilities, this research provides a complete roadmap for 
construction firms to successfully implement GenAI solutions while 
addressing industry-specific challenges and requirements.

The rest of the paper is organized as follows: Section 2 describes the 
study’s methodology, which is explained in four phases. Section 3 pre
sents the literature review results and expert discussion, including the 
current applications, opportunities, and challenges of GenAI in the 
construction industry. Section 4 proposes the framework for building 
custom GenAI in the construction industry and explains the main steps 
and components of the framework. Section 5 demonstrates the frame
work via a case study of developing a GenAI model for contract docu
ments and shows the results and outcomes of the case study. Section 6
concludes the paper and provides some directions for future research.

2. Methodology

A four-phase approach is adopted to achieve the objectives of this 
study. Fig. 2 visualizes these phases, including systematic literature re
view and retrieval, expert discussion and review, a framework for 
developing a custom GenAI model in the construction industry, and a 
case study. 

I. Phase 1 – Systematic literature retrieval and review: The first 
step in this phase involves selecting appropriate databases for the 
literature search. Scopus, Web of Science, and ScienceDirect were 
chosen due to their broad coverage and rigorous indexing of peer- 
reviewed publications [61,62]. Keyword identification was 

Table 1 
GenAI models released in recent years.

Models Developer Training 
parameter 
(Billion)

Release 
year

Access Ref.

Llama− 3.2 Meta 1, 3, 11, and 90 2024 Open 
source

[35]

Grok xAI 314 2024 Open 
source

[36]

Flux-pro Black Forest 
Lab

12 2024 API [37]

Claude− 3.5- 
Opus

Anthropic - 2024 API [38]

Claude− 3.5- 
Haiku

Anthropic - 2024 API [38]

Claude− 3.5- 
sonnet

Anthropic - 2024 API [38]

o1-mini OpenAI - 2024 API [39]
o1-preview OpenAI - 2024 API [39]
GPT− 4o OpenAI - 2024 API [40]
GPT− 4 OpenAI - 2023 API [41]
Gemini Pro Google 

DeepMind
- 2023 Open 

source
[42]

Llama 2 Meta 7, 13, 70 2023 Open 
source

[43]

PaLM Google 540 2022 Open 
source

[44]

DALLE− 3 OpenAI - 2023 API [27]
SDXL Stability AI 2.6 2023 Open 

source
[45]

DALLE− 2 OpenAI 3.5 2022 API [46]
Dreamfusion Google - 2022 API [47]
Flamingo Google 

DeepMind
80 2022 API [48]

Phenaki Google 1.8 2022 API [49]
Codex OpenAI 12 2021 API [50]
Galactica Meta 120 2022 Open 

source
[51]

AudioLM Google 0.6 2022 API [52]
DALL-E OpenAI 12 2021 API [53]
BART Facebook AI 0.4 2019 Open 

source
[54]

T5 Google 11 2019 Open 
source

[55]

GPT− 3.5 OpenAI 175 2022 API [56]
GPT− 2 OpenAI 1.5 2019 Open 

source
[57]

XLNet Google 0.34 2019 Open 
source

[52]
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conducted iteratively to capture relevant studies at the intersec
tion of GenAI and the construction industry. The final search 
string consisted of ["Construction industry" OR "architecture en
gineering and construction industry" OR "AEC industry" OR 
"AECO industry"] AND ["Generative AI" OR "GenAI" OR "GENAI" 
OR "Bard" OR "Gemini" OR "GPT" OR "GPT-1" OR "GPT-2" OR 
"GPT-3" OR "GPT-3.5" OR "GPT-4" "ChatGPT" OR "Transformer" 
OR "GPT-4" OR "Llama" OR "LamDA"]. This search returned 79 
initial results. The search results were narrowed to 10 potentially 
relevant studies based on the title and abstract screening. An 
in-depth review found that only four (4) were original research 
articles, with two review articles, and the full text of the rest was 
unavailable or written in languages other than English. Snowball 
searching expanded the final pool to six original research articles 
at the intersection of GenAI and construction.

II. Phase 2 – Expert discussion and review: The limited literature 
identified in Phase 1 highlighted the need to supplement with 
expert perspectives, given the nascent state of GenAI adoption in 
construction. To elicit diverse insights, 15 experts with back
grounds spanning AI research and construction industry practice 
were identified. Invitations were sent to participate in the study, 
with 11 experts accepting for a 73 % response rate. This panel 
encompassed university professors in AI and construction engi
neering, technology directors from major construction firms, and 
founders of AI startups targeting the architecture, engineering, 
and construction (AEC) industry. Table 2 shows the demographic 
details of the experts. A Delphi survey consisting of three rounds 
was conducted with the panel to identify opportunities and 
challenges of applying GenAI in the construction industry. The
matic analysis was then used to extract common themes from the 
qualitative responses. This involved codifying the experts’ 

Fig. 2. Research framework.
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opinions and aggregating them into categories through an itera
tive process. The goal was to determine areas of consensus as well 
as unique perspectives.

III. Phase 3 – Framework for developing custom GenAI in the 
construction industry: This phase involved synthesizing the 
literature and expert findings into a methodology construction 
firms can follow to build custom GenAI solutions using their 
proprietary data. The framework encompasses construction data 
collection, dataset preprocessing, training the custom GenAI 
model, evaluation, and deployment steps. The details of the 
framework are presented in Section 4.

IV. Phase 4 – Case study: A case study was conducted using GenAI 
to query contract documents and demonstrate practical applica
tion. The first step involved the selection of the base LLM archi
tecture. OpenAI’s GPT-4 model was chosen as the base model due 
to its state-of-the-art natural language generation capabilities. A 
retrieval-augmented generation (RAG) system was implemented 
to improve the base LLM further. This mitigated hallucinated text 
by grounding outputs in relevant dataset examples. LangChain 
Library was employed for the development [63]. The perfor
mance of the customized LLM was evaluated, and a graphical user 
interface was developed using Streamlit [64]. This interactive 
web application enabled testing of the customized GenAI model 
through prompts.

3. Results

3.1. Current applications

This section presents the application of GenAI in the form of LLMs in 
the construction industry. Based on the systematic review, only six peer- 
reviewed articles exploring the uses of LLMs in construction were 
identified. No articles relating to other GenAI models, such as large 
image and video models, were found. The six articles are summarized in 
Table 3, including their objective, methods, and contributions. The 
reviewed studies demonstrate emerging applications of LLMs, such as 
GPT-based models for construction tasks, including virtual assistance, 
sequence planning, schedule generation, hazard recognition, risk 
assessment, and project planning [65–67]. The contributions highlight 
the potential for LLMs to enhance productivity, accuracy, and automa
tion in areas like information retrieval, education/training, and docu
mentation review. However, the limited number of studies indicates that 
the adoption of modern GenAI in construction is still in the very early 
stages. Significant research is needed to develop customized LLMs and 
multimodal GenAI models for the industry and validate their capabilities 
in dealing with real-world problems.

3.2. Opportunities

The discussions conducted with experts revealed 76 potential 

opportunities to deploy GenAI across construction, categorized by input- 
output capabilities. Sections 3.2.1 through 3.2.9 extensively examine 
applications of generative texts, images, and videos. While generative 
models can also synthesize audio, experts advised that video generation 
can serve dual visual and auditory content purposes as construction 
relies heavily on visual data like drawings, photos, animations, and 
written and verbal communications, generative modes spanning text, 
images, and video were seen as most directly relevant. Despite signifi
cant progress, there are still limitations, particularly when generating 
complex images and videos. Table 4 summarizes leading generative 

Table 2 
Demographics of the experts.

Category Profile Frequency Percentage (%)

Sector Academia 6 54
​ AI industry 5 46
Experience 5–10 years 2 18
​ 11–15 years 3 27
​ 16–20 years 4 36
​ 20 and above 2 18
Highest degree Bachelor 1 9
​ Master 3 28
​ Doctorate 7 63
Background Architecture 2 18
​ Civil engineering 3 27
​ Computer science 3 27
​ Construction management 3 27

Table 3 
Summary of current applications of LLM in the construction industry.

Ref. Objective Methods Contributions

[58] Development of a 
dynamic prompt- 
based virtual assistant 
framework for BIM 
information search

The framework 
integrates BIM and GPT 
technologies for an NL- 
based interface. 
Dynamic prompt-based 
process interprets NL 
queries, retrieves 
information, and 
delivers responses.

The framework’s 
application improves 
information search 
speed, accuracy, and 
user experience.

[68] Development of 
RobotGPT for 
automated sequence 
planning in robotic 
assembly for 
construction tasks.

RoboGPT is a system 
that uses ChatGPT for 
automated sequence 
planning in robot- 
based construction 
assembly.The 
experimental 
evaluation included 
two case studies and 80 
trials involving real 
construction tasks.

RoboGPT-driven 
robots can handle 
complex construction 
operations and adapt 
to changes on the fly.

[25] Generation of a 
construction schedule 
for a project

ChatGPT is employed 
to generate a 
construction schedule 
for a simple project.A 
survey was conducted 
to evaluate output 
quality and 
participants’ 
experience.Parameters 
used to evaluate results 
include accuracy, 
efficiency, clarity, 
coherence, reliability, 
relevance, consistency, 
scalability, and 
adaptability.

The use of LLM to 
enhance construction 
schedules workflow.

[69] The use of ChatGPT for 
improving hazard 
recognition on 
construction site

The investigation 
involved 42 students in 
a construction 
program.Pre- and post- 
intervention hazard 
recognition abilities 
were measured.

The potential of 
employing ChatGPT 
for safety education 
and training.

[70] Automated 
classification of 
contractual risk 
clauses

The BERT method is 
used for clause 
classification in 
construction 
specifications.Seven 
risk categories were 
identified: payment, 
temporal, procedure, 
safety, role and 
responsibility, 
definition, and 
reference.

The model improves 
the construction 
specification review 
process and risk 
management.

[71] Automatic matching 
of look-ahead 
planning tasks to 
master scheduled 
activities

Both location-based 
and distance-based 
matching followed 
were employed.GPT− 2 
was used for final 
matching.

Auto-alignment of 
long-term and short- 
term plans in 
construction projects
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models for different data types. LLMs like GPT-4o and Gemini Pro 
demonstrate proficiency in text synthesis [72,73]. DALL-E 3 produces 
images from text captions [27]. Video generation models like CogVideo, 
Lumiere, and Stable Diffusion show promise but are still being refined 
[74,75]. Although there are shortcomings, the pace of progress makes 
GenAI a promising technology for transforming the construction in
dustry. If trained on sufficient domain data, text generation achieves 
high coherence and accuracy. Photorealistic image synthesis provides 
value in design and documentation use cases. Video capabilities lag but 
rapidly improve through advances like higher resolution GANs [75,76].

3.2.1. Text to text
GenAI revolutionizes the construction industry by converting textual 

data into advanced textual outputs, assisting in many tasks in the con
struction project phases. Table 5 provides a detailed overview of the 
potential applications of text generation in the construction industry, 
categorized using the different project phases. In pre-construction, it can 
help generate feasibility study summaries, ensure regulatory compli
ance, and automate proposal/bid drafting [80]. Drafting daily progress 
reports, specifications, task instructions, and other documents can be 
automated during construction (see Fig. 3). Post-construction opportu
nities include creating inspection reports, punch lists, operation and 
maintenance manuals, reviewing warranty/compliance letters, and 
translating documents. Other cross-cutting text applications are infor
mation retrieval through natural language queries and translation into 
multiple languages [17]. With proper training in technical corpora, they 
can translate industry insights directly into clear, accurate documents 
without tedious hands-on work. Realizing this potential requires careful, 
prompt engineering and alignment with construction linguistic patterns 
and technical jargon.

3.2.2. Text to image
AI’s text-to-image conversion provides innovative possibilities in the 

construction field, including the ability to visualize pre-construction 
architectural ideas, assist in making real-time construction choices, 
and enhance marketing materials once construction is completed. The 
potential opportunities for generating images via text prompting are 
shown in Table 6. Generating images from text has broad applicability in 
construction projects. Pre-construction applications include creating 
visualizations from site descriptions for selection and planning [81]. 
Text prompts can also render architectural concepts and project models 
(Fig. 4). During construction, progress visualization, equipment layouts, 
and safety illustrations can be automated from textual inputs. Fig. 5
shows a visualization of construction progress through different stages 
of execution. Post-construction use cases involve as-built visualization, 
usage guidelines, and renovation proposals. With appropriate training, 

models like DALL-E can translate construction domain language into 
detailed visuals through well-prompted texts. This technology allows 
people without expertise to readily obtain visual depictions by articu
lating what they wish to see in plain language. Automating this linkage 
between vision and language can make project information more 
accessible while freeing worker time [26].

3.2.3. Text to video
The utilization of GenAI to transform textual information into dy

namic video content offers numerous benefits. Table 7 summarizes key 
opportunities for text-to-video generation in construction based on the 
expert discussion. During the pre-construction phase, introductory site 
exploration videos and animated project concept videos could be syn
thesized from text to aid scope planning and stakeholder intelligence. 
During construction, step-by-step equipment operation tutorials and 
safety training animations could be generated from manuals and textual 
hazard narrations, respectively [82]. Progress update videos compiled 
from schedules and logs would help keep stakeholders informed with 

Table 4 
GenAI models for various input-output types.

Input-output 
type

Model Developer Ref.

Text to text Claude− 3.5, GPT− 4o, 
Gemini Pro

Anthropic, OpenAI, 
Google’s DeepMind

[72, 
73]

Text to 
image

DALL-E 3, Flux OpenAI, Black Forest Lab [27]

Text to video CogVideo, Lumiere Nightmareai, Google 
Research

[74, 
75]

Image to text GPT− 4, Gemini Pro OpenAI, Google’s DeepMind [72, 
73]

Image to 
image

Pix2Pix Berkeley AI Research [77]

Image to 
video

Stable Video Diffusion Stability AI [78]

Video to text VideoCoCa Google Research [79]
Video to 
image

- - ​

Video to 
video

Lumiere, Gen− 2 Google Research, Runway [75, 
76]

Table 5 
Potential GenAI opportunities in the construction industry for text-text model 
type.

Potential opportunity Description Project phase

Generation of the 
feasibility report 
summary

Summarize extensive feasibility 
reports and extract key insights and 
recommendations for informed 
decision-making during the project 
initiation.

Pre- 
construction

Documentation of 
regulatory compliance

Leverage GenAI to assist in creating 
documents that ensure compliance 
with regulatory requirements, a 
crucial task in the pre-construction 
planning phase.

Pre- 
construction

Preparation of proposal/ 
bid

Apply GenAI to assist in the 
preparation of proposals and bids by 
automatically generating well- 
structured and persuasive text 
content.

Pre- 
construction

Generation of daily 
progress report

Create a daily progress report 
template summarizing on-site 
activities and achievements during 
construction.

Construction

Refinement of 
construction 
specifications

Utilize GenAI to refine and enhance 
construction specifications, ensuring 
clarity and accuracy in the 
documentation of materials, methods, 
and standards.

Construction

Task Assignment and 
Communication

Facilitate task assignment and 
communication by automatically 
generating clear and detailed 
instructions for construction teams 
through GenAI.

Construction

Summarization of as- 
built documents

Summarize the extensive as-built 
documentation, providing a 
condensed overview of the final 
constructed project for post- 
construction analysis.

Post- 
construction

Generation of facility 
maintenance manual

Automate the generation of 
comprehensive facility maintenance 
manuals based on the final as-built 
documentation.

Post- 
construction

Review of warranty and 
compliance document

Utilize GenAI to review warranty and 
compliance documents, summarizing 
critical information and ensuring 
adherence to post-construction 
requirements.

Post- 
construction

Language translation 
and localization

Translate text content between 
different languages, aiding in global 
collaboration and communication.

All

Information retrieval 
and knowledge 
discovery

Enhance contextual search 
capabilities by using GenAI to 
understand and respond to natural 
language queries, improving the 
accuracy of information retrieval.

All
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Fig. 3. Daily progress report template generated using GPT-4 via ChatGPT interface.
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matching visual updates. Post-construction use cases include creating 
instructional facility usage videos from the documentation. With 
appropriate training data, text-to-video models can translate construc
tion domain language into vivid animations and live footage [74,75]. 
Rather than relying solely on static diagrams and dense text, bringing 
instructions and processes to life through AI-generated videos makes 
project information more engaging. Dynamic video tutorials personal
ized via text to each situation may enhance comprehension and learning 
for safety training and equipment operation. Automating the linkage 
between textual descriptions and video footage also frees workers’ time 
spent manually storyboarding and editing visualizations. As 
text-to-video generation techniques continue advancing in resolution 
and realism, the applications across the construction project lifecycle 
will expand.

3.2.4. Image to text
Converting images into text descriptions has valuable applications 

throughout construction project phases. Table 8 summarizes potential 
use cases validated by the expert discussion. Pre-construction opportu
nities include extracting measurements, boundaries, and other 

information from land surveys and blueprints. During construction, 
daily site photos could be analyzed to generate progress reports. Images 
of materials and equipment could develop real-time quality and in
ventory assessments via GenAI[83]. Fig. 6 displays an image description 
generated by Gemini Pro as part of a daily visual report. Upon close 
inspection, the model accurately captures fine-grained details in the 
image, including identifying the specific brand and model of the con
struction equipment. This demonstrates Gemini Pro’s capability to 
produce descriptive text summarizing critical visual information [73]. 
Post-construction applications involve extracting as-built details from 
archival photos and making warranty documentation from damaged 
images. Cross-cutting use cases include automating visual inspection 
reports across phases. With proper training, image captioning tech
niques can translate construction graphics and photos into structured 
textual information. This eliminates tedious manual efforts to log and 
convey visual observations. Models such as GPT-4o can analyze 
everyday images and accurately describe prominent objects, actions, 
and scenery [72].

3.2.5. Image to image
The image-to-image capabilities of GenAI are crucial in construction 

as they facilitate design adjustments, on-site issue solutions, and the 
visualization of future upgrades. Table 9 details potential applications of 
image-image models in the construction industry. Pre-construction use 
cases include adapting architectural visualizations into different desired 
art styles and refining scanned maps into clear site plans. During con
struction, input architectural plans and sketches could be auto-modified 
to match ongoing changes on-site [59]. Material texture libraries could 
help generate realistic composite renderings from sample images. 
Post-construction applications involve visualizing the restored building 
state from damage assessment images and landscape enhancements. 
Improving image quality and resolution are potential applications across 
all phases of construction projects. Techniques such as pix2pix GANs 
demonstrate capabilities to transform input images while preserving 
essential content structure [77]. By learning alignments between con
struction image domains during training, models can translate inputs 
into desired stylistic, structural, or conceptual outputs. This allows the 
adaptation of visual data into appropriate formats for downstream 
usage, reducing repetitive manual editing. For instance, rough sketches 
produced during early design phases can be refined into polished 
architectural visualizations or engineering schematics. Images captured 
on-site can be adapted to match design intent, even when physical 
conditions vary. Continued advances in high-resolution GANs will 
further expand the potential for image-to-image synthesis to enhance 
visual media throughout construction projects.

3.2.6. Image to video
Converting static images into dynamic videos opens up impactful 

possibilities across the construction project lifecycle. Table 10 summa
rizes potential applications in this area. During pre-construction, static 
architectural concept images could be converted into engaging 
animated walkthroughs and fly-throughs to showcase designs. Aerial 
site photos could also produce simulated planning and development 
timelapses [84]. Safety incidents could be recreated on active con
struction sites based on analysis of images of unsafe conditions to 
improve hazard awareness through vivid video representations. Time
lapse build videos compiled from daily construction photos help visually 
track project progression. Post-construction use cases include generating 
promotional experience videos from facility images and collecting recap 
documentary videos from archival visuals. State-of-the-art generative 
video models demonstrate increasing capabilities to animate 
photo-realistic footage from sparse image inputs [78]. AI systems can 
extend single images into complete video sequences with convincing 
continuity and realism by learning to extrapolate motion and physical 
interactions [85]. Construction visuals contain extensive intrinsic 
structures that video generation models can leverage to produce 

Table 6 
Potential GenAI opportunities in the construction industry for text-image model 
type.

Potential 
opportunity

Description Project phase

Site visualization and 
selection

Create visual representations of potential 
construction sites based on text 
descriptions, aiding the decision-making 
process during site selection.

Pre- 
construction

Architectural 
concept rendering

Transform textual architectural concepts 
into visual renderings, providing 
stakeholders with a clear preview of the 
proposed designs.

Pre- 
construction

Interactive project 
models

Utilize GenAI to convert project 
descriptions into interactive 3D models, 
allowing stakeholders to explore and 
engage with the project before 
construction begins.

Pre- 
construction

Construction 
progress 
visualization

Implement GenAI to generate visual 
representations of construction progress 
based on textual updates, providing 
stakeholders with a visual timeline of the 
project.

Construction

Material and 
equipment layouts

Through generative AI, visual layouts of 
materials and equipment based on textual 
descriptions are created, optimizing their 
placement on the construction site.

Construction

Safety procedure 
illustrations

Apply GenAI to convert text-based safety 
procedures into visual illustrations, 
enhancing comprehension and adherence 
to safety protocols on the construction 
site.

Construction

As-Built 
visualization

Transform the as-built documentation 
into visual representations, aiding in the 
visualization and analysis of the final 
construction.

Post- 
construction

Facility usage 
guidelines

Create visual guidelines for facility usage 
based on textual documentation, ensuring 
clear communication of post-construction 
guidelines.

Post- 
construction

Renovation proposal 
visualizations

Generate visual representations of 
proposed renovations, aiding decision- 
making during the post-construction 
phase.

Post- 
construction

Project timeline 
infographics

Convert textual project timelines into 
visual infographics, providing an easily 
understandable overview for all project 
phases.

All

Project dashboard 
visuals

Generate visual representations for 
project dashboards based on textual data, 
offering stakeholders an intuitive and 
informative overview of project metrics.

All
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meaningful video representations without full frame-by-frame supervi
sion. Converting images into dynamic videos helps improve engagement 
and understanding compared to static depictions alone. As the coher
ence and resolution of image-to-video models continue improving, their 
potential applications in construction for bringing visuals to life will 
grow.

3.2.7. Video to text
AI transcription of video-to-text revolutionizes the construction in

dustry by providing comprehensive documentation throughout the 
construction process. Potential applications of video-to-text conversion 
are shown in Table 11. During pre-construction, generative models 
could auto-transcribe kickoff meetings and regulatory compliance 
tutorial videos into concise text records. Safety briefing videos and daily 
progress meeting discussions on active construction sites could be 
translated into text summaries for distribution to wider stakeholders 
[82]. Post-construction commissioning and inspection videos also 
contain valuable verbal feedback that video-to-text techniques can 
structure into reports. Across phases, comprehensively transcribing 
archived project videos into indexed, searchable documentation enables 
robust retrospective analysis [83]. Models such as VideoCoCa can 
transcribe technical construction multimedia while filtering out irrele
vant background noise [79]. The text outputs synthesize the key details 
and language from videos without needing to review hours of footage. 
This allows scaling-extraction of vital audio information in rich multi
media that construction teams continuously generate. When deployed 
with proper data controls, video-to-text AI can unlock new levels of 
value from archived construction data without demanding extensive 

manual effort.

3.2.8. Video to image
As shown in Table 12, extracting key representative images from 

construction videos offers value across construction projects. Exploring 
site videos could be condensed into salient snapshots during pre- 
construction to accelerate assessments. Video conferences discussing 
design concepts can be automatically packed into a collage of snapshot 
visuals [86]. In the construction phase, delivery footage could be pro
cessed into consolidated photo logs of materials arriving on-site. Aerial 
construction video can generate periodic bird’s-eye progress views [84]. 
Post-construction applications include extracting instructional stills 
from facility tutorials. Compiling time-lapse visual collages from 
archival videos can summarize entire project journeys. Video summa
rization techniques such as recurrent auto-encoders demonstrate capa
bilities to identify important frames that distill key visual concepts from 
longer video sequences [87]. Through the application of these tech
niques to construction footage, essential moments can be extracted 
without the necessity for manual video scrubbing. The representative 
thumbnail images could support rapid video review and summarization. 
They also integrate more seamlessly into reports and presentations than 
video embeds. Further innovation in dense video understanding and 
summarization will continue expanding the capabilities for automating 
the extraction of impactful visuals from construction multimedia.

3.2.9. Video to video
While static outputs enable analysis, video can engage stakeholders 

through dynamic visualization. Constructing the future requires 

Fig. 4. Image of 3D BIM Model Generated Using DALL-E 3.
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envisioning it in motion. Generative video-to-video models can help 
bring these visions to life across the project lifecycle, as depicted in 
Table 13. During pre-construction planning and bidding, generative 
models could synthesize simulated construction sequences from source 
videos to allow interactive visualization of various work strategies and 
schedules for optimization [88]. On construction sites, input training 
videos could be adapted into multi-lingual versions translated across 
diverse crews to increase accessibility and comprehension. Architectural 
visualization videos, as-built documentation, and sensor data could be 
synthesized into lifecycle simulations and digital twin representations to 
support operations and maintenance. Opportunities exist for efficient 
review across all phases, such as video quality enhancement, accelerated 
time-lapses, and video summarization.

By learning spatial-temporal relationships from construction 

footage, models can extend source videos into modified outputs adapted 
for downstream requirements. This allows for tailoring visual media for 
specific applications ranging from training to monitoring to forecasting. 
As video generation techniques continue advancing, the potential for AI- 
assisted video remixing and synthesis to enhance multimedia value 
across the construction project lifecycle will grow substantially [75]. 
Processing datasets accumulating from the proliferation of construction 
cameras and sensors using generative video models promises to unlock 
new visual insights and perspectives.

3.3. Challenges

The adoption of GenAI in the construction industry is growing; thus, 
it comes with challenges. As presented by the experts during the Delphi 

Fig. 5. Construction progress visualization generated by DALL-E3.
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survey, these challenges are multi-faceted, encompassing domain- 
specific, technological, adoption, and ethical challenges, as shown in 
Fig. 7. Table 14 provides an overview of these challenges along with 
practical solutions for addressing them in construction applications. 
These challenges should be navigated for successful real-world deploy
ment of GenAI in construction. A holistic approach considering technical 
and non-technical factors is required to overcome barriers and unlock 
the full potential of LLMs in construction.

3.3.1. Domain-specific challenges

3.3.1.1. Requirement for construction-specific knowledge. Construction is 
a complex field with intricate technical knowledge required to execute 
projects safely and efficiently [89,90]. However, most current GenAI 
techniques rely solely on statistical patterns extracted from data. They 
need to explicitly encode the nuanced human expertise and domain 
constraints around structural engineering, materials science, construc
tion codes, aesthetics, machinery, schedules, costs, etc. As a result, 
generative models trained exclusively on construction data may fail to 
produce valid, high-quality outputs that align with industry best prac
tices. For example, a generative design model may create a visually 
appealing 3D building model that violates important structural princi
ples, safety factors, or zoning regulations. The lack of engineering heu
ristics and constraints leads the unrestrained model to hallucinate 
flawed plans. Likewise, a generative text model trained only on con
struction documents will fail to generate specifications or instructions 
demonstrating a human’s comprehension of materials compatibilities, 
sequences of operations, cost impacts, or equipment capabilities. 
Generative models need better integration of structured domain 
knowledge beyond just data patterns to reach their potential in con
struction. This remains challenging as industry experts’ rules and mental 

models are difficult to codify for machines. Advances in neuro-symbolic 
AI, modular architectures, and expert-in-the-loop training show promise 
for imbuing models with more robust construction domain intelligence 
[91].

3.3.1.2. Handling unstructured and heterogeneous data. Construction 
data exists in multifaceted, unorganized formats across disparate sys
tems, posing challenges for generative AI. Project information encom
passes everything from scanned paper blueprints to 3D BIM models, 
permits, contracts, change orders, requests for information (RFIs), sub
mittals, specifications, budgets, meeting minutes, multimedia, and 
more. These data types have different structures, semantics, units, 
symbols, file formats, and modalities. Generative models like GANs and 
VAEs struggle to ingest this heterogeneous, unstructured data directly to 
synthesize coherent outputs. For example, a basic image-to-image model 
cannot map a 3D BIM model, change order form, and permit application 
into a unified generated output. The variability across projects also 
hampers standardized tooling. Each construction firm may have 
customized data conventions, nomenclatures, templates, and systems 
tailored to their needs. Creating consolidated datasets from dispersed 
historical records is arduous. To work around these challenges, purpose- 
built multi-modal generative architectures are necessary [92]. Tech
niques like attention mechanisms, graph networks, and transformer 
models show promise for learning alignments and correlations across 
varied data types. However, no universal solution exists to handle the 
messiness of real-world construction data. GenAI still requires extensive 
wrangling of unstructured inputs into tidy, normalized features.

3.3.1.3. Lack of large-curated datasets. GenAI models need massive, 
high-quality training datasets to perform well. However, most 

Table 7 
Potential GenAI opportunities in the construction industry for text-video model 
type.

Potential 
opportunity

Description Project phase

Site introduction 
videos

Create introductory videos for potential 
construction sites, providing stakeholders 
with visual overviews based on textual 
descriptions.

Pre- 
construction

Project concept 
animation

Transform textual project concepts into 
animated videos, offering stakeholders a 
dynamic visualization of the proposed 
construction.

Pre- 
construction

Equipment 
operation guides

GenAI can automatically create step-by- 
step video tutorials demonstrating 
equipment use from the text and diagrams 
in instruction manuals.

Construction

Safety procedure 
animations

Safety managers could compose 
comprehensive narrations of hazards and 
precautions. GenAI can synthesize 
engaging video footage matching the 
narration to create safety training 
materials.

Construction

Progress update 
videos

Generate progress videos automatically 
using GenAI using progress reports, 
schedules, logs, and notes.

Construction

Facility usage 
instruction videos

Generate instructional videos based on 
textual documentation for facility usage, 
ensuring clear communication of post- 
construction guidelines.

Post 
Construction

Building update 
videos

Produce AI-generated videos summarizing 
facility modifications, upgrades, and status 
changes over time from text-based 
building logs for stakeholders.

Post 
Construction

Project journey 
montage

Implement GenAI to compile a video 
montage showcasing the entire project 
journey, combining textual descriptions 
and visual elements for a comprehensive 
overview.

All

Table 8 
Potential GenAI opportunities in the construction industry for image-text model 
type.

Potential 
opportunity

Description Project 
phase

Land survey data 
extraction

Analyze land survey images and extract 
textual data, such as measurements, 
topographical details, and boundary 
information.

Pre- 
construction

3D model specification Analyze 3D architectural models and 
automatically generate detailed textual 
specifications of materials, components, 
dimensions, etc.

Pre- 
construction

Blueprint digitization Automatically convert scanned paper 
blueprints and hand-drawn sketches 
into structured digital representations.

Pre- 
construction

Daily progress image 
analysis

Analyze daily progress images from 
construction sites and generate textual 
reports summarizing the progress, 
challenges, and achievements.

Construction

Material quality 
assessment

Examine images of construction 
materials and generate textual 
assessments regarding quality, potential 
issues, and compliance.

Construction

Inventory 
management

Use AI techniques to automatically 
catalog on-site equipment, materials, 
tools, etc., from images and videos into 
searchable inventory databases.

Construction

As-built 
documentation text 
extraction

Analyze images of as-built 
documentation and extract textual 
information, facilitating the creation of 
detailed post-construction reports.

Post- 
construction

Warranty claim 
documentation

Explore images of construction 
components and generate textual 
documentation for warranty claims, 
specifying issues and relevant details.

Post- 
construction

Visual inspection 
reports

Examine images from visual inspections 
and generate textual reports, providing 
detailed information on observed 
conditions and recommendations.

All
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Fig. 6. Description of an image taken as part of a daily visual report generated by Gemini Pro.
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construction firms do not consistently organize and consolidate their 
project data into formats usable for training a large model [26]. His
torical records remain fragmented across various databases, file shares, 
and systems. The effort required to aggregate and clean unstructured 
construction data into coherent datasets is prohibitive without dedi
cated workflows. Data may reside in legacy formats. Important 
contextual links between related data points may be lost. The need for 
more data versioning, consistency, and curation poses challenges. For 
niche construction applications like generating site layouts or drywall 
specifications, virtually no large canonical datasets exist publicly to 

train models [93]. Collecting sufficient data from scratch requires sub
stantial industry participation across firms. Annotation and labeling also 
necessitate scarce expert time. Without sizable, high-coverage training 
datasets, generative models struggle to generalize. They easily neglect 
sparse edge cases or unique scenarios found in complex construction 

Table 9 
Potential GenAI opportunities in the construction industry for image-image 
model type.

Potential opportunity Description Project 
phase

Architectural image 
translation

Use generative techniques to adapt 
architectural visualizations and 
renderings done in one style to different 
target art styles.

Pre- 
construction

Site planning 
refinement

Refine scanned maps and satellite 
imagery to generate clear site/lot 
diagrams and top-down site plans for 
planning.

Pre- 
construction

Concept generation Produce variations of initial 
architectural sketches and concept art 
to explore broader design possibilities.

Pre- 
construction

Updating architectural 
drawing

Modify architectural drawings and 
plans by incorporating changes made 
on the construction site to keep 
documentation up-to-date.

Construction

Material texture 
matching

Apply GenAI to match the textures of 
construction materials with reference 
images, ensuring consistency and 
quality in the visual appearance of the 
constructed elements.

Construction

Damage assessment Process images of damaged building 
areas and generate visualizations 
showing restored states.

Post- 
construction

Landscape 
transformation 
visualization

Visualize the transformation of 
landscapes based on input images, 
supporting post-construction projects 
such as garden enhancements or 
environmental modifications.

Post- 
construction

Aesthetic enhancement Improve resolution, lighting, 
orientation, and low-quality 
construction images across phases.

All

Table 10 
Potential GenAI opportunities in the construction industry for image-video 
model type.

Potential 
opportunity

Description Project phase

Design concept 
visualization

Generate animated walkthrough 
visualizations of architectural concept 
designs from still images.

Pre- 
construction

Site planning 
simulation

Produce simulated timelapse videos of site 
planning and layout from aerial photos.

Pre- 
construction

On-site safety 
analysis

Assess images of unsafe conditions and 
generate simulated incident recreations for 
safety analysis.

Construction

Construction 
progress

Compile timelapse videos of construction 
progress from daily site images.

Construction

Operation training 
videos

Produce equipment maintenance and 
operation training videos from instruction 
manual images and diagrams.

Post- 
construction

Promotional videos Automatically generate engaging facility 
experience videos from images for leasing/ 
sales.

Post- 
construction

Documentary 
videos

Compile construction progress, milestones, 
interviews, etc., into documentary-style 
recap videos from images.

All

Table 11 
Potential GenAI opportunities in the construction industry for video-text model 
type.

Potential 
opportunity

Description Project phase

Meeting minutes 
generation

Automatically generate minutes from 
video recordings of project kickoff and 
planning meetings.

Pre- 
construction

Regulatory 
compliance briefs

Transcribe spoken content from 
regulatory compliance videos, creating 
textual briefs summarizing compliance 
requirements for the construction 
project.

Pre- 
construction

Safety briefing text 
summaries

Use GenAI to transcribe safety briefings 
in construction videos, generating 
concise text summaries for distribution 
to construction teams and stakeholders.

Construction

Defect detection Analyze inspection videos and generate 
written alerts about potential issues for 
remediation.

Construction

Daily progress 
meeting transcripts

Transcribe discussions from daily 
progress meetings captured in videos, 
creating textual records of construction 
progress, challenges, and decisions.

Construction

Commissioning 
reports

Generate performance reports by 
transcribing functional testing/ 
acceptance videos.

Post- 
construction

Project Archive Create searchable records of the whole 
project by transcribing videos into 
indexed documentation.

All

Table 12 
Potential GenAI opportunities in the construction industry for video-image 
model type.

Potential opportunity Description Project 
phase

Site exploration frame 
extraction

Extract key frames from site 
exploration videos, creating static 
images that capture crucial moments 
and details for initial site assessments.

Pre- 
construction

Conceptual design 
snapshot generation

Extract representative snapshots from 
videos discussing conceptual designs 
and creating visual representations of 
architectural concepts for 
documentation and presentations.

Pre- 
construction

Virtual landscape 
preview stills

Generate still images from videos 
showcasing virtual landscape 
previews, providing stakeholders with 
static visual references for pre- 
construction landscape assessments.

Pre- 
construction

Material delivery visual 
logs

Generate representative photo logs 
from videos capturing materials and 
equipment as they arrive on site.

Construction

Remote and automated 
progress monitoring

Aerial video can be processed to 
automatically produce interval 
imagery depicting bird’s-eye views of 
the site at different points in time.

Construction

Facility usage 
instructions still

Extract still images from videos, 
providing facility usage instructions 
and creating visual stills that convey 
important guidelines for post- 
construction occupants.

Post- 
construction

Comprehensive project 
timeline collage

Compile critical frames from videos 
across all project phases into a 
comprehensive timeline collage, 
visually summarizing the entire 
project journey.

All
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projects. Models trained on inadequate data produce lower-fidelity 
outputs that lack realism and conformity to standards. Overcoming 
this bottleneck will require construction firms to systematically organize 
data accumulation, annotation, versioning, and consolidation work
flows. Precompetitive industry data consortiums can also help aggregate 
datasets for typical AI applications.

3.3.1.4. Bias in existing datasets. Construction datasets often exhibit 
significant regional biases propagated through GenAI models trained on 
this data. For example, architectural plans and building methods reflect 
local materials availability, weather patterns, seismic requirements, and 
zoning laws. Specifications follow jurisdiction-specific codes and stan
dards. Units of measure, terminology, and language also vary 
geographically [94]. If models are trained solely on historical datasets 
from a particular country or city, the generated outputs will inherit these 
narrow perspectives. A design model trained only on American exam
ples may overlook important considerations for cyclone-prone regions 
when deployed in the tropics. Likewise, language models trained only on 
specifications for a particular state could generate confusing RFI re
sponses for international contractors following different norms. Outputs 
may also inadvertently include inapplicable regional colloquialisms. 
Training datasets must include wide diversity along multiple geographic 
axes to minimize bias and improve model coverage. However, 
thoughtfully collecting and curating such datasets is challenging for 
firms focused on their local region. Synthetic data augmentation tech
niques can help artificially expand variety once baseline data is available 
[95]. In practice, biased training sets often necessitate maintaining 
individualized models tailored to each application region. But this 
multiplicity hampers scaling and adds overhead. Developing adaptable 
generative models that generalize across diverse contexts remains an 
impactful challenge in construction.

3.3.1.5. Integration with workflows and standards. For many years, the 
construction industry has relied heavily on workflows and proprietary 
systems tailored to each firm’s needs and project requirements. 

Seamlessly integrating GenAI solutions with these incumbent environ
ments poses significant adoption difficulties. A core challenge is the 
need for interoperability between the modern ML tools underpinning 
generative models and the fragmented legacy software prevalent in 
construction. Custom integrations are needed to connect predictive 
models with databases, analytics dashboards, enterprise resource plan
ning (ERP) platforms, BIM tools, and more [26]. However, construction 
systems often lack application programming interfaces (APIs). Genera
tive models also need flexibility to adapt outputs to the proprietary data 
structures, nomenclatures, and templates used within each company. 
One-size-fits-all solutions struggle without customization. Firms are also 
reluctant to overhaul proven workflows solely to accommodate AI sys
tems that appear disconnected from daily tasks. For adoption, genera
tive models should directly build on available in-house data while 
aligning outputs to industry-standard specifications, equipment li
braries, materials databases, regulations, and best practices. Workers are 
more inclined to use AI content that meshes with familiar domain par
adigms rather than introducing foreign concepts. Overcoming these 
integration hurdles requires either extensive custom development ef
forts or architectures adaptable enough to map generative outputs to 
diverse construction environments out of the box. Finding the right 
balance between generalization and specificity remains an obstacle to 
embedding AI within incumbent workflows.

3.3.2. Technological challenges

3.3.2.1. Model instability and training difficulties. Training GenAI 
models like GPTs and LLMs to produce stable, high-quality outputs 
reliably [96]. These training and stability issues become even more 
pronounced in the complex, constrained construction industry. The 
non-linear neural network architectures underlying many generative 
models have billions of parameters optimized through stochastic 
gradient descent [97]. The internal representations and dynamics of 
these massive models still need to be better understood, making their 
unpredictability harder to troubleshoot. During training, generative 
models are prone to problems like mode collapse, failing to capture the 
full diversity of training data. Finding the right balance between over
fitting the data while still being able to generalize is tricky. Other issues, 
like vanishing gradients, can prevent networks from adequately 
learning. These training instabilities are amplified when models are 
scaled to handle sizeable multi-modal construction datasets. Getting 
models to synthesize completely novel outputs unrestrained by training 
patterns, as required in generative tasks, also increases unpredictability. 
Advances in principled network design, normalization techniques, 
robust optimization algorithms, and better training diagnostics should 
improve model stability. But for now, the opacity and fragility of un
controlled generative synthesis pose an inherent challenge.

3.3.2.2. Computational resource requirements. GenAI models are 
extremely computationally intensive, both during training and infer
ence. State-of-the-art models like GPT-4 contain billions of parameters, 
requiring extensive parallel processing power on specialized hardware 
like GPU clusters or TPUs to train within reasonable timeframes [26]. 
For smaller construction firms, procuring and operating this expensive 
infrastructure may be infeasible just for experimenting with generative 
AI. Outsourcing to cloud platforms can mitigate costs but still demands 
significant investment. The carbon emissions footprint from model 
training should also be considered, given sustainability goals in the in
dustry [98]. Even after models are trained, deploying them for inference 
and generating new outputs is resource-intensive. Real-time generation 
of high-resolution images, 3D models, or lengthy text would require 
low-latency access to powerful cloud computing. Many construction 
companies need more modern on-demand computing resources. As 
model sizes and demand for higher-quality outputs increase, so will 
hardware requirements. Construction firms without the IT infrastructure 

Table 13 
Potential GenAI opportunities in the construction industry for video-video 
model type.

Potential 
opportunity

Description Project phase

Cost Estimation Synthesize timelapse estimates of different 
construction methods/schedules from 
sourced videos.

Pre- 
construction

User Experience 
Preview

By generating composite videos from design 
concept footage, animations, and 3D 
models, the expected user experiences and 
functional flows within a proposed 
development can be simulated before 
construction.

Pre- 
construction

Safety 
Orientations

Simulate hazard scenarios for training by 
compositing archived incident videos.

Construction

Multilingual 
Translation

Generate multilingual versions of 
instructional videos to support diverse 
crews.

Construction

On-Boarding Video Produce guided video facility tours from 
archival documentation for onboarding and 
handoff.

Post- 
construction

Lifecycle 
Forecasting

Taking as-built construction videos 
detailing "as constructed" conditions, future 
renovations, retrofits, refurbishments, or 
capital upgrades planned at different phases 
of the asset lifespan can be digitally 
prototyped and overlaid.

Post- 
construction

Video Quality 
Enhancement

The upscale resolution, framerate, colors, 
etc., for legacy or damaged construction 
footage.

All

Accelerated 
Playback

Generate compressed timelapse videos from 
lengthy footage for rapid review.

All
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or budgets to continuously upgrade GenAI capabilities risk being left 
behind. This could create a bifurcation where only the most prominent 
players can afford to operate at the state-of-the-art. Advancement of 
more efficient architecture, distillation techniques, and on-device 
inference chips may eventually dampen costs. However, in the 
interim, the resources needed to benefit from GenAI pose barriers, 
especially for smaller general contractors and subcontractors. Strategic 
partnerships with tech providers could help navigate the substantial 
computing investments involved.

3.3.2.3. Assessing output quality. Unlike discriminative ML models, 
where accuracy metrics quantify performance, evaluating GenAI out
puts’ true quality is difficult. Metrics like Fréchet Inception Distance 
provide a proxy for similarity to accurate data distributions. However, 
these have limited utility when outputs are meant to be completely 
novel syntheses tapping the unknown. For niche construction applica
tions, benchmarking datasets to test against do not exist. Assessing 
quality often relies on slow and subjective human review by domain 
experts, which does not scale. Furthermore, generated outputs like text, 
images, or 3D models may appear convincing on the surface to non- 

experts, exhibiting clear style and coherence [99]. However, upon 
closer expert inspection, these outputs lack deep domain-specific fidelity 
and violate constraints that may be obvious to a construction profes
sional. Detecting these subtle faults, which do not manifest in surface 
metrics, remains an open problem. Developing and integrating better 
quality assurance techniques for GenAI in construction is crucial. This 
will likely require a combination of automated quantitative checks, 
qualification processes, and skilled human reviewers. Without rigorous 
validation protocols, using generative models for safety and cost-critical 
construction tasks is precarious. All stakeholders need reliable indicators 
that system outputs meet domain requirements before fully embracing 
generative techniques.

3.3.2.4. Decision-making reliability and factual inconsistencies. A signifi
cant danger posed by GenAI is its tendency to fabricate imaginary details 
that appear valid but diverge from reality[60]. When synthesizing novel 
outputs, these models are unrestrained by the fixed training data dis
tribution. The systems "hallucinate" new content by stochastically 
combining learned features and patterns. In open domains like art and 
entertainment, such an unconstrained generation of new ideas may be 

Fig. 7. Common challenges faced in the application of GenAI in construction.
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desired. However, for the safety-critical construction industry, factual 
inconsistencies or false details could have disastrous consequences if 
relied upon. Even minute defects in a generated building design, 
equipment specification, or work procedure could lead to accidents, 
delays, or rework down the line. Unlike discriminative models, which 
stick tightly to input features, generative models have free rein to distort 
outputs during synthesis. While coherence and surface plausibility 
remain high, factual correctness and decision reliability often suffer 
[26]. The potential bias in these decision-support tools can significantly 
impact their practical applications, leading to skewed or unsafe rec
ommendations. Without proper oversight, these distortions go unno
ticed until problems arise in construction or operations. The 
unpredictable, unsupervised nature of GenAI makes it fundamentally 
risky for domains requiring tight conformance like construction. 
Extensive validation processes led by human experts and automated 
safety checks are necessary when applying these decision-support 

Table 14 
Challenges and proposed solutions in implementing GenAI in construction.

Category Challenge Proposed Solutions

Domian-specific Requirement for construction- 
specific knowledge: Models 
lack explicit encoding of 
domain expertise

• Develop hybrid models 
combining statistical 
learning with engineering 
rules

• Implement expert-in-the- 
loop validation

• Create domain-specific 
knowledge bases for RAG

• Partner with domain 
experts during development

​ Handling unstructured and 
heterogeneous data: Varied 
formats across disparate 
systems

• Implement standardized 
data collection protocols

• Develop customized multi- 
modal architectures

• Create automated data 
transformation pipelines

• Use specialized 
preprocessing techniques

​ Lack of large-curated 
datasets: Limited availability 
of organized data

• Establish industry-wide 
data sharing initiatives

• Create standardized 
annotation frameworks

• Implement systematic data 
collection workflows

• Standardize synthetic data 
generation techniques

​ Bias in existing datasets: 
Regional and project-specific 
biases

• Diversify training data 
sources

• Implement bias detection 
techniques

• Develop region-specific 
model variations

​ Integration with workflows 
and standards: Difficulty 
connecting with existing 
systems

• Develop standardized APIs
• Create middleware 

solutions
• Implement flexible output 

formatting
• Design user-friendly 

interfaces
Technological 
Challenges

Model instability and training 
difficulties: Unpredictable 
behavior and training issues

• Implement robust 
optimization techniques

• Use advanced 
normalization methods

• Develop better training 
diagnostics

• Establish clear validation 
protocols

​ Computational resource 
requirements: High 
computing costs

• Utilize cloud computing 
solutions

• Implement model 
compression

• Develop efficient inference 
methods

• Form strategic tech 
partnerships

​ Assessing output quality: 
Difficulty in evaluation

• Develop construction- 
specific metrics

• Implement automated 
quality checks

• Establish expert review 
protocols

• Create benchmark datasets
​ Decision-making reliability 

and factual consistency: Risk 
of unreliable outputs and 
biased decisions in safety- 
critical tasks

• Implement RAG systems for 
factual grounding

• Maintain human expert 
oversight in decision loops

• Develop reliability scoring 
mechanisms

• Create domain-specific fact- 
checking systems

• Regular auditing of model 
decisions

​ Lack of explainability: 
Limited transparency

• Implement interpretable AI 
techniques

Table 14 (continued )

Category Challenge Proposed Solutions

• Develop visualization tools
• Create detailed logging 

systems
• Maintain audit trails

Adoption 
Challenges

Resistance to new 
technologies: Industry 
hesitancy

• Demonstrate clear ROI 
through pilots

• Provide comprehensive 
training

• Implement change 
management

• Start with low-risk 
applications

​ Lack of skills and expertise: 
Limited AI knowledge

• Develop training programs
• Partner with tech providers
• Create user-friendly 

interfaces
• Hire specialized talent

​ High upfront investment 
costs: Significant initial 
expenses

• Start with smaller pilot 
projects

• Utilize cloud-based 
solutions

• Seek industry partnerships
• Develop phased 

implementation
​ Immature supporting 

infrastructure: Inadequate 
technical support

• Develop standardized data 
pipelines

• Implement cloud 
integration

• Create modular 
architectures

• Establish clear IT roadmaps
​ Unclear governance 

frameworks: Lack of 
standards

• Develop clear governance 
policies

• Establish industry standards
• Create risk management 

frameworks
• Implement compliance 

monitoring
Ethical 
Challenges

Data privacy and security: 
Protecting sensitive data

• Implement security 
protocols

• Use data anonymization
• Establish data governance
• Regular security audits

​ Social concerns about job 
automation: Worker concerns 
about AI replacement

• Focus on augmentation not 
replacement

• Provide reskilling 
opportunities

• Engage workforce in 
implementation

• Clear communication
​ Potential for misuse: Risk of 

system abuse
• Implement strict access 

controls
• Develop usage monitoring
• Create ethical guidelines
• Regular compliance audits
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models. However, detecting the subtle faults unique to generative ap
proaches remains an open research problem. Only when more controlled 
techniques are developed, unleashing unconstrained generative models 
comes with high uncertainty. Their propensity to smoothly fabricate 
imaginary details outside the training distribution should instill caution. 
While promising, balancing generative AI’s creative potential with 
construction constraints and ensuring reliable decision-making is 
critical.

3.3.2.5. Lack of explainability. A significant limitation of modern GenAI 
techniques is their black-box nature. Systems like LLMs and GANs offer 
minimal transparency into their internal reasoning for producing spe
cific outputs over others [100]. The models synthesize outputs by 
propagating input signals through billions of transformations across 
neural network layers. Explaining why one output manifested versus 
another is nearly impossible given this complexity. In construction, lack 
of explainability poses risks and makes diagnosing errors harder. When 
designs, images, or text are generated, professionals have no visibility 
into the generative model’s intent or rationale. This needs to be revised 
in order to maintain human oversight of the system’s thinking and 
conclusions. If flaws are detected, the opaque models provide little clue 
into the root causes. Troubleshooting and correcting errors becomes a 
guessing game without explanatory abilities. This could lead to blind 
trial-and-error tuning versus informed debugging. More transparent and 
controllable architectures may be needed for broader acceptance in the 
relatively conservative construction industry. Hybrid approaches 
combining neural networks with declarative knowledge about engi
neering constraints could improve interpretability. Interactive interfaces 
that allow step-by-step manipulation of generative models also offer 
more transparency.

3.3.3. Adoption challenges

3.3.3.1. Resistance to new technologies. The construction industry has 
historically needed to be faster to adopt new technologies compared to 
other sectors. This inertia and resistance to change stems from several 
interrelated factors. Many construction firms rely heavily on established 
processes and workflows that have been incrementally optimized over 
the decades. There is often a reluctance to modify or replace these 
proven legacy, deeply ingrained methods [101]. Furthermore, the sup
ply chain involves disparate stakeholders with different capabilities and 
resources. Aligning on new technology adoption is difficult across this 
fragmented ecosystem. At a management level, there are concerns that 
AI could disrupt traditional roles and ways of doing business in con
struction. The industry relies on specialized trades and processes that 
workers have invested years into mastering. Introducing unfamiliar 
systems feels inherently risky, making management hesitant to cham
pion large-scale technology overhauls. Overcoming these barriers will 
require a combination of peer-based advocacy, demonstratable benefits, 
incentives, change management planning, and strong leadership buy-in.

3.3.3.2. Lack of skills and expertise. The use of GenAI requires special
ized skills that currently need to be improved in most construction 
companies [60]. While these firms have deep domain expertise in con
struction processes, materials, equipment, etc., they have limited 
in-house experience with AI and data science. Most construction com
panies cannot realistically build large internal AI teams from scratch. 
Construction firms will likely need to hire dedicated AI talent or partner 
with technology firms to complement their domain knowledge. How
ever, professionals with deep AI expertise and construction industry 
knowledge are rare and difficult to recruit. Closing the skills gap will 
require a combination of recruitment, training, partnerships, and 
creating more no-code or low-code solutions tailored to the industry.

3.3.3.3. High upfront investment costs. Adopting GenAI poses 

considerable upfront investment costs, which may deter construction 
firms from pursuing it. Firstly, data preparation requires aggregating 
dispersed historical data from multiple systems and getting it into a 
unified format [102]. Next, licensing and developing generative models 
necessitates paying for specialized AI services. The computational re
sources needed for training and inference, such as cloud GPUs, add to 
the technology bill. Integrating the AI system with existing construction 
workflows and IT infrastructure demands custom development efforts 
[26]. Finally, machine learning engineers incur ongoing maintenance, 
monitoring, and enhancement costs. For large construction corpora
tions, these expenses may be feasible to absorb. However, smaller con
tractors and trade firms operate on tighter margins and budgets. Many 
may find the capital expenditures required to implement GenAI pro
hibitively high. The construction industry needs to have more 
fast-moving initiatives on investments, especially for emerging tech
nologies like GenAI. Demonstrating a convincing return on investment is 
critical for securing buy-in.

3.3.3.4. Immature supporting infrastructure. Successfully implementing 
GenAI requires data infrastructure and workflows, which are currently 
immature in the construction industry. Firstly, most firms lack the data 
pipelines and consolidation needed to feed massive training datasets to 
generative models. Data labeling and annotation workflows necessary 
for supervision are also non-existent. Furthermore, the machine learning 
operations (MLOps) and large language model operations (LLMOps) 
tools for versioning models, monitoring systems, and ongoing 
improvement are foreign to most construction IT departments. GenAI 
relies extensively on the scale of computing power, demanding the 
integration of construction data systems with cloud platforms [103]. 
However, seamless connections between internal databases, BIM 
models, and external cloud resources are rare [104]. There is also a 
shortage of prebuilt integrations between construction software tools 
and GenAI APIs. The surrounding ecosystem to enable enterprise 
adoption is still evolving. In effect, construction firms cannot simply 
plug and play off-the-shelf GenAI solutions into their existing IT systems. 
Substantial infrastructure development and integration efforts are 
required to create the data and compute foundations. For many com
panies, this necessitates a complete overhaul of internal data practices, 
development stacks, and system architectures.

3.3.3.5. Unclear governance frameworks. There are unresolved ques
tions around legal liability - who is accountable if an AI system produces 
faulty designs, specifications, or recommendations that lead to acci
dents? Quality control and validation protocols for generative models in 
construction are also lacking. Furthermore, the security implications of 
relying on AI to guide mission-critical construction processes are still 
being worked out. Risk management frameworks and technical stan
dards have not caught up to the rapid advances in generative techniques. 
There are also ethical concerns about reproducing historical biases in 
data, which require governance to be addressed transparently and 
responsibly. The regulatory regime surrounding GenAI in construction is 
unclear and fragmented. Companies are hesitant to deploy unproven 
technologies without best practices or precedents to follow. Both public 
and private institutions need clear legal guidelines, technical validation 
protocols, model risk management expectations, and standards of use 
[105].

3.3.4. Ethical challenges

3.3.4.1. Data privacy and security. Construction projects generate vast 
amounts of potentially sensitive data - from financial records to design 
specifications to site photographs. As this data is increasingly used to 
train GenAI models, firms must act responsibly to respect privacy and 
maintain trust [102]. However, most construction data practices are 
focused on operations rather than ML readiness. Efforts will be needed to 
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obtain proper consent, audit datasets, and implement access controls for 
AI systems. Data anonymization techniques can help remove personally 
identifiable information. However, details like project names, locations, 
and dates often cannot be fully stripped without losing utility. Strict 
governance models for internal data collection, external usage, and 
retention will need to be developed. Cybersecurity is also critical, given 
the highly sensitive nature of commercial construction data. Breaches 
during model development or deployment could have serious conse
quences ranging from confidentiality violations to industrial espionage. 
Construction firms can uphold privacy while tapping AI advancements 
by minimizing risks through responsible data curation, anonymization 
where possible, and tight access restrictions. However, this may require 
overhauling ingrained data practices focused on operational efficiency 
and ethics. The cultural and procedural shifts will challenge organiza
tions to harmonize AI progress with core principles of trust and trans
parency [106].

3.3.4.2. Social concerns about job automation. With the potential to 
enhance many human tasks, the adoption of GenAI in construction raises 
understandable concerns about workforce impacts. However, the effects 
are unlikely to be straightforward substitution of workers. AI may 
automate narrow, repetitive tasks but augment professionals to be more 
productive on complex strategic initiatives [107]. New human roles 
overseeing and collaborating with AI systems will also emerge. Proac
tive communication, training programs, and organizational change 
management will be imperative for a responsible transition. Leaders 
must be cognizant of apprehensions among workers fearing replacement 
by "thinking machines." Construction firms that are reliant on special
ized trades have a particular responsibility to involve and support 
affected staff through an AI-enabled transformation. Instead of blunt 
displacement, AI should aim for symbiosis - enhancing professionals’ 
capabilities while handling rote work. Adoption with the right intention 
of uplifting workers and augmenting expertise can help construction 
firms achieve societal benefits and sustainable competitiveness.

3.3.4.3. Potential for misuse. The autonomous and scalable capabilities 
of GenAI models create risks of misuse if deployed irresponsibly. For 
instance, AI systems lacking appropriate safeguards could generate 
realistic but structurally flawed building or equipment designs. Without 
rigorous engineering constraints and oversight, the unrestrained crea
tivity of generative models could produce designs that circumvent safety 
codes and regulations [99]. Similarly, falsifying project plans, budgets, 
certificates, invoices, change orders, and other documentation by AI 
could enable fraud or errors. The ease of generating convincing paper
work at scale for malicious purposes poses financial and legal risks. To 
prevent misuse, construction firms need to implement extensive tech
nical and ethical precautions [108]. This includes carefully auditing 
training data and models for issues like bias, establishing sandboxed 
development environments, verifying outputs, and instituting 
human-in-the-loop checks before deployment. Responsible governance 
encompassing explainability, transparency, and accountability is also 
critical. GenAI offers immense opportunities but also risks if its capa
bilities are unleashed carelessly. With prudent controls and oversight, 
construction professionals can minimize hazards while benefiting from 
accelerated innovation.

4. Construction industry custom GenAI models

While general pre-trained models like GPT-4o, Claude 3.5-sonnet, 
and Gemini Pro offer promising capabilities [72,73], developing 
GenAI models customized for the construction domain can further 
enhance performance on industry-specific tasks. These custom models 
can be built from scratch using construction-specific data or created by 
fine-tuning existing pre-trained models on domain-specific datasets. 
Additionally, Retrieval-Augmented Generation (RAG) can be 

implemented to enhance model performance by incorporating relevant 
construction knowledge bases during inference. Fine-tuning and RAG 
allow the model to adapt its knowledge to construction-specific termi
nology, practices, and problem-solving approaches. This section pro
vides a framework that construction professionals and firms can follow 
to develop tailored GenAI models using their proprietary data (see 
Fig. 8). The key steps include data collection, dataset preprocessing, 
training of custom GenAI models or implementing RAG systems, eval
uation of the models, and deployment.

4.1. Construction data collection

The first critical step in developing a custom GenAI model for con
struction is aggregating a broad corpus of relevant data from past pro
jects and documentation across the firm. This serves as the foundation 
for training the model to comprehend and generate high-quality in
dustry-specific language [26]. The data should be pulled from diverse 
historical sources to cover the full breadth of concepts and terminology 
used within the company’s work. Potential sources that should be tap
ped include technical specifications, equipment manuals, permit appli
cations, contractor invoices, jobsites, design reports, construction 
schedules, requests for information, project budgets, safety protocols, 
inspection checklists, as-built drawings, and videos, relevant codes and 
standards, project contracts, and meeting minutes [65]. Essentially, all 
unstructured data around projects both directly produced by the firm 
and exchanged with partners, contains valuable language samples that 
can educate the model. Ideally, the data collection should draw from 
both successful and problematic construction projects within the com
pany’s archives. This provides balanced examples and helps the model 
better handle edge cases by learning from challenging historical in
cidents. Maximum diversity in the kinds of projects covered also allows 
the model to generalize robustly. In terms of format, the text data should 
be structured into machine-readable JSON if readily available in this 
format within the firm’s document systems [58]. However, extensive 
cleaning and preprocessing of diverse unstructured data will likely be 
required. For scanned or image-based data, optical character recogni
tion can extract text. Speech recognition techniques can generate tran
scripts for legacy video and audio. Metadata extraction can pull useful 
tags and descriptions from media files. Point cloud data may need pro
cessing into voxel grids or meshes. The raw data extracted across mo
dalities like text, image, video, and audio must then be transformed into 
standardized corpora in formats digestible for model training. There is a 
future prospect for the exertion of substantial efforts to munge multi
faceted data sources into shapes consumable by generative algorithms.

4.2. Dataset preprocessing

After aggregating raw data, the next step is carefully curating it into a 
high-quality dataset ready for training in the construction GenAI model. 
This involves extensive processing and analysis. First, any sensitive 
personal information or proprietary business data must be removed 
from the corpus to respect privacy and security protocols. Next, identi
fiable entities like specific project names and locations should be ano
nymized where possible to mitigate risks. Thorough cleaning is required 
to fix any formatting inconsistencies, OCR errors, or annotation issues so 
that the data is pristine. The data sources should also be analyzed to 
ensure sufficient diversity - if the dataset focuses too heavily on certain 
project types or documentation formats, it can lead to a lack of broad 
applicability. Chronological splitting into train, validation, and test sets 
is also critical for properly evaluating model performance over time [16, 
109]. Moreover, synthesizing additional diverse examples through 
techniques like contextual data augmentation should be considered to 
boost the coverage of niche cases. Domain experts should manually 
sanity-check random samples from across the final dataset to catch any 
lingering issues before training begins. This human-in-the-loop auditing 
step provides quality control and ensures the data is aligned with true 
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construction language [110].

4.3. Training custom GenAI model or implementing RAG system

With a tailored construction-specific dataset prepared through 
careful data curation, the next phase is leveraging this data to train a 
custom GenAI model for construction tasks. The model can be initialized 
from scratch and trained end-to-end on just the domain data. However, 
it is also common to start with an existing general pre-trained model like 
GPT-4 that has already learned strong linguistic representations from 
web-scale corpora [72]. This foundation can then be fine-tuned on the 
construction dataset to adapt to industry-specific terminology and pat
terns. Transfer learning in this manner can significantly reduce the 
computational resources and time required for training versus a 
from-scratch approach [66]. Regardless of the initialization technique, 
the overall training methodology involves first selecting an appropriate 
underlying model architecture and size. Transformer networks currently 
demonstrate state-of-the-art performance on language tasks but require 
tuning of their complex configurations to fit each dataset and use case 
[111]. Training of the model is then conducted using GPU or TPU 
computational infrastructure until convergence on the construction 
training data distribution as measured by validation set performance. 
The training hyperparameters, including batch size, learning rate 
schedules, and activation functions, must be finely tuned based on the 
validation results to optimize model quality.

An alternative or complementary approach is to implement a RAG 

system. RAG combines the strengths of pre-trained language models 
with the ability to access external knowledge bases. For construction 
applications, this involves developing a comprehensive database of 
construction-specific information. An efficient retrieval mechanism is 
implemented to quickly find relevant information from the knowledge 
base based on input queries. This retrieval system is then connected with 
an LLM (e.g., GPT-4) to generate responses that incorporate both the 
model’s inherent knowledge and the retrieved construction-specific in
formation[112].

4.4. GenAI model evaluation

Once the model is trained using construction data, it must undergo 
rigorous evaluation before deployment to ensure it achieves the per
formance and quality thresholds required in downstream applications. 
The semantic coherence, grammar, terminology, and validity of gener
ated outputs should be extensively assessed via qualitative human re
view by domain experts. This allows for validating that the model 
produces high-quality language aligned with true construction concepts. 
Checking for potential biases and factual inaccuracies is also critical to 
avoid operational risks. In addition, the model should be quantitatively 
benchmarked against baseline methods on domain-specific tasks using 
relevant metrics. For instance, the customized model can be evaluated 
for construction project phase classification accuracy and compared to 
off-the-shelf generic models. Other quantitative tests might include 
cross-referencing generated project budgets against actual data to assess 

Fig. 8. Framework for building custom GenAI model in the construction industry.
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fidelity [113]. Any shortcomings identified during evaluation should be 
addressed by re-training the model using modified data that improves 
coverage of deficient areas or adjusting the model architecture itself. 
The evaluation process also provides feedback for additional training to 
continue enhancing the GenAI model post-deployment.

4.5. Custom GenAI model deployment

To enable scalable deployment, the model should first be contain
erized using technologies like Docker and Kubernetes [114]. This en
capsulates the model in a portable package with libraries and 
dependencies while managing computational resources. Exposing a 
high-performance API or web interface allows sending inference re
quests to the containerized model server. This powers integration into 
downstream domain applications. For instance, the custom model could 
be embedded within AI assistants, document generators, project 
recommendation systems, and other construction tools that benefit from 
its specialized text generation capabilities. Robust AI operation pro
cesses (AIOps) need to be implemented for continuous monitoring, 
versioning, and improvement of the model post-deployment [115]. As 
new project data comes in, it can be used to further tune and enhance the 
model to stay up to date. Human oversight and governance are critical 
during deployment to ensure quality control and responsible privacy, 
security, and ethics practices. With the proper infrastructure and pro
cesses in place, the custom construction GenAI model can be sustainably 
integrated to augment a wide range of business functions with an 
industry-tailored AI generation solution. This framework provides a 
methodical blueprint for construction firms to transform their data into 
strategic generative capabilities.

5. Case study

5.1. GenAI-powered contract querying in construction projects

To validate the potential for using GenAI in the construction in
dustry, a case study was conducted focused on information retrieval and 
knowledge discovery. This is one of the potential opportunities identi
fied in the previous section on text-to-text applications. Querying con
tract documents is a valuable application, as contract documents contain 
critical project requirements and details but can be lengthy and complex 
to manually search through. As contract documents are often dense and 
unstructured, retrieving information requires tedious manual searching. 
GenAI offers the ability to query the document in natural language and 
receive direct answers summarizing the most relevant details. This case 
study demonstrates the value of training GenAI models on real-world 
construction contracts to improve information search and extraction.

5.2. Dataset collection and preprocessing

As outlined in the previously proposed framework, the initial stages 
involve data collection and preprocessing. For this case study, the con
tract documents were sourced from a consultancy firm that was the 
project manager. These documents were initially in various formats, 
including Word files and PDFs. To ensure consistency and security, 
sensitive and private information was redacted from these documents. 
Subsequently, all files were converted and standardized into a single 
PDF format. The project described in these documents involved the 
construction of a three-story hostel for a higher education institution. 
The contract detailed essential elements such as project scope, specifi
cations, materials, timelines, costs, quality standards, and other critical 
parameters, providing a comprehensive foundation for the case study 
analysis.

5.3. Model development

The GPT-4 model was leveraged as the base LLM for this case study. 

GPT-4 is a proprietary LLM developed by OpenAI to generate coherent 
and useful text in a wide variety of domains [73]. It was pretrained on 
massive text datasets encompassing diverse topics and demonstrated 
state-of-the-art natural language processing capabilities [116]. To 
further enhance the capabilities of GPT-4 for the construction contract 
domain, a RAG framework was implemented on top of the base model. 
RAG integrates semantic search over a domain-specific knowledge base 
into the text generation pipeline. This allows retrieving the most rele
vant contextual examples from the contract text to prime the LLM when 
responding to queries. The RAG framework helps ground the model’s 
outputs in the actual contract content, avoiding hallucinations.

As depicted in Fig. 9, the RAG pipeline consisted of [117]: 

• Importing the contract document: The first step was ingesting the 
raw text data from the contract document into the RAG system. This 
included preprocessed documents in PDF format.

• Splitting documents into coherent chunks: The full contract 
document was segmented into smaller chunks of text spanning 3–5 
sentences focused on a coherent part of the contract. This allowed 
more fine-grained contextual retrieval.

• Creating embeddings for the chunks: ML embeddings were 
generated using an advanced semantic encoding model for each text 
chunk. OpenAI embedding was used for this purpose via API access.

• Storing the chunk embeddings in a vector knowledge base: The 
chunk embeddings were indexed in a high-performance vector 
database. Cassandra database was used for this purpose [118]. This 
enables quick retrieval of contextually similar chunks.

• Accepting user query as input: At inference time, the user provides 
a text query expressing their desired contract document information 
need.

• Embedding query into same vector space: The input query is 
encoded into the same semantic vector space as the chunks using the 
same sentence model.

• Performing semantic search to identify relevant specification 
chunks: Efficient approximate nearest neighbor (ANN) search is run 
to find chunks with the highest semantic similarity to the query 
vector. Pinecone was employed for this purpose.

• Ranking retrieved chunks by semantic similarity: The topmost 
similar chunks are ranked and filtered to create a subset most rele
vant to the query.

• Providing top k chunks to guide LLM text generation: The top- 
ranking contract document chunks are provided as contextual ex
amples to prime the LLM to generate focused and valid contract text.

5.4. Model evaluation and deployment

To develop an appropriate set of queries for evaluating the model, 30 
potential natural language questions were initially formulated based on 
information contained within the contract document. These draft 
questions were reviewed by a panel of three experts with professional 
construction knowledge to validate that they represent realistic queries 
of interest to industry practitioners accessing such a document. The first 
expert confirmed 26 of the proposed questions as relevant, while the 
other two experts each validated 23 questions. By taking the intersec
tion, a final set of 20 common questions validated by all three experts 
was derived. This cross-validated question set encompasses diverse 
query types covering key information needs that construction pro
fessionals would seek to retrieve from contract documents. The 20 
expert-approved questions were employed to evaluate the models’ 
performance at extracting relevant answers from the contract.

The approved questions and contract document were provided to 
three experts selected from the original panel that validated the study’s 
GenAI opportunities and challenges in Phase 2. These experts were 
chosen based on their extensive experience in construction contract 
management, familiarity with AI technologies, and availability to 
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participate in the evaluation process. While a larger panel could offer 
more diverse perspectives, using three experts was deemed sufficient for 
this initial validation, considering the case study’s scope and the eval
uators’ qualifications. These experts evaluated the model’s responses to 
each question based on four metrics, which are similar to the metrics 
adopted by Wolfel et al. [119]: 

• Answer - Assesses if the model provides a substantive response 
("Yes") or a non-answer like "I don’t know" ("No").

• Quality - Rates the truthfulness of the response on a 5-point scale.
• Relevance - Rates how relevant the response is to the query and 

contract on a 5-point scale.
• Reproducibility - Assesses the consistency of responses to the same 

question on a 5-point scale.

To evaluate model performance, the ratings from all experts were 
aggregated. For numerical metrics (quality, relevance, and reproduc
ibility), mean values were computed, while the mode was used for the 
binary "answer" metric. Table 15 presents these consolidated scores, 
comparing how effectively the baseline GPT-4 and the RAG-enhanced 
GPT-4 systems extract and process contract information in response to 
natural language queries. According to Table 15, the high answer rate of 
100 % for GPT-4 indicates it consistently provides substantive responses 
to the questions rather than failing to generate any reply. However, the 
lower quality score of 3.87 reveals some responses’ fabrication details 
are not actually present in the contract, as the model hallucinates 

plausible-sounding but incorrect information. The decent relevance 
rating of 4.01 shows GPT-4’s outputs are topically on point but strained 
by invented content. The reproducibility score of 4.53 suggests some 
inconsistency across repeated queries as well. In comparison, the RAG- 
enhanced GPT-4 model achieves higher quality and relevance ratings 
of 4.13 and 4.48, demonstrating improved faithfulness through 
grounding outputs in retrieved contract passages. This reduces halluci
nated content substantially. The superior reproducibility of 4.77 also 
highlights more stability from RAG’s contextual retrieval. However, the 
lower 90 % answer rate points to limitations in linking some questions to 
pertinent evidence, causing the model to default to "I don’t know" non- 
answers. The quantitative metrics illustrate RAG’s ability to enhance 
faithfulness and mitigate risks of hallucinations that generative models 
like GPT-4 exhibit. The performance improvements achieved in the case 
study (5.2 %, 9.4 %, and 4.8 % in quality, relevance, and reproduc
ibility) align with retrieval implementation results reported in other 
domains [119].

Fig. 10 provides example query-response screenshots for questions 6 
and 15, comparing the baseline GPT-4 model and the GPT-4 plus RAG 
system. Figs. 10a and 10d show the GPT-4 responses to these questions, 
while Figs. 10b and 10e display the responses augmented by the RAG 
retrieval pipeline. Figs. 10c and 10f highlight the relevant passages 
containing the answers in the original contract document. Examination 
of the examples illustrates that both GPT-4 and GPT-4 + RAG correctly 
answered question 6. However, for question 15, GPT-4 hallucinates 
details about GCC Clause 44 that are not contained in the actual 

Fig. 9. Retrieval augmented generation pipeline.
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contract, while GPT-4 + RAG grounds its response in the original 
document context to accurately extract the price adjustment formula. 
This side-by-side comparison of real queries demonstrates how RAG 
augmentation improves faithfulness by reducing hallucination and 
retrieving corroborating evidence to support generative outputs. As 
evidenced by the screenshots in Fig. 10, the GPT-4 + RAG model was 
deployed using the Streamlit application.

5.5. Model limitation

While the retrieval-augmented GPT-4 model shows promising results 
in querying the construction contract document, some limitations need 
to be acknowledged. The model struggled to retrieve relevant passages 
for two of the questions, defaulting to uninformative "I don’t know" non- 
answers. This indicates that the chunking strategies and semantic search 
techniques used were unable to adequately link some complex questions 
to supporting evidence in the contract document. Future studies can 
explore different embedding models and vector databases and compare 
their performance. Generalization is another limitation - the model was 
trained on just a single contract document and may fail to transfer to 
new projects with different terminology, formats, and content. Training 
on a large corpus of diverse contracts would likely improve out-of- 
domain robustness.

6. Conclusion

This research aimed to comprehensively analyze the current state, 
opportunities, and challenges of applying GenAI in the construction 
industry. Key insights were synthesized through a systematic literature 
review and expert Delphi study. The literature review revealed that 
GenAI adoption in construction is still in very early stages, with just a 
handful of initial studies exploring applications like information 
retrieval, project planning, hazard recognition, and risk assessment. 
However, the great potential of generative techniques like LLMs was 
highlighted for enhancing productivity, accuracy, and automation 
across construction tasks.

The expert panel discussions further expanded on promising appli
cations of GenAI in the construction industry during the pre- 
construction, construction, and post-construction phases. Opportu
nities were identified for major data types, including text, images, and 
video, with 76 potential applications mapped across different con
struction phases. The study also identified 18 critical challenges 
distributed across domain-specific, technological, adoption, and ethical 
categories. These challenges mirror those reported in other industries 
adopting GenAI but with construction-specific nuances. For instance, 
while data privacy represents a universal concern across sectors, the 
construction industry faces unique sensitivities regarding proprietary 
specifications and bid documentation, stemming from the competitive 
nature of construction bidding and the significant intellectual property 

Table 15 
Custom LLM model evaluation.

Question Number Model Answer Quality (1¡5) Relation (1¡5) Reproducibility (1¡5)

1 GPT− 4 Yes 5.00 5.00 5.00
2 Yes 5.00 5.00 5.00
3 Yes 1.00 1.33 5.00
4 Yes 2.67 1.67 3.00
5 Yes 1.33 2.00 5.00
6 Yes 5.00 5.00 4.00
7 Yes 5.00 5.00 5.00
8 Yes 4.33 4.67 4.00
9 Yes 5.00 4.00 3.67
10 Yes 3.00 3.00 5.00
11 Yes 5.00 5.00 5.00
12 Yes 5.00 5.00 5.00
13 Yes 4.33 5.00 5.00
14 Yes 5.00 5.00 5.00
15 Yes 1.67 4.00 5.00
16 Yes 4.33 5.00 5.00
17 Yes 5.00 5.00 5.00
18 Yes 4.00 4.00 4.00
19 Yes 1.67 1.67 2.00
20 Yes 4.00 4.00 5.00
Average (Percentage) ​ 100 % 3.87 (77.4 %) 4.01(80.2 %) 4.53 (90.6 %)
​ GPT 4 + RAG ​ ​ ​ ​
1 ​ Yes 4.00 5.00 5.00
2 Yes 5.00 5.00 5.00
3 No - - 5.00
4 Yes 3.67 2.33 4.00
5 Yes 5.00 5.00 5.00
6 Yes 5.00 5.00 5.00
7 Yes 5.00 5.00 5.00
8 Yes 5.00 5.00 5.00
9 Yes 4.33 5.00 4.67
10 Yes 2.33 4.00 2.00
11 Yes 1.67 5.00 4.67
12 Yes 5.00 5.00 5.00
13 Yes 4.67 4.33 5.00
14 Yes 4.00 5.00 5.00
15 Yes 4.00 5.00 5.00
16 Yes 1.67 1.33 5.00
17 Yes 4.00 5.00 5.00
18 Yes 5.00 3.67 5.00
19 No - - 5.00
20 Yes 5.00 5.00 5.00
Average (Percentage) ​ 90 % 4.13 (82.6 %) 4.48 (89.6 %) 4.77 (95.4 %)
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Fig. 10. Screenshots of queries, responses, and original text from the contract document.
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embedded in design and construction methods.
A methodology was proposed to guide construction professionals in 

building customized GenAI solutions using their own proprietary data. 
The framework steps of data collection, preprocessing, model develop
ment, evaluation, and deployment aim to make these powerful tech
nologies more accessible for practical industry deployment. The value of 
the framework was demonstrated through a case study on applying 
generative models for enhanced querying of construction contract doc
uments. The retrieval-augmented system (RAG) showed a significantly 
improved ability to extract accurate, relevant information from con
tracts through natural language queries compared to a baseline gener
ative model (GPT-4). In terms of quality, relevance, and reproducibility, 
the RAG system outperforms the base GPT-4 model by 5.2, 9.4, and 
4.8 %, respectively.

While this study provides valuable insights into the application of 
GenAI in construction, certain limitations present opportunities for 
future work. The systematic literature review was confined to three 
databases - Scopus, Web of Science, and ScienceDirect - which yielded 
only 79 initial results, narrowing to 6 relevant papers after screening. 
Despite snowball searching, this limited scope may have missed relevant 
articles. The Delphi study involved 11 experts participating in three 
rounds, with a 73 % response rate from the 15 initially invited experts. 
While these experts had significant experience (81 % with over 10 
years), and diverse backgrounds (27 % each in civil engineering, com
puter science, and construction management), the panel size was 
restricted due to resource constraints. For the case study, only a single 
base LLM (GPT-4) and embedding technique were utilized due to API 
access costs, with testing limited to 20 expert-validated queries on one 
construction contract. Testing multiple state-of-the-art models with RAG 
could reveal further performance gains beyond the current improve
ments of 5.2 %, 9.4 %, and 4.8 % in quality, relevance, and reproduc
ibility, respectively. Future studies can build on these findings by 
expanding the literature review across more databases, recruiting larger 
expert panels as GenAI becomes more prominent in the construction 
industry, and experimenting with diverse generative architectures and 
embedding methods given sufficient computing power and budgets. 
Addressing these limitations represents an avenue for additional 
research and comparative assessment on applying GenAI for construc
tion tasks. Nonetheless, this study provides a solid foundation of insights 
and a practical framework to guide further advancement.
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