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Comparative Analysis of Micro/Minichannel Flow
Boiling Pattern Recognition and Classification using
Clustering Algorithms

Abstract—Microchannel heat sinks have attracted considerable
attention in thermal management applications owing to their high
heat transfer capabilities and compact size. Among the various
cooling techniques, flow boiling in microchannels has emerged
as a promising method for efficient heat dissipation. However,
the intricate flow patterns in microchannels present challenges
for accurate classification, pattern recognition, and inefficient
data handling practices. This paper presented a comparative
analysis of flow boiling classification techniques for pattern
recognition in microchannel heat sinks. Three different clustering
algorithm-driven convolutional neural networks (CNNs) were
analysed and compared alongside a base CNN to establish a
data pipeline capable of agile flow boiling pattern recognition.
The Gaussian Mixture Model Clustering-based CNN exhibited
the best performance, achieving an overall mean accuracy of 88 %
for the test set validation. Thus, this study lays the groundwork
for improving the performance of flow boiling pattern recognition
in microchannel heat sinks.

Index Terms—pattern recognition, image analysis, clustering
algorithm, flow boiling, thermal management, case study

I. INTRODUCTION

Micro-technologies have become integral components of
electronic devices in today’s world. Microchannels fall among
these technologies, employing narrow passages/lanes and ex-
ploiting high surface area-to-volume ratios to boost convective
heat transfer. Thus, this makes them exceptionally effective
for cooling applications in electronic gadgets, energy systems,
and automotive and aerospace industries. Despite the array of
cooling methods used in microchannel heat sinks, flow boiling
remains one of the most promising techniques for achieving
high heat transfer and optimal thermal performance [1].

The flow boiling mechanism involves intricate interactions
between liquid and vapour phases, resulting in varied flow
patterns and heat transfer dynamics within microchannel heat
sinks. However, due to the complex interchange and physical
phenomena involved, flow boiling classification contains many
challenges related to subjectivity, interpretability, generalis-
ability, and accuracy, amongst other issues [2]. Therefore,
understanding and accurately categorising these flow patterns
is crucial for enhancing heat transfer efficiency and ensur-
ing dependable thermal management. Furthermore, classifying
flow boiling regimes helps engineers to tailor microchannel
designs to specific operational conditions, thereby maximising
heat dissipation while minimising thermal resistance, pressure
drops, or energy consumption.

Consequently, this study conducts a comparative assess-
ment of flow boiling classification in micro/mini channel

heat sinks, employing neural network-based classification and
pattern recognition via clustering algorithms under varying
mass flow rate conditions (ranging from 180 mL/min to 600
mL/min). The research aims to offer a new perspective and
evaluate different algorithms via a custom dataset gained from
experimental findings; thus, the focus lies in assessing machine
learning-based approaches, specifically clustering methods,
for accurately recognising and labelling boiling patterns in
microchannel heat sinks. Thus, the research provides the
following major contributions:

1) A streamlined, generalisable flow boiling image segmen-
tation pipeline;

2) A semi-automated system to generate data and classify
images for flow boiling analysis;

3) A baseline boiling regime classifier using clustering that
can be expanded/built upon;

4) A methodological comparative analysis of clustering
algorithms not reported in similar preceding works;

5) Furthermore, the system considers a mixture of different
bubble formations and regimes with data augmentations,
so there is the generalisability of the proposed work
in real-world applications such as different lighting
conditions, backgrounds, and orientations.

This paper is structured as follows: Section 2 outlines the
related work and strategies. Section 3 highlights the research
methodology, the experimental setup, and data collection.
Section 4 presents the outcomes of flow boiling classification
and comparative analysis. Finally, the concluding section sum-
marises the paper and highlights future avenues for research
in flow boiling classification for microchannel heat sinks.

II. RELATED WORK

Reviewing the literature shows that boiling heat transfer
classification, particularly in micro/mini channels, has various
implications for diverse engineering applications. Flow boiling
patterns directly impact heat transfer efficiency, system stabil-
ity, and energy usage [3]. In micro/mini channels, where space
constraints and high heat fluxes prevail, precise classification
becomes even more critical for effective thermal manage-
ment. Therefore, accurate classification of boiling heat transfer
regimes is integral for optimising heat transfer processes, en-
hancing system performance, and ensuring operational safety.
However, achieving robust classification methodologies in
such intricate systems presents many challenges, warranting
a critical review of existing techniques and further research.



The current flow pattern classification and recognition
strategies encompass a spectrum of approaches ranging from
traditional empirical correlations, computer vision and ad-
vanced machine learning algorithms. [4] Flow pattern detec-
tion methods can mainly be categorised into direct and indirect
techniques. While direct methods, such as high-speed pho-
tography and X-ray computed tomography, provide intuitive
insights into flow patterns, they can be subjective in their in-
terpretation and often require manual feature extraction or data
labelling. On the other hand, indirect methods, such as time-
frequency analysis methods (TFA), can analyse fluctuation
signals (such as pressure drop, flow, or electrical impedance)
to identify flow patterns [5]. While TFA is a popular indirect
method, other techniques include statistical analysis theories
like probability density function (PDF). One of the main
limitations of indirect methods like TFA is their sensitivity
to noise and signal interference, making them unsuitable for
accurately capturing the dynamics of complex systems such
as flow boiling, ultimately leading to incorrect results.

Moreover, relying on traditional methods and empirical
correlations may struggle to capture the intricate dynam-
ics/changes of flow boiling phenomena, leading to limita-
tions in accuracy and generalisation. The prospect of ma-
chine learning and deep learning algorithms has revamped
flow boiling classification by offering data-driven, automated,
and scalable solutions. Techniques like K-nearest neighbours
(KNN), Random Forest, Support Vector Machine (SVM), and
Multilayer Perceptron (MLP) have demonstrated promising
results in classifying flow patterns based on diverse input
parameters [?]. These algorithms leverage large datasets to
uncover intricate patterns and relationships, enhancing classifi-
cation accuracy and generalisation across different operational
conditions. Nevertheless, the effectiveness of machine learning
or deep learning-related pattern recognition or classification
relies on several critical factors, including training data qual-
ity, feature selection, data labelling, and model robustness.
Furthermore, the interpretability of machine learning models
remains a concern, particularly in safety-critical applications
where understanding classification decisions is crucial.

Clustering methods, such as K-means, Gaussian Mixture
Models (GMM), and Hierarchical Clustering, are widely
recognised unsupervised learning techniques extensively em-
ployed in pattern recognition tasks like image analysis [?].
Despite their popularity, they remain underutilised in flow boil-
ing research, particularly in microchannel/minichannel studies.
Recent research in this field has predominantly focused on
bubble dynamics in flow boiling via chord lengths and bubble
diameters [?]. However, boiling dynamics within a generalised
system may significantly differ in micro-scale systems, ne-
cessitating more targeted investigations for a comprehensive
analysis. Moreover, experimental data acquisition is costly, and
large dataset-based artificial intelligence models demand con-
siderable computational power and expenses. Therefore, there
is a growing need for robust yet agile methods that address
the current demands of rapid product development times —
while minimising complexity and data requirements. Recent

reports suggest that smaller datasets, especially in the thermal
management area, can yield superior results [9]. Accordingly,
there is a prospect to leverage clustering techniques to extract
meaningful insights from such datasets, potentially enhancing
the understanding of flow boiling phenomena in microchannel
and minichannel systems.

A. Clustering Algorithms for Flow Boiling

As previously highlighted, the three chosen clustering algo-
rithms promise significant potential for advancing research in
flow boiling pattern classification/recognition. While the defi-
nitions and intricacies of these methods are well-documented
in existing literature [7, 10-11], a brief overview of their un-
derlying mechanics and equations is provided in the following:

1. K-means Clustering: The k-means algorithm aims to
segment/partition a given input dataset into k number of
clusters, where each data point belongs to the cluster with the
nearest mean. The algorithm iteratively optimises the position
of the cluster centroids to minimise within-cluster sums of
squared distances. The objective function for k-means can be
expressed as:

k
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where: S = {S1, S, ..., S} represents the partitioning of
the dataset into k clusters; p; is the centroid (mean) of cluster
Si; ||x — ||2 denotes the squared Euclidean distance between
a data point x and the centroid ;. The goal is to find the
optimal partitioning S and centroid positions {1, pia, ..., ik }
that minimise the objective function. The algorithm iterates
between two steps: assigning each data point to the nearest
centroid to form clusters and updating the centroids based on
the mean data points in each cluster.

The rationale behind choosing the k-means algorithm is that
it can group similar patterns or features extracted from flow-
boiling images. For instance, it can cluster images based on
pixel intensities, texture features, or other image descriptors,
helping identify different flow regimes or flow anomalies.

2. Gaussian Mixture Models (GMM): Gaussian Mixture
Models (GMM) are a probabilistic model used for clustering
tasks, where data points are assumed to arise from a mixture
of several Gaussian distributions. The probability density
function (PDF) of a GMM is given by the following equation:

k
p(x) = Z¢z‘ N (x|, )
i=1

Where:

o x represents the observed data point.
e k is the number of mixture components.
e ¢; is the mixing coefficient associated with the ¢
Gaussi i ko1
aussian component, satistying Zi:l o; = 1.
e p; is the mean vector of the 7*" Gaussian component.
o X, is the covariance matrix of the i*” Gaussian compo-
nent.
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o N(x|p;,3;) denotes the multivariate Gaussian distribu-
tion with mean p; and covariance ;.

The parameters of the GMM, namely the mixing coefficients
¢i, means pu;, and covariance matrices X5;, are typically esti-
mated using the Expectation-Maximisation (EM) algorithm.
The EM algorithm iteratively optimises the parameters to
maximise the likelihood of the observed data from the given
model. Once trained, GMMs can assign clusters to data points
based on their probability under each Gaussian component.

As GMM can model complex distributions in flow boiling
images, it potentially enables the identification of different
patterns or regions of interest. It can be applied to segment
images into distinct regions based on pixel intensities or
texture features (such as bubble formation or coalescence),
aiding in feature extraction and subsequent recognition tasks.

3. Hierarchical Clustering: Hierarchical clustering, as the
name suggests, is a method used to build a hierarchy of
clusters, which can be visualised as a tree-like structure known
as a dendrogram. There are two main types of hierarchical
clustering: agglomerative and divisive. In this study, agglom-
erative hierarchical clustering will be investigated as it is more
commonly used. Agglomerative hierarchical clustering starts
with each data point in its cluster and then iteratively merges
the closest clusters until only one cluster remains. The distance
between clusters is often measured using a linkage criterion,
such as the single linkage, complete linkage, or mean linkage.
The linkage criterion defines the distance between two clusters
A and B as:

d(A,B) = min dist(x,y)

x€A,yeB
where:

e A and B are two clusters being considered for merging.
o dist(x,y) is the distance between data points x and y.

Based on this linkage criterion, different distance measures
such as Euclidean distance, Manhattan distance, or cosine
similarity can be used to calculate dist(x,y).

Therefore, the agglomerative hierarchical clustering algo-
rithm can then be summarised as follows:

1) Start with each data point in its cluster.

2) Compute the distance between all pairs of clusters.
3) Merge the two closest clusters.

4) Update the distance matrix.

5) Repeat steps 2-4 until only one cluster remains.

The dendrogram generated by hierarchical clustering visu-
ally represents the merging process and can be cut at different
heights to obtain the desired number of clusters. Hierarchical
clustering can reveal hierarchical structures in flow boiling im-
ages, identifying both macroscopic and microscopic patterns.
Additionally, it can help understand relationships between
different features or segments in the images, aiding in the
interpretation and analysis of flow boiling phenomena.

Therefore, based on the discussion regarding the three cho-
sen algorithms, it can be remarked that in flow boiling image
pattern recognition, these clustering methods can preprocess

data by segmenting images into meaningful regions, extracting
features, or reducing dimensionality. They can enable distinct
flow regimes’ identification, anomalies, or critical patterns,
facilitating further analysis or decision-making processes in
flow boiling systems.

III. MATERIALS AND METHODS

This paper presents an image analysis and pattern recogni-
tion study using a custom dataset derived from experimen-
tal findings. The process involves creating a data pipeline
and synthetic datasets, detailed across subsequent sections
covering data collection, augmentation, model construction,
and evaluation. While other studies in extant literature have
explored pattern recognition with custom datasets to create
data pipelines for different applications [12], this research
addresses challenges like subjectivity, feature extraction, and
data labelling by comparing the performance of manually
labelled flow boiling data and unlabelled clustering algorithm
data through a clustering-based convolutional neural network
(CNN) classification. Given the high costs of experimental
investigations and diverse behaviours of flow boiling systems,
custom datasets play a critical role in expanding research
avenues and enhancing future pattern recognition techniques.
Therefore, while ResNet50 or CIFAR10 datasets may yield
good results elsewhere, using a custom dataset for training
flow boiling images offers unique advantages: ensuring the
model learns relevant features, adapts to image characteristics,
and enables fine-tuning for optimal performance.

A. Data Acquisition and Experimental Setup

The experimental setup consists of a visual water-vapour
two-phase flow boiling system designed to evaluate heat trans-
fer and flow dynamics within narrow rectangular channels,
particularly under various heat flux and mass flow rate con-
ditions. The system comprises several components, including
the experimental section, peristaltic pump, data tracker, control
instrument, measurement apparatus, thermal bath, etc. Figure
1 illustrates the setup used for data collection, image credit:
[13].

[ Computer I Data Taker I Flow Meter I High Speed Camera ] Pump I Water bath / Storage tank ]

i\
Power Supply I Humidity meter I Microscope I Heat Sink IPressure Transducer Radiator 1

Fig. 1. Experimental setup

Looking at the equipment from the top left, starting with
the computer, the desktop served as the base for initiating the
experimental setup and storing images and other quantitative
data related to heat transfer. The DT80 data tracker managed



data acquisition; its primary function was to detect temperature
distribution along the microchannel heat sink, inlet and outlet
of the system and monitor the subcooled temperature of
the water bath. Additionally, a peristaltic pump was used to
generate pumping power and circulate water along the pipes
and channels; flow rates in the pipes were determined using
an electromagnetic flowmeter and ranged from 180 mL/min
to 600 mL/min. For this experiment, a thermal water bath was
used to initiate and terminate the water flow loop in the system
and subcool the working fluid. Deionized water served as the
working fluid, circulated within the system via the main pump,
and preheated to achieve a predetermined subcooling level
in the thermal bath. Subsequently, it passes through the test
section, initiating the boiling process. The resulting two-phase
mixture ascends, undergoing cooling in an air-cooled radiator
system before returning to the main pump, thus completing a
closed-loop configuration.

Within the experimental section, narrow rectangular chan-
nels were horizontally positioned to facilitate flow and image
capture. These channels, enveloped in 10mm thick acrylic for
thermal insulation and protection, are constructed to ensure
visibility. The channel area covers 80 mm x 60 mm, with a
cross-sectional dimension of 2 mm x 2 mm per channel, heated
by six RSPRO 300 W cartridge heaters using a 220 V power
supply for controlled heating. The maximum heat flux that can
be reached by the heaters was approximately 37.5 W/cm?2.

Measurement and monitoring were achieved through a
suite of instruments. Temperature measurements utilize T-
type thermocouples with an accuracy exhibiting an error
margin of +£0.5°C. Five thermocouples were evenly spaced
across the heating base to ensure no heating hot spots were
present that could affect the flow of boiling bubble formations,
ultimately leading to incorrect results. An image acquisition
system, consisting of a FASTCAM MINI UX-100 high-speed
camera, and an optical microscope with an LED background
light source was deployed. This entire system captured the
evolution of various gas-liquid two-phase flow patterns during
the experiment. Accordingly, four distinctive flow patterns
were observed: dispersed bubbly flow (jets), bubble-slug flow,
annular-like flow, and mist flow (local dry-out), as shown in
Figure 2.

B. Dataset Description

In the classification of flow boiling regimes, several criteria
are utilised to delineate distinct patterns and behaviours within
the boiling process. These criteria encompass factors such
as bubble size and distribution, the thickness of the liquid
film surrounding bubbles, the presence of dry-out regions,
and the overall flow dynamics observed. By analysing these
parameters, researchers can categorise flow boiling regimes
into different phases, each characterised by unique thermal and
hydrodynamic properties. Identifying different flow regimes
within a flow boiling system involves careful observation
and analysis of several key characteristics unique to each
regime. In general, flow boiling can be categorised into four
broad categories [2]. Jet flow is typically characterised by the

Fig. 2. Different flow regimes

presence of small, dispersed bubbles resembling jets within
the liquid phase, while slug flow is marked by the alternating
presence of elongated bubbles (slugs) and liquid slugs moving
through the flow channel. Annular flow is distinguished by
the formation of a continuous vapour phase surrounding a
thin liquid film along the walls of the flow channel, and
mist flow occurs when the liquid film becomes thin enough
to expose patches of the wall directly to the vapour phase.
In practice, distinguishing between these flow regimes often
involves a combination of visual observation, analysis of flow
patterns, measurement of bubble or slug sizes and velocities,
and monitoring changes in local heat transfer rates.

The high-speed camera utilised in this study initially
recorded videos capturing the entire duration of the boiling
process. However, to focus on the analysis and extract mean-
ingful insights, the authors specifically selected the first phase
of boiling, spanning from the initiation of the jet-like dispersed
bubbly flow to the occurrence of local dry-out regions. This
selective approach allowed for a detailed examination of the
critical transitional stages within the flow boiling process,
shedding light on the mechanisms underlying heat transfer
and vapour-liquid interactions. From the captured videos, 1600
images were extracted for further investigation. However,
even with this meticulous approach, subtle changes in flow
regime dynamics proved challenging to follow, emphasising
the complexity of flow boiling phenomena and the necessity
for advanced visualisation techniques and detailed analysis to
unravel its intricacies accurately. Hence, through this targeted
investigation, a deeper understanding of flow boiling and its
practical implications in various engineering applications can
be achieved.

C. Data Pipeline

The experimental setup generated data and was stored
in a local dataset. To aid analysis, manual data labelling



was performed to distinguish between flow boiling regimes.
Initially, the labelled datasets were used to construct the base
Convolutional Neural Network (CNN) model, enabling an as-
sessment of its accuracy. Following this, the base CNN model
acted as a foundation for analysis and classification using
clustering techniques. The raw data undergoes augmentation
and progresses through feature mapping stages such as convo-
lutional, pooling, flattening, and ultimately resulting in fully
connected layers capable of enabling multi-class classification
of flow boiling regimes.

Before augmentation, the images underwent resizing from
1280x1024 to 500x500. However, this reduction in dimensions
resulted in a deterioration of image lighting. Thus, to rectify
this issue and improve contrast, a Histogram equalization was
applied. Regarding the convolutional layers, the initial layer
comprised 64 filters, with each subsequent layer containing
32 filters. The stride size for each step was set to 2, and
a max pooling of 2 was utilised. The image preprocessing
phase was initiated with an image size of 224 and a batch size
of 64. Following this, the images underwent augmentation,
which included rescaling, zooming, shearing, and horizontal
flipping. Given the significance of preserving bubble features,
extensive noise or Gaussian augmentation was intentionally
omitted. Figure 3 shows a sample data augmentation process.

Histogram

Original Raw Image
2 & Equalization

Data Augmentation

Fig. 3. Sample data augmentations

Furthermore, the dataset had a 90% training and 10% test
split. This division aimed to maximise the effective utilisation
of the dataset for training whilst ensuring reliable results on the
test sets [14]. In real-life applications, test datasets often tend
to be small — hence the rationale behind this choice. Addition-
ally, the division ensures reliable evaluation by maintaining a
separate test set to enable a realistic assessment of the model’s
generalisation to unseen data; thus, replicating limited testing

scenarios helps simulate real-world conditions. Moreover, a
smaller test set reduces the risks of overfitting, where the
model may memorise training data. To address overfitting,
techniques such as regularisation, dropout, or adjustment of
model complexity can be employed later to optimise the best-
performing model. The accuracy of the models and the loss
function was assessed using the categorical cross-entropy loss
(softmax loss) [15], which is typically defined as follows:
Given:

e y;: the true label (ground truth) for sample ¢

o p;: the predicted probability distribution over all classes
for sample ¢

e N: the total number of samples

o (' the total number of classes

Then, the categorical cross-entropy loss L is calculated as:

1 N C
L= N Z Zyi,c : IOg(pi,c)
=1 c=1

where:

e ¥i. is the indicator function, which is 1 if the true label

of sample 1 is class ¢, and O otherwise.

e pi. is the predicted probability of sample ¢ belonging to

class c according to the model’s output.

This loss function penalises models based on the difference
between predicted probabilities and true labels across all
classes, encouraging the model to assign high probabilities
to the correct class labels.

The evaluation of the base CNN model was then carried out
using the initial labelled data. Simultaneously, unlabelled data
was fed into three distinct clustering algorithms, segmenting
and classifying images into four distinct clusters for the four
different flow regimes, with results stored in a desired local
directory. The coding of the data pipeline facilitates clustering
analysis and saves data, requiring minimal preprocessing and
fostering agile analysis from experiments, leading to agile
product development. With each iteration or data capture,
new data seamlessly integrates to train clustering algorithms,
allowing for semi-supervised generation and storage of syn-
thetic data, pattern recognition, and organisation into four
directories. This streamlined process significantly reduced the
need for manual data handling, ensuring consistency between
the root and save directories. The data pipeline loop, illus-
trated in Figure 4, underscores the iterative nature of the
process. Subsequently, the clustered data was reintegrated
into the base CNN setup to assess training and validation
accuracy, thereby evaluating the feasibility and effectiveness of
employing clustering-based pattern recognition to ultimately
reduce the need for extensive manual labelling of future larger
datasets.

IV. RESULTS AND DISCUSSION
A. CNN Classification

The experiment and images from Figure 2 highlight how
the confined space within narrow channels restricts bubble



Feature
Extraction

—

Random
Augmentations

Local

Database Output

[ oo BN
N Neural
e

Feature Maps

Convolutional Layers +

g Pooling + Flattening
. (ReLU activation)

Fully Softmax
Input Connected Activation
Image Deep Neural
"‘;‘;’";""" Probabilistic
Sorted (DNN) Distribution |
Clustered
Images
Classification |
Experimental 1
Setup S S | Aigorithms
and Analysis
Data Pipeline

Fig. 4. Architecture for data pipeline and model implementations

development, altering bubble morphology compared to tradi-
tional tubes or pipes. The deformation or bursting of bubbles
under different wall flow conditions significantly influences
flow patterns and can produce mixed patterns. Consequently,
labelling the data and flow patterns poses challenges and
is subject to interpretability issues, affecting the accuracy
of classification models and the usability of datasets for
generalisation or specific applications. To further assess these
challenges, initially, a convolutional neural network (CNN)
was trained on the dataset, incorporating a fully connected
layer along with two additional layers, and the model was
further fine-tuned with additional epochs. Figure 5 illustrates
the comparison of classification accuracy achieved by the
CNN.

The results from the CNN indicate significant variations
between each epoch, ranging from 10-50% for the base
CNN model. Although the addition of extra layers or epochs
improves the accuracy of the validation on test sets, the overall
variation across different epochs keeps the reliability of the
classification below 75%, dropping to lower than 70% for the
other two models. These substantial variations or the zigzag
pattern suggest the challenge for neural networks to consis-
tently identify flow patterns accurately, indicating potential
subjectivity and complexity issues in labelling datasets where
one image could belong to multiple categories visually. While
high accuracy values of 90% to 95% seem promising, they
also imply overfitting problems based on the validation results,
highlighting the need for a more objective assessment and
methodology to enhance the classification robustness.

B. Clustering Implementation

Three different types of clustering algorithms were imple-
mented. It can be seen that K-means has a relatively even
distribution of cluster points where Hierarchical clustering
heaving classifies one type of cluster more than the others.
For the Gaussian model, cluster 3 contains the most points.
The cluster outputs were then fed through the same base
CNN model for classification comparison. The comparative
analysis of flow boiling regimes across clustering algorithms

Traditional CNN Accuracy Comparison
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0.2 “\",’ —— Pre-trained Model Train

v ---- Pre-trained Model Validation
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Fig. 5. CNN classification accuracy

yields interesting findings. Despite consistent total input counts
of data points assigned to each algorithm, variations exist in
how these points are distributed across clusters, as depicted in
Figure 6 (a)-(c). Notably, Hierarchical clustering demonstrates
the greatest diversity in cluster sizes, with the highest cluster
containing 689 data points for the slug flow regime, while
K-means and Gaussian clustering exhibit more uniformity.
Specifically, K-means allocates 458 data points to Cluster 1,
Gaussian assigns 440, and Hierarchical only 158, indicating
disparities in their categorization approach. Moreover, Hierar-
chical clustering assigns 491 data points to Cluster 2, while
Gaussian assigns 273 and K-means 365, further accentuating
distinctions. Gaussian clustering tends to allocate more points
to the annular flow cluster, with 580 data points, compared to
K-means (442). These disparities underscore the importance
of selecting an appropriate clustering algorithm based on the
specific characteristics of the flow boiling regimes under study.
While the total counts remain consistent, understanding the
nuances of cluster distribution offers valuable insights into
the underlying structure of the data and facilitates informed
decision-making in analysing flow boiling regimes. Examining
the two different flow types in the slug [red spots, (d)-(f)] and
annular (blue spots, [(g)-(1)], which are often the most desired
flow regimes for high heat transfer. For K-means at the same
image and instance, it focuses more on the bubble separations,
whilst GMM categorises the region between bubble separation
and coalescence efficiently, but Hierarchical considers merges
bubbles into the same category as during dry out. Although
the differences in the overall images are minimal, these small
differences compound and ultimately lead to the distinctions
of clusters overall and affect the efficacy of the algorithms.

C. Comparatively Analysis

To conduct a detailed quantitative discussion on the findings
based on the training and validation accuracy of the four
different models, the trends and data insights are presented
in Table 1.
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TABLE I
MODEL METRICS
Model Metric Mean | Median SD
KMeans Training Accuracy 0.8788 0.8879 | 0.0432
Validation Accuracy | 0.6198 0.6226 | 0.1232
Base CNN Training Accuracy 0.9743 0.9749 | 0.0061
Validation Accuracy | 0.7706 | 0.7816 | 0.0504
GMM Training Accuracy 09142 | 09195 | 0.0323
Validation Accuracy | 0.8837 0.8994 | 0.0538
Hierarchical Training Accuracy 0.9013 0.9088 0.0310
Validation Accuracy | 0.7364 | 0.7166 | 0.0796

1. Dataset 1 (Base CNN, manually labelled data): Training
Accuracy: Ranging from 0.9590 to 0.9848 Validation Accu-
racy: Ranging from 0.6709 to 0.8544

Key points:

o The training accuracy is relatively high, suggesting that
the model performs well on the train set, but there are
potential overfitting issues.

o There is less variance in validation accuracy compared
to training accuracy, indicating good generalisation, as
indicated by the standard deviation (SD) values.

o The model appears to converge quickly to high accuracy,
suggesting that the dataset might be less complex or
suited for the model architecture.

2. Dataset 2 (K-means, unlabelled data): Training Accuracy:
Ranging from 0.7832 to 0.9275 Validation Accuracy: Ranging
from 0.2767 to 0.8050

Key points:

o There is a notable discrepancy between training and
validation accuracy, especially in the earlier epochs, in-
dicating potential overfitting.

o The model achieves the lowest training accuracy and
struggles to generalise well to the validation set, sug-
gesting that the model might be too complex for the
algorithm.

o The validation accuracy shows considerable variance,
indicating potential instability in model performance.

3. Dataset 3 (GMM, unlabelled data): Training Accuracy:
Ranging from 0.8384 to 0.9514 Validation Accuracy: Ranging
from 0.7547 to 0.9686

Key points:

o The training and validation accuracy is relatively close,
indicating that the model is not severely overfitting or
underfitting.

o The validation accuracy is consistently high across
epochs, indicating that the model generalises well to
unseen data.

e There is a slight fluctuation in training and validation
accuracy, which suggests the model might still benefit
from further optimisation.

4. Dataset 4 (Hierarchical, unlabelled data): Training Ac-
curacy: Ranging from 0.8389 to 0.9450 Validation Accuracy:
Ranging from 0.6433 to 0.9363

Key points:

e The model exhibits a moderate level of overfitting as
training accuracy is consistently higher than validation
accuracy.

o The validation accuracy varies widely, indicating poten-
tial sensitivity to hyperparameters or dataset characteris-
tics.

o Despite the overfitting, the model achieves decent vali-
dation accuracy, suggesting that it captures meaningful
patterns in the data.

In terms of overall performance, the Gaussian Mixture
Model offers the most stable and promising performance,
with both high training and validation accuracy. The man-
ually labelled base CNN also shows decent performance,
although slight fluctuations suggest room for improvement.
Hierarchical clustering exhibits overfitting but still achieves
decent validation accuracy, indicating that the model might be
capturing relevant features despite the noise. K-means shows
the most erratic behaviour with a significant gap between
training and validation accuracy, suggesting issues with model
generalisation and potential overfitting. Nevertheless, while
GMM appears to be the most promising based on the provided
metrics, further analysis, including testing on unseen data
and possibly experimenting with different model architectures
or hyperparameters, would be necessary to make definitive
conclusions about the dataset’s suitability for the intended task.

D. Future Research Recommendation

This research was significant in advancing thermal manage-
ment in microchannel heat sinks by tackling the challenge of
flow boiling pattern recognition and streamlining inefficient
data handling. It sheds light on effective classification tech-
niques and presents practical approaches to enhance accuracy.
Therefore, some potential avenues include: refining algo-
rithms, exploring novel machine learning methods like Simple
Contrastive Learning (SimCLR) or Physics-informed Neural
Network-based (PINN) pattern recognition, and investigating
the influence of operating conditions and heat sink designs.
These findings are invaluable to the industry, enabling the



development of more efficient cooling systems and facilitating
rapid, precise pattern recognition in real-world scenarios. Fur-
thermore, this research holds the promise of driving innovation
and elevating thermal management practices across various
industries.

V. CONCLUSION

In conclusion, this research provided valuable insights
into recognising flow boiling patterns within rectangular mi-
cro/mini channel heat sinks. Through systematic analysis
and methodological refinement, the Gaussian Mixture Model
clustering-based Convolutional Neural Network (CNN) ap-
proach demonstrated superior performance, achieving a mean
accuracy of 91.4% on the training set and 88.4% on the
test/validation set, with minimal variations and overfitting.
Conversely, the K-means clustering approach exhibited the
poorest performance, with a mean validation accuracy drop-
ping as low as 62% and the highest variations within epochs,
underscoring its inability to accurately identify complex under-
lying flow boiling patterns. Additionally, the research method-
ology facilitated the creation of an agile semi-automatic data
pipeline, aiding accurate classification and expediting product
development processes. Consequently, these findings advanced
the heat transfer and thermal management research space, and
the study findings also provide opportunities for enhancing
predictive analytics, safety protocols, and real-time monitor-
ing in industrial settings — whilst reducing subjectivity and
interpretability issues. Thus, this study laid the groundwork
for further exploration and innovation in advancing thermal
management practices.
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