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A B S T R A C T   

The advancement of smart meters using evolving technologies such as the Internet of Things (IoT) is producing 
more data for the training of energy prediction models. Since many machine learning techniques were not 
premeditated to handle a large number of irrelevant features, it has engendered the search for optimal techniques 
to decrease the generated features and potentially identify the most relevant features that have an impact on 
building energy efficiency. Feature selection is considered one of the most suitable methods of pinpointing the 
best features combination. However, the fraction of studies that deliver comprehensive insights on the incor
poration of feature selection with machine learning is still limited, notwithstanding the capabilities of feature 
selection to produce a good result in terms of accuracy and speed. To address this gap, this study investigates 
feature selection methods centred on building energy consumption prediction using machine learning. This study 
conducted a comparative analysis of 14 machine learning algorithms on 5 different data sizes and explored the 
effect of 7 feature selection methods on model performance for predicting energy consumption in buildings. 
Furthermore, this study identifies the most effective feature selection methods and machine learning models for 
energy use prediction. The experimental results demonstrate that feature selection can affect model’s perfor
mance positively or negatively, depending on the algorithm employed. Nevertheless, the filter method was noted 
as the most appropriate method for most Machine Learning (ML) classification algorithms. Moreover, Gradient 
Boosting (GB) was identified as the most effective model for predicting energy performance in buildings. 
Additionally, the reliability analysis confirms the hypothesis that “the larger the data, the more accurate the 
result” but only for specific algorithms such as Deep Neural Networks (DNN). This study also presents the 
theoretical and practical implications of this research.   

1. Introduction 

Buildings are major energy consumers that significantly contribute 
to vital energy-related environmental issues such as climate change and 
air pollution, among others (Allouhi et al., 2015; Dandotiya, 2020; 
Wang et al., 2005). The rate of building energy consumption is 
increasing considerably, representing around 30% of global energy 
usage, with the prospect of rapid growth in the nearest future (Amasyali 
& El-Gohary, 2018; Dong et al., 2021; Zhong et al., 2019). For example, 
the United Kingdom (UK) buildings in particular, consume over 29% of 
the overall energy consumption (“BEIS”, 2019; Building Energy Effi
ciency Survey, 2016). However, it is presumed that accurate prediction 
of building energy use is the most effective method of understanding 

building energy efficiency (Fathi et al., 2020; Lei et al., 2021; Hai-xiang 
Zhao & Magoulès, 2012a). Therefore, based on the recognition of Ma
chine Learning (ML) for the generation of good performance in predic
tion tasks (Adegoke, Hafiz, Ajayi, & Olu-Ajayi, 2022; Zhou & Chen, 
2021; Canales, 2016; Olu-Ajayi and Alaka, 2021; Vorobeychik and 
Wallrabenstein, 2013). Researchers have proposed several Machine 
Learning (ML) algorithms for developing energy predictive models, that 
potentially produced good results (Bourhnane et al., 2020; Castelli et al., 
2015; Lei et al., 2021; Qiong Li et al., 2010). 

Despite the good predictive performance of ML algorithms, none has 
been identified as the best for accurate energy predictions. One of the 
most broadly unaddressed issues in energy consumption literature, 
which affects ML algorithms performance is feature or variable selection 
(Hsu, 2015). Identifying the most relevant features strongly affects the 
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accuracy of the predictive model (Alaka et al., 2018; Pirbazari et al., 
2019). Several studies often select variables derived from academic 
literature to develop ML models. However, before model development, 
the application of feature selection method using statistical techniques is 
considered one of the most effective methods for identifying the most 
important variables or features (Hai-xiang Zhao & Magoulès, 2012a). 
Feature Selection (FS) aims to improve the performance of ML models by 
eliminating the unimportant and irrelevant noisy features, thus 
improving the quality of the dataset (Asir et al., 2016). These redundant 
features are removed to reduce the input dimensionality. Feature se
lection decreases the computational time as well as the difficulty of 
training and testing a classification model. Therefore, it engenders more 
cost effective predictive models (Effrosynidis & Arampatzis, 2021). 
Furthermore, selecting the most relevant features simplifies the calcu
lation and reduces the dimensionality (HaiXiang Zhao & Magoulès, 
2012). Although there are several advantages associated with the 
application of feature selection, their drawbacks include the unfavor
ability of some feature selection methods on ML algorithms (Balogun 
et al., 2021). 

Although features (or input variables) are mostly selected based on 
domain knowledge in the field of building energy use prediction, [e.g., 
(Bagnasco et al., 2015; Bourhnane et al., 2020; Ding & Liu, 2020; Dong 
et al., 2021; K. Li et al., 2018)]. Some studies have applied the feature 
selection method in the development of energy predictive models (M. W. 
Ahmad et al., 2017; Z. Dong et al., 2021; Zhang & Wen, 2019b). How
ever, the fraction of studies that deliver comprehensive insights on the 
incorporation of feature selection with machine learning is still limited, 
notwithstanding the capabilities of feature selection to produce a good 
result in terms of accuracy and speed. There are insufficient studies that 
have compared and analysed various feature selection techniques in 
predicting building energy performance. To address this gap, this study 
aims to identify the most suitable feature selection method for for 
building developing a ML model for energy consumption prediction. 
Additionally, it is a general hypothesis in the machine learning world, 
that sample size has a positive impact on the predictive performance of a 
machine learning model [i.e. the larger the data, the more accurate the 
result (Goyal et al., 2020; Kabir, 2020; Kaur & Gupta, 2017; Lee et al., 
2011; Olu-Ajayi et al., 2022a)]. Therefore, this study will also investi
gate the effect of sample size on the performance of ML supervised 
learning models. 

This study will develop building energy usage prediction models 
using various ML classification algorithms [such as Random Forest (RF) 
(Carrera et al., 2021; Chen et al., 2019; C. Li et al., 2018; Pham et al., 
2020), Support Vector Machine (SVM) (Dong et al., 2005; Jing et al., 
2022, p. 202; Liu et al., 2020; Shao et al., 2020; Zhong et al., 2019) etc.], 
and applying various feature selection methods [such as random forest 
(Z. Dong et al., 2021; Z. Wang et al., 2018; Zhang & Wen, 2019b) and chi 
square (Bahassine et al., 2020; Sumaiya Thaseen & Aswani Kumar, 
2017) etc.] and different sample sizes. This research aims to conduct an 
unbiased comparison of feature selection methods to determine the most 
effective FS method and ML algorithm for building energy use predic
tion. The main objectives used to achieve the aim of this research are 
enumerated below:  

• To explore the suitability or benefits of feature selection methods on 
various ML classification algorithms.  

• To investigate the effect of sample size on the performance of ML 
classification models. 

• To identify the most suitable feature selection technique for buil
dingsbuilding energy performance prediction. 

The rest of this paper is structured as follows: Section 2 presents a 
review of feature selection. Section 3 elucidates the data gathered, 
methodology of research, the method of pre-processing data, model 
development and evaluation measures. Section 4 discusses the perfor
mance results and findings. Section 5 presents the theoretical and 
practical implications. Section 6 delivers the overall conclusion and 
future recommendations. 

2. Literature review 

Researchers have established that the appropriate choice of features 
or variables is closely connected to the increase in performance accuracy 
of a model (Zhao & Magoulès, 2012; Zhang & Wen, 2019a). Feature 
selection is recognised as a data pre-processing technique for efficient 
data preparation (mainly high-dimensional data) in machine learning 
problems (Asir et al., 2016; Li et al., 2017; Maldonado & Weber, 2009). 
High dimensional features often incur a high computational cost, while 
low dimensional data decreases the probability of overfitting. Feature 
selection measures the relevance dependency of each feature with the 
output label. It also identifies and eliminates the irrelevant and redun
dant features in a dataset (Chandrashekar & Sahin, 2014). Irrelevant 
features are features that have no impact on the target function in any 
way, while redundant features are features that add nothing to the target 
function (Dash & Liu, 1997). The elimination of irrelevant and redun
dant variables often reduces the data, leading to enhancement in the 
classification performance. 

Machine learning algorithms can often perform classification based 
on a set of features, and feature selection is essential in classification 
(Blum & Langley, 1997; Maldonado & Weber, 2009). Generally, a 
feature is a singular quantifiable property of a process being perceived 
(Chandrashekar & Sahin, 2014). In real-world situations, data is often 
represented using numerous features. However, in most cases, only a 
few of these features may be related to the target output (Kira & Rendell, 
1992). These unrelated features that constitute no correlation to labels 
serve as pure noise, which could lead to bias in prediction, thereby 
diminishing the classification performance (Kunasekaran & Sugumaran, 
2016). Such situations require feature selection to speed up the learning 
process and enhance the quality of data. 

The integration of feature selection methods with machine learning 
for predicting building energy usage has slowly been explored more 
recently. For example, random forest and pearson’s correlation coeffi
cient were applied for ranking a total of 124 features for building energy 
use prediction (Zhang et al., 2018). Also, (Faisal et al., 2019) utilized 
recursive feature elimination and mutual information methods to 
calculate the importance of the input features for predicting electricity 
consumption. It was concluded that the results produced using the 
selected features outperformed the results using the original features. 
Furthermore, it is suggested that feature selection can aid the reduction 
of frequently experienced overfitting issue. 

Additionally, (Zhang & Wen, 2019a) conducted a novel exploration 
of feature selection methods. Initially, the original feature sets 
comprised of 278 features. However, using domain knowledge 22 fea
tures were chosen, subsequently using Pearson correlation coefficient 
29 features were selected. Lastly, multivariate adaptive regression 
splines was employed for thorough selection which elicited 14 features. 
(Paudel et al., 2017) employed feature selection in the prediction of 
energy consumption and emphasized the benefits of feature selection for 
increase in accuracy levels and decrease in computational times. 

In this research, given that the building energy dataset comprises of 
building properties, feature selection using machine learning algorithms 
has a great possibility of identifying the most relevant features. Three 

Nomenclature 

TP True Positive 
TN True Negative 
FP False Positive 
FN False Negative  
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key feature selection methods have been established for feature selec
tion namely filter, wrapper and embedded methods (Maldonado & 
Weber, 2009; Zhang & Wen, 2019b). Filter methods select features 
centred on performance measures without consideration of the type of 
modelling algorithm utilized (Jović et al., 2015). Few studies have 
applied filter techniques to select relevant features in building energy 
use prediction. For instance, Kapetanakis et al. (2017) used linear cor
relation feature selection technique in the development of a thermal 
load prediction model. It was concluded that the accuracy remained on 
the same level with the FS application. Kusiak et al. (2010) also applied 
boosting tree feature selection technique in the selection of the relevant 
variables for predicting building steam load. The relevant input vari
ables included maximum, minimum and mean of outdoor air tempera
ture (Kusiak et al., 2010). 

Filter methods provide more generality as they are independent of 
the chosen algorithm. They are fast in execution and computationally 
inexpensive in comparison to the wrapper and embedded techniques 
(Asir et al., 2016). The wrapper and embedded methods are considered 
less efficient than filter methods for high-dimensional data processing 
(Iqbal et al., 2020). The filter method is implemented based on the 
common characteristics of features such as distance between classes and 
statistical dependencies (i.e., each feature is allotted a statistical score). 
However, this method is blind to any connections between the features. 
Thus, this method will not recognize features that can be relevant when 
combined other features (Bommert et al., 2020). This method removes 
irrelevant features reducing the feature set dimensionality without 
losing much model accuracy (Zhang & Wen, 2019b). There are different 
types of filter methods namely chi square, boosting tree, linear corre
lation, and ANOVA, among others. 

Filter methods utilize methods of variable or feature ranking as the 
customary criteria for feature selection (Aziz et al., 2017). A group of 
statistical methods are employed to grade each feature or the whole 
feature sets, Contingent on if multiple features can be assessed simul
taneously. Contrasting to filter methods that implement feature selec
tion independently of the development of the prediction model, the 
wrapper method utilizes a ML algorithm for feature subset evaluation 
with regard to classification error and accuracy. 

The major difference between the wrapper and filter is the evalua
tion criteria. Kohavi and John (1997) developed the wrapper-based 
feature selection technique for selecting relevant features (or input 
variables) from the dataset. The performance of this technique is often 
evaluated based on classification accuracy using naïve bayes and deci
sion tree classifiers. However, the wrapper method has difficulties e.g. 
overfitting, overhead searching and prolonged computational time 
(Kohavi & John, 1997). Furthermore, the wrapper method utilizes the 
machine learning algorithm to assess the produced subsets by using the 
searching technique, making it more computationally complex. Thus, 
these techniques are not appropriate for high-dimensional space (Asir 
et al., 2016). There are various types of wrapper methods such as 
recursive feature elimination, forward feature selection, random forest 
and boruta among others. 

Various studies have adopted the wrapper method in the building 
energy use prediction field. Fan et al., 2014 employed recursive feature 
elimination to conduct feature selection for eight machine learning al
gorithms in predicting next day building energy consumption. After the 
evaluation of the algorithms, it was observed that Random Forest (RF) 
and Support Vector Regression (SVR) produced the best result in terms 
of model performance (Fan et al., 2014). Also, Ahmad et al., 2017a 
utilized random forest filter techniques in the development of Random 
Forest (RF) and Artificial Neural Networks (ANN) for the building en
ergy use prediction. The filter method produced a good performance in 
ANN than RF. Likewise, Dong et al. (2021) applied the RF feature se
lection method and employed stacking, ANN and Support Vector 
Regression (SVR) for forecasting hourly energy use. Stacking emerged as 
the best among other algorithms (Dong et al., 2021). Furthermore, 
Kolter and Ferreira (2011) implemented a forward selection method in 

predicting energy consumption in a building. The selection of best 
performance was centred on Root Mean Squared Error (RMSE) of a 
predictive model. It was concluded that the RMSE of an energy predic
tive model can be decreased by utilizing the selected features. 

The embedded method assesses the usefulness of features similar to 
the wrapper method (HaiXiang Zhao & Magoulès, 2012). However, this 
method implements feature selection during the algorithm’s execution; 
thus, these methods are embedded normally or as an extended func
tionality in each regression or classification algorithm. The popular 
embedded methods include some decision tree algorithms such as 
Embedded Random Forest, Classification and Regression Tree (CART), 
among others. Furthermore, embedded methods can apply feature se
lection by the algorithms training process. Thus, due to the abstention of 
retraining of the specific algorithms, it suffers less computational 
burden. However, it is peculiar to specific algorithms and hence they are 
not always used (Zhang et al., 2019). 

Embedded methods employ the fundamental characteristic of ML 
algorithms to execute feature selection (Ang et al., 2016). Embedded 
methods have different methods: during the process of training the 
model, features with smaller correlation coefficient values are elimi
nated recursively through the use of a support vector machine. Another 
method is application of feature selection as an embedded function 
during the training process (Table 1). 

3. Data and methodology 

This research analyses the effect of feature selection methods on 
various ML algorithms in the prediction of energy use in buildings. This 
research will further substantiate or invalidate the suitability of feature 
selection methods for some or all ML classification algorithms. Hence, 
the question “Is there a feature selection technique considered suitable 
for all machine learning classification algorithms?”. Additionally, based 
on the hypothesis, the greater the data, the better the model’s perfor
mance (Dalal, 2018; Goyal et al., 2020; Kabir, 2020; Lee et al., 2011; 
Olu-Ajayi et al., 2022a), this study employs different data sizes in 
developing all ML models. This section will describe the different 
datasets and techniques (feature selection methods and ML classification 
algorithms) utilized in this study. The schematic diagram of this 
research is displayed in Fig. 1 below. This section consists of major 
processes namely data gathering, data pre-processing, feature selection, 
correlation analysis, model training and model testing. 

3.1. Data collection 

This study utilized three types of datasets for classification namely 
building metadata, meteorological and energy dataset. These datasets 
contain several features considered pertinent to energy performance 
prediction which has been employed in various studies (Feng & Zhang, 
2020; Olu-Ajayi & Alaka, 2021; Wang et al., 2021). The identification of 
the most relevant features that generate good predictions will thereby 
improve the classification accuracy for subsequent predictions of the 
annual energy performance of buildings. These datasets were collected 

Table 1 
Merits and demerits of feature selection.  

Method Merits Demerits 

Filter  • Independent of the 
selected algorithm.  

• Fast execution  
• Low computational cost  

• Ignores connections between the 
features  

• Ignores interaction with the classifier 

Wrapper  • Simple  
• Considers feature 

dependencies  

• Chances of overfitting  
• More computationally complex  
• Long computational time 

Embedded  • Fast execution  
• lower chance to 

overfitting.  

• Limited to specific algorithms and 
hence they are not always used  
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for many residential buildings in the United Kingdom (UK). This study 
uses only residential building data as they are the majority of building 
stock in the UK. 

Building Dataset: The building metadata was gathered from the 
Ministry of Housing Communities and Local Government (MHCLG) re
pository. The dataset consisted of the properties of each building. The 
building and energy datasets were collected for 60,000 various types of 
residential buildings. Fig. 2 shows the proportion for each type of 
building in the dataset. The types of buildings include flats, bungalows, 
maisonettes, and houses. 

The 60,000 residential buildings are situated within six area post
codes in the United Kingdom namely Hartlepool, Middlesbrough, Red
car and Cleveland, Darlington, Halton, and Warrington. Building and 
energy related datasets were collected for 10,000 buildings for each area 
postcode. The building consists of various features that are readily 
available at the conceptual stage of buildings. Several studies have 
considered features such as floor, window, and wall type as important 
input variable (Marino et al., 2017; Marwan, 2020; Tahmasebi et al., 
2011). However, this study will further identify the most relevant pa
rameters required for predicting the annual energy performance of 
buildings. The features selected include some common features such as 

Fig. 1. The framework of this Research.  

Fig. 2. Proportion of Buildings.  
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floor area, floor level, and window description among others, which 
were considered as the independent variable in other studies (Goyal 
et al., 2020; Kabir, 2020; Lee et al., 2011; Olu-Ajayi et al., 2022a). Fig. 3 
displays the independent variables from the building dataset, weather 
related dataset and the annual energy rating which was employed as the 
dependent variable. 

As displayed in Fig. 3, other features such as window energy effi
ciency, and window environmental efficiency among others. This is the 
rate of the energy efficient properties of the building such as window 
energy efficiency (double glazing, triple glazing), wall energy efficiency 
(wall types that decreases the air inflation and restrict heat flow) is 
graded very good to very poor. Likewise, the environmental efficiency is 
concerned with the rating of the quality of building properties in terms 
of environmental friendliness. 

Weather-related dataset: In this study, the employed meteorolog
ical or weather dataset was collected from the Meteostat database. The 
meteorological dataset is considered one of the key variables in energy 
use prediction (Ding & Liu, 2020). The scale of the weather-related data 
gathered was daily from 1st January 2020 till 31st December 2020. 
These data were averaged to calculate the annual meteorological data 
for the year 2020, relative to each building’s data collected. This 
weather-related data was gathered using each building’s area postcode. 
The weather-related data was gathered for six areas namely Hartlepool, 
Middlesbrough, Redcar and Cleveland, Darlington, Hilton and War
rington. The weather-related data comprised of wind speed, pressure, 
and temperature as shown in Fig. 3 above. The reason for the selection of 
buildings from different area postcodes is to ensure an unbiased classi
fication. Fig. 4 shows the monthly weather temperature of the five area 
postcodes. 

Energy rating dataset: The energy rating data was also amassed 
from the Ministry of Housing Communities and Local Government 
(MHCLG) repository. The energy rating of each building for the year 
2020 consist of both high and low energy grade. The building energy 
rating is based on UK standard rating scale issued in the form of Energy 
Performance Certificate (EPC) to alert building landlords of present 

energy rating, energy cost and effectual recommendations on improving 
energy efficiency and saving money (Curtis et al., 2014). The EPC energy 
efficiency rating was utilized in the development of a classification 
model as the target variable. The energy efficiency rating ranges from A 
to G with ‘A’ denoted as the most energy efficient and ‘G’ as the least 
energy efficient (i.e., 92+ = ‘A’, 81–91 = ‘B’, 69–80 = ‘C’, 55–68 = ‘D’, 
39–54 = ‘E’, 21–38 = ‘F’, 01–20 = ‘G’). The proportion of the energy 
rating for each building is displayed in Fig. 5. To avoid the bias of data 
categories imbalance, multiple evaluation measures were employed (i. 
e., F1 which computes the mean of precision and recall. Precision been 
the number of selected instances that are relevant, recall the number of 
relevant instances that are selected). 

3.2. Data pre-processing 

Data pre-processing has significant impacts on the machine learning 
algorithms performance (Kotsiantis et al., 2006). The objective of data 
pre-processing is to handle raw data imperfections and irregularities 
such as high dimensionality, noise, missing data, outliers, in
consistencies and imbalanced data (Benhar et al., 2020). Although data 
pre-processing is computationally expensive and time consuming, it is 
required to ensure quality assurance of the database and to avoid diffi
culties during model development (Shapi et al., 2021). Without the 
implementation of adequate pre-processing of data, several complexities 
could emerge that affect the model performance such as missing or 
abnormal values, noise etc. Missing data means the absence of one or 
more entries in the matrix containing the experimental dataset (Mishra 
et al., 2020). The missing data identified in the building and weather- 
related dataset were handled in different ways. Newgard and Lewis 
(2015) proposed the mean value imputation for handling missing data 
which was utilized in the weather-related dataset. The building in
stances containing missing data were removed. The total number of 
instances removed from the building dataset is 9,461. The building 
dataset contains categorical features such as the roof energy efficiency 
and windows energy efficiency among others as shown in Fig. 3. The 

Fig. 3. Building and Weather-related variables collected.  
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categorical data were allotted values, (e.g., very good = maximum value 
(5) and very poor = minimum value (0)) to transform the data into an 
appropriate format for the ML algorithm. 

Label encoder: The label encoder is used to encode or convert labels 
to numeric format the machine can process. For example, converting a 
variable list called morality containing good and bad to 1 and 2 
respectively. The label encoder of the sklearn python package was uti
lized to convert the labels of the energy rating dataset. 

Data Merging: This is the process of consolidating various datasets. 
The building and weather-related datasets were amalgamated using 
each location postcode to match all building instances with their cor
responding weather-related data. These datasets (building and weather- 
related datasets) were merged using the panda python package. The 
merged data constituted a total of 1,320,000 data points. 

Data Size: To conduct the investigation of the effect of data size on 
each ML model’s performance, the data utilized for training each model 
was fixed to 20%, 40%, 60%, 80% and 100% for clear comparison as 
shown in Fig. 1 above. Therefore, the dissimilar quantities of training 
sets signify different types of data, for example, 20% and 40% represents 
the inadequate amount of data, and 60% represent good while 80% and 
100% represent an adequate amount of data. 

3.3. Feature selection methods 

This study utilized seven techniques for the selection of the most 
relevant features for energy use prediction. These methods include three 
filter, two wrapper and two embedded methods. 

3.3.1. Filters 
Chi-square: This is a type of univariate filter FS test that calculates 

the deviation from the projected distribution considering the feature 
occurrence is independent of the label values (Sumaiya Thaseen & 
Aswani Kumar, 2017). Like any univariate method, chi square is 
calculated between each feature and target or dependent feature, and 
then the presence of a correlation between them is detected. Subse
quently, a low score is assigned if the target variable is independent of 
the feature while, if the target variable is dependent on the feature, the 

feature is considered is important (Effrosynidis & Arampatzis, 2021). 
Therefore, the higher the Chi-Square value means the more relevant the 
feature. 

Mutual Information: This is a type of filter FS method proposed by 
(Battiti, 1994). It is also known as information gain. Mutual information 
aims to amplify the relevance between the input and output features, 
and decrease the redundancy of the chosen features (Amiri et al., 2011). 
Subsequently, if the information gain of a feature is high, it is considered 
relevant. However, mutual information does not identify redundant 
features, because the features are chosen in a univariate way (Effrosy
nidis & Arampatzis, 2021). 

ANOVA: This is a type of univariate filter-based technique that uti
lizes variance to detect the separability of each feature between classes 
(Ding et al., 2014). 

3.3.2. Wrappers 
Permutation importance: This is a heuristic wrapper method cen

tred on repeated permutations of the resulting vector for forecasting the 
distribution of calculated importance for each feature in a non- 
informative way (Effrosynidis & Arampatzis, 2021). 

Recursive Feature Elimination: This is a type of multivariate 
wrapper technique that utilizes THE decision tree classifier for training 
the model repeatedly using the existing features. The least important 
features are then eliminated using the weight of the algorithm as a 
ranking measure (Seijo-Pardo et al., 2019). 

3.3.3. Embedded 
Embedded Random Forest: This is an embedded method using the 

random forest algorithm. The significance of each feature is calculated 
by conducting random permutations of features in the out-of-bag set and 
measuring the increase in misclassification level in comparison to the 
out-of-bag set in default state (Effrosynidis & Arampatzis, 2021). 

ExtraTreesClassifier: ExtraTrees abbreviated as extremely ran
domized trees, is a form of the random forests which performs 
randomization at every step for the selection of an optimal split. In 
contrast to random forests where the split features are centred on a 
grade, ExtraTrees implements a split measure of the random and 

Fig. 4. Monthly weather temperature.  
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considers the whole training set (Sharma et al., 2019). 
Following the application of the feature selection methods, the 10 

highest ranked features were selected, shown in Table 2 above. Amongst 
these, the most common highest ranked features among the feature se
lection method are walls description, floor description, walls energy 
efficiency, roof description. These are important features of a building 
and have an effect on the energy use of the building. For instance, walls 
are one of the most essential features of a building, as the selection of the 
most appropriate type of walls has an effect on the energy performance 
of a building (i.e., the thickness of the wall will reduce the use of heating 
in the winter season) (Marwan, 2020). 

3.4. Correlation 

After feature selection, some variables such as window environ
mental efficiency, wind speed etc were identified to have comparatively 
lower values of importance as shown in Table 2. Nonetheless, low 
importance variables do not directly mean the variable is of low rele
vance or irrelevant to the target variable. Thus, some variables were 
significantly correlated with each other and the result for the evaluation 
of this correlation is provided in Fig. 6 below. The correlation matrix 
plot shows the correlation between features (building and meteorolog
ical variables) and target (energy efficiency rating). As shown in Fig. 6, 
the diagonal line showing one represents the correlation of the features 

Fig. 5. The proportion of buildings with energy rating.  

Table 2 
Rank of each feature selected using various feature selection methods.  

Features Chi- 
square 

Mutual 
Information 

ANOVA Permutation 
importance 

Recursive Feature 
Elimination 

Embedded Random 
Forest 

ExtraTrees 
Classifier 

Total Floor Area[m✓] ✓   ✓ ✓ ✓ ✓ 
Property Type  ✓  ✓ ✓  ✓ 
Extension Count ✓  ✓   ✓ ✓ 
Walls Description ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Floor Description ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Windows Energy Efficiency ✓ ✓ ✓     
Windows Environmental 

Efficiency  
✓ ✓     

Walls Energy Efficiency  ✓ ✓ ✓ ✓ ✓ ✓ 
Walls Environmental Efficiency ✓ ✓ ✓ ✓  ✓ ✓ 
Roof Description ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Roof Energy Efficiency ✓ ✓ ✓  ✓   
Roof Environmental Efficiency ✓ ✓ ✓     
Lighting Environmental 

Efficiency 
✓       

Number of Heated Rooms    ✓ ✓ ✓ ✓ 
Number of Habitable Rooms    ✓ ✓ ✓ ✓ 
Wind speed [km/h] (Annual 

Average)    
✓    

Pressure [Hg] (Annual 
Average)     

✓ ✓   
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with themselves. The correlation values close to one represents a strong 
positive correlation between two features. Therefore, number of heated 
rooms has a strong correlation to number of habitable rooms. Windows 
environmental efficiency has a strong correlation to window energy 
efficiency. Also, Wall energy efficiency has a strong correlation to wall 
environmental efficiency. 

3.5. Model development 

Classification is a supervised learning method of developing a model 
to forecast the class label for an unseen instance. If the quantity of class 
labels connected with each instance is one, it is known as Single Label 
Classification (SLC). SLC is grouped into binary classification and multi- 
class classification. Binary classification is a method of classification that 
includes only two different class labels such as spam detection model 
(spam or not spam), result generation model (pass or fail). Subsequently, 
multi-class classification is a method of classification that includes more 
than two different class labels such as marital status model (married, 
single, divorced, widow/widower), and ethnicity detection (African 
American, European American, White British). This study employs the 
multi-class classification using the UK standard rating scale of A to G (‘A’ 
denoted as the most efficient and ‘G’ as the least efficient) as the class 
labels utilized in this study. 

3.5.1. Hardware specification 
The pre-processing of data, model training and testing were executed 

using python programming language. These computations were per
formed on an Apple M1 chip MacBook Air (OS = Big Sur Version = 11.4 
and with RAM = 16 GB and 8 cores). Python libraries and packages 
(Pandas, numpy and scikit-learn) were utilized for the main core of this 
experiment. 

3.5.2. Machine learning algorithms 
Support Vector Machines: This is a machine learning method also 

identified as Support Vector Classifier (SVC), it is recognised as one of 
the most accurate techniques amongst data mining algorithm (Wu et al., 
2008). SVM has gained more attention, owing to its capability of 
effectively generating good solutions to non-linear problems in diverse 
sample sizes (Chen et al., 2022; Hai-xiang Zhao & Magoulès, 2012b). 
SVM is based on the kernel, a method primarily computed for solving 
binary classification problems proposed by Vapnik in the early 1990s 
(Sonkamble & Doye, 2008). The parameters used in the model creation 
for the SVC model are: (‘C’ = 1.0; Epsilon = 0.1; Kernel = radial basis). 

K Nearest Neighbors (KNN): KNN algorithm is a non-parametric ML 
method that uses similarity or distance function to estimate results based 
on the k closest training samples in the feature space (Ortiz-Bejar et al., 
2018). KNN is one of the most utilized distance functions methods that 
performs effectually on numerical data (Ali et al., 2019; Olu-Ajayi, 
2017). The parameters utilized in the development of the KNN are 5 
neighbors, 30 leaf and size uniform weights. 

Random Forest: This is an ensemble technique developed based on 
the ensemble learning theory, which makes the learning of both simple 
and complicated problems achievable (Ahmad et al., 2017b); RF algo
rithm often generates good performance using default parameters. 
Hence, RF algorithm is obtaining increased recognition in the field of 
energy use prediction (Ahmad et al., 2017b; Chen et al., 2019; Fan et al., 
2017; Z. Wang et al., 2018). The Random Forest (RF) model was 
developed with 10 estimators. 

Decision Tree: This utilizes a tree-like flow chart to divide data into 
sets. It is a versatile method that can progress with an increased sample 
size (Domingos, 2012). In comparison with other ML techniques, DT is 
uncomplicated and easy to understand. Furthermore, the implementa
tion of DT does not demand convoluted computational knowledge. 

Fig. 6. Correlation between variables.  
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Though, the results often have clear deviations in their predictions from 
real outcomes (Yu et al., 2010). The Decision Tree (DT) was developed 
using the ‘best’ splitter parameter. 

Gradient Boosting: This is a type of boosting method that develops 
models in phases, but it generalizes these by applying a random differ
entiable loss function (Flores & Keith, 2019). GB is one of the ML 
techniques that can be used for both classification and regression 
problems. The GB model was developed using certain parameters 
(Learning rate = 0.1, Loss function = deviance, estimators = 100). 

Extra trees: This is a type of tree-based ensemble method that uti
lizes a decision tree as the key component with a top-down method. The 
extra trees algorithm is considered suitable when the utilized dataset 
contains a significant number of continuous variables, as it decreases the 
computational burden and arbitrarily chooses the best feature to split 
(Ravi, 2020). The ET model was developed using 100 estimators. 

Multi-Layer Perceptron: This is a type of neural network that em
ploys a feed forward propagation procedure with a single hidden layer 
where latent and abstract features are learned (Adegoke, 2019; 
Donoghue and Roantree, 2015). Neural networks are recognised for 
their good performance with large datasets as it requires adequate data 
to train the model (Bourhnane et al., 2020). The MLP model was 
developed using certain parameters (learning rate = 0.001, Activation =
‘RELU’ and solver = Adam). 

Adaboost: This is a simple boosting method that is often utilized for 
resolving classification problems (Rahul et al., 2018). It is recognized for 
its high predictive speed and low time consumption (Aadithyan et al., 
2020). The Ada boost model was developed using 1.0 learning rate. 

Deep Neural Network: Deep neural network or deep learning is a 
machine learning technique that adopts deep patterns of the neural 
networks using multiple hidden layers (Olu-Ajayi, Alaka, Owolabi, 
Akanbi, & Ganiyu, 2023; Hoang and Kang, 2019). The regular neural 
networks consist of two to three layers, limiting their capabilities to 
expressing intricate functions (Lei et al., 2021). However, the deep 
neural network often consists of five or more layers of neural networks 
which enable the generation of better performance and increased ac
curacy. The developed deep learning model consists of five layers (1 
input layer, 3 hidden layers and one output layer). 

Bagging: Bagging is an abbreviation from Bootstrap Aggregating, 
which is one of the most utilized and famous amongst ensembles 
learning methods (Zeng et al., 2010). Bagging generates parallel various 
classifiers and then ensemble them, so it chooses specific base classifier 
algorithms to train base classifiers on random redistribution training 
datasets. The number of estimators were assigned to 10 in the devel
opment of the Bagging model. 

Gaussian Naïve Bayes: In the data mining and machine learning 
field, this ML method is considered one of the valuable classification 
methods due to its effectiveness. However, they fail in the assumption of 
conditional independence among the features (Jahromi & Taheri, 
2017). The default parameters were utilized in the development of the 
GNB. 

Bernoulli Naïve Bayes: This is a type of multivariate method often 
utilized in classification tasks using binary independent features. It is 
popular in document classification tasks i.e., to detect if a term is under 
consideration or not (Singh et al., 2019). The BNB model was developed 
using 1.0 alpha. 

Dummys: The dummy classifiers are methods that randomly guess 
the prediction classes, which can similarly attain a certain level of pre
diction accuracy (C. Wang et al., 2018). 

Quadratic Discriminant Analysis: This is a common method for 
supervised classification, which gaussian distribution in modelling the 
likelihood of each class, then utilizes posterior distribution to predict the 
class (Srivastava et al., 2007). The default parameters were utilized in 
the development of the Quadratic Discriminant Analysis. 

3.6. Model evaluation 

Accuracy: This is a type of performance measure which considered 
the most used in evaluating classification tasks. It is the calculation of 
the exact match of the estimated values and real values. Also, this 
measure is often used considered to justify that the model developed is 
appropriate (Gonzalez-Abril et al., 2014). The formula for accuracy is: 

Accuracy =
TP + TN

TP + TN + FP + FN 

Balanced Accuracy: Accuracy is known as the percentage of occur
rences estimated correctly, while balanced accuracy is the mean of the 
accuracies for each class (Miller et al., 2012). There are two types of 
evaluation measures used to measure the balanced accuracy of the 
prediction result, namely sensitivity and specificity. The formula for 
balance accuracy is: 

Sensitivity =
TP

TP + FN
Specificity =

TN
TN + FP  

Accuracy =
Sensitivity + Specificity

2 

F1 score: This is a technique for computing the weighted average of 
the precision and recall, where the score close to one is considered the 
best and the score closest to zero is the worst. The formula for the F1 
score is: 

Precision =
TP

(TP + FP)
||Recall =

TP
(TP + FN)

F1 = 2*
(Precision*Recall)
(Precision + Recall)

ROC AUC: This is the area under the Receiver Operator Character
istic (ROC) curve. It is largely acknowledged as one of the most appro
priate pointers for the classification performance. The best ROC AUC 
score signifying outstanding accuracy is one. However, the lowest ROC 
AUC score is 0.5 (Egwim et al., 2021). 

4. Result and discussion 

This study conducts a reliability analysis to investigate the effect of 
sample size on classification performance. Five different percentages (i. 
e., 20%, 40%, 60%, 80% and 100%) of data were utilized as training and 
testing sets to develop energy use rating prediction models. Fourteen 
machine learning models were developed using five percentages of data. 
The most effective predictive model is determined in the five cases of 
data availability using the model performance measures as stated in 
section 3.5. The performance values of accuracy closest to one are 
considered the most effective model. As summarized in Table 3, the 
Gradient Boosting (GB) model produced the best predictions in five 
cases with accuracy achieved about 0.66–0.68 compared with Random 
Forest (RF) which also emanated the second best in five cases 0.64–0.66, 
0.62–0.63 with Extra trees and 0.60–0.62% for K-Nearest Neighbour 
(KNN). The least effective predictive models are Quadratic Discriminant 
Analysis (QDA), Gaussian Naïve Bayes (GNB) and Adaboost. Fig. 7 
shows the prediction performance distribution of each model using 
different data sizes. 

The change in data size had effects on the performance of the 
different algorithms except for the dummy and bagging classifier, which 
remained constant in the five cases. It is noted that Gradient Boosting 
(GB) outperformed other models using 20% data and there appears no 
significant changes in the prediction performance (accuracy) with the 
increased sample size. This suggests that the size of the data has no direct 
impact on the predictive accuracy. Therefore, 20% and larger data can 
be considered sufficient for energy use prediction using Gradient 
Boosting (GB). However, further investigation explores the relative 
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Table 3 
Performance result for each model using five data sizes.  

Data Size 20% Data 40% Data 60% Data 

Model Training 
Time 

ROC 
AUC 

Accuracy Balanced 
Accuracy 

F1 Training 
Time 

ROC 
AUC 

Accuracy Balanced 
Accuracy 

F1 Training 
Time 

ROC 
AUC 

Accuracy Balanced 
Accuracy 

F1 

Support Vector 
Machines  

19.32  0.79  0.46  0.14  0.29  75.06  0.78  0.46  0.14  0.29  166.29  0.80  0.47  0.14  0.30 

K Nearest Neighbors  0.63  0.79  0.62  0.38  0.61  2.20  0.78  0.61  0.34  0.60  4.31  0.80  0.60  0.35  0.59 
Random Forest  0.64  0.85  0.65  0.47  0.64  1.29  0.84  0.66  0.43  0.65  2.06  0.84  0.65  0.44  0.64 
Decision Tree  0.05  0.70  0.60  0.48  0.60  0.13  0.70  0.59  0.48  0.60  0.21  0.67  0.58  0.42  0.58 
Gradient Boosting  5.36  0.90  0.68  0.50  0.67  12.98  0.87  0.67  0.44  0.66  21.16  0.85  0.66  0.38  0.65 
Extra trees  0.68  0.84  0.63  0.47  0.63  1.38  0.81  0.63  0.41  0.62  2.13  0.80  0.62  0.40  0.61 
Multi-Layer Perceptron  0.80  0.66  0.44  0.25  0.31  1.02  0.71  0.43  0.25  0.29  1.31  0.79  0.52  0.26  0.49 
Adaboost  1.12  0.62  0.46  0.22  0.38  2.30  0.64  0.46  0.27  0.37  3.16  0.63  0.41  0.32  0.43 
Deep Neural Network  2.34  0.82  0.48  0.18  0.34  6.93  0.83  0.59  0.22  0.54  15.92  0.85  0.58  0.24  0.55 
Bagging  30.31  0.50  0.46  0.14  0.29  113.58  0.50  0.46  0.14  0.29  265.09  0.50  0.47  0.14  0.30 
Gaussian Naïve Bayes  0.03  0.76  0.39  0.39  0.33  0.05  0.74  0.38  0.38  0.45  0.07  0.80  0.44  0.42  0.48 
Bernoulli Naïve Bayes  0.03  0.81  0.54  0.30  0.52  0.05  0.80  0.54  0.30  0.53  0.08  0.80  0.54  0.30  0.53 
Dummy  0.00  0.50  0.46  0.14  0.29  0.00  0.50  0.46  0.14  0.29  0.00  0.50  0.47  0.14  0.30 
Quadratic Discriminant 

Analysis  
0.05  0.70  0.31  0.26  0.32  0.09  0.74  0.48  0.30  0.46  0.13  0.70  0.14  0.27  0.18  

Data Size 80.00 100.00 

Model Training Time ROC AUC Accuracy Balanced Accuracy F1 Training Time ROC AUC Accuracy Balanced Accuracy F1 

Support Vector Machines  294.11  0.78  0.46  0.14  0.29  496.46  0.78  0.46  0.14  0.29 
K Nearest Neighbors  7.76  0.78  0.60  0.34  0.58  12.70  0.78  0.61  0.31  0.59 
Random Forest  2.90  0.83  0.64  0.41  0.63  3.96  0.82  0.64  0.37  0.63 
Decision Tree  0.30  0.68  0.58  0.45  0.58  0.41  0.65  0.58  0.39  0.58 
Gradient Boosting  30.42  0.86  0.67  0.40  0.65  40.93  0.86  0.67  0.38  0.65 
Extra trees  2.96  0.80  0.62  0.39  0.61  3.88  0.79  0.62  0.34  0.61 
Multi-Layer Perceptron  5.06  0.78  0.39  0.24  0.31  5.81  0.78  0.56  0.19  0.48 
Adaboost  4.20  0.63  0.44  0.32  0.45  5.35  0.66  0.47  0.34  0.47 
Deep Neural Network  14.98  0.84  0.60  0.27  0.59  33.89  0.86  0.63  0.27  0.60 
Bagging  471.34  0.50  0.46  0.14  0.29  755.18  0.50  0.46  0.14  0.29 
Gaussian Naïve Bayes  0.10  0.68  0.13  0.35  0.16  0.13  0.73  0.16  0.36  0.20 
Bernoulli Naïve Bayes  0.10  0.79  0.50  0.29  0.46  0.13  0.78  0.49  0.28  0.44 
Dummy  0.00  0.50  0.46  0.14  0.29  0.00  0.50  0.46  0.14  0.29 
Quadratic Discriminant Analysis  0.18  0.81  0.51  0.27  0.46  0.23  0.83  0.55  0.29  0.50  
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effect of the input features on the predictive performance(s). 
The fourteen ML model’s performance distribution is shown in Fig. 7 

using a stacked line chart. This chart was employed to display a more 
comprehensible means to recognise the variation in model performance 
using different data sizes. Most of the ML models (such as SVC, KNN, RF, 
DT, among others) shows no significant difference in the different sizes 
of data used, as shown in Fig. 7. However, Deep Neural Network (DNN) 
shows a relative increase in performance based on increased data size. 
On the other hand, Gaussian Naïve Bayes (GNB) shows a decline in 
prediction performance based on the increase in data. Gradient boosting 
is the most effective model for energy use prediction, but there still lies 
no significant difference using different data sizes, with an achieved 
prediction accuracy of 0.66–0.68. Although DNN is not recognised as the 
most effective model, it does show an increase in performance based on 

data increase. This does suggest that the positive or negative effect of 
data availability or large data is predicated on the type of algorithm 
used. 

To examine the impact of the input features on the predictive 
outcome. Seven feature selection methods were implemented on 100% 
data availability. The ten most relevant input features based on the 
feature selection methods were used to develop fourteen machine 
learning models. The result was further investigated to identify the most 
effective feature selection method and pinpoint the paramount features 
for energy use prediction. Figs. 8a to 8c displays the model’s prediction 
performance based on input features selected using the different feature 
selection methods. Gradient Boosting (GB) produced the best result 
based on accuracy using Random Forest (RF), Permutation Importance, 
RFE and Extratree. 

Fig. 7. Prediction performance distribution using different data sizes for each ML algorithm.  
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Each model produced its highest accuracy using specific feature se
lection methods. For example, SVC produced good accuracy of 
0.61–0.62 using Mutual Information and ANOVA. Likewise, RF genrated 
good predictive accuracy of 0.63–0.64 using Mutual Information and 
ANOVA. Similarly, DT and Extratree engender a good level of accuracy 
using Mutual Information and ANOVA. Furthermore, GaussianNB 
generated good predictive accuracy of 0.54 using RFE and 0.55 of Ber
noulliNB using RF and Extratree. On the other hand, all feature selection 
methods have no effect on the Dummy model, as it generated the same 
level of accuracy across all seven feature selection methods, as shown in 
Fig. 8a below. 

Given that feature selection could have unfavourable impacts on 
certain algorithms (Balogun et al., 2021; Olu-Ajayi et al., 2022b), there 
is a need to compare each model with and without FS methods. Fig. 9 
demonstrates a clear comparison of the negative and positive impacts of 
the FS techniques on the predictive accuracy of the fourteen ML models. 
Table 4 summarizes the prediction accuracy of each model with and 
without FS. Although the Gradient Boosting (GB) model emerged the 
best with and without feature selection, it achieved a better accuracy of 
0.67 without feature selection as compared to 0.65 with feature 

selection. Also, Quadratic Discriminant Analysis (QDA) generated better 
predictive accuracy of 0.55 without FS and 0.45 with FS. 

Conversely, Feature Selection had favourable impacts on certain ML 
algorithms. For example, DT achieved better accuracy 0.64 using feature 
selection and 0.58 without feature selection. MLP generated 0.64 pre
dictive accuracy with FS and 0.56 without FS. This also applies to other 
models such as DNN, Bagging, GaussianNB among others. This level of 
increase and decrease based on feature selection is displayed in Fig. 9 
below. 

5. Implications of research 

This study presents the theoretical and practical implications of this 
research. 

5.1. Theoretical Implications 

This study explored the utilization of various FS techniques in 
developing several machine learning models to conduct a clear and 
unbiased comparison. Some studies suggest that feature selection is 

Fig. 8a. Models performance results using various FS methods.  

Fig. 8b. Models performance results using various FS methods.  
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essential for optimum performance of the model (Alaka et al., 2018; 
Balogun et al., 2021; Zhang & Wen, 2019a; Hai-xiang Zhao & Magoulès, 
2012a); some studies suggest that feature selection is unfavourable to 
certain algorithms (Alaka et al., 2019, 2018; Olu-Ajayi et al., 2022b). 
However, this study shows that feature selection can have a positive or 
negative impact on the predictive accuracy, depending on the algorithm 
selected. This supports previous research, which states that the 
achievement of a good predictive accuracy of a model is highly predi
cated on the type of algorithm and feature selection method chosen 
(Olu-Ajayi et al., 2022a). Therefore, if an appropriate feature selection 
method is not selected for the specific ML algorithm used, feature 

selection will not result in good accuracy. For example, SVC produced 
good results for Mutual Information and ANOVA, which are both filter 
methods. This could suggest that SVC is best suited with filter methods. 
However, some models achieved better accuracy without feature se
lection such as Gradient Boosting (GB) and Adaboost among others. 

One general hypothesis in the machine learning world, states that the 
larger the data utilized for model training, the better the performance 
(Dalal, 2018; Goyal et al., 2020; Kaur & Gupta, 2017; Lee et al., 2011). In 
this study, the reliability analysis was conducted to substantiate or 
disprove this hypothesis. Different machine learning models were 
developed using five sample sizes (20%, 40%, 60%, 80%, 100%). This 

Fig. 8c. Models performance results using various FS methods.  

Fig. 9. Prediction performance distribution using different data sizes for each ML algorithm.  
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finding engendered from the analysis suggests that the larger the data 
does not always lead to a better result. Although it is notable that a single 
study is not enough to substantiate this conclusion, and this should be 
subject to further investigation. Some studies have corroborated certain 
conclusions, for example, Deep Neural Networks (DNN) showed a 
relative increase in predictive accuracy based on the increase in data 
size. Past studies have shown that large data has an effect on certain 
machine learning algorithms such as neural networks, (Amasyali & El- 
Gohary, 2018; Bourhnane et al., 2020). Also, the study by Bourhnane 
et al., 2020 stipulates that neural network algorithms are dominant with 
big datasets, as they require sufficient data to train the model. On the 
other hand, SVC shows no significant increase in predictive accuracy 
based on the increase in the data size. This is can be subject to the 
conclusion that Support Vector Machines (SVM) are recognized for its 
ability to deliver good results effectively regardless of data size (Li et al., 
2009; Qiong Li et al., 2010). Therefore, the general hypothesis on large 
data and better predictive performance is only peculiar to certain ma
chine learning algorithms. 

5.2. Practical Implications 

The identification of the most relevant features that influence the 
energy performance of a building is important for several reasons and at 
various stages. During the development of a building energy prediction 
model, the utilization of only the relevant variables can improve the 
accuracy of the model. This can also help in reducing the model’s 
complexity and avoiding overfitting. Additionally, this could reduce the 
time-consuming effort and high cost required to collect data on all 
variables that may affect building energy consumption.  Furthermore, 
the use of only the relevant variables for an energy prediction model can 
reduce the computational cost. Moreover, identifying of the most rele
vant features is also imperative at the design stage of a building because 
this enables the building designer to discern which building features 
require optimization to achieve a low potential energy consumption 
outcome. Overall, the choice of the most suitable feature selection 
method can help in identifying the most relevant features that 
contribute to the energy use of a building. This study identifies the most 
suitable FS method for specific ML algorithms, for instance, SVC, ET, 
MLP and bagging were found to be most suited with filter feature se
lection methods such as chi-square, mutual information, and ANOVA, 
among others. In terms of technical, social and economic implications, 
technical expertise is required to implement different feature selection 
methods and exploring various FS methods to identify the most suitable 
for an ML algorithm it is more labour-intensive. This study delivers the 
most suitable FS method for certain ML algorithms, reducing the time- 
consuming process of exploring various FS methods. In real-world sit
uations, the process of collecting and utilizing data could raise privacy 
concerns, particularly with personal data such as occupancy details 
among others.  The data of numerous features are often collected 

However, in most cases, only a few of these features may be related to 
the target output (Kira and Rendell, 1992).The identification of the most 
relevant feature will help limit the types of data required and reduce the 
cost of data collection. Developing a high performing building energy 
consumption prediction model can help organizations optimize the use 
of energy resources, leading to cost savings and improved sustainability. 
Additionally, the implementation of feature selection and reliability 
analysis in this study, can help model developers identify the ML algo
rithms that are sensitive to changes in the data or feature size. 

6. Conclusion and recommendation 

Contrary to the popular theory that feature selection is required to 
achieve better accuracy (Alaka et al., 2018; Balogun et al., 2021; Olu- 
Ajayi et al., 2021; Zhang & Wen, 2019a; Hai-xiang Zhao & Magoulès, 
2012a), this study further investigated the utilization of seven feature 
selection methods on fourteen machine learning algorithms in predict
ing energy use in buildings. Although it is noted that in most cases, FS 
does improve the performance of a model, results show that feature 
selection can have a positive or negative impact on the model’s per
formance. Therefore, it is concluded that the achievement of a good 
predictive accuracy of a model is predicated on the choice of an 
appropriate feature selection method. However, in this study, it is noted 
that some models perform better without feature selection such as 
Gradient Boosting (GB), Quadratic Discriminant Analysis (QDA) among 
others. Gradient Boosting (GB) produced the highest accuracy for 
building energy performance prediction without feature selection and 
using different sizes of data. 

The implementation of a reliability analysis was conducted to satisfy 
the second objective. It is concluded that the larger the data does not 
necessarily lead to more accurate results as opposed to previous studies 
(Dalal, 2018; Goyal et al., 2020; Kabir, 2020). However, this hypothesis 
is true in the utilization of certain ML algorithms such as DNN. There
fore, the utilization of a larger data size to train a model can lead to 
better accuracy dependent on the algorithm selected. Thus, this hy
pothesis is considered true, however it is not generalizable. While it has 
been deduced that there is no specific FS technique considered faultless 
and favourable to all classification algorithms in the study, the filter 
feature selection methods are considered the most suitable method in 
developing ML classification models, this is because the filter feature 
selection methods achieved the best accuracy in 9 out of 14 energy 
prediction models. 

Considering various FS techniques have led to good model perfor
mance at various times (Ahmad et al., 2017a; Dong et al., 2021; Zhang & 
Wen, 2019b) and it is widely acknowledged that one study is not 
adequate to justify the aforementioned conclusion. Therefore, future 
study should investigate different other FS methods in comparison with 
the filter FS methods for predicting building energy performance. 
Furthermore, future studies should also explore other machine learning 

Table 4 
Performance result for each model with and without feature selection methods.   

Chi-Square Mutual Information ANOVA RF Permutation Importance RFE Extratree Without FS 

SVC  0.59  0.62  0.61  0.52  0.58  0.52  0.58  0.46 
KNN  0.60  0.59  0.59  0.60  0.60  0.61  0.60  0.61 
RF  0.59  0.64  0.63  0.62  0.60  0.61  0.60  0.64 
DT  0.56  0.64  0.63  0.56  0.57  0.57  0.57  0.58 
GB  0.64  0.64  0.64  0.65  0.65  0.65  0.65  0.67 
ET  0.58  0.64  0.63  0.60  0.59  0.59  0.59  0.62 
MLP  0.63  0.64  0.64  0.49  0.64  0.60  0.63  0.56 
Adaboost  0.39  0.29  0.36  0.36  0.39  0.37  0.39  0.47 
DNN  0.64  0.64  0.63  0.63  0.64  0.62  0.64  0.63 
Bagging  0.59  0.62  0.61  0.53  0.58  0.53  0.58  0.46 
GaussianNB  0.49  0.48  0.49  0.51  0.50  0.54  0.49  0.16 
BernoullinB  0.54  0.49  0.54  0.55  0.49  0.49  0.55  0.49 
Dummy  0.46  0.46  0.46  0.46  0.46  0.46  0.46  0.46 
Quadratic Discriminant Analysis  0.36  0.22  0.45  0.31  0.32  0.21  0.19  0.55  
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classification algorithms on different sizes of an even larger dataset. 
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Gonzalez-Abril, L., Nuñez, H., Angulo, C., & Velasco, F. (2014). GSVM: An SVM for 
handling imbalanced accuracy between classes inbi-classification problems. Applied 
Soft Computing, 17, 23–31. https://doi.org/10.1016/j.asoc.2013.12.013 

R. Olu-Ajayi et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0957-4174(23)00611-5/optPyYejgRdyk
http://refhub.elsevier.com/S0957-4174(23)00611-5/optPyYejgRdyk
http://refhub.elsevier.com/S0957-4174(23)00611-5/optPyYejgRdyk
http://refhub.elsevier.com/S0957-4174(23)00611-5/optStukNTDpQs
http://refhub.elsevier.com/S0957-4174(23)00611-5/optStukNTDpQs
http://refhub.elsevier.com/S0957-4174(23)00611-5/optStukNTDpQs
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1109/TEM.2018.2856376
https://doi.org/10.1109/TEM.2018.2856376
https://doi.org/10.1016/j.eswa.2017.10.040
https://doi.org/10.1016/j.eswa.2017.10.040
https://doi.org/10.1007/s42452-019-1356-9
https://doi.org/10.1007/s42452-019-1356-9
https://doi.org/10.1016/j.jclepro.2015.05.139
https://doi.org/10.1016/j.jclepro.2015.05.139
https://doi.org/10.1016/j.rser.2017.04.095
https://doi.org/10.1016/j.jnca.2011.01.002
https://doi.org/10.1109/TCBB.2015.2478454
https://doi.org/10.1109/TCBB.2015.2478454
https://doi.org/10.3934/bioeng.2017.1.179
https://doi.org/10.1016/j.enbuild.2015.05.056
https://doi.org/10.1016/j.jksuci.2018.05.010
https://doi.org/10.1016/j.jksuci.2018.05.010
https://doi.org/10.1108/ACI-04-2021-0092
https://doi.org/10.1108/ACI-04-2021-0092
https://doi.org/10.1109/72.298224
https://doi.org/10.1109/72.298224
https://doi.org/10.1016/j.cmpb.2020.105635
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1007/s42452-020-2024-9
https://doi.org/10.1007/s42452-020-2024-9
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0110
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0110
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0110
https://doi.org/10.1016/j.scs.2021.103025
https://doi.org/10.1016/j.scs.2021.103025
https://doi.org/10.1016/j.enbuild.2015.05.013
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.egyr.2022.01.162
https://doi.org/10.3390/sym11080956
https://doi.org/10.3390/sym11080956
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0145
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0145
https://doi.org/10.1016/S1088-467X(97)00008-5
https://doi.org/10.1039/C4MB00316K
https://doi.org/10.1016/j.enbuild.2019.109711
https://doi.org/10.1016/j.enbuild.2019.109711
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1016/j.enbuild.2004.09.009
https://doi.org/10.1016/j.enbuild.2021.110929
https://doi.org/10.1016/j.enbuild.2021.110929
https://doi.org/10.1016/j.ecoinf.2021.101224
https://doi.org/10.1016/j.ecoinf.2021.101224
https://doi.org/10.1016/j.mlwa.2021.100166
https://doi.org/10.1007/978-3-030-15035-8_111
https://doi.org/10.1007/978-3-030-15035-8_111
https://doi.org/10.1016/j.apenergy.2014.04.016
https://doi.org/10.1016/j.apenergy.2017.03.064
https://doi.org/10.1016/j.apenergy.2017.03.064
https://doi.org/10.1016/j.rser.2020.110287
https://doi.org/10.1016/j.rser.2020.110287
https://doi.org/10.1016/j.epsr.2020.106304
https://doi.org/10.1016/j.epsr.2020.106304
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0230
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0230
http://refhub.elsevier.com/S0957-4174(23)00611-5/h0230
https://doi.org/10.1016/j.asoc.2013.12.013


Expert Systems With Applications 225 (2023) 120109

16

Goyal, K., Tiwari, N., & Sonekar, J. (2020). An anatomization of data classification based 
on machine learning techniques. IJRAR-International Journal of Research and 
Analytical Reviews (IJRAR), 7, 713–716. 

Hoang, D. T., & Kang, H. J. (2019). Rotary Machine Fault Diagnosis Using Scalogram 
Image and Convolutional Neural Network with Batch Normalization. In Huang, D.- 
S., Huang, Z.-K., Hussain, A. (Eds.), Intelligent Computing Methodologies, Lecture Notes 
in Computer Science. Springer International Publishing, Cham, pp. 283–293. https:// 
doi.org/10.1007/978-3-030-26766-7_26. 

Hsu, D. (2015). Identifying key variables and interactions in statistical models of building 
energy consumption using regularization. Energy, 83, 144–155. https://doi.org/ 
10.1016/j.energy.2015.02.008 

Iqbal, M., Muneeb Abid, M., Noman, M., & Manzoor, Engr. Dr. A. (2020). Review of 
feature selection methods for text classification. International Journal of Advanced 
Computer Research, 10, 2277–7970. https://doi.org/10.19101/IJACR.2020.1048037 

Jahromi, A. H., & Taheri, M. (2017). A non-parametric mixture of Gaussian naive Bayes 
classifiers based on local independent features. In 2017 Artificial Intelligence and 
Signal Processing Conference (AISP). Presented at the 2017 Artificial Intelligence and 
Signal Processing Conference (AISP), pp. 209–212. https://doi.org/10.1109/ 
AISP.2017.8324083. 

Jing, W., Zhen, M., Guan, H., Luo, W., & Liu, X. (2022). A prediction model for building 
energy consumption in a shopping mall based on Chaos theory. Energy Reports, 8, 
5305–5312. https://doi.org/10.1016/j.egyr.2022.03.205 

Jović, A., Brkić, K., & Bogunović, N. (2015). A review of feature selection methods with 
applications. In 2015 38th International Convention on Information and Communication 
Technology, Electronics and Microelectronics (MIPRO). Presented at the 2015 38th 
International Convention on Information and Communication Technology, Electronics and 
Microelectronics (MIPRO), pp. 1200–1205. https://doi.org/10.1109/ 
MIPRO.2015.7160458. 

Kabir, M. A. (2020). Vehicle speed prediction based on road status using machine 
learning. Advanced Research in Energy and Engineering, 2. 

Kapetanakis, D.-S., Mangina, E., & Finn, D. P. (2017). Input variable selection for thermal 
load predictive models of commercial buildings. Energy and Buildings, 137, 13–26. 
https://doi.org/10.1016/j.enbuild.2016.12.016 

Kaur, K., & Gupta, O. P. (2017). A machine learning approach to determine maturity 
stages of tomatoes. Oriental journal of computer science and technology, 10, 683–690. 

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Sleeman, 
D., & Edwards, P. (Eds.), Machine Learning Proceedings 1992. Morgan Kaufmann, San 
Francisco (CA), pp. 249–256. https://doi.org/10.1016/B978-1-55860-247-2.50037- 
1. 

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial 
Intelligence, Relevance, 97, 273–324. https://doi.org/10.1016/S0004-3702(97) 
00043-X 

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data preprocessing for 
supervised learning. International journal of computer science, 1, 111–117. 

Kunasekaran, K. K. H., & Sugumaran, R. (2016). Exploratory analysis of feature selection 
techniques in medical image processing. Medical Image Processing, 5. 

Kusiak, A., Li, M., & Zhang, Z. (2010). A data-driven approach for steam load prediction 
in buildings. Applied Energy, 87, 925–933. https://doi.org/10.1016/j. 
apenergy.2009.09.004 

Lee, S., Kim, Changmin, Park, Y., Son, H., & Kim, Changwan (2011). Data Mining-Based 
Predictive Model to Determine Project Financial Success Using Project Definition 
Parameters. 

Lei, L., Chen, W., Wu, B., Chen, C., & Liu, W. (2021). A building energy consumption 
prediction model based on rough set theory and deep learning algorithms. Energy 
and Buildings, 240, 110886. https://doi.org/10.1016/j.enbuild.2021.110886 

Li, C., Tao, Y., Ao, W., Yang, S., & Bai, Y. (2018). Improving forecasting accuracy of daily 
enterprise electricity consumption using a random forest based on ensemble 
empirical mode decomposition. Energy, 165, 1220–1227. https://doi.org/10.1016/j. 
energy.2018.10.113 

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). 
Feature selection: A data perspective. ACM Computing Surveys, 50, 94: 1 –94, 45. 
https://doi.org/10.1145/3136625 

Li, K., Xie, X., Xue, W., Dai, X., Chen, X., & Yang, X. (2018). A hybrid teaching-learning 
artificial neural network for building electrical energy consumption prediction. 
Energy and Buildings, 174, 323–334. https://doi.org/10.1016/j.enbuild.2018.06.017 

Li, Q., Meng, Q., Cai, J., Yoshino, H., & Mochida, A. (2009). Predicting hourly cooling 
load in the building: A comparison of support vector machine and different artificial 
neural networks. Energy Conversion and Management, 50, 90–96. https://doi.org/ 
10.1016/j.enconman.2008.08.033 

Liu, Y., Chen, H., Zhang, L., Wu, X., & Wang, X. (2020). Energy consumption prediction 
and diagnosis of public buildings based on support vector machine learning: A case 
study in China. Journal of Cleaner Production, 272, 122542. https://doi.org/10.1016/ 
j.jclepro.2020.122542 

Maldonado, S., & Weber, R. (2009). A wrapper method for feature selection using 
Support Vector Machines. Information Sciences, Special Section on High Order Fuzzy 
Sets, 179, 2208–2217. https://doi.org/10.1016/j.ins.2009.02.014 

Marino, C., Nucara, A., & Pietrafesa, M. (2017). Does window-to-wall ratio have a 
significant effect on the energy consumption of buildings? A parametric analysis in 
Italian climate conditions. Journal of Building Engineering, 13, 169–183. https://doi. 
org/10.1016/j.jobe.2017.08.001 

Marwan, M. (2020). The effect of wall material on energy cost reduction in building. Case 
Studies in Thermal Engineering, 17, 100573. https://doi.org/10.1016/j. 
csite.2019.100573 

Miller, Z., Dickinson, B., & Hu, W. (2012). Gender Prediction on Twitter Using Stream 
Algorithms with N-Gram Character Features. https://doi.org/10.4236/ 
ijis.2012.224019 

Mishra, P., Biancolillo, A., Roger, J. M., Marini, F., & Rutledge, D. N. (2020). New data 
preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC 
Trends in Analytical Chemistry, 132, 116045. https://doi.org/10.1016/j. 
trac.2020.116045 

Newgard, C. D., & Lewis, R. J. (2015). Missing data: How to best account for what is not 
known. Journal of the American Medical Association, 314, 940–941. https://doi.org/ 
10.1001/jama.2015.10516 

Olu-Ajayi, R. (2017). An Investigation into the Suitability of k-Nearest Neighbour (k-NN) 
for Software Effort Estimation. ijacsa 8. https://doi.org/10.14569/ 
IJACSA.2017.080628. 

Olu-Ajayi, R., & Alaka, H. (2021). Building energy consumption prediction using deep 
learning. Environmental Design and Management Conference (EDMIC). 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Grishikashvili, K., Sunmola, F., Oseghale, R., & 
Ajayi, S. (2021). Ensemble learning for energy performance prediction of residential 
buildings. Environmental Design and Management Conference (EDMIC). 

Olu-Ajayi, R., Alaka, H., Owolabi, H., Akanbi, L., & Ganiyu, S. (2023). Data-Driven Tools 
for Building Energy Consumption Prediction: A Review. Energies, 16, 2574. https:// 
doi.org/10.3390/en16062574 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022a). Machine learning 
for energy performance prediction at the design stage of buildings. Energy for 
Sustainable Development, 66, 12–25. https://doi.org/10.1016/j.esd.2021.11.002 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022b). Building energy 
consumption prediction for residential buildings using deep learning and other 
machine learning techniques. Journal of Building Engineering, 45, 103406. https:// 
doi.org/10.1016/j.jobe.2021.103406 
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