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With the emerging applications that involve complex distributed systems branching-time specifica-

tions are specifically important as they reflect dynamic and nondeterministic nature of such appli-

cations. We describe the expressive power of a simple yet powerful branching-time specification

framework – branching-time normal form, which has been developed as part of clausal resolution for

branching-time temporal logics. We show the encoding of Büchi Tree Automata Tree Automata in

the language of the normal form, thus representing, syntactically, tree automata in a high-level way.

This enables to translate given problem specifications into the normal form and apply as a verification

method a deductive reasoning technique – the clausal temporal resolution.

1 Introduction

Automata theoretic methods are fundamental in study of branching-time logics, they are widely used in

the investigations into the expressiveness of branching-time formalisms and their decidability, and are in

the centre of the model-checking techniques [21], being widely used in the framework of formal verifica-

tion. With the emerging applications that involve complex distributed systems deployed in heterogeneous

environment, for example, robotics systems [20], branching-time specifications are becoming even more

important. These specifications reflect the dynamic and non-deterministic nature of such applications and

one can envisage the obvious need for efficient techniques to reason about them [10]. Tree structures are

the underlying models for these specifications and tree automata are well established techniques to rea-

son about tree structures, again, widely used in modern model-checking. On the other hand, it is useful to

have direct methods of deductive reasoning applied to temporal specifications that enable carrying proof.

Clausal temporal resolution is one of such techniques [10]. The method is based on the concept of the

separated normal form initially developed for resolution based deductive verification in the linear-time

framework (see full account of the method in [18] and an overview of various developments within this

framework in [10]) and later extended to Computation Tree Logic CTL [2], [6], ECTL [4] and ECTL+

[3]. These branching-time logics differ in their expressiveness, with CTL allowing only a single tempo-

ral operator preceded by a path quantifier, ECTL extending CTL by allowing combinations of temporal

operators that express fairness constraints and ECTL+ allowing Boolean combinations of temporal op-

erators and ECTL fairness constraints (but not permitting their nesting). Yet, the same formalism serves

as the normal form for all these logics. For simplicity, here we call this formalism BNF. The refinement

and implementation of the clausal resolution in branching-time setting is given in [22, 23].

In [7] it was shown that the normal form for linear time is as expressive as Büchi automata on infinite

words [9] while [11] defined the translation from an alternating automaton to this normal form and vice

versa. In this paper we consider the analogous problem, in the branching-time setup, namely we show
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how BNF can represent, syntactically, Büchi tree automata in a high-level way. Note that in translat-

ing a branching-time problem specification into BNF, we actually derive clauses within a fragment of

Quantified Computation Tree Logic (EQCTL) [19]. In particular, formulae within BNF are existentially

quantified, moreover, this quantification is external to CTL formulae themselves. Thus, clauses of the

BNF satisfy the criteria of the prenex normal form ([19]), and, translating the given branching-time spec-

ification into BNF we stay within this fragment. In order to utilize the normal form as part of proof in

the branching-time framework, we effectively skolemize the normal form producing temporal formulae

without any quantification.

Having established this relationship between BNF and Büchi tree automata, we justify, theoretically,

that BNF is applicable to a wider class of branching-time specifications, and a resolution based verifica-

tion technique can be used as reasoning tool for the obtained specification. One important contribution

of this paper is that BNF specifications obtained from the initial automaton give a good insight into the

temporal context, as these specifications are defined with the use of the standard future time temporal

operators: (always), ❤(next time), ♦ (eventually) and, additionally, path quantifiers A (on all future

paths) and E (on some future path). Finally, we note that the result of this paper enables one of the

core components of the resolution method - the loop searching ([5, 10]) - to be used to extract (again

syntactically) hidden invariants in a wide range of complex temporal specifications.

The rest of the paper is organised as follows. In §2 main technical terms of tree structures relevant

to the paper are introduced. In §3 we overview BNF outlining its syntax in §3.1 and its semantics, in

§3.2, together with an example, §3.3. In §4 we define Büchi tree automata. In §5, we show how to

translate these automata into BNF and establish the correctness while in §6 the reverse translation from

BNF into Büchi tree automata and its correctness are given. In §7 we give an example of the syntactical

representation of a small Büchi tree automaton in BNF. Finally, in §8, we provide concluding remarks

and discuss future work.

2 Tree Structure Notation

In this section we introduce main concepts of tree structures that are needed for the definition of Büchi

Automata and BNF.

Definition 1 (Paths and Fullpaths of a Tree) Given a tree T = (N,E) such that N is a set of states

(nodes) and E ⊂ N×N is a set of edges, with the root x0 ∈ N, a path πxi
of a tree T is a (possibly infinite)

sequence of nodes xi,xi+1,xi+2 . . ., where for each j (i ≤ j), (x j,x j+1) ∈ E. A path πx0
of a tree with the

root x0 is called a fullpath. We will denote the set of all paths of some tree T by ΠT and the set of all

fullpaths by XT .

Given a tree T = (N,E) the edge relation E is called total (or connected) if each node xi ∈ N belongs

to some fullpath. We will concentrate on such trees where each node is connected with the root. Now the

connectivity property of a tree (N,E) can be viewed as the following requirement: for any state xi ∈ N

there must be a fullpath πx0
such that xi ∈ πx0

, i.e. a path exists which connects this node xi with the root

x0 of a tree.

Definition 2 (Prefix and Suffix of a path) Given a path, χxi
of a tree T and a node x j ∈ χxi

, where

i ≤ j, we call a finite sub-sequence of nodes [xi,x j] = xi,xi+1, . . .x j a prefix of a path χxi
abbreviating

it with Pre f (χxi
, [xi,x j]) (or simply as [xi,x j] when it is clear which path this prefix belongs to) and an

infinite sub-sequence of nodes x j,x j+1,x j+2, . . . a suffix of a path χxi
abbreviating it with Su f (χxi

,x j).



256 On the Expressive Power of the Normal Form for Branching-Time Temporal Logics

We will utilise the concepts of prefix and suffix in defining the closure properties below.

Closure properties of CTL models. When trees are considered as models for distributed systems,

paths through a tree are viewed as computations. The natural requirements for such models would be

suffix and fusion closures. Following [12], the former means that every suffix of a path is itself a path.

The latter requires that a system, following the prefix of a computation γ , at any point s j ∈ γ , is able to

follow any computation πs j
originating from s j.

Finally, we require that “if a system can follow a path arbitrarily long, then it can be followed for-

ever” [12]. This corresponds to limit closure property, meaning that for any fullpath γs0
and any paths

πs j
,φsk

, . . . such that γs0
has the prefix [s0,s j], πs j

has the prefix [s j,sk], φsk
has the prefix [sk,sl], etc,

and 0 < j < k < l, the following holds: there exists an infinite path αs0
that is a limit of the prefixes

[s0,s j], [s j,sk], [sk,sl ], . . .. Closure properties, especially, limit closure, are reflected in the formulation of

the BNF, namely, in the introduction of labels for the clauses of the BNF.

Definition 3 (Labelled tree) Given a tree T = (N,E) and a finite alphabet, Σ, a Σ-labelled tree is a

structure (T,L) where L is a mapping N −→ Σ, which assigns to each node, element of N, some label,

element of Σ.

Definition 4 (Branching degree of a node, Branching factor of a tree structure) The number, d, of

immediate successors of a node x in a tree structure is called the branching degree of x. Thus, x · k (1 ≤
k ≤ d) abbreviates the k− th successor of x.

Given a set D = {d1,d2, . . .}, of the branching degrees of the nodes of a tree structure, the maximal

di (1 ≤ i) is called the branching factor of this tree structure. A tree structure with its branching factor d

is called a d-ary tree structure.

We assume that underlying tree models are of at most countable branching factor. However, follow-

ing ([12], page 1011) trees with arbitrary, even uncountable, branching, ‘as far as our branching temporal

logic are concerned, are indistinguishable from trees with finite, even bounded, branching’. This makes

tree automata applicable in the branching-time framework. We will also use this result to justify the

labelling of BNF clauses.

Definition 5 (ω-tree) An ω-tree (N,Eω) is a tree, which satisfies the following conditions.

1. A tree is of at most countable branching.

2. The relation E is serial, i.e.every state si must have at least one successor state.

3. E induces the natural ordering ≤: if (si,s j) ∈ Eω then i ≤ j, where ≤ orders the set of natural

numbers ω = {0,1,2, . . .}.

Now, following [15], given that a CTL model structure M (see §3.2 for the definition of a model

structure) has its branching factor at most d, there exists a d-ary tree canonical model M ′ such that

for any formula A, M satisfies A if, and only if, M ′ satisfies A. Informally, a canonical model is

an unwinding of an arbitrary model M into an infinite tree T [15]. One of the essential properties

of canonical models, which we will utilise here, is that the number of successors for every state is

canonicalised by d.

3 Normal form used for the clausal resolution for CTL-type logics

Normal form BNF which we are considering, is a formalism that has been developed as part of the

clausal resolution method developed initially for linear-time temporal logic [17, 18] and then defined for
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branching-time temporal logics, CTL [6] and its extensions, ECTL [4] and ECTL+ [3]. As one would

expect from clausal resolution, formulae of a given logic are first translated into normal form, which is a

collection of clauses, to which a resolution method is applied. The idea behind the resolution procedure

in temporal context is to extract for some given formula A a set of clauses that capture three types of

‘knowledge’ about A - what is happening at the beginning of the computation, what are the ‘steps’ of the

computation, and what are the eventualities to be fulfilled during the computation.

For a formula A of a CTL-type branching-time logic, we will abbreviate its clausal normal form as

BNF(A). Note that the standard formulation of CTL-type logics is based upon classical connectives,

future time temporal operators ❤and U (until) (which is sufficient to introduce and ♦) and path

quantifiers A and E. The BNF, however, is formulated using ❤, and ♦, and start (which is only

true at the beginning of the computation) but not utilising the U operator as it is removed during the

translation to the normal form based on its fixpoint definition [6].

3.1 Language of BNF

In the language for BNF we utilise

• classical connectives: implication (⇒), negation (¬), disjunction (∨), and conjunction (∧);

• classically defined constants true (T) and false (F);

• temporal operators ‘at the initial moment of time’ (start), eventually (♦), always ( ), next time

( ❤), and,

• path quantifiers: on all future paths (A) and on some future path (E).

In the rest of the paper we will use the following notation: T abbreviates any unary BNF temporal

operator and P either of path quantifiers; any formula of the type PT is called a basic BNF modality, and

a literal is a proposition or its negation.

Indices. The language for indices is based on the set of terms {IND} = {f, g, h, . . .}, where

f, g, h . . . denote constants. Note that indices play essential role in the formulation of BNF as they

help identifying a specific path context for given formulae. We use indices to label all formulae of BNF

that contain the basic modality E ❤or E♦. Specifically, the modality E ❤is associated with BNF step

clauses (see below) and, thus, if E ❤Ag is true at some current state si then A holds at the successor state

of si along the path associated with the ‘direction’ g - speaking informally, we only take ‘one step’ in

direction g from si. The modality E♦ is associated with evaluating eventualities over a longer period of

time, and thus if E♦pg is true at some state si then p is true at some state sk along the path which goes

from si by making at si, and every subsequent successor state, a ‘mini-step’ along the ‘direction’ g. This

corresponds to the limit closure of the concatenation of these ‘mini-steps’ in directions g and hence the

existence of such a path is always guaranteed.

Definition 6 (Branching Normal Form) Given Prop, a set of atomic propositions, and IND, a count-

able set of indices, BNF has the structure

A

[

∧

i

Ci

]

where each of the clauses Ci is defined as below and each αi, β j or γ is a literal, T or F and ind ∈ IND is

some index.
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start ⇒
k
∨

j=1

β j an Initial Clause

l
∧

i=1

αi ⇒ A ❤

[

k
∨

j=1

β j

]

an A step clause

l
∧

i=1

αi ⇒ E ❤

[

k
∨

j=1

β j

]

ind

a E step clause

l
∧

i=1

αi ⇒ A♦γ an A sometime clause

l
∧

i=1

αi ⇒ E♦γind a E sometime clause

The intuition behind this formulation is that initial clauses provide the initial conditions for the com-

putation while each of the step clauses represents a constraint upon the future behaviour of the formula,

given the current conjunction of literals. Note that the A constraint is only utilised BNF as the one

surrounding the conjunction of clauses which gives the clauses the ‘universal’ interpretation by prop-

agating information they represent to each state along each path of the tree structure. At the same

time, the E constraint is not utilised in the BNF, although, obviously it can be introduced based on

E α =def E¬♦¬α . Finally note that in the eventuality clauses the argument of the ♦ operator is a

literal. This requirement is due to the potential application of the clausal resolution method to the spec-

ifications written in BNF. The clausal resolution method resolves (if possible) an eventuality, ♦l in the

scope of a path quantifier with the loop in l which is defined on all or some dedicated paths, see details

in [2, 4].

3.2 Interpretation of BNF

For the interpretation of BNF clauses, utilising the notation of [22], we introduce an indexed tree-like

model. Given IND is a countable set of indices, S is a set of states, E ⊆ S× S is a total binary relation

over S, and L is an interpretation function S −→ 2Prop, which maps a state si ∈ S to the set of atomic

propositions that are true at si. Then an indexed model structure M = 〈S,R,L,
−→
ind,s0〉 where s0 ∈ S, and

−→
ind⊆ R such that it is the argument of the mapping of every index ind ∈ IND to the successor function
−→
ind such that

−→
ind is a total functional relation on S

It is easy to see that the underlying tree model above is an ω-tree satisfying the conditions of Defini-

tion 5.

A state s j ∈ S is an ind-successor state of state si ∈ S ⇔ (si,s j) ∈
−→
ind. An infinite path χ ind

si
is an

infinite sequence of states si,si+1,si+2, . . . such that for every j (i ≤ j), we have that (s j,s j+1) ∈
−→
ind.

Below, we define the relation ‘|=’, omitting cases for Booleans, T and F. Also recall that the basic

modality E is not used in the BNF while A only appears as an outer modality preceeding the

conjunction of the BNF clauses.

〈M ,si〉 |= start ⇔ i = 0

〈M ,si〉 |= A ❤B ⇔ f or each ind ∈ IND and each s′ ∈ S, i f (si,s
′) ∈

−→
ind then 〈M ,s′〉 |= B

〈M ,si〉 |= E ❤Bind ⇔ there exists s′ ∈ S,such that (si,s
′) ∈

−→
ind and 〈M ,s′〉 |= B

〈M ,si〉 |= A B ⇔ f or each χsi
and s j ∈ χsi

, if (i ≤ j) then 〈M ,s j〉 |= B

〈M ,si〉 |= A♦B ⇔ f or each χsi
, there exists s j ∈ S, such that (i ≤ j)and 〈M ,s j〉 |= B

〈M ,si〉 |= E♦Bind ⇔ there exist χ ind
si

and s j ∈ χ ind
si

, such that i ≤ j 〈M ,s j〉 |= B
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Definition 7 [Satisfiability, Validity] If C is in BNF then C is satisfiable if, and only if, there exists a

model M such that 〈M ,s0〉 |= C . C is valid if, and only if, it is satisfied in every possible model.

3.3 BNF examples.

Here we give an example of the normal form and informal interpretation. Noting that an initial BNF

clause, start ⇒ F , is understood as “F is satisfied at the initial state of some model M ”and any other

BNF clause is interpreted taking also into account that it occurs in the scope of A let us consider a

clause A (x ⇒ E ❤qind). It is understood as “for any fullpath χ and any state si ∈ χ (0 ≤ i), if x is

satisfied at a state si then q must be satisfied at the moment, next to si, along some path associated with

ind which departs from si”.

The clause A (x ⇒ E♦pind) has the following meaning “for any fullpath χ and any state si ∈
χ (0 ≤ i), if x is satisfied at a state si then p must be satisfied at some state, say s j (i ≤ j), along some

path αsi
associated with the limit closure1 of ind which departs from si’.

4 Büchi Tree automata

Definition 8 A Büchi automaton, B, on an infinite tree, T , is a tuple B = 〈Σ, D, S,δ ,F0, FB〉 where:

Σ is a finite alphabet; D is a finite set of branching degrees; S = {s0,s1, . . . sk} is a finite set of states;

F0 ⊆ S is a set of initial states; δ is a non-deterministic transition function satisfying; δ (s,σ ,d) ⊆ Sd ,

for every s ∈ S,σ ∈ Σ and d ∈ D, and FB ⊆ S is a set of accepting states.

The transition function δ (s,σ ,d) is the set of all tuples of states to which the automaton may evolve

from state s ∈ S of the arity d ∈ D when it reads the symbol σ ∈ Σ.

A run, τB : T −→ S, of a Büchi tree automaton B over the input Σ-labelled tree (T,L) is an S labelled

tree such that the root is labelled by a member of F0 and the transitions conform with the transition

function δ . Namely, visiting a state si ∈ S with the branching degree d and reading σ ∈ Σ, an automaton

makes a non-deterministic choice of a tuple s0, . . . sd ∈ δ (s,σ ,d), 1 ≤ d ≤ k, makes d copies of itself and

moves to the node si · s j (1 ≤ j ≤ d).

A run, τB, is successful if for every infinite branch of τB, there is an accepting state s∈FB that occurs

infinitely often in this branch. An automaton B accepts the infinite tree T (in other terms, the language

recognised by B is not empty) if it has a successful run τB.

5 From Büchi Tree automata to BNF

Here, given a Büchi tree automaton B, we construct its characteristic formula, BNFB, as a set of BNF

clauses, following the main stages similar to those in [7]: encoding of the set of the initial states, repre-

senting the run of the automaton, the labelling, and the acceptance condition.

Let B = 〈Σ, D, S,δ ,F0, FB〉 be a Büchi tree automaton with the states labelled as follows. For every

proposition p∈Prop, for σ ∈ Σ, given si ·sk ∈ δ (si,σ ,d) (for 1≤ k ≤ d), if p∈ σ then p∈ L(si ·sk) else if

p 6∈ σ then ¬p ∈ L(si · sk). In our translation we will explicitly encode this labelling. Now, we introduce

formulae (1)–(4), which represent the main stages of the translation. Note that to simplify reading we

will omit writing the outer A , and will write a set of BNFB clauses rather than their conjunction; in

1Observe that limit closure has the properties of the reflexive transitive closure.
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some cases we will alos give the formulation of the components of the translation not in the exact form

of BNFB clauses to make the idea behind the translation more explicit. Each of these cases, where we

need further simple manipulations to obtain the required BNF form, will be marked with {⋆}.

Let q0, . . . ,ql be new propositions of our BNF language such that qi (0 ≤ i ≤ l) encodes the state

si ∈ S of the automaton. Given that q0, . . . ,qm, (0 ≤ m ≤ l) encode the initial states, F0, of the automaton,

we specify F0 by the following BNF:

BNFinitB : (1.1) start ⇒ q0 ∨ . . .∨qm

(1.2) start ⇒ ¬qi ∨
∧

i6= j

(¬q j) {⋆}

(1)

where 0 ≤ i ≤ m, 0 ≤ j ≤ m. From (1) it follows that the automaton can be at only one initial state at

the first moment of time. Note that constraint (1.2) of the BNFinitB marked with ‘⋆’ should be further

translated to the form required by the BNF.

Next, the transition function of the automaton is represented as follows.

Given the automaton B with the set of branching degrees D = {1, . . . ,d}, we associate with each ele-

ment of the latter a set of new indices IND = ind1, . . . indd used to label BNF clauses. Thus, when the

automaton makes its d copies visiting a state si ∈ S, with the branching factor d, with each such successor

node sn of si we associate an index ind j, 1 ≤ j ≤ d.

BNFtranB
: (2.1)qi ⇒ E ❤qnind j

(2)

Thus each of d clauses in (2) reflects a successor node of si along the path labeled by ind j. Note that

unlike Büchi word automaton which can only be at one state at any particular time, a tree automaton

makes copies choosing a corresponding tuple of states. This is exactly what we have represented above.

Thus, for each qi of branching degree d there are exactly d clauses of the form (2).

Next, we represent the unique labelling of the states of the automaton by the following set of clauses,

constructed for every qi and every xi ∈ L(si).

BNF labB
: (3.1) start ⇒ ¬qi ∨









∧

xi∈L(si)

xi



∧





∧

x j 6∈L(si)

¬x j







 {⋆}

(3.2) T ⇒ A ❤(¬qi ∨ v)

((3.3) v ⇒









∧

xi∈L(si)

xi



∧





∧

x j 6∈L(si)

¬x j







 {⋆}

(3)

The Büchi acceptance condition is given by the following set of BNF clauses constructred for each

indi ∈ IND.

BNFaccB
: (4.1) start ⇒ y

(4.2) y ⇒ A u {⋆}
(4.3) u ⇒ E♦lindi

(4.4) l ⇒ E ❤wind)i

(4.5) w ⇒ E♦lind)i

(4.6) start ⇒ ¬l∨qn ∨ . . .∨qr

(4.7) T ⇒ A ❤(¬l∨qn ∨ . . .∨qr)

(4)

where
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• qn . . .qr encode the accepting states of the automaton and y, w, l and z are new propositions. This

condition ensures that every path of the run hits an accepting state from FB infinitely often. The

use of the indices guarantees that we are staying in the ‘context of a chosen path’ when verifying

the acceptance condition.

• Constraint 2 of the BNFaccB
marked with ‘⋆’ is the abbreviation of the ‘loop’ in u. This loop in

the BNF is represented by the following two clauses (i) y ⇒ (z∧ u),(ii) z ⇒ A ❤(u∧ z) (recall

that all clauses are in the scope of the A ): from (i) we know that u is true at the state where y

is true, and also that z is also true at that state, while from (ii) we derive that the every successor

state should satisfy both u and z. This second clause (i) ensures the recurrent presence of z in every

subsequent state along every path, which, in turn, ensures that each subsequent state along every

path also satisfies u.

Finally, let BNF′initB
, BNF′tranB

, BNFlabB
and BNFaccB

B
be obtained from BNFinitB , BNFtranB

,

BNFlabB
and BNFaccB

B
, respectively, by translating their components into the required form of BNF

clauses. Now, a Büchi tree automaton B is characterized by the following BNF expression known as a

characteristic clause set and abbreviated by BNFB:

BNF′initB
∧BNF′tranB

∧BNFlabB
∧BNF′

accB
B

(5)

5.1 Correctness

Theorem 1 Given a Büchi tree automaton B, we can construct a characteristic clause set, BNFB, such

that B has an accepting run, τB (over an infinite tree T ), if and only if, BNFB is satisfiable.

Proof.

(I) Left to right direction. The proof effectively follows the labelling chosen for BNF clauses described

above. Given a Büchi tree automaton, B = 〈Σ, D, S,δ ,F0, FB〉, on an infinite tree, recall that its accept-

ing run τB is an S-labelled tree (T,L) such that its root is labelled by a member of F0 and the transitions

conform with the transition function δ .

STEP 1. First, let |IND| = d, where d ∈ D is the largest branching factor, and let the states of S

be obtained from the corresponding nodes of T provided the states of a Büchi automaton are labelled

as above, namely, such that for every proposition p ∈ Prop, for σ ∈ Σ, given si · sk ∈ δ (si,σ ,d) (for

1 ≤ k ≤ d), if p ∈ σ then p ∈ L(si · sk) else if p 6∈ σ then ¬p ∈ L(si · sk). This labelling guarantees that

the mapping
−→
ind establishes the desired order over the states of S so every state x · k with the degree d

(1 ≤ k ≤ d) of the tree model, is identified with the S-label of the node x · k of the run τA . Thus, the

way how the labelling chosen for the BNF clauses guarantees that this tree becomes an underlying tree

structure for the model M = 〈S,R,L,
−→
ind,s0〉 such that for every pk ∈ L(x · k), (M ,s · k) |= pk.

STEP 2. Let a model M ′ = 〈S′,R,L′,
−→
ind,s′0〉 be the same as M except for the interpretation of the

new propositions q0,qa, . . .qb,qn,qr,y, l,u,v,w and z1 . . .zm which we chose to satisfy at the appropriate

states of S′. For example, 〈M ′,s0〉 |= y and for every sn 6= s0, 〈M ′,sn〉 6|= y. Updating this way the model

M into M ′ we guarantee that each component of the characteristic clause set is satisfied in M ′

(II). Right to left direction. We prove this by contradiction, i.e. assuming that the given Büchi tree

automaton,

B = 〈Σ, D, S,δ ,F0, FB〉

on an infinite tree, does not have an accepting run, we show that we cannot build a model for the char-

acteristic clause set, BNFB, for B. The emptiness of the automaton would mean that the acceptance
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condition is violated. Thus, as there is no succefull run of the automaton, it should have an infinite

branch χ , such that there is no accepting state si ∈ FB which occurs in χ infinitely often. According to

the construction of the intermediate model structure for every pk ∈ L(x · k), (M ,s · k) |= pk. Any model

M ′ = 〈T ′,≤, I′〉 which agrees with M everywhere except for the interpretation of the new propositions

appeared in the characteristic clause set, does not satisfy the latter. Indeed, since qn, . . . ,qr are labels of

the accepting states, and none of the accepting states occurs in χ infinitely often, for every q j (n ≤ j ≤ r),
for any M ′ we have that ¬q j becomes eventually always true along χ , and hence, in M ′ the conjunction

¬qn ∧ . . .∧¬qr becomes always true from some point on along this path χ . This contradicts the satisfi-

ability conditions for BNF′B: because the conjunction ¬qn ∧ . . .∧¬qr becomes always true from some

point on, say sm ∈ S along χ , given also (4.6) and (4.7) we must have a loop in ¬l, from sm, i.e. ¬l

becomes true along χ from sm. As (4.3) and (4.5) are constructed for each indi ∈ IND, we would have a

contradiction between this loop in ¬l along χ and the request to fulfil the eventuality l along this path.

6 From BNF to Büchi Tree automata

In this section we show how to effectively construct a Büchi Tree automaton from a given set C of

BNF clauses. First, let us distinguish among BNF clauses the initial clauses and the global (step and

sometime) clauses. The ideology is as follows. First we apply the augmentation technique developed for

the clausal resolution for CTL [2] deriving CAug an augmented BNF. Then we show how to construct a

model for CAug. This technique involves a construction of a tableau as a labelled finite directed graph.

The states of the graph are labelled by the sets of subformulae of CAug. Let Prop(CAug) be a set of all

(different) propositions that occur within the clauses of CAug. The important features of the underlying

transition function for the construction of the tableau is that the formula A φ , where φ is a conjunction

of all global clauses of CAug, occurs within each state. Thus, global clauses play the role of a guide for

the transitions. A transition from a state si to a state s j is provided if a label for s j is consistent.

Once a tableau GCAug
is constructed, labels of some states might contain formulae of the type P♦l.

Thus, we check if such an eventuality is satisfied. During this procedure we delete those states (and their

successors) of a graph GCAug
which contain unsatisfied eventualities. As some states of a graph now might

be without any successor, we will delete such states. The resulting graph, R, is called a reduced tableau.

It has been shown that the set of BNF clauses is unsatisfiable, if, and only if, its reduced tableau is

empty [2].

Definition 9 (Augmentation) Given a set of BNF clauses, C , we construct an augmented set CAug as

follows.

1. Create a list {EV EN}= E♦l1,E♦l2, . . . , . . .E♦ln,A♦ln+1,A♦ln+2, . . . ,A♦lm (0 ≤ n ≤ m) of all

different eventualities contained in C .

2. To keep track of the eventualities, create a list W = w1,w2, . . . ,wm of new propositions (that do

not occur within clauses of C ) such that each wi ∈W is associated with the i-th eventuality within

EVEN.

3. For every sometime clause C ⇒ P♦liindi , to guarantee the correspondence between wi and li, add

the corresponding set of formulae, defined below.

3a If P♦li = A♦li, then add to the set of BNF clauses C , the following formulae:
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start ⇒ ¬C∨ li ∨wi

wi ⇒ A ❤(li ∨wi)
T ⇒ A ❤(¬C∨ li ∨wi).

(6)

3b If P♦li = E♦liind, then add to the set of BNF clauses C , the following formulae:

start ⇒ ¬C∨ li ∨wi

wi ⇒ E ❤(li ∨wi)ind
T ⇒ E ❤(¬C∨ li ∨wi)ind

(7)

Let CAug be an augmented set of BNF clauses. Abbreviating by In the conjunction of the right

hand sides of the initial clauses of CAug and by φ the conjunction of its step and eventuality clauses, we

can represent a set, CAug as a formula In∧A φ . It is easy to show from the BNF semantics that the

following holds: 〈M ,s0〉 |= C ⇔ 〈M ,s0〉 |= In∧A φ .

Let an elementary formula be either a literal, or has its main connective as P ❤. Each non-elementary

formula is further classified as either a conjunctive, α-formula, or a disjunctive, β -formula.

A basic BNF modality now is qualified according to its fixpoint definition (in the equations below µ
and ν stand for ‘minimal fixpoint’ and ‘maximal fixpoint’ operators, respectively)

A ϕ = νρ(ϕ ∧A ❤ρ)
E♦ϕ = µρ(ϕ ∨E ❤ρ)
A♦ϕ = µρ(ϕ ∨A ❤ρ)

(8)

The only BNF modality that occurs within BNF clauses as a maximal fixpoint is A φ and in our

representation of a set of BNF clauses as In∧A φ , it has the only occurrence as the main connective

in A φ , hence, the following α-expansion rules will be appropriate:

α α1 α2

B∧C B C

A B B A ❤A B

¬(B∨C) ¬B ¬C

(9)

BNF modalities understood as a minimal fixpoints are A♦φ and E♦φ , hence, the following β -

expansion rules will be appropriate:

β β1 β2

B ⇒C ¬B C

B∨C B C

A♦B B A ❤A♦B

E♦Bind B E ❤E♦Bind

(10)

Here the last two constraints must be further transformed into the appropriate structure of BNF clauses,

however, the current representation is preferable as it illustrates the intuition. Let EvenCAug
be a list of

eventualities as defined in Definition 9 and let PropCAug
be a set of all (different) propositions that occur

within the clauses of CAug. By an evaluation of a proposition pi ∈ PropCAug
we understand the function

PropCAug
−→ 0,1. Now, let Val(PropCAug

) be a set of all possible evaluations of the elements of the

PropCAug
. Finally, let D = ind1, ind2 . . . indk be a list of all different indices not of the form ind which

occur in C .

We adapt the notion of the generalized Fischer-Ladner closure [16] introduced for CTL formulae in

[13] for our case of BNF.
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Definition 10 (Generalized Fischer-Ladner closure for BNF)

Let C be a set of BNF clauses, let In∧A φ be its equivalent formula, where ‘In’ abbreviates the

conjunction of the right hand sides of the initial clauses of C and φ abbreviates the conjunction of the

global clauses within C . Then the least set of formulae which contains C and satisfies the conditions

below is the generalised Fischer-Ladner closure of C , abbreviated by GFL(C ).

(GFL1) In∧A φ is an element of GFL(C ).

(GFL2) If B is an element of GFL(C ) then any subformula of B is an element of GFL(C ).

(GFL3) If A B ∈ GFL(C ) then A ❤A B ∈ GFL(C )).

(GFL4) If E♦Bind ∈ GFL(C ) then E ❤E♦Bind ∈ GFL(C ).

(GFL5) If A♦B ∈ GFL(G) then A ❤A♦B ∈ GFL(C ).

(GFL6) If B ∈ GFL(G) and B is not of the form ¬C then ¬B ∈ GFL(C )).

Now given a set of BNF clauses represented by In∧A φ , we construct a labelled finite graph G

incrementally as follows

1. The initial state is labelled by In∧A φ .

2. Inductively assume that a graph has been constructed with nodes labelled by the subsets of

GFL(In∧A φ), where some formulae during such construction are marked.

Note: when providing the transitions from a state n if nodes t1 and t2 have the same label and the

same marked formulae, they are identified, and we delete one of them, say t2, drawing an edge to

t1. Also, if a transition leads to a node which does not satisfy the propositional consistency criteria,

we delete this node.

Given a node n with the label Γ, choose an unmarked formula, say B, and apply an appropriate

expansion rule as follows:

2a. If B is an α-formula, then create a successor of n labelled by

Γ∪{α1,α2} and mark B in the label.

2b. If B is a β -formula, then create two successors of n and label one of them by Γ∪{β1} while

another one by Γ∪{β2} and mark B in the label.

3. If all non-elementary formulae within a node are marked, such a node is called a state. Let s, be a

state whose label contains the following next-time formulae:

A ❤B1 . . .A
❤Bk,E

❤C1ind1 . . .E
❤Cr indr .

Merge all Ci (1 < i ≤ q) which have identical indices, (for example, given E ❤pf and E ❤qf ,

producing E ❤(p∧q)f) obtaining in this way

A ❤B1 . . .A
❤Bk,E

❤C1ind1 . . .E
❤Cmindm .

Then create the successors d1 . . .dm of s labelled respectively by

{B1 . . .Bk,C1} . . .{B1 . . .Bk,Cm}.

4. Repeat steps 2 and 3 until no more new nodes are generated.

Now a tableau is a structure GCAug
= (N,E,L), which satisfies the following conditions
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• N is a set of those nodes that are states in the construction above,

• E is a set of edges such that for s, t ∈ N, E(s, t) if, and only if, t is an immediate successor of s, and

• L is a set of labels, so for s ∈ N, the label of s is L(s).

In the following we will utilise the concept of pseudofulfillment of eventualities, adapting a general

definition to our case.

Definition 11 Given a tableau CAug
, if a state s contains an eventuality P♦l, then P♦l is pseudo fulfilled,

if GR satisfies the following conditions.

• If P♦l = A♦l then there exists a finite subgraph H of GR with s as its root, such that for any

terminal state t ∈ H, l ∈ t.

• If P♦l = E♦lf then there exists a finite subgraph H of GR with s as its root, such that H has a

finite path πs which departs from s and satisfies the following condition: each state ti+1 ∈ πs, is the

f − th successor of ti, and l is satisfied at the terminal state of πs.

Pseudo fulfilment informally means that for A♦l constraints we have a loop which contains a node

satisfying l and for E♦lind constraints we have a loop which contains a node satisfying l where every

successor node is an ind-successor of the previous one, i.e. the one which is the successor node along

the ind path.

Given a tableau GCAug
, apply the following deletion rules. If a state has no successors, then delete this

state and all edges leading to it. If a state contains an eventuality which is not pseudo fulfilled, delete this

state.

Finally, if a state contains E ❤Cind and does not have an ind-successor which contains C, then delete

this state. The resulting graph is called the reduced tableau.

Theorem 2 ([2]) For any BNF set C , its reduced tableau is empty, if and only if, C is unsatisfiable.

Now from a non-empty reduced graph GCAug
= (N,E,L) for an augmented BNF we can construct a

Büchi Tree Automaton, B = 〈Σ, D, S,δ ,F0, FB〉 following the standard technique, for example, [21].

• Σ = 2
PropCAug , where PropCAug

is a set of propositions of the clause set CAug;

• D is the set of indices as defined for the construction of the Generalized Fischer-Ladner closure in

Def. 10;

• S is a finite set, N, of states of CAug;

• δ is a transition function which corresponds to the edge relation E of the reduced tableau;

• F0 is a set of those states that satisfy all the initial clauses occurring within the clause set CAug;

• FB = S = N is a set of all states in the reduced tableau.

Theorem 3 Given a set, C , of BNF clauses, we can construct a Büchi tree automaton B such that C is

satisfiable, if and only if, B has an accepting run, τB.

Proof. According to Theorem 2, if a set, C , of BNF clauses is satisfiable then so is the reduced

tableau for CAug. Due to the construction of the latter, following the transitions E , we can unwind it

into an infinite tree T such that the root of the tree is labelled by the CAug and if a node si ∈ N has

ind-successor nodes they become ind-successors of the corresponding node xi of T . The labelling of the

states of N gives the labelling of Σ for the nodes of T . Now consider the Σ-labelled tree T,Σ as a tree

over which the desired run τ of the automaton can be defined. The above construction of the automaton’s

accepting states guarantees that every path through the run would hit an accepting state infinitely often.

On the other hand, if we have an unsatisfiable set of BNF clauses then its reduced tableau is empty,

and therefore, the automaton B whose construction is based upon the properties of this reduced tableau,

cannot have an accepting run.
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7 Example

As an example of the syntactic representation of Büchi tree automaton in terms of BNF let us consider the

following small automaton B = 〈Σ, D, S,δ ,F0, FB〉 where: the alphabet Σ = {p,r}, the set of branching

degrees is D = {d1 = 2}; the set of states S = {s0,s1} with the initial states F0 = s0 and the accepting

state FB = s1. Finally, let the transition function be defined as follows:

δ (s0, p,2) =< s0,s0 >, δ (s1, p,2) =< s0,s0 >, δ (s0,r,2) =< s1,s1 >, δ (s1,r,2) =< s1,s1 >.

This is a non-empty automaton, and its accepting run hits an accepting state s1 infinitely often on

every branch. Now we will present the components of the BNF for this automaton. With q1,q2, for the

encoding of the states of the automaton and selecting q1 to encode the initial state, in equations (11)-(14)

we give the components of the encoding of the given automaton, noting that v in the representation of

the labelling, and y, l,u,w in the representations of the acceptance conditions are fresh variables. First,

the encoding of the initial states of the given automaton is represented by the set of clauses (11).

BNFinitB

.1 start ⇒ q1

(11)

Next, the transition function of the given automaton is represented by the set of clauses (12).

BNFtranB

12.1 q1 ⇒ E ❤q1ind1

12.2 q1 ⇒ E ❤q2ind2

12.3 q2 ⇒ E ❤q1ind1

12.4 q2 ⇒ E ❤q2ind2

(12)

The set of clauses (13) represent the labelling of the given automaton.

BNF labB

13.1 start ⇒¬q1 ∨ p∧ r

13.2 start ⇒¬q2 ∨ p∧ r

13.3 T ⇒ A ❤(¬q1 ∨ v)
13.4 v ⇒ p∧ r

13.5 T ⇒ A ❤(¬q2 ∨ v)

(13)

Finally, for the automaton acceptance conditions we have the set of clauses (14), where l,y,u,w are

fresh variables.

BNFaccB

14.1 start ⇒ y

14.2 start ⇒¬l∨q1

14.3 T ⇒ A ❤(¬l ∨q1)
14.4 y ⇒ A u

14.5 u ⇒ E♦lind1

14.6 l ⇒ E ❤wind1

14.7 w ⇒ E♦lind1

(14)

First, we show that the acceptance condition is properly simulated by the above BNF. Indeed, every

state along every path of the underlying BNF computation tree, satisfies u, due to clauses 14.1 and 14.4.
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Now, pick an arbitrary state si along some fullpath, say ξ . Following 14.5, there should be a state s j,

i ≤ j, along the path Su f (ξ ,s j), which is labeled ind1 such that it satisfies l. Following 14.6, the ind-

successor of the state of s j, say sm, j ≤ m which satisfies w. Hence by 14.7, there should be a state,

say, sk, m ≤ k along the path Su f (ξ ,sm) labeled by ind1 such that sk satisfies l. Due to 14.3, states s j

and sk satisfy q1. Repeating this cain of reasoning steps regarding the satisfiability of l we derive the

recurrent satisfiability of q1, which corresponds to the acceptance condition for this automaton, to hit the

acceptance state s1 infinitely often.

8 Discussion

We have shown that normal form used for clausal resolution method for a variety of CTL-type logics is

expressive enough to give the succinct high-level syntactic representation of Büchi tree automaton. This

represents a significant step in establishing the exact expressiveness of this formalism relating it to this

important class of tree automata. As a consequence, based on the known expressiveness results, that

Büchi tree automata are as expressive as CTL extended by the propositional quantification, we can also

treat BNF as a kind of normal form for the latter: we can directly translate given problem specifications

into BNF and apply as a verification method a deductive reasoning technique – the temporal resolution

technique. This paper justifies that BNF is suitable to reason about a wider range of branching-time

specifications and is able to capture exactly those that are captured by tree automata.

Moreover, another very promising route is emerging here. In BNF we are enabled not only to rep-

resent some given, or explicit invariants, but also to discover implicit, hidden invariants. For example,

invariants are extremely important in the emerging trend of developing complex but re-configurable soft-

ware systems. Here one of the most challenging problems is assuring that invariants are maintained

during system reconfiguration. In [8], it has been shown how the clausal temporal resolution technique

developed for temporal logic provides an effective method for searching for invariants in the linear time

setting. The results of this paper enable the extension of this method to branching-time framework, and

the detailed analysis of this route forms one direction of future research.

Also, in the future we will investigate the representation of alternating tree automata in BNF, where

we expect results similar to the linear-time case [7].

References

[1] Artie Basukoski & Alexander Bolotov (2005): Search Strategies for Resolution in CTL-Type Logics: Exten-

sion and Complexity. In: 12th International Symposium on Temporal Representation and Reasoning (TIME

2005), pp. 195–197, doi:10.1109/TIME.2005.32.

[2] Alexander Bolotov (2000): Clausal Resolution for Branching-Time Temporal Logic. Ph.D. thesis, Depart-

ment of Computing and Mathematics, The Manchester Metropolitan University.

[3] Alexander Bolotov & Artie Basukoski (2006): A Clausal Resolution Method for Branching-Time

Logic ECTL+. Annals of Mathematics and Artificial Intelligence 46(3), p. 235–263, doi:10.1007/

s10472-006-9018-1.

[4] Alexander Bolotov & Artie Basukoski (2006): A Clausal Resolution Method for Extended Computation Tree

Logic ECTL. Journal of Applied Logic 4(2), pp. 141–167, doi:10.1016/j.jal.2005.06.003.

[5] Alexander Bolotov & Clare Dixon (2000): Resolution for Branching Time Temporal Logics: Applying the

Temporal Resolution Rule. In: Seventh International Workshop on Temporal Representation and Reasoning,

TIME 2000, Nova Scotia, Canada, July 7-9, 2000, IEEE Computer Society, pp. 163–172, doi:10.1109/

TIME.2000.856598.

http://dx.doi.org/10.1109/TIME.2005.32
http://dx.doi.org/10.1007/s10472-006-9018-1
http://dx.doi.org/10.1007/s10472-006-9018-1
http://dx.doi.org/10.1016/j.jal.2005.06.003
http://dx.doi.org/10.1109/TIME.2000.856598
http://dx.doi.org/10.1109/TIME.2000.856598


268 On the Expressive Power of the Normal Form for Branching-Time Temporal Logics

[6] Alexander Bolotov & Michael Fisher (1999): A Clausal Resolution Method for CTL Branching-time Tem-

poral Logic. Journal of experimental and theoretical artificial intelligence 11(1), pp. 77–93, doi:10.1080/

095281399146625.

[7] Alexander Bolotov, Michael Fisher & Clare Dixon (2002): On the Relationship between w-automata and

Temporal Logic Normal Forms. Journal of Logic and Computation 12(4), pp. 561–581, doi:10.1093/

logcom/12.4.561.

[8] James Brotherston, Anatoli Degtyarev, Michael Fisher & Alexei Lisitsa (2002): Searching for Invariants

Using Temporal Resolution. In Matthias Baaz & Andrei Voronkov, editors: Logic for Programming, Ar-

tificial Intelligence, and Reasoning, 9th International Conference, LPAR 2002, Tbilisi, Georgia, October

14-18, 2002, Proceedings, Lecture Notes in Computer Science 2514, Springer, pp. 86–101, doi:10.1007/

3-540-36078-6_6.
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