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Abstract

The police use both subjective (i.e. police staff) and automated (e.g. face recogni-

tion systems) methods for the completion of visual tasks (e.g person identification).

Image quality for police tasks has been defined as the image usefulness, or image

suitability of the visual material to satisfy a visual task. It is not necessarily affected

by any artefact that may affect the visual image quality (i.e. decrease fidelity), as

long as these artefacts do not affect the relevant useful information for the task.

The capture of useful information will be affected by the unconstrained conditions

commonly encountered by CCTV systems such as variations in illumination and

high compression levels. The main aim of this thesis is to investigate aspects of im-

age quality and video compression that may affect the completion of police visual

tasks/applications with respect to CCTV imagery. This is accomplished by investi-

gating 3 specific police areas/tasks utilising: 1) the human visual system (HVS) for

a face recognition task, 2) automated face recognition systems, and 3) automated

human detection systems.

These systems (HVS and automated) were assessed with defined scene content

properties, and video compression, i.e. H.264/MPEG-4 AVC. The performance of

imaging systems/processes (e.g. subjective investigations, performance of compres-

sion algorithms) are affected by scene content properties. No other investigation
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has been identified that takes into consideration scene content properties to the

same extend. Results have shown that the HVS is more sensitive to compression

effects in comparison to the automated systems. In automated face recognition

systems, ‘mixed lightness’ scenes were the most affected and ‘low lightness’ scenes

were the least affected by compression. In contrast the HVS for the face recognition

task, ‘low lightness’ scenes were the most affected and ‘medium lightness’ scenes

the least affected. For the automated human detection systems, ‘close distance’

and ‘run approach’ are some of the most commonly affected scenes. Findings have

the potential to broaden the methods used for testing imaging systems for security

applications.
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CHAPTER 1

Introduction

This research investigates aspects of image quality and video compression that may

affect the completion of police tasks from Closed-Circuit Television (CCTV) im-

agery. CCTV imagery is used in UK courts as documentary evidence [1] and it

has been found to have an effective impact on conviction of crimes [2]. When a

crime occurs, police officers gather evidence (e.g. from the crime scene) and carry

out recognition tasks to prove identities. The court makes identification decisions

(i.e. establishes formally identities) from the available evidence. Often a combi-

nation of evidence (e.g. fingerprints, DNA, CCTV) are presented to the court for

identification purposes [3]. Depending on the seriousness of a case (e.g. murder,

rape, terrorist attack), a visually poor reproduced imagery (or any other type of

poor evidence) might still be used as evidence or clue in an investigation. Often a

‘poor evidence’ might be used for elimination purposes from possible suspects. In

exceptional cases a single piece of strong evidence might be adequate for the court

to make an identification decision (e.g. a distinctive feature such as a person’s gait,

face or clothing) [4].
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Figure 1.1 provides a CCTV example of a shop robbery [5]. The robbers in the

scene have their facial information covered but clothing information is visible and

quite distinctive; they are not wearing clothing of uniform colours. For example,

one of the robbers is wearing a hoody top that includes American flags and the

word California. The second robber is wearing black and white clothing and when

the entire footage is viewed (i.e. not just this single image) then further information

on his clothing can be obtained (e.g. words and patterns).

Figure 1.1: An example CCTV imagery of distinctive clothing. From Manchester
Evening News website [5].

Information that the police can gather from the footage in Figure 1.1 relates to the

type of weapon in the attack (i.e. in this case a machete), clothing (e.g. words,

patterns, type and colour), the way robbers move or even identification of their gait

(e.g. abnormal movements would be considered distinctive for example a limp),

and calculation of their heights (i.e. by utilising photogrammetric techniques [6,7]).

Additionally, one can observe from the left hand side robber in Figure 1.1 that the

words on the hoody are not very clear due to the angle of the hoody to the camera

plane. Yet, one can distinguish/recognise the word California even though the

exact letters are not all legible. This is similar to how humans process known faces

from poor quality CCTV video footage; the brain has the ability to put together

memorised information combined with perceived information (i.e. the filling-in

phenomenon [8]). For example, research has proven that humans have an excellent

ability to recognise known faces (i.e. derived from memory of faces that were learnt

minutes, hours, or years ago) even from high levels of degraded CCTV footage but
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performance is reduced dramatically when the faces are unknown [9–13].

CCTV footage is used by law enforcements authorities for the completion of recog-

nition tasks from visual information. These tasks relate to: 1) recognition of a

person from facial, clothing, or gait information, 2) recognition of an action (e.g.

who gave the first punch), and 3) recognition of an object (i.e. number plate, vehi-

cle type) [14–16]. The aforementioned visual recognition tasks could be completed

by utilising either humans (e.g. police officers, special analysts) and/or automated

systems (e.g. automated face recognition, human detection systems).

The term image quality is utilised in the same manner between automated and

human visual systems for the completion of police recognition tasks [14, 16–18].

For example, according to UK passport requirements, a good quality image for

a human face recognition task should be: correctly exposed, include no occlusion

such as glasses/hat, consist of a uniform background and convey frontal facial angle

information (see Figure 2.4) [19]. Still, if the face includes distinctive characteristics

(e.g. piercings, tattoos, birth marks, shape/size of nose) than a hat or glasses might

not affect the human recognition task. As a result, the term image usefulness (or

image utility) instead of image quality is adopted in the literature for police tasks.

Image usefulness is associated with image quality and relates to the suitability of

the imagery to satisfy a task [18]. The term image quality is often considered a

general term due to the multiple applications and the broad nature and disciples

relating to imaging systems [20]. For example, a portrait would be judged differently

in the arts context (i.e. in terms of aesthetics) compared with a police application

(i.e. visibility of appropriate information for a face recognition task).

High compression levels are favoured in the CCTV industry, since they allow more

hours of recording and lower the cost of a storage system (and transmission). How-

ever, they compromise the image usefulness of the recorded imagery. Video com-

pression in the security industry employs proprietary formats based on industry

standard compression algorithms. The H.264/MPEG-4 AVC algorithm has been

identified to represent a popular, current and future trend in the CCTV indus-
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try [21–23]. H.264/MPEG-4 AVC is a hybrid video encoder, exploiting both spatial

and temporal redundancy utilising an approximation of the 4×4 Discrete Cosine

Transfer (DCT). The H.264/MPEG-4 AVC compression algorithm is investigated

in this thesis. This compression algorithm produces blocking artefacts that become

more visible at high compression levels [24]. Compression artefacts will not neces-

sarily affect the image usefulness of CCTV imagery, as long as these artefacts do

not affect the relevant visual information to the recognition task.

Figure 1.2: Reduction of usefulness of information from the reference scene due to
wavelet compression.

Figure 1.2 illustrates a CCTV example of a car park and how image usefulness can

be judged subjectively from the entailed information. The top left image represents

the reference ‘uncompressed’ scene and the other 3 scenes represent compressed

versions of the reference ranging from low (i.e. light) compression to medium and

high. The reference scene illustrates the maximum available information that can

be captured by the system under those specific conditions (e.g. camera to subject

distance, illumination conditions). The compressed scenes are degraded version of

the reference. In the low compressed scene almost all of the useful information

has been maintained from the reference and in the highly compressed scene there

is information loss on clothing patterns, facial detail, colour and general definition
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of shapes. If observers are asked to judge the image usefulness of the compressed

scenes then they will be confused, as the image usefulness is dependent on the police

task. For example, if the police task is to count the number of people in Figure

1.2 then even the highly compressed version is good enough for the completion

of that task. On the other hand, if the police task is to recognise someone from

clothing information then the highly compressed version is not good enough for the

completion of that task. For this reason, this research includes 3 specific police

tasks that are investigated as case studies in connection with CCTV imagery and

compression. These specific police tasks are linked with: a) human face recognition,

b) automated face recognition, and c) automated human detection as part of a video

analytics (VA) system. As it has been described in the previous paragraphs the term

image usefulness is utilised in the same way for both human and automated systems

for police tasks. The inclusion of 2 investigations (human and automated) for the

same task (i.e. face recognition) will allow the identification of correlations between

them.

Furthermore, the aforementioned police tasks were chosen in order to cover a wide

spectrum of police applications utilising both human and automated visual sys-

tems. Faces are a non-intrusive biometric, the most exposed (in comparison to

fingerprints), used across many security applications (e.g. police, borders), and

the most available (e.g. on social websites, police mugshots, passports, ID cards,

street CCTV cameras). There are many surveillance CCTV applications where

the capture of facial information is possible, such as in trains, buses, underground,

transport stations and open street. The automated human detection task belongs

to the video analytics (VA) systems category. VA are autonomous systems (i.e.

with little or no human interaction) [25] with the aim of replacing the monotonous

task of human visual examination of video data. VA systems might become the

future of policing but currently very few scenarios are capable of autonomous anal-

ysis. One of the capable scenarios is the sterile zone (SZ), which is investigated in

this thesis [26,27]. The SZ scenario (see Figure 2.9) consists of a fence and an area

with grass (not to be trespassed); the VA system needs to alarm when there is an
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intruder/human entering the scene. The task is automated human detection.

Image usefulness can be obtained from measuring performance of systems such as

results denoting correct (or missed or false) detection/recognition utilising either

human or automated visual systems. For example, recognition of an unknown facial

image among a dataset of known facial images is considered correct recognition.

Further, when assessing human visual systems (e.g. police officers), experience

derived from completing recognition tasks can also be utilised to further understand

appropriateness of image usefulness. For example, police officers can be asked if the

highly compressed scene in Figure 1.2 is good enough for counting the number of

people; if the answer is yes then the compression amount applied is acceptable for

that task.

To date there has not been much direct research carried out on the subject of image

usefulness of CCTV imagery. Resources for human face recognition tasks come

mainly from psychology for face recognition and the exhaustive work by Klima

[28] and his co-authors on different compression techniques and their impact on

CCTV footage. Klima and co-authors [15,28–30] tested many different compression

techniques using subjective testing. They concluded that the perceived quality was

not dependent just on compression rate, but on the initial information content of

the scenes and its purpose [29]. Their work is related mainly to a few close up faces

and number plates. For this reason, in the present investigation, a more extensive

set of scenes with different attributes and properties is included.

The findings in automated face recognition using still imagery with JPEG [31] and

JPEG2000 [32] standards agree that compression does not adversely affect auto-

mated face recognition performance [33–37]. In a study by the Face Recognition

Vendor Test (FRVT) with JPEG compression [33], the findings have shown no de-

teriorated performance with images compressed to 0.2bpp (bits per pixel) [33] and

performance deteriorated under 0.2bpp. The same study has even reported an in-

crease in performance of face recognition systems with compressed images to 0.8bpp

and 0.4bpp (values above 0.2bpp) [33]. These results are consistent with another
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investigation conducted by Delac and co-authors [35,37]. In most cases, face recog-

nition systems are evaluated based on their performance of correct recognition from

large datasets [33,38–40] and individual properties of each facial image (e.g. over or

under exposed faces) are not considered. For example, images obtained from a web-

camera will just be labelled as being of poor quality [41]. Furthermore, Aggarwal et

al. [42] have identified that face recognition systems performed differently on differ-

ent datasets due to the dissimilar scene properties of the facial imagery under each

dataset. For example, results of performance comparison between PCA (Princi-

pal Component Analysis) and LDA (Linear Discriminant Analysis) face recognition

holistic techniques differ significantly among different databases and no conclusion

can be made on the best performing one [43]. Face recognition holistic techniques

utilise the whole face region rather than individual features (e.g. eyes, mouth). In

this thesis, face properties are characterised (e.g. how far away is the face from the

camera plane) in order to identify the scene properties contributing to the decrease

in performance of automated face recognition systems.

Additionally, little research has been accomplished in identifying relationships be-

tween human evaluators and face recognition algorithms in relation to face image

usefulness. An investigation by Adler and Dembinsky [44] has found that derived

biometric image quality scores do not correlate between human perception and au-

tomated algorithms. This thesis will investigate correlations between human and

automated visual systems for the face recognition task.

Poppe et. al. [45] have pointed out the lack of research in the area of video analytics

systems with compressed footage. The same authors have tested a background

subtraction technique based on the Gaussian Mixture Models (GMM) with the

H.264/MPEG-4 AVC video coding standard. The performance of GMM was not

dependent only on the amount of compression but also on scene content. In another

investigation [46] with the SZ scenario (or intruder detection) and H.264/MPEG-4

AVC video coding standard, the results have shown the performance of the analytics

system to be affected at 220kbps (kilobits per second), either by not detecting an
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attack, or producing a slower alarm response time. That work investigated 11

attacks with only 1 VA system. In this thesis, a much greater amount of footage

(or attacks) and number of VA systems are investigated.

As an extra factor, results from subjective investigations and assessments of com-

pression performance are often shown to vary with image content [29,30,47,48]. For

example, in video, scenes with different spatial (varied regions)-temporal (varied

motions) structural properties will require different bit-budgets leading to different

levels of compression.

In conclusion, any visual process (subjective investigations, compression algorithms,

automated recognition/detection systems, human face recognition) is dependent on

scene content. Scene dependency can be overcome with the use of scene charac-

terisation and classification methods [47]. Scene contents can be characterised and

later classified to groups of certain scene characteristics/properties. Both objective

(use of relevant algorithms) and subjective methods (visual or empirical inspection)

have been employed in this thesis for characterisation purposes. For example, scene

lightness of facial imagery was deduced objectively from measuring skin lightness

using the L* value from the CIELAB colour space. Skin lightness denotes if the

scene is under, over, mixed or correctly exposed. In opposition, angle of face to the

camera was deduced subjectively by visual inspection.

1.1 Aims and objectives

The main aim of this research is to investigate aspects of image quality and video

compression that might affect the completion of police visual tasks with respect to

CCTV imagery. The following objectives are going to be achieved.

• to contribute to increasing understanding in the area of image usefulness for

police visual tasks;

• to identify appropriate methodologies for testing/assessing police visual sys-

tems with CCTV imagery and video compression;
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• to develop a dataset representative of the challenges encountered by real-

world CCTV applications for face recognition investigations (both human and

automated);

• to identify the extent to which compression (H.264H.264/MPEG-4 AVC) af-

fects the completion of police tasks for the 3 aforementioned applications

under investigation;

• to identify differences/similarities between the industry-standard compression

algorithm H264/MPEG-4 AVC and proprietary format versions employed by

CCTV systems;

• to identify the image content characteristics/properties that will affect the

completion of the 3 aforementioned police applications in combination with

and/or without compression;

• to identify any relationships between human and automated face recognition

systems in relation to scene content properties and compression.

These objectives were achieved by assessing 2 types of visual systems (human and

automated) for 3 specific police tasks (human face recognition, automated face

recognition, automated human detection) with characterised CCTV imagery and

video compression (H.264/MPEG-4 AVC). Knowing exactly with what content

characteristics a system (e.g. automated systems, compression algorithms) fails

can contribute to the further improvement of such a system. For example, to allow

compression up to an acceptable level for the human face recognition task.

For the face recognition task a new dataset was developed in order to utilise test

material that comes from a challenging CCTV application. This application was

the London bus; the window features on buses create challenges in terms of illu-

mination. For example, on a sunny day when the bus is in motion, windows allow

illumination from different directions, causing areas of over and under exposure. On

the other hand, during night conditions, the bus illumination is the principal source;

it provides relatively uniform illumination. Also, around 10 cameras were installed
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on a London bus allowing the capture of content with varied properties. For ex-

ample, the camera installed for viewing the staircase (i.e. at the top deck) is ideal

for capturing tilted angle faces. Whereas, the camera installed on the back window

(i.e. for both decks) is ideal for capturing frontal angle faces. Figure 4.2 presents an

example of the captured camera views. Further, the already available face datasets

are created in semi or fully controlled environments [33,38–40], which might not be

as pragmatic as the dataset created from the London bus application.

In case of the automated human detection task, an already available dataset was

utilised. The name of the utilised dataset is the sterile zone (SZ) scenario, which

is part of the Imagery Library for Intelligent Detection Systems (iLIDS) datasets

[49,50]. iLIDS is a UK government initiative that provides to the manufacturers of

VA systems, datasets with a wide variety of scenarios in relation to police tasks (e.g.

detection of abandoned baggage in London tube, detection of prohibited parking of

vehicles). The manufacturers develop systems based on these provided scenarios.

The iLIDS team benchmarks the performance of VA systems and provides to the

manufacturers a UK government classification standard. It was considered impor-

tant for the human detection task to include the SZ scenario dataset as the systems

under assessment are designed for this specific scenario.

The following section presents some further information on the content of the thesis.

The publications arising from this work can be found in Section 1.3. Section 1.4 dis-

cuses the original and significant contributions to knowledge of this research.

1.2 Content of the thesis

Chapters 2 and 3 include all the background information necessary to enable an

insight to the factors that have to be taken into consideration before developing

appropriate evaluation performance methodologies for the visual police systems

under investigation. Chapter 2 provides information in relation to the applications

of CCTV imagery and police tasks. Later, the chapter focuses on the 3 investigated
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applications: human face recognition, automated face recognition and automated

human detection (i.e. as part of VA systems). Further, the challenges affecting the

task performance of the police visual systems are described. Chapter 3 provides

information on the subjects of video compression and image quality with respect

to CCTV imagery. This information includes details on: video compression for

both ‘standard’ and CCTV industry, definitions of image quality and image quality

attributes, methods in psychophysical investigations and the factors that affect such

procedures, and scene content characterisation and classification.

Chapter 4 identifies acceptable compression limits (relating to image usefulness)

for human face recognition, using psychophysical investigations, an industry imple-

mentation of the standard H.264/MPEG-4 AVC, the CCTV recording systems on

London buses and a variety of scene content properties. The London bus appli-

cation is utilised as a case study for setting up a methodology and implementing

suitable data analysis for face recognition from recorded footage, which has been

degraded by compression. The footage has been characterised and classified to pre-

defined scene groups relating to skin lightness (i.e. this determines if the scene/face

is under, over, mixed or correctly exposed), camera to subject distance (i.e. a close

distance scene will reveal more facial information from a further distance scene),

facial angle to the camera plane (e.g. frontal and tilted), and level of busyness

(i.e. based on spatial and temporal information). Psychophysical investigations are

conducted in order to transform subjective judgements to quantitative results. In

these investigations the compressed version(s) are judged against its ‘uncompressed’

reference (i.e. a similar procedure to the example in Figure 1.2 is followed). The

analysis of the results is based on the individual scene properties (e.g. close, far

distance to the camera plane), type of observers (i.e. police officers, surveillance

officers and bus analysts) and type of compression algorithm (i.e. industry-standard

or CCTV proprietary format). Additionally, a section on the development of the

representative video dataset from the London bus application is provided.

Chapter 5 provides a comparative performance evaluation between human and auto-
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mated face recognition systems, using CCTV imagery, different compression levels

and scene properties. Results and test material obtained from the human inves-

tigation are also utilised here. The aim of this investigation is to identify rela-

tionships between human and automated face recognition systems with respect to

compression. Further, to identify and compare the most influential scene proper-

ties on the performance of each face recognition system. The investigation includes

3 basic automated face recognition (AFR) systems [51]: a) Principal Component

Analysis (PCA), b) Linear Discriminant Analysis (LDA), and c) Kernel Fisher

Analysis (KFA). The results are analysed using a distance measure between a de-

graded/compressed image from its reference ‘uncompressed’ version, which complies

with the methodology utilised for the human investigation in Chapter 4.

Chapter 6 investigates the effects of scene content properties, frame rate and video

compression on the performance of automated human detection systems with the

SZ scenario. In this thesis 4 detection systems are tested with compressed (at 5 and

25 frames per second) and ‘uncompressed’ (only at 25 frames per second) footage

of the SZ scenario. The scene properties were extracted from the characterisation

of the content of 110 attacks (scenes). The characterisation included both objective

and subjective techniques relating to scene contrast (contrast between main subject

and background), camera to subject distance, subject description (e.g. 1 person, 2

people), subject approach (e.g. run, walk), and subject orientation (e.g. perpendic-

ular, diagonal). Additional footage, including only distractions (e.g. foxes, birds,

and weather conditions such as snow and rain) and no attacks to be detected is

also investigated. The analysis of the results is based on identifying correct, missed

or false detection for each individual grouped scene property under investigation.

For example, the analysis can identify the proportion of correct detection for the

human run scene property.

Chapter 7 provides an in-depth discussion on the obtained results from the 3 inves-

tigations. Lastly, in Chapter 8, conclusions are drawn with recommendations for

further work.
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(2015).
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System Performance XII, 93960X (January 8, 2015).

A. Tsifouti, S. Triantaphillidou, M.-C. Larabi, E. Bilissi and A. Psarrou. Com-
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(January 8, 2015).
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the performance of analytics systems, Proc. SPIE 8546, Optics and Photon-

ics for Counterterrorism, Crime Fighting, and Defence VIII, 85460S (October 30,

2012).
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1.4 Original contributions to knowledge

This research has contributed with original knowledge by:

1. Investigating for the first time image usefulness (an attribute that has its ori-

gins in Yendrikhovskijs Fidelity Usefulness Naturalness framework and relates

to the suitability of the imagery to satisfy a task [18]) in the context of im-

agery relating to security/police applications. In this thesis, image usefulness

has been defined for three specific police applications relating to i) human

face recognition, ii) automated face recognition and iii) automated human

detection.

2. Identifying and quantifying original scene properties (e.g. scene illumination,

spatio-temporal business) or/and facial properties (e.g. tilting facial angle,

camera to subject distance) that contribute to the successful and/or unsuc-

cessful completion of all three police tasks mentioned in 1. These new findings

have the potential to contribute to the development, and particularly to the

parametrisation, of image quality metrics used in police tasks.

3. Developing an original image dataset, the CASTBUS 2012 dataset, using

the understanding that scene content and facial properties affect human face

recognition results. The CASTBUS 2012 dataset includes footage with var-

ied scene content properties in terms of: camera to subject distance, spatio-

temporal busyness, illumination conditions and facial angles to camera plane.

This dataset is available to those researching in relevant areas.

4. Providing novel experimental paradigms for testing imaging systems relat-

ing to security/police. All methodologies included in this thesis are carefully

thought/applied, by combining resources from different academic scientific

disciples (relating to image processing and compression, visual psychophysics,

image quality, use of police imagery, face recognition studies and automated

systems/algorithms) to identify research solutions. This is a significant con-

tribution that will allow improvements in testing police systems (humans and
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automated).

5. Providing useful results to relevant communities. For example, Transport for

London (TfL) has implemented the compression recommendations derived

from the human face recognition investigation in a London bus. This will

result to having more suitable recording and compression conditions (i.e. ac-

ceptable compression levels) for face recognition tasks undertaken by special-

ists.

Overall, little research has been accomplished in the area of image quality/usefulness

for police tasks. This thesis widens the understanding of particular topics/issues

by providing an imaging scientists perspective. For example, investigations in hu-

man face recognition have been predominately accomplished by psychologies, or

neuroscientists who do not necessarily account for the effects of imaging proper-

ties/attributes in the task. The same applies to computer vision scientists who

produce automated recondition systems. For instance, the majority of footage/still

image datasets that have been created over the years from the computer vision com-

munity do not take scene content properties into a consideration and often standard

datasets are created without controlled variation of such information.
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CHAPTER 2

Applications of CCTV imagery

This chapter provides information in regards to closed-circuits television (CCTV)

imagery for law enforcement purposes. Additionally, police applications relating to

CCTV imagery are described. Later, the chapter focuses on providing some back-

ground information on 3 specific police applications, which are the ones investigated

in the experimental part of the thesis. The applications relate to human face recog-

nition, automated face recognition and automated human detection (i.e. as part

of video analytics systems). Also, the challenges influencing task performance of

human operatives (i.e. police officers) and automated systems (i.e face recognition,

video analytics) with CCTV imagery are described. For example, CCTV systems

often operate under totally uncontrollable, or semi-controllable illumination con-

ditions (e.g. open street CCTV cameras, bus CCTV systems) that might affect

the capture of useful information (e.g. face). The usability of the imagery is fur-

ther compromised by compression, implemented to satisfy limited storage capacity

of CCTV recorded systems, or transmission bandwidths. Low bitrates are favoured

in the CCTV industry for lowering data costs.
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2.1 CCTV imagery

The breakthrough for the use of CCTV systems happened when the solid-state

CCTV cameras, such as charge-coupled device (CCD) cameras, were introduced

in the early 1990s [52]. These solid-state cameras required minimal maintenance.

There are 2 studies that provide estimations on the number of CCTV cameras in the

United Kingdom (UK). The first study was conducted in 2003 with an estimated

number of 4.2 million CCTV cameras [53]. A more resent study in 2011 gave an

estimation of 2 million [54]. These are just estimations and do not represent the

actual number of the CCTV cameras in the UK. Nevertheless, one can conclude

that there is a vast amount of video CCTV data that can be used to prevent and

solve crime. A couple of main factors have contributed to the widespread use of

such systems: one of them is the increase of crime (including terrorist attacks) [55]

and the second one is the current availability of advanced and low-cost systems

[52].

A Home Office study has found CCTV cameras ineffective in terms of reducing

crime but having an effective impact on the handling of individual incidence and

high profile cases [2]. The effectiveness of the CCTV systems will be compromised

when the wrong cameras are fitted (i.e. if the location is wrong or if the cameras

are not working), when the operators are not trained to handle such systems, and

when the produced imagery is of low quality [2].

CCTV footage is used by the police for the completion of 3 main tasks: recognition

of i) a person (i.e. from facial information, clothing, gait), ii) an action (e.g. who

gave the first punch), and iii) an object (i.e. number plate, vehicle type) [14–16].

The terms recognition and identification are often used interchangeably in academic

papers. The Oxford dictionary [56] defines recognition as the “identification of a

thing or person from previous encounters or knowledge” and identification as the

“means of providing a person’s identity, especially in the form of an official paper”.

The Cambridge dictionary [57] defines recognition as the “fact of knowing someone

or something because you have seen or heard him or her or experienced it before”
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and identification as “the act of recognising and naming someone or something”.

According to these meanings, identification is formalisation of recognition. For ex-

ample, you recognise a person and latter you define/establish that persons’ identity.

Putter [58] has pointed out the incorrect usage of the term identification for crim-

inalistics by stating “In the field of criminal investigation, the general use of the

word ‘identification’ differs markedly from the classical philosophical concept, since

‘identity’ itself is differently defined. Identification is the placing of an object in a

class or group. This is the sense in which the word is used in all the natural sciences

and to use it in any other sense in criminalistics is non-scientific. This scientific us-

age does fly in the face of popular practice, in which a criminal is ‘identified’ from

his fingerprint. He is not identified, he is individualised...What is proved by his

fingerprint is his individual identity, i.e. his individuality”.

Police staff carry out recognition tasks and the court decides whether or not to

convict based on the evidence provided. The court is responsible for making an

identification or individualization decision. CCTV imagery is used in court as docu-

mentary evidence [1]. Other documentary evidence includes photographs, drawings,

plans and maps. Often, CCTV evidence is used in combination with other evidence

(e.g. witnesses, fingerprints, blood analysis and more). Evidence presented to the

court is judged according to its weight in terms of how much it proves or disproves

a case. For example, individual evidence might provide moderate support for con-

viction, but when viewed in combination with other evidence it might provide a

strong support for a conviction [3].

In order for the CCTV footage to be viewed as strong evidence, the information pro-

vided in the footage must be exceptionally distinctive. For example, in a burglary

case the perpetrator was identified by his distinctive way of walking (bowed legs

and an unusual way of moving his left hand) from a poor quality CCTV footage [4].

Figure 2.1a shows an image from the CCTV footage on the night of a burglary

where only the silhouette of the perpetrator is visible. Figure 2.1b shows a cus-

tody image of the suspect. A podiatrist derived information from the poor CCTV
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footage and provided evidence in court of the strong similarity of gait between the

perpetrator and the suspect (see Figure 2.1). The CCTV footage would not have

been appropriate for face or clothing recognition tasks due to the lack of relevant

visual information, however it was still able to provide ‘exceptionally distinctive’

evidence.

Figure 2.1: Distinctive gait in CCTV footage. An example of a) a CCTV image
(left image) matched against b) the suspect’s gait (right image). From Nixon et al.
(2010) [4].

The police employ both subjective and automated tools for completing recognition

tasks from CCTV imagery. Automated tools are automated systems, such as face

recognition (FR), number plate recognition (NPR) and video analytics systems

(e.g. detection of intruders) [59]. Subjective tools involve visual examinations

of recorded/transmitted imagery, carried out by operatives, such as police staff

and external specialists. Often, automated and subjective police tools are used

in combination. For example, the input to a FR system is an unknown face, the

system compares the unknown face with a database of known faces (i.e. the enrols)

and returns back possible matches to the unknown face [60]. The operator then

needs to verify and make a recognition decision on the returned matches.

In most cases, the information within the CCTV footage is compared and matched

by visual assessment of similarities with either a real subject, or a real object, or

another source of imagery (e.g. a mugshot). Figure 2.2, illustrates an example

where an image from the CCTV footage is compared and matched with full-face
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photographs of 4 individuals. It is obvious that the inadequate (long) subject to

camera distance reveals information of the target’s face, which may be insufficient

for a face recognition task.

Figure 2.2: Face matching example. An image from the CCTV footage (on the left)
where is compared and matched with full-face photographs of 4 individuals. From
Davis et al. (2009) [61].

Furthermore, image matching techniques can also be used with scenes from CCTV

imagery and its reconstructed versions. For example, in a court case a perpetrator’s

car in a CCTV scene was matched against a reconstructed scene with the suspect’s

car. The scene reconstruction was based on the information in the CCTV footage

(i.e. positioning of the car and time of filming) and the use of the same CCTV

system (i.e. same CCTV camera quality, system compression level and angle of the

camera to the object). Imaging analysts used cues such as appearance of headlights

and tax disc holder shape in order to make a decision if the perpetrator’s and

suspect’s car are the same [3].

This thesis is concerned with police tasks relating to human face recognition, au-

tomated face recognition and video analytics systems (i.e. intruder detection in a

sterile zone scenario). The following subsections provide some background informa-
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tion on the 3 aforementioned police tasks.

2.1.1 Human face recognition

Research involving facial recognition tasks indicates that individuals have an ex-

cellent ability to recognise known faces (i.e. derived from memory of faces that

were learnt minutes, hours, or years ago) even from high levels of degraded CCTV

footage, but performance decreases dramatically when faces are unknown [9–13]. In

image matching tasks the face is normally unknown and the comparison is based on

2 (or more) present stimuli, and not on memory and a present stimulus [13].

Factors such as illumination conditions, angle of the face to the camera plane, cam-

era to subject distance and the physical size of printed images affect the accuracy

of face matching tasks [11, 12, 62–66]. These factors affect the image quality of

the reproduced imagery thus the capture of useful facial information. Figure 2.3

illustrates how facial information is affected by varying illumination conditions.

Illumination poses an important problem in CCTV imagery [67], since CCTV sys-

tems often operate under totally uncontrollable, or semi-controllable illumination

conditions (e.g. street CCTV cameras, bus CCTV systems).

Figure 2.3: Facial information under various illumination conditions. From Li et
al. (2007) [68].

Image matching techniques are used for facial information comparisons, which are

known as facial mapping. Facial mapping techniques fall into 3 categories: a) mor-

phological (classification of features based on shape) [69], b) superimposition (over-

laying of images) [70], and c) photoanthropometry (the use of facial landmarks as

proportionality indices) [71]. Trained anatomists, anthropologists and facial map-

ping experts carry out such techniques. These techniques are used to identify sim-
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ilarities and dissimilarities of facial information between 2 imaged faces in specific

areas, such as the mouth, upper lip and chin [72]. The greater the similarities of

the facial information between 2 images the greater the possibility of a match. Fa-

cial mapping experts also provide the factors that may affect the reliability of the

method such as image quality factors (i.e. pixilation and illumination variations),

the possibility of 2 people appearing indistinguishable and the lack of a facial fea-

ture database (e.g. statistical explanation) [72]. Facial mapping techniques have

been judged to be subjective and results are often taken as non-scientific evidence,

mainly due to the absence of a standard facial database and a lack of knowledge of

the number of people with particular features [73]. Despite those arguments, facial

mapping techniques have been used as evidence in UK courts since 1989 [74].

As already noted, CCTV footage is matched with other sources of imagery (e.g. po-

lice mugshots, passport photographs). Requirements for UK passport photographs

and police mugshots provide specific instructions on image capture to optimise hu-

man face examination tasks [19, 75]. For example, UK passport photographs need

to have a uniform background, the subject to be looking straight to the camera and

the crown of the head to the chin to occupy a certain size in the picture [19]. No

information is given on compression for passport photographs. Figure 2.4, shows

an example of appropriate and inappropriate passport photographs.

Figure 2.4: Example of UK passport photo requirements. From UK Government
(2013) [19].

Police mugshot recommendations specify the compressed file size (in addition to

head pose, illumination, uniform background, exposure and so on). They recom-

mend the file size of an individual image to be between 24 and 44 kilobytes [75],
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using JPEG or JPEG2000 compression. It is not known whether these recommen-

dations were made based on empirical experience, or subjective investigations (see

Section 3.4). Nonetheless, Figure 2.4 illustrates the human perception of a good

quality facial image for a recognition task, which is: correctly exposed, no occlusion

such as glasses/hat, uniform background, and of frontal angle.

The National Policing Improvement Agency (NPIA) [76] specifies that “JPEG and

JPEG 2000 formats allow very good compression of photographic images, with

minimal deterioration (artefacts) appearing in the image. This allows human ex-

aminers to see the mugshot image clearly, and automated face recognition systems

to function effectively”. In addition, NPIA [76] has defined the mugshot image as

“an electronic colour image based representation of the portrait of a person with

sufficient resolution for human examination as well as reliable computer facial iden-

tification. The image includes the full head with all hair in most cases, as well as

neck and shoulders”.

All the information in this section points to the priority of the police to capture use-

ful image information, where deterioration due to image artefacts may be allowed,

as long as the recognition tasks can be completed.

Section 3.3 identifies the term image quality to be strictly subjective as humans are

the end users of imaging applications/systems/processes. There has not been much

direct research carried out on the subject of image quality for CCTV systems.

Resources come mainly from psychology for face recognition, event recognition,

ergonomics on comfort of reviewing CCTV footage, military applications (most of

the information is restricted), and an extensive work by Klima and his co-authors on

different compression techniques and their impact on CCTV footage. Klima and co-

authors [15, 28–30] tested many different compression techniques, using subjective

testing indicating that H.264/AVC is a superior compression technique to MPEG-2

and DivX [30]. However, they have not used an extensive set of scenes, and they

have not included different scene properties (e.g. different illuminations). Their

work is related mainly to a few close up faces and number plates. Additionally,
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they concluded that the perceived quality was not dependent just on compression

rate, but on the initial information content of the scenes and its purpose [29]. For

this reason, in this compression investigation a more extensive set of scenes with

different attributes and properties is included and not just few scenes of close up

faces.

2.1.2 Automated face recognition systems

Automated face recognition systems belong to the field of biometrics [77]. Bio-

metrics, is the process of recognition and/or verification of an individual based

on physiological (e.g. fingerprints, hand geometry) and/or behavioural (e.g. sig-

nature, voice) characteristics [78]. Behavioural characteristics are supposed to be

learned over time and are subject to deliberate alternation, whereas physiological

(i.e. physical) characteristics are more difficult to be manipulated/altered. For

example, physiological characteristics are unique traits incorporated within each

individual (i.e. they are individualised traits). There is a difference between veri-

fication and recognition when applied to automated systems. Verification (1 to 1

matching) is the combination of unique recognisers (or authentication modes) such

as ID number and that person’s biometrics. On the other hand, recognition (1

to many matches) utilises biometric measurements that are compared to a dataset

of enrolled individuals (e.g. faces). In terms of government applications (e.g. to

control immigration and prevent/solve crime) automated biometric systems are be-

coming of great significance.

This thesis deals with 2-dimensional (2D) face recognition in an unconstrained envi-

ronment, which is where a common CCTV system will be operating. Unconstrained

conditions create variations in facial images caused due to illumination (e.g. under

or over exposed scenes), angle of face to the camera plane, distance of face to the

camera plane, facial expressions and many more. Face properties are easier to use

than other biometrics (e.g. finger, hand, voice) as they are non-intrusive and the

most exposed [79]. In general, face recognition systems (automated and human)
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work better for applications when training/enrolled and test/query facial images are

captured under similar/controlled conditions (e.g. verification process of electronic

passports at airports) [17, 80].

Figure 2.5: Generic processes of a face recognition system. Adopted from Zhao and
Chellappa (2006) [81].

Figure 2.5 demonstrates the steps of a generic face recognition system. Generally, an

interactive relationship exists between the steps. For example, facial features (eyes,

noise, mouth, ears) might be used for both face recognition and face detection

steps, whereas feature extraction and face detection can be operated at the same

time [82, 83]. Face recognition has attracted a huge amount of interest from both

academia and industry for the last 30 years. The result, is the development of

many face recognition techniques [84–86]. These techniques accommodate the way

humans process faces. For example, humans process faces using holistic (whole face

region), featural (shape of individual features: eyes, nose and mouth), and configural

(spacing among features: distance between chin and eye) information [87–90].

Similarly to the way humans process faces, algorithmic techniques of face recognition

systems fall into 3 main categories:

• Holistic techniques. This approach creates face descriptors based on the whole

face region rather than on shape/distance of individual features. The tech-

niques can be classified into 2 further categories: statistical and artificial intel-

ligence (AI). Statistical techniques employ dimensionality reduction methods.

One of the most widely-used statistical technique is the eigenpicture based on

the principal component analysis (PCA) [91,92]. AI use artificial neural net-
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works (ANN) and machine learning (ML) techniques. ML techniques learn a

task from examples by executing automated actions based on binary and/or

logical operations. ML techniques try to mimic human reasoning [93]. On

the other hand, ANN techniques try to mimic the networks of neurons in the

human brain. Neural networks consist of layers of interconnected and inter-

dependent nodes, each node outputs a non-linear function from inputs (from

other nodes or data inputs). [94].

• Feature-based techniques. This approach creates face descriptors based on

shape and distance of individual features. Facial features (e.g. eye, mouth,

noise and fiducial marks) are first extracted and later their geometric relation-

ships are modelled. Pattern recognition techniques can be used to match faces

using those geometric relationships. Multiple feature-based techniques exist.

A method of localising points (corners of eyes) in facial images is presented

by Belhumeur et al. [95]. Feature-based techniques invoke 2 main disadvan-

tages: difficulties in feature detection and extraction, and the chosen feature

set might not have discriminating power between faces [96, 97]. The advan-

tage of these techniques is that, in principal they should be invariant of scale

and pose. Holistic techniques are not robust with pose changes (prefer frontal

faces where both eyes are visible) and they normally apply an alignment stage

before the enrolment of the face image for recognition [98,99].

• Hybrid techniques. Similar to human processes, this approach uses both holis-

tic and feature-based techniques.

Fully automated face recognition systems employ a face detection step before apply-

ing holistic and/or feature-based techniques (as in Figure 2.5). In the face detection

step the aim is to determine automatically the presence of a face on still photographs

or video [100]. Face detection techniques can be categorised into 3 groups based on:

knowledge (algorithm has to follow rules such as distance of eyes) [101], template

matching utilising detection of facial features [102], and invariant features such as

skin colour segmentation [103, 104]. Some challenges in face detection are caused
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due to the inherited diversity of faces (e.g. shape, texture, facial hair, ethnicities),

head pose, facial expressions, occlusions (e.g. glasses) and scene complexity. Scene

complexity factors include clutter caused due to environmental conditions (e.g. il-

lumination variations, rain, snow, wind, shadows), and occlusion (face to face and

face to scene occlusion) [81, 100]. Some of the face detection techniques are also

applicable for the detection of other objects such as cars and humans [105]. Section

2.1.3 provides some more information on detection techniques.

This thesis investigates partial automated systems (automated face detection is

not performed) utilising 3 basic and popular holistic techniques [51] with faces

where both eyes are visible (not profile faces): a) Principal Component Analysis

(PCA), b) Linear Discriminant Analysis (LDA), and c) Kernel Fisher Analysis

(KFA). Facial regions are extracted based on manually obtained eye coordinates and

later the faces are normalised in terms of geometry (i.e. orientation) and size (i.e.

number of pixels). The following points summarise the 3 aforementioned techniques

implemented by utilising an existing MATLAB Toolbox [51], in the experimental

work in Chapter 5. PCA has been implemented utilising the algorithm by Turk

and Pentlan [106], KFA utilising the algorithm by Liu [107] and LDA utilising the

algorithm by Belhumeur [108].

• PCA. In case of greyscale (single-channel) images, the input to this method

is a training dataset consisting of N number of facial images (each image of

k×k pixel dimensions) as the example in Figure 2.6a. Later, each facial image

is transformed to a single k2 element vector. After the transformation of each

individual image to the vector space, the result is the creation of a single

matrix of the form k2rows × Ncolumns. The Ncolumns represent the individual

face images that have now been transformed to vectors. PCA is applied to

this resulting matrix. Firstly, the average looking face (see Figure 2.6b) is

represented by the mean vector and it is subtracted from each of the image

face vectors in the matrix (this step normalises the face vectors). Later,

the covariance matrix is calculated. The eigenvectors are obtained from the

covariance matrix and include most of the variance in the data. The outputted
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eigenvectors would normally be of a reduced size matrix k2rows × mcolumns

and it would be representative of the initial training vector space dataset

k2rows ×Ncolumns. The eigenvectors can be transformed back to images called

eigenfaces (see Figure 2.6c) as the dimensionality of the image pixels k2 is

sustained throughout the process.

Figure 2.6: The process of obtaining the eigenfaces. Figure (a) represents the
dataset of training facial images, (b) the average face, and (c) the obtained eigen-
faces calculated from the input dataset in (a). Adapted from Turk et. al. (1991)
and Jafri et. al. (2009) [85,106].

As we can see in Figure 2.6 from an initial dataset of 16 faces, PCA has

outputted 7 eigenfaces corresponding to the highest eigenvalues. The visuali-

sation of eigenfaces (see Figure 2.6c) represents the most prominent deviations

from the mean (see Figure 2.6b) in the dataset. For example, eigenfaces cap-

ture variations in the hair area, eyes and positioning of head area. In this

example, variations in the background area have also be captured. Interven-

tion of background information should be eliminated by either cropping the

images to include only facial regions or be kept constant, otherwise it will af-

fect the correct recognition results. This method compares an unknown image

to a dataset of known images and if the background information is not kept

constant or eliminated, it will become part of this comparison. When a new

face is added to the dataset, the eigenfaces are recalculated.

Each face in the original dataset can be represented by a weighted sum of

each of the eigenfaces plus the mean vector of the average face (i.e. the
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result is known as a weighted vector). When an unknown face is given to a

face recognition system, its weighted vector is calculated using the eigenfaces

and the average face. Then, the unknown weighted vector (which represents

the unknown face) is compared with the known weighted vectors (faces in

the training dataset) using a distance measure (e.g. Euclidean distance).

Recognition can be achieved empirically (i.e. by operators such as police

officers) by specifying a threshold value to the distance measure. For example,

to set the threshold value to first provide face images that have achieved 80%

match with the query face image. If a correct match is not achieved then the

threshold value can be decreased (e.g. to 70%) for more facial matches.

• LDA. This method follows the same principles as the PCA method. The main

difference is that LDA utilises the relationships between the facial images in

the training dataset and their relationship to the training dataset as a whole.

For example, when the training dataset is created the facial images of a single

individual are labelled in the same class (i.e. the aim is to minimise within-

class variance) and the images of each individual are in different classes (i.e.

the aim is to maximise between-class separation to increase discrimination).

This is achieved by calculating a separation matrix in order to achieve a cluster

separation analysis [109]. The resulting eigenvectors when transformed back

to images are called fisherfaces. Figure 2.7 demonstrates the visual differences

between eigenfaces and fisherfaces. Fisherfaces seem to not have included

unrelated variations in the faces caused by lightness and head pose, whereas

such variations are more visible with eigenfaces.
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Figure 2.7: Eigenfaces vs. Fisherfaces . Figure (a) corresponds to images of eigen-
faces and figure (b) to fisherfaces. Eigenfaces have captured variations caused from
lighting and/or change of head pose. Whereas, fisherfaces seem to have decreased
such unrelated variations from the face images. From Swets and Weng (1996) [110].

• KFA. Also known as Generalised Discriminant Analysis (GDA) is a kernelised

version of LDA. Its basic idea is to map the input original sample vectors into

a high dimensional feature space and then use LDA on that new feature space.

The nolinearity enables the extraction of nonlinear discriminant features [111,

112].

Face recognition systems are aiming to be competent for real-world applications.

A number of video/image face datasets and procedures are available for the assess-

ment of the performance of face recognition systems [33,38–40]. In most cases, face

recognition systems are evaluated based on their performance of correct recognition

from large datasets and individual properties of each facial image are not consid-

ered. For example, in a recent performance evaluation by the National Institute

of Standards and Technology (NIST) [41] current state-of-the-art face recognition

systems were assessed using web-camera images. These web-camera images were

just labelled as being of poor quality and they were included to show how recogni-

tion accuracy degrades in uncontrollable conditions such as surveillance situations.

Individual and specific scene content properties such as over or under exposed faces

were not taken into consideration.

Furthermore, Aggarwal et al. [42] have identified that face recognition systems per-

30



formed differently on different datasets due to the dissimilar scene properties of the

facial imagery under each dataset. For example, results of performance comparison

between PCA and LDA techniques differ significantly among different databases

and no conclusion can be made on the best performing one [43]. LDA seems to

be handling variations in illumination better than PCA [66, 110]. These findings

underline the scene-dependent nature of face recognition algorithms. Scene depen-

dency can be overcome by characterisation and classification of scene properties

(see Section 3.5), which will allow specific scene content characteristics (e.g. an un-

der exposed or a low contrast scene) to be taken into consideration when analysing

results. Knowing exactly with what content characteristics a system fails can con-

tribute to further improvement of such systems.

The findings in automated face recognition using still imagery with JPEG [31]

and JPEG2000 [32] standards agree that compression does not adversely affect

automated face recognition performance [33–37]. In a study by the Face Recogni-

tion Vendor Test (FRVT) with JPEG compression [33], the findings have shown

no deteriorated performance with images compressed to 0.2bpp [33] and perfor-

mance deteriorated under 0.2bpp. The same study has even reported an increase

in performance of face recognition systems with compressed images to 0.8bpp and

0.4bpp [33]. These results are consistent with another investigation conducted by

Delac and co-authors [35, 37]. The compression amount of 0.2bpp in still photog-

raphy, is equivalent to a compression bitrate in video of around 208kbps (kilobits

per second) for a full D1 PAL resolution (720×576) at 25 frames per second (fps).

Bitrate denotes the number of bits conveyed/stored or processed/transmitted per

unit of time (see Section 3.1).

In one recognition study [113], the performance subspace techniques (including LDA

and PCA) was assessed with JPEG and JPEG2000 compression standards. The

probe facial images were compressed and the training/gallery images were in an

uncompressed format. The amount of compression ranged from 1bpp (light com-

pression) to 0.2bpp (high compression). The performance of the automated face
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recognition algorithms was assessed using the rank one recognition rate [38] iden-

tifying if the top match is correct. The investigators utilised 3 main categories of

probe images: i) different facial expressions, ii) different illumination conditions,

and iii) images taken at different points in time (i.e. to study the ageing effect).

The results have shown few correct recognition increases when the images were

lightly compressed but none of these increases have been found to be statistically

significant. Overall, they have found that higher compression (0.5, 0.3 and some-

times even 0.2bpp) is more suitable for recognition with datasets conveying differ-

ent expressions and illumination conditions. Whereas, lighter compression is more

appropriate for recognition of images taken at different points in time (age). Ad-

ditionally, they have found that the application of JPEG2000 standard had less of

an effect in the recognition rate than the JPEG standard.

The aforesaid increases in performance of face recognition algorithms with compres-

sion might have occurred due to the ability of compression algorithms to sharpen

edges when adopted in small amounts. For instance, Ford [114] investigated the be-

haviour of JPEG and fractal compression standards in relation to contrast. He has

found an increase of contrast when compressing at around 0.44bpp. His contrast

method included the capture of an edge and calculations of contrast ratios (known

as microscopic contrast for sharpness measurements, see Section 3.3.3) for both

the uncompressed original and its compressed versions. Both JPEG and fractal

compressions produced increase in contrast (JPEG 10% increase and fractal 1%).

JPEG compression derived a greater increase in contrast as the ringing artefact (i.e.

Gibb’s phenomenon) is occurring by either side of an edge resulting in a localised

increase on an edge and thus image contrast [115]. This is not the case for fractal

compression as the ringing artefact occurs only on one side of an edge.Furthermore,

Ford [114]] has found that the increase of compression amount results in reduction

of intensity levels (i.e. tone levels reduction).

Age, illumination and pose variations are the most challenging situations affecting

the performance of face recognition systems [36, 116]. Adler and Dembinsky [44]
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have investigated the relationship between human evaluators and face recognition

algorithms in relation to biometric image quality. Human evaluators had a strong

correlation with each other as were the face recognition algorithms. However, they

have found that derived biometric image quality scores do not correlate between

human perception and automated algorithms. Figure 2.8, presents an example

of facial images that have scored the best and worst in terms of image quality

between human evaluators and automated algorithms. No differences in relation to

image quality can be observed between humans and algorithms for the best category

images. For example, all images seem to be correctly exposed (see Figure 2.8). On

the other hand, some differences can be observed for the worst category images. For

example, the very dark image under the worst category for humans is not included

under the worst category for algorithms. Also, the algorithms have located 2 over

exposed faces in the worst category that are not included under the worst category

for humans.

Figure 2.8: An example of facial images presenting the best and worst image quality
scores for human evaluators and automated face recognition systems. From Adler
and Dembinsky [44].

2.1.3 Video analytics with the sterile zone scenario

Video analytics (VA) are computerised autonomous systems that analyse events

from camera views for a variety of real-world applications. For example, applications

relating to video surveillance, retail and transport industries [26,117]. One example
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of a retail application is the counting of people entering a store for statistical and

marketing purposes [118]. Generally, VA systems take as an input a visual scene

and produce as an output meaningful quantitative data and/or an alarm response.

For example, VA systems produce numbers in the people counting application and

alarms in an intruder detection application. VA systems are expected to work: a)

in uncontrollable environmental conditions, b) with unknown camera qualities, c)

continuously for long hours, and c) with little or no human interaction [25]. Such

systems have to adapt and learn from all the aforementioned variables in order to

provide meaningful outputs.

VA systems can operate in real time (i.e. incidence alert) and in post event analysis

(i.e. when incorporated within a recorder for event-based retrieval) [119]. VA

systems are automated tools that the police utilises to complete recognition tasks

from CCTV footage. In consideration of the vast amount of video CCTV data

[53, 54], the monotonous task of human visual examination of video data and the

effective impact that CCTV has on conviction of crimes [2], automated systems are

a beneficial tool to the police and perhaps the future of policing.

Some examples of surveillance applications include detection and reporting of: li-

cense number plates, abandoned objects, vehicle counting, single or multiple peo-

ple [120–122]. One of the few surveillance applications able for autonomous analy-

sis [26, 27] is the sterile zone (SZ) scenario from the iLIDS dataset [50], which will

be investigated in this thesis.

The SZ is a low complexity scenario, consisting of a fence (not to be trespassed)

and an area with grass (see Figure 2.9). The VA system needs to alarm when there

is an intruder entering the scene (an attack). The task of the SZ scenario is human

detection.

The current available machine vision techniques for the analysis of video content

are overwhelming in volume. Figure 2.10 illustrates a general work-flow of a video

analytics system. In reality, manufacturers of such systems might include a pre-
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Figure 2.9: The Sterile Zone scenario from the iLIDS dataset [50]. From left to
right, the camera to subject distance is far, medium and close.

processing stage before segmentation. This pre-processing stage might include ac-

tions such as frame format conversion, noise removal, decompression and object

enhancement (this is applicable also to face recognition systems) [123, 124]. Addi-

tionally, each stage in the work-flow in Figure 2.10 could consist of an integrated

set of techniques.

Figure 2.10: Video analytics software components. From Gagvani (2009) [25].

The following points summarise the stages of the work-flow in Figure 2.10:

• Segmentation. The segmentation stage normally assumes a static camera

and separates foreground pixels from background pixels. Background pixels

are subtracted. Further, foreground pixels are grouped into blobs [125, 126].

Blobs are connected sets of pixels. Blobs created due to rain, snow, wind,

water, shadows, reflections are called clutter and can be removed by apply-

ing clutter removal techniques [127]. Results from the segmentation stage are

labelled blobs and correspond to unique objects within the scene. Segmen-

tation performance is affected by clutter (due to illumination variations and
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environmental changes), contrast across the scene (due to time of day/season

and street lighting), low resolutions (caused by wide field lenses employed in

the surveillance industry) and perhaps compression (because of loss of high

frequency information and creation of artefacts) [25]. Compression standards

are developed around the sensitivity of the human eye in order to make com-

pression artefacts less or not visible to humans. Nevertheless, these ‘invisible’

artefacts might affect the performance of mathematical algorithms applied by

VA systems. Segmentation is under the object detection category. Paul et.

al. [128] present some available human detection techniques for surveillance

applications such as background subtraction, optical flow and spatio-temporal

filtering.

• Analysis for classification. This stage assigns a class label to each segmented

blob such as person or vehicle. The class label depends on the presence

of persistent and discriminant features over multiple frames. Tsuchiya and

Fujiyoshi [129] investigated the importance of various features for the classi-

fication of objects such as a vehicle, a single human, a human group and a

bike. The same researchers have proposed shape-based features, texture-based

features, and motion-based features that might be reliable for classification

of the aforesaid objects. Their proposed features are invariant to various

changes caused by environment, scaling, viewpoint and lighting. Viola and

Jones [130] have utilised a supervised learning approach using a large dataset

of visual features. In case of number plates, a recognition stage is applied

(same as face recognition) in order to match the captured number plate in

the scene with a database of registered number plates. Automated face recog-

nition is not considered to be within the realm of video analytics as some

control over illumination conditions and camera set up is commonly practised

(automated face recognition performs the best under controlled conditions).

In general, classification works well on distinguishing between humans and

vehicles but problems arise with more complex scenes when multiclass classi-

fication is required. Other issues include the poor extraction of features due
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to segmentation/object detection errors [25].

• Matching for tracking. This stage deals with the tracking of individual blobs

within successive frames by locating their position. Later, it contributes to

behaviour or activity interpretation. Numerous approaches to tracking ex-

ist depending on the context/environment of the scene [131]. Some of them

are based on points (objects within frames are represented by points), and/or

kernels (referring to the object shape and appearance), and/or silhouettes (es-

timating the object region within each frame). Tracking techniques face many

challenges as blobs might reveal different features within successive frames.

For example, a person moving in the scene might change pose and orienta-

tion. Some other challenges are occlusions (e.g. a person walking behind a

van or 2 people occluding one another) and frame rate reduction. Low frame

rate is considered equivalent to ‘abrupt motion’, or discontinuity by tracking

techniques [132]. Tracking techniques frequently use motion continuity and

their performance is consequently affected by low frame rate [133, 134]. In

Europe the standard video frame rate for television is 25 frames per second

(fps) (or 50i interlaced fields). Commonly, security systems record/transmit

video data at lower frame rates in order to satisfy storage and transmission

requirements.

• Activity recognition. Once blobs have been tracked then their motion can be

described with respect to the rest of the scene (e.g. activity of other blobs

and background). There are numerous models available for activity analysis

and recognition such as track trajectories and ground plane, which describe

activities such as fallen person, slow moving vehicles [135, 136]. Other ap-

proaches include kinetic models for human activities (e.g. crouching, bending

and jumping) [137].

The extended number of available video content analysis techniques is a proof of

the complicated nature of video analytics systems. They do not consist only of

few techniques but rather an integrated variety of techniques which are all inter-
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connected. This makes the testing of such systems difficult in terms of drawing

conclusions for the appropriateness of each utilised technique integrated in a com-

plete video analytics system (this is also applicable for face recognition systems).

Each individual technique has limitations. For example, feature-based detection

and tracking techniques have problems with feature visibility, scale changes and

low contrast. In comparison, motion-based techniques face problems with differen-

tiating fake motion from object motion, clutter, object to object and object to scene

occlusion [138]. Thus, it is really important that the performance of such systems is

evaluated with representative datasets of specific applications. The following Table

2.1 summarises the available datasets and benchmarking processes for system per-

formance evaluation. Performance results use ground truth data (e.g. information

on exact timing of an individual in the scene) and distance metrics (i.e. from the

ground truth information) [139].

Benchmark People Vehicle Animals Objects

PETS [140]

i - LIDS [50]

CAVIAR [141]

VACE [142]

TRECvid [143]

Daimlerchrysler [144]

PASCAL [145]

Table 2.1: Available benchmark datasets for the evaluation of video analytics algo-
rithms. Adapted from Tawiah (2010) [138].

Each of the datasets in Table 2.1 use their own distance or performance metrics.

Those metrics can be found in the references provided next to the name of each

dataset. In conclusion, performance evaluations either for a specific algorithmic

technique (e.g. tracking algorithm) or a complete video analytics systems (i.e. with

all the components/stages) is based on overall performance using large amounts of

footage and individual scene content properties are not taken into consideration. For

instance, often a ROC (Receiver Operating Characteristic) curve is used to visualise

results. ROC curves plot true positive rate (correct positive results) against false

positive rate (incorrect positive results)(see Figures 2.11 and 2.12 ).
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Little research has been done in the area of image compression and video analytics

systems, because currently only few scenarios are capable for autonomous analy-

sis [26]. However, this area is receiving a large amount of research investment, even

though it is still in its infancy [26]. In a world of rapid technological change, video

analytics will need to be more flexible and be suitable for use in post-event foren-

sics and with limited transmission bandwidth (e.g. through an Internet Protocol

network).

In one investigation [46] with the SZ scenario (or intruder detection) and H.264

/ MPEG-4 AVC video coding standard, the results have shown the performance

of the video analytics system to be affected at 220kbps, either by not detecting

an attack, or producing a slower alarm response time. That work investigated 11

attacks with only one VA system. In this thesis, a much greater amount of footage

(or attacks) and number of VA systems are investigated.

Another investigation by Poppe et. al. [45] has pointed out to the lack of research

in the area of video analytics systems with compressed footage. The same authors

have tested a background subtraction technique called Gaussian Mixture Models

(GMM) with the H.264/MPEG-4 AVC video coding standard applied using Con-

stant Bit Rate (CBR). CBR keeps the bitrate constant and varies other parameters

(e.g. quantisation parameter (QP)) based on scene content. Part of their results

is presented by the graphs in Figures 2.11 and 2.12, which correspond to different

scenarios. The performance of GMM was not only dependent on the amount of

compression (i.e. the scene in Figure 2.11 has been affected less by compression

than the scene in Figure 2.12) but also on scene content (i.e. difference overall

performance when comparing the originals of each scene). This is indicative of the

scene-dependent nature of computational algorithms.

In conclusion very low bitrates degrade performance (Figure 2.11) whereas high

bitrates have a positive effect on the performance (Figure 2.12). This might hap-

pen because compression can sometime act as a noise filter and thus make the

visual scene simpler for an algorithm. Also, at low amounts of compression (high
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bitrates) it has been previously reported that compression methods have the ability

to sharpen edges [114]. Again, the experiments by Poppe et. al. include only 2 video

scenes and a greater number of scenes would be required in order to understand the

scene dependency phenomenon in more detail.

Figure 2.11: GMM performance with compression and the PetsD2TeC2 sequence
(384x288). From Poppe et al. (2009) [45].

Figure 2.12: GMM performance with compression and the Indoor sequence
(320x240). From Poppe et al. (2009) [45].
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2.2 Discussion

Image quality for human recognition tasks relates to the visibility of useful informa-

tion. The capture of the useful information will be affected by the unconstrained

conditions commonly encountered by CCTV systems (e.g. illumination variations

and compression). The unconstrained conditions will affect human and automated

systems differently. The different behaviour between human and automated systems

will become apparent in Chapters 5 and 6. For instance, under exposed (low facial

lightness) scenes are affected by compression less than correctly exposed (medium

facial lightness) scenes for automated face recognition systems. Whereas, for the

human system the correctly exposed scenes are affected less by compression and

the under exposed scenes the most.

Adler and Dembinsky [44] have also identified the different behaviours among auto-

mated and human systems for face recognition tasks (see Figure 2.8). Furthermore,

Korshunov and Ooi [146] have identified that surveillance automated systems (face

detection, recognition and tracking) accept significantly more compression com-

pared to humans and have also pointed out to the need for alternative image quality

measures suitable for automated systems. Understanding how automated systems

behave with a variety of scene contents will contribute in identifying appropriate

image quality metrics. Furthermore, in Section 3.2.3, background research proves

that compression performance is also influenced by scene content properties. This

phenomenon is known as scene dependency. Scene dependency can be overcome by

characterisation and classification of scene content properties/characteristics (see

Section 3.5.1)

When the performance of a visual system (both for automated and human) is

assessed then, a number of factors need to be understood before applying a testing

methodology. Chapter 3 expands more on the factors connected to the aspects of

image quality and compression.
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CHAPTER 3

Video compression and image quality for CCTV imagery

This chapter presents the aspects of image quality and video compression that may

affect the completion of police tasks from Closed-Circuit Television (CCTV) footage.

Visual police systems, either automated (i.e. automated face recognition) or human

operatives, can be assessed with compression using controlled footage in terms of

image quality attributes and scene content properties. CCTV imagery is used for

the completion of police tasks, which have been described in Chapter 2. The fol-

lowing sections provide information on video compression for both ‘standard’ and

CCTV industries. Additionally, the definitions of image quality are discussed to-

gether with physical image quality attributes (i.e. attributes that can be measured

objectively and also subjectively such as tone reproduction) and psychological image

quality attributes (i.e. attributes that are only measured subjectively, such as image

usefulness). The methods of collection and quantification of observers’ responses in

psychophysical investigations are explained, together with the factors that affect such

procedures. Information on scene content characterisation and scene classification

is provided.
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3.1 Video fundamentals

Video is a presentation of visual imagery using sequential still images called frames.

When this visual imagery is presented between 24 and 60 frames per second (fps),

the illusion of motion is created [147]. Video frames use either progressive, or in-

terlaced scanning. Scanning in this context refers to the way a system displays,

stores, or transmits video data. For example, LCD (Liquid Crystal Display) com-

puter monitors use progressive scanning and CRT (Cathode Ray Tube) television

displays use interlaced scanning. In progressive scanning a frame conveys the com-

plete set of even and odd lines of an image (see left hand side illustration in Figure

3.1). When the video uses interlaced scanning, a frame consists of 2 fields captured

at different times in a successive order (see right hand side illustration in Figure

3.1). One field conveys the even lines and the next one the odd lines. Although,

the transmission signal for a standard definition (SD) video field is between 200 to

300 lines, the final display is between 500 to 600 lines [148]. Moreover, a progressive

scan video signal consists of twice the amount of information from an interlaced scan

video signal. Figure 3.2, illustrates an example of how interlaced video appears on

an LCD. The interlace effect on the LCD distorts the visual information.

Figure 3.1: Progressive and interlaced scanning. From Austerberry (2005) [148].
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Figure 3.2: The interlace effect. The image on the left illustrates the interlaced
effect on an LCD display and the image on the right how the image appears when
1 of the fields is removed.

At the acquisition stage, the camera produces signals of the primary colours red,

green and blue (RGB). These signals are further processed for transmission and

storage. About 3 main colour systems have been standardised in order to main-

tain compatibility for transmission and storage. These are Phase Alternating Line

(PAL), National Television System Committee (NTSC) and Sequentiel Couleur á

Memoire (SECAM) [149].

In many European countries, including the United Kingdom (UK), PAL colour en-

coding system is used to broadcast television at 720×576 interlaced lines and 50

fields per second or 25fps (frames per second). PAL carries Y’ U’ V’ components,

where Y’ is the luminance and U’ and V’ carry the chromatic information. The

luminance bandwidth in the UK is 5.5 MHz (megahertz) and for each colour com-

ponent the bandwidth is 1.5 MHz. This difference in bandwidths is due to the

greater sensitivity of the human eye to luminance changes compared with chro-

maticity [150].

The digitisation process of the analogue video signal involves filtering, sampling and

quantisation. Filtering is used to eliminate aliasing artefacts prior to sampling. The

process of sampling is the conversion of the continuous signal to a discrete signal

(e.g. to horizontal and vertical image coordinates). Temporal sampling is used as

a third dimension, in addition to horizontal and vertical sampling (see Figure 3.3).

Quantisation involves mapping the amplitude of the sample values to a smaller set
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of points. The ITU Rec. BT 601 specifies that standard definition television frames

consist of 720 lines of non-square pixels. This is normally referred to as the pixel

aspect ratio, which it is not square for video.

Figure 3.3: Spatio-temporal domains of video. Sampling in 3 axes: horizontal,
vertical and temporal. From Poynton (2003) [147].

Storage of ‘uncompressed’ video data demands a considerable amount of space.

For instance, a recording of PAL ’uncompressed’ 8-bit footage for 5 minutes could

occupy 1.22GB (Gigabytes) of storage. Bitrate refers to the number of bits con-

veyed/stored or processed/transmitted per unit of time. CCTV systems record /

transmit video data continuously for days and as a consequence the original ’un-

compressed’ data are subjected to compression in order to enable efficient storage

and transmission. Video compression is used to reduce data that are produced by

video sources (e.g. video cameras). The methods utilised for data reduction include

frame rate reduction and re-coding of the initial information within a video signal.

The latter is referred to as video compression.

In Europe the standard frame rate for television is 25fps, although security sys-

tems commonly record at 5fps and below in order to reduce storage requirements.

However, reducing the standard frame rate increases the possibility of missing im-

portant information from the initial video sequence. Essentially, if a suspect’s face

appears in 3 frames within a second when recording at 25fps, the reduction in the

recording frame rate to 1fps will result in a significant reduction in the probability

of obtaining 1 of the 3 frames that include the face. Additionally, as it has been

mentioned in Section 2.1.3, low frame rate is considered equivalent to ‘abrupt mo-

tion’, or discontinuity by tracking techniques often incorporated within automated
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systems (face recognition and automated systems) [132–134].

Video compression in the security industry employs proprietary formats based on

industry standard compression algorithms. There are 2 main ways in which data

are compressed in the CCTV industry: a) compression on storage (e.g. Digital

Video Recorder-DVR), and b) compression on transmission (e.g. Internet Protocol-

IP cameras). Currently, the most popular proprietary compression algorithms in

the security industry are based on the H.264/AVC and JPEG standards for both

transmission and storage [21–23].

Low bitrates are favoured in the CCTV industry, since they allow more hours of

recording and lower the cost of the system/transmission. However, they compromise

the usefulness of the recorded imagery. The H.264/AVC compression algorithm was

chosen for investigation in this thesis. Section 3.2.1 provides a brief description of

the H.264/AVC standard.

ITU-T and ISO / IEC JTC 1 have produced joint video standards (such as H.264 /

AVC), which specify only the decoding part in order to ensure interoperability and

syntax capability between different technologies implementing the standard. This

allows developers of compression algorithms to optimise compression implementa-

tions based on specific applications, to trade-off costs, efficiency in terms of image

quality, speed, error resilience and hardware requirements. Image quality is not

specified in the standards and different implementations of the same encoder will

produce different ‘compressed qualities’.

3.2 Video compression

Video compression algorithms use techniques, such as predictive coding, to ex-

ploit the correlation of the video signal between neighbouring pixels and successive

frames [151–153]. Predictive coding is used for both lossless and lossy compression,

which are the 2 types of compression [31, 154]. The ultimate aim of any com-

pression algorithm is to represent the initial captured visual information using less
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data.

When data is subjected to lossless compression, the data that represent the sequence

of images (video) are reduced without any loss of information [155], whereas in

lossy compression information is lost. Lossy compression will be the focus of this

thesis, since it is the one used in the security industry for storage and transmission

purposes. Also, with lossy compression very low bitrates can be achieved whilst

this is not the case for lossless compression. Lossy compression removes mainly

invisible information at lighter compression levels [156]. The removal of this invisible

information will not have a consequence to human observers but might have a

consequence to automated algorithms. As compression levels increase, it starts

removing visible information.

Lossy compression is a distortion process that can potentially affect the visible in-

formation in video [157] and as a consequence the image usefulness of the CCTV

footage to complete a police task. In video compression, 2 main categories of tech-

niques are used. These are the predictive coding and transform coding techniques,

which are described briefly by the following paragraphs.

• Predictive coding techniques: When predictive coding (or hybrid predictive

coding) is applied, decorrelation occurs both spatially (within an individ-

ual frame known as intra frame predictive coding) and temporarily (within

successive frames known as inter frame predictive coding). Predictive cod-

ing techniques assume correlation of pixels within individual and successive

frames (i.e. cross correlation) [158]. Commonly, the changes in video content

occur due to changes of objects motion. The background often stays the same

within successive frames. This is used in motion compensation (MC) tech-

niques in order to achieve high compression gains [153, 159]. Other motion

compensation techniques include: global motion compensation (prediction

for global motion on the entire frame caused by panning, titling and zoom-

ing) [160], stripe panoramic (the content of the background is represented by

a single still image in the sequence, which is transmitted separately from the
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foreground object) [158], segmentation (image is separated into segments of

coherent regions, textures and objects, which are later coded and prediction

occurs on the motion of a segment between successive frames) [153, 161] and

semantic segmentation (object based segmentation for example people and

the use of 2D/3D object models for the coding) [162,163].

• Transform Coding techniques: There are 2 main methods under this category,

the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform

(DWT). The DCT divides an image into (usually) 8×8 pixel blocks that are

later coded individually; the method introduces quantisation artefacts (see

Section 3.2.2). DCT is used by lossy compression algorithms such as JPEG,

MPEG, and ITU standards. The DWT technique divides an image into low

pass and high pass components that are later filtered using wave functions of

different shapes, producing smoother and fuzzier compressed images [158,164].

Often, video compression techniques are used in combination. For example MPEG

and ITU-T video standards are known for employing hybrid techniques such as

block-based MC/DCT techniques [153, 159]. Quantification of the amount of data

reduction obtained from applying a compression algorithm is often represented by

the compression ratio. The compression ratio is simply a ratio of the uncompressed

size (or data rate) to the compressed size (or data rate).

The aforementioned techniques have been described in order to emphasise the com-

plicated nature of video compression algorithms. The following Section 3.2.1 pro-

vides a more specific explanation of the H.264/AVC compression algorithm that

has been employed in the experimental part of this thesis.

3.2.1 The H.264/AVC Compression Standard

H.264 / AVC is also known as MPEG-4 part 10, or Advanced Video Coding (AVC).

The H.264/AVC compression standard is the output of the collaboration between

the International Organization for Standardisation’s MPEG group (ISO/IEC JTC

48



1 / SC29 / WG11) and the International Telecommunications Union’s video coding

experts group (VCEG, ITU-T / SG16/Q.6) [24]. H.264 / AVC is a hybrid video

encoder, exploiting both spatial and temporal redundancy and uses a 4×4 integer

transfer (an approximation of the 4×4 DCT). H.264 / AVC produces blocking

artefacts that become more visible at low bitrates.

Figures 3.4 and 3.5, illustrate the basic encoding and decoding hybrid structure cor-

respondingly of H.264/AVC. In the encoding part, the first frame of the sequence

is split into macroblocks and is coded in intra mode with the use of spatial predic-

tions. For the rest of the successive frames, inter frame coding techniques are used.

The residual difference between the original and its prediction is transformed by a

frequency transform. The coefficients of the transform are later scaled, quantised,

entropy coded and finally transmitted together with the predictions [165].

Figure 3.4: General encoding structure of H.264/AVC. From Ostermann et al.
(2004) [166].

In the decoder part, the quantised transform coefficients are inversed-transformed

and added to the predictions. After deblocking filtering, the output is a recon-

structed macroblock. Macroblocs are stored in a memory in a raster scan order

(ordering of pixels by rows) [166] in order to allow prediction of subsequent en-

coded macroblocks.

Implementation encoders such as Joint Model (JM) and the Fast Forward Moving

Pictures Expert Group (FFpmeg) are verification models used for compliance test-

ing of ‘industrial’ implementations. These are often used by the scientific commu-
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Figure 3.5: General decoding structure of H.264/AVC. From Ostermann et al. [166].

nity; they allow the setting of over 50 parameters, such as quantisation parameters,

I (i.e. inter frame), P (i.e. predicted frame) and B (i.e. bidirectionally predicted

frame) frames and the target bitrate. These verification models tend to apply ‘high

quality’ compressions whilst encoders in the consumer and CCTV industry apply

‘low quality’ compressions.

3.2.2 Compression artefacts

Compression techniques rely on the ‘continuity’ of a signal. For instance, they use

information from neighbouring pixels and successive frames. When the signal is

added with an artefact, such as noise (which might come from sensor, transducer

and analogue to digital processes), then the compressor will require higher bitrates

(less compression) and bit depth to compensate for that ‘discontinuation’ [157].

There are several types of artefacts, depending on the degree of compression. The

most recurrent artefacts, in particular for compression algorithms using the discrete

cosine transform (DCT) technique, are listed below:

• Blocking artefacts. The block and/or macroblock structures become more

visible as compression ratios increase. Blocking is more visible in flat areas

within imagery, as the visual human system is very sensitive to small bright-

ness changes. Nevertheless, blocks tend to affect high spatial frequency image

information (busy areas). Furthermore, blocking will be more noticeable when
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a sequence consists of rapidly moving objects. For instance, intra frame cod-

ing might result in trails left behind and the object might be moving over

blocked patterns (see Figure 3.6) [167].

• Decreased colour bit depth and colour bleeding. A smaller palette of colours

will be available for higher compression ratios. Colour bleeding is caused by

the suppression of high spatial frequency information and it is more dominant

for wavelet-based compression algorithms such as JPEG2000.

• Mosquito noise or ringing. The high spatial frequencies on sharp edges are

quantised more coarsely than the low frequencies. After quantisation the

edges appear to have a pattern of blurred dots (see Figure 3.6).

Figure 3.6: Example of blocking and mosquito artefacts. The blocking artefacts are
more visible on the flat areas and mosquito artefacts around the edges of objects
within the image.

3.2.3 Factors affecting compression performance

The following factors have been identified to influence compression performance:

1. Content of the scene. Compression performance is highly dependent on scene

content [29,30,47,48]. In video, scenes with different motion properties (tem-

poral differences), regions (spatial differences) and combinations of different

spatio-temporal properties will require different bit-budgets leading to differ-
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ent levels of compression. Figure 3.7 provides an example of the H.264/AVC

encoder performance under different illumination conditions. The bright (at

the bottom) and dark (at the top) scenes are more sensitive to compression

in comparison to the correctly exposed scene in the middle.

Figure 3.7: Example of compressed facial images. As the bitrates decrease the
useful information decreases. Defining acceptable compression ratios depends on
the original image and observers’ acceptability standards. For instance, the bright
(over exposed scene at the bottom) and dark (under exposed scene at the top) scenes
are more susceptible to compression. They require lighter compression to achieve
‘acceptable’ responses from observers, in comparison to the correctly exposed scene
(in the middle).

2. Compression Algorithm, its Properties and Settings. This can be whether

the compression algorithm is based on Discrete Cosine Transform (DCT)

or Discrete Wavelet Transform (DWT). DCT and DWT produce different

types of artefacts, which appear at different areas (regions) within the im-

agery [48, 168]. Other settings and properties include intra-coding or inter-

coding, quantisation parameters, reference frame selection ad the use of post-

processing tools.
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3.3 Image Quality Definitions

Image quality is a multidimensional and multidisciplinary domain, where (amongst

others) observer judgements are used in the design and evaluation of imaging sys-

tems [169]. Images have different applications. Images that are meant for consumer

purposes prioritise quality in terms of aesthetics (i.e. to satisfy visually the ob-

servers), while those used in scientific and industrial applications are aimed for

information extraction and completion of tasks. In security, images are used for

recognition and identification tasks.

Image quality, in its strict definition, is considered as being subjective since humans

are the ultimate judges and end users of images. A number of well-known imaging

scientists have defined image quality. Engeldum [170] has defined image quality as

“the integrated set of perceptions of the overall degree of excellence of an image”,

Jacobson as “the subjective impression formed in the mind of the observer of the

degree of excellence exhibited by an image” and Triantaphillidou [171] as “the sub-

jective impression of goodness the image conveys”. All these descriptions emphasise

the importance of the observers’ perception about the degree of subjective value of

an image.

Perceptual image quality will be affected by the observers’ memory and expecta-

tions (e.g. of colour reproduction); preferences (in terms of contrast, colourfulness

and sharpness/blurriness) and cultural background. For instance, in one investiga-

tion the observers preferred a slightly higher average chroma than the unprocessed

original [172]. Furthermore, research has shown that perceptual image quality is

strongly correlated with naturalness, meaning that image naturalness is an impor-

tant image attribute that influences perceived image quality [172–174]. Perceived

image naturalness is influenced by the expectations and experiences the observers

have in the world [175]. In this context, naturalness does not correspond to the exact

representation of a scene but rather the memorised realities by the observers [172].

These memorised realities will differ among different observers. For example, it has

been shown that people have strong positive associations with the colour of their
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national flag [176]. Also, meanings and perceptions of colours differ among different

cultures [177].

Image quality can be measured by applying both objective (quality metrics) and

subjective (i.e. human investigations) approaches. Most desirable, objective ap-

proaches should agree with results obtained from subjective approaches. Subjective

approaches are described in detail in Section 3.4. The following sections present a

combination of subjective and objective approaches.

Moreover, the term image quality is used loosely often by non-experts to describe

other image aspects that are related to image quality. For example, Image dis-

tortion, image fidelity and image quality are unique factors that evaluate different

properties of images and imaging systems (see Section 3.3.1).

3.3.1 Distortion, fidelity and quality

Image distortion, image fidelity and image quality are important factors for the

evaluation of images and imaging systems. In image distortion measures, the origi-

nal (distortion free) image is normally available. Image distortion measures provide

numerical differences between an original and a reproduced, or processed image.

For example, distortion is measured by taking differences in pixel values. Distor-

tion metrics, such as the mean square error (MSE) [178], root mean square error

(RMSE), and signal-to-noise-ratio (SNR) [179], are often used to assess the effects

of image processing methods (e.g. compression). More specialised distortion met-

rics exist for the measurement of colorimetric distortion, such as ∆E∗ab that can be

derived from the CIELAB colour space (i.e. see Section 3.3.4) and ∆E∗00 (i.e. this

is a CIEDE2000 formula based on the CIELAB colour space) [180]. The aforesaid

distortion metrics do not correlate with subjective results as they fail to predict sub-

jective image quality across images with varying content properties such as edges,

textured regions and luminance variations (i.e. the spatial structure of the image

is not considered) [181–183].
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However, distortion methods are still used to assess the level of information loss

from image processes and more specifically for compression. For instance, peak-

signal-to-noise-ratio (PSNR) is still often used in video compression in order to

determine the level of compression for different scene contents [184,185]. Figure 3.8

illustrates an example of PSNR plotted against the bitrate (in kilobits per second)

of a scene with a face (the face is in motion) on a uniform static background. As

it is expected, the PSNR is larger when only the face area is considered alone than

when the entire image/frame is considered.

Figure 3.8: PSNR example of compressed sequence. Example of a) a video footage
with a moving face on a static background (left image) and b) the PSNR values
plotted against a range of kilobits per second for the face alone and the entire
image/frame (right image). From Eisert et al. (2000) [162].

Image fidelity is concerned with the ability of a distortion process to reproduce

an image without any visually visible distortion [186]. For example, when there is

not a visible difference between an original image and its compressed version, then

the compression method applied is considered to be visually lossless [187]. Fidelity

measurements are mainly subjective and can be utilised to determine minimum

visual differences (i.e. they determine relative thresholds) (see Section 3.4.2). They

effectively identify threshold levels, where the visual changes are small. Objective

fidelity metrics exist too, and in great numbers, but they are valid only if they are

shown repeatedly to correlate with visual results. These are often very complicated

and designed for specific applications [184]. Often, subjective results from fidelity

measurements are compared with results from image distortion metrics.
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Image fidelity does not always correlate with high image quality. For example, a

slightly brighter reproduction (by adjusting the brightness levels) of a dark original

will reveal more information and as a result increase the perceived image quality of

that image for police tasks (see Figure 3.9). It is unknown if a brighter reproduction

of a dark original will improve performance of automated systems. For example,

performance of automated face recognition systems does improve when applying

illumination normalisation techniques for optimising facial images [188–193]. How-

ever, as performance of automated systems is assessed from large datasets without

specifying individual scene content properties, it is unknown how these face nor-

malisation illumination techniques influence performance based on specific scene

content attributes (e.g. over and/or under exposed scenes).

Figure 3.9: Example of a) an original image from a camcorder (left image) and b)
a manipulated brighter version of the original (right image). Image b reveals more
information.

Fidelity and distortion measures frequently require the presence of the original

image, which the distorted (or processed) version is compared against [194]. In

image quality measurements the original may, or may not be present, depending

on the imaging application. For instance, a reference original image does not exist

when assessing the reproduced quality of a camera lens. In this case, the image

quality of the lens is evaluated by judging resulted images, either using subjective

measures, or image quality metrics (objective measures that are shown to correlate

with subjective results) [114,195–198].
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3.3.2 Fidelity, Usefulness and Naturalness

The term image quality, as discussed above, is often considered a general term

due to the multiple applications and the broad nature and disciplines relating to

imaging. According to Bilissi [20] “observers take into account the purpose, or

context for which the image is being used and therefore the same image may be

judged differently by different observers, or under different context and conditions”.

For example, a portrait would be judged differently in the arts context (i.e. im-

age quality in terms of aesthetics) from police applications (i.e. image quality

in terms of visibility of useful facial information that could lead to recognition).

The FUN model (FUN standing for Fidelity, Usefulness and Naturalness) by Yen-

drikhovski [18] incorporates the overall quality of an image as a weighted sum of 3

FUN cognitive dimensions (see Figure 3.10). The FUN dimensions are under the

category of visuo-cognitive attributes (or psychological image attributes) and are

only evaluated subjectively [199].

Figure 3.10: The FUN model. From Yendrikhovskij (2002) [18].

Fidelity according to Yendrikhovskij is defined as “the degree of apparent match

of the reproduced image with the external reference” [18] and relates to “how ac-

curately we can render an image, without any visible distortion of information

loss” [186]. This attribute agrees with the general description of image fidelity in

Section 3.3.1.

Usefulness in the FUN model is defined as “the degree of the apparent suitability

of the reproduced image to satisfy the corresponding task” [18, 200]. Subjective
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image quality for security systems has been described by ITUT P.912 [14] as “the

usefulness of the video material to complete a task and not the quality of the

video itself”. The same definition of image quality is also employed for automated

systems [16]. Usefulness is one of the most important attributes for this project

because the aim of CCTV imagery is the maintenance of the relevant information

for the completion of police tasks (identification/recognition of person, or object,

or action).

Naturalness is defined as “the degree of apparent match between the reproduced

image and internal reference” [18]. For example, the naturalness of colours to

dichromats (people with 2 kinds of cone cells) differs from trichromats (people with

3 kinds of cone cells) [201]. Most people are trichromats.

The use of all the 3 FUN attributes to evaluate overall image quality might not be

relevant for a specific application. For example, in surveillance situations, contrast

enhancement manipulation techniques might be used in order to enhance visual

detail. This could increase the usefulness and as a consequence decrease the natu-

ralness and fidelity. Often, the FUN attributes are evaluated in isolation.

The image quality of security imagery is better fitted under the image usefulness

dimension (or attribute). As it has been mentioned in Chapter 2, the human users

of security footage (i.e. police staff and specialists) examine in detail the relevant

information within the footage. So, image usefulness for CCTV footage is based

on the visibility of information that could lead to recognition (e.g. person, action,

object). It is not necessarily affected by any artefacts that may disturb the visual

image quality (decrease fidelity), as long as these artefacts do not eliminate the

relevant information. An analogue of this concept is fingerprint recognition. It has

been shown that compression artefacts that are visible in a compressed fingerprint

image do not render the image less useful, or of lesser quality than an ’uncompressed’

original, as long as the artefacts have not affected important fingerprint ridges that

are used in recognition [202].
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The visibility of useful information can be eliminated by numerous parameters that

influence the initial captured information from the CCTV system and later by

storage (or transmission). Some of the most important ones are listed below:

• Object/subject to be recognised in the scene (i.e. clothing, face, vehicle and

knife).

• Subject to camera distance (e.g. a close distance may allow facial recognition

and a further away distance may allow gait or clothing recognition).

• Angle of camera to the subject (e.g. frontal face view, tilted face view).

• Illumination conditions (i.e. intensity, colour, angle of illumination).

• System performance (i.e. sensor, lens, image processing).

• Recording/transmission (i.e. spatial and temporal compression).

The same term of image usefulness (or utility) is also rightfully employed for auto-

mated systems [16,17] as they complete recognition tasks. However, the usefulness

of an imagery for automated recognition systems should be derived based on its

performance (hit and miss). This becomes more complicated as recognition algo-

rithms do not work the same as they incorporate different techniques. For example,

a certain face recognition algorithm might be designed to be insensitive to illumina-

tion changes, whereas such illumination changes might affect severely another face

recognition algorithm.

Commonly automated systems are assessed based on correct recognition/detection

with ground truth data and with the use of large datasets with minimum scene

content classification. For example, a large facial dataset might be categorised to

smaller datasets that include illumination variation, differences in ages and more;

individual scene content properties are not taken into consideration (see Section

2.1.2). Knowledge of subjective investigations can provide another perspective of

testing and/or analysing automated systems. For instance, in Chapter 5 the in-

vestigation relates to automated face recognition systems and a testing approach

similar to the human fidelity investigations has been implemented (i.e. compressed
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versions of scenes are compared against their ‘uncompressed’ reference).

3.3.3 Basic image attributes

Table 3.1 presents 5 basic image quality attributes that need to be considered when

conducting investigations with imagery as they affect the visibility of content infor-

mation. The basic image attributes can be measured objectively and subjectively

(i.e. human investigations). These are tone, colour, resolution, sharpness and noise.

Additionally, Table 3.1 provides the visual description of each basic image attribute

together with their associated objective measures. These attributes are effectively

related to the performance of imaging systems (e.g. colour reproduction of a sen-

sor) or processes (e.g. sharpening filters) and their derived measures are affected

differently by different scene contents. All the basic image attributes are explained

briefly in the following paragraphs.

Image Attribute Visual Description Objective Measures

Tone Macroscopic contrast or
reproduction of inten-
sity

Characteristic curve, density
differences, transfer function
and OECF, contrast, gamma,
histogram, dynamic range.

Colour Differences in lightness,
chrominance and hue

Spectral power distribution,
CIE tristimulus values, colour
appearance values, CIE colour
differences.

Resolution Discrimination of fine
detail

Resolving power, imaging cell,
limited resolution.

Sharpness Microscopic contrast or
reproduction of edges

Acutance, ESF, PSF, LSF,
MTF .

Noise Random and non-
random spurious
information

Granularity, noise power spec-
trum, autocorrelation func-
tion, total variance (σ2TOTAL).

Table 3.1: The 5 basic image quality attributes with their associated visual descrip-
tion and objective measures, adopted from Ford and Triantaphillidou [114,199].

Tone is concerned with the reproduction of intensities or scene luminance (e.g. re-

production to a display monitor). It can be quantified from observers judgements

(e.g. subjective impression of brightness and contrast reproduction) and from ob-

jective measures (e.g. luminance differences between original and reproduced im-

ages). Tone reproduction is considered the most important image attribute, since
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the achromatic visual channel conveys most of the visual information [203]. The

objective tone reproduction of an imaging system is described by a transfer func-

tion [204] (known as the characteristic curve in analogue imaging systems [205]), in

which the output intensity values are plotted as a function of input intensities. From

such curves, a measure of global contrast, known as gamma, can be deduced [206].

Tone and contrast (i.e. the difference of intensities between 2 different areas in an

image) are inter-related [207]. For example, perceived image contrast depends on

the luminance and spatial content structure of an image [208].

Colour is defined as a visual sensation resulting from the interaction of 3 compo-

nents: the light source, the object itself and the human visual system [209]. There

are 3 main perceptual attributes that may describe the perception of colour. These

perceptual attributes are hue (i.e. “the human sensation according to which an

area appears to be similar to one, or to proportions of two, of the perceived colours

red, yellow, green and blue” [210]), brightness (i.e. an area that appears to emit

more or less light) and colourfulness (i.e. the perceived area appears to be more,

or less chromatic) [211]. Objective colour reproduction is traditionally measured

with colorimetry. Colorimetry is based on the theory of trichomatic vision and the

spectral sensitivity of the cones of the human visual system (HVS) [212,213]. Often,

the colour reproduction is assessed using colour difference models such as CIELAB

∆E∗ab, CIELUV ∆E∗uv, CIEDE2000, iCAM, and iCAM06 [214–216].

Sharpness is defined as the ability of the imaging system to accurately reproduce

edges. The subjective impression of sharpness depends on the reproduction of a

physical edge and contrast [114]. Image contrast has been defined as the percep-

tion of spatial variation [217] such as a text on a uniform background. When the

spatial variation is high (e.g. black and white shades) than the image will be per-

ceived sharper from an image of low spatial variation (e.g. mid grey shades). The

most common objective method of sharpness measurement is deriving the system’s

Modulation Transfer Function (MTF) [218]. The MTF describes the contrast repro-

duction as a function of all available spatial frequencies [219]. MTF measurements
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involve the capture of test charts containing sine waves, square waves, slated edges

and dead leaves [220–224]. Other methods of measurement involve the system’s

point spread function (PSF), or the Line Spread Function (LSF), which are both

related to the MTF [225]. Sharpness measurements are discussed in more detail in

Section 3.3.5.

Resolution is concerned with the reproduction of fine detail and is affected by tone,

sharpness, contrast and noise [114, 226]. In analogue imaging, resolution is com-

monly measured using test charts of line/bar pairs (i.e. known as the resolving

power measure). In digital imaging, the system’s effective resolution can be de-

duced from the measured MTF [227]. Digital image resolution, on the other hand,

is expressed by the number of pixels in the horizontal and vertical dimensions. For

example, a digital sensor of 3000 by 4000 pixels (i.e. in terms of number of photo-

sites), or a displayed image of 600 by 400 pixels. This should not be confused with

the ‘true’ effective resolution of the imaging system, which relates to the smallest

image point the system can produce. Another method of measuring system res-

olution is the PSF (i.e. the response of an imaging system to a narrow point of

light).

Image noise is defined as the “unwanted random fluctuation of light intensity” in an

image [228]. Noise obscures image detail and it is more visible in spatially uniform

areas (i.e. a cloudless blue sky). Noise can be introduced by the imaging system,

processes and the signal itself (input intensity). In digital imaging, electronic, pho-

toelectronic and quantisation are common noise sources. In subjective evaluations,

noise is defined as graininess (i.e. for analogue systems), or noisiness. Objective

measures of noise involve statistical descriptors, such as the standard deviation or

the variance, calculated from an imaged uniform field [229]. Furthermore, digital

image artefacts are considered ‘noise’ as they are the products of the system and

are not present in the imaged signal [199]. See Section 3.2.2 for more details on

digital artefacts.

Sections 3.3.4 and 3.3.5 provide further details on the methods used in the exper-
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imental parts of this thesis for colour conversions, sharpness and resolution mea-

surements.

3.3.4 Colour: CIELAB space

The International Commission on Illumination (CIE from its French title, the Com-

mission Internationale de l ′ Eclairage) organisation introduced in 1976 the CIE

L*a*b* or CIELAB colour space [230, 231]. CIELAB is a perceptually (nearly)

uniform space, which is calculated from the tristimulus values (see Equations 3.1 to

3.3) [230, 232] of a colour and takes account the tristimulus values of the reference

white (e.g. illumination). It is a device-independent colour space, meaning that

it is not tied to a particular imaging device. Perceptually uniform means that nu-

merical magnitudes correspond to proportional perceptual magnitudes all over the

colour space. The CIELAB space has a uniform lightness scale coordinate, L*, and

2 colour coordinates, a* and b* (see Figure 3.11). L* values range from 100 (white)

to 0 (black). Both a* and b* coordinates are bounded by the CIE XYZ spectrum

locus and represent redness-greenness and yellowness-blueness respectively.

The L*a*b* coordinates are calculated from CIE 1931 X, Y, Z tristimulus values,

which are in turn calculated using the CIE 1931 x, y, z colour matching functions.

The trichromatic process of the spectral sensitivity of the cones in the human visual

system is represented by the colour matching functions CIE 1931 x, y, z [230, 232].

The CIE 1931 X, Y, Z tristimulus values are calculated by the following equa-

tions:

X = K
∫ 780

340
R(λ)I(λ)x(λ)dλ (3.1)

Y = K
∫ 780

340
R(λ)I(λ)y(λ)dλ (3.2)
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Figure 3.11: The CIELAB colour space. From Fairchild (2005) [233].

Z = K
∫ 780

340
R(λ)I(λ)z(λ)dλ (3.3)

K =
1∫ 780

340 I(λ)y(λ)dλ
(3.4)

where 340 to 780 nm represent the wavelength range, R is the spectral illuminance,

reflectance (or transmittance) of an object, λ is the wavelength of the equivalent

monochromatic light, and I is the relative (or absolute) spectral power distribution

of the illuminant. Further, the CIE L*a*b* coordinates are calculated by:

L∗ = 116
(
Y

Yn

) 1
3

− 16, for
Y

Yn
> 0.008856 (3.5)

a∗ = 500

[ (
X

Xn

) 1
3

−
(
Y

Yn

) 1
3

]
, for

X

Xn

&
Y

Yn
> 0.008856 (3.6)
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b∗ = 200

[ (
Y

Yn

) 1
3

−
(
Z

Zn

) 1
3

]
, for

Z

Zn

&
Y

Yn
> 0.008856 (3.7)

L∗ = 903.3
(
Y

Yn

)
, for

Y

Yn
≤ 0.008856 (3.8)

a∗ = 500

[
7.787

(
X

Xn

)
+

16

116

]
−
[
7.787

(
Y

Yn

)
+

16

116

]
, for

X

Xn

&
Y

Yn
≤ 0.008856 (3.9)

b∗ = 200

[
7.787

(
Y

Yn

)
+

16

116

]
−
[
7.787

(
Z

Zn

)
+

16

116

]
, for

Z

Zn

&
Y

Yn
≤ 0.008856 (3.10)

where X, Y and Z are the tristimulus values of the colour and Xn ,Yn and Zn are

the tristimulus values of the reference white.

In this thesis the L* value was used to derive an objective measure for characteris-

ing the ‘lightness properties’ of scenes with faces by measuring skin lightness (L* ).

Lightness is a relative scale that ranges from 0 (black) to 100 (white). Relative scales

are useful when the absolute reproduction is impractical. The CIELAB space was

chosen over other colour spaces (e.g. RGB non-perceptual and device-dependent

colour space) mainly because it provides a perceptual scale for lightness. The al-

ternative would have been to utilise luminance Y = 0.2126R+ 0.7152G+ 0.0722B.

More details on the characterisation method are provided in Section 3.5.

3.3.5 Sharpness: MTF evaluation

The modulation transfer function (MTF) is used to assess a system’s sharpness; it

describes the reproduction of contrast with respect to spatial frequency [219]. It can

be applied to colour imaging by treating luminance and colour channels in isolation.

The common methods for measuring MTF were briefly mentioned in Section 3.3.3.
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In this thesis sharpness measurements of video imaging systems (see Figure 4.1 in

Chapter 4) were obtained by employing an adaptation of the edge method, which is

specifically for digital images. MTF is more applicable for analogue systems.

The edge method uses a low contrast edge. It is based on the mathematical concept

that a ‘perfect edge’ contains an infinite number of frequencies. Results derived from

this method are noisy and often the MTF is overestimated [228]. The work-flow for

obtaining the MTF from edges (see Figure 3.12) involves the capture of a ‘perfect’

edge to produce the Edge Spread Function (ESF, is obtained from scanning, or

sampling the edge across); the ESF is differentiated to produce the Line Spread

Function (LSF). The MTF is the modulus of the Fourier transform of the LSF

(normalised to 1 at ω = 0) [219].

Figure 3.12: The work flow of obtaining the MTF. From Jacobson et al. (2000) [219].

In digital systems, an image of an edge needs to be aligned with the pixel array,

which makes it hard, if not impossible, to obtain accurate MTF measures. The

traditional edge method has been adopted as the slated edge method defined by

ISO 12233 [227]. The ‘new’ slated edge method is based on the old edge method. It

derives the so-called Spatial Frequency Response (SFR), which is the equivalent of

the MTF, but includes the effect of the slanted edge target in the measured result

(i.e. it does not take into account the frequency content of the target). Digital

SFRs can be obtained with the use of automated software (P.Burns sfrmat 2.0

Matlab library, or other). SFR measures involve the capture of a low contrast

slated edge and greyscale densities (see Figure 3.13). The latter is used to derive

the Opto-Electronic Conversion Function, (OECF) of the imaging system, which is

in essence the system’s transfer function (or tone reproduction function, see Section

3.3.3).
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Figure 3.13: A test chart for measuring MTF (using the slanted edge in the middle)
and OECF (using the grayscale densities), from Applied Image Inc. (2013) [234]

The OECF is used for the linearisation of the digital data. Digital sensor data,

although originally linear, are often processed using non-linear transfer functions

for appropriate output/viewing [235]; they are also non-stationary and anisotropic.

MTF (and SFR) measurement is strictly applied to linear, stationary and isotropic

systems [114]. Nevertheless, providing data linearisation, such measurements are

used extensively in the evaluation of digital imaging system performance.

The point at which the SFR drops to 0.1 is a measure of the system’s limited

resolution (spatial frequency beyond which signal is undetectable) and the point

at which the SFR drops to 0.5 is a measure of the system’s sharpness (low to

medium spatial frequencies are used to quantify sharpness) [236]. Figure 4.1 in

Chapter 4 illustrates an example of measured SFRs of a CCTV camera and a DV

camcorder.

3.4 Image psychophysics

Subjective image quality investigations involve the use of psychophysics. Psy-

chophysics according to Gescheider [237] is “the scientific study of the relation

between stimulus and sensation”. In terms of imaging, the stimulus is the still

image (or video footage) and the sensation is expressed as the observers’ response

to a task or question. Psychometric scaling, or psychological rulers are employed

to quantify the observers’ responses. Psychophysics, when conducted with detailed
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planning, produce accurate quantitative results from qualitative responses [169].

The observers’ responses are affected by many variables such as image attributes, the

quality criteria of the observer, and viewing conditions [238,239]. Engeldrum [238]

has identified some basic steps to guide imaging product developers for assessing

image quality. These are:

• Selection and preparation of samples (stimuli).

• Selection of observers and determination of observers’ task or question.

• Presentation of the sample to the observers and collection of their responses.

• Analysis of observers’ responses and generation of scale values.

The following sections describe the rulers (measuring scales) for collecting subjective

responses (Section 3.4.1) from observers and the common investigative methods that

are used in psychophysics (Section 3.4.2). Further, Section 3.4.3 presents the psy-

chometric curve data analysis method employed in Chapter 4. Section 3.4.4 focuses

on the methods that can be used to assess image usefulness for police tasks.

In terms of automated systems perhaps similar or adapted methodologies from

human investigations can be utilised when testing performance of systems where

the observers’ psychophysical response is replaced with a numerical output.

3.4.1 Measurement scales

About 4 common types of measurement scales or psychometric scales exist [240].

These are nominal, ordinal, interval and ratio (see Figure 3.14). The scale types

range in mathematical strength and complexity from nominal to ratio. Also, ob-

servers’ skills and amount of data complexity increase with the increase of the scale

types from nominal to ratio [171]. For example, a ratio scale will have the proper-

ties of all the previous scales (i.e. nominal, ordinal and interval), which could be

derived by using different analysis and data reduction methods [238].

Nominal scales allocate labels, or names to the content of a sample. This method
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Figure 3.14: Measurement scales. From Triantaphillidou (2011) [199].

of scaling is useful for classifying images based on labels (or names). For exam-

ple, it could be used to classify images based on categories such as portraiture,

architectural, textural, natural and so on [241].

Ordinal scales use numbers or labels in order to rank images according to an at-

tribute. For example, images can be ranked based on the sharpness attribute (e.g.

ranking of images from low sharpness to high sharpness). Ordinal scales have the

property of ‘greater than’ or ‘less than’ depending on the direction of the ranking.

The main limitation of the ordinal scale method is that perceptual magnitudes do

not correspond to the numbers in the scales and thus the numbers have only the

property of ‘greater than’ or ‘less than’ [241].

Interval scales use equally spaced intervals corresponding to equal perceptual mag-

nitudes. For example, the equal differences in scale values represent equal per-

ceptual differences of an image attribute or overall image quality. The interval

scaling method answers the ‘how close’ question. Not all image attributes have a

fixed zero point, so interval scales provide relative values (i.e. they are ‘floating

scales’) [171,241].

Ratio scales are interval scales, but with a fixed zero origin. The zero origin causes

some experimental difficulties, as some attributes could not start with a zero origin.

For example, it is difficult to define zero quality [199,241].
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3.4.2 Psychophysical methods

Various psychophysical methods are used in subjective investigations to derive psy-

chometric scales [242]. The choice of the method depends mainly on the intention of

the investigation. For example, fidelity investigations involve threshold evaluations

and image quality investigations involve supra-threshold evaluations.

Supra-threshold methods [242,243] are used to derive psychometric scales relating to

an image attribute (i.e. the ‘ness’), or overall image quality. The ‘ness’ refers to the

ranges of an image attribute such as sharpness or colorfulness. In this investigation

the ‘ness’ represents amounts of compression and/or information content of scenes

(i.e. facial information). The most common supra-threshold methods are: 1) rank

order (derives mainly ordinal scales): the observers are asked to rank image samples

based on the order of an attribute such as text darkness, 2) paired comparison

(derives ordinal scales that can be transformed into interval and ratio scales): the

observers select 1 image from a paired sample that has more of the ‘ness’, or it

is the preferred from the pair, and 3) category methods (best for deriving ordinal

scales): observers see 1 sample at a time and are asked to place it to a named or

numbered category.

Threshold investigations [242, 243] are used to identify the just detectable (or just

noticeable) amount of an attribute (i.e. value of ‘ness’ that it is just visible/detectable).

Just noticeable difference (JND) investigations are used to identify attribute differ-

ences (minimum value of ‘ness’ that it is seeing as different from a standard) [243].

Some common threshold investigation are: 1) Method of limits (derives results for

both threshold and JNDs): the observer is presented with a sample that the ‘ness’

is imperceptible/clearly perceptible and the ‘ness’ amount is increasing/decreasing

until the observer can detect/cannot detect the ‘ness’ attribute, and 2) Method of

adjustment. This is very similar to the method of limits. The difference is that the

observer is adjusting manually the ‘ness’ by using control methods such as turning

a knob or moving a slider.

In the human investigation in Chapter 4, the threshold method of constant stimuli
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is employed. This method is used to derive results for both threshold and JND

difference. A constant set of samples is used that remain fixed throughout the

experiment. The set samples cover a range from low to high level of ‘ness’ (e.g. levels

of compressed amounts). The set samples are selected so that the low ‘ness’ samples

are never selected and high ‘ness’ samples are always selected by the observers. This

method collects data that is analysed with a psychometric curve (see Section 3.4.3).

In threshold investigations the reference is not provided and observers answer with

a yes when they can see the ‘ness’ [243, 244]. Whereas in JND the reference is

provided, the observers compare each sample with the reference and indicate if the

sample conveys more of the ‘ness’ than the reference.

3.4.3 The psychometric curve

The psychometric curve describes the proportion of observers’ yes responses to dif-

ferent ‘ness’ levels (e.g. different levels of compression or information content) [245].

Observers are presented with a stimulus and asked to respond with a yes or no if

they see a ‘ness’, or if they see a difference between stimuli. This process is repeated

for a range of ‘ness’ levels. A yes response scores 1 and a no response scores 0. The

proportion of yes responses is the sum of all the responses divided by the number

of observers. Statistically, the curve is called cumulative density function and the

observers’ response of yes or no is a random variable (it is conceptually identical to

the supra-threshold pair comparison method) [243]. Psychometric curves are used

to determine thresholds, JNDs, i.e. fidelity measures. A typical psychometric curve

is shown in Figure 3.15.

The absolute threshold (i.e. smallest amount of the ‘ness’ required to see the ‘ness’)

is at the point where 50% of the observers responses are yes. The just noticeable

difference (JND) represents the stimulus change required to produce a JND of a

‘ness’. It is typically defined at the point where 75% of the responses are yes, but

this percentage of yes replies is not universal [243]. In some applications 0.60 or

0.66 has been taken as the JND. The point of subjective equality (PSE) is the 0.5
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Figure 3.15: The psychometric curve. The x- axis shows the range of the ‘ness’
levels and the y-axis the proportion (or probability) of observers yes responses.
From Engeldrum (2000) [243].

point on the y-axis and relates to when observers find 2 stimuli equal in statistical

terms. The range between 0.25 and 0.75 points of yes responses is referred to as

the interval of uncertainty, where responses could go either way (yes or no).

3.4.4 Image psychophysics for recognition tasks

In the evaluation of perceived image usefulness, for recognition tasks, a reference

may or may not be included. Figure 3.16 provides an example were the observer is

presented with a single facial image and asked to judge the image usefulness using

a category scale from 1 (the lowest quality) to 5 (the highest quality) [44].

The ITU-R BT.500-11 provides guidance in relation to assessments of video based

imagery [194]. When image fidelity is assessed, the ITU recommends that the

reference video is provided and runs simultaneously on a single monitor, along with

the reduced quality version. This arrangement helps the observers to make a direct

judgement of what they see, and does not rely on memory. A similar methodology

to the fidelity assessment is used for the assessment of image usefulness in Chapter

4. The observers had to answer with a yes or no to the question “Is the reproduced
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Figure 3.16: Single image perceived image quality. An example of single image
perceived image quality (i.e. more specifically image usefulness). From Adler et al.
(2006) [44].

image as useful in terms of facial information as the reference?” (see Figure 3.17).

Figure 3.17: Image quality when the reference is provided. The information within
the impaired version (image on the right) is judged against the facial information
from the reference (image on the left).

The ITU-T P.912 Recommendation provides subjective assessment methods for

‘target’ recognition video (TRV) based tasks [14]. TRV methods can be used for

a variety of purposes, such as human recognition, licence plate recognition, remote

monitoring and decision making. A couple of main methods are recommended,

the multiple choice method and the single answer method. The stimuli used (i.e.

the samples) in the evaluations should reflect operationally the conditions of the

collected video material (e.g. transmission service under test) and cover all possible

scenarios for the particular application. Also, the methods “assess the ability of

the viewer to recognise the appropriate information in the video, regardless of the

viewer’s perceived quality of the viewing experience” [14].
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• Multiple choice method. In this method the observer is presented with a

particular target category (human, object or/and alphanumeric, action, scars,

tattoos and so on), which need to be recognised in a video. After the video

presentation the observer chooses the label, which corresponds closest to what

they see in the video (see Figure 3.18). The answers are either correct or

incorrect. The derived data are analysed by examining the stability of the

answers within and between subject performances.

Figure 3.18: Example of display of the multiple choice method. From ITU-T P.912
(2008) [14].

• Single answer method. In this method, the observer is asked to type the

letter(s) or number(s) present in a specific area of the video (e.g. numbers

of a number plate) (see Figure 3.19). Additionally, under the same method

the observer can answer with a yes or no to the question, if a certain target

was present in the video. The answers are either correct or incorrect. The

derived data are statistically analysed by determining the observer’s perfor-

mance above the level of chance for answering correctly.

Finally, the face image matching abilities of observers can be derived by the use of

neuropsychological tools such as the Benton Face Recognition Test (BFRT) [246].

The test requires the identification of a target face from a set of faces. Figure 3.20
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Figure 3.19: Example of display of the single answer method. From ITU-T P.912
(2008) [14].

illustrates an example. The observers are required to select 3 photos that depict

the face photo number 7 (the correct answer is 2, 5 and 6) [246].

3.4.5 Other factors influencing measurements

Apart from the selection of a suitable method to collect psychophysical data, there

are a number of other factors that might affect the reliability of the collected data.

These include: type of observers, number of observers, the observer task instruction,

choice of test sample, viewing conditions, environment (temperature and noise),

the presence of the experimenter in the room or not, and observer fatigue mainly

due to the length of the experiment.

Normally observers fall into 2 types: lay or expert. Expert observers have experience

in judging, or evaluating images and lay observers do not. To date, there is not much

research about whether people with experience in forensic image matching tasks (i.e.

police officers) are any better from untrained civilians. A couple of studies have been

located that provide a mixture of evidence for matching unknown faces from images.

In one study, police officers had the same low accuracy as civilian participants in
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Figure 3.20: An example of the FFRT test. From Duchaine et al. (2003) [246].

identifying an unknown target face from CCTV footage [9]. In another study, expert

facial image comparers had a higher accuracy in matching of faces, between photos

and CCTV footage, than civilians [247]. It should be noted that there are many

differences in the respective methodologies between these 2 studies, which makes

it difficult to reconcile the results (e.g. people with different experiences, different

image samples and different experimental methodologies).

Having a larger number of observers decreases the errors of the collected data and

thus increases the precision of the data. The recommended range of observers is

between 10 to 30 for a typical psychophysical investigation [238]. A more precise ob-

server number estimate can be derived from establishing the desired scale precision.

The ITU-T P.910 recommends a range of observers between 4 (as the minimum) to

40 (as the maximum) [14], depending on the application of the investigation. For

example, small group of experts (4 - 8) can provide indicative results [14].

Observers’ instructions should be preferably written and include information on

what they are judging and how to respond. The same instructions should be given

to all the observers in order to retain consistency. Common practice involves the

training of the observers with a small number of representative scenarios from the

actual test. The results from the training scenarios should not be included in the
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analysis.

The choice of image sample (stimulus) is determined by the objective of the psy-

chophysical investigation. After the selection of the scaling method the experi-

menter would have to make decisions on the range of distribution of the ‘nesses’

and the image content of the sample. If a particular application were under test,

then the selected sample would need to be representative of that application.

Standard and controlled viewing conditions are vital to enable reproducible psy-

chophysical data. For example, the monitor would need to be calibrated and the

illumination and surrounding condition in the experimental room would need to be

controlled. As well as, viewing distance and the screening of observers for normal

vision (e.g. corrected vision by wearing glasses) are some other factors that need to

be taken into consideration.

3.5 Scene dependency and classification

Results from subjective investigations and performance of automated systems are

often shown to vary with scene content. This is known as scene dependency. All

the background research in Chapter 2 affirms the scene content dependency essence

of police tasks undertaken by human operatives (see Section 2.1.1) and automated

systems (see Sections 2.1.2 and 2.1.3). Scene content properties/characteristics do

not only affect police tasks but also compression algorithms themselves. In Section

3.2.3, background research proves that compression performance is also influenced

by scene content properties. For example, the ringing compression artefact is more

obvious around very steep edges and often in natural images is not visible [248].

In fact, any image transformation/process is affected by scene content. Another

example, is the basic image attributes described in Section 3.3.3.
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3.5.1 Scene characterisation and classification

Scene dependency can be overcome with the use of scene characterisation and later

classification (characterised scenes are placed in groups) methods (see Section 3.5.1).

Both objective and subjective methods (use of visual/empirical inspection) can be

employed for characterisation purposes. The objective methods recommended by

the ISO/IEC 29794-5:2010 could be considered more appropriate for the character-

isation of CCTV footage. For example, the ISO/IEC 29794-5:2010 describes scene

properties/characteristics that will have an effect on the visibility of information

within an imagery such as brightness, exposure, camera to subject distance and so

on. The methods described in ISO/IEC 29794-5:2010 could be seen to be applicable

for any recognition task (i.e. object, action), not just for faces.

The following characterisation techniques have been used, in the experimental part

of this thesis, for classifying scenes with facial (for investigations in Chapters 4

and 5) and human silhouettes information (for investigation in Chapter 6). The

techniques extract information relating to local (i.e. just on subject to be de-

tected/analysed such as a face or human silhouette) and global (i.e. on the entire

scene) scene properties.

I Camera to subject distance. This is a local face characterisation technique and

is derived objectively, by measuring manually the inter-pupillary distance in

pixels.

II Scene lightness. This is a local face characterisation technique and is derived

objectively from measuring skin lightness CIELab L*. The skin lightness may

be affected by both the scene illumination and the colour of the person’s skin.

Lightness levels ranged from 0 (no lightness black) to 100 (maximum lightness

white). An average of 4 areas on the face is used. The areas are the forehead,

the right cheek, the left cheek and the jaw. In case of facial hair the jaw area

is not measured.

III Angle of face to camera plane. This is a local face characterisation technique
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and is derived subjectively by visual inspection. Figure 3.21 illustrates exam-

ples of face angles. Images that include most of both cheeks (between -20 and

+ 20 degrees on the horizontal axes) and the very top of the head is not visi-

ble (between 0 and +10 degrees on the vertical axes) are classified as frontal.

Images that include most of both cheeks (between -20 and + 20 degrees on the

horizontal axes) and the very top of the head is visible (e.g. +20 degrees and

above on the vertical axes) are classified as tilted.

Figure 3.21: Partial groups of facial angles in degrees.

IV Scene contrast. This characterisation technique is applicable for scenes that

include human silhouettes (e.g. as the sterile zone scenario in Figure 2.9)

and is derived objectively. The subjects (human silhouettes), in the sterile

zone scenario wear only 2 types of clothing, white or green. The head of the

subjects is excluded from the measurements in order to avoid complications

with the derived measures. The method involves a calculation of a ratio of

dark to light area between foreground and background. The derived values

from the contrast ratio range from 0 to +1 (see Eq. 3.11).

CR =
Lmin

Lmax

(3.11)

Where Lmax and Lmin are the maximum and minimum lightness (L* ) values re-

spectively. The lightness values were derived by measuring lightness in specific
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areas in the scene using the CIELAB colour space.

V Scene busyness. This is a global scene characterisation technique and is derived

objectively, by measuring the global spatial and temporal properties of the

scenes. An objective measure using ITU specifications, is implemented [249].

The spatial information is extracted by using the standard deviation of Sobel

filtered frames; the maximum value represents the spatial information for the

scene (see Eq. 3.12). The temporal information is obtained using the standard

deviation of the frame differences; the maximum value represents the temporal

information for the scene (see Eq. 3.13 and 3.14).

SI = maxtime{stdspace[sobel(Fn)]} (3.12)

where SI stands for spatial information, maxtime is the maximum value among

the standard deviation (stdspace) of Sobel filtered frames (sobel(Fn)).

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (3.13)

TI = maxtime{stdspace[Mn(i, j)]} (3.14)

where (Mn(i, j)) provides the frame differences among a pair of frames (Fn(i, j)−

Fn−1(i, j)). Where TI stands for temporal information, maxtime is the maxi-

mum value among the standard deviation (stdspace) of frame differences (Mn(i, j)).

3.6 Discussion

The experimental part of this thesis (Chapters 4, 5 and 6) investigates performance

evaluation of automated systems and human operatives with aspects of image qual-

ity, compression and CCTV imagery. Resources from different academic scientific

disciplines (relating to image/video processing and compression, psychophysics, im-
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age quality, use of police imagery, human face recognition studies and automated

algorithms) have been combined in Chapters 2 and 3 in order to enable the adapta-

tion of appropriate evaluation performance methodologies. For example, any image

transformation/process is affected by scene content properties. This has been taken

into consideration by including a variety of scene content properties for each inves-

tigation. Additionally, as the performance of police tasks is influenced by scene

content properties and the different techniques incorporated by the visual systems

(more for automated systems), perhaps the use of the term image acceptance is

more appropriate than image quality and/or image usefulness. The term Image

acceptance specifies the appropriateness of the scene content property to complete

the task for the specified visual system (i.e. algorithm, human visual system).

Image quality investigations aim to describe/measure image attributes (e.g. useful-

ness, naturalness, sharpness and general image quality) by utilising either objective

(e.g. measures of distortion) and/or subjective (e.g. psychophysics) means. The

image usefulness attribute for both human and automated recognition systems can

be achieved by measuring performance from ground truth data (correct detection

or no detection or false detection). For human investigations, experience derived

from completing recognition tasks can also be utilised (i.e. use of expert-observers)

to further understand behaviours or appropriateness of image quality (see Section

3.4.5). This is not the case for automated systems and their behaviour can only be

understood based on numerical performance measurements.

The following 3 chapters are concerned with the experimental part of the thesis.

The next Chapter 4 relates to human face recognition, Chapter 5 to automated face

recognition, and Chapter 6 to human detection as part of an analytics system.
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CHAPTER 4

Case study 1: Identification of acceptable bitrates for human

face recognition from CCTV imagery

Human face recognition from images or video footage requires a certain level of

recorded image quality. This chapter derives acceptable bitrates (relating to levels of

compression and consequently quality) of footage with human faces, using an indus-

try implementation of the standard H.264/MPEG-4 AVC and the CCTV recording

systems on London buses. The London bus application is utilised as a case study

for setting up a methodology and implementing suitable data analysis for face recog-

nition from recorded footage which has been degraded by compression.

4.1 Introduction

There are many surveillance applications where the relatively accurate recording of

facial information is possible, such as in trains, buses, underground, transport sta-

tions and open streets. When a person is further away from a camera then less facial

information will be visible and other means of person recognition can be applied,
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such as gait analysis [250]. In this investigation, the London bus application was

selected as a case study. London public buses make use of CCTV systems to prevent

crime, recognise offenders/actions and for insurance purposes [251,252].

This chapter proposes a reproducible methodology and tools to derive accept-

able bitrates of scenes with human faces using an industry standard implemen-

tation of H.264/MPEG-4 AVC, and the CCTV recording systems on London buses.

The majority of CCTV recorders on buses use a proprietary format based on the

H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal

redundancy. Low bitrates are favoured in the CCTV industry for saving storage and

transmission bandwidth, but they compromise the image usefulness of the recorded

imagery. In this context, usefulness is determined by the presence of enough facial

information remaining in the compressed image to allow a specialist to recognise

a person. The investigation includes 4 steps: 1) development of a video dataset

representative of typical CCTV bus scenarios, 2) selection and grouping of video

scenes based on local (facial) and global (entire scene) content properties, 3) psy-

chophysical investigations to identify the key scenes, which are most affected by

compression, using an industry implementation of H.264/MPEG-4 AVC, and 4)

testing of CCTV recording systems on buses with the key scenes and further psy-

chophysical investigations.

Scenes of 20 second duration were grouped using 4 scene classification techniques

from Section 3.5.1. These are: scene lightness, camera to subject distance, angle of

the face to the camera plane and level of busyness (based on spatial and temporal

information). A couple of psychophysical investigations were conducted with the

help of experts from the Metropolitan Police Service (MPS) and bus analysts. The

first was used to identify the key scenes (i.e. scenes affected most by compression),

from an initial selected set of 25 scenes, using an implementation of H.264/MPEG-

4 AVC. The second was used to identify acceptable bitrates of the pre-selected

key scenes (resulting in a set of 6 scenes), using five of the most commonly used

CCTV recording systems on London buses. The former psychophysical investigation
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acted as a filter in order to reduce the viewing experimental time in the latter

psychophysical investigation. In both investigations, the expert observers had to

answer with a yes or no to the question “Is the compressed version of the scene as

useful as the reference original in terms of facial information?”.

The findings aim to contribute to optimising the conditions around facial recognition

tasks undertaken by specialists, by tuning the compression to a just acceptable level.

The rest of the chapter is organised as follows. Section 4.2 contains a description of

the experimental methodology. Data analysis of the results and discussion of the 2

psychophysical investigations are provided in Sections 4.3 , 4.4, and 4.5. In Section

4.6 conclusions are drawn.

4.2 Methodology

The acceptable bitrates were derived by carrying out 4 steps: 1) development of

a representative video dataset, 2) selection, classification and grouping of video

scenes, 3) identification of key scenes using an industry standard implementation

of H.264/MPEG-4 AVC, and 4) testing of five CCTV recording systems using the

identified key scenes.

4.2.1 Development of a representative video dataset

A sunny day presents challenges in terms of illumination for recording activities

on buses. When the sun illuminates one side of the bus, some areas in a scene

are over-exposed, while others under-exposed. As the bus moves, the windows

allow illumination from different directions, causing the areas of over and under

exposure to vary rapidly. In contrast an overcast day will produce diffuse light

and uniform illumination and probably correctly exposed scenes, which might not

be challenging enough for testing compression. When natural light is low, the bus

lighting is the main source of illumination. It was observed that it produces a

more predictable and rather uniform illumination. During this time other sources
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of lighting, such as street lamps and lights from other vehicles, might influence

the properties of the bus lighting. Yet, not to an important degree, as the main

bus lighting dominates the scene. The following conditions were used during data

collection (footage recording).

• Camera system. A consumer quality mini digital video (DV) camcorder (Sony

DCR-HC37E with available focal length distance between 1.9-76mm and focal

ratio between f/1.8-f/4.1) was used for the filming of all scenes. Automated

settings for exposure, white balance and focus were chosen to replicate what

happens with actual CCTV camera capture. The automated settings will

have an impact on the produced footage (over or under exposed scenes, out of

focus scenes, incorrect white balance) but the aim is to replicate reality and

create a representative dataset for the bus application. For example, at lower

illumination levels that the bus illumination provides compared to daylight

levels, the f/stop will become smaller (i.e. aperture widens), resulting to

smaller depths of field. This again will decrease the influence of light sources

outside the bus. About 10 camcorders were set up according to Transport

for London (TfL) recommendations, i.e. the camera views (see an example in

Figure 4.2).

Although the camcorder has been set to automatic exposure to mimic the cam-

eras installed in the buses, which are also set to automatic exposure, it is not

known (or quantifiable) how the automatic camcorder camera settings differ

from the bus camera settings, since bus cameras are neither standardised nor

characterised prior to installation. White balance differences between cam-

corder and bus cameras are not expected to have much impact in the results,

since white balance is not an essential element in human face recognition [253].

A discrepancy in auto-focus could be possible, but out of focus facts are not

part of the experimental parameters in respect to face recognition after vs

before compression.
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In addition, the camcorders at close distance to the subjects (e.g. doorway

view, staircase view) were fitted with wide-angle conversion lenses (SONY

VCL-HGA07B 0.7x) to provide a wider-angle of view and compensate for the

restricted camera to subject distance area. There was no difference on the

obtained SFR measures (see Figure 4.1) between the camcorders with and

without the fitted wide-angle conversion lenses.

• Illumination conditions. Sunny day (during day time) and bus illumination

together with some exterior illumination e.g. from shops, street lamps and

from other vehicles (during night time).

• Participants. 26 actors from various ethnicities, ages and gender acted as the

bus passengers, according to given scenarios.

The DV consumer camcorder was chosen for the recording of the bus dataset over

a CCTV camera for various reasons, including accessibility, quality and cost. For

example, expensive, specialised equipment is required in order to record the output

of a CCTV camera in an ’uncompressed’ format. Also, there are numerous compa-

nies that provide CCTV systems to London buses. These have large variations in

quality, which have not been studied and quantified. This also relates to the cam-

era and lens properties of these systems. Often, the camera specifications are not

provided as these systems can be bought on-line from other countries (e.g. China)

by the companies that provide CCTV systems to the end users.

A typical sample CCTV camera was provided by a supplier in order to examine

and compare its wide-angle properties (and SFR measures) to the DV camcorder

with and without the wide-angle lens converter. The sample CCTV camera still

had slightly wider-angle properties than the DV camcorder with the wide-angle lens

converter. Wide-angle lenses are used in CCTV applications in order to cover wider

scene content information and they do distort image content. In particular when

the subject of interest is not in the middle of the lens. How much a very wide-angle

lens distorts content information or affects the correct completion of police tasks is

an investigation on its own merits. TfL was planning to change the specifications
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for the use of wide-angle lenses and did not wish to include very wide-angle lenses in

the investigation. The difference between the DV camcorder with and without the

wide-angle conversion lens was noticeable but did not appear to distort the content

information as only a 0.7x factor was utilised. Moreover, a very wide-angle lens will

make subjects in the scene to appear at a greater distance than a less wide-angle

lens. This does not matter in this investigation as scenes are evaluated based on

their scene content properties and these have been characterised and grouped.

Figure 4.1 provides a comparison of the Spatial Frequency Response (SFR) [227], of

a typical sample CCTV camera used on buses with that of the DV camcorder used

for the collection of the dataset. The SFR measure was chosen to assess differences

between the aforesaid systems as it provides a measure on the reproduction of fine

detail (resolution) and sharpness/contrast (see Sections 3.3.3 and 3.3.5). These 2

contribute the most to the capture of useful facial information as resolution mea-

surements alone are affected by tone, sharpness, contrast and noise. The SFR allows

the incorporation of many variables/factors in a simple measure.

Figure 4.1: Example of a SFR measure. Horizontal (H) and Vertical (V) SFR of a
CCTV camera and a DV camcorder.
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The DV camcorder SFR indicates image sharpening in the vertical camera orien-

tation, in the low and mid frequencies. Further, the camcorder has a much greater

optical resolution (i.e. the SFR falls to 0.1 at nearly 4 pixel-1) and produces sharper

images (i.e. 0.5 SFR corresponds to approximately 2.7 pixel-1) than the CCTV (i.e.

optical resolution limit at less than 3 pixel-1 and 0.5 SFR at less than 2 pixel-1).

The consumer DV camcorder is shown to have produced overall higher quality

output than the CCTV system. One option to compensate for this difference is

to apply a frequency filter (i.e. a blurring filter), aiming to visually match the

frequency response of the DV recorder to that of the CCTV camera [254]. In this

case, this option was omitted, since the current rapid development of CCTV system

technology will result in CCTV systems producing comparable image quality to

that of consumer video systems. The focus of the work was put on setting up an

experimental paradigm in the investigations and implementing a suitable analysis

of results.

The footage dataset was recorded in a DV format, at 25 megabits per second

(Mbits/s), 4:2:0 chroma subsampling, at full D1 PAL resolution (720 x 576) and

with interlaced scanning at 25 frames per second (fps).

Figure 4.2: Example camera views of the CASTBUS 2012 dataset.
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The developed video bus dataset is called CASTBUS 2012 and it can be obtained

from the Home Office Centre for Applied Science and Technology (CAST) in UK

[255], to assist those wishing to investigate solutions in relation to the bus video

recordings.

4.2.2 Selection, Classification and Grouping of Video Scenes

In this investigation, various scenes were selected from the CASTBUS 2012 dataset

and were further compressed using the MPEG-2 coding standard at approximately

25Mbits/s (4:2:0 chroma subsampling). This compression has enabled the five sup-

pliers of bus CCTV recording systems to have the key scenes on a DVD. The

suppliers were asked to play out (with a DVD player) the key scenes into their

recording system according to a pre-defined number of bitrates and to return their

recordings for use in the experimental testing.

The main difference between DV and MPEG-2 compression is in the temporal do-

main; otherwise both encoders are based on the DCT transform [256, 257] (i.e.

MPEG-2 exploits both spatial and temporal redundancies whereas DV exploits

only spatial redundancy). An initial experiment, involving only the experimenter,

was conducted to appreciate empirically the visible differences between the 2 en-

coders. The experiment involved careful observation of a number of compressed

scenes, with various scene properties. No visible differences were observed between

the compressed scenes. Figure 4.3 illustrates an example comparison using both

encoders. The compression bitrates used in the CCTV industry are typically much

lower than 25 Mbits/s. Thus, the additional compression of the reference using the

MPEG-2 encoder should not affect the results.

Due to the miscommunication between transmission and recording, it was observed

that CCTV recording systems sometimes recorded the 2 fields as 1 frame causing

the interlace effect (see Figure 3.2). In order to avoid this effect in the compressed

scenes, one of the fields (the odd line numbers) was removed and the even number
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Figure 4.3: Comparison between MPEG-2 and DV encoders. Comparison of 2
images compressed at 700kbps, with MPEG-2 (right) and DV (left).

of fields were interpolated using the AppleTM Final Cut Pro (FCP) software (i.e.

this has created progressive frames). Thus, the selected original reference for this

present investigation consisted of 25 progressive frames per second (not 25 interlaced

frames per second) and is compressed with MPEG-2.

Since compression performance is dependent on scene content, the various scenes

selected from the bus dataset were characterised, classified and grouped based on

local (just on the face) and global (on the entire sequence) scene properties. In

total, 27 scenes were grouped, of which 2 were used for training the expert observers.

The training scenes were not included in the results. Scenes of 20 seconds duration

were selected, to enable the temporal reduction processes of the video compression

algorithms to adjust to the scene content. The local classification techniques dis-

cussed below focused on only 8 frames in scenes of 20 seconds duration. In this

duration, a face that appeared in 8fps at an approximately consistent subject to

camera distance, angle to the camera and under constant illumination was selected.

The following paragraphs provide information on scene grouping (refer to Section

3.5.1 for information on the characterisation techniques).

1. Camera to subject distance. The average value among the 8 frames of the

face was used to classify the face into a selected camera to subject distance

group (see Table 4.1). The scenes were classified empirically into 2 groups:
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close (44 pixels distance between the eyes, +/-4.5 pixels) and far (25 pixels

distance between the eyes, +/- 3.5 pixels)

2. Scene lightness. The reference video footage was converted to a sequence of

RGB TIFF still images and later to the CIELab space (see Section 3.3.4)

before deriving the following L* values. The average value among the 8

frames of the face was used to classify the face into a selected lightness group

(see Table 4.1). The scenes fell into 5 groups of lightness using 2 types of

illumination (daylight and bus illumination): 1) Medium (bus illumination):

L* 42 (+/- 11). 2) Medium (daylight): L* 46 (+/- 6). 3) Low (daylight):

L* 8.5 (+/- 2.5). 4) High (daylight): L* 92 (+/- 4.5). 5) Mixed (daylight):

L* 97 (+/- 2.5) and L* 49.5 (+/- 15.5), (i.e. approximately half of the face

had L* 97.5 and the other half L* 49.5).

The medium skin lightness groups differ in terms of ‘type’ of illumination (i.e.

bus illumination and daylight). It was observed that the camcorder produces

noisier imagery under bus illumination at night than under daylight illumina-

tion. Daylight produces higher illumination levels than bus illumination. To

compensate the exposure for decreased levels of illumination, when the bus

lights are on, the camcorder increases the ISO settings resulting to increased

noise levels. This is very likely to be the same for the actual CCTV systems

installed in London buses. It was thus considered important to include bus

illumination on its own in the investigation.

3. Angle of face to camera plane. 2 groups were derived: tilted angle and frontal

angle (see Table 4.2).

4. Busyness. The grouping was made based on the measured spatial and tem-

poral values only of the available 25 scenes. Their exact middle values (e.g.

middle value from 2 to 5 is 3.5) were chosen as the limits. For example,

the middle value for the spatial measures is 14.58 and for the temporal is

27.16 (see Table 4.2). The following 4 groups were created: 1) High Spatial

(> 14.58)-High Temporal (> 27.16). 2) High Spatial (> 14.58)-Low Temporal
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(< 27.16). 3) Low Spatial (< 14.58)-High Temporal (> 27.16). And, 4) Low

Spatial (< 14.58)-Low Temporal (> 27.16).

Figure 4.4 includes all 25 scenes used in the psychophysical investigations. Table

4.3 summarises the grouping of the scenes. For example, scene 1 (S1) belongs to

the following groups: medium scene lightness (bus illumination), close camera to

subject distance, frontal angle to the camera plane and low spatial-low temporal

busyness.

Scene Camera to Subject Distance Scene Lightness
Name Av. std Group Av. std Group

S1 41 2.03 Close 45 2.09 Medium (Bus)

S2 45 2.51 Close 45 2.20 Medium (Bus)

S3 40 2.43 Close 38 1.28 Medium (Bus)

S4 27 0.99 Far 31 0.69 Medium (Bus)

S5 28 1.28 Far 53 0.46 Medium (Bus)

S6 43 0.46 Close 52 0.68 Medium (Day)

S7 46 0.35 Close 54 0.96 Medium (Day)

S8 22 1.04 Far 47 2.20 Medium (Day)

S9 24 0.52 Far 48 0.83 Medium (Day)

S10 23 0.64 Far 40 0.95 Medium (Day)

S11 45 2.27 Close 6 0.73 Low (Day)

S12 48 1.96 Close 6 0.63 Low (Day)

S13 27 1.51 Far 11 2.15 Low (Day)

S14 29 0.64 Far 10 0.16 Low (Day)

S15 45 0.53 Close 88 0.57 High (Day)

S16 48 1.73 Close 94 0.63 High (Day)

S17 28 0.71 Far 90 0.78 High (Day)

S18 28 0.52 Far 97 0.40 High (Day)

S19 26 0.71 Far 96 0.49 High (Day)

S20 39 0.89 Close 65/95 6.12/2.16 Mixed (Day)

S21 45 2.51 Close 53/96 9.08/3.37 Mixed (Day)

S22 47 3.82 Close 34/98 4.67/1.22 Mixed (Day)

S23 25 1.30 Far 54/99 2.68/1.10 Mixed (Day)

S24 27 1.04 Far 46/100 2.03/0.04 Mixed (Day)

S25 26 0.76 Far 46/99 0.84/0.51 Mixed (Day)

Table 4.1: Scene measurements and grouping I. Derived measurements for the clas-
sification of each scene into groups. Where Av. is the mean measurement among
the 8 frames, and std is the standard deviation and denotes the variance among
the measurements in the 8 frames. The units for the average mean value for the
camera to subject distance category is number of pixels. Whereas, for the scene
lightness category is the L∗ value. The group column indicates into which group
each measurement has been classified.
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Scene Angle to the camera Scene Busyness
Name Group Spatial Temporal Group

S1 Frontal 11.12 22.92 Low Spa. Low Temp.

S2 Frontal 11.12 22.92 Low Spa. Low Temp.

S3 Frontal 11.12 22.92 Low Spa. Low Temp.

S4 Tilted 12.27 17.32 Low Spa. Low Temp.

S5 Tilted 10.95 29.01 Low Spa. High Temp.

S6 Frontal 13.97 29.08 Low Spa. High Temp.

S7 Frontal 14.48 15.66 Low Spa. Low Temp.

S8 Tilted 15.11 21.85 Low Spa. Low Temp.

S9 Frontal 17.47 25.74 High Spa. Low Temp.

S10 Tilted 16.51 31.45 High Spa. High Temp.

S11 Frontal 16.56 29.79 High Spa. High Temp.

S12 Frontal 18.21 32.41 High Spa. High Temp.

S13 Frontal 16.56 30.67 High Spa. High Temp.

S14 Tilted 14.92 27.95 High Spa. High Temp.

S15 Tilted 18.14 26.29 High Spa. Low Temp.

S16 Frontal 16.81 35.71 High Spa. High Temp.

S17 Frontal 17.20 36.20 High Spa. High Temp.

S18 Tilted 17.17 22.68 High Spa. Low Temp.

S19 Tilted 14.66 33.17 High Spa. High Temp.

S20 Tilted 13.30 34.67 Low Spa. High Temp.

S21 Tilted 13.30 35.84 Low Spa. High Temp.

S22 Tilted 14.54 38.67 High Spa. High Temp.

S23 Frontal 15.43 16.01 Low Spa. Low Temp.

S24 Frontal 16.25 18.47 High Spa. Low Temp.

S25 Tilted 16.04 24.17 High Spa. Low Temp.

Table 4.2: Scene measurements and grouping II. Derived measurements for the
classification of each scene into groups. The values under the Spatial and Temporal
categories represent the maximum value derived from their measurements (refer to
Section 3.5.1). The group column indicates into which group each measurement has
been classified.
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Figure 4.4: The 25 scenes under investigation. The 25 scenes grouped in columns
based on the scene lightness property.
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Group Scene Name Total

Camera to Subject Distance

Close S1, S2, S3, S6, S7, S11, S12, S15, S16, S20, S21,
S22

12

Far S4, S5, S8, S9, S10, S13, S14, S17, S18, S19,
S23, S24, S25

13

Scene Lightness

Medium (Bus) S1, S2, S3, S4, S5 5

Medium (Day) S6, S7, S8, S9, S10 5

Low (Day) S11, S12, S13, S14 4

High (Day) S15, S16, S17, S18, S19 5

Mixed (Day) S20, S21, S22, S23, S24, S25 6

Angle of Face to the Camera Plane

Frontal S1, S2, S3, S6, S7, S9, S11, S12, S13, S16, S17,
S23, S24

13

Tilted S4, S5, S8, S10, S14, S15, S18, S19, S20, S21,
S22, S25

12

Scene Busyness

Low Spa. Low Temp. S1, S2, S3, S4, S7 5

Low Spa. High Temp. S5, S6, S20, S21 4

High Spa. Low Temp. S8, S9, S15, S18, S23, S24, S25 7

High Spa. High Temp. S10, S11, S12, S13, S14, S16, S17, S19, S22 9

Table 4.3: Summary of scene grouping. Each scene from figure 6 belongs to different
groups. The totals indicate the total number of scenes in the specific group.

4.2.3 Identification of Key Scenes

The key scenes, those affected most by compression, were identified by carrying out

a psychophysical investigation on the 25 grouped scenes. The MPEG Streamclip

implementation encoder was employed to compress the scenes at selected target

bitrates, using the video coding standard H.264/MPEG-4 AVC. Implementation

encoders such as verification models used for compliance testing (e.g. Joint Model

(JM) and FFpmeg) are often used by the scientific community; they allow the set-

ting of over 50 parameters, such as quantisation parameters, I, P and B frames and

the target bitrate. These verification models, when tuned properly, tend to apply

‘high quality’ compression, whilst encoders in the consumer and CCTV industry

apply ‘lower quality’ compression [258]. It was decided that the verification models

were not appropriate for this work. Thus, an encoder from the consumer industry

was selected (MPEG Streamclip) with only bitrate control (i.e. no GOP size or B

frames were selected), which complies with the security recording systems on buses.
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Most of the scenes were compressed at 9 different bitrates, whilst some ‘demanding’

ones at 12 different bitrates, all at 25 frames per second. The ‘demanding’ ones were

perceived to require less compression to maintain useful information than the rest

of the scenes. The levels and ranges of compression were selected empirically, after

careful visual examination, to provide enough data for the derivation of an accurate

psychometric curve (see Section 3.4.3) [169]. The compression bitrates used were

approximately the following in kilobits per second (kbps):

• 9 bitrates: 300, 400, 600, 800, 1000, 1200, 1400, 1600, 1800;

• 12 bitrates: 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600,

2800.

A similar method to the fidelity assessment (see Section 3.3.1) was implemented for

the assessment of image usefulness of the compressed scenes. In the psychophysical

experiment the observers were presented each time with 4 versions of the same scene,

running simultaneously on a single carefully calibrated computer monitor. These

were presented on a mid grey background, at 25 fields per second, as illustrated

in Figure 4.5. The top left is the reference scene and the other 3 are compressed

versions of the reference scene. Although the compression was applied on a 20

second scene at 25 frames per second, the observers were only presented with 8

frames, in which the face was placed within a grey square. The observers could see

the displayed compressed version frame by frame and as many times as they wished

before making their judgement.

During the experimental period, the EIZO CG210 LCD (pixel resolution: 1600H

× 1200V) monitor was utilised and calibrated daily using the GretagMacbeth Eye-

One Pro system. The monitor was calibrated to a white point D65 (6500K), at

a luminance of 120cd/m2 (i.e. maximum brightness) using an sRGB ICC profile.

Refer to Appendix A for further information in relation to the utilised monitor

concerning it’s calibration, transfer function, spatial uniformity, temporal instability
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Figure 4.5: Example of the test display used in the identification of the key scenes.
The top left scene is the reference and the remaining 3 scenes are compressed
versions of the reference.

and viewing angle characteristics. Based on our current knowledge, there are no

standards directly applicable to monitors used for CCTV viewing purposes. The

experiment was conducted in dark conditions to minimise reflections and monitor

flare. The specialist observers were asked to wear glasses, if they would normally

do so in front of a monitor. Additionally, the observers were checked for colour

deficiency with the Ishihara colour test for colour deficiency [259]; all of them had

normal colour vision.

The observers consisted of 7 Metropolitan Police Service (MPS) police officers, 10

MPS surveillance officers, and 10 bus analysts. Table 4.4 provides a summary of the

observers’ average years of experience and purpose of use of security imagery.
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Bus MPS MPS
Analysts Police Surveillance

Average years of
experience

5 years 9 years 18 years

Use of security
imagery

To recognise for
security purposes
and bus issues,
gathering evi-
dence for the
police.

To recognise and
provide evidence
to court mainly
for volume crime
(e.g. antiso-
cial behaviour,
assaults).

To monitor ac-
tivities and be-
haviours, recog-
nise and provide
evidence to court
mainly for major
crime (e.g. mur-
der).

Table 4.4: Observers’ background.

Instructions to the observers were given via a demonstration of a selected scene

from the training set. The training scenes were excluded from the results. The

instructions were:“The reference represents the maximum facial information that

can be captured under the available illumination conditions and should be consid-

ered to have acceptable image usefulness. The aim is to find how much degradation

(compression) from the reference is acceptable. You are required to respond with

a yes or no to the question: Is the compressed version as useful as the reference in

terms of facial information? You are judging only the face within the grey square,

not the clothes or the surrounding area. Everything else that surrounds the face is

irrelevant and should not influence your judgement. This experiment will help to

identify the maximum acceptable degradation (compression) from an uncompressed

reference. If you are paired while doing the experiment, you are allowed to discuss

your thoughts with your partner, but your final answer should be independent of

your partner’s answer. Be aware of peer pressure. If you get bored or tired during

the experiment, please inform the experimenter”. In most cases, the observers were

paired during the experiment. This is usual practice during police examination of

CCTV footage.

The yes/no tasks have the property of being ‘criteria dependent’ [260]. For example,

the observer might adopt his/her own criteria on the strength of the signal (facial

information) before a yes response is obtained. If the criterion is loose, then a weak

signal might be sufficient, whereas if a strict criterion is adapted then a relatively
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strong signal might be required to obtain a positive response. The observers in

this investigation have probably used criteria that have been derived from their

individual work experience. This was not asked from the observers, they were only

provided with the above mentioned instructions. Results are presented in Section

4.3 .

4.2.4 Testing of CCTV Systems

The identified key scenes from Section 4.2.3 were given to five suppliers of CCTV

recording systems together with instructions on amount and ranges of compression.

The key scenes were compressed at 4 frames per second (which was the requirement

by TfL) and the compressed bitrates, in kbps were: 10, 160, 352, 544, 736, 928,

1120, 1312, 1504. The amount and ranges of compression were selected empirically,

after careful visual examinations and observation of results obtained from the first

psychophysical investigation. Each second consists of 25 frames. Reducing the

frames from 25 to 4 per second has resulted, in the majority of cases, in an output

from most CCTV recorders of 1 frame from the 8 frames with the face.

In this second psychophysical experiment, the methodology detailed in Section 4.2.3

was followed aside from 2 modifications: i) the mode of presentation of the exper-

iment (see Figure 4.6), and ii) the number of observers involved. It was noticed

in the previous psychophysical investigation that the observers would occasionally

pay attention to the surrounding areas in the image of the faces. This possibility

was eliminated, by cropping the surrounding areas. The number of observers was

reduced to 2 MPS police officers and 9 bus analysts. All observers were trained on

the task by participating in the first psychophysical investigation. The number of

observers is still acceptable for fitting psychometric curves to their responses (see

Section 4.3.1).

The observers had to judge the output of each CCTV recorder (1 frame) against

the reference (8 frames) for each key scene. The performance of the five CCTV

recording systems using the key scenes is presented in Section 4.4.

99



Figure 4.6: Example of the test display used in the testing of the CCTV systems.
The left image is the reference whereas the right image is the compressed version
of the reference.

4.3 Results from the Identification of Key Scenes

The data obtained from the first psychophysical investigation were modelled by

fitting psychometric curves (see Section 4.3.1), as described in [261], for each scene.

The curve describes the response of the observers’ sensory mechanism to the dif-

ferent stimulus levels (i.e. compression levels). The sigmoid logistic function was

fitted to the obtained psychophysical data points (i.e. proportion of yes responses)

at each different level of compression in kbps. The logistic function is given as:

F (x) = (1− Λ)
1

1 + exp(−β(x− α)
(4.1)

The shape of the curve is established from parameters x, α, β, and Λ. x corresponds

to the compression bitrate (e.g.100kbps); α corresponds to the absolute threshold

(i.e it is at the point of 50% yes responses); β to the gradient of the curve; Λ is the

stimulus independent lapse rate and was fixed for most fittings at 0.01 except for

scene number 24 were the value was fixed at 0.02 (i.e. it produced a more acceptable

fit to the data points). The lapse rate parameter determines the upper bound of

the curve given by (1 − Λ) (see Eq. 4.1). Observer lapses need to be taken into

consideration as they can introduce biases to the estimated α and β parameters.

The effect of lapses can be minimised by setting it to a small but non-zero value,

such as 0.01 or 0.02 [262, 263]. The maximum-likelihood estimation technique was

used to estimate the curve parameters α and β [264,265].
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Figures 4.7 and 4.8 present the obtained curves from the first psychophysical exper-

iment. Tables 4.5 and 4.6 include measures of the obtained curves: a) the estimated

curve parameters α and β, b) the α and β estimated standard errors (SE), c) the

value of goodness of fit (pDev), and d) the value, in kbps, that corresponds to the

75% proportion of observers yes responses.

The α and β parameters are just estimates of the true parameters of the sensory

mechanism. The errors on the estimated parameters were derived by implementing

a non-parametric bootstrap analysis, which is a Monte Carlo re-sampling technique.

Bootstrap methods produce simulated repetitions using the data from the original

experiment [266,267]. The standard deviation among the obtained values from the

simulated experiments is used as the measure for standard error. In this investi-

gation the recommended 400 converged simulated experiments were used in order

to obtain the errors [263]. Stimulations that did not converge were excluded. A

parametric method is most frequently suggested when the psychometric curve is a

good fit to the data points [263]. A non-parametric method was employed in order

to sustain a harmonised analysis among all the fitted curves, the good ones and

the less good ones. Additionally, there is a controversy on which of the 2 methods

produces better error estimates [224].

The goodness of fit is a measure that describes how well the curve fits the data.

The measure derives the pDev value (i.e. is the statistical p-value) that ranges

between 0 (a bad fit) to 1 (the best fit). When the pDev value is less than 0.05

then the fit is considered unacceptably poor. When the curve falls precisely on the

points then this indicates a good fit. The goodness of fit measure was calculated

using 400 bootstrap simulated experiments and the method is illustrated in [262].

Both α and β were set as free parameters and Λ as a fixed parameter during the

process of estimating the errors and the pDev values. The 75% of yes responses

was taken as the just noticeable difference (JND) point on the psychometric curve

to identify the acceptable bitrates for the scenes under test. It is typically the value

used in qualitative work relating to imaging science [169, 268]. The 50% is defined
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as the absolute threshold. This is the point where the observers are starting to

seeing, in this case, the compressed version to be equal in terms of usefulness to the

reference [243]. The subsequent sections provide an analysis of the results from the

first psychophysical investigation.

4.3.1 Psychometric curve fitting

Figure 4.7 and Table 4.5 present the results derived from fitting curves to the

data, for each observer group. Figure 4.8 and Table 4.6 present the results from

the 25 scenes under investigation. The errors on the obtained β parameters were

greater than for the α parameters. Error values could be reduced by increasing

the number of observers and, also, by having a better distribution of stimulus

intensities. In image related investigations, it is recommended to use between 10 to

30 observers. The use of more observers will increase the precision of the estimated

values (decrease the error) and not their accuracy [238]. The error estimates in this

work are included only for references. The fitting results have shown the pDev values

to score above 0.05 for all the different types of observers (see Tables 4.5) and for

each of the 25 scenes under test (see Table 4.6) and thus all the fitted models/curves

are acceptable. Also, common goodness of fit methods used by linear models such as

R-Squared have been found inadequate for non-linear models [269]. A psychometric

function is a non-linear model. For this reason error bars have not been applied

to the obtained fitted models, instead the models with their associated errors on

the parameters (and pDev value) have been utilised for the analysis/explanation of

results.The parameters of a psychometric function (or model) are what it has been

estimated from the raw data.
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Group α SE β SE pDev 75% (kbps)

BusAnalysts 2.804 0.042 7.736 2.429 0.977 894

MPSPolice 2.840 0.048 6.888 2.516 0.950 1014

MPSSurveillance 2.661 0.038 11.308 3.400 0.923 578

Table 4.5: Data from curve fitting for each observer group illustrating the parameter
estimates along with their estimated standard error (SE) for the different groups of
observers. The goodness of fit is given by the pDev value. The 75% of yes responses,
in kbps, for each curve is also provided.

Figure 4.7: Psychometric curves for each observer group. The mean value of all the
tested scenes was used for each observer group.

When the calculated coefficients (+/- standard error-SE) between models overlap

(for α and β coefficients) then this is an indication of there being no difference

between the investigated models. For example, the estimated model coefficients

(see Table 4.6) between bus analysts (α=2.804 +/- 0.042, β=7.736 +/- 2.429) and

police officers (α=2.840 +/- 0.048, β=6.888 +/- 2.516) overlap indicating that there

is not difference between these 2 models. These 2 models differ with the model

obtained from the surveillance officers (α=2.661 +/- 0.038, β=11.308 +/- 3400).

The police officers have tolerated less compression for maintaining usefulness, from

the original reference, than the bus analysts and surveillance officers (see Figure

4.7). The point at 75% of yes responses for the police officers is at 1014kbps, for
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the bus analysts at 894kbps, and for the surveillance officers at 578kbps (see Table

4.5). The bus analysts are considered as having the highest technical understanding

of video compression and video systems, followed up by the surveillance officers and

last the police officers. The surveillance officers have started as police officers and

their work, in most cases, involves monitoring (such as following and recording)

targeted individuals and gathering evidence to present in court or to help with a

case. Their experience and in general the use of different sources of information

of the targeted individual (e.g. knowing where the individual has been helps to

identify the correct CCTV system to extract supportive imagery) make even a

highly compressed CCTV imagery usable for the completion of their task. This

is not the case for the police officers as the individuals are often unknown and

thus making a recognition task from facial imagery more difficult. A couple of

surveillance officers where around the age of 50 years old (noise in the human visual

system might have affected the results) but most of the observers were younger

(between 25 to 40 years old).
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Scene α SE β SE pDev 75% (kbps)

S1 2.611 0.016 26.917 5.699 0.930 450

S2 2.640 0.020 13.553 2.234 0.135 529

S3 2.721 0.022 16.374 2.904 0.730 617

S4 2.683 0.020 17.017 2.663 0.223 562

S5 2.795 0.019 13.901 2.959 0.868 753

S6 2.659 0.021 16.199 3.127 0.150 536

S7 2.530 0.000 524.084 0.000 0.845 340

S8 2.531 0.000 531.635 0.000 0.198 341

S9 2.747 0.021 19.426 5.724 0.673 639

S10 2.856 0.015 21.501 5.318 0.798 811

S11 2.953 0.018 15.565 2.421 0.715 1063

S12 3.057 0.018 10.441 1.300 0.863 1467

S13 3.044 0.019 9.252 1.063 0.090 1469

S14 2.891 0.018 14.359 1.917 0.058 934

S15 2.677 0.018 22.214 5.147 0.925 534

S16 2.659 0.017 25.929 5.302 0.388 505

S17 3.079 0.014 14.522 2.241 0.305 1437

S18 2.709 0.021 15.07 1.897 0.145 609

S19 2.828 0.016 17.881 3.744 0.153 780

S20 2.634 0.022 15.346 12.334 0.103 510

S21 2.728 0.021 17.246 4.836 0.978 623

S22 2.709 0.028 13.1 1.925 0.423 625

S23 2.662 0.020 17.228 3.590 0.068 535

S24 2.665 0.018 19.923 12.208 0.063 530

S25 2.825 0.017 15.877 2.476 0.553 788

Table 4.6: Curve fitting data for each of the 25 scenes. The parameter estimates
along with their estimated standard error (SE) for each of the 25 scenes under
investigation. The goodness of fit is given by the pDev value. The 75% of yes
responses, in kbps, for each curve is also provided.

Few of the scenes have fallen under the exact combination in terms of camera to sub-

ject distance, scene lightness and so on (see Table 4.3). For example, scenes S1 (75%

=450), S2 (75%=529), and S3 (75%=617) represent one exact combination, where

75% is the proportion of yes responses (see Table 4.6). Another exact combination

is for scenes S11 (75%=1063) and S12 (75%=1467). One more is for scenes S20

(75%=510) and S21 (75%=623). Lastly, another one is for scenes S23 (75%=535)

and S24 (75%=530). Most of the exact combinations have produced similar results

except for S11 and S12, where the difference is more than 300kbps. Furthermore,

in the high lightness group of scenes (S15, S16, S17, S18, and S19) only S17 was

affected to a greater degree by compression than the rest. The presented scene char-

acterisation and classification methods might not be enough in order to describe
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the properties of the scenes/faces. For example, the results could be influenced by

the degree of distinctiveness/uniqueness or overall appearance of the actual faces in

the scenes. Distinctive faces are more memorable [270]. Bruce et al have found that

distinctiveness correlates with how much a face deviates from an ‘average face’ [271].

Perhaps, distinctive faces (e.g. Arnold Schwarzenegger) can take more compression

than typical faces (e.g. Leonardo DiCaprio) [270]. Furthermore, Penry provides

guidance on how facial features/shapes can be classified [272].

4.3.2 Comparison of the classified scene groups

The point at 75% (in kbps) of yes responses for each of the 25 scenes was chosen for

further analysis. This analysis investigates the differences and similarities between

the classified scene groups. Table 4.7 illustrates the descriptive statistics for each

scene group. Mostly, the statistics describe the variability of the obtained values of

the scenes in each scene group. The values of the mean and the median for each

scene group are similar, a result indicating near normal distributions. Although,

parametric statistics are used with normal distribution, in the following analysis

a non-parametric method was used due to the small number of scenes in each

group.

Table 4.8 shows the results from the Wilcoxon Rank Sum Test [273]. This is a non-

parametric test that ranks the values of 2 independent samples and compares the

differences between the 2 rank totals. This method focuses on the median rather

than the mean. It derives the p statistical value at 0.05 significance level, below

which 2 groups will be considered as statistically different. This method allows

gathering the similar groups into a single one.

Table 4.8 reveals the similarity/difference between each scene grouped category. For

example, when 2 groups are similar then they could be further classified to the same

group (e.g. no significant difference between ‘medium lightness-bus illumination’

and ‘medium lightness-daylight’ scene groups).
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Group Name N Range Min Max Mean Median std

Scene Lightness

MED (BUS) 5 303 451 753 582 562 113

MED (DAY) 5 471 340 811 533 536 202

LOW (DAY) 4 534 934 1469 1233 1265 276

HIGH (DAY) 5 933 505 1437 773 609 386

MIXED (DAY) 6 278 510 788 602 579 104

Camera to Subject
Distance

CLOSE 12 1127 340 1467 652 534 325

FAR 13 1127 341 1 469 784 753 335

Angle of Face to
the Camera

FRONTAL 13 1128 340 1469 778 536 421

TILTED 12 593 341 934 656 624 163

Scene Busyness

HIGH SPA. HIGH
TEMP.

9 964 505 1469 1010 934 372

LOW SPA. LOW
TEMP.

5 277 340 617 500 529 108

HIGH SPA. LOW
TEMP.

7 447 341 788 568 535 135

LOW SPA. HIGH
TEMP.

4 243 510 753 606 579 110

Table 4.7: Descriptive statistics at 75% of yes responses. Where N is the number
of scenes in the group. Range is the difference between the minimum (MIN) and
maximum (MAX) values. The range, mean, median and standard deviation (STD)
are measures of variability of the obtained values of the scenes in the group.

The results have shown that the ‘low-daylight’ lightness group is significantly differ-

ent from all the other lightness groups except for group ‘high-daylight’, which it is

marginally significant. The groups ‘medium-bus illumination’, ‘medium-daylight’,

‘high-daylight’ and ‘mixed-daylight’ can be further classified to the same group as

there is not a significance difference among them. The ‘low-daylight’ scenes were

affected more by compression than the rest of the lightness groups as the mean

value of the scenes for the 75% of yes responses is at 1233kbps where for the rest

of the lightness scenes is less than 773kbps (see Table 4.7).

There is marginally significant difference between the 2 camera to subject distance

groups (Table 4.8) were scenes in the far distance group (mean value of 75% yes

responses at 784kbps) were affected more by compression than the close distance

group (mean value at 75% yes responses at 652kbps-see Table 4.7).
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(I)Group (J)Group Mean p h
Difference

Scene Lightness

MED (BUS) MED (DAY) 49 0.841 0
LOW (DAY) 651 0.016 1*
HIGH (DAY) 191 0.548 0
MIXED (DAY) 19 0.662 0

MED (DAY) LOW (DAY) 700 0.016 1*
HIGH (DAY) 240 0.548 0
MIXED (DAY) 68 0.931 0

LOW (DAY) HIGH (DAY) 460 0.063 0*
MIXED (DAY) 631 0.009 1*

HIGH (DAY) MIXED (DAY) 171 0.931 0

Camera to Subject Dis-
tance

CLOSE FAR 134 0.097 0*

Angle of Face to the
Camera

FRONTAL TILTED 122 0.765 0

Scene Busyness

HIGH SPA. HIGH TEMP. LOW SPA. LOW TEMP. 510 0.007 1 *
HIGH SPA. LOW TEMP. 442 0.016 1*
LOW SPA. HIGH TEMP. 405 0.050 0*

LOW SPA. LOW TEMP. HIGH SPA. LOW TEMP. 68 0.343 0
LOW SPA. HIGH TEMP. 106 0.286 0

HIGH SPA. LOW TEMP. LOW SPA. HIGH TEMP. 38 0.788 0

Table 4.8: Wilcoxon Rank Sum Test. The (I) group is compared against the (J)
group. When the p value is less then 0.05 then the groups are significantly different.
Significantly different groups have scored 1 in the h column and marked with an
asterisk. The 0 values in the h column that have been marked with an asterisk are
results that are marginally significant.

There was not a significance difference between the 2 angle of face to camera plane

groups so they could be further classified to the same group. This requires a further

investigation with perhaps higher degrees of tilted angles.

The busyness of the scenes affected compression performance. Scenes with ‘high

spatial-high temporal’ busyness were significantly different from all the other busy-

ness groups, except for group ‘low spatial-high temporal’ which it is marginally

significant (see Table 4.8). All the busyness groups excluding the group of ‘high

spatial-high temporal’ can be classified into one group. The scenes in the ‘high

spatial-high temporal’ group have given a mean value of 1010kbps for the 75% yes

responses whereas for the other groups it is around 550kbps (see Table 4.7). This
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result is expected as a high busyness scene, due the the high information content

both spatially and temporarily, will require higher bitrates in comparison to a low

busyness scene (i.e. it entails less spatio-temporal information) to maintain the

same information from an ‘uncompressed’ reference.

4.4 Results from Testing of the CCTV Systems

with the Selected Key Scenes

One scene from each of the following 4 scene lightness groups was selected: ‘high-

daylight’, ‘medium-daylight’, ‘medium-bus illumination’ and ‘mixed-daylight’. A

further 2 scenes from the ‘low-daylight’ group were selected. All 6 scenes, were

these most affected by the compression. These key scenes (illustrated in Figure

4.9) were given to the CCTV suppliers for further investigation of the acceptable

compression bitrates on London buses.

Figure 4.9: The selected key scenes.

Figure 4.10 illustrates an example of the output of the CCTV systems (labelled

A, B, C, D and E) for key scene S12. As mentioned above, in most cases the

CCTV systems exported, 1 frame from the 8 reference frames of the face. Even a

small changeability in terms of subject to camera distance within each individual

scene has affected the obtained results. For example, system C in Figure 4.10 has

obtained more yes responses at 736kbps than at 1120kbps because at 736kbps the

face is closer to the camera. This could have been completely controlled by using

still images, but it would not have replicated reality.

Additionally, Figure 4.10 illustrates an example of the visual differences between

the outputted images from each CCTV system. System C has brightened the scene

(by enhancement) whereas compression artefacts are more visible for systems D and
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E. The systems are behaving differently even though all of them are based on the

H.264/MPEG-4 AVC compression standard. This presents challenges in drawing

conclusions about universal ‘average’ bitrates.

The results from the second psychophysical investigation illustrate the unpredictable

nature of CCTV recording systems. For example, by reducing the frame rate from

25 to 4 has outputted 1 image from the 8 images of the face. This outputted 1

image might be the worst, or the best-case scenario from the 8 available images

of the face. Even a slight difference in terms of camera to subject distance within

each individual scene has been shown to affect the results for the CCTV systems.

For this reason, the analysis of the results is based on the performance of all five

CCTV recording systems for each key scene. The same curve fitting method from

the first psychophysical experiment was applied. 3 curves were fitted for each key

scene: a) the worst performance to the minimum points (lowest fit), b) the middle

performance to the average points (average fit), and c) the best performance to the

maximum points (highest fit). The lapse rate (Λ) was fixed for most fittings at 0.01

except for S12 highest fit were the value was fixed at 0.02 (i.e. produced a more

acceptable fit to the data points).

Figures 4.11 and Table 4.9 present the results obtained from the testing of the CCTV

systems. The application (linked to TfL) was seeking the absolute minimum bitrate

to maximise data storage, so a 60% of observers yes responses was recommended

to be used on London buses, which is higher then the absolute threshold of 50%.
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Scene Name α SE β SE pDev 60% (kbps)

S5LOWEST 2.799 0.063 3.434 0.709 0.495 840

S5AV ERAGE 2.563 0.075 3.639 0.822 0.898 480

S5HIGHEST 2.37 0.076 5.958 4.513 0.510 277

S10LOWEST 2.906 0.047 5.216 1.033 0.083 975

S10AV ERAGE 2.707 0.042 6.327 1.829 0.653 596

S10HIGHEST 2.599 0.03 1 5.27 8.094 0.640 423

S12LOWEST 2.974 0.031 8.717 1.982 0.805 1055

S12AV ERAGE 2.792 0.042 6.959 1.504 0.895 714

S12HIGHEST 2.552 0.001 127.817 6.156 0.174 357

S13LOWEST 3.149 0.066 1.588 1.588 0.650 1716

S13AV ERAGE 2.949 0.062 4.14 0 1.038 1.00 1131

S13HIGHEST 2.713 0.052 5.356 1.443 0.090 621

S17LOWEST 3.199 0.092 4.444 1.175 0.725 1977

S17AV ERAGE 2.887 0.055 4.324 1.040 0.950 969

S17HIGHEST 2.642 0.056 6.65 0 1.77 0.685 509

S25LOWEST 2.932 0.059 3.923 0.862 0.348 1100

S25AV ERAGE 2.695 0.068 3.502 0.827 0.808 657

S25HIGHEST 2.338 0.107 3.114 0.656 0.273 299

Table 4.9: Data from curve fitting for each key scene from the CCTV systems
illustrating the parameter estimates along with their estimated standard error (SE)
for each curve. The goodness of fit is given by the pDev value. The 60% of yes
responses, in kbps, for each curve is also provided.

Based on the data analysis in Table 4.9, results and recommendations were pro-

vided to TfL. It was recommended that, during daytime, when there is variable

illumination, to set the bitrate to approximately 1977kbps (derived from the worst

performance curves, scene S17) and during night-time, when the bus illumination

is on, to reset the bitrate to around 840kbps (derived from the worst performance

curve for constant bus illumination, scene S5).

4.5 Comparison between CCTV and Industry

Table 4.10, shows a comparison between the results from the consumer industry

compressor (MPEG Streamclip-SC) in the first investigation and from the CCTV

systems in the second investigation at 60% of yes responses for each key scene. This

comparison helps to understand the performance of CCTV recording systems and

thus employ appropriate testing methods for such systems.
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Scene Name
S5 S10 S12 S13 S17 S25

Industry (SC) 670 752 1255 1231 1285 711

CCTVLowestF it 840 975 1055 1716 1977 1100

CCTVAverageF it 480 596 714 1131 969 657

CCTVHighestF it 277 423 357 621 509 299

Table 4.10: A comparison between CCTV and Industry compressors at 60% of yes
responses for each key scene.

The performance of the consumer industry compression at 60% of yes responses is

in most cases in the middle between the worst (lowest fit) and average (average fit)

values of the CCTV systems. Also, the CCTV systems for all the fits have performed

better than the consumer industry compression for scene 12 (required less bitrate

to maintain facial information). This is because the CCTV systems have enhanced

the dark areas by making them look brighter and thus revealed more information

within the image. Additionally, it is observed that the CCTV systems might have

performed some sharpening to the images, as a result making the information more

visible. This does not mean that the image itself will have more information than

the consumer industry compressed version. For example, the highest and average

curve fits of the CCTV systems outperformed the consumer industry compressor

by requiring less bitrate.

4.6 Discussion

Acceptable bitrates for video compression depend largely upon scene content prop-

erties. Dark scenes, far distance scenes and scenes with high levels of spatial-

temporal busyness were found the most challenging to compress, requiring higher

bitrates to maintain useful facial information, necessary for face recognition. Each

of the aforementioned groups was made most susceptible to compression either

from the scene property itself (i.e. dark and far distance scenes) or from the way

the compression algorithm works with the scene content (i.e. high levels of spatio-

temporal busyness scenes). Additionally, the dark and far distance scenes could be
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considered as having less useful facial information in the reference (in comparison

to the medium lightness and close distance groups) and they were affected more by

compression than the rest of the groups.

The findings of this study can be easily extended to others applications. Scene

content classification and grouping allows the use of the video dataset (and the

selected scenes under investigation) to be valid for other CCTV applications at large.

Furthermore, the classification provides exact knowledge on the scene properties

that compression algorithms have been assessed with and thus the circumstances

of data collection become irrelevant. For example, low lightness scenes are affected

more by compression than medium lightness scenes, and this is valid not solely

for CCTV but for any human face recognition application. This is because a low

lightness scene has a lower signal-to-noise ratio and entails less visual information

than a medium lightness scene and therefore is more susceptible to compression for

human visual tasks.
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CHAPTER 5

Case study 2: Comparative performance between human and

automated face recognition systems, using CCTV imagery,

different compression levels and scene properties

Automated face recognition systems should be aiming to work efficiently with CCTV

imagery obtained under uncontrollable environmental conditions and compression.

This chapter is a continuation of the previous human investigation in Chapter 4.

Results and test material obtained from the human investigation are also utilised

here. The aim of this chapter is to identify relationships between human and au-

tomated face recognition systems with respect to compression. Further, to identify

and compare the most influential scene properties on the performance of each recog-

nition system. Findings have the potential to broaden the methods used for testing

automated face recognition systems and thus improve their performance.
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5.1 Introduction

As it has been mentioned in Section 2.1.2, automated face recognition systems

are normally assessed using large datasets whereas individual and unique scene

content characteristics are not taken into consideration. Aggarwal et al. [42] have

realised that performance of face recognition systems differs among the available

datasets because of the dissimilar captured facial properties under each dataset.

At the moment there is little research on the effects of individual scene content

characteristics on the performance of automated systems (e.g. face recognition

and analytics systems). Nevertheless, the term image quality is utilised in the

same manner between automated systems and human operatives (see Section 3.3.2)

[16, 18, 274]. Image quality for security systems (i.e. both automated and human)

relates to the suitability of the imagery to satisfy, in this case, a face recognition

task.

Results from the human investigation in Chapter 4 have shown that under-exposed

scenes (dark scenes), far camera to subject distance scenes and scenes with high

spatio-temporal busyness information were the most challenging to compress, re-

quiring higher bitrates to maintain useful facial information. Overall, the correctly-

exposed scenes entailed visually more facial information and were perceived to be

immune to compression than under-exposed scenes. Thus, compression in human

face recognition has less effect on correctly-exposed scenes.

A number of studies have shown that compression does not adversely affect the per-

formance of automated face recognition systems (see Section 2.1.2) [34–37]. These

findings were derived by analysing the results based on correct recognition rate.

In this present work the results are analysed using a distance measure between a

degraded image from its reference version, which complies with the methodology

utilised for the human investigation in Chapter 4. Further, this will allow a di-

rect comparison of the results obtained between the human and automated face

recognition investigations.
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Results and test material obtained from the human investigation in Chapter 4

are also used here. In the present investigation 4 systems are assessed, 1 human

face recognition (HFR) system, and 3 basic automated face recognition (AFR)

systems [51]: a) Principal Component Analysis (PCA), b) Linear Discriminant

Analysis (LDA), and c) Kernel Fisher Analysis (KFA). Refer to Section 2.1.2 for a

detailed description of automated face recognition algorithms.

In summary, this chapter provides information on testing the aforementioned face

recognition systems with ‘uncompressed’ (i.e. the reference) and compressed footage

(i.e. 25 scenes compressed with H.264/MPEG-4 AVC video coding standard using 2

types of encoders) consisting of quantified scene (footage) properties. These include

measures of camera to subject distance, angle of the face to camera plane, scene

lightness, and spatio-temporal busyness. Results from the human investigation are

analysed using a different approach from the one employed in Chapter 4 in order to

sustain a systematic statistical analysis among all the face recognition systems (i.e.

AFR and HFR systems). For example, modelling of data is implemented based on

group properties (i.e. fitting of a single model to the scenes belonging to the low

lightness group) rather than on individual scenes as in Chapter 4.

Section 5.2 presents the experimental methodology. Data analysis of the results is

described in Section 5.3. Lastly, in Section 5.4, conclusions are drawn.

5.2 Methodology

The test material in this current investigation consist of different formats (refer-

ence and degraded) and implementations of H.264/MPEG-4 AVC. A more detailed

representation of the test materially can be found in Section 4.2.2. The following

points provide a summary of the material under investigation:

• 25 reference ‘uncompressed’ scenes. The reference ‘uncompressed’ format was

compressed using MPEG-2 at approximately 25Mbits/s, 25 frames per second

(25fps), and 4:2:0 chroma subsampling. This compression was applied to
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the original recorded footage (i.e. DV format) in order to provide the test

scenes on a DVD to the CCTV suppliers for the testing of the CCTV systems

on London buses. Empirical observations by the experimenter showed no

visible difference between the original recorded (DV format) and the assigned

reference (MPEG-2 format) footage.

• 25 scenes, compressed with MPEG Streamclip implementation. The compres-

sion bitrates used were at 25fps, with video coding standard H.264/MPEG-4

AVC, and approximately the following in kilobits per second (kbps): 300, 400,

800, 1000, 1200, 1400, 1600, 1800 and 2000.

• The 6 key scenes, compressed with 5 CCTV recording systems. These were

the most affected scenes as shown in section 4.4. The compression bitrates

used were at 4fps, with video coding standard H.264/MPEG-4 AVC, and

approximately the following in kbps: 10, 160, 352, 544, 736, 928, 1120, 1312

and 1504.

Overall 4 face recognition systems have been assessed with these test material, 1

human face recognition (HFR) system, and the 3 basic automated face recognition

(AFR) systems mentioned in Section 5.1.

Similarly to the human investigation, the automated systems were assessed based

on similarity score distance (between a degraded image from its reference version)

and not on correct recognition rate. Similarity scores provide a distance measure

of facial information between 2 images of faces, or biometric signatures [275, 276].

The following equation 5.1 [277] provides the Euclidean distance similarity measure

that has been employed in this investigation.

||x− y||e =
√
|xi − yi|2 (5.1)

The equation 5.1 finds the minimum distance ||x−y||e between the weighted vectors

of the probe/unknown (xi) and training (yi) images. The 3 AFR systems under

investigation were executed using a publicly available MATLAB face recognition

120



toolbox [51,278,279].

The testing of the AFR systems included the following actions:

1. Normalisation of facial images. The footage of all 25 scenes (reference and

degraded) was converted, with the MPEG Streamclip software, into a se-

quence of colour still images in TIFF uncompressed format. In the case of the

footage generated from the CCTV DVR systems, the manufacturers’ software

was used to export stills in most cases in TIFF format (some CCTV DVRs

did not support TIFF but rather PNG or JPEG formats). As mentioned in

Chapter 4, each scene included a consistent face that appeared in 8 images.

These 8 images were used to extract only the facial regions, based on eye coor-

dinates (i.e. these were the same among reference and degraded images with

MPEG Streamclip encoder but not with the CCTV DVR encoders). CCTV

DVRs have altered the size (i.e. by recording at a lower resolution) of the orig-

inal reference scenes. This indicates that the reference and degraded images

with MPEG Streamclip encoder were exactly the same in terms of selected

facial region but not exactly the same as the ones degraded with CCTV DVR

encoders.

All the extracted facial regions were normalised in terms of geometry (i.e.

orientation), size (i.e. rescaled to 125× 125 pixels) and were saved as colour

images, in TIFF format (see Figure 5.1). This has resulted in the normali-

sation of 8 images for each scene (single individual) and each type of footage

(reference and degraded with MPEG Streamclip encoder). In case of the

CCTV DVRs, 1 image for each scene was normalised. This is because the

DVRs have recorded the reference footage at 4fps, instead of 25fps, and have

outputted 1 face image from the 8 face images available in the reference.
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Figure 5.1: Extraction (left) and normalisation (right) of facial region.

The rescaling process (i.e. to 125× 125 pixels) of the extracted facial regions

has smoothed out the original facial images; both compressed and reference.

Figure 5.2 illustrates examples of 2 facial scenes, S6 and S9, entailing close

and far distance to the camera properties respectively. Also, the appearance

of them before and after the rescaling or normalisation process is illustrated.

Additionally, Figure 5.2 provides visually the effect of rescaling for the refer-

ence, 800kbps, 400kbps and 300kbps footage types. Even the reference images

(of scenes S6 and S9) appear to have been smoothed out on the edges after

the rescaling process. The rescaling process is unavoidable as any face recog-

nition system will need to normalise facial images (training and unknown)

before comparing them with each other; the normalisation process eliminates

extra unwanted variations (e.g. positioning of head and size) within a dataset

of faces. It is obvious that the rescaling process has smoothed out facial in-

formation including both edges and compression artefacts. One way to avoid

this smoothing out effect on the compression artefacts would have been to

first apply the rescaling process and later the compression. This option was

omitted as it does not replicate usual practice.

Even though the rescaling process has smoothed out facial information (i.e.

edges and compression artefacts) it seems that it has not reduced facial in-

formation. For example, the same information is shown between the un-
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normalised and their normalised versions for each type of footage (reference

and compressed versions) for both scenes S6 and S9. Perhaps the presence

of the ringing artefact might have been reduced more than the presence of

the blocking artefact (see Figure 5.2) for each type of compressed/reference

footage. Further, video compression algorithms embody deblocking filters

(smoothing of sharp edges) and H.264/AVC features a deblocking filter on

both the decoding path and on the encoding path [280]. This indicates that

the artefacts have already been smoothed out from the compression algorithm

itself. Also, there is some consistency in this investigation as the rescaling

process is applied to both the ‘uncompressed’ reference and the compressed

scenes. The compressed facial regions are accessed based on similarity score

distance from their reference versions.

Figure 5.2: Rescaling of facial images. The rescaling of facial images has smoothed
out edges and compression artefacts for both reference and compressed versions.
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Initial tests have indicated that size and representation (i.e. grayscale images

produced lower matching scores than colour images) of facial regions influence

the derived matching scores. These were kept constant (see above paragraph)

between reference and degraded footage with MPEG Streamclip encoder but

not with the CCTV DVR encoders. More specifically, the eye coordinates

were at different locations for the CCTV DVR encoders, which might have

influenced the selection of the facial regions. For example, the selected facial

regions (from each CCTV DVR encoder) are not exactly the same with the

reference, degraded footage with MPEG Streamclip encoder, and the other

CCTV DVR encoders. The CCTV DVR encoders are representative of the

uncontrollable nature of CCTV systems in terms of not knowing what pro-

cesses have been applied to the stored imagery (footage).

2. Creation of the gallery dataset for testing the AFR systems. A single dataset

was created for the testing. The dataset was represented with a single folder

containing 25 subfolders corresponding to each of the 25 scenes in Figure 4.4.

The first 8 images for each scene/subfolder corresponded to the facial images in

the reference format and were used to train the AFR systems (these are called

enrols or known faces). The remaining images in the gallery dataset acted as

the probes, or unknown faces. Furthermore, each subfolder consisted of 149

facial region images (as per the right image in Figure 5.1). More specifically,

the 149 facial images in each subfolder were in the following order:

a) 8 images from the reference (MPEG-2 format),

b) 8 images from the reference (MPEG-2 format)-to identify how the systems

behave when the reference/training 8 images are compared with themselves,

c) 8 images from the original recorded “uncompressed” (DV format),

d) 8 images from each of the 10 compressed types using the MPEG Streamclip

implementation (at kbps: 300, 400, 600, 800, 100, 1200, 1400, 1600, 1800,

2000),

e) and the remaining images were derived from the 5 CCTV recorders for

the 6 identified most affected scenes (the key scenes). The remaining scenes
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included repetitions of the reference (in order to create balancing number of

images in the subfolders).

Inclusion of the images from the CCTV recorders did not affect the similarity

scores. These were perceived, in the human investigation, to have a different

quality from that of the MPEG Streamclip encoder. For example, the sim-

ilarity scores were the same between the gallery dataset under investigation

and a dataset that included instead of the images from the CCTV recorder

(for the 6 most affected scenes) repetitions of the reference. The number and

size of subfolders influence the derived matching scores, but not the order of

subfolders, or the order of the images in the subfolders. It was considered

important to include all the degraded footage (from MPEG Streamclip and

CCTV recorders) in order to follow the same methodology/steps implemented

in the human investigation

3. Testing of the AFR systems. There is a variety of testing procedures that

can be used to evaluate automated systems [37, 38]. In this investigation,

the entire aforementioned gallery dataset was processed by the AFR systems.

Every single image that belonged to the known faces was compared against

every single image of unknown faces and the produced similarity scores were

presented in a matrix form. The distance/similarity between 2 face biometric

signatures was calculated using the Euclidian distance (see Equation 5.1).

The latter, in comparison to other distance measures (i.e. cosine mahalanobis,

cosine, City block distance), provided more comparable values among the 3

AFR systems.

4. Preparation of results for statistical analysis. The derived similarity values

were scaled in order to range between 0 (no similarity between known and

unknown face images) and +1 (perfect similarity between known and unknown

face images) using a simple normalisation formula (Eq. 5.2):

Normalisation = 1− xi −min(x)

max(x)− xi
(5.2)
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Where xi, is a single similarity value in a sample x, and min(x) and max(x)

correspond to the minimum and maximum values of that sample respectively.

The sample consists of all the similarity values obtained from the entire test-

ing of the gallery dataset for each AFR system. Figure 5.3, illustrates an

example relating to the generated similarity matrices from the automated

systems. As mentioned previously, each scene contained 8 consistent facial

images (i.e. corresponding to 8 successive frames in the footage) of the same

individual. In Figure 5.3, similarity scores for scene S1 are obtained between

the 8 known/training facial images in reference format with the 8 unknown

facial images in reference format, and with the 8 unknown facial images in

H.264/MPEG-4 AVC at 300kbps format. The mean value of the derived sim-

ilarity scores between each 2 set of 8 images (8 known×8 unknown) was used

for further analysis. In case of the CCTV DVR encoders that will be the mean

value between the 1 outputted image for each scene compared with the 8 im-

ages of the reference (8 known×1 unknown); since the CCTV DVR recorders

provided only 1 facial image from the 8 reference facial images.
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Figure 5.3: Example of the generated similarity matrices. The values are the derived
similarity scores obtained between the 8 known facial images from scene S1 (in
reference format) with the 8 unknown facial images from scene S1 in the reference
format (acting now as Unknown Ref) and in H.264/MPEG-4 AVC compressed at
300kbps format (Unknown 300). Each scene contains 8 consistent facial images. The
average value is obtained by taking the mean of all the similarity scores between
each 2 set of 8 images (8 known×8 unknown-highlighted by the grey box).

5.3 Results

In Sections 5.3.1 and 5.3.2, the results obtained from all the face recognition systems

were modelled using the sigmoid logistic Eq. 4.1 in Section 4.3. Where matching

scores (i.e. for AFR systems) and proportion of yes responses (i.e. for HFR sys-

tem) are plotted vs. the different levels of compression. Eq. 4.1 seems to fit the

data from the AFR systems well (this will become apparent from the created plots)

and has contributed to keeping the statistical analysis consistent among all the face

recognition systems. In non-linear modelling the choice of a function is based on

how well a model fits the data [281]. The upper part of the human sigmoid logistic

equation (Eq. 4.1) has fitted the data from the AFR systems well. Data modelling

for the automated systems were curried out using R software for statistics [282]
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by implementing non-linear least-squared regression [283]. The data obtained from

the automated systems have a Gaussian distribution and a non-linear relationship

was identified between compression rate and matching scores. The non-linear least-

squared regression method fits models that minimise the sum of the squares of

residuals. Errors on the fitted model coefficients are derived by an iterative proce-

dure were the user supplies an initial guess; this is not the case for linear models

as an initial guess for the coefficients is not required [284]. Common goodness of

fit methods used by linear models such as R-Squared have been found inadequate

for non-linear models [269]. For this reason a goodness of fit method has not been

applied to the obtained non-linear models, instead the models with their associ-

ated errors on the coefficients have been utilised for the analysis/explanation of

results.

Data modelling for the human results were processed accordingly to the psychome-

tric curve fitting method described in Sections 4.3 and 4.4. The Llambda coefficient

was set to range between 0.00 and 0.02 depending on how well the model fitted the

raw data by taking into consideration the pDev value (see Section 4.3). Standard

error calculations of the model coefficients for the AFR systems were calculated for

all 3 coefficients (i.e. α, β, and Λ) but for the HFR system only for coefficients α

and β (as Λ was given a set value).

In Section 5.3.3 the derived raw data from the 5 CCTV DVR systems with the key

scenes are modelled using linear regression. The non-linear model of the sigmoid

logistic Eq. 4.1 over-fitted the derived raw data and thus was concluded to be not

appropriate. Instead linear regression fitted the data well. The aim of this step of

analysis is to focus on observing the derived results and trends rather than identi-

fying the best model for the data. For example, some of the outputted raw data

have linear properties and some are close to linear. Overall the data obtained from

the CCTV DVRs are scattered and linear models are fitted to observe tendencies.

This will become apparent in Section 5.3.3.

The analysis of the results has been divided into 4 parts: 1) Section 5.3.1 includes
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an analysis on the overall performance of each recognition system with respect to

compression utilising the industry standard MPEG streamclip software (SC), 2)

Section 5.3.2 involves a detailed analysis, based on the grouped properties in Table

4.3, on the performance of each recognition system with respect to compression

utilising the industry standard MPEG streamclip software (SC), 3) Section 5.3.3 is

concerned with the face recognition systems performance with the key scenes from

the 5 CCTV DVR encoders, and 4) Section 5.3.4 provides an additional analysis

relating to the performance of the AFR systems with the low lightness scenes.

5.3.1 Overall performance with industry standard

H.264/MPEG-4 AVC encoder

Figure 5.4 presents results obtained from face recognition systems AFR - LDA, AFR

- KFA, AFR - PCA, and HFR respectively. In all graphs, the raw data (matching

scores for AFR and proportion of yes responses for HFR) of all the 25 scenes

are plotted vs. the different levels of compression (in log kbps) and the reference

(displayed separately and next to the main graphs). The lines in the graphs are the

models obtained from modelling the raw data.

Table 5.1, includes details of the overall fitted models in Figure 5.4. The first

column provides the system name. The second, fourth and sixth columns provide

information on the derived coefficients of each model (α - absolute threshold, β -

gradient and Λ - lapse rate). Their next columns provide the calculated standard

error on the coefficients (std).

From the non-linear regression analysis of the AFR systems, there is a significant

correlation (i.e. derived by calculating the statistical p value identifying any signifi-

cant trends - see Table 5.1) between matching scores and compression rate for AFR

systems LDA and KFA, but not for PCA. This is also visible from the graphs in

Figure 5.4. The statistical tool utilised for the analysis of the human data does not

include a calculation of the statistical p value. By observing the human model in
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Figure 5.4 a conclusion can be made that a relationship exists between proportion

of yes responses and compression rate. The derived human model does not pro-

vide a perfect fit but rather illustrates the tendency of the data, such as a sigmoid

curve behaviour. The human data are too scattered to be able to obtain a perfect

model in terms of being aligned to most of the data points but they do provide a

systematic trend. This is the same for the PCA method as the obtained standard

errors on the coefficients, in Table 5.1, are quite big. The obtained standard errors

on the human model coefficients are not big, indicating that the model represents

the overall data well.

This scattered behaviour to the human data is indicative to scene dependency that it

is common in human evaluations; some scenes with specific properties are affected

more than others by compression [48]. The scattered behaviour of PCA can be

explained as being proof that this method does not perform well in minimising

within-class variations of the same individual (see Section 2.1.2). LDA and KFA

are designed to minimise within-class variations and have performed well when the

reference was compared with itself. For example, both LDA and KFA label in the

same class all the facial images that come from a single individual (i.e. in this

case the 8 images of the same face in a single scene such as S1) and in a different

class individuals that differ (i.e. face images from different scenes). This is not

the case for PCA and assigns multiple images of the same individual to different

classes. For this reason, even when the reference is compared with itself, PCA has

performed the worst. This is because the mean value among the 8 images depicting

the same individual was used. Yet, the scattered results of PCA still demonstrate

a systematic trend (see Figure 5.4).

In the overall performance analysis, results show that the automated recognition

systems are more tolerant to compression than humans (Figure 5.4). Performance

drops at high compression rates (e.g. 300kbps, 400kbps, 600kbsp) for most systems.

Each recognition system performed differently and KFA seems to have performed

better than LDA.
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The produced matching scores for all AFR systems, between reference MPEG-2

format and original recorded DV format were very similar, indicating no significant

difference between the original recorded and the assigned reference footage (see

Section 5.2).

Figure 5.4: Overall performance of face recognition systems. The raw data (match-
ing scores for AFR and proportion of yes responses for HFR) of all the 25 scenes
are plotted with respect to the different levels of compression (in log kbps) and
the reference (displayed separately and next to the main graphs). The lines in the
graphs are models obtained from the raw data.
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System α std β std Λ std

AFR - LDA 2.204 0.022 5.819 0.441 0.023 0.003

AFR - KFA 2.035 0.035 5.211 0.408 0.012 0.002

AFR - PCA 2.061 0.580 9.254 12.710 0.093 0.004

HFR 2.738 0.005 9.566 0.227 0.010 NA

Table 5.1: Coefficient information of the overall fitted models in Figure 5.4. The
first column provides the system name, where α, β and Λ are the coefficients for the
absolute threshold, gradient and lapse rate respectively. std columns provide the
calculated standard error on the coefficients. Where NA stands for not applicable.
The std of the Λ coefficient has not been calculated for the human data as it was
kept constant (see Section 4.3).

5.3.2 Group category performance with industry standard

H.264 (MPEG-4 AVC) encoder

This section includes a detailed analysis on the performance of each recognition

system for each grouped scene property detailed in Table 4.3 (e.g. close and far

properties of the camera to subject distance groups). This analysis will allow iden-

tification of correlations of image acceptance (or scene property acceptance) between

automated and human face recognition systems. Additionally, it will identify the

scene properties that decline performance of automated systems. This information

can be utilised by designers of such systems in terms of identifying techniques to

improve performance for the ‘declined’ scene properties.

Figures 5.5 to 5.7 include raw points and their fitted models as in Figure 5.4, but

this time is based on individual scene properties. Tables 5.2 to 5.4 provide details on

the calculated coefficients together with their associated calculated standard errors

of the models in Figures 5.5 to 5.7. For example, in Figure 5.5 the behaviour of the

recognition systems AFR - LDA and HFR under the angle of the face to camera

plane groups with respect to compression rate is investigated. The raw data (y-

axis: matching scores for AFR and proportion of yes responses for HFR) of each

scene property under the angle group is plotted with respect to compression rate

(x- axis: in log kbps.)

When the calculated coefficients (+/- std) between models overlap (especially for
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α and β coefficients) then this is an indication of there being no difference between

the investigated scene properties or produced models. For example, in Table 5.2

and system AFR - KFA the coefficients for ‘tilted’ (α = 2.033 + / − 0.055, β =

5.001 + /− 0.613 and Λ = 0.013 + /− 0.003) and ‘frontal’ (α = 2.039 + /− 0.040,

β = 5.451 + / − 0.489 and Λ = 0.012 + / − 0.002) angle groups are not different

thus these 2 models are classified as being the same. For the angle property, only

the fitted models of system AFR - LDA do not overlap (see Figure 5.5). The AFR

- LDA ‘frontal’ scenes have produced higher scores than ‘tilted’ scenes (i.e. ‘tilted’

angle scenes are affected more by compression than ‘frontal’ scenes). Similarly, for

the distance property only the fitted models of system HFR do not overlap (see

Figure 5.5). The HFR ‘close’ scenes have produced higher scores than the ‘far’

distance scenes (i.e. ‘far’ distance scenes are affected more by compression than

‘close’ scenes).

System α std β std Λ std

LDAFrontal 2.236 0.027 6.655 0.684 0.023 0.003

LDAT ilted 2.169 0.035 5.107 0.562 0.022 0.004

LDAClose 2.217 0.030 5.987 0.650 0.019 0.004

LDAFar 2.190 0.032 5.654 0.588 0.0263 0.004

KFAFrontal 2.039 0.040 5.451 0.489 0.012 0.002

KFAT ilted 2.033 0.055 5.001 0.613 0.013 0.003

KFAClose 2.041 0.049 5.237 0.583 0.010 0.002

KFAFar 2.028 0.049 5.186 0.563 0.015 0.002

PCAFrontal 2.101 0.754 10.308 20.372 0.086 0.005

PCAT ilted 2.022 0.881 8.391 16.007 0.099 0.005

PCAClose 2.144 0.608 11.675 21.078 0.084 0.004

PCAFar 1.977 1.023 7.624 15.374 0.100 0.006

HFRFrontal 2.762 0.007 7.845 0.248 0.006 NA

HFRT ilted 2.721 0.060 11.930 0.410 0.006 NA

HFRClose 2.702 0.007 10.461 0.437 0.012 NA

HFRFar 2.773 0.006 9.161 0.273 0.006 NA

Table 5.2: Coefficient information of the fitted models for Distance and Angle
category groups. The same approach is adopted as was used in Table 5.1
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Figure 5.5: Angle of face to camera plane and camera to subject distance groups.
For all graphs, the raw data points (x- axis: matching scores for AFR and proportion
of yes responses for HFR) are plotted with respect to compression rate (y- axis: in
log kbps). The black points (*) and lines represent raw data and models respectively
of scenes with the tilted angle and close distance property. The grey points (*) and
lines represent raw data and regression models respectively of scenes with the tilted
angle and far distance property.

For the busyness groups (Figure 5.6 and Table 5.3), the AFR - LDA and AFR

- KFA systems have produced different curve models for properties ‘High spatial-

High temporal’ and ‘Low spatial-Low temporal’ (curve models for ‘Low spatial-

High temporal’ and ‘High spatial-Low temporal’ are the same). ‘Low spatial-Low

temporal’ scenes have produced the highest scores and can afford more compression

than the rest of the busyness groups. A similar behaviour can be observed for system

AFR - PCA in terms of the ‘Low spatial-Low temporal’ scenes even though the error

estimates on the β coefficients are quite big.

For the HFR system, the ‘High temporal-High spatial’ model is different from the

rest models and the rest models are all overlapping with each other (either threshold

- α or gradient - β or both). The ‘High temporal-High spatial’ scenes are influenced

more by compression than the remaining busyness category groups.
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Figure 5.6: Busyness groups. For all graphs, the raw data points and their fitted
models are plotted with respect to compression rate. The black points (*) and solid
lines represent raw data and models of scenes with the ‘Low spatial-Low temporal’
busyness property. The grey points (*) and solid lines represent scenes with the ‘Low
spatial-High temporal’ busyness property. The black points (o) and dashed lines
represent scenes with the ‘High spatial-Low temporal’ busyness property. The grey
points (o) and dashed lines represent scenes with the ‘High spatial-High temporal’
busyness property.
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System α std β std Λ std

LDALowSLowT 2.350 0.013 11.372 1.034 0.024 0.002

LDALowSHighT 2.224 0.030 5.071 0.561 0.019 0.006

LDAHighSLowT 2.208 0.035 5.935 0.721 0.027 0.004

LDAHighSHighT 1.999 0.084 3.729 0.682 0.014 0.008

KFALowSLowT 2.262 0.0217 10.169 0.986 0.0137 0.0013

KFALowSHighT 2.050 0.041 4.781 0.454 0.011 0.003

KFAHighSLowT 2.037 0.072 5.275 0.845 0.014 0.003

KFAHighSHighT 1.711 0.139 3.175 0.614 0.006 0.005

PCALowSLowT 2.282 0.292 18.117 27.138 0.071 0.003

PCALowSHighT 2.148 0.642 10.441 20.051 0.101 0.007

PCAHighSLowT 1.895 3.494 7.114 42.222 0.125 0.013

PCAHighSHighT 1.539 2.798 4.533 13.644 0.087 0.009

HFRLowSLowT 2.623 0.007 15.116 0.988 0.000 NA

HFRLowSHighT 2.693 0.010 12.732 0.905 0.002 NA

HFRHighSLowT 2.710 0.009 15.640 1.092 0.007 NA

HFRHighSHighT 2.876 0.007 8.828 0.303 0.000 NA

Table 5.3: Coefficient information of the fitted models for the busyness category
groups. The same approach is adopted as was used in Table 5.1

As the number of properties under each grouped category increases, it becomes

more difficult to derive conclusions on the derived models. For example, the groups

in the lightness category consists of 5 properties (e.g. bus, medium, low, high

and mixed lightness) distributed across 25 scenes and most of the derived models

overlap (Figure 5.7 and Table 5.4). In a future investigation more scenes should be

included. Nonetheless, the graphs in Figure 5.7 can still be observed to understand

tendencies. For the automated systems, ‘mixed lightness’ scenes were the most

affected (i.e. produced the lowest matching scores) and ‘low lightness’ scenes were

the least affected (i.e. produced the higher matching scores) by compression. In

contrast for humans, ‘low lightness’ scenes were the most affected and, ‘medium’

and ‘mixed lightness’ scenes the least affected by compression. Also, for the HFR

system, the ‘low lightness’ model is different from the other lightness models and

these other models are all overlapping with each other.
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Figure 5.7: Lightness groups. For all graphs, the raw data points and fitted models
are plotted with respect to compression rate. The black points (*) and solid lines
represent raw data and models of scenes with the ‘Bus medium lightness’ property
(Bus). The grey points (*) and solid lines represent raw data and models of scenes
with the ‘Daylight medium lightness’ property (Medium). The black points (o) and
dashed lines represent raw data and models of scenes with ‘Daylight low lightness’
property (Low). The grey points (o) and dashed lines represent raw data and models
of scenes with the ‘Daylight high lightness’ property (High). The black points (x)
and dotted lines represent raw data and models of scenes with ‘Daylight mixed
lightness’ property (Mixed).
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System α std β std Λ std

LDABus 2.279 0.025 7.700 0.870 0.024 0.003

LDAMedium 2.340 0.020 9.174 1.174 0.026 0.004

LDALow 1.944 0.081 4.263 0.655 0.016 0.004

LDAHigh 2.041 0.067 3.893 0.609 0.015 0.007

LDAMixed 2.180 0.028 4.855 0.433 0.023 0.004

KFABus 2.132 0.039 6.593 0.729 0.013 0.002

KFAMedium 2.213 0.040 8.006 1.159 0.015 0.002

KFALow 1.665 0.187 3.308 0.804 0.008 0.005

KFAHigh 1.821 0.100 3.895 0.610 0.009 0.003

KFAMixed 2.033 0.050 4.640 0.520 0.012 0.003

PCABus 2.116 0.296 9.862 7.947 0.064 0.003

PCAMedium 2.237 0.113 13.290 6.198 0.066 0.002

PCALow 1.546 3.222 4.813 16.741 0.053 0.008

PCAHigh 1.603 2.701 4.969 15.395 0.104 0.008

PCAMixed 2.055 1.566 10.321 37.945 0.155 0.005

HFRBus 2.683 0.009 13.457 0.779 0.002 NA

HFRMedium 2.624 0.009 16.780 2.003 0.007 NA

HFRLow 2.972 0.009 10.968 0.619 0.000 NA

HFRHigh 2.787 0.010 9.333 0.463 0.006 NA

HFRMixed 2.690 0.008 13.936 0.916 0.008 NA

Table 5.4: Coefficient information of the fitted models for the lightness category
groups. The same approach is adopted as was used in Table 5.1

The detailed results from the HFR system in this current investigation agree with

the results in Chapter 4 (see Table 4.8). Even though a different statistical approach

has been implemented, the same conclusions are drawn. HFR system performance

when assessed with compression is affected the most negatively by scenes exhibiting

‘low lightness’, ‘far camera to subject distance’ and ‘High spatial-High temporal

busyness’ properties.

5.3.3 Key scenes performance with standard and CCTV

DVR H.264 / MPEG-4 AVC encoders

This section provides the results from the AFR systems performance assessed with

the key scenes and the 5 CCTV DVR H.264/MPEG-4 AVC encoders. Refer to

Section 4.4 for a detailed description on the CCTV DVRs outputted compressed

scenes (footage). Figures 5.8 to 5.10 illustrate the raw data points and fitted models

plotted with respect to compression rate (in kbps). A single model was fitted to
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all the data points derived from the 5 CCTV DVR (DVR) encoders for each key

scene. Tables 5.5 to 5.7 provide information on the derived coefficients from the

fitted models in Figures 5.8 to 5.10.

Figures 5.8 to 5.10 when compared with the results in Figure 5.4 illustrate that the

automated systems have performed better with the industry standard (SC) encoder

than the CCTV DVR encoders. This is applicable for the HFR system except

for scene S12, where the DVR encoders have performed better. A more detailed

analysis of the HFR system performance with footage from the DVR encoders can

be found in Sections 4.4 and 4.5 and Table 5.8. For the AFR systems, as it has

been mentioned previously, the selected facial region between the reference and

compressed versions with the CCTV DVRs were not the same and this might have

affected the derived data more than the compression applied and reduction of frame

rate (i.e. to 4fps). A conclusion cannot be made as the uncontrollable nature of

CCTV DVRs introduces hidden variables.

All the automated systems have performed the best with the ‘low lightness’ scenes

S12 and S13 and the worst with the ‘mixed lightness’ scene S25. It appears diffi-

cult to derive the same conclusions for the HFR system by observing the already

modelled results in Sections 4.3 and 4.4. Instead, Table 5.8 provides a comparison

of SC and DVR encoders at 60% and 75% proportions of yes responses for each

key scene. The HFR system has performed the best with the ‘medium lightness’

scenes (Bus and Daylight illumination) and the worst with the ‘low lightness’ scenes

S12 and S13 together with the ‘high lightness’ scene S17 for both encoders at 60%

proportion of yes responses and at 75% proportion of yes responses for SC encoder.

Whereas, for the CCTV DVR encoder at 75% proportion of yes responses scenes

S13, S17 and S25 were the most affected.
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System α std β std p

S5 - LDADV R 0.760 0.015 0.000 0.000 0.0212*

S10 - LDADV R 0.671 0.015 0.000 0.000 0.0000****

S12 - LDADV R 0.904 0.005 0.000 0.000 0.001**

S13 - LDADV R 0.879 0.012 0.000 0.000 0.062.

S17 - LDADV R 0.725 0.017 0.000 0.000 0.000***

S25 - LDADV R 0.673 0.019 0.000 0.000 0.000***

Table 5.5: Coefficient information of the fitted models for key scenes from system
AFR-LDA. Where α and β are the obtained coefficients of the fitted linear models.
std stands for standard error for each of the calculated coefficients. Where p is the
statistical value and defines whether a significant trend exists between matching
scores and compression rate.

System a std b std p

S5 - KFADV R 0.865 0.007 0.000 0.000 0.017*

S10 - KFADV R 0.844 0.007 0.000 0.000 0.001***

S12 - KFADV R 0.899 0.009 0.000 0.000 0.114

S13 - KFADV R 0.885 0.009 0.000 0.000 0.399

S17 - KFADV R 0.867 0.007 0.000 0.000 0.000***

S25 - KFADV R 0.793 0.011 0.000 0.000 0.000***

Table 5.6: Coefficient information of the fitted models for key scenes from system
AFR-KFA. Adopting the same approach as in Table 5.5.

System a std b std p

S5 - PCADV R 0.084 0.005 0.000 0.000 0.043*

S10 - PCADV R 0.849 0.005 0.000 0.000 0.084

S12 - PCADV R 0.909 0.006 0.000 0.000 0.627

S13 - PCADV R 0.882 0.007 0.000 0.000 0.959

S17 - PCADV R 0.817 0.007 0.000 0.000 0.001***

S25 - PCADV R 0.759 0.007 0.000 0.000 0.000***

Table 5.7: Coefficient information of the fitted models for key scenes from system
AFR-PCA. Adopting the same approach as in Table 5.5.
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60% (kbps)
Encoder S5 S10 S12 S13 S17 S25

SC 670 752 1255 1231 1285 711

CCTV DVR 480 596 714 1131 969 657

75% (kbps)

Encoder S5 S10 S12 S13 S17 S25

SC 753 811 1467 1469 1437 788

CCTV DVR 751 771 901 1674 1409 1045

Table 5.8: Comparison between industry and CCTV DVR encoders at 60% and
70% points of yes responses for each key scene

5.3.4 Additional analysis

Similarly to the findings of Adler and Dembinsky [44], the results in Sections 5.3.2

and 5.3.3 illustrate that the performance of AFR and HFR systems differ and it

is dependent on scene content. ‘Low lightness’ scenes have been affected the least

by compression for AFR systems and the most for the HFR system. On the other

hand, the HFR system performed the best with ‘medium lightness’ (including both

Bus and Daylight illumination) scenes.

Dietz and Eberhart [285] investigated the impact of a camera’s different ISO values

on image quality. They have found that processing of extremely under exposed

captures (due to a setting of low ISO) can produce comparable image quality to

those with the camera ISO increased for a correct exposure keeping constant the

shutter speed and aperture settings. It is well known among photographers that

under exposed scenes entail more visual information than over exposed scenes.

Clipping in photography is when areas in an image (or entire image) appear uni-

formly with minimum and/or maximum levels of brightness (e.g. blue sky appearing

white because of over exposure). Clipping can occur due to an incorrect capture

(i.e. over and under exposed scenes) or a digital process (e.g. sharpening). The

degree by which values are clipped affects the amount of information in an image

is lost/hidden. Another factor that affects the degree of clipping is the limitations
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of the colour gamut properties of the imaging system. This relates to the capabil-

ity of the imaging system to be able to distinguishing colours/shades at different

brightness levels. For example, display outputs use a smaller colour gamut than

an average digital camera. Perhaps the information in an under exposed scene

is within the image but not reproducible/visible on a display because of smaller

gamut [286, 287]. Furthermore, other factors such as errors on the quantisation

process could cause blocks of uniform brightness. This is known as quantisation

noise and could be caused during the digitisation process of an analogue signal to

the output digitised values.

Figure 5.11 and 5.12 illustrate examples of applying a simple processing (by altering

the image levels) method on ‘low lightness’ key scenes S12 and S13. The processing

method has revealed facial information that was not visible in the original sequence

of facial images. The facial information in the processed images can be compared

with the ‘medium lightness’ scenes S5 and S10 in Figure 5.13.

Figure 5.11: Processing of ‘low lightness’ scene S12. The top row of facial images
represent the original sequence of the 8 facial images and the bottom row the same
facial images after processing. The histogram on the left depicts the original facial
images and the one on the right after processing.
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Figure 5.12: Processing of ‘low lightness’ scene S13. The top row of facial images
represent the original sequence of the 8 facial images and the bottom row the same
facial images after processing. The histogram on the left depicts the original facial
images and the one on the right after processing.

Figure 5.13: ‘Medium lightness’ scenes S5 (Bus illumination-top row) and S10
(Daylight-bottom row) together with their histograms. The top row of facial images
represent the original sequence of the 8 facial images for scene S5 and the bottom
row for scene S10. The histogram on the left depicts scene S5 and the one on the
right scene S10.

Furthermore, Figure 5.14 presents the tone characteristics or transfer function, in

a log-log scale, of the reference input to the automated systems. This tone transfer

function represent the tone characteristics of the reference in either DV or MPEG-2

format and compressed versions of the reference with the industry standard encoder

at 300kbps (i.e. not the CCTV DVRs). This means that the industry standard

compressor (MPEG Streaclip) has not degraded the tone reproduction with respect

to the reference ‘uncompressed’ footage. The γ of the characteristic curve is less

than 1 (γ = 0.8894). A less than 1 γ indicates that the blacks or low luminance

tones are expanded or quantised to a greater degree than high luminance tones.

The above paragraph on under exposed scenes entailing more information after

processing is part of the same argument. Also, the displayed tone characteristics
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(i.e. input to the human visual system - see Figure A.2 with a γ = 2.09) are different

from the measured tone characteristics (i.e. input to the automated systems - see

Figure 5.14 with a γ = 0.8894).

Figure 5.14: Tone characteristics of the reference

It is anecdotal why the under exposed scenes (e.g. S12 and S13) have scored higher

than the correctly exposed scenes (e.g. S5 and S10) for the AFR systems. Perhaps,

compression algorithms first remove the dark effect caused from under exposure and

later proceed with scene content information. Compression tends to throw away

what humans can not see without changing the tone reproduction. As it has been

mentioned previously, compression has not affected the tone reproduction. Yet,

even at high compression levels (300kbps and 400kbps) the ‘low lightness’ scenes

have been affected the least for the AFR systems.

In order to understand further the behaviour of the AFR systems with scene content

properties, a more detailed analysis has been considered. Tables 5.9 to 5.11 present

the top 6 matching scores (or rank order results) for each reference version of the 25

scenes with the rest of the 25 reference scenes. No compressed versions are included

in this analysis. The highest matching score for each of the 25 scenes is with itself.
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Rank order identifies the top matches of an ‘unknown’ facial image. Observing the

results from PCA (Table 5.9), LDA (Table 5.10), and KFA (Table 5.11) one can

see that the obtained 6 top rank facial images relate to the lightness properties

of the scenes/faces. Furthermore, PCA and KFA have obtained the top 6 rank

matches, in most cases within the same lightness classification of the ‘unknown’

scene. For example, for both PCA and KFA the top 6 matches for scene S1 (i.e.

exhibits ‘medium lightness’ property) are of the same ‘medium lightness’ category

with either daylight or bus illumination. LDA has included for all the ‘unknown’

scenes the ‘low lightness’ scenes (S11, S12, S13, and S14) in the top 6 matches (see

Table 5.10).

The lightness properties of faces/scenes have influenced the matching scores no-

tably. In case of the ‘low lightness’ scenes for all the AFR systems, their top 6

matches among other ‘low lightness’ scenes are the highest, in comparison to the

other lightness categories; such as ‘medium lightness’, where their top 6 matches

include other ‘medium lightness’ scenes (see Tables 5.9, 5.10, and 5.11). For in-

stance, Table 5.10 includes the top 6 matches for the LDA method and for the

‘low lightness’ scenes (S11,S12,S13,S14) the second top match value is around 0.7,

whereas for the rest of the lightness scenes the second top match value is around

0.4. As tone characteristics do not change in the compressed scenes, perhaps the

automated algorithms perform pattern/lightness matching between the dark areas

(the employed AFR techniques are holistic after all) of the facial images in the

‘low lightness’ category, even at high compression levels. This might be able to be

corrected by applying illumination normalisation techniques before automated face

recognition. Illumination normalisation techniques could be used to compensate

for the variable exposed footage that has been produced by incorporating in the

methodology auto-white balancing and auto-exposure settings.

The issues in face recognition because of illumination variations are well known

and still remain unsolved [189]. There is a huge amount of research investment in

illumination normalisation techniques for optimising facial images for AFR systems;
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histogram equalisation is the most commonly used technique [188–193]. Research

has shown that normalisation of facial images from illumination variations does

improve performance of face recognition systems. However, it is unknown how face

normalisation illumination techniques influence performance based on specific scene

content properties.

AFR-PCA: Rank Order of Matching Scores
S1 S2 S3 S4 S5 S6 S7 S8
S1:0.945 S2:0.913 S3:0.958 S4:0.937 S5:0.926 S6:0.943 S7:0.937 S8:0.926
S2:0.828 S1:0.828 S1:0.805 S13:0.784 S6:0.782 S10:0.841 S6:0.830 S9:0.842
S3:0.805 S3:0.760 S9:0.784 S10:0.778 S7:0.733 S7:0.830 S10:0.789 S10:0.776
S6:0.755 S6:0.757 S10:0.767 S8:0.764 S10:0.758 S9:0.818 S9:0.774 S4:0.764
S10:0.748 S10:0.755 S8:0.763 S9:0.758 S9:0.722 S5:0.782 S5:0.733 S6:0.764
S9:0.734 S9:0.729 S2:0.760 S14:0.747 S4:0.709 S8:0.763 S8:0.719 S3:0.763
S9 S10 S11 S12 S13 S14 S15 S16
S9:0.943 S10:0.916 S11:0.921 S12:0.950 S13:0.931 S14:0.985 S15:0.946 S16:0.880
S8:0.841 S6:0.841 S12:0.886 S14:0.923 S11:0.872 S12:0.923 S17:0.754 S17:0.721
S6:0.819 S9:0.808 S14:0.883 S11:0.886 S14:0.853 S11:0.883 S16:0.708 S18:0.719
S10:0.808 S7:0.790 S13:0.872 S13:0.851 S12:0.852 S13:0.853 S19:0.702 S15:0.718
S3:0.784 S4:0.778 S4:0.743 S3:0.727 S4:0.784 S4:0.747 S18:0.654 S19:0.711
S7:0.775 S8:0.776 S3:0.715 S4:0.725 S8:0.716 S8:0.736 S20:0.620 S21:0.598
S17 S18 S19 S20 S21 S22 S23 S24
S17:0.880 S18:0.877 S19:0.874 S20:0.867 S21:0.853 S22:0.856 S23:0.875 S24:0.781
S15:0.756 S16:0.724 S15:0.720 S21:0.677 S20:0.680 S20:0.625 S16:0.691 S17:0.640
S16:0.716 S19:0.698 S16:0.719 S7:0.673 S23:0.632 S2:0.609 S18:0.680 S21:0.611
S19:0.696 S17:0.695 S17:0.706 S6:0.660 S6:0.619 S21:0.603 S15:0.674 S15:0.598
S18:0.689 S23:0.687 S18:0.700 S5:0.630 S17:0.618 S6:0.576 S17:0.667 S20:0.595
S23:0.664 S15:0.662 S23:0.630 S22:0.621 S7:0.612 S5:0.576 S21:0.639 S23:0.581
S25
S25:0.813
S7:0.601
S5:0.580
S23:0.567
S6:0.566
S4:0.546

Table 5.9: AFR-PCA: Rank order of matching scores. The top 6 scene matches
and their matching scores are provided for each of the 25 scenes.
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AFR-LDA: Rank Order of Matching Scores
S1 S2 S3 S4 S5 S6 S7 S8
S1:0.985 S2:0.986 S3:0.985 S4:0.978 S5:0.973 S6:0.985 S7:0.991 S8:0.980
S12:0.442 S12:0.452 S12:0.443 S11:0.491 S14:0.420 S12:0.468 S11:0.380 S14:0.409
S11:0.436 S11:0.418 S11:0.418 S14:0.464 S12:0.391 S14:0.451 S12:0.378 S12:0.364
S14:0.431 S14:0.418 S14:0.416 S12:0.450 S11:0.385 S11:0.445 S10:0.359 S13:0.355
S13:0.409 S1:0.378 S13:0.405 S13:0.422 S2:0.350 S13:0.420 S13:0.342 S11:0.352
S3:0.393 S13:0.374 S1:0.392 S6:0.414 S1:0.330 S4:0.414 S14:0.337 S9:0.317
S9 S10 S11 S12 S13 S14 S15 S16
S9:0.977 S10:0.979 S11:0.984 S12:0.983 S13:0.979 S14:0.980 S15:0.984 S16:0.946
S12:0.457 S12:0.507 S12:0.745 S11:0.746 S14:0.748 S13:0.749 S11:0.305 S5:0.328
S11:0.448 S11:0.496 S13:0.735 S14:0.726 S11:0.735 S11:0.723 S10:0.291 S14:0.317
S13:0.388 S14:0.408 S14:0.721 S13:0.718 S12:0.719 S12:0.730 S12:0.290 S17:0.306
S14:0.379 S6:0.390 S10:0.4908 S10:0.511 S4:0.421 S4:0.463 S13:0.265 S12:0.305
S4:0.375 S13:0.384 S4:0.491 S6:0.466 S6:0.419 S6:0.450 S3:0.266 S11:0.296
S17 S18 S19 S20 S21 S22 S23 S24
S17:0.972 S18:0.961 S19:0.935 S20:0.980 S21:0.968 S22:0.969 S23:0.953 S24:0.951
S12:0.405 S12:0.300 S4:0.337 S3:0.269 S12:0.283 S14:0.290 S12:0.291 S11:0.312
S11:0.396 S17:0.300 S10:0.308 S10:0.257 S11:0.272 S12:0.268 S13:0.286 S14:0.303
S14:0.378 S6:0.298 S18:0.295 S11:0.246 S14:0.269 S13:0.249 S11:0.285 S12:0.294
S13:0.373 S19:0.285 S15:0.294 S12:0.244 S6:0.268 S6:0.249 S14:0.272 S13:0.289
S10:0.360 S11:0.276 S17:0.286 S1:0.227 S10:0.249 S11:0.247 S7:0.258 S10:0.259
S25
S25:0.961
S12:0.306
S14:0.303
S11:0.300
S13:0.295
S2:0.282

Table 5.10: AFR-LDA: Rank order of matching scores. The top 6 scene matches
and their matching scores are provided for each of the 25 scenes.
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AFR-KFA: Rank Order of Matching Scores
S1 S2 S3 S4 S5 S6 S7 S8
S1:0.993 S2:0.994 S3:0.993 S4:0.992 S5:0.988 S6:0.995 S7:0.996 S8:0.991
S3:0.745 S1:0.729 S1:0.744 S8:0.724 S1:0.660 S10:0.781 S6:0.764 S9:0.773
S2:0.729 S10:0.685 S9:0.722 S14:0.723 S2:0.654 S7:0.765 S10:0.733 S4:0.723
S6:0.681 S9:0.681 S6:0.708 S13:0.686 S6:0.647 S3:0.708 S3:0.640 S14:0.680
S5:0.659 S3:0.659 S10:0.691 S9:0.686 S4:0.634 S9:0.690 S9:0.629 S3:0.668
S9:0.645 S5:0.652 S8:0.667 S11:0.686 S10:0.618 S1:0.681 S4:0.623 S11:0.645
S9 S10 S11 S12 S13 S14 S15 S16
S9:0.992 S10:0.990 S11:0.995 S12:0.996 S13:0.995 S14:0.994 S15:0.994 S16:0.976
S8:0.773 S6:0.781 S13:0.895 S11:0.892 S11:0.895 S11:0.878 S17:0.655 S19:0.709
S3:0.723 S7:0.732 S12:0.891 S14:0.867 S12:0.856 S12:0.868 S19:0.626 S18:0.681
S10:0.693 S9:0.692 S14:0.877 S13:0.855 S14:0.853 S13:0.854 S16:0.607 S17:0.668
S6:0.690 S3:0.691 S4:0.685 S4:0.654 S4:0.685 S4:0.723 S20:0.574 S15:0.624
S4:0.686 S2:0.684 S8:0.645 S8:0.640 S8:0.642 S8:0.681 S18:0.573 S21:0.557
S17 S18 S19 S20 S21 S22 S23 S24
S17:0.987 S18:0.985 S19:0.968 S20:0.990 S21:0.985 S22:0.986 S23:0.978 S24:0.978
S18:0.676 S19:0.717 S18:0.724 S21:0.580 S23:0.601 S21:0.537 S21:0.604 S17:0.499
S19:0.663 S17:0.678 S16:0.708 S15:0.575 S18:0.596 S17:0.518 S18:0.591 S21:0.491
S15:0.657 S16:0.673 S17:0.677 S17:0.571 S17:0.595 S5:0.490 S17:0.545 S20:0.476
S16:0.656 S21:0.597 S15:0.648 S18:0.558 S20:0.580 S20:0.481 S25:0.515 S18:0.454
S21:0.590 S23:0.588 S20:0.550 S19:0.533 S6:0.548 S18:0.475 S5:0.504 S16:0.431
S25
S25:0.983
S4:0.528
S5:0.516
S7:0.514
S23:0.511
S6:0.510

Table 5.11: AFR-KFA: Rank order of matching scores. The top 6 scene matches
and their matching scores are provided for each of the 25 scenes.

5.4 Discussion

In this investigation 1 HFR and 3 AFR systems are tested using controlled footage

in terms of conveyed information in order to allow a better understanding of how

the systems perform. Overall, automated recognition systems are more tolerant to

compression than humans. In addition, the performance of HFR and AFR systems

with compression is dependent on different face/scene properties. Findings in this

investigation have shown compression affects AFR systems performance less with

under-exposed (‘low lightness’) than correctly-exposed (‘medium lightness’) scenes.

This is the opposite for HFR as ‘low lightness’ scenes were affected the most by
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compression and ‘medium lightness’ scenes the least. Performance of face recog-

nition (AFR and HFR) is scene-dependent and this current investigation proves

the importance of including detailed scene properties (derived from scene content

characterisation) in face datasets. This will allow exact knowledge on where face

recognition systems fail and where they perform the best.

Often the term image usefulness for security applications is used similarly for both

humans and automated systems [16], whilst this investigation proves that different

scene properties influence recognition systems differently. Perhaps, image usefulness

is assessed by defining the system’s/process image acceptance. Image acceptance

relates to the acceptability of the scene property/characteristic to complete the

recognition task (see Section 3.6).

Additionally, when illumination normalisation techniques are not employed in the

evaluation procedure of automated face recognition systems, then the obtained

top rank facial images of an ‘unknown’ face image would entail similar lightness

properties to that of the ‘unknown’ face (i.e. for PCA and KFA methods). This is

not the case for the LDA method the as the ‘low lightness’ category facial scenes

were included in the top matches in all the 25 scenes under test. This was unrelated

to the face lightness properties of the ‘unknown’ face.

Furthermore, the performance of the automated systems with ‘low lightness’ scenes

in terms of being affected the least in comparison to the other lightness categories

can be explained in many ways. 1) The blacks or low luminance tones are quan-

tised to a greater degree than high luminance tones, indicating that even if the

image appears to be predominately black it still contains facial information. 2) The

standard compression encoder (MPEGStreamclip) has retained in the compressed

scenes the tone characteristics from the reference and the AFR systems (for PCA

and KFA methods) have obtained higher scores for scenes within the same lightness

category of the ‘unknown’ face. This perhaps indicates that the AFR systems have

performed partner/lightness matching between the dark areas of the ‘low lightness’

facial images. These dark areas appear to be predominant in the ‘low lightness’
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scenes as the white areas for the ‘high lightness’ scenes. If the AFR systems per-

formed pattern/lightness matching, then the ‘high lightness’ scenes should have

obtained similar results to the ‘low lightness’ category. Only, with the KFA method

the ‘high lightness’ scenes have performed similarly to the ‘low lightness’ scenes (see

Figure 5.7).
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CHAPTER 6

Case study 3: The effects of scene content properties,

compression and frame rate on the performance of VA systems

Automated tools such as video analytics can be utilised to increase efficiency and

usability of the vast amount of CCTV data for the completion of police tasks (see

Section 2.1). This has resulted in video analytics becoming a growing area in the

security industry. As it has been mentioned in Sections 2.1.2 and 2.1.3, video

analytics algorithms often utilise comparable techniques to face recognition algo-

rithms (e.g. detection of faces/human silhouettes from video using segmentation

techniques). It is important to understand analytics performance from employing a

methodology similar to the AFR systems as described in Chapter 5. Findings are

expected to contribute to the development and improvement of both AFR and analyt-

ics systems. This current investigation studies the effects of compression and frame

rate reduction on the performance of 4 video analytics (VA) systems utilising a low

complexity scenario. Additionally, the most influential scene properties affecting the

performance of these systems are identified.
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6.1 Introduction

The image library for intelligent detection systems (iLIDS) provides datasets with

various scenarios of video surveillance. This is a UK government initiative for the

development and selection of VA systems. Each scenario is made up of 3 datasets:

2 publicly available (training and test datasets) and 1 privately held evaluation

dataset. The private one is used in order to benchmark the performance of VA

systems and provide the developers with a UK Government classification standard

[50]. Part of the publicly available Sterile Zone (SZ) dataset of iLIDS scenarios

is investigated in this paper. The SZ is a low complexity scenario, consisting of a

fence (not to be trespassed) and an area with grass (see Figure 6.1). The VA system

needs to alarm when there is an intruder entering the scene (an attack). The iLIDS

datasets can be obtained from the Home Office Centre for Applied Science and

Technology (CAST), to assist those wishing to investigate solutions in relation to

the VA systems [49].

Figure 6.1: Example camera views from the iLIDS dataset. The subjects in the
footage wear only 2 types of clothing: white or green.
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The aim of this investigation is to identify the effects of compression and reduction of

frame rate on the performance of 4 VA systems with the SZ scenario. Furthermore,

to identify the most influential scene properties affecting the performance of each

VA system under investigation.

The 4 VA systems under investigation have obtained UK Government approval by

being tested with analogue DigiBeta videocassettes at D1 PAL resolution (720×576).

This information has been provided by CAST, they have highlighted that no fur-

ther information can be provided in relation to the systems in order to protect the

manufacturers’ product and privacy. This chapter includes investigative work re-

lating to the testing of 4 VA systems with D1 PAL resolution of uncompressed and

compressed (6 levels of compression using H.264/MPEG-4 AVC MPEG Stream-

clip encoder at 25 and 5 frames per second) footage, consisting of quantified scene

properties. The scene properties were extracted from the characterisation of the

content of 110 attacks (scenes). The characterisation included both objective and

subjective techniques relating to scene contrast (contrast between main subject and

background), camera to subject distance, subject description (e.g. 1 person, 2 peo-

ple), subject approach (e.g. run, walk), and subject orientation (e.g. perpendicular,

diagonal). After the characterisation, the scenes were grouped based on common

properties. Additional footage, including only distractions (i.e. no attacks to be

detected) is also investigated. Distractions are elements in the scene such as abrupt

illumination changes and birds that could be falsely recognised by the systems as

intruders.

Section 6.2 presents the experimental methodology. Data analysis and discussion

of the results are described in Section 6.3. Lastly, in Section 6.4, conclusions are

drawn.
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6.2 Methodology

The methodology included 3 main steps: a) preparation of the test footage (uncom-

pressed and distorted), b) scene content characterisation to define image properties,

and c) testing of the VA systems.

6.2.1 Preparation of the test footage

The SZ dataset is segmented into shorter video clips. Table 6.1, provides a general

description of the 17 clips under investigation. These clips include 110 attacks and

have 11 hours duration of footage. This part of the dataset was selected based on

the availability of the original tape recordings of the scenario. The uncompressed

footage was originally recorded using analogue DigiBeta videocassettes at D1 PAL

resolution (720×576), 50ifps (interlaced frames per second) and a bitrate of around

90 megabits per second (Mbits/s). DigiBeta uses a lossless compression at 10-bit,

compressing YUV channels with a chroma subsampling corresponding to 4:2:2. The

iLIDS team provides the publically available datasets with 10% compression and

only the tapes could have been used to obtain the uncompressed reference.

The original videocassettes were digitised using the AppleTM Final Cut ProTM

(FCP) uncompressed format. The FCP uncompressed format uses similar speci-

fications to DigiBeta: 8bit YUV 4:2:2 and 96 Mbits/s bitrate. Furthermore, all

clips were de-interlaced in FCP by removing one of the odd fields and interpolating

the even number of fields in order to avoid any problem with the interlaced effect

when transmitting the video clips to the VA systems. This should not affect the

results, as the VA systems would grab the fields to further analyse (based on how

analogue signals behave) rather than the progressive frames. Thus the reference

original in this investigation is in FCP uncompressed format at 96 Mbits/s, and at

25 progressive frames per second. The MPEG Streamclip implementation encoder

was employed to compress the clips at selected target bitrates and frame rates using

the video coding standard H.264/MPEG-4 AVC, which is widely used in surveil-
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Clip name Attacks Duration Time Weather Distractions

1) sztea101a 10 00:37 Dawn None Camera switch from
monochrome to colour
and opposite

2)sztea101b 15 00:49 Dusk None Camera switch from
monochrome to colour,
bats

3)sztea102a 13 00:37 Dawn None Camera switch from
monochrome to colour

4)sztea102b 14 00:46 Day Overcast Vehicle

5)sztea103a 17 00:47 Day Clouds None

6)sztea104a 31 01:32 Night None Bats

7)sztea105a 10 00:35 Day Overcast,
Snow

None

8)szten101a none 00:15 Day Overcast Bag, squirrel, small illu-
mination variations

9)szten101b none 00:30 Day None Rabbits, shadow through
fence, illumination varia-
tions

10)szten101c none 00:30 Dusk None Camera switch from
colour to monochrome,
birds, rabbits

11)szten101d none 00:30 Dawn None Birds, rabbits, illumina-
tion variations

12)szten102a none 00:45 Day Some Birds, illumination vari-
ations, shadow through
fence

13)szten102b none 00:30 Day Overcast,
Rain

Birds, small illumination
variations

14)szten102c none 00:30 Day Overcast,
Snow

None

15)szten102d none 00:15 Dusk Overcast Camera switch from
colour to monochrome,
foxes, rabbits

16)szten103a none 00:40 Night None Small changes of cam-
era positioning because
of wind

17)szten103b none 00:30 Day Overcast Small changes of cam-
era positioning because
of wind

Table 6.1: Part of the SZ scenario dataset under test. The table provides infor-
mation in relation to the general description of each clip. The first 7 clips contain
attacks and the last 10 clips contain only distractions. Most of the information has
been obtained from the ground truth dataset.
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lance applications (see Section 3.1). The MPEG Streamclip encoder was selected

with only bitrate control (i.e. no GOP size or B frames were selected), because

it complies with the common functioning of security recording systems which are

based only on bitrate control (see Section 4.2.3). The compression bitrates used

were approximately the following in kilobits per second (kbps) for each type of the

chosen frame rate:

- 25fps: 200, 400, 800, 1200, 1800, and 2000;

- 5fps: 40, 80, 160, 240, 320, and 400.

The degraded footage produced at 5fps repeats each of the extracted 5 frames, 5

times in each second. The range of the bitrates at 5fps were chosen to be equivalent

to the bitrates at 25fps taking into consideration the reduction of frame rate. For

example, 2000kbps at 25fps would be 400kbps when reducing the frame rate to 5fps

(i.e. 2000×5
25

= 400). The test footage for the VA systems consists of the reference

and its 12 degraded versions. The range of the degraded versions was chosen to

cover a variety of compressed qualities (high and low).

6.2.2 Scene content characterisation

The characterisation of the scene content of each attack is carried out to enable a

better understanding of the properties that might affect the performance, in terms

of correct detection, of analytics systems. The influential properties could be related

to image quality attributes (e.g. contrast or sharpness), and/or the properties of

the subject to be detected (e.g. orientation). Each of the 110 attacks (or footage

of attacks) was classified into content properties.

Table 6.2 includes the names and total number of each property in each grouped

category. The properties and groups relating to the description of the subject

(groups: approach, description, distance, and orientation) in the attacks were ex-

tracted by visual examination (apart from the distance group) and were already

available within the ground truth data of the SZ dataset. The approach group

properties describe the way the subject approaches the fence and consists of 9 lev-
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els (e.g. walk, run - refer to Table 6.2). The description group properties consist of

2 levels and explain if the subject includes 1 person or 2 people next to each other

(i.e. 2 people in the scene indicates a bigger subject area to be detected). The

distance group properties consist of 3 levels and describe the distance of the subject

to the camera; far -30 meters away from the camera, middle -15 meters away from

the camera, and close -10 meters away from the camera. Figure 2.9 provides an

example of the distance group properties. Orientation group properties consist of

2 levels and indicate if the attack happened perpendicular or diagonal to the fence.

If the attack happens diagonally then the subject is in the scene for a longer time

than with a perpendicular attack.

Properties describing the image quality of the attack belong to the contrast group

and their values were obtained by simply using a contrast ratio (CR - see Eq. 3.11)

of dark to light area between foreground (attacker) and background (grass area).

Refer to Section 3.5.1 for more information on the contrast ratio characterisation

technique. The lightness values in the CR calculations were derived by measuring

lightness in specific areas in the scene using the CIELab L* colour space (see Sec-

tion 3.3.4). For each attack scene, 2 lightness measures were derived: 1) on the

surrounding grass area of the subject/s (the average of 4 areas around the attacker:

above, below, left and right), and 2) on the clothing of the subject/s (the average of

4 areas on the attacker: upper body, lower body, left and right legs). The subjects,

in the footage wear only 2 types of clothing: white or green. The head of the sub-

ject/s was excluded from the measurements in order to avoid complications with the

measured lightness. Furthermore, these measurements were applied on 3 different

positions of the attacker in the scene (beginning, middle and near to the fence).

The mean value of the 3 positions in the scene was selected to be used in the CR

formula. In Table 6.2, next to the properties under the contrast group, information

on the range of the obtained contrast values is provided along with the total number

of scenes for each property. Furthermore, the green clothing incorporates camou-

flage properties and the white clothing perhaps can be more distinctive from the

background (grass area) in comparison to the green clothing. It is unknown what
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would happen in a real case where the intruder might wear another colour.

6.2.3 Testing of the VA systems

The 4 VA systems under investigation were isolated units (not incorporated within

a recorder) and were designed to take composite signals as input. The VA systems

have been optimised for the testing with the iLIDS SZ scenario. The 4 systems have

received UK Government approval and could be further classified as operationally

successful systems (see Section 6.1). The systems have been labeled as A, B, C and

D.

For measuring the performance of the analytics systems, a method was required to

simultaneously play the video clips and record the alarm attacks raised. Important

criteria were to keep the video quality as high as possible and the ability to accu-

rately determine the time-code from the video file, so that alarm times could be

recorded precisely. The VLC application from VideoLan [288] was chosen to act as

the player running on an Intel i7 PC with Windows 7.

An ATI Radeon X1300 graphics card with PAL composite output was used to feed

the analytics systems via a Kramer 105VB distribution amplifier (see Figure 6.2).

A broadcast standard graphics card was considered, but the effort to integrate

this with the system was beyond the scope of the project. The analytics systems

signal the detection of an alarm attack by shorting out a normally open contact on

1, or more of their output connectors. To interface these to the PC, an Amplicon

PCI236 Digital I/O card was used via an EX230 Isolation Panel. A bespoke software

application written in C# was used to integrate VLC with the Amplicon card. The

Net API called nVLC [289] was used to interface to the VLC libraries directly and

derive a accurate time-code from the playing video.

The developed software allows for multiple video clips to be queued for play-out,

with each clip being able to play multiple times. With a video clip playing, alarm

attacks were captured via the Amplicon card. Each alarm was saved along with the
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corresponding clip time, clip name, system name and repeat number to a simple

text file. The ground truth data for each clip was then compared with this file.

In theory there should be no latency and if any it should be minimal (1 to 2 seconds).

The software that has been created reads the time-code directly from the VLC player

and uses this information to time-stamp the relayed triggers. The Amplicon card

communicates the triggers to the software and the software records the end results

in an Excel spreadsheet. To test the system between time-stamp and recording of

results a manual trigger (switch) was utilised and no latency issues were detected.

Also, no latency issues were detected from visual observations between playing the

video(s) and recording of results.

The rules determining whether an alarmed attack was true or false were defined as

follows: if an alarm falls within the ground truth alarm period, then a true match is

recorded; if there are further alarms within the same period they are ignored; if an

alarm occurs outside of the ground truth period, then that is noted as a false alarm.

The obtained results have scores of 1 for the correctly detected attacks and 0 for the

missed attacks. To estimate the consistency of recording the results, each clip was

repeated 10 times with black video of 30 seconds played between each clip to reset

the algorithm settings. Most of the manufacturers of the systems confirmed that

it takes about 10 seconds for their algorithms to be adjusted/tuned to the scene

content (e.g. weather conditions such as rain or snow).

Figure 6.2: Video distribution and recording of results.

There were some small variations in the results between the repeats due to the noise

added to the video signal (i.e. as part of the output of footage to the detection
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systems), and/or the actual intrinsic parameters of the video analytics systems

(i.e. how it is tuned/designed) and/or the properties of the events (i.e. it was

observed that variation was triggered by certain events). In fact many statistical

algorithms that could be incorporated within the VA systems under test could

utilise randomisation techniques to initially decide where spatially to put clusters,

nodes or other-kinds-of-data. A typical example is the K-means technique in which

the selection of initial cluster-centres is often randomised and does not provide an

optimum result [290]. This phenomenon was investigated further by repeating the

whole process (10 repeats on 3 clips with attacks) another 5 times. The derived

proportional values (i.e. average of 10 repeats) among the further 5 repeats were

consistent and similar.

6.3 Results

The analysis of the results has been divided into 3 parts. The first part identifies

the overall detection performance for each individual system with respect to com-

pression (Section 6.3.1); the second part identifies the most influential attack/scene

properties for each individual system with respect to compression (Section 6.3.2);

and the third part provides an analysis on false alarms (Section 6.3.3).

6.3.1 Overall detection performance analysis with respect

to compression

The overall detection performance investigates the output of the VA systems for

all the attacks with respect to compression (at 25fps and 5fps). As mentioned in

Section 6.2.3, all the VA systems under investigation have produced some variation

in the results from the 10 repeats of each clip/attack. In Figures 6.3 and 6.4, each

row corresponds to one of the VA systems A, B, C and D. From the left to right

columns, the graphs depict:

a) the points (connected with a line) representing the proportion of the always
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correctly identified scenes from all the 10 repeated trials (the Yes scenes) plotted

against the different levels of compression (i.e in kbps) and the uncompressed ref-

erence,

b) the points (connected with a line) representing the proportion of the always

missed scenes from all the 10 repeated trials (the No scenes) plotted against the

different levels of compression (i.e in kbps) and the uncompressed reference, and

c) the points (connected with a line) representing the proportion of the uncertain

scenes; those that have produced varied detection from the 10 repeated trials (the

Uncertain scenes) plotted against the different levels of compression (i.e in kbps)

and the uncompressed reference.

The sum of the corresponding proportions in the 3 graphs (Yes, No and Uncertain

scenes) would be equal to 100%.

The results in Figures 6.3 and 6.4 have shown that every system performed differ-

ently for each compression/frame rate level (see the Yes, No and Uncertain scene

graphs), but overall compression has not adversely affected the performance of the

systems. Some systems have performed better (A and D) than others (B and C).

For example, in Figures 6.3 and 6.4 the total number of attacks always detected

(Yes scene graphs) is higher for both 25fps and 5fps for the better systems than the

rest. Some further observations can be made from the Yes scenes graphs: a) System

A performance has dropped with reduced frame rate and high compression levels

(200kbps at 25fps and 40kbps at 5fps), b) System B performance has dropped with

the reference footage and a slight increase can be seen at 2000kbps with 25fps. Also,

performance has dropped with reduced frame rate and with higher compression at

5fps. c) System C performance seems to be constant throughout the different levels

of compression/frame rates and an increase of performance can be seen at higher

compression levels (200kbps at 25fps) and with reduced frame rate. d) System D

performance has dropped with reduced frame rate and high compression levels at

5fps (40kbps at 5fps).

In the No scenes graphs, the performance at 25fps and 5fps was similar for systems
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C and D (in Figure 6.4). For systems A and B (in Figures 6.3), more missed

attacks were observed at 5fps. Additionally, in the Uncertain scenes graphs, the

performance at 25fps and 5fps has been the same for systems A, B and C. A drop

in performance, in terms of proportion of attacks causing uncertainty, can be seen

for system D at 5fps.

All graphs in Section 6.3.1 and Section 6.3.2 consist of raw points (black triangles

and grey dots) and lines (black and grey, most of them are logistic regression mod-

els), which correspond respectively to results obtained from 25fps and 5fps.

The aforementioned analysis has basically categorised the results into 3 groups

which are: success (always correct detection-score of 1), failure (always missed

detection-score of 0) and uncertainty (both correct and missed detection-scores

ranged between 0.1 to 0.9). The derived results are not strictly binary but rather

proportional (i.e. by utilising the 10 repeats of each clip/attack) with a binary

nature of success or failure. 2 further approaches (logistic regression and linear re-

gression) of analysing such data have been identified and implemented that take into

consideration compression amounts/levels and are described by the following para-

graphs. Further, both these approaches provide visual understanding (i.e. plots)

of the obtained data. An additional factor analysis was considered but proven to

be inappropriate for the type of data derived from this investigation. For example,

a factor analysis does not take into consideration the different levels of compres-

sion for each scene property (see Section 6.3.2) and the method produced com-

plicated/unrealistic models (i.e. the scene properties under investigation are too

many-19). The following paragraphs provide information on the regression models

implemented for both the overall (i.e. all scenes/attacks are included) and detailed

(i.e. analysis is based on individual scene properties - see Section 6.3.2) analysis of

detection performance.

1. Logistic Regression. In order to take into consideration the number of suc-

cesses (and failures) in an n repeated number of trials (i.e. in this case 10) for

each attack, the recorded results were modelled using logistic regression with
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the generalised linear model (gml) function in R software for statistics [282].

In this way a weighted regression is carried out (all the Yes, No, and Uncertain

scenes are taken into consideration), using the number of trials as weights and

the logit-link function to ensure linearity [291–293]. The logit-link function is

a transformation that uses the natural log of odds; the ratio of 2 probabilities

(see Eq.6.3). This is how it is derived, Eq. 6.1 provides a logistic model of pro-

portion P as a function of x (which normally produces an S-shaped curve).

This logistic model is linearised by substituting the proportion P with the

odds p/q ; where p are the successes and where q the failures (see Eq. 6.2).

Finally, the linear predictor is obtained for the odds by taking the natural log

(see Eq. 6.3). Where p/q is the response variable, x the explanatory variable,

a the intercept, and b the slope. Even though the result is the linearisation of

a logistic function, the fit of a linear model needs to be avoided as neither the

normality or the homoscedasticity assumptions are met [292]. The parameters

and error estimates for a logistic regression analysis are derived via maximum

likelihood and for a linear regression analysis via least square. In this Section

6.3.1 and Section 6.3.2 the results are modelled using logistic regression.

P =
e(a+bx)

1 + e(a+bx)
(6.1)

p

q
=

e(a+bx)

1 + e(a+bx)

[
1− e(a+bx)

1 + e(a+bx)

]−1
= e(a+bx) (6.2)

ln

(
p

q

)
= a+ bx (6.3)

2. Linear Regression. This is the simplest form of regression and a model is

fitted in order to understand the relationship between 2 continuous variables

(i.e. consisting of real numbers) [283]. Eq.6.4 provides a simple linear model

that has been employed in this analysis; where y is the response variable, x

the explanatory variable, a the intercept, and b the slope. This linear model

has been fitted only to the proportion of the always correctly detected scenes

(the Yes scenes) and the results are presented in Appendix C. This method
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has only been accomplished for comparison reasons. The derived data from

this investigation are better fitted under the logistic regression analysis (see

above paragraph on logistic regression approach).

y = a+ bx (6.4)

All the fitted regression models, in Section 6.3.1, Section 6.3.2 and in Appendix C

were carried out in R software for statistics. Figure 6.5 presents the derived logistic

regression models obtained for each VA system (A, B, C and D) from modelling

all the raw data with respect to the different levels of compression (i.e. in ln

kbps). Displaying all the raw data (as proportion of correct detection) in the graphs

causes confusion as they are spread disproportionally around the graphs; instead the

proportion of the always correctly identified scenes from all the 10 repeated trials

(the Yes scenes) are plotted. The majority of the obtained results do belong in the

Yes scenes category and as a result the fitted logistic regression models will be close

to the proportion of the Yes scenes points but not exact models of them. In the

fitting of the logistic regression models, all the scenes (Yes, No and Uncertain) are

taken into consideration. Additionally, as the derived data from this investigation

seem to exhibit a complicated behaviour (e.g. Yes, No and Uncertain scenes) then

all the analysis that has been carried out has the purpose of understanding trends

rather than fitting the perfect models.

Table 6.3 includes details of the fitted logistic regression models in Figure 6.5. The

first column provides the system name and the type of raw data (25fps or 5fps).

The second and fourth columns provide information on the derived coefficients of

each model (intercept and slope). Their next columns provide the calculated stan-

dard error on the coefficients (std). Where p is the statistical value identifying any

significant trends. For example, the results in Table 6.3 indicate a significant cor-

relation between proportional detection of attacks and compression levels for only

systems A and D, and at only 5fps. We conclude that the proportion of correct

attack detection for systems A and D at 5fps increases significantly with increas-
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ing kbps (less compression). For the rest of the compression levels and systems,

compression has not affected the overall performance of the systems (see Figure 6.5

and Table 6.3). This is overall a positive result, since it indicates that footage can

be significantly compressed (for storage or transmission purposes) with very little

reduction in correct attack detection.

Figure 6.5: Overall performance with respect to compression (in ln kbps) for systems
A, B, C and D. Black triangles and black lines represent derived results from 25fps,
and grey dots and grey lines represent derived results from 5fps. The lines are the
obtained logistic regression models from all the scenes and the points represent the
always correctly identified scenes (the Yes scenes), both plotted against the natural
logarithm of compression rate in kbps.

Appendix C provides the results from the linear analysis for the overall performance

of the VA systems under test. The findings from the linear regression (Figure C.1

and Table C.1) are similar to those from logistic regression in terms of compres-

sion not affecting the performance of the systems; except for system D at 5 fps

where there is a significant correlation between proportion of the Yes scenes and
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compression levels (performance decreases as compression amount increases).

System α std β std p

Sys.A25fps 0.665 1.365 0.337 0.208 0.106

Sys.A5fps -1.376 1.026 0.546 0.158 0.000***

Sys.B25fps 1.782 0.893 0.006 0.133 0.966

Sys.B5fps 0.579 0.761 0.115 0.114 0.311

Sys.C25fps 2.863 0.961 -0.166 0.141 0.242

Sys.C5fps 2.829 1.005 -0.139 0.148 0.347

Sys.D25fps 3.084 1.804 0.095 0.269 0.726

Sys.D5fps -0.172 1.079 0.463 0.166 0.005**

Table 6.3: Information of the fitted logistic regression models in Figure 6.5 for the
overall performance. The first column provides the system name and the type of the
raw data (25fps or 5fps). The second and fourth columns provide information on the
derived coefficients of each model (α-intercept and β slope). Next columns provide
the calculated standard error on the coefficients (std). Where p is the statistical
value identifying any significant trends (signif. codes: 0‘***’, 0.001 ‘**’, 0.01‘*’).

6.3.2 Detailed performance analysis with respect to com-

pression

This section includes diagnostics in terms of providing a detailed analysis on the

performance of each system for each scene property under investigation. An analy-

sis based on the scene content properties enables understanding on where systems

need improvement. Figures 6.6 and 6.7 correspond to system A, Figures 6.8 and

6.9 correspond to system B, Figures 6.10 and 6.11 correspond to system C, Figures

6.12 and 6.13 correspond to system D and each pair of figures (e.g. Figures 6.6

and 6.7) includes graphs for each of the 19 scene properties under investigation (see

Table 6.2). In these graphs, the lines are the obtained logistic regression models

for 25fps (black line) and 5fps (grey line) (similarly to the graphs in Figure 6.5 in

Section 6.3.1). When the lines in the graphs overlap, the grey line is on top and

the black line becomes invisible. The vertical axes represent proportion detection

(ranging between 0 and 1) and the horizontal axis the natural logarithm of com-

pression rate (in ln kbps). Figures 6.6 to 6.13 provide a visual understanding on

how each system has performed for each scene property; detailed information of

the fitted logistic regression models is provided in Appendix B (i.e. coefficients and
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their calculated standard errors, and the statistical p value identifying any signifi-

cant trends). Furthermore, good performance can be visualised when most of the

logistic regression models are near to maximum detection (vertical axes value of

1). Reduction of performance can be visualised when the logistic regression lines

incline to minimum detection (vertical axes value of 0).

Figure 6.6: Detailed performance with respect to compression (in ln kbps) for sys-
tem A Part 1. Black lines represent derived results from 25fps and grey lines
represent derived results from 5fps. The lines are the obtained logistic regression
models for each individual scene property plotted against the natural logarithm
of compression rate. The vertical axes represent proportion of detection, ranging
between 0 and 1.
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Figure 6.7: Detailed performance with respect to compression (in ln kbps) for sys-
tem A Part 2 (as graphs in Figure 6.6).
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Figure 6.8: Detailed performance with respect to compression (in ln kbps) for sys-
tem B Part 1 (as graphs in Figure 6.6).
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Figure 6.9: Detailed performance with respect to compression (in ln kbps) for sys-
tem B Part 2 (as graphs in Figure 6.6).
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Figure 6.10: Detailed performance with respect to compression (in ln kbps) for
system C Part 1 (as graphs in Figure 6.6).
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Figure 6.11: Detailed performance with respect to compression (in ln kbps) for
system C Part 2 (as graphs in Figure 6.6).
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Figure 6.12: Detailed performance with respect to compression (in ln kbps) for
system D Part 1 (as graphs in Figure 6.6).
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Figure 6.13: Detailed performance with respect to compression (in ln kbps) for
system D Part 2 (as graphs in Figure 6.6).

Observing the obtained logistic regression models for System A (see Figures 6.6 and

6.6), one can identify the scene properties that result in a decline in the performance

of system A. These are scenes that exhibit properties such as close distance, high and

low contrast, run and crouch run approach. Furthermore, footage of 5fps type has

been affected more than 25fps. This is expected as often analytics systems incorpo-

rate tracking techniques and their performance is dependent on motion continuity

(see Section 2.1.3). Additionally, at very high compression amounts (200kbps at

25fps and 40kbps at 5fps) performance declines for half of the scene properties un-

der investigation (e.g. medium and far distance, diagonal orientation, crawl, crouch

walk, body drag and walk with ladder approach). These results (logistic regression)

agree with the results from linear regression in Figures C.2 and C.3 (see Appendix

C).
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System B has provided different results; the scene properties that have reduced

the performance of system B are close distance, high contrast, run and crouch run

approach (see Figures 6.8 and 6.9). Reduction of performance is more obvious

with scene properties such as crawl, body drag and log roll approach. Compression

has increased performance for the high contrast property (at 25fps) and the walk

approach (at 5fps). Overall, footage of 5fps type has been affected more than 25fps.

Additionally, these results agree with the linear regression analysis in Figures C.4

and C.5 (see Appendix C).

System C has performed the worst with scene properties of run and crouch run ap-

proach (see Figure 6.11). In contrast, scene properties such as close distance, creep

walk, craw, and body drag approach properties have benefited from compression

(see Figures 6.10 and 6.11); increase of compression amount has resulted in the

increase of system performance. In most cases, 5fps type of footage has derived

the same results as the 25fps; expect for the crouch run property were better per-

formance has been obtained with the 5fps footage. Similar detailed results to the

ones obtained from logistic regression have been derived from the linear regression

analysis in Figures C.6 and C.7 (see Appendix C).

Lastly, system D has produced the worst performance for scene properties: run and

crouch run approach (5fps worst than 25fps), close distance at 5fps, high contrast

at 5fps, and walk and log roll approach at 5fps and at 40kbps (see Figures 6.12 and

6.13). These results are similar to the ones obtained from the linear regression in

Figures C.8 and C.9 (see Appendix C).

In conclusion, the most common scene properties that affect the performance of the

video analytics systems under test are: close distance (for systems A, B, C and D),

high contrast (for systems A, B and D), run and crouch run approach (for systems A,

B, C and D), body drag approach (for systems B and C), and log roll approach (for

systems B and D). Some of the close distance scenes have decreased the performance

of VA systems simply because the subject/attacker in the scenes might have been

confused for a spider on the lens so the systems have not performed detection.
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Spiders are under the distraction category and are very common on CCTV lenses

of outdoors systems. Furthermore, each system has performed differently for each

scene property and universal conclusions on what constitutes good image quality for

automated tasks cannot be reached. Instead, designers and testers of automated

systems can identify the image acceptance of specific scene properties for their

system.

6.3.3 False alarms

Figure 6.14 consists of 4 sub-tables that correspond to each of the 4 VA systems. The

sub-tables provide information on the system name, clip number (clip description

can be found in Table 6.1), amount of compression and number of frame rates (25fps

or 5fps), and the total number of false alarms that occurred from the 10 repeated

trials. For example, system A (Sys. A) produced 210 false alarms (i.e. an average

of 21 false alarms 210/10) with compressed footage at 2000kbps and 25fps for clip

12. ‘none’ indicates zero production of false alarms. Some compression levels are

missing in the sub-tables for systems C and D as no false alarms were produced for

these missing compression levels.

Most false alarms (see Figure 6.14) were triggered with distraction clip 12, which

was filmed on a sunny day. Clip 12 contains small clouds in the sky causing many

abrupt illumination changes and moving shadows through the fence (see Table 6.1

for clip description). Not many false alarms were produced from the clips containing

attacks.

6.4 Discussion

This chapter has provided a methodology for testing automated algorithms with

uncompressed and degraded footage. The results have shown that the proportion

of correct attack detections for systems A and D at 5fps increases significantly with

increasing bitrate (less compression). For the rest of the compression levels and
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systems, compression has not affected the overall performance of the systems. An

analysis based on the scene content properties enables analytical understanding on

where systems need improvement. Each system, depending on how it has been

designed, was shown to be affected negatively or positively by the scene properties

under investigation.

The specifics of the systems under test are unknown and universal conclusions

cannot be made. For example, other systems might produce totally different results.

But, adopting a methodology similar to the one employed in this chapter will allow

manufacturers to identify the scene properties for which their system might need

further improvement. For example, if a system does not perform optimally (100%

correct detection) with a close distance scene property then additional footage with

that specific property (in combination with other properties for example colour of

clothing, run approach) can be utilised/experimented to improve performance.

The findings in this investigation do not agree with the subjective results reported in

Chapter 4. For example, for the camera to subject distance property the far scenes

produced lower subjective scores than the close scenes (closer distance scenes pro-

vide more visual information for humans). In some VA systems, the close distance

attacks produced lower scores in comparison to far, and medium distance attacks.

This confirms that the term image quality should not be used in the same manner

for automated and human visual systems. Instead image acceptability in terms of

scene content property acceptance to complete the recognition/identification task

is a better-suited definition for automated systems. The criteria/thresholds of au-

tomated human detection systems do not necessarily match those of humans. This

is promising in terms of having automated systems to do tasks that humans find

difficult. For example, most automated systems were affected more from the close

distance image property than the far distance. Overall, the automated systems

(only the ones tested in this thesis) can do better for the far distance scenes than

humans and humans can do better for the close distance scenes. Both humans and

automated systems could benefit from each other. For example, automated systems
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can benefit from using human perception, in this case, perhaps for object/subject

description.

Additionally, it is important at the collection stage of any dataset to make sure

that scene content properties are taken into consideration to enable the collection

of varied scene contents and degrees of difficulty. For example, in this investigation

most false alarms were triggered with a clip that contained many abrupt illumina-

tion changes. Further, not much variability in terms of distractions can be noticed

in Table 6.1 for system designers to experiment with. Also, in Table 6.2 the 11

hours dataset under test includes only 3 scenes with the log roll approach property.

This type of approach might be considered the most likely one for intruders.
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CHAPTER 7

Discussion

This chapter contains a critical discussion on the findings obtained from the exper-

imental part of the thesis (Chapters 4, 5 and 6). The critical discussion identifies

potentials, weaknesses and limitations of the employed methodologies and obtained

results. The findings are discussed in connection with the subject as outlined in the

background (Chapters 2 and 3) in order to define what new has been achieved in

this work.
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The main aim of this research is to investigate aspects of image quality and video

compression that may affect the completion of police visual tasks with respect to

CCTV imagery. CCTV systems commonly operate in semi-controlled (e.g. bus

CCTV systems, door surveillance) or uncontrolled (e.g. open street CCTV sys-

tems) environments and their produced imagery is normally compressed in order to

compensate for storage or transmission requirements. In summary, 7 factors have

been identified that will influence image usefulness (or amount of useful available

visual information) of CCTV systems and further the completion of a recognition

task.

These 7 factors are: 1) subject to camera distance (e.g. a close distance may allow

facial recognition and a further away distance, gait or clothing recognition), 2) an-

gle of camera to the subject/object (e.g. frontal face view entails more information

than a tilted face view), 3) illumination conditions (i.e. intensity, colour, angle of

illumination - result in the production of over, under, mixed and correctly exposed

scenes), 4) system performance (i.e. sensor, lens, image processing), 5) record-

ing/transmission (i.e. spatial and temporal compression), 6) the fitting of wrong

cameras (i.e. if the location is wrong for the task or if the cameras are not work-

ing) [2], and 7) occlusions (e.g. for a face recognition task that could be hats/glasses

and for an automated human detection task that might be cars passing in front of

the human to be detected). These 7 factors represent the variability present in

real-world CCTV applications and they need to be taken into consideration as they

affect the amount of captured visual information. In order to limit the effect of the

7 factors on the captured information, they need to be taken into consideration.

For example, to apply compression upto an acceptable level or the installation of

CCTV systems according to specific task requirements (e.g. face recognition tasks

require the camera to be closer to the subject in comparison to the people counting

tasks).

Image usefulness or image appropriateness for the completion of police tasks de-

pends on the specifics of the task. For example, the imaged information between
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faces and clothing differs and different compression amounts would be acceptable

for each type of task. This is the reason why specific tasks are investigated in this

thesis. Additionally, the term image usefulness is used in the same manner be-

tween automated and human visual systems. This thesis has included both human

and automated visual systems to identify if there is a correlation between them

concerning image usefulness and video compression.

In summary, 2 types of visual systems (human and automated) for 3 specific police

tasks (human face recognition, automated face recognition and automated human

detection), are assessed with characterised CCTV imagery and video compression

(264/MPEG-4 AVC). The CCTV footage has been characterised in terms of de-

fined scene content properties as the performance of imaging systems/processes (e.g.

subjective investigations, compression algorithms, automated recognition/detection

systems or human face recognition) is dependent on scene content (see Chapters 2

and 3). Furthermore, knowing exactly with what content characteristics a system

(e.g. automated systems, compression algorithms) fails can contribute to the fur-

ther improvement of such a system. For instance, if an automated system does not

perform well with under exposed scenes then manufacturers can develop techniques

concentrating in improving performance with under exposed scenes. Another ex-

ample is to utilise compression up to an acceptable level. The following paragraphs

concentrate on developing a discussion around the objectives of this thesis as stated

in Section 1.1.

Information relating to the datasets utilised in the investigations was provided in

Sections 4.2.1 (face dataset) and 6.1 (sterile zone dataset). The main aim, when

developing a dataset, is to cover scene content information/variability that is com-

monly encountered by the visual system under evaluation. The created CASTBUS

2012 dataset has succeeded in covering scene content properties, encountered by a

challenging (in terms of illumination), real-world application: the London bus. The

illumination variations were obtained because the filming took place on a sunny

day. This would not have been the case on an overcast day: the clouds would have
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produced diffused and uniform illumination, which would have resulted in the pro-

duction of correctly exposed scenes. The CASTBUS 2012 dataset provides content

variability in terms of: camera to subject distance, spatial-temporal busyness, il-

lumination conditions and facial angles to the camera plane. CASTBUS 2012 has

allowed the capture of varied scene content properties.

The main objective of this thesis is to identify the scene properties that influence

police tasks and CASTBUS 2012 has contributed towards that objective. Scene

content characterisation allows the testing of systems with known properties. This

perhaps can be understood as being related to the process employed to assess a

system’s tone transfer function. Transfer functions define a relationship between

input signal (i.e. densities of a test target, pixel values displayed on a monitor) and

the system’s output (i.e. pixel values of a camera system, luminance of an LCD

system) response to that signal. This is where this investigation is different from

the rest, the input signal has been specified in detail by including scene content

characterisation and the outputted signal has been analysed taking into consider-

ation that input signal (i.e. individual scene properties). No other investigation,

relating to human or automated face recognition or automated human detection,

has been identified that takes into consideration scene content characterisation to

the same extent as the research included in this thesis.

There is another dataset available, representative of a real-world CCTV application,

called SCface (surveillance cameras face database) [294]. This dataset includes

footage from the entrance of a doorway utilising 4 indoor CCTV cameras. The

SCface dataset does not include much variability in scene content. For instance,

only 1 facial angle is included. There are numerous other facial datasets [295, 296]

but all of them seem to have certain limitations. Some of them include only still

imagery (not appropriate for assessing video compression), most are captured under

semi-controlled or controlled conditions, and some others are in high definition

format. Most CCTV systems operate in standard definition format.

In case of the automated human detection task, an already available dataset was
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utilised the Sterile Zone (SZ) scenario from the iLIDS scenarios [49,50]. The manu-

facturers of the 4 video analytics systems under investigation have developed their

systems based on this specific SZ scenario and there was no option of using an-

other scenario. Employing in the investigation an existing dataset might raise some

concerns in terms of the appropriateness of that dataset for the investigation. In

Chapter 6, the effect of scene content properties on the performance of video an-

alytics were investigated. The utilised SZ dataset does not include equal (or even

inadequate) numbers of scenes for each individual property (see Table 6.2), which

creates challenges in assessing the performance of the VA systems under investi-

gation. For instance, the properties walk and log roll from the attack approach

category include 28 and 3 scenes respectively. Most systems have always detected

the log roll approach property apart of System B (see Section 6.3.2); the num-

ber of scenes for the log roll property can be considered small in comparison to

the walk property approach. The content properties that include fewer than 10

grouped scenes are: crouch walk, body drag, log roll and walk with ladder from the

approach category, and the high contrast from the contrast category. This corre-

sponds to 5 out of the 19 scene properties under investigation consisting of fewer

than 10 grouped scenes.

Also, the number/type of distractions that are included in the utilised SZ dataset

(see Table 6.1) can be considered small. For example, outdoor CCTV systems often

attract spiders on the lens and no such a distraction was present in the dataset. As

mentioned in Section 6.2.1, the utilised dataset was selected based on the availability

of the original tape recording (i.e. DigiBeta videocassettes) of the SZ scenario in

order to have the footage in an uncompressed format. The other option would have

been to have more footage (i.e. explore more scene properties and distractions) but

in a lightly compressed format (i.e. 10% compression). This option was avoided

as it was expected that the VA systems might increase performance in comparison

to the ‘uncompressed’ reference with small amounts of compression. This has been

proven true as illustrated by the graphs of the Yes scenes in Figures 6.3 and 6.4,

where some compression amounts have increased performance in comparison to the

190



reference ‘uncompressed’. As this has been established, in a future investigation the

10% compressed footage that includes additional scene content properties could be

utilised.

No information has been found in relation to how many scenes should be included

in each grouped property in order to derive statistical significant/valid results. For

example, defining the number of scenes adequate for a statistical analysis with the

low skin/face lightness property. Most statistical methods refer to sample sizes of

people. Nevertheless, some observations can be made from the models fitted to

grouped properties (e.g. close camera to subject distance property) in Chapters 5

and 6. The human investigation in Chapter 4 has fitted models to individual scenes

and not to grouped properties.

In the face recognition investigation (i.e. automated and human) in Chapter 5,

as the number of grouped properties under each category increase, it became more

difficult to derive conclusions on the derived results. For example, the skin lightness

category consists of 5 types of lightness properties (i.e. low, high, medium and mixed

lightness groups), which are distributed across 25 scenes. A greater number of scenes

for each grouped property would had decreased the derived errors on the models,

as the reliability to reflect the population mean increases with having a larger

sample, making the comparison among the models statistically easier. Nonetheless,

the derived models for the lightness group do illustrate tendencies and should not

be considered inadequate. For example, all 3 of the automated face recognition

systems studied have performed the best with compressed ‘low lightness’ scenes

and the worst with compressed ‘mixed lightness’ scenes. Also, 2 different statistical

approaches have been employed for the human data and the same conclusions were

drawn (i.e. investigations in Chapters 4 and 5).

In the human detection task in Section 6.3.2, the proportion of correct detections

for each scene property (e.g. walk approach) is plotted against compression rates.

Perhaps a more balanced number of scenes/attacks should have been included under

each property (see Table 6.2). This does not make the derived results invalid,
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since the 2 applied statistical methods have produced the same results (see Section

6.3.2 for the logistic regression analysis and Appendix C for the linear regression

analysis).

Overall, representative CCTV footage has been produced both ‘uncompressed’ and

degraded (i.e. compressed and with reduced frame rate), utilising 2 implementation

types of H.264/MPEG-4 AVC (i.e. MPEG Streamclip for both face recognition and

human detection tasks, and CCTV DVRs only for the face recognition task), and

with different scene content properties. This material can be released to manufac-

turers of CCTV systems in order to enable further testing of their systems.

A couple of different camera systems were utilised between the face recognition

(Chapters 4 and 5) and human detection (Chapter 6) investigations. A standard

definition CCTV camera system was utilised for the human detection investigation.

No further information is available in relation to this CCTV camera system as

an already standard available dataset has been employed (i.e. the SZ scenario

part of the iLIDS datasets). There are numerous companies that provide CCTV

systems and their quality has never been studied or quantified. Also, perhaps for the

human detection task the quality of the camera system (unless it has been extremely

degraded) might be of a lesser importance in relation to other factors (e.g. way of

approaching the fence such as run or log roll). Furthermore, the detection of a

human silhouette task would not require as much image content information or

detail in consideration of a face recognition task. Faces include finer details (i.e.

shape and distance of individual features), where the capture of these details would

contribute to the completion of a face recognition task. Otherwise, all faces include

a nose, mouth and eyes.

In the human and automated face recognition tasks, instead of a CCTV camera

system a consumer-quality DV camcorder was utilised for various reasons including

quality, accessibility and cost. The consumer DV camcorder has produced overall

higher image quality output than the typical sample CCTV camera installed on

London buses (see Figure 4.1). There are pros and cons in utilising either camera
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system (CCTV camera system or DV camcorder) in face recognition investigations.

For instance, as there are numerous companies that provide CCTV systems with

varied and unknown qualities, perhaps the DV camcorder provided a starting ‘stan-

dardised’ quality. An option to compensate for the quality differences between the

2 camera systems is to apply a frequency filter aiming to visually match the fre-

quency response of the DV camcorder to that of the CCTV system. Furthermore,

as technology advances CCTV systems will produce in the future comparable im-

age quality to that of consumer video systems. On the contrary, it is unknown if

the results, from the 2 face recognition investigations would have been different if

a CCTV camera system was utilised instead of the DV camcorder. Yet, perhaps

again the quality of the camera system might be of a lesser importance in relation

to other factor such as illumination conditions. For example, under the same vari-

able illumination conditions both DV camcorder and CCTV systems are expected

to produce under, over, correctly and mixed exposed scenes.

In the human face recognition investigation in Chapter 4, the applied methodol-

ogy was aimed to obtain acceptable compression limits for the London bus ap-

plication. First an industry implementation (MPEG Streamclip) of the standard

H.264/MPEG-4 AVC was utilised to identify from a selected set of 25 scenes the key

scenes (i.e. the scenes most affected by compression). Later, the pre-selected key

scenes were utilised with 5 of the most commonly used CCTV recording systems

on London buses to identify the acceptable compression limits for that application.

Observing Table 4.10, the results obtained from the CCTV DVRs and the indus-

try standard compression (i.e. MPEG Streamclip) agree in terms of which scenes

required lighter compression (i.e. higher number of kilobits per second). These

were the low and high lightness scenes in comparison to the medium (daylight and

bus illumination) and mixed lightness scenes. In conclusion, low and high lightness

scenes are affected by H.264/MPEG-4 AVC compressor the most for human face

recognition tasks, and this is valid for any implementation of H.264/MPEG- AVC

(i.e. CCTV DVR proprietary and industry-standard).
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Furthermore, in Section 4.4, the unpredictable nature of the CCTV DVR systems

is presented when reducing the frame rate from 25fps to 4fps. For example, the

reduction of the frame rate has output 1 image from the 8 images (i.e. corre-

sponding to 8 successive frames in the footage) of the face in the reference footage.

This outputted 1 image might be the worst, or the best-case scenario from the 8

available images of the face (see Figure 4.10). Additionally, the CCTV DVRs have

performed some processing on the recorded/compressed footage in terms of making

dark areas appear brighter (made face information more visible) and sharpening of

edges. This has affected the results as the average fit for the CCTV DVRs to the

data points (see Table 4.10) has outperformed the industry standard compressor.

This does not mean that the image itself includes more information than the im-

ages produced from the consumer industry standard compressor. For the industry

standard compressor, no contrast or tonal processes on the compressed footage have

been observed. Also, the tone characteristics of the industry standard compressor

are similar to the ‘uncompressed’ reference confirming that no processes on tonal

information have taken place (see Figure 5.14 and Section 5.3.4). Performance of

human face recognition tasks could be helped by applying illumination normalisa-

tion techniques on face images (e.g. adjusting the levels of a dark scene to appear

brighter see Figure 3.9).

Additionally, image sharpening combined with compression may create information

in a compressed image that might not be present in its reference ‘uncompressed’

version. For example, as mentioned in Chapter 1, the brain has the ability to put

together information from what it knows combined with the information that is

seeing (i.e. the fillin-in phenomenon [8]). When a facial image is over sharpened

and compressed at the same time, perhaps ‘true’ facial information might be reduced

due to the blocking artefact and altered (i.e. due to the sharpening of the ringing

artefact and/or the edges of blocking artefacts). This might create a visual illusion

that facial information is present in the compressed scenes. Whereas, in reality the

facial information might have been reduced from compression and/or altered from

sharpening of artefacts.
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In comparison, the results obtained from the automated systems (see Section 5.3.3)

have shown that the systems have performed better with the industry standard

compressor than the CCTV DVR compressors. As mentioned in Section 5.2, the

CCTV DVRs have altered the size of the original reference scenes (i.e. by recording

at lower resolution). For this reason, the selected facial regions between the reference

scenes and compressed scenes with the CCTV DVRs are not exactly the same. The

selected facial regions between the reference scenes and scenes compressed with the

industry standard compressor are exactly the same. The non inclusion of exactly

the same facial regions between the compressed scenes with the CCTV DVRs and

the reference scenes might be the most important reason for the automated systems

perform worse with CCTV DVRs.

The methodologies adopted for the 2 face recognition investigations (human and au-

tomated) are similar in terms of both being assessed based on the difference between

a degraded image from its reference version. The methodology that was followed

for the human investigation had been put together from well-established methods

used in psychophysics. This is applicable from the presentation of the stimuli (e.g.

when assessing usefulness/distortion the reference is provided), to the collection

of observers’ responses (e.g. the yes/no responses and instructions to observers)

and analysis of results (i.e. the fitting of psychometric function). Automated face

recognition systems are normally assessed by analysing correct recognition rate from

large datasets. Also, detailed information on scene contents are normally not in-

cluded. The advantage of the current methodology employed in Chapter 5 over the

‘standard’ one, is that it provides a detailed analysis based on scene content prop-

erties, and identifies numerically the distance between degraded and reference facial

images. Overall, the current employed methodology provides a detailed analysis,

whereas the ‘standard’ one provides a general analysis such as the recognition rate

has increased or decreased with compression. Perhaps, the current methodology

can be adopted to incorporate aspects of the ‘standard’ methodology. For instance,

to provide results based on correct recognition for individual scene properties. This

is also applicable for the methodology employed in the assessment of video analytics

195



systems. Similarly to automated face recognition systems, video analytics systems

are normally assessed by obtaining correct recognition rates from large datasets. In

the employed methodology for the video analytics systems in Chapter 6, the results

are analysed in detail based on individual scene properties.

The results from the human face recognition task have been analysed utilising 2

different approaches, both of them have drawn the same conclusions. In the first

statistical approach individual psychometric curves were fitted to the results ob-

tained from the individual scenes. Later, the points at 75% (in kbps) on the curves

were selected for further analysis aiming to identify any significant trends such as

similarities and differences between the classified and grouped properties. In the

second statistical approach, psychometric curves were fitted to grouped properties;

to all the data of the grouped scenes with the same content property. The perfor-

mance of human face recognition tasks when assessed with compression is affected

the most negatively by scenes exhibiting ‘low lightness’, ‘far camera to subject dis-

tance’ and ‘high spatial-high temporal busyness’ properties. In comparison, positive

performance (or least degraded performance) with compression has been obtained

with scenes exhibiting ‘medium lightness’ (i.e. for both bus and daylight illumina-

tions), ‘close camera to subject distance’ and ‘low spatial-low temporal busyness’

properties.

The data derived from the automated face recognition systems have been anal-

ysed/modelled in a similar statistical approach to that of the human face recognition

data in terms of fitting curves (i.e. in this case regression models) to scenes with

the same grouped property. The performance of automated face recognition tasks

when assessed with compression is affected the most negatively by scenes exhibiting

the ‘mixed lightness’ scene property. In case of the LDA method, ‘tilted’ angle to

the camera plane scenes have produced lower scores than ‘frontal’ scenes. The least

degraded performance with compression, has been obtained with scenes exhibiting

‘low lightness’, and ‘low spatial-low temporal busyness’ properties. The results from

the latter property are the only ones that agree with the results obtained from the
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human data, indicating no correlation of image usefulness between automated and

human face recognition systems. Predominantly, for all the investigations, humans

were affected the most by compression in comparison to the automated face recog-

nition and video analytics systems. Even though compression algorithms are meant

to throw away information that humans cannot perceive when it is employed at

high amounts then visible information is lost.

Furthermore, the positive performance of the automated face recognition systems

with ‘low lightness’ scenes has been discussed in detail in Sections 5.3.4 and 5.4.

As the tone characteristics do not change in the compressed scenes (i.e. for the

industry standard encoder) with respect to the ‘uncompressed’ reference, and the

dark areas within a ‘low lightness’ scene might occupy a large portion of an image

(i.e. in comparison to the medium lightness scenes), it is more likely that the au-

tomated algorithms performed pattern/lightness matching between the dark areas

of the facial images in the ‘low lightness’ content category. This could be an im-

portant reason why the ‘low lightness’ scenes were affected the least even at high

compression levels. On the other hand, the CCTV DVR encoders have altered the

tonal characteristics from the reference, making the dark areas appear brighter,

and have produced similar results to the industry standard encoder in terms of

the ‘low lightness’ scenes to have been affected the least by compression. It is un-

known how much the tonal characteristics of the reference have been altered by the

CCTV DVRs. For example, the compressed ‘low lightness’ scenes with the CCTV

DVR encoders still appear darker than the ‘medium lightness’ scenes. The same

methodology should be applied after processing the facial images with an illumina-

tion normalisation technique in order to identify if the ‘low lightness’ scenes are still

affected the least by compression. Perhaps, ‘low lightness’ scenes entail different

information from ‘medium lightness’ scenes concerning image spatial frequencies.

The results obtained from this investigation are only valid for the systems under

test; other systems or other versions of the utilised systems might produce different

results. The employed methodology could be used to assess any automated face

recognition system.
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In Chapter 6, 4 video analytics systems were assessed with: compression, 2 types of

frame rates (25fps and 5fps), scene content properties and distractions. The results

in Figures 6.3 and 6.4 have shown that every system performed differently for each

compression/frame rate level (see the Yes, No and Uncertain scene graphs), but

overall compression has not adversely affected the performance of the systems. The

reduction of frame rate from 25fps to 5fps has decreased detection performance for

most systems. This is understandable as analytics systems utilise the continuity of

a video content to perform analysis/detection and that continuity is disrupted when

reducing the frame rate to 5fps. The detailed analysis on the performance for each

system has identified the most common scene properties that cause a decline in the

performance of the video analytics systems under test. These are: ‘close distance’,

‘high contrast’, ‘run approach’, ‘crouch run approach’, ‘body drag approach’ and

‘log roll approach’. If this were a human investigation then one might expect the

‘close distance’ and ‘high contrast’ properties to have contributed to the increase of

detection performance. The investigation in this thesis proves that this is not the

case for the automated analytics systems. The results obtained from this investi-

gation are only valid for the video analytics systems under test and other systems

might perform differently. These systems have received UK Government approval

and are considered operationally successful (see Section 6.1).

The selected scene properties that have been included in the 3 investigations might

be inadequate, or additional properties might be required, to describe the content of

images for police tasks. In the human investigation in Chapter 4, the results could

have been influenced by the degree of distinctiveness or overall appearance of the

actual faces in the scenes such as a big nose, head and eyes (see Section 4.3.1). For

instance, a face with big facial features will require less compression than a face with

smaller facial features. This is applicable in particular for human face recognition

tasks where subject to camera distance has been identified as an influential factor

that affects performance of these tasks (see Table 4.8). In addition more groups of

the existing properties could have been included such as greater degrees of facial

angles to the camera plane or further/closer camera to subject distance groups.
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In the case of the video analytics systems, the intruders in the footage were wearing

only 2 types of clothing: a) white, could be considered to produce high contrast

properties with respect to the green grass background, or b) green, could be consid-

ered to produce low contrast properties with respect to the green grass background.

The latter is acting as a camouflage (see Section 6.2.2). It is unknown what would

happen in a real case, where the intruder might wear another colour. Perhaps, the

inclusion of more colours of clothing in the dataset should be considered.
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CHAPTER 8

Conclusions and further work

The conclusions from this work are as follows.

Humans were affected the most by compression in comparison to the automated

face recognition and video analytics systems. This indicates that humans are more

sensitive to the removal, by compression, of visible information than automated

systems. Even though compression algorithms are designed to through away infor-

mation that humans cannot see, when employed at high compression levels (as is

the case in the security industry) it does through away visible information. This is

not the case for automated systems and footage can be compressed at high levels

and still not affect their performance. Perhaps automated systems utilise different

image content information to complete a task than humans. This can only apply

to those systems/algorithms studied. Additionally, the performance of the auto-

mated systems with compression is a positive output in terms of saving storage for

automated tasks. Yet, the end users of security imagery are the police officers (e.g.

they arrest suspects) and the court (e.g. they establish identities) as they are the

executors of the justice system.
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Overall individual scene properties need to be taken into consideration when as-

sessing visual systems for police tasks. The performance of human face recognition

tasks when assessed with compression is affected the most negatively by scenes

exhibiting ‘low lightness’, ‘far camera to subject distance’ and ‘high spatial-high

temporal busyness’ properties. The least degraded performance has been obtained

with scenes exhibiting ‘medium lightness’ (i.e. for both bus and daylight illumina-

tions), ‘close camera to subject distance’ and ‘low spatial-low temporal busyness’

properties.

In comparison, the performance of automated face recognition tasks when assessed

with compression is affected the most negatively by scenes exhibiting the ‘mixed

lightness’ scene property. In the case of the LDA method, ‘tilted angle’ to the cam-

era plane scenes have produced lower scores than ‘frontal angle’ scenes. The least

degraded performance has been obtained with scenes exhibiting ‘low lightness’, and

‘low spatial-low temporal busyness’ properties. The results from the latter property

are the only ones that agree with the results obtained from the human data; indi-

cating no correlation of image property acceptance between automated and human

face recognition systems. This is not necessarily good or bad, humans and auto-

mated systems are just different. This can be good in terms of having more tools

to solve a recognition task. In most cases both humans and automated systems are

combined in police tasks. Understanding the scene dependency phenomenon helps

in incorporating within testing methodologies various scene content properties that

are representative for the task. Testing methodologies are used in order to under-

stand how systems behave and where they need improvement (e.g. over exposed

scenes for the automated face recognition algorithms: LDA, KFA and PCA). More

research is required to identify if scene dependency is a phenomenon that needs to

be taken into consideration for any automated system as the current investigation

includes a limited number of systems.

The most common scene properties that reduce the performance of the video analyt-

ics systems under test are: ‘close distance’, ‘high contrast’, ‘run approach’, ‘crouch
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run approach’, ‘body drag approach’, and ‘log roll approach’. If this were a human

investigation then one might expect the ‘close distance’ and ‘high contrast’ prop-

erties to have contributed to the increase of detection performance. The current

investigation in this thesis, provides an indication that this is not the case for the

automated analytics systems.

The results obtained from the investigations with the automated systems (face

recognition, human detection) are only valid for the automated systems/algorithms

under test; other systems/algorithms or other versions of the utilised systems/algorithms

might produce different results. Furthermore, for the human investigation the re-

sults are dependent on the type of observers. For example, civilians might produce

different results from police officers.

Furthermore, the employed and developed methodologies in this thesis could be

used to assess any visual system aiming to complete a police task.

Findings of this and future investigations could be employed in the creation of qual-

ity metrics. For example, a study by Maalouf et al [297] has focused on monitoring

quality of legal evidence images in video-surveillance applications by using a com-

bination of a tracking algorithm, a quality metric and a super-resolution algorithm.

Furthermore, a more challenging task will be to define quantitatively the relation-

ship between video parameters (e.g. frame rate, bitrate) and image properties (e.g.

busyness, lightness) with the acceptability of usefulness of the face for automated

and human visual systems. These will need to be different for automated and hu-

man visual systems as the results obtained from the included investigations suggest

that no correlation exists among them concerning scene property acceptance. The

same conclusion has been drawn by Korshunov and Ooi [146] as they have identi-

fied that surveillance automated systems (face detection, recognition and tracking)

accept signifacantly more compression compared to humans and suggested the need

for alternative image quality measures suitable for automated systems.

Future work will involve effort in understanding further the scene dependency
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essence of automated face recognition systems (e.g. why under exposed scenes

were affected the least by compression for AFR systems). Also, to include illumina-

tion normalisation techniques in the evaluation methodology. This additional image

processing step might produce different results in relation to image acceptance of

scene content properties.

Future work in relation to the video analytics investigation will include the same

methodology to be applied on a different more complicated scenario (e.g. traffic

monitoring) in order to expand understanding of the performance of automated

algorithms.
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APPENDIX A

Display Characterisation

The EIZO ColorEdge CG210 21.3” Liquid Crystal Display (LCD) was employed for

the human investigation in Chapter 4. This investigation was carried out in parallel

with another psychophysical investigation by Dr Jae Park. Dr Jae Park has provided

information relating to tone reproduction, spatial uniformity, temporal stability and

viewing angle characteristics of the employed LCD. This information can be found

in his PhD thesis [298]. It was considered suitable, in this case, to use another

investigator’s data, as both the investigations were conducted at the same time and

using the same display settings and viewing conditions.

The LCD characterisation was carried out according to the BS EN 61966-4 stan-

dard [299]. First, temporal stability measurements were carried out, where the LCD

was previously cooled down for 2 hours. The room temperature was constant and

approximately 20 (+/-3) degrees Celsius during the performance measurements and

psychophysical investigations. Before starting the charaterisation and calibration

process, the display was allowed, a warm up time for at least an hour (based on the

result from the stability measurement), and as specified in the BS EN 61966-4 stan-
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dard. The following points report the calibration and characterisation (performance

measures):

• Daily LCD calibration. The LCD was calibrated to a white point D65 (6500K),

at a luminance of 120cd/m2 using an sRGB ICC profile. For the calibration

a GretagMacbeth Eye-One Pro system was employed. Although the sRGB

standard specifies a white point luminance of 80 cd/m2 the chosen white

point luminance of 120 cd/m2 is not an uncommon setting in modern LCDs

that have generally higher luminance [300]. The result of a higher than the

specified white point may produce less accurate display colorimetry, but would

not affect the results of the psychophysical experiments, where a standard and

a distorted image are compared with each other simultaneously on the same

LCD.

• Temporal stability. Temporal stability measurements identify colour reproduc-

tion instabilities when first applying power (short-term instability) to the LCD

and in daily use (mid-term instability) [299]. The LCD device was adjusted

to display a white patch and was calibrated to produce a peak luminance of

120cd/m2 then it was turned off for a day (the device reset the calibration set-

tings to its original settings automatically when turned off). When the LCD

was turned on short-term instability measurements were performed after 1

minute and for the duration of 2 hours. The same procedure was repeated for

the mid-term stability measurements, but this time the measurements were

performed after 10 minutes and for the duration of 24 hours.

The measured luminance Y (in cd/m2) and chrominance coordinates (x, y) are

plotted against time (see Figure A.1). Figure A.1a (top) shows that the LCD

produced more stable luminance results after only 1 hour warm up time. On

the other hand, the chromaticities are stabilised quickly for both short- and

mid-term measurements. Figure A.1b (top) indicates a mid-term luminance

fluctuation at 80 minutes after switch on, which could be a measurement error,

given the otherwise flat luminance response.
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Figure A.1: Temporal stability measurements of the EIZO CG210 LCD. The mea-
sured luminance Y (in cd/m2) and chromaticity coordinates (x, y) are plotted
against time for the short-term (a) and mid-term (b) results. Where average is
the mean statistical value. Adopted from Park (2014) [298].

• Tone reproduction. In this characterisation measurement, the output lumi-

nance is plotted as a function of input intensities (i.e. pixel values). The

resulting function is commonly referred to as the display transfer function.

See Section 3.3.3 on tone reproduction for further information. Figure A.2

provides the transfer functions of the EIZO ColorEdge CG210, where the

normalised luminance (i.e. or “normalised light output” on Figure A.2) is

plotted against normalised input pixel values for the red, green, blue and

neutral display responses [301]. Note that, the tone reproduction (transfer

function) is related to the Y’ (luminance) curves. The measurement involved

a total of a 32-step grey-scale ramp, given to the monitor as an input. The

Konica-Minolta CS-200 tele-chroma meter (designed for LCDs) was placed

150cm away from the centre and in a parallel plane to that of the monitor.

This instrument allowed the measurement of the luminance of the displayed

ramp (i.e. obtained by the mean value from 3 measurements for each of the
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32 steps), with a measurement angle between 0.1 - 0.2 degrees.

Figure A.2: Tone characteristics of the EIZO CG210 display. Adopted from Park
(2014) [298].

• LCD spatial uniformity. This involved the display of a white patch (R = G

= B = 255) on the entire LCD screen and CIELAB L*, a*, b* measurements

of 25 positions across the LCD screen (see Figure A.3). Refer to Section

3.3.4 for information on the CIELAB L*, a*, b* colour space. The variations

in lightness ∆L* was found to be max 6.12, in chroma ∆C*ab 3.04, and in

total colour difference ∆E*ab 6.28 (see Figure A.4 for a visual representation).

Overall, the centre of the screen was found to have a slightly better uniformity

than the surround. The ∆E* was more affected by lightness non-uniformity

than chroma non-uniformity.
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Figure A.3: The 25 measurement positions (or points) for monitor uniformity.
Where h and w stand for monitor height and width respectively. Adopted from
BS EN 61966-4 standard [299].
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Figure A.4: LCD spatial uniformity measurements. Graphs a, b and c present
differences in lightness (∆L*), chroma ∆C*ab and total colour ∆E*ab respectively
from the reference position to the 25 positions across the display. Adopted from
Park (2014) [298].

The measured spatial uniformity of the EIZO ColorEdge CG210 21.3” LCD

was rather poor. Overall the second investigation with the samples from

the CCTV DVRs would not have been affected greatly because the samples

were very small and were placed in the middle of the LCD (see Figure A.6).

In the first investigation, the visual representation of the samples may have

been affected, as the scenes were displayed across the entire LCD faceplate

(see Figure A.5). However, in most scenes the areas of interest (the faces

displayed in grey squares) were not placed at the very edges of the LCD.

Overall the spatial non-uniformity, although poor in terms of accurate col-

orimetry, would affect more image fidelity and image quality experiments

than image usefulness tests. How useful an image is for a recognition task

depends on the information that image conveys (with respect to the original
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in the specific experiment), not the accuracy of the information. A ∆E* of 1

is the ultimate threshold of visibility for solid patches, where as a ∆E* of 3 to

6 is still considered acceptable for the display of complex images [302–304].

Figure A.5: Example of the first psychophysical experiment. The figure is showing
what was displayed on the entire LCD screen.

Figure A.6: Example of the second psychophysical experiment. The figure is show-
ing what was displayed on the entire LCD screen.
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• Viewing angle characteristics

This measurement examines the effect on luminance Y and u′, v′ chromaticity

coordinates of different display viewing angles. The LCD device was mounted

with a tilted stand that allowed adjustable changes in vertical viewing an-

gles. A rotating disk was placed under the LCD device to allow adjustable

changes in horizontal viewing angles. The test samples consisted of 8 neutral

and 3 pure primary colour patches. They were all displayed individually on

the screen on a black background (according to the BS EN 61966- 4 stan-

dard [299]). Luminance (Y ) and chromaticity coordinates (CIE 1976 u′, v′)

measurements were performed horizontally +/- 40◦ (from the centre of the

screen) at 10◦ interval and vertically between 0◦ to +20◦ and at 5◦ interval.

The results are plotted in Figures A.7 to A.9.

Figure A.7: The effect of different viewing angles to pure primaries (red, green and
blue) and the white. Solid lines present results from the vertical luminance and
broken lines of horizontal luminance. Adopted from Park (2014) [298].

The luminance value has decreased for the white and pure red patches and that

decrease was slightly higher for the vertical angles (see Figures A.7). A similar

behaviour can be observed from the results obtained from the neutral patches

(see Figure A.9). The changes of the chromaticity coordinate measurements
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from the different viewing angles were small (see Figure A.8). The observers

in the investigation in Chapter 4 were allowed to get closer to the screen or

further away and change viewing angles. This is a common practice with

police officers. The angular variations reported in this section would not thus

affect the reported usefulness, as the officers would have the chance to check

and double check the images from all viewing angles.

Figure A.8: The effect of different viewing angles to chromaticity measurements.
Adopted from Park (2014) [298].
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Figure A.9: The effect of different viewing angles to neutral patches. Solid lines
present results from the vertical luminance and broken lines of horizontal luminance.
Adopted from Park (2014) [298].

The limitations of employing a non-contact measurement instrument (in this case

the Konica-Minolta CS-200 tele-chroma meter) to measure angular variations are

the reflections caused by the objects in the room and the light emitting from the

measuring device. Provided that these were all controlled (i.e. measurement in total

darkness, as reported) these should not have an effect. Non-contact measurements

enable the independent capture of color information and this is applicable for any

spatial point within its field of view [305].
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APPENDIX B

Logistic Regression Analysis
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Sys.A:Property α std β std p

Distance

Close25fps 0.1601 1.5123 0.2456 0.2279 0.282

Close5fps -0.4694 1.3503 0.2818 0.2034 0.167

Medium25fps -169.30 18513.16 32.09 3418.17 0.993

Medium5fps -180.36 11814.70 33.58 2181.40 0.988

Far25fps -166.20 13060.88 31.24 2411.49 0.99

Far5fps -1.6919 2.1609 0.6671 0.3384 0.050.

Orientation

Diag25fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 0

Diag5fps -168.30 20009.78 31.59 3694.50 0.009

Perp25fps 0.5262 1.3700 0.3397 0.2089 0.104

Perp5fps -1.4215 1.0407 0.5348 0.1604 0.000***

Description

OnePerson25fps 0.3087 1.4718 0.4043 0.2258 0.0739.

OnePerson5fps -1.5487 1.0800 0.5727 0.1671 0.000***

TwoPeople25fps 2.398e+00 3.776e+00 -8.535e-16 5.604e-01 1.000

TwoPeople5fps 0.06048 3.35164 0.32782 0.50931 0.522

Contrast

High25fps -0.9834 2.7767 0.3212 0.4165 0.444

High5fps -0.6891 2.5405 0.1941 0.3778 0.610

Medium25fps -3.4502 3.7866 1.3064 0.6233 0.0366*

Medium5fps -2.0619 1.7447 0.7592 0.2735 0.005**

Low25fps 0.3338 2.1703 0.2326 0.3257 0.0476

Low5fps -2.9603 1.9544 0.7039 0.3009 0.020*

Approach

Walk25fps 2.683279 2.644227 -0.006605 0.392249 0.987

Walk5fps 0.2022 2.2934 0.3383 0.3492 0.334

Run25fps -0.1799 2.2881 0.3246 0.3470 0.351

Run5fps -3.9031 1.6617 0.7417 0.2535 0.004**

CrouchRun25fps 0.8033 3.4253 0.2562 0.5183 0.623

CrouchRun5fps -2.2235 2.3982 0.5005 0.3634 0.173

CreepWalk25fps 35.584 17.689 -4.205 2.362 0.078.

CreepWalk5fps 2.4189 6.8267 0.4217 1.0531 0.690

Crawl25fps -170.63 22297.11 31.97 4116.82 0.994

Crawl5fps -172.27 24024.25 32.23 4435.71 0.994

CrouchWalk25fps -180.40 24216.57 33.59 4471.22 0.994

CrouchWalk5fps -176.8 24618.5 33.0 4545.4 0.994

BodyDrag25fps -172.23 26026.05 32.58 4805.31 0.995

BodyDrag5fps 2.812e+01 1.380e+00 1.482e-07 2.049e-01 1

LogRoll25fps 2.812e+01 2.183e+00 1.443e-08 3.240e-01 1

LogRoll5fps 2.812e+01 2.183e+00 1.443e-08 3.240e-01 1

WalkLadder25fps -175.76 27640.13 32.83 5103.33 0.995

WalkLadder5fps -173.86 27862.34 32.85 5144.35 0.995

Table B.1: Information on the fitted logistic models in Figures 6.6 and 6.7 for de-
tailed performance of System A (values obtained as in Table 6.3 for each individual
scene property).
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Sys.B:Property α std β std p

Distance

Close25fps 1.00368 1.37167 0.08466 0.20455 0.679

Close5fps 0.26766 1.19663 0.07929 0.17805 0.657

Medium25fps 2.4113 1.7800 -0.0463 0.2634 0.861

Medium5fps 1.64653 1.45063 0.02234 0.21559 0.918

Far25fps 2.2175 1.6005 -0.0546 0.2367 0.818

Far5fps -0.1935 1.4074 0.2785 0.2124 0.191

Orientation

Diag25fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Diag5fps 2.812e+01 1.044e+00 -4.925e-0 1.549e-01 1

Perp25fps 1.645760 0.900750 0.005832 0.133731 0.9652

Perp5fps 0.4055 0.7719 0.1190 0.1152 0.302

Description

OnePerson25fps 1.641278 0.901557 0.006694 0.133858 0.9601

OnePerson5fps 0.3965 0.7724 0.1205 0.1153 0.296

TwoPeople25fps 12.3287 11.2502 -0.8324 1.5814 0.600

TwoPeople5fps 622.64 71135.87 -81.29 9358.87 0.993

Contrast

High25fps 6.6412 3.6331 -0.6942 0.5190 0.1868

High5fps 1.08461 2.87765 0.03153 0.42662 0.941

Medium25fps 1.4862 1.1296 0.0556 0.1678 0.741

Medium5fps 0.5866 0.9415 0.1198 0.1402 0.393

Low25fps 1.19580 1.95089 0.07127 0.28993 0.806

Low5fps 0.2820 1.7983 0.1423 0.2679 0.596

Approach

Walk25fps 13.1728 11.2037 -0.8318 1.5748 0.598

Walk5fps 628.45 77829.51 -81.94 10239.51 0.994

Run25fps 3.0617 2.3347 -0.1244 0.3436 0.718

Run5fps -1.3913 1.5460 0.3209 0.2316 0.168

CrouchRun25fps -9.2296 3.4873 1.9689 0.6008 0.001**

CrouchRun5fps -0.4627 2.2929 0.2019 0.3427 0.558

CreepWalk25fps 2.812e+01 9.307e-01 -4.237e-08 1.381e-01 1

CreepWalk5fps 2.812e+01 9.307e-01 -4.237e-08 1.381e-01 1

Crawl25fps 0.1998 1.8800 -0.1156 0.2798 0.681

Crawl5fps -0.7580 1.8672 0.0107 0.2770 0.969

CrouchWalk25fps 2.4898 5.8243 0.4742 0.9033 0.602

CrouchWalk5fps 12.0430 11.2786 -0.8327 1.5854 0.602

BodyDrag25fps 0.2432 2.2391 -0.1338 0.3335 0.690

BodyDrag5fps -0.36872 1.77646 -0.03742 0.26391 0.888

LogRoll25fps 6.931e-01 4.630e+00 2.002e-15 6.872e-01 1.000

LogRoll5fps -1.1409 4.3734 0.2565 0.6528 0.700

WalkLadder25fps 8.7606 5.3000 -0.7407 0.7495 0.330

WalkLadder5fps -176.10 29547.94 33.06 5455.57 0.995

Table B.2: Information on the fitted logistic models in Figures 6.8 and 6.9 for
detailed performance of System B (values obtained as in Table 6.3 for each individual
scene property).
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Sys.C:Property α std β std p

Distance

Close25fps 3.2354 1.5227 -0.2477 0.2230 0.2679

Close5fps 3.9245 1.7093 -0.3204 0.2491 0.1996

Medium25fps 2.61729 1.87703 -0.07694 0.27717 0.782

Medium5fps 2.283901 1.919788 0.004279 0.285012 0.988

Far25fps 2.6038 1.6772 -0.1438 0.2469 0.561

Far5fps 2.0782 1.6602 -0.0589 0.2456 0.811

Orientation

Diag25fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Diag5fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Perp25fps 2.7491 0.9703 -0.1691 0.1427 0.236

Perp5fps 2.7116 1.0134 -0.1417 0.1491 0.342

Description

OnePerson25fps 2.7491 0.9703 -0.1691 0.1427 0.236

OnePerson5fps 2.7116 1.0134 -0.1417 0.1491 0.342

TwoPeople25fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

TwoPeople5fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Contrast

High25fps 2.079e+00 4.039e+00 -3.626e-15 5.980e-01 1.000

High5fps 2.079e+00 4.039e+00 -3.626e-15 5.980e-01 1.000

Medium25fps 3.4684 1.2494 -0.2364 0.1825 0.196

Medium5fps 2.9318 1.3228 -0.1337 0.1943 0.4918

Low25fps 1.75305 1.91797 -0.06574 0.28311 0.817

Low5fps 2.8315 1.9453 -0.2039 0.2852 0.476

Approach

Walk25fps 2.812e+01 6.777e-01 -6.992e-08 1.006e-01 1

Walk5fps 2.812e+01 6.777e-01 -6.992e-08 1.006e-01 1

Run25fps 0.8336 1.5629 -0.1335 0.2320 0.566

Run5fps 0.40221 1.56284 -0.05959 0.23194 0.798

CrouchRun25fps 1.5722 2.0806 -0.2111 0.3083 0.496

CrouchRun5fps 3.0178 2.2090 -0.3576 0.3247 0.275

CreepWalk25fps 15.019 9.522 -1.596 1.307 0.225

CreepWalk5fps 7.9698 5.5188 -0.5586 0.7875 0.480

Crawl25fps 20.571 10.327 -2.431 1.400 0.087.

Crawl5fps 35.173 19.749 -4.347 2.638 0.1044

CrouchWalk25fps 2.812e+01 1.211e+00 -1.072e-08 1.797e-01 1

CrouchWalk5fps 2.812e+01 1.211e+00 -1.072e-08 1.797e-01 1

BodyDrag25fps 17.226 9.952 -1.922 1.358 0.1645

BodyDrag5fps 640.70 91326.85 -83.74 12015.26 0.994

LogRoll25fps 2.812e+01 2.183e+00 1.443e-08 3.240e-01 1

LogRoll5fps 2.812e+01 2.183e+00 1.443e-08 3.240e-01 1

WalkLadder25fps 2.812e+01 1.497e+00 9.209e-09 2.222e-01 1

WalkLadder5fps 2.812e+01 1.497e+00 9.209e-09 2.222e-01 1

Table B.3: Information on the fitted logistic models in Figures 6.10 and 6.11 for de-
tailed performance of System C (values obtained as in Table 6.3 for each individual
scene property).
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Sys.D:Property α std β std p

Distance

Close25fps 2.2822 2.0312 0.2351 0.3076 0.446

Close5fps 0.1789 1.3277 0.3255 0.2018 0.108

Medium25fps 9.4012 7.4828 -0.4107 1.0766 0.703

Medium5fps -4.1278 2.6091 1.2916 0.4349 0.003**

Far25fps 2.64255 2.55536 0.04369 0.38054 0.909

Far5fps -0.1636 2.2455 0.4600 0.3461 0.185

Orientation

Diag25fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Diag5fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Perp25fps 2.96314 1.80613 0.09493 0.27017 0.725

Perp5fps -0.3182 1.0816 0.4664 0.1667 0.005**

Description

OnePerson25fps 2.96314 1.80613 0.09493 0.27017 0.725

OnePerson5fps -0.3182 1.0816 0.4664 0.1667 0.005**

TwoPeople25fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

TwoPeople5fps 2.812e+01 1.044e+00 -4.925e-08 1.549e-01 1

Contrast

High25fps 2.423e+00 3.932e+00 -5.251e-05 5.821e-01 1.00

High5fps -3.9580 3.4331 0.9836 0.5444 0.076.

Medium25fps 3.930784 2.677967 0.001852 0.396511 0.996

Medium5fps 0.1961 1.3846 0.4090 0.2113 0.053.

Low25fps 0.05636 3.19782 0.60733 0.49751 0.224

Low5fps 0.2286 2.6106 0.4156 0.3987 0.299

Approach

Walk25fps 2.812e+01 6.777e-01 -6.992e-08 1.006e-01 1

Walk5fps -162.82 15635.22 30.67 2886.80 0.992

Run25fps 0.8422 2.1505 0.2614 0.3256 0.424

Run5fps -2.2617 1.4379 0.6194 0.2221 0.006**

CrouchRun25fps 2.8011 3.2885 -0.1044 0.4847 0.830

CrouchRun5fps -1.2945 1.8145 0.3494 0.2731 0.205

CreepWalk25fps 2.812e+01 9.307e-01 -4.237e-08 1.381e-01 1

CreepWalk5fps 2.812e+01 9.307e-01 -4.237e-08 1.381e-01 1

Crawl25fps 2.812e+01 1.091e+00 -2.317e-08 1.620e-01 1

Crawl5fps 2.812e+01 1.091e+00 -2.317e-08 1.620e-01 1

CrouchWalk25fps 2.812e+01 1.211e+00 -1.072e-08 1.797e-01 1

CrouchWalk5fps 2.812e+01 1.211e+00 -1.072e-08 1.797e-01 1

BodyDrag25fps 2.812e+01 1.380e+00 1.482e-07 2.049e-01 1

BodyDrag5fps 2.812e+01 1.380e+00 1.482e-07 2.049e-01 1

LogRoll25fps 2.812e+01 2.183e+00 1.443e-08 3.240e-01 1

LogRoll5fps -181.20 36520.94 34.08 6743.03 0.996

WalkLadder25fps 2.812e+01 1.497e+00 9.209e-09 2.222e-01 1

WalkLadder5fps 2.812e+01 1.497e+00 9.209e-09 2.222e-01 1

Table B.4: Information on the fitted logistic models in Figures 6.12 and 6.13 for de-
tailed performance of System D (values obtained as in Table 6.3 for each individual
scene property).
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APPENDIX C

Linear Regression Analysis

System α std β std p

Sys.A25fps 9.174e-01 2.756e-02 1.119e-05 1.907e-05 0.583

Sys.A5fps 8.042e-01 5.824e-02 6.456e-05 4.795e-05 0.249

Sys.B25fps 7.822e-02 2.149e-03 1.209e-08 1.769e-06 0.995

Sys.B5fps 7.043e-02 2.532e-03 1.669e-06 2.085e-06 0.424

Sys.C25fps 7.955e-02 2.343e-03 -2.036e-06 1.929e-06 0.292

Sys.C5fps 8.065e-02 2.221e-03 -1.585e-06 1.829e-06 0.386

Sys.D25fps 8.852e-02 8.580e-04 2.181e-07 7.064e-07 0.758

Sys.D5fps 8.367e-02 1.188e-03 2.260e-06 9.785e-07 0.0212*

Table C.1: Details of the fitted linear regression models for the overall performance
in Figure C.1. The first column provides the system name and the type of the raw
data (25fps or 5fps). The second and fourth columns provide information on the
derived coefficients of each model (intercept and slope). Next columns provide the
calculated standard error on the coefficients (std). Where p is the statistical value
identifying any significant trends.
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Figure C.1: Linear regression for the overall performance with respect to compres-
sion (in kbps) for systems A, B, C and D. Black triangles and black lines represent
derived results from 25fps, and grey dots and grey lines represent derived results
from 5fps. The lines are the obtained linear regression models from all the scenes
and the points represent the always correctly identified scenes (the Yes scenes),
both plotted against compression rate in kbps.
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Figure C.2: Detailed performance with respect to compression (in kbps) for system
A Part 1 (as graphs in Figure C.1).
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Figure C.3: Detailed performance with respect to compression (in kbps) for system
A Part 2 (as graphs in Figure C.1).
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Figure C.4: Detailed performance with respect to compression (in kbps) for system
B Part 1 (as graphs in Figure C.1).
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Figure C.5: Detailed performance with respect to compression (in kbps) for system
B Part 2 (as graphs in Figure C.1).
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Figure C.6: Detailed performance with respect to compression (in kbps) for system
C Part 1 (as graphs in Figure C.1).
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Figure C.7: Detailed performance with respect to compression (in kbps) for system
C Part 2 (as graphs in Figure C.1).
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Figure C.8: Detailed performance with respect to compression (in kbps) for system
D Part 1 (as graphs in Figure C.1).
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Figure C.9: Detailed performance with respect to compression (in kbps) for system
D Part 2 (as graphs in Figure C.1).
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Sys.A:Property α std β std p

Distance

Close25fps 8.161e-01 6.432e-02 2.528e-05 5.296e-05 0.658

Close5fps 7.095e-01 5.783e-02 5.423e-05 4.762e-05 0.318

Medium25fps 9.719e-01 1.584e-02 1.836e-05 1.305e-05 0.232

Medium5fps 8.597e-01 7.922e-02 9.180e-05 6.523e-05 0.232

Far25fps 9.434e-01 1.628e-02 1.887e-05 1.341e-05 0.232

Far5fps 8.446e-01 4.071e-02 4.717e-05 3.352e-05 0.232

Orientation

Diag25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Diag5fps 9.567e-01 2.443e-02 2.830e-05 2.011e-05 0.232

Perp25fps 8.992e-01 3.604e-02 2.341e-05 2.967e-05 0.474

Perp5fps 7.856e-01 6.241e-02 6.900e-05 5.138e-05 0.251

Description

OnePerson25fps 9.094e-01 3.604e-02 2.341e-05 2.967e-05 0.474

OnePerson5fps 7.958e-01 6.241e-02 6.900e-05 5.138e-05 0.250

TwoPeople25fps 0.9167 0.0000 0.0000 0.0000 NA

TwoPeople5fps 8.734e-01 2.443e-02 2.830e-05 2.011e-05 0.232

Contrast

High25fps 6.903e-01 7.945e-02 3.077e-05 6.541e-05 0.663

High5fps 4.637e-01 9.091e-02 1.243e-04 7.485e-05 0.172

Medium25fps 9.675e-01 2.523e-02 1.280e-05 2.077e-05 0.571

Medium5fps 8.822e-01 3.758e-02 4.354e-05 3.094e-05 0.232

Low25fps 8.019e-01 3.823e-02 4.430e-05 3.148e-05 0.232

Low5fps 6.732e-01 1.193e-01 1.125e-04 9.822e-05 0.316

Approach

Walk25fps 9.286e-01 2.139e-16 3.283e-19 1.761e-19 0.136

Walk5fps 8.544e-01 4.188e-02 4.852e-05 3.448e-05 0.232

Run25fps 8.087e-01 6.405e-02 4.781e-05 5.274e-05 0.416

Run5fps 0.4712367 0.1359768 0.0001562 0.0001120 0.235

CrouchRun25fps 8.147e-01 5.330e-02 6.175e-05 4.388e-05 0.232

CrouchRun5fps 6.347e-01 1.084e-01 7.458e-05 8.925e-05 0.450

CreepWalk25fps 1.039e+00 2.502e-02 -6.932e-05 2.060e-05 0.0282*

CreepWalk5fps 9.474e-01 2.445e-02 2.926e-05 2.013e-05 0.220

Crawl25fps 9.528e-01 2.665e-02 3.088e-05 2.194e-05 0.232

Crawl5fps 9.528e-01 2.665e-02 3.088e-05 2.194e-05 0.232

CrouchWalk25fps 8.847e-01 6.514e-02 7.548e-05 5.363e-05 0.232

CrouchWalk5fps 8.847e-01 6.514e-02 7.548e-05 5.363e-05 0.232

BodyDrag25fps 9.258e-01 4.188e-02 4.852e-05 3.448e-05 0.232

BodyDrag5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

LogRoll25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

LogRoll5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

WalkLadder25fps 9.135e-01 4.885e-02 5.661e-05 4.022e-05 0.232
hline WalkLadder5fps 9.135e-01 4.885e-02 5.661e-05 4.022e-05 0.232

Table C.2: Information on the fitted linear models in Figures C.2 and C.3 for de-
tailed performance of System A (values obtained as in Table C.1 for each individual
scene property).
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Sys.B:Property α std β std p

Distance

Close25fps 7.521e-01 1.786e-02 1.412e-07 1.471e-05 0.993

Close5fps 6.549e-01 2.130e-02 1.568e-05 1.754e-05 0.422

Medium25fps 8.378e-01 2.122e-02 2.983e-19 1.747e-05 1.00

Medium5fps 7.771e-01 2.771e-02 2.118e-06 2.282e-05 0.93

Far25fps 7.585e-01 1.625e-02 1.408e-05 1.338e-05 0.352

Far5fps 6.768e-01 4.440e-02 7.054e-05 3.656e-05 0.126

Orientation

Diag25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Diag5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Perp25fps 7.565e-01 1.182e-0 5.225e-06 9.733e-06 0.620

Perp5fps 6.643e-01 3.201e-02 3.674e-05 2.635e-05 0.236

Description

OnePerson25fps 7.575e-01 1.269e-02 5.919e-06 1.045e-05 0.601

OnePerson5fps 6.643e-01 3.201e-02 3.674e-05 2.635e-05 0.236

TwoPeople25fps 9.920e-01 2.967e-02 -5.661e-06 2.443e-05 0.828

TwoPeople5fps 1.021e+00 2.185e-02 -3.353e-05 1.799e-05 0.136

Contrast

High25fps 8.121e-01 4.813e-02 -1.045e-04 3.963e-05 0.0577.

High5fps 7.757e-01 4.604e-02 -3.367e-05 3.790e-05 0.425

Medium25fps 7.988e-01 7.498e-03 6.498e-06 6.174e-06 0.352

Medium5fps 7.014e-01 2.272e-02 2.827e-05 1.870e-05 0.205

Low25fps 7.182e-01 1.991e-02

Low5fps 6.807e-01 6.825e-02 5.634e-05 5.619e-05 0.373

Approach

Walk25fps 9.966e-01 1.272e-02 -2.426e-06 1.047e-05 0.828

Walk5fps 1.009e+00 9.365e-03 -1.437e-05 7.711e-06 0.136

Run25fps 7.779e-01 2.245e-02 5.225e-06 1.848e-05 0.791

Run5fps 5.240e-01 5.011e-02 8.125e-05 4.126e-05 0.120

CrouchRun25fps 7.779e-01 2.245e-02 5.225e-06 1.848e-05 0.791

CrouchRun5fps 5.240e-01 5.011e-02 8.125e-05 4.126e-05 0.120

CreepWalk25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

CreepWalk5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Crawl25fps 2.221e-01 5.825e-02 -2.423e-05 4.796e-05 0.640

Crawl5fps 1.417e-01 6.491e-02 9.501e-06 5.345e-05 0.8675

CrouchWalk25fps 9.509e-01 4.988e-02 1.161e-05 4.107e-05 0.791

CrouchWalk5fps 9.893e-01 3.956e-02 -7.548e-06 3.257e-05 0.828

BodyDrag25fps 1.262e-01 1.283e-01 -2.986e-05 1.056e-04 0.791

BodyDrag5fps 1.127e-01 5.239e-02 -6.270e-05 4.314e-05 0.220

LogRoll25fps 0.6667 0.0000 0.0000 0.0000 NA

LogRoll5fps 0.6667 0.0000 0.0000 0.0000 NA

WalkLadder25fps 8.909e-01 1.088e-01 -2.874e-05 8.955e-05 0.764

WalkLadder5fps 9.135e-01 4.885e-02 5.661e-05 4.022e-05 0.232

Table C.3: Information on the fitted linear models in Figures C.4 and C.5 for de-
tailed performance of System B (values obtained as in Table C.1 for each individual
scene property).
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Sys.C:Property α std β std p

Distance

Close25fps 8.754e-01 1.799e-02 -7.090e-05 1.481e-05 0.009**

Close5fps 8.852e-01 2.337e-02 -3.700e-05 1.924e-05 0.127

Medium25fps 8.768e-01 1.213e-02 -2.825e-06 9.989e-06 0.791

Medium5fps 8.987e-01 7.087e-03 -1.087e-05 5.835e-06 0.136

Far25fps 8.146e-01 1.651e-02 -1.321e-05 1.360e-05 0.386

Far5fps 8.077e-01 1.537e-02 -2.032e-06 1.266e-05 0.880

Orientation

Diag25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Diag5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Perp25fps 8.383e-01 1.153e-02 -3.269e-05 9.497e-06 0.026*

Perp5fps 8.478e-01 6.576e-03 -1.882e-05 5.415e-06 0.025*

Description

OnePerson25fps 8.383e-01 1.153e-02 -3.269e-05 9.497e-06 0.026*

OnePerson5fps 8.478e-01 6.576e-03 -1.882e-05 5.415e-06 0.025*

TwoPeople25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

TwoPeople5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Contrast

High25fps 8.889e-01 1.426e-16 2.188e-19 1.174e-19 0.136

High5fps 8.889e-01 1.426e-16 2.188e-19 1.174e-19 0.136

Medium25fps 8.738e-01 1.449e-02 -4.107e-05 1.193e-05 0.026*

Medium5fps 8.923e-01 6.977e-03 -2.800e-05 5.744e-06 0.0082**

Low25fps 7.826e-01 2.139e-16 3.283e-19 1.761e-19 0.136

Low5fps 7.600e-01 1.274e-02 1.477e-05 1.049e-05 0.232

Approach

Walk25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Walk5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Run25fps 4.480e-01 4.402e-02 -2.221e-05 3.624e-05 0.573

Run5fps 4.375e-01 2.679e-02 1.202e-05 2.206e-05 0.615

CrouchRun25fps 5.017e-01 2.665e-02 -3.088e-05 2.194e-05 0.232

CrouchRun5fps 6.398e-01 5.330e-02 -6.175e-05 4.388e-05 0.232

CreepWalk25fps 1.015e+00 1.456e-02 -4.703e-05 1.199e-05 0.017*

CreepWalk5fps 9.809e-01 2.635e-02 -2.438e-05 2.169e-05 0.324

Crawl25fps 9.966e-01 2.406e-02 -5.510e-05 1.981e-05 0.050*

Crawl5fps 1.030e+00 2.145e-02 -5.795e-05 1.766e-05 0.0305*

CrouchWalk25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

CrouchWalk5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

BodyDrag25fps 1.069e+00 3.537e-02 -1.582e-04 2.913e-05 0.006**

BodyDrag5fps 1.036e+00 3.746e-02 -5.748e-05 3.084e-05 0.136

LogRoll25fps 1.000e+00 1.426e-1 2.188e-19 1.174e-19 0.136

LogRoll5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

WalkLadder25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

WalkLadder5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Table C.4: Information on the fitted linear models in Figures C.6 and C.7 for de-
tailed performance of System C (values obtained as in Table C.1 for each individual
scene property).
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Sys.D:Property α std β std p
hline Distance

Close25fps 9.402e-01 1.798e-02 -1.186e-05 1.481e-05 0.468

Close5fps 7.739e-01 3.621e-02 3.121e-05 2.981e-05 0.354

Medium25fps 9.948e-01 1.205e-02 -3.672e-06 9.920e-06 0.730

Medium5fps 9.325e-01 2.477e-02 1.299e-05 2.039e-05 0.559

Far25fps 9.022e-01 8.142e-03 9.435e-06 6.704e-06 0.232

Far5fps 8.221e-01 3.046e-02 5.545e-05 2.508e-05 0.092.

Orientation

Diag25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Diag5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Perp25fps 9.396e-01 6.585e-03 -2.399e-06 5.421e-06 0.681

Perp5fps 8.238e-01 3.050e-02 3.706e-05 2.511e-05 0.214

Description

OnePerson25fps 9.396e-01 6.585e-03 -2.399e-06 5.421e-06 0.681

OnePerson5fps 8.238e-01 3.050e-02 3.706e-05 2.511e-05 0.214

TwoPeople25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

TwoPeople5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Contrast

High25fps 8.889e-01 1.426e-16 2.188e-19 1.174e-19 0.136

High5fps 8.312e-01 3.257e-02 3.774e-05 2.682e-05 0.232

Medium25fps 9.633e-01 6.943e-03 -9.915e-06 5.717e-0 0.158

Medium5fps 8.395e-01 2.814e-02 3.524e-05 2.317e-05 0.203

Low25fps 9.105e-01 3.743e-02 2.340e-05 3.082e-05 0.490

Low5fps 8.595e-01 3.672e-02 2.363e-05 3.023e-05 0.478

Approach

Walk25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Walk5fps 9.815e-01 1.047e-02 1.213e-05 8.620e-06 0.232

Run25fps 7.759e-01 3.599e-02 4.729e-05 2.963e-05 0.186

Run5fps 5.471e-01 6.430e-02 8.308e-05 5.294e-05 0.192

CrouchRun25fps 8.690e-01 5.044e-02 -1.074e-04 4.153e-05 0.061.

CrouchRun5fps 3.480e-01 1.062e-01 1.173e-04 8.742e-05 0.251

CreepWalk25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

CreepWalk5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Crawl25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Crawl5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

CrouchWalk25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

CrouchWalk5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

BodyDrag25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

BodyDrag5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

LogRoll25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

LogRoll5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

WalkLadder25fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

WalkLadder5fps 1.000e+00 1.426e-16 2.188e-19 1.174e-19 0.136

Table C.5: Information on the fitted linear models in Figures C.8 and C.9 for de-
tailed performance of System D (values obtained as in Table C.1 for each individual
scene property).
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Abbreviations

AVC Advanced Video Coding

AI Artificial Intelligence

ANN Artificial Neural Networks

AFR Automated Face Recognition

BDRT Benton Face Recognition Test

bpp bits per pixel

B-Frame Biderectionally Predictive Frame

CRT Cathode Ray Tube

CAST Centre of Applied Science and Technology

CCD Charge Coupled Device

CIE Commission Internationale de l′Eclairage

CBR Constant Bit Rate

DNA Deoxyribonucleic Acid

DCR Digital Camcorder

DV Digital Video
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DVR Digital Video Recorder

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

ESF Edge Spread Function

FR Face Recognition

FRVT Face Recognition Vendor Test

FFmpeg Fast Forward moving picture expert group

fps frames per second

FUN Fidelity Usefulness Naturalness

FCP Final Cut Pro

GMM Gaussian Mixture Models

GDA General Discriminant Analysis

GB Gigabytes

HFR Human Face Recognition

HVS Human Visual System

ID Identity Document

iCAM Image Colour Appearance Model

iLIDS Imagery Library for Intelligent Detection Systems

IEC International Electrotechnical Commission

I-Frame Inter Frame

ISO International Organization for Standardisation

ITU International Telecommunication Union

IP Internet Protocol

JM Joint Model

JPEG Joint Photographic Experts Group

JND Just Noticeable Difference

KFA Kernel Fisher Analysis
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kbps kilobits per second

LDA Linear Discriminant Analysis

LSF Line Spread Function

LCD Liquid Crystal Display

ML Machine Learning

MSE Mean Square Error

Mbits/s Megabits per second

MPS Metropolitan Police Service

MTF Modulation Transfer Function

MC Motion Compensation

MPEG Moving Picture Experts Group

NIST National Institute of Standards and Technology

NPIA National Policing Improvement Agency

NTSC National Television System Committee

NPR Number Plate Recognition

OECF Opto-Electronic Conversion Function

PSNR Peak Signal to Noise Ratio

PAL Phase Alternating Line

PSE Point of Subjective Equality

PSF Point Spread Function

PNG Portable Network Graphics

PCA Principal Component Analysis

P-Frame Predictive Frame

QP Quantisation Parameter

ROC Receiver Operating Characteristic

RGB Red Green Blue

RMSE Root Mean Square Error
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SECAM Séquentiel Couleur Avec Mémoire

SNR Signal to Noise Ratio

SFR Spatial Frequency Response

std standard deviation

SZ Sterile Zone

TIFF Tagged Image File Format

TRV Target Recognition Video

TfL Transport for London

3D 3-Dimensional

2D 2-Dimensional

UK United Kingdom

VA Video Analytics
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[278] V. Štruc and N. Pavešić, “Gabor-based kernel partial-least-squares discrimi-

nation features for face recognition,” Informatica 20, 115 – 138 (2009).
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