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Abstract: Polyhydroxyalkanoates (PHAs) have emerged as a promising biodegradable and
biocompatible material for scaffold manufacturing in the tissue engineering field and food packaging.
Surface modification is usually required to improve cell biocompatibility and/or reduce bacteria
proliferation. Picosecond laser ablation was applied for surface micro structuring of short- and
medium-chain length-PHAs and its blend. The response of each material as a function of laser energy
and wavelength was analyzed. Picosecond pulsed laser modified the surface topography without
affecting the material properties. UV wavelength irradiation showed halved ablation thresholds
compared to visible (VIS) wavelength, revealing a greater photochemical nature of the ablation
process at ultraviolet (UV) wavelength. Nevertheless, the ablation rate and, therefore, ablation
efficiency did not show a clear dependence on beam wavelength. The different mechanical behavior
of the considered PHAs did not lead to different ablation thresholds on each polymer at a constant
wavelength, suggesting the interplay of the material mechanical parameters to equalize ablation
thresholds. Blended-PHA showed a significant reduction in the ablation threshold under VIS
irradiation respect to the neat PHAs. Picosecond ablation was proved to be a convenient technique
for micro structuring of PHAs to generate surface microfeatures appropriate to influence cell behavior
and improve the biocompatibility of scaffolds in tissue engineering.

Keywords: polyhydroxyalkanoates (PHAs); picosecond pulsed laser ablation; surface micro structuring

1. Introduction

Polyhydroxyalkanoates (PHAs) are natural polymers produced by microorganisms, which can
be easily degraded and absorbed by them in natural environments, without toxic effects in living
cells or tissues [1–6]. These highly biocompatible polymers can be synthesized with different thermal,
mechanical, and degradation properties depending on their monomer chain length, selection of
microbial production strain, substrates, and processing [7–9]. In addition, they can be commercially
produced in large amounts by fermentation processes of both gram-negative and -positive bacteria in
carbon-rich environments. More important, PHAs are thermoplastic polyesters liable to be processed
by thermoforming techniques as hot embossing or injection molding [9]. These characteristics made of
these polymers an ideal material for scaffold manufacturing in tissue engineering or for food packaging,
where new and improved biodegradable materials are needed to replace synthetic polymers obtained
from petroleum resources.
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Typically, surface modification of films or components produced as scaffolds or food packaging
materials is required to improve their surface properties in terms of avoiding bacterial proliferation [10]
and, in the case of tissue repair devices, promoting cell biocompatibility and controlling cell behavior [11].
In this regard, surface features in the µm or nm range can be applied in order to interact with cells
and influence their behavior. In many cases, this topographical modification is intended to provide an
additional surface characteristic respecting the material bulk properties and even the chemical and
microstructural surface properties [12]. Laser micro-processing offers many advantages compared
to other existing surface micro structuring technologies, such as versatility in terms of materials to
be processed (almost any material) and geometries to be generated, the fact of being a single-step
and contactless method, and the easy adaptation of the process for micropatterning of tubular or
more complex sample shapes [13]. Laser ablation by CO2 and short-pulsed (nanoseconds) lasers has
been applied before on polyhydroxy butyrate (P3HB) to cut the material or modify its surface or bulk
properties [14–18]. However, ultrashort pulsed lasers (in the picosecond and the femtosecond range)
allow to generate surface microfeatures with higher precision and minimal thermal and chemical
impact on biodegradable and biocompatible polymers [19,20]. Here, the response of novel blends
of short-chain length (scl-) and medium-chain length (mcl-) PHAs to ps pulsed laser ablation at
wavelengths of 355 and 532 nm is reported for the first time. Single and multiple pulses will be
applied on three types of PHAs with different chain length and composition (a short-chain length
PHA, a medium chain length PHA, and the blend). The effect of laser wavelength and pulse energy
in surface morphology and ablation threshold will be analyzed. This analysis will allow to study
the surface integrity achieved, and the absorption mechanisms that occurred in each of the materials
considered, as well as their correlation with the material properties. Additionally, the ablation rate for
micromachined grooves will be analyzed in terms of pulse energy.

2. Materials and Methods

2.1. Materials

PHAs were produced by the University of Westminster (London, UK). Neat PHAs with
short (C3-C5 monomer units, scl-PHA (P(3HB))) and medium (C6-C16 monomer units, mcl-PHA
(poly(3-hydroxy octanoate-co-3-hydroxy decanoate) (P(3HO-3HD)) chain lengths were produced at
large scale by means of a bioreactor with a capacity of 72 L using liquid bacterial culture. A standard
purification protocol was applied to obtain ultra-pure PHAs. These materials were used to prepare
films of neat scl-PHAs, mcl-PHAs, and the blend (P(3HB)/P(3HO-3HD)) (80scl-PHAs/20mcl-PHAs), by
casting solution in Chloroform at a concentration of 5 wt % (Figure 1). These films were chemically
characterized by gas chromatography-mass spectrometry (GC-MS) and thermally characterized by
differential scanning calorimetry (DSC). The mechanical properties of the films were characterized by
tensile tests.Polymers 2019, 11, x FOR PEER REVIEW 3 of 15 

 

 

Figure 1. PHAs films prepared by casting solvent of scl- (P3HB) and mcl-PHAs (P(3HO-3HD) and 
their blend (P(3HB)/P(3HO-3HD) 80/20). 

2.2. Laser Irradiation 
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of our group [19]. Polymer films were irradiated with short-wavelength (355 and 532 nm) pulses. 
Craters were produced on the surface of the three considered PHAs by applying single pulses at a 
frequency of 10 kHz, which allows to achieve the highest pulse energy and scanning speed of 1000 
mm/s. On the blend, pulse overlapping was also applied to generate grooves. The percentage of 
overlapping between pulses (Ud) can be calculated by Equation (1) as a function of the frequency of 
emission of the pulses (f), the speed of the scanner to move over the substrate (v) and the laser spot 
diameter (D) (Figure 2). 
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The material response to the laser pulses was assessed using scanning electron microscopy SEM 
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FT/IR 4700 LE) with an information depth of one micrometre. Crater depths and diameters were 
measured by mechanical stylus profilometry (Dektak 8, Veeco, Plainview, NY, USA) and confocal 
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3. Results 

3.1. Neat PHAs 

Single-pulse craters with different pulse energy were produced on scl- (Figure 3) and mcl-PHAs 
(Figure 4) to determine the energy ablation threshold at wavelengths of 355 (UV) and 532 nm (VIS). 
On scl-PHA (Figure 3), crater formation was observed when pulse energy was close to 22 µJ, at UV 
wavelength (Figure 3b), and 17.5 µJ at VIS wavelength (Figure 3e). Craters were approximately round 
with no signs of surface swelling prior to material ablation (no rim of recast material around the 
ablation zone). On mcl-PHA (Figure 4), UV wavelength irradiation produced small holes when low 
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2.2. Laser Irradiation

Neat and blended PHAs films were ablated by means of a picosecond pulse Nd:YVO4 laser
(RAPID: Coherent, Münster, Germany) integrated in a micromachining workstation by 3D-Micromac.
A detailed description of the experimental set-up can be found in a previous publication of our
group [19]. Polymer films were irradiated with short-wavelength (355 and 532 nm) pulses. Craters
were produced on the surface of the three considered PHAs by applying single pulses at a frequency of
10 kHz, which allows to achieve the highest pulse energy and scanning speed of 1000 mm/s. On the
blend, pulse overlapping was also applied to generate grooves. The percentage of overlapping between
pulses (Ud) can be calculated by Equation (1) as a function of the frequency of emission of the pulses
(f ), the speed of the scanner to move over the substrate (v) and the laser spot diameter (D) (Figure 2).

Ud = (1 − v/(f ·D)) × 100% (1)
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Figure 2. Drawing representing the pulse overlapping.

The material response to the laser pulses was assessed using scanning electron microscopy SEM
(Karl Zeiss XB1540, Jena, Germany) and Fourier transform infrared (FTIR) spectroscopy (JASCO FT/IR
4700 LE) with an information depth of one micrometre. Crater depths and diameters were measured
by mechanical stylus profilometry (Dektak 8, Veeco, Plainview, NY, USA) and confocal microscopy.

3. Results

3.1. Neat PHAs

Single-pulse craters with different pulse energy were produced on scl- (Figure 3) and mcl-PHAs
(Figure 4) to determine the energy ablation threshold at wavelengths of 355 (UV) and 532 nm (VIS).
On scl-PHA (Figure 3), crater formation was observed when pulse energy was close to 22 µJ, at UV
wavelength (Figure 3b), and 17.5 µJ at VIS wavelength (Figure 3e). Craters were approximately
round with no signs of surface swelling prior to material ablation (no rim of recast material around
the ablation zone). On mcl-PHA (Figure 4), UV wavelength irradiation produced small holes when
low energies were applied (Figure 4a), while round-like crater formation was observed above 60 µJ
(Figure 4c). On the contrary, laser ablation at VIS wavelength generated irregular-shaped notches with
increased size as increasing pulse energy and proper crater-like shape was not observed until pulse
energy reached a value of 32.7 µJ.
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Figure 3. SEM images corresponding to single-shot craters at wavelengths of 355 nm (a–c) and 532 nm
(d–f) on scl-PHA at different pulse energies: (a) E = 5 µJ, (b) E = 22 µJ, (c) E = 39.5 µJ, (d) E = 6.3 µJ,
(e) E = 17.5 µJ, (f) E = 83.5 µJ.
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Figure 4. SEM images corresponding to single-shot craters at wavelengths of 355 nm (a–c) and 532 nm
(d–f) on mcl-PHA at different energies: (a) E = 10 µJ, (b) E = 22 µJ, (c) E = 32.7 µJ, (d) E = 13 µJ,
(e) E = 50 µJ, (f) E = 61 µJ.

The diameter (D) and depth (d) of craters produced on scl- and mcl-PHAs at both wavelengths
were measured as a function of pulse energy (E) by SEM and profilometric evaluation. The spot size
ω0 (beam radius measured at 1/e2 or beam waist) and the threshold energy Eth for crater formation
(onset of ablation) were evaluated by fitting the crater diameter and the pulse energy to the following
well-known equation [21]:

D2
abl = 2ω2

0 ln
(

E
Eth

)
(2)
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Figure 5 shows the D2 measurements obtained by SEM on scl-PHAs as a function of the applied
pulse energy. Regarding laser ablation at UV wavelength, the values of ω0 and Eth obtained from the
fit function were (16.43 ± 0.09) µm and (4.0 ± 0.8) µJ, respectively. This energy threshold was much
lower than that required for crater formation, as observed in Figure 1 (22 µJ), but close to the minimum
energy value at which surface modification was first observed in the form of small notches (5 µJ).
The same was observed in the case of laser ablation at VIS wavelength, where Eth (6.8 ± 0.8 µJ) was also
lower than the energy at which proper crater formation was produced (17.5 µJ, Figure 4) and matched
the energy at which small holes with diameters minor than 10 micrometres were generated. Regarding
mcl-PHA (Figure 6), the calculated laser beam parameters were ω0 (22.6 ± 0.1) µm and Eth (9.4 ± 0.6) µJ
for the UV wavelength and (19.62 ± 0.09) µm and (12.6 ± 1.2) µJ for the VIS wavelength. As observed
in the scl-PHA, the energy thresholds obtained from the fit function were very similar to the minimum
energies at which first signs of surface ablation were observed on the material surface (Figure 4a,d).
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Figure 6. (a) Squared diameter of the craters (black rectangles) produced by 10 ps pulses at a
wavelength of 355 and (b) 532 nm on mcl-PHA and measured by SEM as function of the pulse energy.
Lines indicate the fitting curves to Equation (2): (a) ω0 = (22.6 ± 0.1) µm and Eth = (9.4 ± 0.6) µJ,
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Crater depth (d) was characterized for all the range of pulse energies by profilometry and confocal
microscopy. In order to study the nature of the absorption mechanisms occurred in the PHAs under
laser irradiation at considered wavelengths, an effective absorption coefficient (αeff) can be estimated
from the following logarithmic expression when single-photon absorption processes occur [22]:

d =
1
αeff

ln
(

E
Eth

)
(3)

In the case of scl-PHA, the crater depth was approximately constant at a value of 1 or 2 micrometres,
for the UV wavelength (Figure 7a), and at a value of 2–3 micrometres for the VIS wavelength (Figure 7b).
As shown in the SEM images in Figure 3, the craters produced on the material by the laser irradiation
at both wavelengths showed a very porous and irregular surface. Although this made measuring
crater depth quite challenging, no significant differences in crater depth were observed on this material,
and data cannot be fit to Equation (3) in the energy range considered. When laser ablation at UV
wavelength was applied on mcl-PHAs (Figure 8a), a slight increase of crater depth with pulse energy
was observed, and data can be successfully fitted to Equation (3). The energy threshold obtained from
this equation was 4 µJ (Eth = (4 ± 2) µJ, αeff = (0.28 ± 0.07) µm−1), slightly below the value obtained from
fitting the measured squared crater diameters to the Equation (2) (Eth = 9.4 µJ). When VIS wavelength
was applied (Figure 8b), crater depth did not show again a clear dependence on pulse energy and Eth

and αeff could not be estimated. Crater depth showed high dispersion in the energy range considered,
with values varying between 6 and 10 micrometres.Polymers 2019, 11, x FOR PEER REVIEW 7 of 15 
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Figure 7. Data analysis of single pulse craters produced by 10 ps pulses at a wavelength of 355
and 532 nm on scl-PHA. The graphs show the depth of the craters (black rectangles) measured by
profilometry and confocal microscopy (a) for wavelengths of 355 nm and (b) 532 nm as a function of
the pulse energy.
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Figure 8. Data analysis of single pulse craters produced by 10 ps pulses (a) at a wavelength of 355
and (b) 532 nm on mcl-PHA. The graphs show the depth of the craters measured by profilometry
(black circles) (a) for wavelengths of 355 nm and (b) 532 nm as a function of the pulse energy. Line
indicates the fitting curve to Equation (3).

3.2. PHA Blend

After characterizing the laser ablation parameters on the scl- and mcl-PHAs, we analyzed the laser
ablation absorption process on the blend formed by these two neat polymers (80 scl-PHA/20 mcl-PHA).
Figure 9 shows SEM images of single pulse craters produced by varying the pulse energy at UV and VIS
wavelengths. The energy ablation thresholds observed on the blend for both wavelengths (3–4 µJ) were
below the values observed on the neat polymers. At energies of 3 µJ, we did not observe any change in
surface topography on scl-PHA and mcl-PHA, while this value lead to small crater formation in the
blend material. The blend material was highly porous, and, in some cases, it was difficult to distinguish
between the pores on the material surface and the craters or holes produced by the laser irradiation
(Figure 9d). Crater diameter as a function of laser energy was fitted to Equation (2) (Figure 10) obtaining
a spot size and threshold energy of (16.58 ± 0.08) µm and (3.1 ± 0.4) µJ for the UV wavelength, and
(13.96 ± 0.09) µm and (3.7 ± 0.6) µJ for the VIS wavelength. These values were equal to the energy
values at which crater formation was first observed, as well as those provided by the Equation (3)
(Eth = (2.9 ± 0.5) µJ, αeff = (0.26 ± 0.02) µm−1 (UV), Eth = (3.3 ±1.1) µJ, αeff = (0.23 ± 0.03) µm−1 (VIS))
(Figure 11). As in the case of neat polymers, squared crater diameters showed deviations from the
fitting at high pulse energies.
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(a) 355 and (b) 532 nm on scl-/mcl-PHA 80/20 blend and measured by SEM as function of the pulse energy.
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nm on the blend. The graphs show the depth of the craters (black rectangles) measured by profilometry
for wavelengths of (a) 355 nm and (b) 532 nm as a function of the pulse energy. Lines indicate the
fitting curves to Equation (3): Eth = (2.9 ± 0.5) µJ, αeff = (0.26 ± 0.02) µm−1 (UV), Eth = (3.3 ±1.1) µJ, αeff

= (0.23 ± 0.03) µm−1 (VIS)).

3.3. Effects of Pulse Overlapping on the Blend

On the blend, the effect of pulse energy and overlapping was analysed in terms of groove
dimensions and surface integrity by SEM analysis. Figure 12 shows grooves produced on the blend by
overlapping laser pulses (90.9% overlapping) at a wavelength of 355 nm and a frequency of 100 kHz
and different pulse energy. For pulse energies below 3 µJ, no surface modification was observed.
At higher pulse energies, the depth and width of the grooves became larger, reaching a plateau of 33 µm
in width and 17 µm in depth beyond energies of 6 µJ (Figure 12c). Some pores were observed within
the laser-created channel (Figure 12a,b). The material itself was quite porous, and the laser seemed to
reduce the pore density, likely due to the formation of recast material produced as a consequence of
the high energy deposited on the material by pulse overlapping. This recast material increased from
approximately 1 µm, at energies below 5.5 µJ, to 3 µm at energies beyond this value. The effect of
laser irradiation on material surface was analysed by FTIR on 40 × 40 mm samples, considering one
pristine (no laser-ablated) sample, and a laser-ablated sample applying the highest pulse energy to
generate grooves of 33 µm in width, 17 µm in depth and 10 µm of spacing between grooves (Figure 13).
Both grooved and pristine samples showed spectra with almost the same peaks but lower signal in
the case of the laser-ablated film, likely due to the higher roughness of the grooved compared to the
pristine sample. Just a small peak at 1722 cm−1 (highlighted in the FTIR spectrum by a rectangle),
identified as the crystalline-phase band of the carbonyl group of the molecule [23], seemed to almost
disappear and slightly move to the amorphous-phase band (at 1738 cm−1) in the grooved spectrum
respect to the pristine spectrum, suggesting the occurrence of a slight amorphization of the material in
the laser-ablated area.
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Figure 13. (a) 3D topography obtained by confocal microscopy on grooved blend samples of 40 × 40 mm,
(b) infrared spectra of pristine (black line) and grooved (grey line) blend samples.

4. Discussion

Picosecond-pulsed laser irradiation at UV and VIS wavelengths was successfully applied to
ablate three different types of PHAs, proving the capability of ultra-short pulsed lasers to process
these polymers at longer wavelengths than those required by short-pulsed lasers, which are in the
middle- and far-UV regions [15,16,18]. The fluence applied here (Table 1) was much higher than that
applied by Michaljanicova et al. [18] on P3HB to increase surface roughness and cause chemical and
phase bulk changes via nanosecond excimer lasers at middle- and far-UV regions (F > 15 mJcm−2).
However, no significant structural changes nor surface affectation was observed here when applying
picosecond lasers at high laser fluencies (F > 1 Jcm−2). For shorter pulse length, the applied energy is
limited in a smaller material volume, increasing the absorbed energy, and ablation can occur by direct
vaporization without significant heating effects (photochemical ablation). This allowed to ablate PHAs
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at higher wavelengths and fluencies causing mainly surface topographical changes without affecting
the bulk properties.

Table 1. Ablation thresholds (J/cm2) calculated from the threshold energies and beam waists obtained
from fitting the crater diameters as a function of laser energy to the Equation (2). Ablation threshold in

terms of laser fluency was calculated from the following well-known equation: Fpeak =
2Ep

πω2
0
.

Materials Wavelength
(nm)

Beam Waist
(µm)

Threshold Energy
(µJ)

Ablation
Threshold (Jcm−2)

scl-PHA 355 16.43 4.00 0.9 ± 0.2
532 13.60 6.80 2.3 ± 0.3

mcl-PHA 355 22.6 9.40 1.17 ± 0.08
532 19.62 12.60 2.1 ± 0.2

Blend 355 16.58 3.10 0.72 ± 0.09
532 13.96 3.70 1.2 ± 0.2

Ablation of polymers by ultra-short pulsed laser involves the interplay of several mechanisms of
different nature, such as photochemical (bond breaking by laser photons), photothermal (polymer bond
breaking by electronic excitation and thermalization) and photomechanical processes (mechanical
fractures caused by the high thermoelastic pressure wave induced by laser irradiation) [24]. The extent
of each type of mechanism depends on the laser and material properties. On both neat and
blended-PHAs, the ablation threshold for the UV wavelength was about half of the calculated
for the VIS wavelength (Table 1). Since, according to molecular simulation (MDS) studies, lower
ablation thresholds are characteristic of photochemical ablation [25], ablation by UV wavelength could
involve more photochemical mechanisms than ablation by VIS wavelength. This could be caused likely
by the higher energy of UV photons compared to VIS photons. The effective absorption coefficient
obtained by fitting the measured depth of the craters obtained on mcl-PHA (at UV wavelength) and
the blend (at both VIS and UV wavelengths) to Equation (3) is about (0.26 ± 0.08) µm−1. This value is
lower than 1 µm−1, indicating no significant occurrence of single-photon absorption processes [22] and,
therefore, the involvement of multiphoton effects in laser ablation of these PHAs at both wavelengths.
Typically, on polyesters, photon absorption leads to electronic excitation of the C=O band in the
ester functional group of the polymer, which is followed by intra- and intermolecular conversion
to heat or bond scission. The occurrence of multiphoton absorption is also supported by the fact
that single-photon energy is insufficient for bond breaking of the chromophore in the ester group
(C=O, E = 8 eV), both in the case of UV and VIS laser irradiation. The etched depth on mcl- and
blended-PHAs at both UV and VIS wavelengths were similar and around 8–10 micrometers for the
same range of pulse energies, in agreement with the obtained similar efficient absorption coefficients,
and showing no wavelength dependence. The etched depth on scl-PHA was significantly lower
(2–3 micrometers) than on the mcl- and blended-PHAs, unfortunately, since the efficient absorption
coefficients on this material could not be calculated, no relationship can be established between this
parameter and the etch rate. Our findings regarding the wavelength dependence of ablation threshold
and rate contradict those reported in previous studies of picosecond pulse laser ablation on other
polymers [25–28], where ablation rate increased for shorter wavelengths while ablation threshold did
not show any clear dependence. Here, the ablation rate did not show a clear dependence on beam
wavelength, and the ablation threshold was found to be lower for the shortest wavelength irradiation.

The role that photomechanical mechanisms play in ultrashort pulsed laser ablation of polymers,
gives to the material mechanical properties a significant influence on the ablation parameters. In the
stress confinement irradiation regime, the ablation threshold occurs when the stress exceeds the
dynamic tensile strength of the material [29]. Scl- and mcl-PHAs, despite the fact of showing quite
different crystallinity, ultimate tensile strength, and elongation at break (Tables 2 and 3), showed
similar ablation thresholds at the same wavelength (Table 1). While the higher crystallinity and low
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elongation at break of the scl-PHA (εb = 7%) should lead to a reduction of the polymer resistance under
mechanical stress and, therefore, a lower ablation threshold compared to the mcl-PHA (εb = 920%),
its higher ultimate tensile strength (σU = 36 MPa) acts in opposition. Thus, although more amorphous
polymers, such as the mcl-PHA, should better dissipate the absorbed energy and accommodate the
stress because of their heterogeneous microstructure and viscous flow behavior, here, the interplay of
all the mentioned mechanical parameters seems to lead to the equalization of the ablation thresholds
on both polymers.

Table 2. Thermal properties of PHAs obtained by differential scanning calorimetry (DSC) (Figure 14):
glass transition temperature (Tg), crystallization temperature (TC), melting temperature (Tm), enthalpy
of fusion (∆Hm) and crystallization (∆HC) and crystallinity degree (XC), which was calculated for
P(3HB) using the formula Xc = ∆Hm

∆H0
× 100 and ∆H0 = 146 J/g [30].

Tg (◦C) TC (◦C) Tm (◦C) ∆Hm (Jg−1) XC (%)

P(3HB) 2.0 ± 0.1 60 ± 2 175 77 ± 8 ≈ 52
P(3HO-3HD) −43 ± 2 - 57 27 ± 2 -

P(3HB)/P(3HO-3HD) −0.2 ± 2 59 170 63 -
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Table 3. Material mechanical properties: molecular weights (Mn and Mw), ultimate tensile strength
(σU), Young’s modulus (E), and elongation at break (εb).

Mn, kDa Mw, kDa σU, MPa E, GPa εb, %

P(3HB) 110 ± 5 800 ± 40 36 ± 4 1.4 ± 0.3 7 ± 2
P(3HO-3HD) 92 ± 5 380 ± 20 3.9 ± 0.7 1.1 ± 0.1 920 ± 100

P(3HB)/P(3HO-3HD) 22 ± 1 1.4 ± 0.2 27 ± 2

Regarding the blended-PHA, it was observed that, while the ablation threshold under UV
irradiation was similar for the three polymers, the one obtained under VIS irradiation was almost
halved respect to both scl- and mcl-PHAs. The heterogenous structure of the blend compared to the
homogeneous neat PHAs could lead to lower mechanical resistance of the blend under laser irradiation.
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This structural difference could be significant only for the VIS wavelength irradiation due to the more
photothermal and photomechanical nature of the VIS compared to UV laser ablation.

Picosecond laser ablation allows to directly and precisely generate craters (with no signs of
swelling prior to ablation) and grooves (with minimal redeposition of ablated material) on the three
different types of natural polymers considered in this study. In addition, these topographical features
showed variable dimensions in the range of typical cell size (1–100µm), appropriate for their application
in surface micro structuring of biocompatible and biodegradable scaffolds made of PHAs for tissue
engineering applications. Furthermore, according to Ellis et al. [15], the slight polymer amorphization
observed in the FTIR spectra of the grooved blended-PHA sample could even promote cell adhesion
and proliferation, improving the material biocompatibility, although further experiments must be
performed to obtain conclusive results at this respect.

5. Conclusions

The growing need of advanced biomaterials for scaffold manufacturing in the tissue engineering
field or for food packaging makes necessary the development of new biomaterials and surface nano- and
micro-technologies able to process those. Picosecond pulsed laser ablation has been applied here for the
first time for surface micro structuring of PHAs. Picosecond pulses ablate and modify the topography
of three types of PHAs with different thermal and mechanical properties with non-significant effects on
the chemical and microstructural properties of these materials. These findings suggest photochemical
ablation as the dominant mechanism during picosecond laser ablation of PHAs, especially when
applying irradiation at 355 nm wavelength. In addition, picosecond pulsed laser demonstrated a wide
PHA processing window than short pulse lasers. Microfeatures in the form of craters and grooves with
tunable dimensions within the range of typical cell sizes have been directly and precisely generated on
PHAs in one-step process with minimal thermal impact on the material surface.
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