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Abstract 25 
The horseshoe crab is a living fossil and a species of marine arthropod with unusual immune system 26 

properties which are also exploited commercially.  Given its ancient status dating to the Ordovician 27 

period (450 million years ago), its standing in phylogeny and unusual immunological characteristics, 28 

the horseshoe crab may hold valuable information for comparative immunology studies. 29 

Peptidylarginine deiminases (PADs) are calcium dependent enzymes that are phylogenetically 30 

conserved and cause protein deimination via conversion of arginine to citrulline. This post-31 

translational modification can lead to structural and functional protein changes contributing to 32 

protein moonlighting in health and disease. PAD-mediated regulation of extracellular vesicle (EV) 33 

release, a critical component of cellular communication, has furthermore been identified to be a 34 

phylogenetically conserved mechanism. PADs, protein deimination and EVs have hitherto not been 35 

studied in the horseshoe crab and were assessed in the current study.  Horseshoe crab haemolymph 36 

serum-EVs were found to be a poly-dispersed population in the 20-400 nm size range, with the 37 

majority of EVs falling within 40-123 nm. Key immune proteins were identified to be post-38 

translationally deiminated in horseshoe crab haemolymph serum, providing insights into protein 39 

moonlighting function of Limulus and phylogenetically conserved immune proteins. KEGG (Kyoto 40 

encyclopaedia of genes and genomes) and GO (gene ontology) enrichment analysis of deiminated 41 

proteins identified in Limulus revealed KEGG pathways relating to complement and coagulation 42 

pathways, Staphylococcus aureus infection, glycolysis/gluconeogenesis and carbon metabolism, 43 

while GO pathways of biological and molecular pathways related to a range of immune and 44 

metabolic functions, as well as developmental processes. The characterisation of EVs, and post-45 

translational deimination signatures, revealed here in horseshoe crab, contributes to current 46 

understanding of protein moonlighting functions and EV-mediated communication in this ancient 47 

arthropod and throughout phylogeny.  48 

 49 

Key words: Peptidylarginine deiminases (PADs); protein deimination; Horseshoe crab (Limulus 50 

polyphemus); extracellular vesicles (EVs); innate immunity; CRP; complement. 51 

 52 
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1. Introduction 54 

The Atlantic horseshoe crab (Limulus polyphemus) belongs to the group Merostomata under the 55 

phylum Arthropoda. Merostomata consist of the now extinct sea scorpions (Eurypterida) and the 56 

horseshoe crabs (Xiphosura). Horseshoe crabs are considered living fossils and have four extant 57 

(living) species: Limulus polyphemus, the Atlantic horseshoe crab, which resides along the eastern 58 

coast of North America and the Gulf of Mexico, and three species in the Indo-Pacific region: 59 

Tachypleus gigas (southern horseshoe crab), Tachypleus tridentatus (tri-spine horseshoe crab), and 60 

Carcinoscorpius rotundicauda (mangrove horseshoe crab). These all display similar morphology, also 61 

with relation to a Jurassic fossil specimen (Xia, 2000).  62 

Along the US Atlantic coast, the Atlantic horseshoe crab is of importance for the ecosystem due to 63 

its foraging habits and its eggs provide amongst other valuable nutrition for migrating birds (Berkson 64 

and Shuster, 1999). Horseshoe crab blood is highly valuable for its specific ability to identify Gram-65 

negative bacteria via their endotoxin, a process which rapidly induces coagulation of Limulus 66 

amebocyte lysate (Levin and Bang 1964 and 1968; Kawabata, 2010). This ability has been utilised 67 

widely in the medical field (Pierrakakis et al., 1990; Novitsky, 1994) for the detection of bacterial 68 

endotoxin in quality control of pharmaceuticals and drugs (Liu et al., 1994). Limulus is also a valuable 69 

model for research in neurobiology, including visual physiology (Hartline et al., 1956; Barlow, 1983; 70 

Watson et al., 2008; Battelle, 2016; Battelle et al., 2016) and circadian rhythm (Chabot et al., 2004; 71 

Chabot and Watson, 2010; Chabot et al., 2016; Chesmore et al., 2016). The genome and 72 

transcriptome of the Atlantic horseshoe crab has recently been drafted with particular relation to 73 

the circadian clock (Simpson et al., 2017). Due to the unique position of the horseshoe crab in 74 

phylogeny, and its unusual immunological and physiological characteristics, it is considered a 75 

valuable model organism holding information for molecular pathways underlying such traits. 76 

Peptidylarginine deiminases (PADs) are a group of calcium-dependent enzymes, which are 77 

phylogenetically conserved and have been described in a range of taxa. While a group of 5 isozymes 78 

are described in mammals, 3 are known in chicken and alligator, one in fish (bony and cartilaginous 79 

fish) (Vossenaar et al., 2003; Rebl et al., 2010; Magnadottir 2018a, Magnadottir et al., 2019a; 80 

Criscitiello et al., 2019; Criscitiello et al., 2020a,b), and PAD homologues (arginine deiminases, ADI; 81 

Novák et al., 2016) have been identified in parasites (Gavinho et al., 2019), fungi (El-Sayed et al., 82 

2019) and bacteria (Bielecka et al., 2014; Kosgodage et al., 2019). PADs or PAD homologues arginine 83 

deiminases have hitherto not been studied in Merostomata. 84 

As PADs post-translationally and irreversibly convert arginine into citrulline in a number of 85 

cytoplasmic, mitochondrial and nuclear target proteins, this can cause structural changes in these 86 
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proteins and affect their function (Vossenaar, 2003; György et al., 2006; Alghamdi et al., 2019). This 87 

leads to changes in protein function, downstream protein-protein interactions as well as effects on 88 

gene regulation and contribution to neo-epitope generation, resulting inflammatory responses 89 

(Bicker and Thompson, 2013; Wang and Wang, 2013; Witalison et al., 2015; Yang et al., 2016; Lange 90 

et al., 2017; Mondal and Thompson, 2019). Such post-translational changes in proteins may 91 

furthermore facilitate moonlighting abilities of proteins, an evolutionary acquired phenomenon 92 

where one protein can display several physiologically relevant functions within one polypeptide 93 

chain (Henderson and Martin, 2014; Jeffrey, 2018). Interestingly, proteins of higher disorder have 94 

been found to be more prone to deimination and the position of the arginine has also been found to 95 

be of importance (György et al., 2006; Tarsca et al., 1996). While the bulk of research on PADs and 96 

associated post-translational deimination and downstream effects has hitherto focussed on human 97 

pathologies, roles in normal physiology are receiving increasing attention – including in a range of 98 

taxa throughout the phylogenetic tree (Magnadottir et al., 2018a, 2019a,b, 2020a,b,c; Phillips et al., 99 

2020; Pamenter et al., 2019; Criscitiello et al., 2019,2020a,b). Hitherto, no studies have been carried 100 

out on PAD/ADI protein function or physiological relevance for PAD/ADI-mediated post-translational 101 

deimination in Merostomata.  102 

In relation to pathological responses, PADs and associated protein deimination are recognized as 103 

crucial players in cancer, inflammatory, autoimmune, and neurodegenerative diseases (Mohanan et 104 

al., 2012; Wang and Wang, 2013; Witalison et al., 2015; Lange et al., 2017; Uysal-Onganer et al, 105 

2020; Darrah and Andrade, 2018; Tilvawala et al., 2018; Ruiz-Romero et al., 2019; Fert-Bober et al., 106 

2020; Martinez-Prat et al., 2019; Svärd et al., 2019; Mastronardi et al., 2006; Moscarello et al., 2013; 107 

Wei et al., 2013; Yang et al., 2016; Faigle et al., 2019; Méchin et al., 2020;) as well as in relation to 108 

ageing (Ding et al., 2017; Wong and Wagner, 2018). There is also a considerable interest in roles for 109 

PADs in tissue regeneration, including in the CNS and in response to hypoxia (Lange et al., 2011; 110 

Lange et al., 2014; Lange, 2016; Sase et al., 2017; Yu et al., 2018), as well as in wound healing (Wong 111 

et al., 2015; Fadini et al., 2016). In addition, PADs play important roles in infection, including sepsis 112 

and endotoxemia (Pan et al., 2017; Biron et al., 2018; Claushuis et al., 2018; Costa et al., 2018; Liang 113 

et al., 2018; Muraro et al., 2018; Stobernack et al., 2018; Saha et al., 2019), as well as in other anti-114 

pathogenic, including anti-viral, responses (Muraro et al., 2018; Casanova et al., 2020). Roles for 115 

PADs in mucosal, innate and adaptive immunity have also recently been studied in a range of taxa 116 

from bacteria to mammals (Kosgodage et al., 2019; Lange et al., 2019; Magnadottir et al., 2018a and 117 

2018b, 2019a; 2020a,b,c; Criscitiello et al., 2019, 2020a,b,c; Pamenter et al., 2019; Phillips et al., 118 

2020).  119 
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One phylogenetically conserved function identified for PADs is the regulation of extracellular vesicle 120 

(EV) release (Kholia et al., 2015; Kosgodage et al., 2017, 2018, 2019). EVs are present in, and can be 121 

isolated from, most body fluids where they participate in cellular communication in health and 122 

disease via transfer of cargo proteins and genetic material (Inal et al., 2013; Colombo et al., 2014; 123 

Lange et al., 2017; Turchinovich et al., 2019; Vagner et al., 2019). EV cargo signatures, holding 124 

information from their cells of origin, can be utilised as biomarkers and are readily isolated from 125 

both serum and plasma (Hessvik and Llorente, 2018; Ramirez et al., 2018). Little is known about EVs 126 

in Merostomata and EVs have not been characterised in horseshoe crab before. Overall, work on EVs 127 

has largely focussed on human pathologies, while recently an increasing body of comparative studies 128 

in a range of taxa has emerged with respect to EVs and EV cargo, including from our group (Iliev et 129 

al., 2018; Gatien et al., 2019; Montaner-Tarbeset al., 2019; Šimundić et al., 2019; Magnadottir et al., 130 

2019b, 2020a, 2020b,c; Criscitello et al., 2019 and 2020a and 2020b; Lange et al., 2019; Pamenter et 131 

al., 2019).  132 

Horseshoe crab haemolymph is well known for its exceptional anti-microbial activity, while roles for 133 

post-translational modifications in relation to their immunity and physiology have received less 134 

attention. In the light of our ongoing studies on deimination signatures and EV characterisation 135 

throughout phylogeny, including in animals with unusual immune and metabolic functions, and due 136 

to the horseshoe crab’s unusual position in the phylogenetic tree, a study on these parameters in 137 

Limulus was warranted.  138 

In the current study post-translational deiminated protein signatures were assessed in haemolymph 139 

serum of the Atlantic horseshoe crab (L. polyphemus), and furthermore, EVs were isolated and 140 

characterised by nanoparticle tracking analysis, western blotting and transmission electron 141 

microscopy.  This is the first report of post-translational deimination in Limulus, indicating some key 142 

immune proteins and reporting haemolymph serum EV signatures.  Our findings provide novel 143 

insights into the unusual immunological traits of the horseshoe crab and the adaption of immune 144 

functions throughout phylogeny, through post-translational modifications of phylogenetically 145 

conserved proteins and of pathways underlying anti-pathogenic responses. 146 

  147 
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2. Materials and Methods 148 

 149 

2.1 Serum Sampling from Horseshoe crab 150 

The horseshoe crabs were housed in a 4x15’ tank in ~2ft of water with sand bottom, with flow 151 

through seawater. Limulus were held on temperature treated loops at 10 °C, blood (haemolymph) 152 

was collected from three healthy horseshoe crabs (L. polyphemus), ~20cm carapace width and 153 

~35cm length (generously donated by Marine Biological Laboratory, Woods Hole, MA, USA). 154 

Procedures for blood-collection and processing were according to previously described protocols 155 

(Armstrong and Conrad, 2008). Following collection, the haemolymph was kept on ice for 24 h and 156 

then frozen at -80 °C until used for further individual experiments.  157 

 158 

2.2 Isolation of Extracellular Vesicles and Nanoparticle Tracking Analysis (NTA) 159 

Limulus haemolymph serum-EVs were prepared from haemolymph serum of individual horseshoe 160 

crabs (n=3), using sequential centrifugation and ultracentrifugation according to previously 161 

described protocols (Kosgodage et al., 2018; Criscitiello et al., 2019; Pamenter et al., 2019; Phillips et 162 

al., 2020; Criscitiello et al., 2020b) and according to the recommendations of MISEV2018 (the 163 

minimal information for studies of extracellular vesicles 2018; Théry et al., 2018). For each individual 164 

serum-EV preparation, 100 μl of horseshoe crab serum were diluted 1:5 in Dulbecco’s PBS (DPBS, 165 

ultrafiltered using a 0.22 μm filter, before use) before centrifugation at 4,000 g for 30 min at 4 °C, for 166 

removal of aggregates and apoptotic bodies. Thereafter the supernatants were collected and 167 

centrifuged again using ultracentrifugation at 100,000 g for 1 h at 4 °C. The resulting EV-enriched 168 

pellets were resuspended in 500 µl DPBS and ultracentrifuged again at 100,000 g for 1 h at 4 °C. The 169 

final washed EV pellets were then resuspended in 100 µl DPBS and frozen at -80 °C until further use. 170 

For the generation of serum-EV size distribution profiles and for quantification of serum-EVs, NTA 171 

analysis based on particle size assessment by Brownian motion was carried out using the NanoSight 172 

NS300 system (Malvern, U.K.). The EV samples were diluted 1/100 in DPBS (10 μl of EV preparation 173 

diluted in 990 μl of DPBS) and applied to the NanoSight NS300 using a syringe pump to ensure 174 

continuous flow of the sample. Five repetitive reads, each lasting 60 sec, were recorded for each 175 

sample. The number of particles per frame was kept in-between 40 to 60, samples were recorded at 176 

camera level 12 and post-analysis was carried out at threshold 3. Replicate histograms were 177 

generated from these videos using the NanoSight software 3.0 (Malvern), representing mean and 178 

confidence intervals of the 5 recordings for each sample. 179 

 180 

2.3 Transmission Electron Microscopy (TEM) 181 
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A pool of EVs, isolated from serum of the three individual animals as described above, was used for 182 

morphological analysis using TEM according to previously described protocols (Criscitiello et al., 183 

2020b; Phillips et al., 2020). Following isolation, the EVs were resuspended in 100 mM sodium 184 

cacodylate buffer (pH 7.4) and a drop (~3-5 μl) of the suspension was placed onto a grid with 185 

previously glow discharged carbon support film. After the suspension had partly dried, the EVs were 186 

fixed by placing the grid onto a drop of a fixative solution (2.5 % glutaraldehyde in 100 mM sodium 187 

cacodylate buffer (pH 7.0)) for 1 min at room temperature and washed afterwards by touching the 188 

grid to the surface of three drops of distilled water. Excess water was removed by touching the grid 189 

to a filter paper. Next, the EVs were stained with 2 % aqueous Uranyl Acetate (Sigma-Aldrich) for 1 190 

min, the excess stain was removed by touching the grid edge to a filter paper and the grid was 191 

allowed to air dry. Imaging of EVs was performed using a JEOL JEM 1400 transmission electron 192 

microscope (JEOL, Tokyo, Japan) operated at 80 kV at a magnification of 30,000x to 60,000x. Digital 193 

images were recorded using an AMT XR60 CCD camera (Deben, UK). 194 

 195 

2.4 Isolation of Deiminated Proteins using F95-enrichment  196 

Immunoprecipitation and isolation of deiminated proteins in serum was carried out using the Catch 197 

and Release®v2.0 immunoprecipitation kit (Merck, U.K.) in conjunction with the F95 pan-198 

deimination antibody (MABN328, Merck), which has been developed against a deca-citrullinated 199 

peptide and specifically detects proteins modified by citrullination (Nicholas and Whitaker, 2002). 200 

Horseshoe crab serum pools of three individual animals (3 x 50 μl) were used for F95-enrichment. 201 

Immunoprecipitation (F95-enrichment) was carried out overnight at 4 °C on a rotating platform. The 202 

F95 bound proteins were thereafter eluted using denaturing elution buffer (Merck), according to the 203 

manufacturer’s instructions (Merck), diluted 1:1 in 2xLaemmli sample buffer (BioRad, UK) and kept 204 

frozen at -20 °C until further analysis by SDS-PAGE, followed by silver staining or western blotting, or 205 

by in-gel digestion followed by LC-MS/MS analysis.  206 

 207 

2.5 Silver Staining 208 

F95-enriched protein eluates from horseshoe crab serum were silver stained following SDS-PAGE 209 

(using 4–20 % gradient TGX gels, BioRad, U.K.) under reducing conditions, using the BioRad Silver 210 

Stain Plus Kit (1610449, BioRad, U.K.), according to the manufacturer's instructions (BioRad). 211 

 212 

2.6 Western Blotting Analysis 213 

Horseshoe crab sera and serum-EVs were diluted 1:1 in denaturing 2x Laemmli sample buffer 214 

(containing 5 % beta-mercaptoethanol, BioRad, U.K.) and heated for 5 min at 100 °C. The proteins 215 
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were separated by SDS-PAGE using 4-20 % gradient TGX gels (BioRad U.K.). Western blotting was 216 

carried out using the Trans-Blot® SD semi-dry transfer cell (BioRad, U.K.); even transfer was assessed 217 

by staining the membranes with PonceauS (Sigma, U.K.). Blocking was performed for 1 h at room 218 

temperature using 5 % bovine serum albumin (BSA, Sigma, U.K.), in Tris buffered saline (TBS) 219 

containing 0.1 % Tween20 (BioRad, U.K.; TBS-T). Following blocking, the membranes were incubated 220 

overnight at 4 °C on a shaking platform with the primary antibodies, which were diluted in TBS-T. For 221 

detection of deiminated/citrullinated proteins, the F95 pan-deimination antibody was used 222 

(MABN328, Merck; diluted 1/1000). For detection of Limulus PAD protein homologue, the anti-223 

human PAD2 antibody was used (anti-PAD2, ab50257, Abcam; diluted 1/1000); as this is the 224 

phylogenetically most conserved PAD isozyme and has previously been shown to cross-react with 225 

PAD homologues in a range of taxa (Lange et al., 2011; Lange et al., 2014; Magnadottir et al., 2018a 226 

and 2019a; Criscitiello et al., 2019 and 2020a,b; Pameneter et al., 2019; Phillips et al., 2020; 227 

Magnadottir et al., 2020). Limulus serum-EV isolates were blotted against two phylogenetically 228 

conserved EV-specific markers: CD63 (ab216130, Abcam, U.K.; diluted 1/1000) and Flotillin-1 (Flot-1, 229 

ab41927; diluted 1/2000), for further characterisation of EVs. After primary antibody incubation the 230 

membranes were washed for 3 x 10 min in TBS-T at RT and incubated for 1 h, at RT with HRP-231 

conjugated secondary antibodies (anti-rabbit IgG (BioRad) or anti-mouse IgM (BioRad) respectively, 232 

diluted 1/3000 in TBS-T). The membranes were then washed in TBS-T for five times 10 min and 233 

positive proteins bands were visualised digitally, using enhanced chemiluminescence (ECL, 234 

Amersham, U.K.) and the UVP BioDoc-ITTM System  (Thermo Fisher Scientific, U.K.).  235 

 236 

2.7 Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Analysis of Deiminated 237 

Protein Candidates  238 

The F95-enriched eluate from a pool (n=3) of Limulus sera was analysed by liquid chromatography 239 

with tandem mass spectrometry (LC-MS/MS) according to previously described methods (Phillips et 240 

al., 2020; Criscitiello et al., 2020b). In preparation for LC-MS/MS analysis, the F95-enriched eluates 241 

were first run 0.5 cm into a 12 % TGX gel (BioRad, U.K.), the band cut out, and then trypsin digested 242 

and subjected to proteomic analysis using a Dionex Ultimate 3000 RSLC nanoUPLC (Thermo Fisher 243 

Scientific Inc, Waltham, MA, U.S.A.) system and a QExactive Orbitrap mass spectrometer (Thermo 244 

Fisher Scientific Inc, Waltham, MA, U.S.A.). Separation of peptides was performed by reverse-phase 245 

chromatography at a flow rate of 300 nL/min and a Thermo Scientific reverse-phase nano Easy-spray 246 

column (Thermo Scientific PepMap C18, 2 µm particle size, 100A pore size, 75 µm i.d. x 50 cm 247 

length). Peptides were loaded onto a pre-column (Thermo Scientific PepMap 100 C18, 5 µm particle 248 

size, 100A pore size, 300 µm i.d. x 5 mm length) from the Ultimate 3000 autosampler with 0.1 % 249 
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formic acid for 3 minutes at a flow rate of 10 µL/min. After this period, the column valve was 250 

switched to allow elution of peptides from the pre-column onto the analytical column. Solvent A was 251 

water + 0.1 % formic acid and solvent B was 80 % acetonitrile, 20 % water + 0.1 % formic acid. The 252 

linear gradient employed was 2-40 % B in 30 minutes. The LC eluant was sprayed into the mass 253 

spectrometer by means of an Easy-Spray source (Thermo Fisher Scientific Inc.). All m/z values of 254 

eluting ions were measured in an Orbitrap mass analyzer, set at a resolution of 70000 and was 255 

scanned between m/z 380-1500. Data dependent scans (Top 20) were employed to automatically 256 

isolate and generate fragment ions by higher energy collisional dissociation (HCD, NCE:25 %) in the 257 

HCD collision cell and measurement of the resulting fragment ions was performed in the Orbitrap 258 

analyser, set at a resolution of 17500.  Singly charged ions and ions with unassigned charge states 259 

were excluded from being selected for MS/MS and a dynamic exclusion window of 20 seconds was 260 

employed. Post-run, the data was processed using Protein Discoverer (version 2.1., Thermo 261 

Scientific) and all MS/MS data were converted to mgf files. For identification of deiminated protein 262 

hits, the files were then submitted to the Mascot search algorithm (Matrix Science, London, U.K.) 263 

and searched against the UniProt database common for Merostomata (Merostomata_ 20170607 264 

database; 24148 sequences; 40594 residues), identifying hits with Atlantic horseshoe crab (L. 265 

polyphemus), Mangrove horseshoe crab (Carcinoscorpius rotundicauda) and tri-spine horseshoe crab 266 

(Tachypleus tridentatus). A search was also conducted against a common contaminant database, 267 

containing sequences 123 sequences and 40594 residues (cRAP 20190401).  The peptide and 268 

fragment mass tolerances were set to 20 ppm and 0.1 Da, respectively. A significance threshold 269 

value of p < 0.05 and a peptide cut-off score of 16 were also applied (carried out by Cambridge 270 

Proteomics, Cambridge, U.K.).  271 

 272 

2.8 FoldIndex© Analysis of Deiminated Proteins in Horseshoe crab serum 273 

Deiminated protein hits were assessed for disordered regions (as disordered proteins are more 274 

susceptible to deimination) using FoldIndex© analysis (Uversky et al., 2000; Prilusky et al., 2005; 275 

https://fold.weizmann.ac.il/fldbin/findex). This was used to identify numbers and lengths of 276 

disordered regions in the deimination protein hits, as well as the number of arginines present in the 277 

uniprot sequences identified in Limulus and with other Merostomata.   278 

 279 

2.9 Protein-protein interaction Network Analysis 280 

For the identification and prediction of putative protein-protein interaction networks for deiminated 281 

proteins identified in Limulus serum, STRING analysis (Search Tool for the Retrieval of Interacting 282 

Genes/Proteins; https://string-db.org/) was carried out. The protein networks were built based on 283 
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the protein IDs and using the function of “search multiple proteins” in STRING (https://string-284 

db.org/), choosing “Mus musculus” as the species database, as no protein database is available for 285 

Limulus or other Merostomata in STRING. For protein interactions, “basic settings” and “medium 286 

confidence” were applied in STRING, with colour lines between nodes indicating evidence-based 287 

interactions for network edges as follows: “known interactions” (based on curated databases, 288 

experimentally determined), “predicted interactions” (based on gene neighbourhood, gene fusion, 289 

gene co-occurrence or via text mining, co-expression or protein homology). Identified KEGG (Kyoto 290 

Encyclopaedia of Genes and Genomes) and gene ontology (GO) pathways were highlighted in the 291 

identified protein networks for deiminated proteins (see colour code for nodes and connective lines 292 

included in the figures). 293 

 294 

2.10 Statistical Analysis 295 

NTA curves were generated using the Nanosight 3.0 software (Malvern, U.K.) NTA curves represent 296 

mean and standard error of mean (SEM), indicated by confidence intervals. Histograms were 297 

generated using GraphPad Prism version 7, error bars show standard deviation (SD). STRING analysis 298 

(https://string-db.org/) was used for prediction of protein-protein interaction networks using basic 299 

settings and medium confidence. Significance was considered as p ≤ 0.05.  300 

 301 

3. Results 302 

3.1 Characterisation of Horseshoe Crab Serum-EVs 303 

Haemolymph serum-EVs were assessed by NTA for particle numbers and size distribution using the 304 

NanoSight NS300, revealing a poly-dispersed population of EVs in the size range of 20-400 nm, with 305 

main peaks at approximately 40, 70, 110, 160 and 220 nm and the majority of EVs in the range of 40-306 

123 nm (Figure 1A). EVs were also assessed for two phylogenetically conserved EV-specific markers 307 

by western blotting using anti-CD63 and anti-Flot-1 antibodies, with CD63 showing a strong positive 308 

reaction, while Flot-1 showed very low positive detectable response (Figure 1B). Morphological 309 

characterisation was carried out by transmission electron microscopy (TEM), confirming typical EV 310 

morphology, including “cup-shaped” EVs (see composite EV figures in Figure 1C). Some variation was 311 

observed between the three individuals with respect to EV yield from haemolymph serum (6.34 x 312 

109, 6.75 x 109 and 9.21 x 109, respectively) and modal EV size, which fell in the range of 110.4-122.6 313 

nm.  314 

 315 

3.2 PAD Protein Homologue and Deiminated Proteins in Horseshoe Crab Serum  316 

https://string-db.org/
https://string-db.org/
https://string-db.org/
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For assessment of a horseshoe crab PAD protein homologue, anti-human PAD2 specific antibodies 317 

were used in western blotting, identifying a positive protein band at the expected approximate 70 318 

kDa size, similar to mammalian PAD, in horseshoe crab haemolymph serum (Figure 2A). For 319 

assessment of total deiminated proteins present in haemolymph serum, SDS-PAGE followed by 320 

western blotting showed a prominent band between 50-75 kDa (Figure 2B), while silverstaining of 321 

fractions following immunoprecipitation with the F95 antibody revealed F95-enriched protein bands 322 

between 15-150 kDa also with the most prominent band at a similar size as seen in western blotting 323 

(Figure 2C).  324 

 325 

3.3 LC-MS/MS Analysis of Deiminated Proteins in Horseshoe crab Serum  326 

Protein identification of deiminated proteins in horseshoe crab serum was carried out following F95-327 

enrichment using LC-MS/MS analysis. Species-specific protein hits with L. polyphemus, as well as hits 328 

with other Merostomata were identified using the UniProt Merostomata database (Table 1; see 329 

Supplementary Table S1 for full details on all peptide hits). Overall, 17 species-specific L. polyphemus 330 

deiminated protein hits were identified. Further 7 hits were identified for C. rotundicauda, whereof 331 

6 were in common with L.  polyphemus, but one specific to C. rotundicauda (galactose-binding 332 

protein). Hits identified for T. tridentatus indicated pentaxin in common with L. polyphemus, while 3 333 

were specific to T. tridentatus (complement component 3, plasma carcinolectin CL5B1 and 334 

tachylectin-P) (Figure 3 and Table 1; see Supplementary Table S1 for full details on peptide hits).  335 

 336 

Table 1. Deiminated proteins in serum of horseshoe crab (Limulus polyphemus), as identified by F95-337 
enrichment and LC-MS/MS analysis.  Deiminated proteins were isolated from horseshoe crab sera (n=3) by 338 
immunoprecipitation using the pan-deimination F95 antibody. The resulting F95-enriched eluate was then 339 
analysed by LC-MS/MS and peak list files submitted to mascot, using a common Merostomata database. Both 340 
Limulus polyphemus species-specific peptide sequence hits, as well as hits with other Merostomata are listed, 341 
showing number of sequences for protein hits and total score. A full list of protein sequence hits and peptides 342 
is further provided in Supplementary Table S1. 343 
 344 
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ⱡ
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions 345 

scores > 16 indicated identity or extensive homology (p < 0.05). Protein scores were derived from ions scores 346 
as a non-probabilistic basis for ranking protein hits.  347 
 348 
3.4 Protein-protein Interaction Network Identification of Deiminated Proteins in Horseshoe Crab 349 

Serum  350 

For the prediction of protein-protein interaction networks of the deimination candidate proteins 351 

identified in Limulus, the protein IDs were submitted to STRING (Search Tool for the Retrieval of 352 

Interacting Genes/Proteins) analysis (https://string-db.org/) (Figure 4). Protein interaction networks 353 

were based on known and predicted interactions and represent all deiminated proteins identified in 354 

Limulus haemolymph serum and their interaction partners present in the STRING database, based on 355 

networks for mouse (Mus musculus), as protein identifiers for Limulus were not available in STRING 356 

(Figure 4). The PPI enrichment p-value (based on protein name as networks had to be built on mouse 357 

Protein name  Symbol Sequences 
(Matches) 

Total score 
(p<0.05)ⱡ 

 Atlantic horseshoe crab 
(Limulus polyphemus)  

  

Hemocyanin subunit IV A2AX58_LIMPO 65 (1011) 4816 

Hemocyanin subunit II A2AX56_LIMPO 62 (636) 4492 

Hemocyanin subunit IIIa A2AX57_LIMPO 64 (827) 4250 

Hemocyanin subunit IIIb G8YZR0_LIMPO 55 (886) 4151 

Hemocyanin subunit VI A2AX59_LIMPO 57 (672) 4066 

C-reactive protein 1.1 CRP1_LIMPO 11 (135) 767 

C-reactive protein 1.4 CRP4_LIMPO 9 (80) 641 

Limulin LIMU_LIMPO 5 (64) 335 

Hemocyanin subunit I Q7M4H2_LIMPO 3 (66) 277 

Endotoxin-binding protein-protease inhibitor Q25387_LIMPO 2(4) 123 

Coagulogen COAG_LIMPO 2(2) 106 

Pentaxin Q8WQK3_LIMPO 2(2) 85 

Alpha-2-macroglobulin Q7M430_LIMPO 1(1) 78 

Hemocyanin subunit V Q7M490_LIMPO 1(10) 38 

Hemagglutinin/amebocyte aggregation factor HAAF_LIMPO 1(2) 35 

Putative integrin-linked protein kinase A9XXT7_LIMPO 1(1) 21 

Glucose-6-phosphate isomerase A9Y038_LIMPO 1(1) 20 

 Mangrove horseshoe crab 
(Carcinoscorpius 
rotundicauda): 

  

Hemocyanin subunit IV A1X1V5_CARRO 32 (424) 1918 

Hemocyanin subunit IIIb A1X1V4_CARRO 25 (313) 1436 

Hemocyanin subunit IIIa A1X1V3_CARRO 24 (272) 1393 

Hemocyanin subunit II A1X1V2_CARRO 19 (204) 1292 

Hemocyanin subunit V A1X1V6_CARRO 18 (221) 1125 

Hemocyanin subunit I A1X1V1_CARRO 14 (286) 864 

Galactose-binding protein Q2TS30_CARRO 3 (4) 232 

 Tri-spine horseshoe crab 
(Tachypleus tridentatus): 

  

Complement component 3 B6ZH52_TACTR 6 (6) 267 

Pentaxin Q9U8Z6_TACTR 3 (49) 191 

Plasma carcinolectin CL5B1 A1KYQ1_CARRO 3 (5) 134 

Tachylectin-P Q9U5E9_TACTR 1 (1) 36 

https://string-db.org/


 

13 
 

homologous proteins) was found to be p = 0.00333, indicating more interactions than expected for a 358 

random set of proteins of similar size, drawn from the genome.  359 

KEGG pathways for the deiminated serum proteins identified related to “complement and 360 

coagulation pathways”, “Staphylococcus aureus infection”, “glycolysis/gluconeogenesis” and 361 

“carbon metabolism” (Figure 4A), while GO biological pathways identified included “regulation of 362 

complement activation”, “immune system processes”, “defence response”, “negative regulation of 363 

proteolysis”, “gluconeogenesis”, “response to stress”, “glycolytic process”, “positive regulation of 364 

multicellular organismal process”, “positive regulation of developmental process” (Figure 4B).   365 

GO molecular pathways identified included “oxidoreductase activity”, “serine-type endopeptidase 366 

activity”, “complement binding”, “endopeptidase inhibitor binding”, “signalling receptor binding”, 367 

“ubiquitin protein ligase binding” (Figure 4C).  368 

UniProt keywords identified in the protein networks for deiminated proteins included “complement 369 

alternate pathway”, “secreted”, “innate immunity”, “gluconeogenesis”, “serine protease”, 370 

“complement pathway”, “glycolysis”, “sushi”, “glycoprotein”, “calcium” (Figure 4D). 371 

Reactome pathways identified in the protein networks for deiminated proteins included 372 

“complement cascade”, including regulation and alternative pathway activation, “Immune system”, 373 

“Innate immune system”, “gluconeogenesis”, “glycolysis”, “immunoregulatory interactions”, 374 

“neutrophil degranulation”, “platelet degranulation” (Figure 4E). 375 

SMART protein domains identified in the protein networks for deiminated proteins included “alpha-376 

macroglobulin receptor”, “alpha-2-macroglobulin family”, “pentraxin/CRP family”, “trypsin-like 377 

serine protease”, “domain abundant in complement control proteins” (Figure 4F). 378 

PFAM protein domains identified in the protein networks for deiminated proteins included “alpha-379 

macroglobulin tiolester bond-forming region”, “alpha-macroglobulin complement component”, 380 

“MG2 domain”, “pentaxin family”, “alpha2-macroglobulin family”, “trypsin”, “sushi repeat” (Figure 381 

4G). 382 

INTERPRO protein domains identified in the protein networks for deiminated proteins included 383 

“serine protease, trypsin family”, “alpha-2-macroglobulin conserved site”, “Peptidase”, “pentraxin-384 

related”, “sushi/SCR/CCP superfamily”, “concanavalin-A like lectin/glucanase domain superfamily" 385 

(Figure 4H). 386 

 387 

3.5 FoldIndex© Analysis of Deiminated Proteins in Horseshoe Crab Serum 388 

Deiminated protein hits were assessed for number and length of disordered regions using 389 

FoldIndex© analysis (https://fold.weizmann.ac.il/fldbin/findex). These are presented, alongside 390 

https://fold.weizmann.ac.il/fldbin/findex


 

14 
 

number of arginines present in the uniprot sequences for the identified deimination protein 391 

candidates in L. polyphemus and other Merostomata.   392 

Table 2. FoldIndex© analysis of deiminated proteins identified by F95 enrichment in serum of horseshoe 393 
crab (Limulus polyphemus). The number of disordered regions, residue length of the longest disordered 394 
region, total number of disordered residues, as well as number of arginines present in the total number of 395 
residues for the individual protein hits is shown. 396 
 397 
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Protein name  Number 
disordered 

regions 

Longest 
disordered 

region 

Number 
disordered 

residues 

Number of arginines 

 Atlantic 
horseshoe crab 

(Limulus 
polyphemus) 

   

A2AX58_LIMPO 
Hemocyanin subunit IV 

16 83 289 35  
(out of 624 residues) 

A2AX56_LIMPO 
Hemocyanin subunit II 

11 81 230 31  
(out of 629 residues) 

A2AX57_LIMPO 
Hemocyanin subunit IIIa 

15 90 309 33  
(out of 627 residues) 

G8YZR0_LIMPO 
Hemocyanin subunit IIIb 

9 80 198 29  
(out of 628 residues) 

A2AX59_LIMPO 
Hemocyanin subunit VI 

15 67 285 32  
(out of 638 residues) 

CRP1_LIMPO 
C-reactive protein 1.1 

2 11 18 4 
(out of 242 residues) 

CRP4_LIMPO 
C-reactive protein 1.4 

1 32 32 2 
(out of 242 residues) 

LIMU_LIMPO 
Limulin 

0 0 0 2 
(out of 84 residues) 

Q7M4H2_LIMPO 
Hemocyanin subunit I 

11 81 230 30  
(out of 628 residues) 

Q25387_LIMPO 
Endotoxin-binding protein-protease 
inhibitor 

1 7 7 8  
(out of 136 residues) 

COAG_LIMPO 
Coagulogen 

3 30 68 13 
(out of 195 residues) 

Q8WQK3_LIMPO 
Pentaxin 

4 19 45 8 
(out of 234 residues) 

Q7M430_LIMPO 
Alpha-2-macroglobulin 

15 110 402 53 
(out of 1507 residues) 

Q7M490_LIMPO 
Hemocyanin subunit V 

0 0 0 1 
(out of 24 residues) 

HAAF_LIMPO 
Hemagglutinin/amebocyte aggregation 
factor 

1 139 139 13 
(out of 172 residues) 

A9XXT7_LIMPO 
Putative integrin-linked protein kinase 
(partial) 

2 42 55 16 
(out of 312 residues) 

A9Y038_LIMPO 
Glucose-6-phosphate isomerase 

1 31 31 16 
(out of 599 residues) 

 Mangrove 
horseshoe crab 
(Carcinoscorpius 
rotundicauda): 

   

A1X1V5_CARRO 
Hemocyanin subunit IV 

12 84 227 36  
(out of 624 residues) 

A1X1V4_CARRO 
Hemocyanin subunit IIIb 

11 58 215 31  
(out of 628 residues) 

A1X1V3_CARRO 
Hemocyanin subunit IIIa 

16 98 341 35  
(out of 631 residues) 

A1X1V2_CARRO 8 80 207 29  
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 398 

4. Discussion 399 

The current study is the first to profile extracellular vesicles (EVs) and deiminated protein signatures 400 

in serum of a Merostomata, using L. polyphemus as a model species. EV profiles of the Atlantic 401 

horseshoe crab showed similar size distribution as observed for human EVs, in the range of 20-400 402 

nm, although a high proportion was observed for small EVs in the range of 40-123 nm, which 403 

furthermore were mainly CD63 positive, indicating a majority of exosomes compared to 404 

microvesicles in horseshoe crab haemolymph sera. CD63 is here for the first time assessed in 405 

horseshoe crab EVs, and shows protein bands in the size range observed for CD63 in a range of taxa 406 

(Iliev et al., 2018; Lange et al., 2019; Pamenter et al., 2019; Criscitiello et al., 2019, 2020a, 2020b; 407 

Kosgodage et al., 2018; Phillips et al., 2020). Furthermore, as CD63 does not show positive for either 408 

bacterial membrane vesicles (Kosgodage et al., 2019) or EVs from Giardia intestinalis (Gavinho et al., 409 

2019), any unspecific reaction for CD63 in horseshoe crab EVs in the current study can be excluded. 410 

Morphological analysis by TEM also revealed a high proportion of small EVs, including “cup-shaped” 411 

EVs. Therefore it may be possible that the larger peaks observed by NTA analysis may be aggregated 412 

small EVs (exosomes), although aggregation was not prominent in TEM analysis.  413 

F95-enrichment for deiminated proteins from horseshoe crab haemolymph serum revealed a range 414 

of immunological and metabolic proteins as candidates for this post-translational modification. Our 415 

findings indicate hitherto under-recognized modes for protein-moonlighting of these proteins in 416 

horseshoe-crab physiology and immunity, and roles for such deimination-mediated changes in 417 

proteins with phylogenetically conserved roles in immunity and metabolism. A PAD protein 418 

homologue was identified in horseshoe crab haemolymph serum via cross-reaction to the anti-419 

Hemocyanin subunit II (out of 629 residues) 

A1X1V6_CARRO 
Hemocyanin subunit V 

12 66 330 35 
(out of 638 residues) 

A1X1V1_CARRO 
Hemocyanin subunit I 

9 51 165 31 
(out of 624 residues) 

Q2TS30_CARRO 
Galactose-binding protein 

3 25 52 9 
(out of 256 residues) 

 Tri-spine 
horseshoe crab 

(Tachypleus 
tridentatus): 

   

B6ZH52_TACTR 
Complement component 3 

16 52 321 82 
(out of 1737 residues) 

Q9U8Z6_TACTR 
Pentaxin 

2 7 13 7 
(out of 202 residues) 

A1KYQ1_CARRO 
Plasma carcinolectin CL5B1 (fragment) 

6 71 129 14 
(out of 267 residues) 

Q9U5E9_TACTR 
Tachylectin-P (Partial) 

4 27 67 8 
(out of 203 residues) 
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human PAD2 antibody, which has previously been shown to cross-react with PADs and PAD 420 

homologues from diverse taxa (Magnadottir et al., 2018a; 2019a; Criscitiello et al., 2019, 2020a,b; 421 

Pamenter et al., 2019; Phillips et al., 2020). Such cross-reactivity with anti-human PAD2 is also in 422 

accordance with PAD2 being reported to be the most phylogenetically conserved PAD isozyme 423 

(Vossenaar et al., 2003; Magnadottir et al., 2018a; 2019a; Criscitiello et al., 2019,2020a,b; Pamenter 424 

et al., 2019). A PAD or PAD homologue has not been previously reported in Limulus, searching 425 

genetic and proteomic databases, while arginine kinase isoenzymes have been described (Blethen, 426 

1972). The current study is the first to assess post-translationally deiminated proteins, indicative of 427 

PAD-mediated deimination protein products, in Limulus and any Merostomata. Indeed, many of the 428 

identified deimination candidates in the current study showed a high level of disorder, as assessed 429 

by number of disordered regions using FoldIndex analysis. Protein structures that have been 430 

identified to be most prone to undergo deimination are intrinsically disordered proteins and beta-431 

sheets (Tarsca et al., 1996; György et al., 2006). The position of the arginine furthermore is of 432 

importance as arginines placed next to aspartic acid residues are most prone to 433 

deimination/citrullination, but arginines that are next to glutamic acid residues are rarely 434 

deiminated/citrullinated and arginines that are flanked by proline are poorly 435 

deiminated/citrullinated (Nomura, 1992; György et al., 2006). 436 

A number of species-specific deiminated protein candidates for Limulus polyphemus, and with other 437 

Merostomata, were identified in the current study in horseshoe crab serum using F95-enrichment in 438 

tandem with LC-MS/MS analysis. The role of these proteins and their function, and therefore 439 

putative effects via post-translational deimination changes are discussed below: 440 

 441 

Hemocyanin was identified as a deimination candidate in horseshoe crab, both species-specific for 442 

Limulus as well as in other horseshoe crabs. This included hemocyanin subunit II, IIIa, IIIb, IV, V and 443 

VI as species specific-for L. polyphemus, and in addition subunit I was identified as a protein hit for 444 

both the mangrove and tri-spined horseshoe crab. Hemocyanin works as an oxygen carrier in 445 

Mollusca and Arthropoda, similar to as haemoglobin in human blood, although it is directly 446 

suspended into the Limulus haemolymph, rather than being in blood cells, as is found for 447 

haemoglobin in human blood (Burmester, 2002). In hemocyanin, the central metal ion binding 448 

oxygen is copper, which contributes to the blue appearance of horseshoe crab blood when a colour 449 

change occurs between the colourless Cu(I) deoxygenated form and the blue Cu(II) oxygenated form 450 

(Coates and Nairn, 2014). Hemocyanin subunit IIIa has been assessed for broad antimicrobial effects 451 

in the Asian horseshoe crab (Tachypleus gigas) and found to be affective against several bacterial 452 

and fungal strains, posing as a putative novel antimicrobial, including against resistant strains (Jolly 453 
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et al., 2019). It must be noted that horseshoe crab hemocyanin, which has a unique oligomeric 454 

structure, is present in hemolymph plasma at very high concentration at ~100 mg/ml, and was here 455 

identified as a major candidate for deimination in both Limulus, as well as other Merostomata. It 456 

cannot be excluded that hemocyanin, which is a very sticky protein, may interact unspecifically. 457 

Nonetheless, in the current study all hemacyanins which were identified to be deiminated also 458 

turned out to be highly disordered, as assessed by FoldIndex analysis, and to contain a large 459 

proportional number of arginines (˜5 %). These features contribute to a protein’s ability to carry out 460 

moonlighting functions as disordered proteins are also most susceptible to post-translational 461 

deimination. Deimination of hemocyanin is here described for the first time and may contribute to 462 

its multifaceted functions in Mollusca and Arthropoda. 463 

 464 

C-reactive protein (CRP 1.1. and 1.4) was identified as a deimination candidate in L. polyphemus. 465 

Furthermore Pentaxin, also pentraxin, and therefore in the CRP family, was identified as deiminated. 466 

CRP is evolutionary conserved throughout phylogeny from arthropod to humans (Armstrong, 2015; 467 

Magnadottir et al., 2018b; Pathak and Agrawal, 2019). In arthropods, it is a constitutively expressed 468 

protein and in human belongs to acute phase proteins, and therefore the acute phase immune 469 

response (Pathak and Agrawal, 2019). Limulus pentraxins have been shown to from membrane 470 

pores and to permeabilise mammalian erythrocytes as well as lipid bilayers (Harrington et al., 2008). 471 

Both functional and structural diversities have been described for C-reactive proteins present in 472 

horseshoe crab haemolymph (Iwaki et al., 1999). While roles for glycosylation have been implicated 473 

to contribute to structural changes in CRP and its function in human and other taxa (Paul et al., 474 

2001; Das et al., 2003; Das et al., 2004; Ansar et al., 2009; Gisladottir et al., 2009), less is known 475 

about other post-translational modifications. Previously, we have identified CRP to be deiminated in 476 

cod (Gadus morhua L.), a teleost fish (Magnadottir et al., 2018b), and have in that study discussed 477 

putative roles for deimination in the conserved and diverse roles for CRP and other pentraxins 478 

throughout phylogeny, including in the horseshoe crab (Magnadottir et al., 2018b). CRP has also 479 

been described to be exported in mucosal extracellular vesicles in Atlantic cod (Magnadottir et al., 480 

2019b). The fact that CRP and pentaxin both came up as deimination candidates in horseshoe crab in 481 

the current study therefore supports our speculations on post-translationally mediated moonlighting 482 

functions of pentraxins via deimination. The ancient status of CRP in evolution of the immune 483 

system and modulation of its function via post-translational modifications, such as deimination 484 

identified here, may be of some relevance for furthering understanding of its function in a range of 485 

human pathological conditions (Das et al., 2003; Das et al., 2004; Ansar et al., 2009). 486 

 487 
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Limulin was identified as a deimination candidate in Limulus. Limulin belongs to the pentraxin family 488 

(Ying et al., 1992) and is a sialic acid-binding lectin which is central to mediating the plasma-based 489 

cytolytic system (Armstrong et al., 1996; Swarnakar et al., 1996; Asokan and Armstrong, 1999). It is 490 

the mediator of the Ca2+-dependent haemolytic activity present in the plasma of Limulus, also with 491 

ability for cytolysis of foreign cells (Armstrong et al., 1996). Limulin has furthermore been shown to 492 

have the ability to bind to, and to discriminate between, lower and higher level metastatic cancer 493 

cells in vitro, via selective agglutination of sialidase-treated cells (Fischer and Brossmer, 1995). Post-494 

translational deiminatinon is for the first time identified in limulin in the current study and such 495 

post-translational modification may contribute to changes in limulin folding and protein function via 496 

deimination of the two arginines identified in the 84 aa protein sequence of limulin. It must be noted 497 

that while no disorded regions where identified in limulin using FoldIndex analysis, disorder is not a 498 

requirement for deimination.  499 

 500 

Endotoxin-binding protein-protease inhibitor (LEBP-PI) was identified as a deimination candidate 501 

via F95 enrichment in L. polyphemus haemolymph serum in the current study. This protein was 502 

originally identified purified from Limulus amebocytes by binding to a lipopolysaccharide (LPS) 503 

affinity column and using ion exchange chromatography (Minetti et al., 1991). LEBP-PI is a major 504 

component (1%) of the cytoplasmic proteins in Limulus and has the ability to bind to Escherichia coli 505 

(Minetti et al., 1991). LEBP-PI is found in the secretory granules of the amebocytes, a site for the 506 

enzymes and substrates of the clotting cascade (Minetti et al., 1991), and contributes to 507 

haemolymph clotting in concert with CRP, limunectin and coagulin (Liu et al., 1994). Therefore LEBP-508 

PI plays important roles in assisting recognition and removal of invading microorganisms (Liu et al., 509 

1994). Indeed, one disordered region and 8 arginines were here identified in LEBP-PI using FoldIndex 510 

analysis. The deimination of LEBP-PI identified here may contribute to LEBP-PI function and 511 

interaction with CRP and coagulin, also identified here to be post-translationally deiminated in 512 

Limulus.  513 

 514 

Coagulogen was identified as a deimination candidate in L. polyphemus. Coagulogen forms part of 515 

the endotoxin-mediated coagulation pathway – which is utilised for the Limulus test for detection of 516 

bacterial endotoxins (Iwanaga, 2007). In horseshoe crabs, the proteolytic coagulation cascade 517 

coagulins are cross-linked on hemocyte cell surface proteins (proxins), which is the final stage of  518 

haemolymph coagulation and forms an important part of the horseshoe crab innate immune system 519 

(Osaki and Kawabata, 2004). Coagulogen is considered a functional homologue of vertebrate 520 

fibrinogen, indicating that an ancestor of fibrinogen may have functioned as a non-self-recognizing 521 
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protein (Gokudan et al., 1999). Human fibrinogen is indeed a well-known deimination target and has 522 

been associated with inflammatory diseases (Sharma et al., 2019), while a recent study has 523 

identified that deiminated fibrinogen impairs fibrin clot structure (Damiana et al., 2020). Horeseshoe 524 

crab coagulogen was here further analysed using FoldIndex analysis, revealing 3 disordered regions, 525 

with a total of 68 disordered residues and 13 arginines (out of 195 residues) which can act as 526 

putative candidates for conversion or arginine into citrulline. The deimination of coagulogen 527 

identified here in horseshoe crab may contribute to the function of coagulogen in Limulus immunity 528 

and remains to be further investigated. 529 

 530 

Alpha-2-macroglobulin is a thioester containing protein and a broad-spectrum protease-binding 531 

protein, which is a phylogenetically conserved part of the innate immune system (Armstrong and 532 

Quigley, 1999). It was characetrised at the protein level in 1990, indicating 67 % identity with human 533 

alpha-2-macroglobulin (Sottrup-Jensen et al., 1990) and cloned from Limulus in 1996 (Iwaki et al., 534 

1996). Alpha-2-macroglobulin is the third-most abundant plasma protein and can, in addition to 535 

functions including protease inhibitory activity, it can participate in the haemolytic system and 536 

inhibit and modulate the cytolytic pathway of limulin (Enghild et al., 1990; Armstrong and Quigley, 537 

1999; Swarnakar et al., 2000). Alpha-2-macroglobulin is furthermore closely related to complement 538 

proteins C3, C4 and C5, which are also thioester-containing proteins (Davies and Sim, 1981; Sottrup-539 

Jensen et al., 1985; Dodds and Law, 1998). Alpha-2-macroglobulin has previously been identified as a 540 

deimination candidate in serum and plasma of a range of taxa (including camelid, birds and alligator) 541 

(Criscitiello et al., 2020a and b; Phillips et al., 2020) and such deimination may contribute to its 542 

immunological functions throughout phylogeny. Indeed, in Limulus 15 disordered regions are 543 

identified here, with a total of 402 disordered residues and 53 arginines (out of 1507 residues) which 544 

can pose as putative deimination sites.  545 

 546 

Hemagglutinin/amebocyte aggregation factor was here identified as deiminated in L. polyphemus 547 

haemolymph serum. The horseshoe crab has only one type of circulating blood cell, the amebocyte, 548 

which is a granular cell which forms the primary defence mechanism against invading pathogens. 549 

Upon degranulation the coagulin clotting protein is released alongside proteases leading to fibrous 550 

clots that seal the site of infection off (Coursey et al., 2003). Hemagglutinin is another protein from 551 

the amebocytes which can cause aggregation of amebocytes, as well as agglutination of erythrocytes 552 

(Fuji et al., 1992).  It was originally described as a non-glycosylated, single chain polypeptide protein, 553 

stored in the large granules secreted from amebocytes (Fuji et al., 1992). Furthermore, a 554 

homologuous form with alternative phospholipidase A2 activity has also been described 555 
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(MacPherson and Jacobs,2000). Post-translational deimination identified here for hemagglutinin 556 

may therefore be of considerable interest for its function. Using FoldIndex analysis, one large 557 

disordered region comprised of 139 disordered residues was identified and the protein contains 13 558 

arginines (out of 172 residues) that can pose as deimination sites and therefore influence protein 559 

structure and function.  560 

 561 

Putative integrin-linked protein kinase was identified as deiminated in L. polyphemus.  Integrin-562 

linked kinase (ILK) plays multifaceted roles in cellular functions such as cell migration, differentiation, 563 

survival, and division and importantly has been highlighted as a key regulator of  longevity and of 564 

cellular senescence induced by extracellular stressors (Olmos et al., 2017). ILK is also found to be 565 

involved in choroidal neovascularization via recruitment of endothelial progenitor cells (Yang et al., 566 

2018), which may be of interest as horseshoe crab is utilised for studies on visual physiology 567 

(Hartline et al., 1956; Barlow, 1983; Watson et al., 2008; Battelle, 2016; Battelle et al., 2016). 568 

Deimination has indeed been linked to the visual system, both during fish and mouse development 569 

(Magnadottir et al., 2018a, Hollingsworth et al., 2018; Magnadottir et al., 2019a) as well as in 570 

relation to ocular diseases (Bhattacharya et al., 2006; Bonilha et al., 2013; Ding et al., 2017; 571 

Iannaccone and Radic, 2019; Kwon et al., 2020). Roles for ILK have been linked to a range of 572 

pathologies, including cyst growth and fibrosis in polycystic kidney disease (Raman et al., 2017), as 573 

well as roles in a number of cancers and its potential as a cancer biomarker has been highlighted 574 

(Zheng et al., 2019). Post-translational deimination identified here in ILK in horseshoe crab may 575 

contribute to some of these multifaceted functions and be of translatable value throughout 576 

phylogeny; particularly in the light of horseshoe crab being relatively long-lived animals for an 577 

arthropod, with a lifespan of 20 years. 578 

 579 

Glucose-6-phosphate isomerase (GPI) was identified as deiminated in L. polyphemus haemolymph 580 

serum. GPI is a dimeric enzyme and the second enzyme in the glycolytic pathway and catalyses the 581 

interconversion of fructose-6-phosphate and glucose-6-phosphate (Achari et al., 1981). GPI has 582 

indeed been identified to be a moonlighting protein due to its ability to perform mechanistically 583 

distinct functions. In amphibians, GPI is linked to embryonic development (Miranda, 1976) and due 584 

to the importance of glycolysis pathways for the survival of a number of unicellular protozoans, their 585 

GPI’s have received attention as putative targets for drug design (Cordeiro et al., 2014).  While GPI 586 

functions as a glycolytic enzyme in the cytoplasm in the extracellular environment, it functions as a 587 

neurotrophic factor for skeletal motor and sensory neurones. It can also act as a lymphokine and 588 

induce immunoglobulin secretion and as a tumour-secreted cytokine and angiogenic factor. GPI has 589 
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been linked to proliferation and motility of cancer cells (Lincet and Icard, 2015), found to promote 590 

angiogenesis and participate in cancer metabolism (Singh et al., 2017), therefore playing roles in the 591 

Warburg effect (Ždralević et al., 2018). GPI has also been identified as an autoantigen in rheumatoid 592 

arthritis (RA) alongside deiminated/citrullinated proteins (Matsumoto et al., 2020) as well as to 593 

regulate hypoxia-induced angiogenesis in RA (Lu et al., 2017). Indeed, GPI-induced arthritis is a valid 594 

animal model of rheumatoid arthritis (Ebbinghaus et al., 2019) and PAD4 deficiency has been shown 595 

to decrease disease severity in the GPI-induced arthritis model (Seri et al., 2015). The role for 596 

deiminated proteins in RA is well known and the citrullinome of RA has been extensively studied 597 

(Darrah and Andrade, 2018; Tilvawala et al., 2018; Ruiz-Romero et al., 2019; Martinez-Prat et al., 598 

2019; Svärd et al., 2019; Boberet al., 2020). GPI has indeed been identified to be deiminated in RA 599 

(Wu et al., 2016; Umeda et al., 2013). GPI deficiency is furthermore an autosomal recessive disorder 600 

which has been identified as the second most frequent erythroenzymopathy in glycolysis. It is 601 

associated both with non-spherocytic haemolytic anaemia as well as neurological impairment in 602 

some cases (Kugler and Lakomek, 2000; Fermo et al., 2019). The identification of deiminated GPI in 603 

horseshoe crab haemolymph serum in the current study highlights a role for this post-translational 604 

modification in the contribution of multifaceted functions of GPI, throughout phylogeny. In Limulus 605 

GPI, one disordered region was identified containing 31 disordered residues, and 16 arginines, which 606 

pose as putative sites for deimination/citrulliation, were identified out of 599 residues of the 607 

protein. Deimination of GPI, in the light of its conservation throughout phylogeny, may indeed 608 

contribute to its multifaceted functions and remains to be further investigated beyond its currently 609 

identified connection to autoimmune responses in RA. 610 

 611 

Galactose-binding protein (GBP) was identified as deiminated in the mangrove horseshoe crab (C. 612 

rotundicauda). GBP is classified as a beta-propeller protein that contains tectonin domains, and has 613 

functions in antibacterial defences (Low et al., 2010). Horseshoe crab GBP binds to LPS of Gram-614 

negative bacteria and helps in eliminating these pathogens through interactions with CRP (Ng et al., 615 

2007; Low et al., 2010) via GBP’s beta-propeller domains, as identified using protein modelling (Low 616 

et al., 2010). Furthermore, tectonin beta-propeller repeat containing proteins are linked to the 617 

interplay of bacteria and host autophagy (Ogawa et al., 2011; Chen and Zhong, 2012; Sudhakar et al., 618 

2019). Beta-propeller proteins have multiple functions in catalysis, protein-protein interaction, cell 619 

cycle regulation, and innate immunity (Low et al., 2010). A GBP has also been identified in the tri-620 

spined horseshoe crab (T. tridentatus) (Chiou et al., 2010). Horseshoe crab GBP has been identified 621 

to share both structural and functional homologies to human hTectonin, which has binding affinities 622 

to bacterial LPS and interacts with ficolins (Low et al., 2009), indicating evolutionary conservation of 623 
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these proteins over 500 million years (Low et al., 2010). As beta-sheets are more prone to undergo 624 

deimination, post-translationally mediated changes in their structure and function via deimination 625 

may contribute to the multifaceted functions of GBP. In the current study, GBP from horseshoe crab 626 

was identified to have 3 disordered regions, with a total of 52 disordered residues and 9 arginines 627 

that can pose as candidates for arg/cit conversion, out of 256 residues of the protein. To what extent 628 

deimination contributes to the functional diversity of GBP remains to be further investigated. 629 

 630 

Complement component 3 was identified here as deiminated in Merostomata scoring with C3 from 631 

tri-spine horseshoe crab (T. tridentatus). C3 is evolutionarily conserved, including in horseshoe crab 632 

(Zhu et al., 2005; Tagawa et al., 2012; Zimmer et al. 2015) and has recently been identified as a 633 

deimination protein candidate in a range of taxa (teleost, shark, cetacean, camelid, birds, alligator) 634 

(Magnadottir et al., 2019a, 2020b; Criscitiello et al., 2019; Criscitiello et al., 2020a,b; Phillips et al., 635 

2020). C3 plays central roles in the complement cascade and can furthermore be directly activated 636 

by self- and non-self surfaces (Dodds and Law, 1998; Dodds, 2002). Besides key roles for C3 in the 637 

immune response, diverse roles have been linked to C3, including in regeneration (Del Rio-Tsonis et 638 

al., 1998)  and during early teleost development (Lange et al., 2004a,b, 2005, 2006). In the mangrove 639 

horseshoe crab (C. rotundicauda) antimicrobial effects of C3a have been studied, highlighting 640 

conserved antimicrobial properties for Gram-negative and Gram-positive bacteria (Pasupuleti et al., 641 

2007). The recent identification of C3 deimination in diverse species, including in Merostomata in 642 

the current study, may be a hitherto under-recognized factor which contributes to the multifaceted 643 

and conserved functions of the complement system throughout phylogeny (Boshra et al., 2006; 644 

Lange et al., 2005; 2006; Sunyer and Lambris, 1998; Nakao et al., 2006; Carrol and Sim, 2011; Nakao 645 

et al., 2011; Forn-Cuní et al., 2014; Magnadottir et al., 2019). In the current study 16 unfolded 646 

regions were identified in merostomata C3, based on C3 from tri-spine horseshoe crab, with a total 647 

of 321 disordered residues and 82 arginines (out of 1737 residues of the total protein). To what 648 

extent the different sites for deimination/citrullination contribute to C3 function will remain to be 649 

further investigated. 650 

 651 

Plasma carcinolectin CL5B1 (CL5) was identified as deiminated scoring with the tri-spined horseshoe 652 

crab (T. tridentatus). CL5 acts as the functional protein partner of galactose binding protein (GBP) 653 

during infection (Low et al., 2009). It has been shown to be co-purified with CRP and GBP from 654 

horseshoe crab haemolymph, using LPS-affinity chromatography, and to form pathogen recognition 655 

complexes (Ng et al., 2007). Furthermore, CL5 has been shown to be homologous to human M-656 

ficolin, which activates the lectin-arm of the complement system via binding to CRP (Ng et al., 2007; 657 
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Low et al., 2009). In deep-sea mussels (Bathymodiolus azoricus), which inhabit deep-sea 658 

hydrothermal vents, carcinolectin has been identified to be an immune recognition molecule in early 659 

stages of immune responses (Bettencourt et al., 2014) and to act as a biomarker in response to 660 

Vibrio diabolicus challenge (Martins et al., 2015). CL5 has also been identified in the innate immune 661 

response of shrimp in response to Vibrio anguillarium stimulation (Wang et al., 2013). In the current 662 

study, CL5 of horseshoe crab was identified to have 6 disordered regions, with a total of 129 663 

disordered residues, whereof the longest disordered region contained 71 residues. The number of 664 

arginines, and therefore putative sites for arg/cit conversion, were found to be 14 out of 267 665 

residues of the total protein. These characteristic indicate that CL5 is prone to deimination, as 666 

indeed identified here, and such post-translational change may contribute to its varying functions in 667 

differing scenarios throughout phylogeny, and will remain to be further investigated.  668 

 669 

Tachylectin-P (TL-P) was identified as deiminated in the current study in Merostomata, via a protein 670 

hit with the tri-spine horseshoe crab (T. tridentatus). It is a 27 kDa lectin originally identified in 671 

perivitelline fluid (Nagai et al., 1999). It has agglutination preferences for human A-type erythrocytes 672 

and been suggested to play important roles in embryonic development via interaction with 673 

endogenous glycoproteins or N-acetylhexosamines (Nagai et al., 1999). Furthermore, two forms of 674 

trachylectin (TPL-1 and TPL-2) have been isolated from the tri-spine horseshoe crab and found to 675 

bind Gram-positive and Gram-negative bacteria (Chen et al., 2001). It has been proposed that the 676 

physiological function of TPL-1 and TPL-2 may be related to their ability to form a cluster of 677 

interlocking molecules to immobilize and entrap invading organisms (Chen et al., 2001). TL-P has 678 

been found to have a similar structure (based on amino acid sequence alignment) to the TH-1 679 

hemocyte-derived lectin, tachylectin-1 (TL-1), which has no hemagglutinating activity (Nagai et al., 680 

1999). As TL-P was here identified to have 4 disordered regions, with a total of 67 disordered 681 

residues and 8 arginines (out of 203 residues of the total protein), deimination of TL-P identified 682 

here may contribute to differences in its functions. If such deimination and downstream function 683 

and structural changes are also applicable for TL-1 and TL-2, deimination may contribute to changes 684 

in steric form and therefore function in antibacterial responses. Tachylectins have recently also been 685 

described in acute hepatopancreatic necrosis disease (AHPND) in shrimp (Angthong et al., 2017). 686 

Roles for deimination of TL-P therefore will need further investigation in a range of taxa. 687 

 688 

Protein networks constructed in the current study using STRING based on mouse (Mus musculus) 689 

homologue proteins, as Limulus proteins are not available in the STRING database, correlated with 690 

immunological and metabolic functions of the proteins identified to be deiminated in Limulus. This 691 
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highlights a novel aspect of post-translational deimination in regulation of these pathways in 692 

Limulus, and also putative roles of such regulation in conserved functions, as well as moonlighting 693 

functions of the proteins identified, throughout phylogeny.  KEGG pathways highlighted for 694 

deiminated proteins included the complement and coagulation pathways, as well as response to 695 

bacterial infection (Gram-negative S. aureus infection), which are well known in Limulus, although 696 

not in relation to deimination until in the current study, as discussed above. Furthermore, 697 

deimination of pathways for glycolysis and gluconeogenesis relate to proteins identified to be 698 

deiminated in Limulus in the current study (including GPI) with roles in glycolysis, amongst other 699 

functions.  GO biological and molecular pathways identified in the deiminated Limulus proteins 700 

related to a range of immune and metabolic functions, as well as to developmental processes, and 701 

this correlates to multifaceted functions of these deiminated protein candidates identified in 702 

immunity and development, highlighting their moonlighting abilities. PFAM protein domains 703 

identified in the protein networks for deiminated proteins in Limulus also highlighted immune 704 

functions in particular, as did the UniProt Keywords, which also emphasised metabolic proteins and 705 

highlighted calcium, which is a key driver of deimination (Alghamdi et al., 2019) and a key modulator 706 

in a range of immunological, metabolic and developmental functions (Paupe and Prudent, 2018; King 707 

et al., 2020; Puri et al., 2020). A similar relation to immunity and metabolism was seen for the 708 

SMART protein domains, INTERPRO protein domains, as well as for the reactome pathways, for the 709 

deiminated proteins identified in Limulus in the current study.  710 

The characterisation of EVs and of post-translational deimination signatures revealed in horseshoe 711 

crab in the current study, and for the first time in Merstomata, contributes to current understanding 712 

of deimination and EV-mediated communication in this ancient arthropod. Our findings may inform 713 

conserved and diverse functions of moonlighting proteins via post-translational deimination 714 

throughout phylogeny. 715 

 716 

Conclusion 717 

This is the first study to assess PADs, protein deimination and extracellular vesicle profiles in serum 718 

of a Merostomata, using the Atlantic horseshoe crab (Limulus polyphemus) as a model species. EV 719 

profiles of Limulus showed a high proportion for small EVs, which were mainly CD63 positive, 720 

indicating a majority of exosomes (small EVs), compared to microvesicles (larger EVs). Assessment of 721 

deiminated proteins revealed a range of deiminated proteins relevant for immunological and 722 

metabolic function in horseshoe crab haemolymph serum. Protein network analysis revealed KEGG 723 

and GO pathways for key immunological and metabolic functions. This study highlights therefore 724 
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roles for protein deimination and associated protein moonlighting functions of key immune and 725 

metabolic proteins, some of which are conserved throughout phylogeny from horseshoe crab to 726 

man. Our findings provide novel insights into the immunity and physiology of these ancient 727 

ancestors and living fossils.  Comparative studies in horseshoe crab may be of translational value for 728 

furthering current understanding of mechanisms underlying conserved physiological and pathogenic 729 

pathways, including via the diversification of protein functions facilitated by post-translational 730 

deimination. 731 
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 1231 

Figure legends 1232 

Figure 1. Extracellular vesicle profiling in horseshoe crab haemolymph serum. A. Nanoparticle 1233 

tracking analysis shows size distribution of serum-EVs from Limulus polyphemus in the size range of 1234 

mainly 40 to 300 nm, with main peak at approximately 123 nm. B. Western blotting analysis 1235 

confirms that horseshoe crab serum-EVs are positive for the phylogenetically conserved EV-specific 1236 

marker CD63, while cross-reaction with Flot-1 was low. C. Transmission electron microscopy (TEM) 1237 

analysis of horseshoe crab haemolymph serum-derived EVs; scale bar is 20 nm in all figures.  1238 

 1239 

Figure 2. PAD and Deiminated proteins in horseshoe crab haemolymph serum. A. A PAD 1240 

homologue was identified in horseshoe crab serm at an expected ≈70 kDa size, via cross-reaction 1241 

with the anti-human PAD2 antibody. B. Total deiminated proteins were identified in horseshoe crab 1242 

serum, using the pan-deimination specific F95 antibody. C. F95-enriched IP fractions from horseshoe 1243 

crab serum, shown by silver-staining, reveal multiple protein bands in the size range of 15-200 kDa.  1244 

 1245 

Figure 3. Deiminated (F95-enriched) protein hits identified in horseshoe crab haemolymph serum. 1246 

The Venn diagram represents species-specific hits identified for deiminated proteins in horseshoe 1247 
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crab (Limulus polyphemus) serum and overlap with protein candidates identified for other 1248 

Merostomata, the mangrove horseshoe crab (Carcinoscorpius rotundicauda) and the tri-spine 1249 

horseshoe crab (Tachypleus tridentatus).  1250 

 1251 

Figure 4. Protein-protein interaction networks of all deiminated proteins identified in horseshoe 1252 

crab haemolymph serum. Reconstruction of protein-protein interaction networks for identified 1253 

deiminated protein candidates in horseshoe crab, based on known and predicted interactions, using 1254 

mouse homologue identifiers and STRING analysis. A. KEGG pathways relating to the identified 1255 

deiminated proteins (see colour code for identified pathways highlighted in the figure). B. GO 1256 

biological pathways relating to the identified proteins are highlighted (see colour code included in 1257 

the figure). C. GO MOLECULAR pathways relating to the identified proteins are highlighted (see 1258 

colour code included in the figure). D. UniProt keywords relating to the identified proteins are 1259 

highlighted (see colour code included in the figure). E. Reactome pathways relating to the identified 1260 

proteins are highlighted (see colour code included in the figure). F. SMART protein domains relating 1261 

to the identified proteins are highlighted (see colour code included in the figure). G. PFAM protein 1262 

domains relating to the identified proteins are highlighted (see colour code included in the figure). 1263 

H. INTERPRO protein domains and features relating to the identified proteins are highlighted (see 1264 

colour code included in the figure). Coloured lines indicate whether protein interactions are 1265 

identified via known interactions (curated databases, experimentally determined), predicted 1266 

interactions (gene neighbourhood, gene fusion, gene co-occurrence) or via text mining, co-1267 

expression or protein homology (see the colour key for connective lines included in the figure). 1268 
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