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 A B S T R A C T

We propose a guided registration method for spatially aligning a fixed preoperative image and untracked 
ultrasound image slices. We exploit the unique interactive and spatially heterogeneous nature of this 
application to develop a registration algorithm that interactively suggests and acquires ultrasound images 
at optimised locations (with respect to registration performance). Our framework is based on two trainable 
functions: (1) a deep hyper-network-based registration function, which is generalisable over varying location 
and deformation, and adaptable at test-time; (2) a reinforcement learning function for producing test-time 
estimates of image acquisition locations and adapted deformation regularisation (the latter is required due 
to varying acquisition locations). We evaluate our proposed method with real preoperative patient data, and 
simulated intraoperative data with variable field-of-view. In addition to simulation of intraoperative data, we 
simulate global alignment based on previous work for efficient training, and investigate probe-level guidance 
towards an improved deformable registration. The evaluation in a simulated environment shows statistically 
significant improvements in overall registration performance across a variety of metrics for our proposed 
method, compared to registration without acquisition guidance or adaptable deformation regularisation, and 
to commonly used classical iterative methods and learning-based registration. For the first time, efficacy of 
proactive image acquisition is demonstrated in a simulated surgical interventional registration, in contrast 
to most existing work addressing registration post-data-acquisition, one of the reasons we argue may have 
led to previously under-constrained nonrigid registration in such applications. Code: https://github.com/s-
sd/rl_guided_registration.
1. Introduction

Ultrasound imaging is routinely used for guiding surgery and other 
medical procedures, where 2-dimensional (2D) ultrasound images are 
continuously manually acquired by clinicians. These ultrasound images, 
when acquired intraoperatively, are often sparse in three aspects: (1) 
they are not sampled on regular grid locations as other volumetric 
medical images such as magnetic resonance (MR) and computed to-
mography (CT), with variable intervals between slices, (2) the relative 
positions between these images are unknown, without external spatial 
tracking, and (3) they only cover limited regions and with likely 
incomplete regions of interest (ROIs), such as missing features that are 
not visible using the imaging modality, or showing only a part of a 
structure e.g., an organ.

∗ Corresponding author.
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In this work, we focus on the development of a machine learn-
ing method that overcomes these above-discussed challenges, in the 
specific context of registration between ultrasound images and a 3-
dimensional (3D) volumetric preoperative CT image. Current state-
of-the-art methods may often suffer in terms of registration accuracy 
due to the sparsity of the ultrasound images and limited information 
available for the alignment. In particular, we argue that the interactive 
nature of ultrasound acquisition may be leveraged to address the above-
discussed challenges. In this context then, enabling the ultrasound 
sampling to become an integral part of the learned registration algo-
rithm may be the key to improve this type of registration but thus far 
has received limited investigation or formulation.
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1.1. Volume-to-stack registration

Spatial alignment between a stack of ultrasound images and a 
volumetric preoperative image (such as a 3D CT image) is useful in 
several clinical scenarios. Examples include tracking tumour locations 
identified in the preoperative image, over the course of an inter-
ventional procedure guided by ultrasound images (Drakopoulos and 
Chrisochoides, 2016; Gooya et al., 2010; Elhawary et al., 2010), or 
to localise ROIs in the typically smaller volumes during intraoperative 
ultrasound imaging with respect to the larger field-of-view (FOV) ac-
quired preoperatively, for intraoperative navigation (Hu et al., 2012; 
Amin et al., 2003; Wein et al., 2008; Penney et al., 2004).

A volumetric image is defined to be a 3D image with voxel locations 
defined in a single image coordinate system, here, the preoperative CT 
image, with its intensity values sampled from regular grid locations. 
In this case, if the ultrasound images can be reconstructed into volu-
metric images, the registration becomes a volume-to-volume registration
problem. The 3D reconstruction of freehand ultrasound images, with 
or without external trackers (Tomaževič et al., 2005; Heldmann et al., 
2010; Heiselman et al., 2020), may suffer from problems such as the 
need to optimise reconstruction parameters or to deal with incom-
plete information. Existing image registration methods have focused on 
volume-to-volume registration (Villalon et al., 2011; Thomson et al., 
2020), lately with machine learning-based algorithms for improved 
efficiency and accuracy (Chen et al., 2021). Most methods remain 
specific to the application of interest and a general solution applicable 
to a wider array of problems is still an active area of research.

The volume-to-slice registration problem has also been investigated, 
due in part to the unknown relative locations between 2D images, 
where each 2D ultrasound image is aligned with the volumetric image 
individually and often independently (Ferrante and Paragios, 2017). 
The ultrasound image coordinates and the volume-to-slice transforma-
tion are both defined in 3D spatial coordinate systems, thus the 2D 
ultrasound images are referred to as image slices.

Formulating as a machine learning method, the volume-to-slice 
registration may benefit from multiple neighbouring images as input, 
as well as jointly predicting transformations between multiple slices 
(2D images) and the volumetric image (Ferrante and Paragios, 2017). 
This is termed volume-to-stack registration in this paper for clarity, 
where a number of consecutively acquired images is referred to as a
stack of slices. The difference between the volume-to-stack registra-
tion and the 3D-reconstruction-first methods is whether the relative 
locations between 2D images are independently estimated beforehand 
(reconstruction-first) or are implicitly handled (volume-to-stack).

1.2. Under-constrained estimation of deformation

Whilst the volume-to-volume registration is in general an ill-posed 
problem for estimating nonrigid deformation, it is the added need to es-
timate 3D transformation between individual slices and the volumetric 
image that makes the volume-to-stack registration arguably even less 
constrained. This lack of constraint has motivated most existing studies 
to employ highly constrained transformation models, such as the rigid 
transformation assumption with six degrees-of-freedom (DOF), which is 
commonly employed for registration of intraoperative to preoperative 
data. A typical example is our application of liver ultrasound to CT 
registration in this work, where rigid registration has been first applied 
for aligning intraoperative ultrasound slices and a preoperative CT im-
age (Wei et al., 2021b; Wein et al., 2008; Sun et al., 2018; Ramalhinho 
et al., 2020).

In addition to the coordinate system conversion between slices and 
the volumetric image, which can be modelled as a constrained rigid or 
affine transformation, organ motion and other soft tissue deformation 
needs to be compensated for using higher order transformation models. 
Nonrigid registration has been proposed for this application (Elhawary 
et al., 2010; Lee et al., 2010; Lange et al., 2003). Partly due to the 
2

under-constrained nature, an important type of registration parameter is 
used in non-rigid methods: the weighting on a deformation regularisa-
tion (such as a non-smoothness penalty term L2-norm of displacement 
gradient or bending energy (Haskins et al., 2020; Fu et al., 2020b; 
Chen et al., 2021), encouraging smooth (thus constrained) local tissue 
deformation). However, this weight has often been fixed and assumed 
the same everywhere, despite the fact that the material properties such 
as stiffness vary at different sections of the liver, and between differ-
ent anatomical (such as vessels) and pathological (such as tumours) 
structures. Similar to this, the early attempts at using bio-mechanical 
models as a prior-constrained transformation model only investigate 
homogeneous elasticity (Özgür et al., 2018).

It is however clear in many reported results that the registration 
performance varies substantially between different regions within the 
liver (Ramalhinho et al., 2020). Spatially adaptive deformation reg-
ularisation may allow a more flexible transformation model for this 
application, albeit potentially worsen its ill-posedness.

Outside of the volume-to-slice registration, spatially adaptive defor-
mation regularisation may be inferred through data-driven approaches 
(Simpson et al., 2015; Papież et al., 2013; Risholm et al., 2010; 
Hermosillo et al., 2002). For learning-based registration algorithms, 
these registration parameters become hyperparameters and can be re-
parameterised by hyper-networks (Hoopes et al., 2021) for efficient 
test-time adaptation. Other adaptable registration methods have also 
been proposed in forms of meta learning (Park et al., 2022; Baum et al., 
2022). These require a trained registration model to be fine-tuned at 
test-time, based on a few examples. For instance, Baum et al. (2022) 
formulate the problem in an interactive setup where during fine-tuning, 
the registration may be manually adjusted by user-added data.

1.3. Unequal ultrasound sampling locations

In addition to local deformation, imaging content including anatom-
ical features also varies substantially at different imaging locations. 
It is another likely cause for the spatial dependency of registration 
performance. For example, in a vessel-based registration algorithm, the 
complexity and richness of the vascular structures contained in the 
acquired slices is an important positive contributor towards a successful 
registration (Ramalhinho et al., 2020, 2018, 2022).

In this essay, we consider the sampling locations of all slices to be 
parameterised by (1) the starting location of the stack (with respect 
to certain reference) and (2) the physical length of the stack (e.g. in 
mm), which assumes a linear acquisition path along the organ surface. 
This approximately linear acquisition path is applicable for a wide 
range of contact-required ultrasound imaging in clinical applications, 
such as invasive liver surgery, transrectal prostate intervention, fetal 
anomaly emanation and musculo-skeletal imaging. The stack length can 
therefore be considered as a registration parameter which controls the 
balance between spatial coverage and accurate initial localisation (to 
be followed by local non-rigid registration), i.e. a longer stack should 
cover more characteristic features for registration, but may require a 
more complex nonrigid transformation to be estimated, while as the 
stack length approaches zero, between-slice transformation is no longer 
needed.

The above observations have motivated one of the main contri-
butions of this work: development of an interactive registration that 
allows sequential suggestions of ultrasound sampling locations and, 
from these suggested locations, acquiring subsequent ultrasound slices. 
The sequence of image sampling actions should in turn provide im-
age slice data, for a better-posed, easier-to-register volume-to-stack 
registration.
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1.4. Guiding image acquisition for registration

In summary, this work proposes a new framework that optimises 
a sequence of a) ultrasound image stack sampling locations and b)
spatially-varying deformation regularisation, for challenging volume-
to-stack, intraoperative registration tasks.

The registration task is also a part-to-whole registration due to 
its sparsity in corresponding features and dependency in ultrasound 
imaging orientation and depth. It may be interesting to highlight 
the similarity between our proposed work, which involves both reg-
istration and localisation, and methods in simultaneous localisation 
and mapping (SLAM) literature (Stachniss et al., 2016; Julier and 
Uhlmann, 2001; Davison, 2003; Salas-Moreno et al., 2013). In this 
work, localising and visualising the ultrasound probe with respect to 
reference anatomical landmarks (optionally as a visual intraoperative 
aid, identifiable in the volumetric CT), may be considered as the 
mapping component in a SLAM formulation. This perspective of a 
SLAM algorithm is not formalised further, but consistent notations are 
adopted when possible.

We propose a guided intraoperative image acquisition framework 
for acquiring US sweeps suitable for registration with preoperative CT. 
As opposed to previous works that usually refer to guidance that fine-
tunes registration for already-acquired images (Baum et al., 2022; Park 
et al., 2022), our work guides image acquisition towards regions which 
improve registration performance. Furthermore, to enable this novel 
application we derive robust reward signals from hyper-networks, 
which enables RL controller training informed by task-performance, an 
under-explored area in RL.

The overall contributions are summarised as follows.
(1) We formulate a new interactive volume-to-stack registration 

algorithm, between sequentially acquired stacks of ultrasound slices 
and preoperative CT.

(2) We propose a hyper-network-based registration model which 
is generalisable over different regions and adaptable at test-time with 
respect to three conditioning variables i.e., a parameter that controls 
deformation regularisation, a stack length parameter, and a parameter 
to indicate the starting location of the stack (details in Section 2.1);

(3) We propose a reinforcement learning-based optimisation for pro-
ducing test-time estimates of these conditioning variables, for guiding 
ultrasound stack acquisition for registration purpose;

(4) We evaluate our proposed framework using clinical preopera-
tive data derived from CT scans of patients undergoing laparoscopic 
liver staging and resection, and simulated intraoperative ultrasound 
data, and compare it to other registration approaches common in the 
literature.

In Section 3, we argue that the use of simulated intraoperative data 
provides practically feasible ground-truth for validation of deformable 
models in surgery, currently not possible with real clinical data. It also 
serves as necessary first experimental evidence supporting further in-
teractive data acquisition, due to the nature of the surgical application 
and proposed guided acquisition. Additionally, the use of simulated 
intraoperative data also allows us to report informative validation 
measures such as target registration error for corresponding landmarks 
in intra- and preoperative images, where this may not be possible on 
real intraoperative data. The evaluation in a simulated environment, 
with simulated intraoperative data and global alignment based on error 
estimates from previous work, allows us to demonstrate a novel image-
acquisition guidance framework to guide acquisition towards improved 
registration.

2. Methods

The proposed guidance framework relies on two functions: (1) a 
hyper-network-based registration function to allow adaptive registra-
tion; and (2) a reinforcement learning function to guide the operator 
3

Fig. 1. An overview of the proposed registration and guidance scheme being used 
intraoperatively. The guided image stack sampling is the effector 𝑒 described in 
Section 2.3.1. The transformations between slices as well as between slices and the 
preoperative volume for this challenging volume-to-stack registration, are unknown.

towards regions that aid registration. The hyper-network based reg-
istration function allows varying conditioning variables at test-time 
i.e., varying stack length or regularisation weight and can accommo-
date different sampling locations within the liver. These conditioning 
variables and sampling locations are suggested by the reinforcement 
learning function, at test-time. The reinforcement learning function 
may be trained using a reward signal derived only from the per-
formance gain/loss of the registration network subsequent to each 
suggestion. Once trained, the RL function guides the operator in terms 
of the conditioning variables (including a prescribed stack length, 
regularisation weight and sampling location) towards an optimal regis-
tration and the hyper-network based registration function provides the 
registration using these conditioning variables.

2.1. Overview

Our proposed framework involves two trainable functions, (1) the 
hyper-network (hypernet) based registration function 𝑓𝜃𝑟𝑒𝑔 ; and (2) the 
reinforcement learning (RL) function 𝑓𝜃𝑟𝑙 , both parameterised by neural 
networks with network parameters 𝜃𝑟𝑒𝑔 and 𝜃𝑟𝑙, respectively.

At a given time step 𝑡, a stack of 𝑛 ultrasound slices, with 𝑚 number 
of pixels in each slice, 𝑥𝑡 ∈  ⊂ R𝑚×𝑛 is available, together with a pre-
operative volumetric CT image 𝑦 ∈  , acquired prior to the procedure. 
Whilst 𝑥𝑡 and 𝑦 are in general vectors of per-pixel image features, such 
as intensity values or binary valued morphological features (i.e. ROI 
segmentation masks), in the respective spaces  and  (that may be 
considered as representing their respective image coordinate systems).

To localise the slices, the registration function 𝑓𝜃𝑟𝑒𝑔 ∶  ×  → 
computes a set of displacement vectors 𝑑𝑡 ∈  ⊂ R𝑚×𝑛×3 for all slices in 
the stack: 

𝑑𝑡 = 𝑓𝜃𝑟𝑒𝑔 (𝑥𝑡, 𝑦; ∼) (1)

such that �̂�𝑡 = 𝑥𝑡 ⊗ 𝑑𝑡 denotes the warped (or registered) 𝑥𝑡 in 
coordinate system using displacements 𝑑𝑡. Eq. (1) represents a static 
registration solution at time step 𝑡 for the acquired stack.

As discussed in Sections 1.2 and 1.3, the registration may benefit 
from sequentially optimising three conditioning variables, at time 𝑡:

• A starting location 𝑎𝑙𝑜𝑐𝑡 ⊂ R3 of the stack, indicates the relative 
orientation and distance, from the last slice in the previous stack 
to the first slice in the current stack, for acquisition of the stack.

• A stack length 𝑎𝑙𝑒𝑛𝑡 , a scalar in physical length and independent of 
the number of slices sampled in a stack.

• A positive weight 𝑎𝑑𝑒𝑓𝑡  on the deformation regularisation, dis-
placement gradient norm in this work; controlling the spatial 
regularity of deformation.
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The first two collectively specify the ultrasound image sampling loca-
tion and all three are denoted as 𝑎𝑡 = {𝑎𝑙𝑜𝑐𝑡 , 𝑎𝑙𝑒𝑛𝑡 , 𝑎𝑑𝑒𝑓𝑡 } ∈ . Thus, the 
action-conditioned registration function becomes: 
𝑑𝑡 = 𝑓𝜃𝑟𝑒𝑔 (𝑥𝑡, 𝑦; 𝑎𝑡) (2)

The RL function 𝑓𝜃𝑟𝑙 ∶  ×  →  is trained to suggest values for 
these conditioning variables, to be used at the next time step. 
𝑎𝑡+1 = 𝑓𝜃𝑟𝑙 (𝑥𝑡, 𝑦) (3)

where 𝑎𝑡 can be considered as actions suggested by a RL agent, which 
then interacts with a Markov decision process (MDP) environment, 
which then determines the ultrasound image stack 𝑥𝑡+1 sampled in the 
next time step.

An overview is presented in Fig.  1. In the following sections, we 
provide details on how each of the registration function and the RL 
function can be formulated and optimised in this application.

2.2. The registration function

In our formulation the registration consists of two parts, the global 
alignment and the non-rigid registration. The global alignment fol-
lowed by non-rigid registration provide a deformable registration, in 
our work. The non-rigid registration is made adaptable at test-time, 
with respect to three variables (sampling location for the intraoperative 
image, stack length of an acquired intraoperative image sweep, and the 
deformation regularisation weight). This is done by means of a hyper-
network, which takes as input the controlling/conditioning variables 
and modifies the parameters of the non-rigid registration network, in 
order to modify it such that it can accommodate the new conditioning 
variable setting. In this section, we describe each of the components 
involved in the registration in our framework.

2.2.1. Registering with rigid global pre-alignment
In our proposed method, the registration function consists of two 

main components, a global alignment algorithm and a nonrigid regis-
tration network for predicting nonrigid local displacements. The global 
alignment algorithm is not implemented in this work and is simulated 
based on errors reported in Ramalhinho et al. (2020).

The global alignment algorithm serves two purposes: (1) to obtain 
an initial rigid alignment between 𝑥𝑡 and 𝑦 and (2) to resample image 
features 𝑧𝑡 ∈  from a latent (more compact)  - an intermediate 
coordinate system: 
𝑧𝑡 = 𝑦 ⊗ (𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 )−1 (4)

where 
𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 = 𝑔(𝑥𝑡, 𝑦) (5)

and 𝑔 ∶  ×  →  is a rigid registration that computes displacement 
vectors 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 ⊂ . The global alignment function with its inputs 
and outputs is visualised in Fig.  2. While the rigidly-registered 𝑥𝑡 is 
denoted as 𝑥𝑡 ⊗ 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 , the inverse rigid transformation (𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 )−1 is 
analytically computed for resampling 𝑦 image features in  (Eq. (4)). 
Here, the latent 𝑧𝑡 offers a substantially compact representation and 
a focused FOV section of 𝑦, which is localised with respect to 𝑥𝑡, thus 
allowing non-rigid registration between 𝑥𝑡 and 𝑧𝑡 much more efficiently 
in training as well as during test-time.

The nonrigid registration network aligns the 𝑥𝑡 and 𝑧𝑡 in the latent 
 coordinates, using a neural network 𝑓𝜃𝑙𝑜𝑐𝑎𝑙  with network parameters 
𝜃𝑙𝑜𝑐𝑎𝑙: 
𝑑𝑙𝑜𝑐𝑎𝑙𝑡 = 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡) (6)

where 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ⊂  is a set of displacement vectors describing local 
nonrigid transformation, such that the registered 𝑥𝑡 in  is denoted
as: 
�̂� = 𝑥 ⊗ 𝑑𝑙𝑜𝑐𝑎𝑙 (7)
4

𝑡 𝑡 𝑡
Fig. 2. An overview of the global alignment function, which has been simulated in 
this work based on errors reported in previous works (Ramalhinho et al., 2022, 2020). 
Grey: non-parametric fixed function; Dotted bubble: expanded visualisation.

This two-step registration in Eqs.  (5) and (6) is equivalent to the 
problem described in Eq. (2).

Once registered, 𝑥𝑡 can be aligned with 𝑦: 
�̂�𝑡 = 𝑥𝑡 ⊗ 𝑑𝑡

⇒ �̂�𝑡 = 𝑥𝑡 ⊗ 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ⊗ 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡

(8)

In general, the global registration algorithm 𝑔 can also be a learn-
able machine learning model, while several global registration meth-
ods (Robu et al., 2018; Ramalhinho et al., 2020; Lange et al., 2009) 
have been proposed for this application. In this work one of our 
previously-proposed methods (Ramalhinho et al., 2020) was simulated 
as an example (i.e., reported errors of ±12 mm and ±40◦ used to obtain 
the alignment in simulation).

2.2.2. Training nonrigid local registration networks
In addition to most existing learning-based registration methods, 

the proposed local nonrigid registration network 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡) aims 
to adapt the three types of conditioning variables 𝑎𝑡 at test time. A 
hypernet 𝜃𝑙𝑜𝑐𝑎𝑙 = ℎ𝜃ℎ𝑦𝑝 (𝑎𝑙𝑒𝑛𝑡 , 𝑎𝑑𝑒𝑓𝑡 ) can re-parameterise Eq. (6) into a new 
network 𝑓𝜃ℎ𝑦𝑝  (visualised within the whole pipeline in Fig.  1 and on its 
own, with inputs, outputs and training scheme in Fig.  3). It combines 
ℎ𝜃ℎ𝑦𝑝  and 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 , with the only learnable parameters being 𝜃ℎ𝑦𝑝: 
𝑑𝑙𝑜𝑐𝑎𝑙𝑡 = 𝑓𝜃ℎ𝑦𝑝 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡)

= 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡), where 𝜃𝑙𝑜𝑐𝑎𝑙 = ℎ𝜃ℎ𝑦𝑝 (𝑎
𝑙𝑒𝑛
𝑡 , 𝑎𝑑𝑒𝑓𝑡 )

(9)

This enables efficient inference with registration parameters, variables 
𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡 . Together with the other conditioning variable, the stack 
starting location 𝑎𝑙𝑜𝑐𝑡 , they are optimised, with respect to the reward, 
in the subsequent RL function training (Section 2.3), in which 𝑎𝑙𝑒𝑛𝑡
and 𝑎𝑙𝑜𝑐𝑡  collectively determine the sampling location of 𝑥𝑡 (therefore 
conditioning the registration).

In this application, the hypernet-based local registration network is 
optimised in the latent coordinate space , by minimising the distance 
between the resampled image features 𝑧𝑡 and the warped image �̂�𝑡 in 
Eq. (7): 
𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡, 𝑥𝑡, 𝑑

𝑙𝑜𝑐𝑎𝑙
𝑡 )

= (1 − 𝜆)𝐿𝑑𝑖𝑐𝑒(𝑧𝑡, 𝑥𝑡 ⊗ 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ) + 𝜆𝐿𝑑𝑒𝑓 (𝑑𝑙𝑜𝑐𝑎𝑙𝑡 )
(10)

where 𝐿𝑑𝑖𝑐𝑒 and 𝐿𝑑𝑒𝑓  are the Dice loss between two binary masks and 
the 𝐿2-norm of the displacement gradient in 3D, with the additional 
parameter 𝜆 = 𝑎𝑑𝑒𝑓𝑡  controlling the weight between the two terms. 
Training the registration networks is therefore a hypernet optimisation:
�̂�ℎ𝑦𝑝 = 𝑎𝑟𝑔min

𝜃ℎ𝑦𝑝
E𝑡

[

𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡, 𝑥𝑡, 𝑑
𝑙𝑜𝑐𝑎𝑙
𝑡 )

]

(11)

Although the RL function uses an episodic training methodology which 
reflects the intended sequential interactions, the registration network 
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Fig. 3. Hypernet based registration network. Blue: parametric trainable function; Blue 
dashed bubble: combination of functions; Dotted bubble: expanded visualisation; Green: 
variables; Dashed line: used for function training. The hypernet re-parameterises the 
weights of the registration network based on the input conditioning variables, this 
weight-modification adapts the registration network to represent the new conditioning 
variable setting.

was trained by randomly sampling 𝑡 with respect to the initial global 
alignment. The trained registration network was found sufficiently 
accurate to be used in the RL training and further details are discussed 
in Section 2.3. Although the stack length is not explicitly included in 
the objective, it is implicitly included as the 3D intraoperative image 
𝑥𝑡 varies with varying stack length. Its explicit inclusion as an input 
to the hypernet ensures that this dependence is explicitly learned for 
allowing test-time variability of the registration network based on 
this variable. In practice, stack length can be discretised at test-time 
(e.g., short, medium, long) as exact measurements are not required for 
the functioning of the hypernet, which can accommodate deviations 
from RL-suggested condition variables as described in Section 3.2.

Segmentation masks are proposed here as the image features for 
𝑥𝑖 and 𝑧𝑖, from both intraoperative ultrasound and preoperative CT 
images, for two practical considerations: (1) there have been previously 
proposed segmentation methods for both CT (Saeed et al., 2024; Wei 
et al., 2021a; Ciecholewski and Kassjański, 2021; Zeng et al., 2016; 
Gao et al., 1996) and intraoperative ultrasound slices (Montaña-Brown 
et al., 2021; Porter et al., 2001; Song et al., 2015; Nam et al., 2012) 
for automating this step; and (2) segmentation provides relatively 
consistent features between those from images with simulated defor-
mation and those from interactively-acquired data (e.g. from a future 
prospective clinical validation study), such that the simulated data may 
be used as training data for or assisting the training of the proposed 
models. However, other image features or the unprocessed intensity 
values, using an unsupervised loss, could also be useful for training the 
registration network (Hoffmann et al., 2021). As an example, learned 
label maps could guide registration as opposed to pre-selected label 
maps (Hoffmann et al., 2021), however, this is beyond the scope of 
this work where we use liver vessels as features for registration. This 
is because vessels are one of the only visible features in intraopera-
tive imaging in this application, with most previous works adopting 
similar approaches for feature-based registration (Ramalhinho et al., 
2020; Wei et al., 2020; Nam et al., 2012), as vessels are arguably 
the only corresponding features for the purpose of robust registration. 
Furthermore, previous work has explored the features required for a 
successful registration in liver intraoperative to preoperative imaging 
and concluded that vessels and their bifurcations (especially >1) offer 
unique descriptions of the regions for registration (Ramalhinho et al., 
2018; Song et al., 2015; Wei et al., 2020; Nam et al., 2012).

2.3. The reinforcement learning function for test-time estimation of optimal 
conditioning variables

The RL function in our formulation provides suggestions for con-
ditioning variables (stack sampling location, deformation regularisa-
tion, and stack length) that lead towards an optimal registration. This 
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Fig. 4. Reinforcement learning function. Blue: parametric trainable function; Dotted 
bubble: expanded visualisation; Green: variables; Dashed lines: used for function 
training. The RL function suggests conditioning variable settings that guide the operator 
towards an optimal registration. The function is trained using a reward signal derived 
from the registration network, quantifying performance gains/losses subsequent to any 
conditioning variables suggestions by the RL function.

function is trained solely using a reward derived from performance 
gains/losses quantified for the registration network subsequent to a 
suggestion made by the RL function.

The RL function 𝑓𝜃𝑟𝑙  in Eq. (3) is so-called because it is trained using 
a RL reward signal based on a task performance directly generated 
using the fixed and pre-trained registration function. This function 
is visualised within the entire framework in Fig.  1 and showing its 
inputs, outputs and training scheme in Fig.  4. Conceptually similar to 
previous task-based reward signals in RL (Saeed et al., 2022, 2021; 
Yoon et al., 2020), the three types of conditioning variables 𝑎𝑡 are 
predicted by the RL function and optimised during registering samples 
representative of the kinds of deformation cases encountered during 
surgery (see Section 3.1 and Appendix for details). The time-step 𝑡
indicates each time a new image stack 𝑥𝑡 is sampled and a new feature 
𝑧𝑡 is resampled, during a sequential 𝑎𝑡-predicting process modelled 
within a MDP environment, as described as follows.

2.3.1. The interactive MDP environment
The policy and RL functions. In a policy gradient RL algorithm, we 
wish to learn a parametric RL policy function 𝜋𝜃𝑟𝑙 (𝑎𝑡|𝑠𝑡) ∶  × ∈ [0, 1]
that predicts the probability of action 𝑎𝑡 given observed state 𝑠𝑡 ∈ . 
The actions with highest probability can then be suggested by the RL 
function, at time step 𝑡: 
�̂�𝑡 = 𝑓𝜃𝑟𝑙 (𝑥𝑡, 𝑦) = 𝑎𝑟𝑔 max

𝑎𝑡∈
𝜋𝜃𝑟𝑙 (𝑎𝑡|𝑠𝑡) (12)

It should also be noted that it may be practically beneficial to have the 
previous sampling location 𝑎𝑙𝑜𝑐𝑡−1 as an additional input to this function, 
in spite of the MDP assumption, which is omitted here for notational 
convenience.

Observed states, actions and the effector . The observable state at time 
step 𝑡 in the MDP environment includes the intraoperative image stack 
𝑥𝑡 and the preoperative image 𝑦 (represented with observed 𝑧𝑡).

In this application, the three types of conditioning variables 𝑎𝑡 are 
considered as actions. 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡  are modelled directly using the 
hypernet described in Section 2.2.2. 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑙𝑜𝑐𝑡  determine where to 
sample the intraoperative ultrasound image stack 𝑥𝑡 in the next time 
step.

The 𝑥𝑡 sampling is performed by an effector 𝑒 ∶  → 

𝑥𝑡+1 = 𝑒(𝑎𝑡) (13)

where the effector 𝑒 is commonly denoted in RL algorithms for an 
‘‘external agent’’. In offline training strategies, the effector generates the 
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Fig. 5. Effector. Acquisition of the next intraoperative stack 𝑥𝑡+1, given conditioning 
variables. Grey: non-parametric fixed function; Green: variables. The effector takes in 
the guidance sampled from the RL function and uses it to acquire a new stack/sweep 
of US. This may be a human following the RL guidance intraoperatively, where the 
guidance is delivered to the human operator via a constructed map (see Section 2.4).

retrospectively recorded or simulated interaction data. In other cases, 
such as the use of the proposed method, a human observer or a robotic 
system becomes the effector following RL-function-suggested actions 
(although this guidance may be ignored or not followed exactly, as 
described in Section 3.2). The effector is visualised showing inputs and 
outputs in Fig.  5. In general, the effector executes an action to influence 
the environment and this makes the system non-differentiable. This 
also motivates the proposed RL function optimisation, as opposed to 
for example a direct gradient descent optimisation.
The partially observable environment . To summarise, the proposed 
MDP environment as a whole encompasses the following observed data:

• The actions {𝑎𝑙𝑜𝑐𝑡 , 𝑎𝑙𝑒𝑛𝑡 , 𝑎𝑑𝑒𝑓𝑡 }, suggested by the RL function 𝑓𝜃𝑟𝑙 .
• The intraoperative image stack 𝑥𝑡, sampled by the effector 𝑒, using 
the suggested {𝑎𝑙𝑜𝑐𝑡 , 𝑎𝑙𝑒𝑛𝑡 }.

• The latent features 𝑧𝑡, resampled by the fixed global alignment 
algorithm 𝑔, from 𝑦 with respect to 𝑥𝑡.

• The transformation 𝑑𝑙𝑜𝑐𝑎𝑙𝑡  between 𝑥𝑡 and 𝑧𝑡, estimated by the 
hypernet-based local registration network 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡), using 
the suggested 𝑎𝑑𝑒𝑓𝑡 .

2.3.2. Training with a registration performance reward
After the registration, the registration performance in Eq. (10) can 

be used to construct the reward function 𝑟 ∶  ×  → , to train 
the RL function 𝑓𝜃𝑟𝑙 , i.e. optimising parameters 𝜃𝑟𝑙. The scalar reward 
𝑅𝑡 ∈  ⊂ R represents the improvement in registration performance 
between consecutive time steps: 
𝑅𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡)

= 𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡, 𝑥𝑡, 𝑑
𝑙𝑜𝑐𝑎𝑙
𝑡 ) − 𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡−1, 𝑥𝑡−1, 𝑑

𝑙𝑜𝑐𝑎𝑙
𝑡−1 )

(14)

Given a sequence of observed states, actions and rewards {𝑠1, 𝑎1, 𝑅1, 𝑠2,
𝑎2, 𝑅2,… , 𝑠𝑡, 𝑎𝑡, 𝑅𝑡,…}, the optimal RL function parameters �̂�𝑟𝑙 may be 
obtained by maximising the accumulated reward: 

�̂�𝑟𝑙 = 𝑎𝑟𝑔max
𝜃𝑟𝑙

E𝜋𝜃𝑟𝑙

[

∑

𝑘
𝛾𝑘𝑅𝑡+𝑘

]

(15)

where 𝛾 ∈ [0, 1] is the discount factor for future rewards. Further details 
of the interactive training procedure are summarised in Algo. 1 and Fig. 
1.

2.4. Optional map construction as an intraoperative aid

The sequence of multiple intraoperative image stacks 𝑥𝑡 in previous 
sections are samples representing patient anatomy (also termed ‘envi-
ronment’ in SLAM literature), which contains anatomical landmarks. 
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Some of these landmarks are of limited spatial variation, such that 
constructing a map of them may be useful for a visual reference to aid 
intraoperative actions, especially when the human effector is trying to 
follow the suggested actions, e.g. where to sample the next image stack 
and how far to move the ultrasound probe. This serves as a mechanism 
to deliver the intraoperative RL-sampled guidance in a human-readable 
format to the operator.

In this work, we propose to construct an optional map using point 
landmarks for aiding the intraoperative image acquisition in this in-
teractive registration application. The landmark map, represented by 
a point cloud 𝑝𝑦 ∈ 𝑃 , is reconstructed from a set of 𝑈 image stacks 
[𝑥𝑢]𝑢=1,…,𝑈 . The map construction 𝑙 ∶ 𝑈 →  is based on a reference 
map, a predefined landmark point cloud �̃�𝑦 ∈ 𝑃  in preoperative image 
𝑦, including the following steps:

1. Obtain globally-aligned image stacks 𝑧𝑢 (Eq. (4)).
2. Detect available landmarks 𝑝𝑧𝑢 in each image stack.
3. Estimate �̂�𝑦𝑢 with respect to the reference map, by registering 
each 𝑝𝑧𝑢 to �̃�𝑦 using an ICP (iterative closest point) algorithm.

4. Update the map �̂�𝑦 = 1
𝑈
∑

𝑢 �̂�
𝑦
𝑢, by averaging.

The landmark detection may be either done manually e.g., by con-
ducting a binary classification of landmark presence within an acquired 
stack or automatically using previously proposed automatic segmenta-
tion or localisation methods (Menteşe and Bılge, 2017; Montaña-Brown 
et al., 2021). Thus, the effector defined in Eq. (13) can be conditioned: 
𝑥𝑡+1 = 𝑒(𝑎𝑡|�̂�

𝑦
𝑢).

Other visual cues, such as the ultrasound probe location, known 
in the original image stacks, can also be localised in the updated 
map to aid navigation. We also propose to use a 2D map for the 
navigation purpose, by projecting the computed landmark map �̂�𝑦 onto 
plane overlaid with the preoperative volume rendering. A coronal plane 
example is shown in Fig.  6.

There are alternative mechanisms to sample point clouds from mul-
tiple image stacks in simultaneous localisation and mapping literature, 
such as landmark localisation using a nonrigid mapping and updating 
the registration using the localised landmarks. Here, we adopt a simple 
approach as a proof of concept i.e. using the global registration function 
𝑔 to localise the landmarks based on the images independently. Other 
intraoperative visualisation techniques may be used for this registration 
framework, which together with how intraoperative guidance visuali-
sation impacts surgical procedures, may be beyond the scope of this 
work.

3. Experiments

In general, developing the registration network (described in Sec-
tion 2.2) requires paired CT and ultrasound images, while sufficiently 
sampled ultrasound stacks from individual patients may also be re-
quired to allow the registration function to generalise to various ac-
quisition locations, as well as for training the interactive RL function 
(Section 2.3). Both data requirements are limited by the prevalence 
of the surgical procedures and available clinical data are generally 
considered insufficient to train large interactive networks. Therefore, 
this work tested the networks that are trained using preoperative 
images from clinical patients, with simulated intraoperative ultrasound 
image masks (Ramalhinho et al., 2023). Using ROI segmentation masks 
as image-representing features for 𝑥𝑡 and 𝑧𝑡, proposed in Section 2.2.2, 
was also motivated for maximising the generalisation ability for the 
partial-simulation-trained networks. It would be interesting to investi-
gate methods to utilise available paired data for improving the training, 
but they are not considered in this work.

Validation of the proposed methods, however, cannot sidestep 
prospective studies, in which interactions should take place, i.e. the 
trained neural networks are applied on the ultrasound images which are 
acquired online or in real-time, while both the ultrasound acquisition 
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Fig. 6. A 2D point cloud map of landmarks constructed as an intraoperative aid 
(projected into 2D coronal view and overlaid onto a 2D projection of the preoperative 
volume). Intraoperative points sampled using global alignment function and correction 
done as described in Section 2.4. hv: hepatic vein (1, 2, 3 corresponds to right, middle 
and left); pv: portal vein branching point; gb: gall bladder; ao: aorta; vc: vena cava. 
Sampling guidance arrow comprises of 𝑎𝑡 and shows the direction and magnitude of 
suggested direction.

and registration are guided by the network-suggested actions. In this 
work, we report a set of validation experiments, based on the simulated 
intraoperative data. It is necessary for two reasons: (1) Testing the 
proposed machine learning methodology using consistent training and 
test data, to demonstrate the efficacy in controlled experiments for 
further methodological development; and (2) Providing an estimate of 
the effect size in registration improvement due to the added interactive 
ultrasound acquisition, for designing and planning a future clinical 
validation study.

3.1. Data and simulated deformation

We use patient data to evaluate our framework, where the preop-
erative 3D volume used is the CT volume acquired prior to a laparo-
scopic liver resection or laparoscopic liver staging procedure, (with 
liver vessels segmented to create binary masks using a commercial 
service (Anon, 2023)). All data involving human participants was ac-
quired in accordance with the ethical standards of the institutional 
and/or national research committee and with the 1964 Helsinki decla-
ration and its later amendments or comparable ethical standards, under 
the NIHR grant [II-LA-1116-20005] with codes REC = 14/LO/1264, 
IRAS = 158321. We used 10 CT volumes in total, divided into the train, 
validation and holdout sets each with 4, 2 and 4 CT volumes. In this 
work the size of 𝑦, the preoperative volume, is 512 × 512 × 512 voxels, 
where the 20 voxels correspond to 1 cm (i.e., 0.5 mm voxel size in all 
dimensions).

The intraoperative image stacks are simulated by first deforming 
the 3D CT volumes and sampling simulated US masks from these using 
US simulation as in Ramalhinho et al. (2023, 2020). To generate intra-
operative volumes from which we sample intraoperative image stacks, 
we deform the 3D CT volumes using random deformation simulating 
insufflation by applying compression to the volumes (in the coronal 
plane) and breathing by applying compression or expansion to the 
volumes (in the coronal or transverse/axial planes) and postural defor-
mations by small random deformations in all three planes. Insufflation, 
breathing-based deformations and postural deformation compared to 
the preoperative volume are common in laparoscopic surgery which is 
why we simulate these deformations. We generate 1000 such deformed 
cases for each of the patients (further details in the Appendix).

Random deformations (as described above, with further details in 
the Appendix) are applied to this volume to obtain an intraoperative 
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volume of the same size as the preoperative volume, for sampling 
intraoperative simulated US images. The intraoperative US stacks, 𝑥𝑡
are formed of each slice being 72 × 72 pixels (20 pixels correspond to 
1 cm). The stack length is between 2 to 10 cm. Each US stack is formed 
over 24 slices over this stack length. The 𝑧𝑡 sampled preoperative 
section after global alignment consists of stacks formed of slices with 
96 × 96 pixels, with 40 slices in each stack. The stack length was 2
cm larger than the corresponding US stack 𝑥𝑡. It is noteworthy that 
the sampled latent CT sections were designed to be larger than the 
US stacks in order to accommodate any likely insufficient overlap 
following the global alignment. The dimensions for the images were 
configured empirically with realistic sizes (sampled using 24 slices) 
over representative stack lengths (2-10 cm) where these were set with 
input from expert clinicians with approximately 20 years experience 
with laparoscopic and endoscopic US.

3.2. Interactive data sampling for training and validation

During training, the effector was modelled in simulation by fol-
lowing the stack start location guidance 𝑎𝑙𝑜𝑐 and the stack length 
parameter 𝑎𝑙𝑒𝑛. In the simulator, the ultrasound image acquisition path 
is determined by a) the start location - a vector specifying the relative 
spatial location from the slice centre from the last stack 𝑥𝑡−1, b) a spline 
fit to the deformed liver surface from the starting location towards the 
tangential direction 𝑎𝑙𝑜𝑐𝑡

‖𝑎𝑙𝑜𝑐𝑡 ‖2
, and c) the image slices are acquired along 

the spline until the suggested stack length is reached, defined as the 
distance between slice centres.

It is interesting to note that the above-described effector is one 
example of how such sequential suggestions are followed and actions 
are executed. Large variance in its behaviour would increase the vari-
ance of the sampled ultrasound stacks. It is indeed expected and taken 
into account both in the registration function 𝑓𝜃ℎ𝑦𝑝  training, with data 
sampled at different regions from the entire liver, and in the RL function 
training, which only takes input data from one previous step in the 
Markovian environment. Therefore, it is not a requirement to follow 
the exact acquisition guidance to generate the next guidance.

After training, upon deployment of the framework in clinical prac-
tice, this becomes an interactive registration framework, where the RL 
function produces guidance of where to sample to obtain a better regis-
tration (in terms of registration accuracy) while the sampled images are 
registered with sections resampled from the preoperative volume. For 
receiving the stack start location guidance intraoperatively we propose 
to use a simple 2D map with the probe position localised with respect 
to a few key landmarks together with an indication of the direction 
and magnitude of movement for the probe based on the stack start 
location guidance as described in Section 2.3, but investigation of how 
this guidance visualisation impacts surgical procedures is beyond the 
scope of this work. At inference it is not required or indeed feasible 
to follow the guidance exactly and relatively large deviations were 
therefore reflected in the simulated intraoperative data. The ‘‘noisy’’ 
actions consisted of actions with noise added, in the ranges ±0.5 cm 
for 𝑎𝑙𝑒𝑛𝑡  and ±1.0 cm for 𝑎𝑙𝑜𝑐𝑡 .

To summarise, we envision that within clinical practice the operator 
that controls the intraoperative imaging would get an overlay of the 
registered intraoperative image onto the preoperative image alongside 
our proposed map as a visual aid. The RL-suggested actions would then 
be delivered to the operator in a human-readable format via the map, 
and the operator may choose to follow this guidance if the overlay 
registration is to be improved.

3.3. Network implementation and training

The hypernet-based registration function consists of a displacement-
predicting network based on a 3D U-Net (Çiçek et al., 2016; Hoopes 
et al., 2021) with a fully-connected hypernet for predicting the regis-
tration network parameters, as in previous works (Hoopes et al., 2021). 
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The RL function is based on a convolutional neural network (Schul-
man et al., 2017; Mnih et al., 2016), trained using proximal policy 
optimisation (Schulman et al., 2017). The specific network architec-
tures and hyperparameters used are outlined in the Appendix. The 
hypernet-based registration function and RL function were trained 
for approximately 72 h and 192 h, respectively, on a single Nvidia 
Tesla V100 GPU. TensorFlow with python was used to implement the 
networks and their training procedures.

3.4. Evaluation metrics

We use the training set to train both functions independently, the 
validation set to monitor performance and rewards during training, 
and the holdout set (i.e., 4000 deformation cases simulated from 4 
patients) to report performance metrics. Four metrics are reported in 
this work, Dice Similarity Coefficient (DSC), Global Target Registration 
Error (GTRE), Local Target Registration Error (LTRE) and a Geometric 
Distance Measure (GDM). The GTRE is computed for intraoperative 
stacks where the landmarks are visible, averaged over all patients 
and deformation cases in the holdout set; the landmarks used are the 
branching points for the right, middle and left hepatic vein, centre of 
the vena cava and aorta, the branching point for the portal vein and 
the gall bladder, as illustrated in Fig.  6. The LTRE is computed based 
on features randomly sampled from vessel boundaries, averaged over 
all patients and deformation cases in the holdout set, since deformation 
between intraoperative volume and preoperative volume is known from 
simulations. The GDM is the distance between the centre of the 3D 
section extracted from the preoperative volume using the global align-
ment function and the post-registration intraoperative image stack, 
averaged over all patients and deformation cases in the holdout set. 
A perfect DSC of 1 would indicate perfect overlap between the warped 
intraoperative stack and the latent preoperative section, where a DSC of 
0 would indicate no overlap. The other three metrics are distance-based 
and zero would indicate a perfect registration. For context the metrics 
before registration were 0.21DSC, 41.8 mm GTRE, 36.7 mm LTRE, 
29.4 mm GDM matching scales reported by Vijayan et al. (2014). The 
metrics after the simulated global alignment but before any deformable 
registration or guidance were 0.31DSC, 23.9 mm GTRE, 22.1 mm LTRE, 
24.2 mm GDM matching errors scales from Ramalhinho et al. (2022).

3.5. Evaluating the registration function

The registration function is evaluated by comparing with other 
common registration methods, i.e., an iterative nonrigid registration, 
implemented using GPU-enabled TensorFlow (Fu et al., 2020a), and a 
non-hypernet deep learning based nonrigid registration, i.e. equivalent 
to a re-implementation of VoxelMorph (Balakrishnan et al., 2019). 
DRAMMS (Machado et al., 2018) and DEEDS (Heinrich, 2018) are 
also used for comparison due to observed performance improvements 
in other tasks (Xiao et al., 2019). Additionally, we have also tested 
a variant of our proposed registration function which takes inputs of 
images rather than segmentation maps, called 𝑓𝜃hyp  (image-input). All 
reported variants were trained separately, and the architecture of the 
registration function is the same between networks (Section 3.3).

These comparisons are made with locations 𝑎𝑙𝑜𝑐𝑡  being randomly 
sampled within the liver, while the other two conditioning variables 
𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  are fixed and optimised over the holdout set. The optimal 
𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  for the hypernet were estimated using a grid search 
over an empirically defined range. For 𝑎𝑙𝑒𝑛𝑡  the range was 2 cm to 
10 cm, as suggested by clinicians with over 20 years of experience 
with intraoperative ultrasound. For 𝑎𝑑𝑒𝑓𝑡 , this was 0 to 1 as in Hoopes 
et al. (2021) to be used as the regularisation weight as in Section 2.2.2. 
Similarly, for the deep-learning-based registration, optimal 𝑎𝑑𝑒𝑓𝑡  and 
𝑎𝑙𝑒𝑛𝑡  were estimated using a grid search over this empirically defined 
range, where 20,000 training iterations of the registration network 
were used for this search and the one with optimal performance was 
selected for comparison.
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3.6. Evaluating the test-time optimisation using the hypernet

The test-time optimisation enabled by the hypernet is evaluated by 
comparing, for locations 𝑎𝑙𝑜𝑐𝑡  being randomly sampled within the liver, 
the hypernet with optimal 𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  selected by the RL function 
with:

(1) the same hypernet with 𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  randomly selected from 
the empirically defined range (Section 3.5), per sample;

(2) the same hypernet with 𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  randomly selected from an 
empirically defined range, fixed over the holdout set;

(3) the same hypernet with 𝑎𝑑𝑒𝑓𝑡  fixed and optimised over the 
holdout set and 𝑎𝑙𝑒𝑛𝑡  sampled randomly per intraoperative stack;

(4) a non-hypernet registration with 𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  fixed and opti-
mised over the holdout set as described above (see Section 3.5);

(5) a non-hypernet registration with 𝑎𝑑𝑒𝑓𝑡  and 𝑎𝑙𝑒𝑛𝑡  fixed, selected 
randomly from an empirically defined range. For all of these com-
parisons, the locations are sampled randomly i.e., 𝑎𝑙𝑜𝑐𝑡  is randomly 
sampled.

3.7. Evaluating the reinforcement learning function

To the best of our knowledge, no such interactively guided regis-
tration methods have been proposed yet. Next we evaluate the efficacy 
of the actions sampled from the RL function by conducting ablation 
studies to investigate the impact of RL suggested conditioning variables 
(ablation refers to the removal of a methodological component within 
the framework).

We compare our implementation (i.e., hypernet with all 𝑎𝑙𝑒𝑛𝑡 , 𝑎𝑑𝑒𝑓𝑡
and 𝑎𝑙𝑜𝑐𝑡  all optimised per acquired image using the RL function) with 
the following:

(1) the same hypernet with 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡  optimally selected by the 
RL function per intraoperative stack sampled while locations 𝑎𝑙𝑜𝑐𝑡  are 
sampled randomly (see Section 3.6);

(2) the same hypernet with fixed 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡  (optimal over the set) 
and RL selected locations 𝑎𝑙𝑜𝑐𝑡 ;

(3) the same hypernet with fixed 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡  (optimal over the set) 
and locations 𝑎𝑙𝑜𝑐𝑡  randomly sampled (see Section 3.6);

(4) a non-hypernet registration with conditioning variables 𝑎𝑙𝑜𝑐𝑡  and 
𝑎𝑑𝑒𝑓𝑡  fixed and optimised over the holdout set and locations 𝑎𝑙𝑜𝑐𝑡  sampled 
using RL function;

(5) a non-hypernet registration with conditioning variables 𝑎𝑙𝑜𝑐𝑡  and 
𝑎𝑑𝑒𝑓𝑡  fixed and optimised over the holdout set as described above and 
locations 𝑎𝑙𝑜𝑐𝑡  sampled randomly (see Section 3.5).

3.8. Evaluating the impact of conditioning variables on registration perfor-
mance

3.8.1. Evaluating varying spatial regularity of deformation
Our proposed registration function allows for the spatial regular-

ity of deformation to be controlled at test-time individually for each 
acquired US sweep using the 𝑎𝑑𝑒𝑓𝑡 . We investigate how varying this 
for samples impacts the registration performance in terms of DSC. 
We sample various different locations within the liver and observe 
the impact of varying the spatial regularity of deformation on the 
registration performance at these locations.

3.8.2. Evaluating varying US stack length
Similar to the spatial regularity of deformation, our proposed reg-

istration function also allows for the stack length of individual US 
sweeps to be controlled at test time. We investigate the effect of varying 
this across the liver. We sample different locations in the liver and 
vary the stack length parameter to investigate its effect on registration 
performance.
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Data: Set of preoperative volumetric CT from different patient cases {𝑦}1…𝑁  and corresponding intraoperative volumes (deformed compared 
to preoperative volume) from which to sample intraoperative stacks.

Result: Trained RL function 𝑓�̂�𝑟𝑙  with optimised weights �̂�𝑟𝑙.
while not converged do

Sample a new preoperative volumetric CT 𝑦 (and a corresponding deformed intraoperative volume to sample moving intraoperative image 
stacks from)
Start at 𝑡 = 0;

Sample an intraoperative stack 𝑥𝑡 at a random location;
Compute 𝑧𝑡 using 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 = 𝑔(𝑥𝑡, 𝑦) followed by 𝑧𝑡 = 𝑦 ⊗ (𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 )−1 (Eq.  (5) followed by Eq.  (4));
Sample action from RL function 𝑎𝑡 = 𝑓𝜃𝑟𝑙 (𝑥𝑡, 𝑦) (Eq.  (12));
Register 𝑥𝑡 and 𝑧𝑡 using 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 = 𝑓�̂�ℎ𝑦𝑝 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡) followed by 𝑥𝑡 ⊗ 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ⊗ 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡  (i.e., Eq.  (9) followed by Eq.  (8));
Generate the next intraoperative image stack i.e. 𝑥𝑡+1 = 𝑒(𝑎𝑡) (Eq.  (13));
Compute 𝑧𝑡+1 using 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1 = 𝑔(𝑥𝑡+1, 𝑦) followed by 𝑧𝑡+1 = 𝑦 ⊗ (𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1 )−1 (Eq.  (5) followed by Eq.  (4));
Sample action from RL function 𝑎𝑡+1 = 𝑓𝜃𝑟𝑙 (𝑥𝑡+1, 𝑦) (Eq.  (12));
Register 𝑥𝑡+1 and 𝑧𝑡+1 using 𝑑𝑙𝑜𝑐𝑎𝑙𝑡+1 = 𝑓�̂�ℎ𝑦𝑝 (𝑥𝑡+1, 𝑧𝑡+1; 𝑎𝑡+1) followed by 𝑥𝑡+1 ⊗ 𝑑𝑙𝑜𝑐𝑎𝑙𝑡+1 ⊗ 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1  (i.e., Eq.  (9) followed by Eq.  (8));
Compute the first reward 𝑅𝑡+1 = 𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡+1, 𝑥𝑡+1, 𝑑𝑙𝑜𝑐𝑎𝑙𝑡+1 ) − 𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡, 𝑥𝑡, 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ) (Eq.  (14));

for 𝑡 ← 2 to 𝑇  do
Note: 𝑡 is now iterating starting at 𝑡 = 2;

Generate the next intraoperative image stack i.e. 𝑥𝑡 = 𝑒(𝑎𝑡−1) (Eq.  (13));
Compute 𝑧𝑡 using 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 = 𝑔(𝑥𝑡, 𝑦) followed by 𝑧𝑡 = 𝑦 ⊗ (𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 )−1 (Eq.  (5) followed by Eq.  (4));
Sample action from RL function 𝑎𝑡 = 𝑓𝜃𝑟𝑙 (𝑥𝑡, 𝑦) (Eq.  (12));
Register 𝑥𝑡 and 𝑧𝑡 using 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 = 𝑓�̂�ℎ𝑦𝑝 (𝑥𝑡, 𝑧𝑡; 𝑎𝑡) followed by 𝑥𝑡 ⊗ 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ⊗ 𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡  (i.e., Eq.  (9) followed by Eq.  (8));
Compute the reward 𝑅𝑡 = 𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡, 𝑥𝑡, 𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ) − 𝐿𝜃ℎ𝑦𝑝 (𝑧𝑡−1, 𝑥𝑡−1, 𝑑𝑙𝑜𝑐𝑎𝑙𝑡−1 ) (Eq.  (14));

end 
Once 𝑅𝑡=1∶𝑇  collected, update RL function using gradient ascent based on Eq.  (15)

end 
Algorithm 1: Interactions of the RL function and MDP environment
3.8.3. Evaluating registration performance at varying sampling locations
Our proposed registration function is generalisable to varying loca-

tions within the liver. To explore the effect of varying starting location 
𝑎𝑙𝑜𝑐𝑡  across the liver, we compute registration performance at different 
locations within the liver, in terms of DSC to investigate which areas 
within the liver may be better registered.

4. Results

4.1. Registration performance

For evaluating the registration function, we turn the reader’s atten-
tion to the top block of results presented in Table  1. When comparing 
the hypernet, with fixed optimal registration parameter values over the 
entire set, to a non-hypernet registration network or to an empirically 
configured iterative registration, we expect little difference between 
the two for supporting a test-time optimisable alternative without 
compromising registration capability. Indeed, as detailed in Table  1, 
statistical significance was not observed for all tested metrics (p-values 
> 0.050 for all), except for the GDM metric for comparison with the 
iterative registration variant (p-values = 0.008 and 0.006 for the two 
comparisons). The standard deviation of the Jacobian determinant was 
between 0.58-1.97 (95th percentile). For comparisons to DRAMMS 
and DEEDS, while some metrics are improved compared to the hy-
pernet approach, these improvements are within the margin of error. 
Moreover, DEEDs or DRAMMs would require substantial modifications 
within our hypernet-based guidance framework, which allows test-time 
adaptation of conditioning variables. Note that these methods require 
geometrically reconstructed images on a regular grid, with substantial 
overlapping common anatomical features already present, which makes 
9

their use in our application challenging and uncommon within current 
literature. Thus, we use our hypernet approach in subsequent exper-
iments. It should also be noted that image-only registration network 
still manages to substantially reduce registration error compared to 
un-registered cases. We use the best-performing hypernet approach for 
subsequent experiments.

4.2. Test-time optimisation performance

For evaluating the test-time optimisation of conditioning variables 
using the hypernet we present results in the middle block of Table  1. 
Here, we observed higher performance of the proposed hypernet with 
stack length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡  being optimised 
locally (estimates predicted by RL function) i.e. for each intraoperative 
image stack that is registered (first row in the middle block of the 
table). Statistical significance can be found when compared to all 
other tested methods for all tested metrics (all p-values< 0.010). For 
evaluating the test-time optimisation of conditioning variables using 
the hypernet we present results in the middle block of Table  1. Here, 
we observed higher performance of the proposed hypernet with stack 
length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡  being optimised locally 
(estimates predicted by RL function) i.e. for each intraoperative image 
stack that is registered (first row in the middle block of the table). 
Statistical significance can be found when compared to all other tested 
methods for all tested metrics (all p-values< 0.010).

It is also noteworthy that all variants with stack length 𝑎𝑙𝑒𝑛𝑡  and 
deformation regularisation 𝑎𝑑𝑒𝑓𝑡  randomly selected form an empirical 
range performed worse than their counterparts with optimised stack 
length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡  for all tested metrics 
(all p-values< 0.010). One exception to this was the GDM metric for 
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Table 1
Table of results on the holdout set. The conditioning variable settings are: ‘fixed optimal’: fixed for the entire holdout set and optimal selected by averaging over the whole 
set; ‘fixed random’: fixed for the entire holdout set and randomly selected from an empirically defined range; ‘random’: randomly selected per acquired intraoperative stack; ‘RL 
optimal’: optimal selected by RL function per acquired intraoperative stack. The networks are: 𝑓𝜃ℎ𝑦𝑝 : hypernet; 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 : non-hypernet (VoxelMorph) (Balakrishnan et al., 2019); Iterative 
Registration: (Fu et al., 2020a). Bold indicates best performing method in each block.
 Network 𝑎𝑙𝑒𝑛𝑡 𝑎𝑑𝑒𝑓𝑡 𝑎𝑙𝑜𝑐𝑡 DSC GTRE (mm) LTRE (mm) GDM (mm) 
 Un-registered N/A N/A N/A 0.21 ± 0.04 41.8 ± 0.7 36.7 ± 0.4 29.4 ± 0.5  
 Globally-registered N/A N/A N/A 0.31 ± 0.06 23.9 ± 0.6 22.1 ± 0.6 24.2 ± 0.5  
 𝑓𝜃ℎ𝑦𝑝 fixed optimal fixed optimal random 0.68 ± 0.05 7.6 ± 0.6 7.9 ± 0.4 7.1 ± 0.4  
 𝑓𝜃ℎ𝑦𝑝  (image-input) fixed optimal fixed optimal random 0.59 ± 0.07 8.9 ± 0.7 9.4 ± 0.5 8.3 ± 0.4  
 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 fixed optimal fixed optimal random 0.63 ± 0.05 8.6 ± 0.3 9.0 ± 0.3 7.0 ± 0.2  
 Iterative fixed optimal fixed optimal random 0.61 ± 0.04 8.7 ± 0.4 9.1 ± 0.3 8.0 ± 0.2  
 DRAMMS fixed optimal fixed optimal random 0.67 ± 0.07 8.1 ± 0.7 8.4 ± 0.5 7.4 ± 0.5  
 DEEDS fixed optimal fixed optimal random 0.69 ± 0.05 8.2 ± 0.6 7.9 ± 0.3 7.2 ± 0.4  
 𝑓𝜃ℎ𝑦𝑝 RL optimal RL optimal random 0.74 ± 0.05 6.7 ± 0.4 7.1 ± 0.6 6.4 ± 0.3  
 𝑓𝜃ℎ𝑦𝑝 random random random 0.62 ± 0.04 8.8 ± 0.5 9.8 ± 0.4 7.3 ± 0.3  
 𝑓𝜃ℎ𝑦𝑝 fixed random; fixed random; random 0.60 ± 0.06 9.1 ± 0.4 9.9 ± 0.6 8.1 ± 0.2  
 𝑓𝜃ℎ𝑦𝑝 random fixed optimal random 0.64 ± 0.06 7.9 ± 0.4 8.3 ± 0.3 7.0 ± 0.3  
 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 fixed optimal fixed optimal random 0.63 ± 0.05 8.6 ± 0.3 9.0 ± 0.3 7.0 ± 0.2  
 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 fixed random fixed random random 0.54 ± 0.07 9.9 ± 0.6 10.7 ± 0.5 7.5 ± 0.3  
 𝑓𝜃ℎ𝑦𝑝 RL optimal RL optimal RL optimal 0.77 ± 0.05 6.5 ± 0.6 7.0 ± 0.3 6.5 ± 0.4  
 𝑓𝜃ℎ𝑦𝑝 RL optimal RL optimal random 0.74 ± 0.05 6.7 ± 0.4 7.1 ± 0.6 6.4 ± 0.3  
 𝑓𝜃ℎ𝑦𝑝 fixed optimal fixed optimal RL optimal 0.71 ± 0.05 7.2 ± 0.3 7.5 ± 0.4 7.0 ± 0.2  
 𝑓𝜃ℎ𝑦𝑝 fixed optimal fixed optimal random 0.68 ± 0.05 7.6 ± 0.6 7.9 ± 0.4 7.1 ± 0.4  
 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 fixed optimal fixed optimal RL optimal 0.67 ± 0.04 8.2 ± 0.4 8.4 ± 0.4 7.2 ± 0.3  
 𝑓𝜃𝑙𝑜𝑐𝑎𝑙 fixed optimal fixed optimal random 0.63 ± 0.05 8.6 ± 0.3 9.0 ± 0.3 7.0 ± 0.2  
the comparison between 𝑓𝜃𝑙𝑜𝑐𝑎𝑙  with parameters randomly selected vs 
optimised (𝑝-value = 0.052).

Moreover, comparing our method to three methods from exist-
ing works for random starting location 𝑎𝑙𝑜𝑐𝑡 , we found that our pro-
posed method with a hypernet-based registration with locally optimised 
stack length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡  performed better 
than the tested alternatives, with statistical significance (all p-values<
0.010). The tested alternatives were: (1) iterative registration (with 
fixed optimal 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡 ); (2) non-hypernet registration with fixed 
optimal 𝑎𝑙𝑒𝑛𝑡  and 𝑎𝑑𝑒𝑓𝑡 ; (3) non-hypernet registration with fixed optimal 
𝑎𝑑𝑒𝑓𝑡  and random 𝑎𝑙𝑒𝑛𝑡  (most commonly used in practice).

4.3. Guidance performance

For this set of evaluations, in the bottom block of results presented 
in Table  1, we observed higher performance for our proposed solution, 
with a hypernet based registration function with RL estimated optimal 
stack length 𝑎𝑙𝑒𝑛𝑡 , deformation regularisation 𝑎𝑑𝑒𝑓𝑡  and starting location 
𝑎𝑙𝑜𝑐𝑡  (first row in the bottom block of the Table), compared to all other 
tested methods (all p-values < 0.010).

It is noteworthy that all variants with locations sampled using the 
RL optimal estimates performed better than their counterparts with 
randomly sampled locations, with statistical significance for all tested 
metrics except GDM (all p-values < 0.010). For GDM significance 
was not found for these comparisons for any of the corresponding 
comparisons (all p-values > 0.050).

The hypernet-based registration function took approximately
120 ms at inference and the RL function took approximately 60 ms, 
making the combined inference time approximately 180 ms per sam-
pled sweep.

4.4. Exploring the effect of conditioning variables

We conduct some small exploratory studies to investigate the effects 
of the stack length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡  and starting 
location 𝑎𝑙𝑜𝑐𝑡 . While these studies are not exhaustive in investigating the 
impacts at every possible location within the liver, they allow us to 
explore the additional flexible aspects of our framework. Results from 
these studies are presented in the following Sections 4.4.1, 4.4.2 and
4.4.2.
10
Fig. 7. Effect of varying 𝑎𝑑𝑒𝑓𝑡 , the spatial regularity of deformation at various starting 
locations 𝑎𝑙𝑜𝑐𝑡 . Left: Linear scale; Right: Logarithmic scale, where each colour is a 
different sampling location and dotted lines indicate optimal values.

Fig. 8. Effect of 𝑎𝑑𝑒𝑓𝑡 , the spatial regularity of deformation, averaged over 1000 
locations.

4.4.1. Effect of varying spatial regularity of deformation
We observe varying optimal values for the spatial regularity of 

deformation across varying starting location 𝑎𝑙𝑜𝑐𝑡  within the liver as 
shown in Fig.  7.

Fig.  8 shows that no consistent trend between the compared reg-
istration methods exists, when studying impact of spatial regularity 
of deformation i.e., 𝑎𝑙𝑒𝑛𝑡  in our framework. This, coupled with, no 
consistent performance improvement and other difficulties with using 
non-adaptive methods such as DEEDS and DRAMMS, as discussed in 
Section 4.1, lead us to the use of hyper-nets in our proposed framework.

4.4.2. Effect of varying US stack length
We observe two trends across the liver as we vary the stack length 

at different locations, as shown in Fig.  9: (1) registration performance 
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Fig. 9. Effect of varying stack length at various sampling locations.

Fig. 10. Registration performance (DSC) overlaid onto a patient volume with fixed 
stack length and spatial regularity of deformation. Each column showing a different 
view for the same patient (legend on the top-left represents the view presented).

showing a constant upward trend or plateau with increasing stack 
length, for regions with long vessels (vessels that do not show branch-
ing over more than 4 cm); (2) registration performance declining 
after high stack length for vessel-rich regions (three or more branches 
appearing in a 4 cm by 4 cm by 4 cm region), respectively.

4.4.3. Effect of varying starting location 𝑎𝑙𝑜𝑐𝑡  with fixed stack length 𝑎𝑙𝑒𝑛𝑡
and deformation regularisation 𝑎𝑑𝑒𝑓𝑡

We compute registration performance at 8000 different randomly 
sampled locations within the liver, with other conditioning variables 
being fixed. We interpolate and smooth these values and overlay them 
onto a patient volume as show in Fig.  10. High DSC is observed for 
larger vessels and low DSC is observed in peripheral regions, where 
vessel sizes are smaller. Regions where either the moving or fixed image 
or both did not contain any vessels were omitted from the visualisation.

4.5. Impact of segmentation on registration performance

To explore the impact of segmentation variability on registration 
performance, we add varying levels of corruption to our segmentation 
labels mimicking realistic segmentation noise in the form of missing 
or eroded (morphological filtering operator) vessels (Montaña-Brown 
et al., 2021). The corruption strength denotes the amount of corruption 
11
Table 2
Impact of segmentation noise on registration perfor-
mance. The registration model used was 𝑓𝜃hyp  from the 
first row of Table  1.
 Corruption strengthRegistration performance (DSC) 
 0.0 0.68 ± 0.05  
 0.1 0.67 ± 0.04  
 0.2 0.67 ± 0.07  
 0.3 0.68 ± 0.06  
 0.4 0.67 ± 0.06  
 0.5 0.68 ± 0.07  
 0.6 0.68 ± 0.05  
 0.7 0.67 ± 0.04  
 0.8 0.64 ± 0.04  
 0.9 0.64 ± 0.05  
 1.0 0.63 ± 0.08  

Fig. 11. Registration results presented for 2D slices. Top: latent slice from CT 
section (obtained from global alignment), 2nd row: slice from warped US sweep 
(warped using hypernet-based registration function-predicted deformation), 3rd row: 
flow field showing warps, Bottom: slice from un-warped US sweep. Slices sampled 
using Ramalhinho et al. (2023).

applied where 1.0 indicates erosion applied to all visible vessels in the 
intraoperative volume and 0.0 indicates erosion applied to no vessels. 
Where vessels were smaller than 2.5 mm, these were removed instead 
of applying the erosion filter, if corruption was applied to the vessel. 
The results are summarised in Table  2.

We observe consistent performance for corruption strengths from 
0.0 to 0.7 (statistical significance not found, all p-values > 0.074). 
Although a small reduction from corruption strength 0.7 to 0.8, this 
difference is statistically significant (𝑝-value = 0.043). These results 
shows that our method is robust even to large amounts of segmentation 
noise and inaccuracies up-to corruption strength 0.7.

4.6. Qualitative comparisons

Examples and qualitative results are presented in Figs.  11–13. We 
present registration results in both 2D and 3D. Additionally, notewor-
thy within these figures are the vessel sizes in the sampled US sweeps, 
which have narrower lumens due to insufflation and intraoperative 
deformation and nonrigid deformations compared to the ground truth 
CT data.

It should also be noted that these qualitative samples show that 
the locally nonrigid components are largely driven by the available 
vessel morphology, as expected. Locations where the support data is 
sparse are visibly rigid and global, owing to the global initialisation 
and deformation regularisation.
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Fig. 12. Registration results presented for equally spaced 2D slices from a single 
3D volume. Top: latent slice from CT section (obtained from global alignment), 
2nd row: slice from warped US sweep (warped using hypernet-based registration 
function-predicted deformation), 3rd row: flow field showing warps, Bottom: slice from 
un-warped US sweep. Slices sampled using Ramalhinho et al. (2023).

Fig. 13. Registration results presented in 3D using interpolation of ultrasound frames. 
Red: Sampled US (moving image), Green: latent CT section (obtained from global 
alignment) (fixed image), Purple: Warped US (warped moving image).

5. Discussion

It is interesting to note that based on the results presented in 
Section 4, our proposed method with RL function-suggested condi-
tioning variables performs statistically significantly better than the 
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variants from all other conducted experiments. This indicates, that the 
components of the proposed framework add value to the overall reg-
istration framework and therefore increase the registration accuracy. 
Furthermore, the conducted ablation experiments quantify the efficacy 
and their impact from individual proposed components, as removing 
each component in isolation always leads to a worse performance. We 
observe this for RL locations and the hypernet with locally optimised 
stack length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡 , where these 
models consistently perform better than the ablated counterparts, for 
a variety of metrics. It is interesting to note an inconsistent trend in 
the GDM metric, which may rely more on global rigid alignment as 
opposed to local nonrigid alignment.

Further exploratory studies demonstrate the flexibility of the pro-
posed framework, allowing us to investigate optimality in terms of stack 
length 𝑎𝑙𝑒𝑛𝑡  and deformation regularisation 𝑎𝑑𝑒𝑓𝑡  across the liver, and 
perhaps more importantly, the need for such flexibility in the real-
world clinical hepatic application. Through these studies we found 
variable optimal settings for the stack length 𝑎𝑙𝑒𝑛𝑡  and deformation 
regularisation 𝑎𝑑𝑒𝑓𝑡  across the entire liver. This is also an evidence 
that registration performance can be improved by adaptive algorithms 
that allows overall inhomogeneity of registration performance, across 
large organs such as the liver, due to its varying appearances of vessels 
across the organ and varying optimal spatial regularity of deformation 
(partially based on vessel distribution).

The qualitative results further validate our framework and show 
that not only are the registrations physically plausible, the warped 
intraoperative volumes simulated from CT are also physically plausible, 
showing nonrigid deformation and narrower vessel lumens compared to 
the preoperative volumes (e.g., due to insufflation). The plausibility of 
registration is demonstrated via a 3D visualisation presented in Fig.  13, 
where we observe correction of intraoperative lumen narrowing and 
other deformations, while the overall vessel tree shape is preserved. 
Specifically, we can see for example, lumen narrowing being corrected 
in column 1, row 1 and column 2, row 4; translation and rotation 
being corrected in column 1, row 3 and column 2 row 2; as well as 
other corrections taking place, while preserving the overall shape of 
the vessels.

The use of simulated data and global alignment in this work, based 
on error estimates from previous works, serves as a first set of experi-
mental results demonstrating feasibility of image acquisition guidance 
towards improved registration, in intraoperative settings. Despite the 
best effort in considering these plausible types of intraoperative vari-
ability, the limitations imposed by the fact that the intraoperative 
data are simulated in this study warrant follow-up study to test the 
generalisation to real-time-acquired interactive data using the proposed 
methods. Nonetheless, we argue that this study using the partially-
simulated data is ethically and practically feasible, for reporting an 
informative first set of results enabling future prospective validation.

From a technical aspect, future work will also explore further regis-
tration parameters from two aspects of the image registration process, 
i.e., from image generation e.g., the tested stack length which con-
trols density of sampling and from registration e.g., the tested spatial 
regularity of deformation. Additionally, we will explore others from 
other aspects of the registration pipeline, e.g., controlling size of the 
US volume, or feature extraction for registration. There is also an 
opportunity to further investigate guidance signals generated by the 
RL function, other than stack start location guidance and optimal reg-
istration parameter estimates, e.g., US sweep types such as a rotation, 
curved sweep, or sweep along the liver surface which lead to improved 
performance.

6. Conclusion

In this work we propose a flexible guided nonrigid registration 
framework based on two functions central to the framework. The 
first is a hyper-network-based registration function, which is adaptable 
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at test-time with respect to registration parameters. The second is 
a reinforcement learning function which learns to estimate optimal 
registration parameter settings as well as sampling locations to im-
prove nonrigid registration performance for a common preoperative 
to intraoperative registration task, stack-to-volume registration. The 
guidance in terms of sampling location for intraoperative imaging and 
the settings for registration parameters, which control the image ac-
quisition as well as registration, allows for a nonrigid registration to be 
obtained which leads to lower error compared to counterparts without 
these components for the tested application of liver ultrasound to CT 
registration. We have demonstrated the applicability of the proposed 
approach using real preoperative CT data and simulated intraoperative 
US data from patients undergoing laparoscopic liver surgery, and have 
shown meaningful performance improvements together with physically 
plausible registrations. Although, evaluated on simulated data, this 
work serves as a base for future work that can evaluate guidance 
towards improved registration within realistic intraoperative settings, 
where interaction between the RL controller and data acquisition are 
considered.
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Appendix

A.1. Glossary of terminology and notations

Terminology and notation used to describe the data at time-step 𝑡.

• Intraoperative image stack (𝑥𝑡): in this work the US image stack 
(stack of multiple 2D slices) sampled from the domain 
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• Preoperative image volume (𝑦): in this work a volumetric CT 
image acquired before the operation, sampled from the domain 


• Conditioning variables (𝑎𝑡): variables used to control intraop-
erative stack sampling and registration with the preoperative 
volume; formed of {𝑎𝑙𝑜𝑐𝑡 , 𝑎𝑙𝑒𝑛𝑡 , 𝑎𝑑𝑒𝑓𝑡 }

– 𝑎𝑙𝑜𝑐𝑡 : start location for sampling an intraoperative stack
– 𝑎𝑙𝑒𝑛𝑡 : length of an intraoperative stack
– 𝑎𝑑𝑒𝑓𝑡 : deformation regularisation (spatial regularity of defor-
mation)

Terminology and notation relating to the registration function.

• Image transform or warp operator(⊗): used to denote registra-
tion/warping between an image and displacement vectors

• Registration function (𝑓𝜃𝑟𝑒𝑔 ): a registration function with param-
eters 𝜃𝑟𝑒𝑔

• Displacement vectors (𝑑𝑡): used to register the intraoperative stack
• Global alignment function (𝑔): used for rigid registration of the 
intraoperative stack and preoperative volume

• Latent preoperative section (𝑧𝑡): post-global alignment latent im-
age features resampled from the preoperative volume 𝑦

• Global displacement vectors (𝑑𝑔𝑙𝑜𝑏𝑎𝑙𝑡 ): the rigid global alignment 
displacement vector used to sample the latent preoperative sec-
tion and produce a rigid registration

• Non-rigid registration function (𝑓𝜃𝑙𝑜𝑐𝑎𝑙 ): a non-rigid registration 
function modelled as a deep neural network with parameters 𝜃𝑙𝑜𝑐𝑎𝑙

• Local displacement vectors (𝑑𝑙𝑜𝑐𝑎𝑙𝑡 ): used for non-rigid registration
• Hyper-network (ℎ𝜃ℎ𝑦𝑝 ): a hyper-network with parameters 𝜃ℎ𝑦𝑝
• Hyper-network-based registration function (𝑓𝜃ℎ𝑦𝑝 ): a combination 
of the non-rigid registration function and hyper-network, with 
parameters 𝜃ℎ𝑦𝑝

• Hyper-network loss function (𝐿𝜃ℎ𝑦𝑝 ): loss function used to mea-
sure image similarity and train the hyper-network-based registra-
tion function

• Dice loss: 𝐿𝑑𝑖𝑐𝑒: image similarity loss between two binary masks
• 𝐿2-norm of displacement gradient: 𝐿𝑑𝑒𝑓 : deformation regularisa-
tion controlling spatial regularity of deformation

Terminology and notation relating to the reinforcement learning 
(RL) function.

• Policy function (𝜋𝜃𝑟𝑙 ): policy parameterised by 𝜃𝑟𝑙 to predict the 
probability of an action

• The observed state: 𝑠: a partial observable state of the Markov 
decision process environment

• RL function (𝑓𝜃𝑟𝑙 ): the reinforcement learning function with pa-
rameters 𝜃𝑟𝑙, modelled as a deep neural network

• Effector (𝑒): a non-parametric effector function within the Markov 
decision process environment which executes an action to sample 
the new observed state

• Reward (𝑅𝑡): The reward at time-step 𝑡 used for training the RL 
function

Terminology and notation relating to the optional map construction.

• Pre-defined landmark point cloud (�̃�𝑦): landmark point cloud 
extracted from preoperative image

• intraoperative landmark point cloud (𝑝𝑧): landmark point cloud 
extracted post-global alignment of intraoperative stacks

• Registered/corrected landmark point cloud (�̂�): landmark point 
cloud extracted post-ICP between the pre-defined landmark point 
cloud and intraoperative landmark point cloud
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Table 3
Hyperparameters for 𝑓𝜃ℎ𝑦𝑝 .
 Hyperparameter Value  
 𝑓𝜃𝑙𝑜𝑐𝑎𝑙  architecture U-Net  
 Encoding Channels (16, 32, 32, 32) 
 Decoding Channels (32, 32, 32, 32) 
 ℎ𝜃ℎ𝑦𝑝  architecture Fully connected  
 Units per layer (64, 64, 64, 64) 
 Optimiser Adam  
 Batch size 128  

Table 4
Hyperparameters for 𝑓𝜃𝑟𝑙 .
 Hyperparameter Value  
 𝑓𝜃𝑟𝑙  architecture CNN (Krizhevsky et al., 2017) 
 Conv Layers Channels (96, 256, 256, 96)  
 FC Layers Units (32, 32, 32)  
 RL Algorithm PPO (Schulman et al., 2017)  
 Optimiser Adam  
 Batch size 256  
 Gamma 𝛾 0.99  
 Horizon (T) 1024  
 GAE 0.95  

A.2. Hyperparameters for the hypernet-based registration function

Network architectures and hyperparameters for the hypernet-based 
registration function 𝑓𝜃ℎ𝑦𝑝  are in Table  3:

A.3. Hyperparameters for the reinforcement learning function

Network architectures and hyperparameters for the reinforcement 
learning function 𝑓𝜃𝑟𝑙  are in Table  4:

A.4. Details of intraoperative deformation simulation

A 4 × 4 × 4 grid of points was overlaid onto the preoperative volume 
and deformation vectors were assigned to each point. The details for 
sampling deformation vectors are described below and in Table  5. 
Values were randomly sampled from the ranges specified in the table 
for each type of deformation and were assigned to each point based on 
the deformation weight as described below.

For coronal deformations, 16 points on the posterior-most plane 
were assigned zero displacement and the remaining points were as-
signed displacements based on the type of deformation applied, accord-
ing to the deformation weights. As an example, referring to row 1 in 
the table, if deformation magnitude is −6, then all the anterior-most 
16 points have displacements −6, the second row −6 × 0.5, the third 
−6 × 0.25 and the fourth 0.

For transverse or axial deformations simulating breathing we can 
again follow an example, where if the deformation magnitude is 2, the 
superior-most 16 points have displacement 2, the second row 2 × 0.5, 
the third 2×−0.5 and the fourth 2×−1. The values for the ranges for 
breathing were approximated based on Jagsi et al. (2007).

For postural deformations, random values were sampled for each 
point in the grid.

For each grid-point, the final displacement is a sum of the different 
displacement vectors.

Finally, after computing displacement vectors for the entire grid, 
these were used to interpolate a dense displacement field which was 
used to warp the preoperative volume.

This new volume was used for US simulation.
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Table 5
Details of intraoperative deformations.
 Type of deformation Simulation mechanism  
 Coronal compression
(insufflation)

Range: −8 to −2 cm 
Anterior to Posterior weight: 
1, 0.5, 0.25, 0

 

 Coronal plane 
deformation (breathing)

Range: −3 to +3 cm 
Anterior to Posterior weight: 
1, 0.5, 0.25, 0

 

 Transverse/axial plane 
deformation (breathing)

Range: −3 to +3 cm 
Superior to Inferior weight: 
1, 0.5, −0.5, −1

 

 Deformation in 
all planes (postural)

Range: −1 to +1 cm  

A.5. Using the proposed framework to guide intraoperative prostate regis-
tration

The proposed framework is readily generalisable to other applica-
tions with a few modifications. We demonstrate this for an application 
of guiding intraoperative ultrasound (US) for registering US to preop-
erative MR images. For this purpose, we utilise the muRegPro open-
source dataset (Baum et al., 2023), formed of real US and MR images 
from prostate cancer patients. The 3D US images in the dataset are 
already assumed globally-registered, thus a global alignment function is 
not required for this application, eliminating the function 𝑔. Addition-
ally, instead of the free movement of the probe captured as 𝑎𝑙𝑜𝑐𝑡 ⊂ R3

allowed in the liver imaging application, we assume a digital or man-
ual transperineal stepper which allows left or right movement in the 
coronal plane, captured as 𝑎𝑙𝑜𝑐𝑡 ∈ 0, 1,−1, where 1 indicates movement 
of the US imaging probe to the right by one step of the stepper, −1 
one step to the left and 0 indicating no movement. Additionally, for 
simplicity, for prostate intraoperative imaging we assume a fixed sweep 
length of 4 slices, as in real procedures where either 2D slices are used 
or limited-field-of-view fixed-size 3D volumes are used, this removes 
the 𝑎𝑙𝑒𝑛𝑡  variable from the framework.

These simple modifications allow us to utilise the proposed frame-
work for an application of prostate US to MR registration guidance (see 
Table  6). The muRegPro dataset is formed of paired MR-US globally 
aligned images with 65, 20 and 20 images in the train, validation 
and holdout sets. The MR images are 120 × 128 × 128 voxels and 
the US images have between 57-112 2D slices of US, acquired using 
a digital bi-plane transperineal stepper. The US were reconstructed 
into volumes with 81 × 118 × 88 voxels. After re-sampling the US 
to the size of MR, we assumed 4 US slices to form an intraoperative 
volume to be non-rigidly registered with 4 corresponding slices of MR. 
These randomly sampled 4 slices from US volumes were used to train 
the hyper-network with the only conditioning variable as input to the 
network being 𝑎𝑑𝑒𝑓𝑡  as 𝑎𝑙𝑒𝑛𝑡  is omitted due to fixed volume size in this 
application. Additionally, different to the liver imaging application, in 
this application we use 5 binary masks to guide registration, as a 5-
channel 3D volume. The 5 labels correspond to the prostate gland, 
tumours in the gland, urethra, seminal vesicles and fluid-filled cysts.

The sampling guidance 𝑎𝑙𝑜𝑐𝑡 ∈ 0, 1,−1, corresponds to probe move-
ment to acquire the next 4 US slices either to the left or right of the 
current probe position. This guidance will guide the operator to regions 
that improve registration performance, as outlined in our proposed 
framework.

The results for this application, for various settings, are presented 
below.

The results show that our proposed framework resulted in statisti-
cally significant performance improvements (p-values<0.01), compared 
to all other tested variants. The variants included commonly used 
strategies for setting the deformation regularisation and a non-guided 
approach to registration. Performance improvements, thus, demon-
strate the efficacy of the learnt guidance and show that adapting our 
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Table 6
Results on, the holdout set, comparing performance for a task of guided prostate US 
to MR non-rigid registration. The conditioning variable settings are: ‘fixed optimal’: 
fixed for the entire holdout set and optimal selected by averaging over the whole 
set; ‘fixed random’: fixed for the entire holdout set and randomly selected from an 
empirically defined range; ‘random’: randomly selected per acquired intraoperative 
stack; ‘RL optimal’: optimal selected by RL function per acquired intraoperative stack. 
 Network 𝑎𝑑𝑒𝑓𝑡 𝑎𝑙𝑜𝑐𝑡 DSC  
 Un-registered N/A N/A 0.24 ± 0.05 
 𝑓𝜃ℎ𝑦𝑝 random random 0.72 ± 0.06 
 𝑓𝜃ℎ𝑦𝑝 random RL optimal 0.77 ± 0.06 
 𝑓𝜃ℎ𝑦𝑝 fixed random random 0.71 ± 0.07 
 𝑓𝜃ℎ𝑦𝑝 fixed random RL optimal 0.76 ± 0.05 
 𝑓𝜃ℎ𝑦𝑝 fixed optimal random 0.75 ± 0.07 
 𝑓𝜃ℎ𝑦𝑝 fixed optimal RL optimal 0.79 ± 0.06 
 𝑓𝜃ℎ𝑦𝑝 RL optimal random 0.77 ± 0.05 
 𝑓𝜃ℎ𝑦𝑝 RL optimal RL optimal 0.82 ± 0.04 

proposed framework to other applications requires small application-
specific adjustments.

Data availability

The authors do not have permission to share data.
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