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Abstract  

This deliverable describes the decision making approach that will be followed in Pilot3. 

It presents a domain-driven analysis of the characteristics of Pilot3 objective function and optimisation 
framework. This has been done considering inputs from deliverable D1.1 - Technical Resources and 
Problem definition, from interaction with the Topic Manager, but most importantly from a dedicated 
Advisory Board workshop and follow-up consultation. The Advisory Board is formed by relevant 
stakeholders including airlines, flight operation experts, pilots, and other relevant ATM experts. 

A review of the different multi-criteria decision making techniques available in the literature is 
presented. Considering the domain-driven characteristics of Pilot3 and inputs on how the tool could 
be used by airlines and crew. Then, the most suitable methods for multi-criteria optimisation are 
selected for each of the phases of the optimisation framework. 
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Executive summary 

Pilot3 is a CleanSky2 Innovative Action. The Topic Manager is Thales AVS France SAS. Pilot3 aims at 
providing a software engine model for supporting crew decisions. 

The primary objective of Pilot3 is to develop a software engine model for supporting crew decisions 
for civil aircraft. This software will provide the crew with a set of options along with information to aid 
the crew to select the most suitable one considering the multi-criteria business objectives of the 
airline, including the impact on the network of flights of the airline of those decisions. 

Pilot3 comprises five sub-systems: 

• Alternatives Generator, which will compute the different alternatives to be considered by the 
pilot; fed by the two independent sub-systems: 

o Performance Indicators Estimator, which provides the Alternatives Generator with 
information on how to estimate the impact of each solution for the different 
performance indicators (PIs) needed to estimate the optimisation objectives which are 
relevant to the airline; 

o Operational ATM Estimator, which provides the Alternative Generator with 
information on how to estimate some operational aspects such as tactical route 
amendments, expected arrival procedure, holding time in terminal airspace, distance 
flown (or flight time spent) in terminal airspace due to arrival sequencing and merging 
operations, or taxi-in time; 

• Performance Assessment Module, which, considering the expected results for each 
alternative on the different KPIs, is able to filter and rank the alternatives considering airlines 
and pilots preferences, and to show them to the pilot. This is part of the multi-criteria 
optimisation process; and 

• Human Machine Interface, which will present these alternatives to the pilot and allow them 
to interact with the system. 

Pilot3 has four different execution phases: 

1. Configuration phase: This phase is performed by the airline prior to the flight to set the 
different parameters and preferences on the usage of Pilot3 tool. 

2. Generation phase: A first automatic generation and selection of candidate solutions will be 
produced by the Alternatives Generator considering: the airline’s objectives, operational 
constraints, environment data, and information from the Indicator Estimator and the 
Operational ATM Estimator. 

3. Ranking phase: The alternatives' ranking phase is the first part of the Performance Assessment 
Module and it consists on ranking the alternatives provided by the Alternatives Generator. This 
post-processing of the trajectories generated by the Alternatives Generator is performed in 
order to pre-compute how the alternatives will be presented to the pilot. This could be 
considered as a discrete multi-objective optimisation. 
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4. Selection phase: This is the final step of the Performance Assessment Module and it considers 
the interaction with the pilot via the Human-Machine Interface (HMI) to capture pilot 
operational related aspects. 

This deliverable presents the definition of the multi-criteria methods that will be used on the different 
optimisation phases. This selection has been done considering inputs from: 

• Pilot3 Deliverable D1.1 - Technical Resources and Problem definition (Pilot3 Consortium, 
2020), 

• Topic Manager, 

• Advisory Board workshop, and 

• Advisory Board consultation.  

First, an identification of the objectives that are relevant to the airlines’ operations is conducted: 

1. a set of performance indicators (PI) were identified (e.g., number of passengers missing 
connections, minutes of delay at arrival);  

2. PIs were aggregated into KPIs (e.g., cost of fuel, cost of IROPs); and from these, 

3. two objectives that should be considered when optimising the trajectories were derived: cost 
and on-time performance (OTP). 

These two objectives that are relevant for airlines have the following characteristics: 

1. Cost is a complex objective build from the aggregation of 3 key performance indicators (KPIs): 

a. cost of fuel, 

b. cost of IROPS, including hard and soft passenger costs (considering connecting and 
non-connecting passengers), and 

c. other costs, which account for extra crew and maintenance costs, but most 
importantly for reactionary costs. 

2. On-Time Performance (OTP) is considered as a binary variable of achieving on-time 
performance (i.e., arrival delay ≤ 15 minutes or not) 

Pilot3 supports the crew by providing solutions which would produce the best outcome in average, 
therefore, the optimiser will be risk-neutral.  

After the literature review on multi-criteria optimisation techniques, ten different criteria grouped in 
five categories have been used to select the most adequate technique for each of the Pilot3 phases: 

a. Data (input) required by the method 

1. the input needed for the method to function should be available 

2. responsibility sharing on user (dispatcher, pilot) providing the input required 

b. Objectives considered 

3. ability to deal with high/low number of objectives 

4. consideration of variability/uncertainty  
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c. Human-machine interface considerations 

5. easiness of providing the input required 

6. easiness of providing the output required 

d. Other non functional considerations 

7. computational cost of the method 

8. easiness to implement the method 

9. the method should provide a necessary and sufficient condition method for Pareto 
optimality 

e. Other functional considerations 

10. other general preferences expressed by stakeholders 

The details on the optimisation technique that will be used to optimise the trajectories considering the 
multi-criteria framework will be defined in WP4. Further factors will then be considered, such as the 
possibility of exploring the space of search to provide more than one alternative which can be 
considered optimal, or the mathematical modelling of the flight trajectory with uncertainty. 

First, the characteristics of the problem have been used to filter the number of potential methods 
across all the optimisation phases. Then, remaining candidate methods were further analysed 
considering the particularities of each of the execution phases: 

• Generation phase: The consultation with the Advisory Board established that the optimisation 
should focus on minimising cost, and on producing the trade-off (in cost) required to achieve 
the OTP, if possible. This has led to the selection of the Lexicographic ordering multi-criteria 
optimisation method to capture this trade-off. Trajectories will be generated considering cost 
as first objective and OTP as second. If OTP is not achieved, then the trajectory generator will 
be re-executed forcing OTP (if possible), by adding it as a constraint, and then minimising the 
cost as a second objective. The generation phase will not select a solution but rather generate 
different trajectories in the Pareto front so that the decision maker can explore the 
alternatives after their ranking. 

• Ranking phase: The relative importance of the KPIs which form the cost objective (cost of fuel, 
cost of IROPs and other costs), as provided during the Configuration phase, will be used to rank 
and filter the solutions produced by the Generation phase. This will be a discrete optimisation 
for which the most suitable method is the Compromise Ranking Method, also known as the 
VIKOR method, improved by introducing the Analytical Hierarchy Process for assigning the 
weights of relative importance of attributes. 

• Selection phase: The Selection phase will rely on the interaction with the pilot via the Human-
Machine Interface. The pilot will receive information on the alternatives and will be able to 
explore and compare the ranked trajectories. Some tactical operational indicators will be 
computed to facilitate this process (e.g., number of flight level changes required). The crew 
will be able to dismiss trajectories, add constraints, and re-execute the optimisation to re-
evaluate the alternatives. Note that the ranking of alternatives could include the previously 
generated (and not yet dismissed) trajectories. The specific requirements and design of the 
interface will be performed as part of WP4 activities. 
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1 Introduction 

1.1 Pilot3: multi-criteria decision making tool for support in flight 
management 

During flight operations, when a disruption (or an update on information affecting the trajectory 
prediction, such as an update on the weather forecast) arises, the crew might consider to modify the 
planned trajectory. The pilot should consider the airline's targets and policies, and using a trajectory 
optimisation or prediction system, estimate different trajectory options. Different alternatives will 
have a different impact on the expected duration of the flight (time) and/or on the amount of fuel 
consumed (kg), which are typically the main outcomes of these trajectory optimisation/prediction 
systems. 

Airlines do not necessarily focus on these two indicators (fuel and time) but on other high level 
objectives, such as cost of the operations (e.g., irregular operations costs due to passenger 
management (IROPS), reactionary costs), or on-time performance (see Section 1.4 for more 
information on the different objectives considered on the optimisation). In some cases, a pre-defined 
cost index1 could be used to translate the variation in time and fuel into equivalent fuel usage. 
However, note that the cost index can be considered as a proxy to the real indicators that are relevant 
to the airline, as previously indicated. 

The crew assesses the outcome of these optimisations along other available data (such as the list of 
connecting passengers who are on board, or previous experience on expected delay at arrival for that 
particular route) and has to estimate the existing trade-offs to decide if it is worth it to recover a given 
amount of time using a certain amount of extra fuel. During this analysis and selection exercise, the 
crew might discard options, which they do not accept as valid (e.g., changing cruise altitude to a level 
where the pilot knows turbulence is experienced), and mentally ranks the different possibilities to 
select the one that is considered best. Thus, the pilot is doing a manual iterative analysis of alternatives 
within a multi-criteria optimisation. 

Note that different airlines might have different policies in place. Yet, one common approach to 
managing larger disruptions is to estimate the alternatives from the ground (e.g., monitoring the 
operation of flights by dispatchers) and indicate to the pilot how they should operate (e.g., which cost 
index to select). However, in some instances, for example, small variations (e.g., weather update), or 
when considering tactical operational issues (e.g., where to perform the top of descent), pilots still 

 

 

1 Current Flight Management Systems (FMS) (re)compute flight trajectories by minimising a compound objective 
function that considers both fuel and time costs. The Cost Index represents the ratio between time and fuel costs 
and is manually introduced by the pilot into the FMS (Airbus, 1998). 
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maintain some autonomy. Moreover, pilots might still make decisions based on their own 
interpretation of priorities, which might vary from flight to flight. And even if the decision is performed 
on-ground the same principles of multi-criteria considerations apply. 

Pilot3 will develop an optimisation engine within a multi-criteria optimisation framework to assist the 
crew on this process. Figure 1 presents the high-level architecture of the suggested solution. 

 
Figure 1. High-level Pilot3 architecture 

Pilot3 comprises five sub-systems, namely the: 

• Alternatives Generator, which will compute the different alternatives to be considered by the 
pilot; fed by the two independent sub-systems: 

o Performance Indicators Estimator, which provides the Alternatives Generator with 
information on how to estimate the impact of each solution for the different 
performance indicators (PIs) needed to estimate the optimisation objectives which are 
relevant to the airline (see Section 1.4); 

o Operational ATM Estimator, which provides the Alternative Generator with 
information on how to estimate some operational aspects such as tactical route 
amendments, expected arrival procedure, holding time in terminal airspace, distance 
flown (or flight time spent) in terminal airspace due to arrival sequencing and merging 
operations, or taxi-in time; 

• Performance Assessment Module, which, considering the expected results for each 
alternative on the different KPIs, is able to filter and rank the alternatives considering airlines 
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and pilots preferences, and to show them to the pilot. This is part of the multi-criteria 
optimisation process; and 

• Human Machine Interface, which will present these alternatives to the pilot and allow them 
to interact with the system. 

For more information on the different modules of Pilot3 the reader is referred to D1.1 - Technical 
Resources and Problem definition (Pilot3 Consortium, 2020). 

1.2 Multi-criteria decision making methods families 

In a multi-objective optimisation problem, a set of optimal solutions that are equally acceptable from 
a mathematical point of view (the Pareto optimal solutions) can be reached. Mathematically speaking, 
the problem is solved when the Pareto optimal set is found. In order to finally select one final solution 
(or a subset of solutions), this set must be ranked according to some preferences set by the decision 
maker(s) (DM).  

A typical technique to select the preferred Pareto solution, is to assign to each individual criterion a 
given weight (or scalarisation constant), which reflects their priority or relative importance. Then, a 
linearly weighted sum of the individual optimisation objectives is typically done, yielding to a single 
compound optimisation criterion, which can be solved with standard (single-objective) optimisation 
techniques. As mentioned before, the optimisation done in current FMS (and in general by most flight 
planning or dispatching tools) uses as objective function, a linear weighted sum expressing the relative 
importance of fuel and time costs, given by a weighting parameter: the Cost Index. As presented below, 
this corresponds to an a priori multi-objective optimisation method.  

Although the weighting technique is widely used in many applications (for its apparent simplicity), it 
presents several important drawbacks. The first one is that choosing the exact values for the different 
weights (if done beforehand) is not a straightforward task, since it is based either on a somewhat vague 
intuition of the user about the relative importance of different criteria, or on trial and error 
experimentation with different weighting values. Another problem is that once they have been 
established, the optimisation algorithm will find the best solution for that particular setting of weights, 
missing the opportunity to find other solutions that may represent a considered better trade-off 
between different criteria. 

In this context, it is usual to perform a posteriori sensitivity studies, but altering the weighting vectors 
linearly does not ensure that the values of the objective functions also change linearly, turning these 
sensitivity studies not obvious to conduct. Furthermore, this method has the limitation that it cannot 
find solutions in a non-convex region of the Pareto front, which can happen when involving non-linear 
constraints or objective functions (Miettinen, 1999). More difficulties appear when the objective 
functions involve summations/subtractions of terms representing different magnitudes (such as noise 
annoyance, emissions, fuel consumption, flight time, reactionary delay, or missed passenger 
connections), often with very different scales in their units of measurement (non-commensurable 
functions). It is true that this can be partially dealt with by normalising the different criteria, so that 
they all refer to the same scale, but this approach suffers from a subtle problem rarely discussed: in 
general there are several different ways of normalising (see for instance Marler & Arora, 2005), the 
decision about which normalisation procedure should be applied tends to be ad-hoc, and different 
normalisation techniques may lead to significantly different results. 
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Trying to overcome (some of) these issues, a plethora of multi-objective optimisation methods have 
been proposed in the last half-century. There are different ways to classify multi-objective optimisation 
methods, according to different considerations. Here, we adopt the classification presented by 
(Miettinen, 1999), which is largely accepted in the literature. The classes are: 

1. Methods where a posteriori articulation of preference information is used (a posteriori 
methods) 

2. Methods where no articulation of preference information is used (no-preference methods) 

3. Methods where a priori articulation of preference information is used (a priori methods) 

4. Methods where progressive articulation of preference information is used (interactive 
methods) 

It is worth noting that no classification can be complete and absolute, since overlapping of methods is 
possible, some methods might be considered to belong to more than one class and some methods are 
in fact combination of other methods. See for instance (Marler & Arora, 2004), who considers the 
interactive and a posteriori methods into a single category. 

1.3 Uncertainty in flight management 

There are many different sources of uncertainty when considering the optimisation of flight 
trajectories. This means that the planned and executed trajectories might differ, leading to dissimilar 
results on the objectives considered by the airline (e.g., cost). Sources of uncertainty include weather, 
but in the tactical phase notably ATM aspects such as management of flows at TMA (e.g., holding times, 
path stretching), or taxi-in times (as most of the indicators that are relevant to airlines relate to the 
arrival time at the gate). 

Pilot3 tries to consider some of these uncertainties, weather uncertainty could be considered from 
forecasts by the Alternatives Generator, and the Operational ATM Estimator module which will 
produce estimations on operational factors that will affect the trajectory (e.g., expected holding at 
arrival). However, even these estimations will have some degree of uncertainty (e.g., variance, 
probabilities or distributions attached to them). In Pilot3, we consider that the system should focus on 
generating the trajectories that minimise (or maximise) the expected value in the objectives identified 
by the airline. Even with this consideration, including uncertainty might lead to several trajectories 
being statistically equivalent increasing the alternatives generated by the Alternative Generator. 

Section 2.2 presents a review of uncertainty, risk and robustness considerations for optimisation. Note 
that in this deliverable, uncertainty is only considered with respect to its impact on the multi-criteria 
optimisation method and on potential considerations for the HMI. How uncertainty will be modelled 
and captured in the trajectory generator will be considered in detail as part of the modelling activities 
of WP4. 

1.4 Optimisation objectives 

The key performance indicators (KPIs) and objectives to be considered in Pilot3 have been selected 
after consultation with the Advisory Board: first the Advisory Board meeting (attended by relevant 
stakeholders (airlines, EUROCONTROL) and experts) and then a follow-up survey. After these 
processes: 
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4. a set of performance indicators (PI) were identified (e.g., number of passengers missing 
connections, minutes of delay at arrival);  

5. PIs were aggregated into KPIs (e.g., cost of fuel, cost of IROPs); and from these, 

6. two objectives that should be considered when optimising the trajectories were derived: cost 
and on-time performance (OTP). 

Details on these objectives definition aspects, and how these are considered in the selection of the 
methods for the multi-criteria optimisation, are presented in Section 3.3. 

1.5 Pilot3 configuration and execution logic 

This section introduces the configuration and execution logic (including the different optimisation 
phases) of Pilot3. Prior the flight, Pilot3 engine will be configured (by the airline 
engineers/dispatchers); then tactically, when analysing and selecting alternatives, the pilot will 
perform a multi-criteria trade-off analysis. This will be driven by different factors: the airline's business 
objectives and flight policies, and operational aspects considered by the pilot. The process can be seen 
as an exploration of alternatives consisting on an optimisation framework that requires to generate 
trajectories considering objectives and constraints, filtering the solutions and adding/modifying them 
with operational constraints. Figure 2 illustrates this logic, which is explained in detail next. 

 
Figure 2. Pilot3 execution diagram with example 
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1.5.1 Configuration 

The configuration phase will be performed by the airline prior to the flight. This could be done 
strategically, or some parameters could be selected at dispatching level on a flight-by-flight basis. The 
objectives of this phase are to select how the indicators and the operational ATM parameters should 
be estimated, and to configure Pilot3 to reflect the airline flight policy. For example, indicating if a 
heuristic or an advanced model should be used to estimate a given parameter with air or ground 
information, in case of equivalent impact on different indicators, which ones should be prioritised, etc. 

1.5.2 Generation phase 

In a multi-objective optimisation problem, one might have a set of Pareto optimal solutions (i.e., 
solutions equally acceptable from a mathematical point of view) and manually assessing all trade-offs 
arising from various objectives might be a complex and time consuming task. Moreover, different 
trajectories might lead to equivalent values on the objectives (e.g., two different profiles might 
produce statistically equivalent expected cost and on time performance). A first automatic generation 
and selection of candidate solutions will be produced by the Alternatives Generator. The Alternatives 
Generator uses a trajectory generation engine which considers: 

• the objectives function as set by the airline key performance indicators; 

• constraints: operational (e.g., airways) and ad hoc defined by the pilot (e.g., 'do not provide 
solutions which imply an altitude change'); 

• environment data (e.g., weather, aircraft performance); and 

• information from the Indicators Estimator and the Operational ATM Estimator on how to 
estimate these indicators and operational parameters. Note that the performance indicators 
might not be known until the arrival of the flight, or even until the end of the operational day 
(e.g., total amount of reactionary delay), and may have to be estimated. These estimations will 
be made based on the information available at the moment of making the decision. This is the 
main objective of the Performance Indicators Estimator module: to indicate how to estimate 
the performance indicators from the trajectory parameters. 

As introduced in Section 1.4, the total number of objectives that will be considered in Pilot3 might be 
small, which might allow for some estimation of the impact in one objective (cost) when achieving the 
other (OTP).  

Moreover, when optimising the trajectories, different optimisation alternatives might be available. 
This means that the trajectory optimisation might produce a set of alternatives. Note that in some 
cases, if thresholds or rounding in the indicators are introduced (considering the fuel consumption at 
a resolution of ten kilograms, or arrival delay at a resolution of one minute, for instance), the number 
of potential trajectories which are equivalent might increase. Similarly, if uncertainties (see Section 
1.3) are considered, their impact on the trajectories (e.g., time required to reach the arrival 
destination, or total fuel that will be consumed) might imply that some alternatives could be 
considered statistically equivalent, increasing the pool of trajectories to be considered for their 
presentation to the pilot. 

More information on the generation phase is presented in Section 3.3.2. 
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1.5.3 Ranking phase 

The alternatives' ranking phase is the first part of the Performance Assessment Module and it consists 
on the ranking of the alternatives provided by the Alternatives Generator. This post-processing of the 
trajectories generated by the Alternatives Generator is performed in order to pre-compute how the 
alternatives will be presented to the pilot. 

This phase will consider the airlines' policies with respect to the different KPIs. For example, two 
solutions might provide the same cost but trading fuel cost and passenger cost (e.g., one solution might 
produce lower fuel usage with higher expected cost from compensation due to Reg. 261, while another 
alternative might use more fuel but reduce the expected cost due to passengers compensation, leading 
to equivalent total operating costs). In this case, even if the total expected cost for both alternatives is 
equivalent, the airline might define that passengers should be prioritised. Note that this ranking is 
produced with the information defined in the configuration phase of Pilot3 and if more than one 
alternative is produced by the Alternatives Generator. 

Details on the ranking phase are provided in Section 3.3.3. 

1.5.4 Selection phase 

The final step consists in considering pilot operational related aspects. This is the final step of the 
Performance Assessment Module and it considers the interaction with the pilot via the Human-
Machine Interface (HMI). Information on the trajectories and their impact on the different indicators 
will be presented to the pilot, who will be able to interact, rejecting solutions or, based on the 
information provided, adding new constraints and requesting a re-evaluation of the alternatives. 

This process if further explored in Section 3.3.4 and in the activities of WP4. 

1.6 Methodology to select multi-criteria optimisation method 

Since Vilfredo Pareto firstly introduced the concept of Pareto optimality more than 120 years ago 
(Pareto, V., 1897), hundreds of researchers have addressed the problem of multi-criteria optimisation. 
Dozens of methods, with subsequent refinements and extensions, have been proposed, especially in 
the last half-century, with thousands of scientific publications in a wide diversity of applications (Adali 
& Asik, 2017). Yet, none of these methods or refinements can be said to be generally superior to all 
the others. In fact, selecting an appropriate multi-objective optimisation method by itself is a multi-
objective optimisation problem. 

There is a multiplicity of aspects to consider in this selection process, and many of the comparison 
criteria are difficult to quantify and based on expertise and decision maker preferences to a certain 
degree. Therefore, the features of the problem to be solved and the capabilities and the type of the 
decision maker have to be charted before a solution method can be chosen, since some methods may 
suit some problems and some decision makers better than others. For this reason, the selection of the 
method(s) is domain driven. 

From a general point of view, some of the criteria to consider when evaluating methods, were collected 
in Hobbs (1986) as the following ones:  

• appropriateness: the method should be appropriate to the problem to be solved, 
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• ease of use: refers to the effort and the knowledge required from the analyst and the decision 
maker, 

• validity: the method measures what it is supposed to and the assumptions are consistent with 
reality, 

• sensitivity of the results to the choice of method: solutions obtained by the method do not 
significantly differ from those of the methods.  

Some researchers have expanded the number of criteria (up to 28 in Gershon and Duckstein, 1983), 
but crucial criteria has been reduced to 3 in Stewart (1992): 

• input required from decision maker must be meaningful and unequivocal 

• transparent method 

• simple and efficient method 

In Pilot3, a domain driven approach has been followed to perform this selection. Key aspects to 
consider in this selection have been identified from different sources and grouped in five different 
categories: 

• Data required by the multi-criteria optimisation method; 

• optimisation objectives that are considered in Pilot3; 

• human machine interaction considerations; 

• other functional considerations; and 

• other no-functional considerations. 

As described in Section 1.5 there are different phases that are part of the multi-criteria optimisation 
framework developed in Pilot3. Each phase has different characteristics, which means that the 
optimisation method selected might be different for each phase. However, some of the characteristics 
of the problem apply to all phases. Therefore, the process to select the method has followed two stage 
approach: first the characteristics of the problem (tactical trajectory optimisation) are considered with 
inputs from the proposal (as processed in D1.1 - Technical Resources and Problem definition (Pilot3 
Consortium, 2020)), the Topic Manager and the first Advisory Board workshop. This filters the number 
of potential methods across all the optimisation (or decision-making) phases (generation, ranking and 
selection phase). Then, for each phase their specific characteristics are considered, and input from a 
follow-up consultation with the Advisory Board are used to finalise the benchmarking and selection of 
method process per phase. Section 3 presents in detail this selection process. 

1.7 Deliverable structure 

The deliverable is structured in five sections: 

• Section 1 introduces the context of Pilot3 multi-criteria optimisation for crew support on 
trajectory management, and the approach followed to select the most suitable methods for 
the optimisation. 

• A literature review on multi-criteria optimisation methods and on optimisation under 
uncertainty is presented in Section 2. 
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• Section 3 describes with more details the criteria used to select the optimisation methods, and 
the selection process. 

• Conclusions with main findings are collected in Section 4. 

• The deliverable closes with next steps and look ahead, with the follow-up activities in Pilot3 
project, and with an indication on how the selected methods will be modelled, in Section 5. 

The document closes with references and acronyms. 
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2 State of the art 

This section presents a summary of the literature review on the state of the art of multi-criteria 
optimisation methods (Section 2.1). It also includes a brief review of optimisation under uncertainty 
(Section 2.2); this is relevant as Pilot3 tool will be subject to different sources of uncertainty. 

2.1 Multi-criteria optimisation methods 

A domain-driven approach has been used to review the multi-criteria optimisation methods available 
in the literature. A summary of the main types of methods is this section. A comprehensive list of 
methods with more details, including some of their benefits and drawbacks, is included in Appendix A. 

2.1.1 Methods where a posteriori articulation of preference information is 
used (a posteriori methods) 

The underlying philosophy of these methods is that the Pareto front is generated first and presented 
to the decision maker, who will select the most preferred solution among a palette of alternatives. This 
approach could be useful when it is difficult for the decision-maker to express an explicit 
approximation of her preferences (see a priori methods below). Several a posteriori methods are 
proposed in the literature, as outlined in (Miettinen, 1999; Marler & Arora, 2004). The two principal 
methods in this class are:  

• Weighting method, which is a particular case of the scalarisation approach presented above 
and despite being easy to implement, it might present some difficulties, as mentioned earlier. 
Some refinements, as response to the inability of the weighted sum method to capture points 
on non-convex portions of the Pareto front are also proposed in the literature, such as the 
exponential weighted criterion (Athan and Papalambros, 1996). 

• Epsilon-constraint (or bounded objective function) method, where one of the objective 
functions is selected to be optimised and all the others are converted into constraints by 
setting an upper bound to each of them. The problem is solved many times by changing the 
value of these bounds. This method can find solutions in non-convex areas of the Pareto front, 
but can be computationally expensive for certain applications.  

Hybrid methods are also possible, either combining the previous two, or introducing weighting 
functions in compromise programming (see no-preference methods below), such as the weighted 
Tchebycheff approach, which is a popular method for generating Pareto optimal solutions.  

These a posteriori methods present the advantage that the decision maker does not need to provide 
any explicit input. Nevertheless, many shortcomings arise with this approach, one of the main ones 
being simply the difficulty on the generation of the Pareto front which could be computationally too 
expensive. In this context, if only a limited number of Pareto solutions are presented, these methods 
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can be ineffective in providing an even spread of points that accurately represents the complete Pareto 
optimal set. Finally, it is quite likely that the decision maker will have some difficulties to select from a 
large set of alternatives and in many cases, how to present or display these alternatives in an effective 
way might also be an issue (especially when a large number of objectives are considered). 

2.1.2 Methods where no articulation of preference information is used (no-
preference methods) 

These methods can be used when no opinions of the decision maker are sought, or when she cannot 
concretely define what she prefers. Most of the methods are simplifications of methods included in 
other classes, typically with the exclusion of the parameters, coefficients, exponents, constraint 
bounds, etc. that are used to establish preferences. Thus, methods in this class will select one Pareto 
solution according to some specific criteria/metric and present it to the decision maker, who may 
either accept or reject it. These methods are only useful if the decision maker does not have any special 
expectations of the solution and she is satisfied simply with "some" optimal solution. Example methods 
in this class include:  

• Compromise programming (or global criterion), where the distance between some reference 
point and the feasible objective region is minimised. Several alternatives exist to define either 
this reference point or the metric for measuring the distances. For instance, the reference 
point could be the ideal (or utopia) objective vector (i.e., the best we can achieve for each 
objective function if optimised separately) and the metric the Euclidean distance. Another 
particular case of this method is the Tchebycheff solution (also known as Egalitarian solution 
or min-max optimisation), where the maximum distance to the ideal objective vector is chosen 
as decision performance index, in such a way that the system is no better-off than its worse-
off individual.  

• Multi-objective Proximal Bundle Method, which from a given starting point in the Pareto front 
moves in a direction where the values of all the objective functions improve simultaneously 
(Mäkelä, 1993). 

2.1.3 Methods where a priori articulation of preference information is used 
(a priori methods)  

In this case, the decision maker must specify her preferences, hopes or opinions before the process of 
generating the solution. This can be articulated in many ways: in terms of goals, relative importance 
of different objectives, etc. It is worth noting that the weighting methods presented above (including 
the hybrid methods using weights, such as the weighted Tchebycheff approach) could be considered 
an a priori method, if the decision maker specifies beforehand the weights for each objective function 
representing her preferences. Similarly, the Epsilon-constraint method can also be considered in this 
class if the bounds for each objective are also set a priori. 

Although several authors have proposed methods or guidelines to help the decision-maker to set 
weights (or bounding values) in an effective manner, understanding and correctly interpreting the 
conceptual significance of the weights is not always obvious for average decision makers. This is indeed 
the main difficulty of a priori methods, since the decision maker might not necessarily know 
beforehand what it is possible to attain in the problem and how realistic her expectations are. 
Representative examples of a priori methods are:  
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• Value function method, where the decision maker must be able to give an accurate and 
explicit mathematical form of the value function that represents her preferences globally. In 
this way, a complete ordering in the objective space is set and a single objective optimisation 
problem is solved. Although apparently simple, the difficulty of this method is to encode 
mathematically the real preferences of the decision maker.  

• Lexicographic ordering, where the decision maker arranges the objective functions according 
to their absolute importance. Then the most important objective function is optimised (i.e., 
minimised or maximised). If the problem has a unique solution, this would the solution of the 
whole multi-objective optimisation problem. Otherwise, the second most important objective 
function is optimised, but adding a new constraint in the problem to guarantee that the most 
important objective function preserves its optimal value found in the previous step. If this new 
problem has a unique solution, this becomes the solution of the whole multi-objective 
optimisation problem, otherwise the process continues as described above with the remaining 
objectives. The main drawback of this approach is that it is very unlikely that the process can 
optimise lower prioritised objectives, since a unique solution is likely to be found in the first 
step(s) of the process. The method does not allow for a small worsening of an important 
objective to be traded against a larger improvement of a less important objective, which might 
be often appealing to the decision maker.  

• Hierarchical approach, a modification of lexicographic ordering called hierarchical 
optimisation where the upper bounds obtained when optimising more important objective 
functions are relaxed by so-called worsening factors. These relaxations allow to trade off 
higher prioritised objectives in front of lower prioritised ones, exploring in this case, a widest 
area of the Pareto front containing solutions that can be more interesting to the decision 
maker. As commented before, setting the relaxation factors might not be an obvious task for 
the decision maker.  

• Goal programming, where the decision maker specifies (optimistic) aspiration levels for some 
of the objective functions (or all of them) forming goals, which are added in form of constraints 
in the optimisation problem. Then, any deviations from these aspiration levels are minimised. 
Despite the popularity of this method, there is no guarantee that it provides Pareto optimal 
solutions and for large problems computational burden could be an issue (Marler & Arora, 
2004).  

• Physical programming, which maps general classifications of goals and objectives, and verbally 
expressed preferences, to a utility function. It provides a means of incorporating preferences 
without having to conjure relative weights (Marler & Arora, 2004).  

• Weighting method, with weights set up beforehand. 

• Weighted Tchebycheff, with weights set up beforehand. 

• Epsilon-constraint (or bounded objective function). 

As previously, many hybrid methods are also proposed in the literature, for instance, the combination 
of the weighted and global criterion methods, weighted and the lexicographic approaches, weighted 
and goal programming, lexicographic and goal programming, etc. Another popular hybrid method is: 
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• VIKOR method (Opricovic and Tzeng, 2004; 2007), which is a combination of compromise 
programming (see no-preference methods) and a weighting method and was originally 
developed to solve decision problems with conflicting and non-commensurable criteria. VIKOR 
ranks alternatives and determines the solution named compromise that is the closest to the 
ideal from an initial set of (given) weights. 

2.1.4 Methods where progressive articulation of preference information is 
used (interactive methods) 

If the decision maker has enough time and capabilities to interact with the system, many of the weak 
points of the previous classes could be overcome. Namely, only part of the Pareto front has to be 
generated and the decision maker does not have to know any global preference structure, since they 
are specified as the solution process evolves. At each iteration, some information is given to the 
decision maker and she is asked then to answer some questions or provide some other type of 
information. After a reasonable number of iterations, the process stops. 

These methods differ by the type and amount of information that is given to (and provided by) the 
decision maker and how the overall problem is transformed into a single objective optimisation 
problem. To name a few, in this class we would find the interactive surrogate worth trade-off method; 
the sequential proxy optimisation technique (SPOT); the step method; the reference point method; 
the GUESS method; the satisficing trade-off method; the light beam search; the reference direction 
approach; and the NIMBUS method. Some hybrid approaches combining methods from other classes 
are also proposed in the literature, such as the interactive weighted Tchebycheff procedure, which 
has the advantage that the decision maker has a rather simple task (if compared with other interactive 
methods), which is to compare several alternative objective vectors and select the most preferred one.  

A particular implementation of the light beam search methodology are the so-called outranking 
methods, a well-established method with a large history of successful real-word applications. The 
method compares all couples of alternatives and determine which are preferred by systematically 
comparing the alternatives for each criterion, trying to establish outranking relations between 
alternatives according on the basis of for how many components the decision maker judges 
indifference, weak preference, preference or no-preference. These decisions can be complemented, 
for instance, with veto thresholds, which prevents a good performance in some components of the 
objective vector from compensating for poor values on some other components. An important 
advantage of outranking methods is their ability to take ordinal scales into account without converting 
the original scales into abstract ones with an arbitrary imposed range, and at the same time maintain 
the original verbal meaning. A second advantage of outranking methods is that thresholds can be 
considered when modelling imperfect knowledge, permitting the utilisation of incomplete value 
information, such as judgements on ordinal measurement scales and partial prioritisation (Yanga et al. 
2012). Popular examples of outranking methods are ELECTRE (ELimination Et Choix Traduisant la 
REalité) (Roy, 1968; Figueira et al., 2005) and PROMOTHEE (Brans et al, 1986) families.  

A similar approach to outranking methods is the analytic hierarchy process (AHP), primarily based on 
the pair wise comparison of matrices that the decision maker uses to establish preferences between 
alternatives for different criteria and the rating methods. This method includes both the rating and 
comparison methods. Rationality requires developing a reliable hierarchic structure or feedback 
network that includes criteria of various types of influence, stakeholders, and decision alternatives to 
determine the best choice (Saaty, 1994). According to the review done by (Sabaei et al., 2015), the 
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most in common methods found in the literature for maintenance management applications are AHP, 
ELECTRE and PROMOTHEE.  

Again, hybrid methods can be used, such as for example the combination of VIKOR and AHP methods, 
(San Cristóbal, 2011). 

2.1.5 Method extensions and refinements 

In an effort to overcome the shortcomings and difficulties present in all previous methods, a significant 
research effort has been devoted to refine them, or to expand them using approaches coming from 
other fields in mathematics, operational research and engineering. For instance, several normalisation 
(or function-transformation methods) are proposed by (Marler & Arora, 2010), in order to cope with 
non-commensurablility aspects. The VIKOR method has been extended by using interval numbers 
(Sayadi el al. 2009), with the aim to improve the ranking process; or with stability analysis determining 
the weight stability intervals (Opricovic and Tzeng, 2007).  

It is worth noting that due to the fact that human preferences can be often vague, it is hard to estimate 
an alternative with crisp numerical values. In this context, several authors have extended classical 
multi-objective optimisation methods with concepts arising from the fuzzy logic theory. For instance, 
(Rao & Roy, 1989) already proposed to use fuzzy set concepts to effectively assign weights to 
objectives. (Yanga et al. 2012) used linguistic assessments instead of numerical values in such a way 
that assessments of alternatives with respect to criteria are assessed using linguistic variables whose 
values are words or sentences in a natural or artificial language in an outranking method. The VIKOR 
approach has also been extended with fuzzy sets (Opricovic, 2011; Hajiagha et al. 2014), as well as the 
SPOT methodology (Sakawa & Yano, 1985), to name a couple of extra examples. 

2.2 Uncertainty, risk and robustness considerations for optimisation 

Nearly every optimisation problem is featured by the presence of uncertainty to some extent. In order 
to efficiently deal with the disturbances, inaccuracy of input data, or wrongly estimated parameters, a 
variety of algorithms have been proposed that are capable of producing the solutions that are 
applicable under certain conditions. 

According to Vallerio et al. (2015), two different approaches have been employed in literature when 
dealing with parametric uncertainty: 

1. the first approach accounts for the states and/or parameters probability distribution by 
specifying expected value optimisation problems and chance constraints (Wendt et al.(2002); 
Mitra (2009); Recker et al. (2012); Li et al. (2002, 2008); Schenkendorf et al. (2009)) 

2. the second approach is based on formulating a worst case scenario optimisation when the 
uncertainty is defined by a given set, e.g., a box or ellipsoid (Nagy &Braatz (2004); Houska & 
Diehl (2009); Houska et al. (2012) for optimal control and Nagy & Braatz (2003) for an online 
application) 

3. Other strategies to quantify and consider the system’s variances are reported for example in 
Diwekar & Kalagnanam (1997); Nagy & Braatz (2007). 
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2.2.1 Stochastic approach 

The first approach mainly involves the different criteria used for risk measure, such as variance 
(Markowitz, 1959), value-at-risk (VaR) (Linsmeier and Pearson, 1996), conditional value-at-risk (CVaR) 
(Rockafellar and Uryasev, 2000), etc. For example, Alexanderian et al., (2017) briefly explain the risk-
neutral and risk-averse optimal control approach in the case of partial differential equations (PDEs) 
with uncertain parameters. The authors consider a real-valued optimisation objective Θ(𝑧𝑧,𝑚𝑚) that 
depends on a control variable 𝑧𝑧 and an uncertain parameter 𝑚𝑚, both of which can be finite- or infinite-
dimensional. Namely, Θ(𝑧𝑧,𝑚𝑚): =  Θ�(𝑧𝑧,𝑚𝑚,𝑢𝑢) with 𝑢𝑢 = 𝒮𝒮(𝑧𝑧,𝑚𝑚), where 𝒮𝒮 is a PDE solution operator. In 
optimisation under uncertainty problem, it is natural to seek optimal controls 𝒛𝒛 that make 𝚯𝚯 small in 
an average sense. For example, a risk-neutral optimal control approach seeks controls that solve: 

min
𝑧𝑧

E {Θ(𝑧𝑧,𝑚𝑚)} 

where 𝐸𝐸{·} denotes expectation over the uncertain parameter m. If we seek controls that, in addition 
to minimizing the expected value of Θ with respect to 𝑚𝑚, result in a small uncertainty in Θ, we are led 
to risk-averse optimal control. The authors use the variance of the control objective as a risk measure, 
and seek optimal controls that solve the problem 

min
𝑧𝑧

E {Θ(𝑧𝑧,𝑚𝑚)} + β Var{Θ(𝑧𝑧,𝑚𝑚)}. 

where Var{·} denotes the variance with respect to 𝑚𝑚, and 𝛽𝛽 > 0 is a risk-aversion parameter that aims 
to penalize large variances of the control objective.  

An example of this approach, applied to flight dispatching problems, is found in (González-Arribas, et 
al. 2018), where a compound objective function it is proposed such that the expected value of the 
direct operating costs is considered on one hand; and on the other hand, the arrival time window 
resulting from the earliest/latest arrival times due to weather uncertainty. This cost function is 
weighted by a "dispersion parameter", that is given by the user (dispatcher), and captures the relative 
importance given to punctuality with respect to direct operating costs. 

This mean-variance formulation is only one of several formulations for finding risk-averse optimal 
controls. Other examples of more complex risk measures include the value at risk (VaR) and the 
conditional value at risk (CVaR). Among those, VaR remains the most widely accepted measure among 
practitioners. VaR estimates the maximum potential loss at a certain probability level, i.e., it provides 
information about the amount of losses that will not be exceeded with certain probability. 
Mathematically, (1 − 𝜀𝜀) − VaR is defined as the minimum level 𝛾𝛾 such that the probability that the 
portfolio loss 𝑓𝑓(𝑥𝑥,𝑢𝑢) is below 𝛾𝛾 exceeds 1 − 𝜀𝜀. Thus, the VaR can be formulated as: 

𝑉𝑉(𝑥𝑥) = min 𝛾𝛾 

s. t.𝑃𝑃(𝑓𝑓(𝑥𝑥,𝑢𝑢) ≤ 𝛾𝛾) ≥ 1 − 𝜀𝜀 

where 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is the vector of asset weights, and 𝑢𝑢 = (𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) is the vector of uncertain 
portfolio asset returns. 
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However, the application of this approach requires a solid knowledge of the data, which are very often 
prone to errors. Additionally, the probability distributions are often unknown in practice and can be 
computationally expensive.  

2.2.2 Robust approach 

In the case when there is no sufficient data, robust optimisation approaches are deemed as an 
appropriate tool to deal with uncertainty. In robust optimisation approaches, typically the uncertainty 
is modeled as parameters whose exact values are not known but are assumed to stem from a set. 
This set is called an uncertainty set. Possible realisations of the unknown parameters are called 
scenarios, which are the elements in the uncertainty set. We call the most typical or expected scenario 
the nominal scenario and the objective function values in the nominal scenario as the nominal quality. 

Although there is not unified classification of the available methods within 'robust optimisation', 
Goerigk and Schöbel (2016) summarizes the application-driven concepts existing in the literature 
under different nomenclature. The classification provides the sound collection of nine different 
robustness concepts given in Appendix B. 

2.2.3 Other strategies 

In order to reduces the computational intensity of the stochastic optimisation problem, Diwekar and 
Kalagnanam (1997) proposed a new sampling technique based on Hammersley points. Nagy and Braatz 
(2007) employed the approaches based on the approximate representation of the full process model 
using power series or polynomial chaos expansions and provide a qualitative and quantitative 
estimation of the effect of parameter uncertainties on the states and output variables. However, the 
proposed approaches have not found the broad application in the practices and thus, will not be 
further investigated. 
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3 Selection of methods 

In this section the multi-criteria optimisation methods for each phase are selected. Section 3.1 
presents the details on the domain-driven selection criteria used in this process. A first general filtering 
of classes of (and specific) methods considering the characteristics of the problem are described in 
Section 3.2. Finally, the specific characteristics of each of the execution phases are considered in 
Section 3.3 to finalise the selection of method for each phase. 

3.1 Domain-driven selection criteria 

 
Figure 3. Diagram of approach followed to select optimisation method. 

Figure 3 presents a diagram with the approach followed on this selection. As it was introduced in 
Section 1.6 the selection of a multi-criteria method is typically a complex and domain-driven task. 
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Pilot3 has used input from different sources to identify the key aspects that should be considered in 
this selection process: 

• Pilot3 Deliverable D1.1 - Technical Resources and Problem definition (Pilot3 Consortium, 
2020): The proposal was further detailed with feedback from the Topic Manager and the 
Project Officer. This document then defines the problem and scope of the Pilot3 project, 
outlines the high-level concept and methodology, and identifies the high-level requirements 
of the Pilot3 software prototype and indicators that will be considered. 

• Topic Manager: Interaction with the Pilot3 Topic Manager is key to identify some of the 
requirements from the tool and to ensure alignment with the goals and roadmap of the Clean 
Sky 2. 

• Advisory Board workshop: A workshop was held with the Advisory Board (which includes 
stakeholders -airlines- and experts), where Pilot3 was presented and feedback was gathered 
on aspects relating to flight operations and performance monitoring, among others. 

• Advisory Board consultation: A follow-up consultation was conducted to validate the 
approach followed by Pilot3 on the definition of objectives to be considered, how the 
information is presented and available, etc. This additional feedback includes as well views 
from pilots. 

The domain-driven selection criteria have been classified into 10 different criteria grouped in five 
categories: 

a. Data (input) required by the method 

1. the input needed for the method to function should be available 

2. responsibility sharing on user (dispatcher, pilot) providing the input required 

b. Objectives considered 

3. ability to deal with high/low number of objectives 

4. consideration of variability/uncertainty  

c. Human-machine interface considerations 

5. easiness of providing the input required 

6. easiness of providing the output required 

d. Other non functional considerations 

7. computational cost of the method 

8. easiness to implement the method 

9. the method should provide a necessary and sufficient condition method for Pareto 
optimality 

e. Other functional considerations 

10. other general preferences expressed by stakeholders 
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As described in Section 1.5, there are different phases that are part of the multi-criteria optimisation 
framework developed in Pilot3. Each phase has different characteristics, which means that the 
optimisation method selected might be different for each phase. 

However, some of the above ten criteria used in this selection apply to all phases and significantly 
restrict the number of possible candidate methods to be used. Therefore, the selection process used 
to identify which method(s) will be implemented in Pilot3 follows a two-stage approach: 

The characteristics of the problem (tactical trajectory optimisation) are considered with inputs from 
D1.1 (Pilot3 Consortium, 2020), the Topic Manager and the first Advisory Board workshop. This filters 
the number of potential methods across all optimisation phases. This is the first stage depicted in 
Figure 3. 

Then, the remaining candidate methods were further analysed by the consortium considering the 
characteristics of each of the phases. And after additional feedback from a consultation with the 
Advisory Board, a reduced number of methods were kept for the final benchmarking and selection 
process. 

3.2 General filtering 

This filtering of potential methods is based on the characteristics of the problem and applied to classes 
and specific methods. Some of the criteria used to select the method(s) to be implemented significantly 
restrict the number of potential methods that could be considered. 

3.2.1 Objectives considered 

3.2.1.1 Number of objectives and their characteristics 
It is paramount to understand the number of objectives and their characteristics as this affects the 
potential type of multi-criteria methods to be used (see selection criteria b.3 the ability to deal with 
high/low number of objectives). 

When an airline is operating flights, their flight policies are reflected in their airline Operations Manual 
(OM), which serves as a communication tool that conveys the airline flight policy, aviation 
department’s goals and procedures to the entire company. Information given in the OM is 
communicated to the crew and flight dispatch personnel through different internal training 
programmes and communication channels of the airline. 

Insight on flight policies from Advisory Board consultation 

Although flight policies may vary significantly from one company to another, there is a general 
consensus among the Advisory Board that these depend highly on: 

• the airline network structure (hub-and-spoke network vs. point-to-point network), 

• characteristics of a particular flight (long-haul flight vs. short-haul flight), and 

• type of passengers served (individual end consumers vs. high-end business travellers). 

For instance, a viable connection of its transfer passengers is of the utmost importance for an airline 
operating hub-and-spoke network. Such airline is highly committed to providing a connecting 
service to long-haul flights for high-yield premium passengers as well as frequent flyer passengers 
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who contribute with a significant share in the airline’s total operating revenue, and are thus highly 
valued by the airline. On the other hand, flight policies of airlines operating point-to-point networks 
are rather oriented towards fuel saving. 

 

However, airlines generally allow for certain level of flexibility in their flight policies in order to 
accommodate: 

• seasonal traffic characteristics, 

• specific flight requirements, and 

• pilot's decision (to a limited extent). 

The objectives defined in flight policies are translated into operations through the Cost Index (CI). Most 
policies have a standard component (e.g., default CI set to 10 for all flights), plus a variable component 
as a function of the flight/event/situation (e.g., override the CI to 30). Note that the CI is used as a 
proxy to manage/estimate the flight in order to meet the airline's objectives. 

Insight on optimisation objectives from Advisory Board consultation 

During the Advisory Board workshop, the most relevant performance indicators (PIs) which are 
considered when selecting the major aspects of airlines’ objectives and policies were identified. Six 
main indicators were selected as the most important (ordered per relative importance as reported 
by the Advisory Board): 

1. Fuel cost 

2. On-time performance(OTP) 

3. Passenger missed connections 

4. Time in holding 

5. (Cost) of passenger disruption 

6. Crew and maintenance cost 

Fuel cost indicator is relevant, as airlines are highly sensitive to fuel consumption, and fuel costs still 
constitute a large portion of their total operating costs. Although the sensitivity to fuel costs could 
vary significantly among the airlines with different business models, there is still a clear consensus 
that fuel costs will play an important role in the future. Note that for Pilot3 we are interested on the 
extra fuel cost used or saved tactically due to the management of the trajectory. 

Passenger missed connections is of high importance for airlines that operate very complex and large 
networks as it affects both hard-costs due to compensations (e.g., Regulation 261) and soft-cost as 
it directly affects the airline reputation. Passenger disruption costs are a direct monetisation of the 
cost due to passenger disruptions, including both, connecting and non-connecting passengers. 
Therefore, passenger missed connections were identified as a proxy to the cost of passenger 
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disruption due to their large contribution on these costs for flight where these missed connections 
arise. However, overall these two indicators can be grouped into IROPS costs. 

In addition to fuel cost, airlines are also keen to minimise other costs, such as crew costs and 
maintenance cost. Airlines may apply a variety of policies regarding crew wages and salaries. 
However, most of them acquire hourly-based policy in which a pilot is paid based on the hours spent 
in the air or/and on the ground. With strict policies regarding pilot working hours in place, 
disruptions may lead to increased crew costs and additional scheduled inefficiencies. Additionally, 
regular aircraft maintenance checks (A, B, C and D) are performed after predefined flight hours, 
requiring a large majority of the aircraft's components to be inspected and/or replaced. In order to 
reduce maintenance costs, a number of airlines leases aircraft. 

The time in holding is up to a large extend out of the control capabilities of airlines. However, the 
prevalence of holdings and of sequencing and merging procedures (e.g., tromboning) could lead to 
sub-optimal decisions (e.g., speed up a flight to recover delay to end up in a holding stack). This is 
therefore not an indicator where airlines can act to reduce, but a parameter that should be 
considered when optimising the trajectories as part of the uncertainty in the system. 

In addition to fuel costs, airlines are also concerned about the on-time performance, as this 
indicator is very often used to reflect the level of service provided to passengers. Nowadays, on-
time performance is being monitored on a flight basis by most airlines in order to verify compliance 
with on-time performance targets defined in their respective airline flight policies. 

After analysing the different indicators, it was deemed that four of them (fuel cost, passenger missed 
connections, cost of passenger disruption and crew and maintenance cots) could be directly 
translated into cost. On-time performance is a binary indicator (i.e., the flight arriving to the 
destination gate with a delay with respect to their schedule lower than 15 minutes) which was 
difficult to monetise (i.e., linked with level of service, reactionary effects, robustness in network 
among others), and therefore is kept independently. Finally, time in holding, is considered as part 
of the uncertainty in the optimisation. 

More information on the process of consultation with the Advisory Board will be provided in D3.1 – 
Airlines data collection report. 

 

It has been established that the main high-level objectives relevant for an airline can be reduced to 
only two: 

3. Cost: which is a complex objective build from the aggregation of three key performance 
indicators (KPIs): 

a. cost of fuel, 

b. cost of IROPS, including hard and soft passenger costs (considering connecting and 
non-connecting passengers), and 

c. other costs, which account for extra crew and maintenance costs, but most 
importantly for reactionary costs. 
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4. On-Time Performance (OTP): which is considered as a binary variable of achieving on-time 
performance (i.e., arrival delay ≤ 15 minutes or not) 

Therefore, from an optimisation point of view, two objectives (cost and OTP) are considered. Note that 
to estimate the cost objective, its components need to be estimated and to estimate these, low level 
indicators (e.g., number of passengers missing connection) will need to be estimated too. This is the 
role of the Performance Indicators Estimator.  

Validation of choices of top level KPIs with Advisory Board 

After the first meeting with the AB (February 2020), 6 main KPIs had been identified (fuel cost, on-
time performance, passenger missed connections, time in holding, (cost) of passenger disruption, 
crew and maintenance cost). Since most of them could be expressed as cost, they were reduced to 
only cost (comprising different components) and OTP (i.e., either the flight achieves OTP or not). 
This approach was validated by a second follow-up consultation with the AB.  

 

The characteristics of these two objectives has a significant impact on the Pareto analysis of solutions. 
Since OTP is a binary objective function, the problem yields to 0, 1 or 2 possible Pareto efficient 
solutions. It could be case that the given constraints on the trajectory could make the optimisation 
infeasible. However, this should not be the typical situation, unless the Pilot is interacting with the 
system asking for potential solutions while setting different operational constraints in altitude, speed 
etc. In some cases, it would not be possible to tactically recover enough time to achieve the OTP 
objective. Therefore, only one Pareto efficient solution exists and Pilot3 should focus on minimising 
the total cost. In other cases, a trade-off might exist between achieving OTP and reducing the cost. 

Figure 4 presents an example of one case where such trade-off exists. There are a set of trajectories 
that do not achieve the on-time performance, each one of them with an expected different cost; and 
a set of trajectories which meet the on-time performance with another set of costs. As shown in the 
Figure, the two highlighted points are the Pareto optimal solutions. 

 

 
Figure 4. Pareto optimal solutions example Cost vs. OTP 
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Insight on on-time performance from follow-up Advisory Board consultation 

The follow-up consultation with the Advisory Board confirmed that providing to the pilot 
information on the 'extra-cost' of achieving OTP with respect to the minimum cost, which does not 
respect the OTP, i.e., difference in cost between Solution 2 and Solution 1 in Figure 4 would be 
desirable.  

 

Due to the nature of the multi-objective optimisation problem, with only two objectives and up to two 
possible Pareto optimal solutions, the method to address it becomes almost trivial and 
straightforward: Pilot3 will first optimise the trajectory considering only cost. If on-time performance 
is not achieved with the optimised solution, then the Alternatives Generator will try to impose 
achieving OTP as a constraint, to compute the extra cost that it would represent (i.e., finding Solution 
2 from Figure 4), in case this is achievable.  

Finally, note that even if the problem has been reduced in terms of objectives, trade-offs might still 
occur with respect to the KPIs that compose the Cost objective (i.e., cost of fuel, IROPS and other costs), 
and that irrespectively of these potential trade-offs, more than one trajectory/solution could lead to a 
statistically equivalent total cost. Therefore, the trajectories generated by the Alternatives Generator 
could still be more than two solutions. 

3.2.1.2 Consideration of uncertainty 
As discussed previously, Pilot3 will operate in an uncertain environment (e.g., weather, holding, path 
stretching, taxi in times). In case of uncertainty, an extra objective could be added to the optimisation, 
which is the risk of the solution (criteria b.4 consideration of variability/uncertainty). This is typically 
expressed as the variance of KPIs at the optimal point. For instance, a solution saving in average 50 kg 
of fuel may be risky, because, for example, due to the uncertainty the saving can go down to 10 kg, or 
even be negative. Another seemingly less optimal solution, which would expect to save for instance 
40 kg, may be less risky, ending up in 30 kg of fuel saved. As a consequence, there is sometimes a trade-
off between the average and the variance of the objective function. 

However, it is important to realise that airlines are profit-driven entities, i.e., that they seek to 
minimise their expected cost (apart from the OTP objective). As a consequence, if the underlying 
statistical distributions are correctly specified, the variance should be implicitly taken into account in 
the expected objective function, which thus should not include any extra variance term. This is typically 
referred as a risk-neutral optimisation, as presented in Section 2.2.1. Since Pilot3 should support the 
crew by providing solutions which would produce the best outcome in average, the optimiser will 
be risk-neutral.  

Because companies are made of humans, and humans are notoriously risk-averse, their decisions 
sometimes reflect this bias, a fact that we acknowledge in Pilot3. As a consequence, while our objective 
function will not include any explicit variance term, we will monitor the level of risk (the variance) as 
an extra indicator, which could be presented to the crew. This may for instance lead the pilot to decide 
to change option because of the (perceived) level of risk. This is in line with the feedback obtained 
from the consultation with the Advisory Board. 

Note that factors related to robustness, such as changes needed due to modifications on the forecast 
of the operational parameters (e.g., receiving a weather forecast update), are out of scope of the 



D2.1 TRADE-OFF REPORT ON MULTI CRITERIA DECISION MAKING TECHNIQUES 

 

  
 

 

 

© – 2020 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved. 

  
33 

 

 
 

 

project. Pilot3 will use the most up-to-date available information to estimate uncertainties (e.g., latest 
available weather forecast) and the tool can be re-executed if this information is updated; but the fact 
that this information might be updated is not considered when the tool is executed. 

  



EDITION 01.01 

34 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

 

3.2.2 Data required 

Once KPIs have been identified, it is important to capture the preferences of the airlines of how to 
provide input necessary to the optimisation, in order to ensure the appropriate multi-criteria decision-
making method to be selected (see criteria a.1 the input needed for the method to function should 
be available, a.2 responsibility sharing on user (dispatcher, pilot) providing the input required, c.5 
easiness of providing the input required and e.10 other general preferences expressed by 
stakeholders). 

Experiments in psychology show that the amount of information provided to the decision maker has a 
crucial role (Kok 1986). Though more information may increase the confidence of the decision maker 
in the solution obtained, it may also lead to less percentage of the information used, and thus the 
quality of the solution may be worse. In this context, some considerations on the visualisation of the 
results should also be considered (c.6 easiness of providing the output required). The graphical 
representation of solutions and the human machine interface with the decision-maker in general plays 
an important role and constitutes an important challenge itself. 

Insight on preferences of providing input from Advisory Board consultation 

While airlines generally have a clear idea that on-time performance is important for them and they 
can easily perceive that arriving early/late is not desirable, they acknowledge it is very hard to 
quantify this in terms of cost, since the implications of arriving early/late are many (i.e., waiting for 
gate, handling stuff, delay for passengers, crew stuff, etc.). For this reason, OTP is kept as an 
independent objective (not monetised). This also implies that it is difficult to compare objectives 
between them in a quantified manner. 

If instead of the general objective of cost, different PIs and KPIs are considered in order to identify 
if priorities can be considered among them, the Advisory Board expressed the following concerns: 

• In the case of quantifying cost of passenger missed connections, it seems that there is a 
discrepancy among airlines depending on their size and network structure. Namely, the 
larger airlines that operate through code-share agreements, as well as airlines that operate 
long-haul flights have more difficulties in quantifying this PI. On the other hand, airlines with 
point-to-point network can translate this indicator into costs much more easily. 

• A similar conclusion can be drawn for crew and maintenance cost. It seems that 
quantification of these costs is highly related to the specific airline business model and policy 
adopted. The airlines may have different strategies in terms of the maintenance agreements 
and the type of outsourcing arrangements, which may affect their respective cost structure. 
However, there is a general consensus that the maintenance cost is more difficult to 
estimate than crew costs but that both are less relevant than the other indicators. 

• Targeting given values for PIs or quantifying them seems difficult for airlines. 

• Ranking the PIs could be another possibility, as this is highly related to airlines business 
model and their respective flight policies.  
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From the input of the Advisory Board in the workshop and with the follow-up consultation, it was clear 
that ranking of importance of KPIs was the only easily available input for the decision maker. Also, this 
ranking should be defined as part of the configuration of Pilot3 (e.g., at dispatcher or strategic level). 

3.2.3 Pre-selection of classes of optimisation methods 

Despite the computational power available today in ordinary desktops, tablets, mobile phones, etc. or 
using large infrastructure/architectures such as high-performance computing, grid-computing, etc., 
the computational cost of finding an acceptable solution to the multi-criteria optimisation problem 
may still be a limiting factor, especially for (quasi) real-time applications and/or large problems with 
many objectives and constraints. For real-time calculations needed in Pilot3, the computational cost 
of a posteriori method is assumed to be prohibitive (criteria d.7 computational cost of the method). 
This, and the fact that the decision maker would have difficulties selecting from a large panel of Pareto 
solutions (criteria c.6 easiness of providing the output required) were important enough reasons to 
disregard a posteriori methods for the present application.  

Though they are quite simple to implement, no-preference methods (when used only) are also 
discarded, since the Pilot3 application seeks some implication of the decision maker (criteria d.8 
easiness to implement the method, e.10 other general preferences expressed by stakeholders). 
Nevertheless, some of the interesting features of the particular method of compromise programming 
could be used along with a complementary method.  

A priori and interactive methods are then left to solve our optimisation process, which, as described in 
Section 1.5, consists of the following phases:  

1. From airline flight policies obtained in the strategic phase of Pilot3, a (reduced) subset of 
alternative trajectories is generated by the Alternatives Generator (Generation phase). 

2. Once this set of alternatives has been generated, there is a process of ranking and selection, 
which will be performed by the Performance Assessment Module (Ranking phase). The 
objective of this process is to filter and rank the alternatives considering airlines' policies with 
respect to the different KPIs. For example, two solutions might provide the same cost but 
trading fuel cost and passenger cost (e.g., from compensation due to Reg. 261), in this case, 
even if the total expected cost for both alternatives is equivalent, the airline might define that 
passengers should be prioritised. Note that this ranking is produced with the information 
defined in the configuration phase of Pilot3 and if more than one alternative are produced by 
the Alternatives Generator. 

3. The final step consists on the inclusion of pilot operational related aspects (Selection phase). 
The pilot must have a mechanism allowing to compare and rank the solutions. For example, 
some solutions might be dismissed, as not deemed adequate from an operational perspective. 
Others, if acceptable, might not be their preferred solution as, for example, the required 
workload might be too high (e.g., they require a high interaction with the ATC). An iterative 
approach where the pilot can prioritise the alternatives and add constraints could be 
considered. This might trigger another optimisation of trajectories with these new constraints. 

Based on this description, a priori methods seem more suitable for the Generation phase, where 
flight policies are set up beforehand, whereas interactive methods could be of used for the Ranking 
and the Selection phases where additional input from the decisions makers could be obtained. 
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3.3 Specific filtering and selection 

3.3.1 Shortlist of optimisation methods 

In Appendix A, some of the criteria indicated in Section 3.1 are considered to further reduce the 
number of possible methods. For example, within the available a priori methods, goal programming 
combines the drawbacks of not always leading to Pareto solution (criteria d.9 the method should 
provide a necessary and sufficient condition method for Pareto optimality), and the fact that, though 
goal-setting seemed at first to be an understandable and easy way of making decision, feedback from 
the AB would show that it is not easily computable (criteria a.1. the input needed for the method to 
function should be available and c.5 easiness of providing the input required). 

After the follow-up consultation with the Advisory Board, it was made clear that airlines would not be 
able to provide numerical targets for KPIs, nor numerical bounds, nor relative weights of importance 
between KPIs. Only ranking of importance would be an available input from the decision maker.  

Based on these criteria, the following optimisation methods were identified as suitable candidates, for 
a priori methods: 

• Lexicographic ordering: The decision maker arranges objective functions according to their 
absolute importance. Then the most important objective function is minimised (or maximised). 
If the problem has a unique solution, it is the solution of the whole multi-objective 
optimisation problem. Otherwise, the second most important objective function is minimised, 
but adding a new constraint in the problem to guarantee that the most important objective 
function preserves its optimal value found in the previous step. It can be continued if there are 
more than two objectives.  

• Hierarchical approach: it is a modification of lexicographic ordering, where the upper bounds 
obtained when minimising the most important objective function are relaxed by so-called 
worsening factors. These relaxations allow to trade off higher prioritised objectives in front of 
lower prioritised ones, exploring in this case, a widest area of the Pareto front containing 
solutions that can be more interesting to the decision maker. 

These methods could be used in the Generation phase of the optimisation process: from airline flight 
policies obtained in the strategic phase of Pilot3, prioritisation of cost or of OTP is decided (with or 
without trade-off) and a (reduced) subset of alternative trajectories is generated by the Alternatives 
Generator. 

After this phase, several alternative trajectories may have been obtained leading to equivalent values 
of both objectives (cost and OTP), but showing differences with respect to other KPIs such as cost of 
fuel, IROPS, etc. Once this set of alternatives has been generated, ranking and selection is performed 
by the Performance Assessment Module with interaction with the Human-Machine Interface. The 
ranking of alternatives is based on airline preferences in term of cost of fuel, IROPS and other kinds of 
cost. In the Ranking phase, using additional input from airline policies and in the Selection phase, 
where the pilot would have a mechanism allowing to compare and rank the solutions, the following 
interactive methods may be used : 

• VIKOR: this is a combination of compromise programming (from the no-preference method 
family) and a weighting method. VIKOR ranks available alternatives and determines the 
solution named compromise that is the closest to the ideal from an initial set of (given) 
weights. Though initial weights of relative importance of the attributes would be needed, and 
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that in our case they seem impossible to obtain directly from airlines, these weights may be 
computed using analytic hierarchy process.  

• Analytic Hierarchy Process (AHP): AHP generates a weight for each evaluation criterion (or 
sub-criteria) according to the decision maker pairwise comparisons of criteria. The higher the 
weight, the more important the corresponding criterion. Next, for a fixed criterion, the AHP 
assigns a score to each alternative solution according to pairwise comparisons of the 
alternatives based on that criterion provided by the decision maker. The higher the score, the 
better the performance of the option with respect to the considered criterion. Finally, AHP 
combines the criteria weights and the alternative scores, thus determining a global score for 
each alternative, and a consequent ranking. The global score for a given alternative is a 
weighted sum of the scores it obtained with respect to all the criteria. It can either be used 
alone or combined with VIKOR method. It is applicable to our case given that the number of 
considered criteria and available trajectories would be quite limited; indeed, for problems with 
many criteria and available alternatives, it may require a large number of evaluations by the 
user. 

3.3.2 Generation phase 

This phase aims at generating a (reduced) subset of alternative trajectories based on preferences from 
airline flight policies obtained in the strategic phase of Pilot3. As previously commented, preferences 
can only be ranked and the main two objectives to consider from the optimisation point of view are 
cost and OTP. Though cost seems to always be the most important factor, the consultation with the 
Advisory Board showed that presenting the potential trade-off required to achieve OTP was of their 
interest. 

Insight on trade-off possibility between KPIs from the Advisory Board 

When asked whether they would prefer to be presented with two options, including the cost trade-
off for OTP, (e.g., Alternative 1: cheapest but not achieving OTP, and Alternative 2: 10 EUR higher 
than Alternative 1 but achieving OTP), or if they would only be interested in minimising the cost, 
members of the AB showed interest in being presented the cost trade-off for OTP. For example, they 
acknowledged that they may prefer to go for a high fuel consumption in a flight that may avoid 
cancel the following flight. 

For this purpose, either the pilot or the dispatcher should validate the value of the maximum extra 
cost allowed to achieve OTP. 

 

Based on this feedback and taking into account the multi-objective optimisation problem can present 
up to two different Pareto points, we propose, for the Generation phase, to compute both (if they 
exist). The Lexicographic ordering approach will be used to generate these Pareto optimal solutions. 
As one of the objectives considered is binary (either achieving or not OTP), using the lexicographic 
ordering allows us for an exploration of the Pareto front as in an a posteriori method, corresponding 
in this case to an a posteriori lexicographic ordering used, where the two possible combinations of the 
objective rankings are considered:  

1. Considering as first objective the total cost and as second objective the achieving of OTP. This 
will provide at least one possible trajectory (note that several could lead to equivalent total 
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cost) which minimise the total cost (first objective); and if OTP is reachable with that cost, only 
the trajectories meeting this criteria will be generated (second objective). This strategy is, 
therefore, robust against potential local minima issues: in situations with a flat Pareto front 
(i.e., Figure 4 with Cost1=Cost2) ensuring that solution selected minimises cost and also 
achieves OTP. 

2. If OTP is not achieved during the first step, then a possible trade-off might exist between cost 
and OTP. To generate this possible point, achieving OTP will be set as a constraint (first 
objective fulfilled) and cost will be then minimised (second objective). The computed 
trajectory(ies), if exist, will be kept as a trade-off alternative(s) to the one(s) generated in the 
first step (i.e., they will have a higher cost than the previous ones but will achieve OTP). Note 
that in some cases this might not be possible (i.e., there are no trajectories which can ensure 
OTP as the delay is too high). 

The Generation phase thus aspires to provide several alternative trajectories leading to equivalent 
minimum total costs or at a higher cost but allowing reaching OTP. 

3.3.3 Ranking phase 

Once several trajectories have been generated, the first process in the Performance Assessment 
Module is to rank these trajectories based on additional cost KPIs in order to further reduce the 
number of optimal trajectories to present to the crew considering airlines policies. This phase would 
be useful if airlines have interest in prioritising some specific cost (e.g., cost of fuel) at the expense of 
others (e.g., IROPS cost). To capture better their preferences, the advisory board was consulted. 

Insight on the possibility of ranking KPIs within the total cost (e.g., cost of fuel, IROPS) from the 
Advisory Board 

When asked whether they would be interested in ranking the different components of the cost 
within available trajectories (leading to equivalent costs), or only interested in total cost regardless 
of the sub-components of this cost, members of the AB showed interest in this disaggregation since 
it may be interesting for decision making, both in planning and execution phases, and also because 
though the total cost could be the same there could be better brand perception or less risky choice 
in an option or another. 

 

The Ranking phase will then aim to disaggregate total cost into sub-cost and to provide ranking of the 
alternative trajectories based on preferences established by airline policies. Depending on how these 
preferences can expressed, one or another optimisation method can be used. It is thus fundamental 
to capture if and how airlines can share these preferences. Since it was already established that ranking 
of KPIs was the only easily available way of sharing preferences, it is interesting to know if more detail 
can be obtained by ranking KPIs two by two and not only globally (see criteria a.1 the input needed for 
the method to function should be available). 

Insight on the availability of information about relative importance of KPIs from the Advisory 
Board 

Members of the Advisory Board ensured that they should be able to rate the most important KPIs 
two by two. 
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For example, they should be able to decide what cost component is more important between fuel 
and IROPS: 

• fuel is the more important; or 

• IROPS is the more important; or 

• fuel and IROPS are equally important. 

Nevertheless, a more detailed grading of relative importance (e.g., indicating if this importance is 
moderate, strong, very strong) and or numerical relative importance on a scale (e.g., form 1 to 5), 
was deemed too complex. 

 

To sum up, when starting the Ranking phase of the optimisation process, several alternative 
trajectories have been generated and the objective is to rank and select them following the 
preferences of the airlines. The multi-criteria optimisation problem is now a discrete problem, 
involving a limited number of alternatives, and the decision maker is able to rank two by two the KPIs 
of interest (OTP, cost of fuel, IROPS, other costs). Based on this, we propose to use the Compromise 
Ranking Method, also known as the VIKOR method, which is improved by introducing the Analytical 
Hierarchy Process for assigning the weights of relative importance of attributes (San Cristóbal, 2011). 

The VIKOR method is an effective tool in multi-criteria decision making, particularly in situations where 
the decision maker is not able, or does not know to express their preference at the beginning of system 
design. Here, even though airlines are able to express their preferences, when coming to cost 
components it is not always an obvious decision to decide which one is the overall most important (if 
any). The VIKOR characteristics match problems with the following criteria (Opricovic and Tzeng, 2007):  

• Compromising is acceptable for conflict resolution: at this stage of the problem, we believe 
this is the case, else, if a single KPIs overpasses all others, the selection of the corresponding 
trajectory is obvious. 

• The decision maker is willing to approve solution that is the closest to the ideal (ideal or utopia 
point would correspond to the minimum possible value of each cost KPI). 

• The criteria are conflicting. 

• The alternatives can be evaluated according to all established criteria (performance matrix): 
here all KPIs can be computed for each trajectory. 

• The decision maker’s preference is expressed by weights, given or simulated: here the two by 
two preferences between KPIs will allow to assign weights of relative importance of KPIs using 
Analytical Hierarchy Process.  

The VIKOR method is thus appealing as it fits most of the challenges encountered in this optimisation 
problem. When applied to a given set of alternatives, the obtained compromise solution aims to 
provide a maximum group utility of the majority (by minimising the weighted sum of the differences 
between KPI values and their respective minima), and a minimum individual regret of the opponent 
(by minimising the maximum difference between a KPI value and its minimum). 

In a very simple toy example, we aim to illustrate how this method can be applied.  
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Toy example 

Let us suppose that seven trajectories were obtained from the Generation Phase: three trajectories 
reaching OTP at a total cost of 2,100 EUR, and four trajectories not reaching OTP at a total cost of 2,000 
EUR. Costs of these trajectories are now disaggregated into sub-cost (KPIs) and can be presented in 
the so-called performance matrix (see Table 1). 

Table 1. Performance matrix of VIKOR toy example 

Alternative 
Trajectory 

Cost of fuel 
(minimise) 

IROPS cost 
(minimise) 

Other costs 
(minimise) 

OTP (maximise) 

Trajectory 1 750 700 650 1 

Trajectory 2 750 650 700 1 

Trajectory 3 800 625 675 1 

Trajectory 4 700 750 550 0 

Trajectory 5 725 700 575 0 

Trajectory 6 675 725 600 0 

Trajectory 7 750 675 575 0 

 

The optimisation problem is then split into two separated problems: rank the best options for OTP and 
rank the best options for minimising the total cost. To that end, ranking preference input is obtained 
from the airline policies (pre-flight) under the following form:  

• IROPS cost is more important than cost of fuel.  

• Cost of fuel is more important than other costs.  

• IROPS cost is more important than other costs.  

Based on this two-by-two ranking of relative importance of KPIs, the optimiser would assign the 
corresponding weights to each of the KPIs (using Analytical Hierarchy Process). In this example, highest 
weight of importance is assigned to IROPS cost, followed by cost of fuel and finally other costs. Note 
that if the airline were willing to, it could give more details of the relative importance (e.g., cost of fuel 
is strongly more important than other costs, IROPS cost is moderately more important than cost of 
fuel, etc.) or rate them with a numerical scale, in order to obtain a finer tuning of the relative weights 
of the KPIs. But, as commented from the insight of the Advisory Board, if this level of details is too 
complex to obtain the optimisation process would take place using only basic relative importance.  

Then the Compromise Ranking Method (VIKOR) would be applied, which aims to reach a compromise 
between all KPIs being as close as possible to their optimal values for the present set of trajectories 
and minimising the maximum difference between current and optimal value of KPIs. After this process, 
a single solution can be obtained if it really has a consequent advantage over the others, or a set of 
compromise solutions if these are too much alike to be able to choose only one.  

In this example, for the OTP trajectories, a set of two compromise solutions would be obtained by the 
VIKOR algorithm in the following order: trajectory 2, followed by trajectory 3. Though trajectory 2 is 
the best ranked, its advantage over trajectory 3 is not considered consequent enough, which is why 
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this set of two solutions is proposed. But the advantage of these two solutions over trajectory 1 is big 
enough to eliminate this option.  

For the non-OTP trajectories, the VIKOR algorithm produces the following compromise solutions: 
trajectory 7 is the best ranked, followed by trajectory 5. Once again, the advantage of the first ranked 
(trajectory 7) is not substantial enough to discard the second one (trajectory 5), but the two remaining 
trajectories can be disregarded based on this optimisation process.  

In this toy example, from a set of seven cost-equivalent (OTP or not) trajectories, the optimisation 
process conducted in the Ranking phase returns two ranked OTP trajectories and two ranked non-OTP 
trajectories. This thus reduces the set of options presented to the pilot and presents additional ranking 
information based on airline policies with respect to the results of the Generation phase. 

3.3.4 Selection phase 

The final phase of the execution of Pilot3 is the selection phase. This will be the final phase of the 
Performance Assessment Module and rely on the interaction with the pilot via the HMI. 

The pilot must have a mechanism for the comparison of the solutions. The Alternative Generator will 
create trajectories which will be evaluated, filtered and ranked, as previously described. However, the 
pilot might want to further explore the implications of the solutions on the different performance 
indicators and on the required trade-off to achieve OTP if possible. The information provided to the 
crew should be simple and, as much as possible, predictable in its presentation, so that the pilot can 
easily understand the different trade-offs and make an informed decision. The crew will be able to 
obtain information on the high-level objectives but also on the different KPIs (e.g., cost of fuel, cost of 
IROPs), and even descend to the level of indicator (e.g., number of missed connections). This is 
required so that they have a full understanding of the alternatives.  

Insight on information to provide to crew from Advisory Board consultation 

It was made clear in the consultation that there was an interest on providing information on the 
trade-off required to achieve OTP with respect to extra cost. Therefore, this information will be 
provided to the crew. However, who should accept the trade-off was split between the crew 
independently or the airline operating centre (i.e., dispatchers). The most shared view was that the 
thresholds used on this decision process should be defined before the flight (as part of the 
configuration of Pilot3). This, however, seems to be dependent on the airline flight policies. 

The disaggregated information of cost between its components is deemed relevant by the Advisory 
Board. Most of the respondents agreed that providing information on the variance on the solution 
(and not only the expected value) was interesting. However, it was also pointed out that in some 
cases the simplest the solution the highest the acceptance of the tool. Therefore, this might be a 
parameter (present the information or not) subject to configuration by the airlines. 

 

Besides the impact of the different alternatives on the performance indicators, tactical operational 
aspects will be considered by the crew. This might affect the acceptability of some of the suggested 
solutions which might be dismissed by the crew. Moreover, even if acceptable, operational 
preferences might be considered (e.g., alternatives not preferred by the crew due to an expected high 
workload due to interaction with the ATC to obtain the required clearances). 
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These operational aspects could be captured by explicit tactical operational indicators, which could be 
considered as part of the optimisation (e.g., including as an objective the minimisation of number of 
flight level changes). However, after the interaction with the Advisory Board and the follow-up 
consultation with pilots, it is considered that this might be too difficult to capture by the Pilot3 engine. 
These factors are embedded with pilot preferences, knowledge, operational awareness, etc. For this 
reason, an iterative approach where the pilot can prioritise the alternatives and add constraints is 
preferred. Pilot3 will, however, be able to compute some estimation of relevant operational indicators 
to facilitate this selection process (e.g., number of flight level changes required). This will be computed 
a posteriori, i.e., once the trajectories have been generated, and not as part of the optimisation.  

Insight on tactical information considered to accept solutions and add constraints from Advisory 
Board consultation 

Some of the aspects highlighted include the need of use up to date information when optimising 
the trajectories and all safety related parameters (e.g., aircraft performance, fuel on board, 
meteorological conditions). The number of specific indicators that the crew could use to determine 
if they think that a solution is acceptable are crew and flight dependent. However, some indicators 
can be pre-computed and provided as information to the crew. Example of parameters that are 
considered relevant by pilots are: 

• deviations on trajectories characteristics (e.g., variation in distance, fuel, time with respect 
to a baseline trajectory); 

• difference in wind component and temperature deviation from baseline; 

• number of speed changes required; 

• number of flight level changes required; 

• reported known issues along the new trajectories (e.g., turbulence, icing); 

• estimation of workload due to ATC interventions; 

• minimum temperature on new trajectories; 

• ability to rejoin the original route. 

 

Adding constraints (or even manually defining a new trajectory) might trigger another generation of 
trajectories with the pertinent execution of the Generation phase. Note that the newly generated 
trajectories could still be compared by the pilot with the non-dismissed previously generated. The 
Ranking phase will then be able to rank and filter the newly generated trajectories along with the 
previous ones. Note that, if constraints are added, it is possible that these new trajectories will perform 
worse, with respect to the objectives (cost and OTP), than the original set. Therefore, the Ranking 
phase must ensure to keep these trajectories (i.e., not filter them out), so that the crew can compare 
them with the previous (not-dismissed) solutions. 

Overall, this Selection phase depends on the interaction of the pilot via the HMI, which will be further 
developed as part of WP4. 
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4 Conclusions 

There are many different multi-criteria decision techniques that could be used when dealing with more 
than one objective. This deliverable has followed a domain-driven approach to select the most suitable 
methods for each of the Pilot3 execution phases. This has been done considering inputs from different 
sources: 

• Pilot3 Deliverable D1.1 - Technical Resources and Problem definition (Pilot3 Consortium, 
2020), 

• Topic Manager, 

• Advisory Board workshop, and 

• Advisory Board consultation.  

The information gathered has been used to obtain information on ten different criteria grouped in five 
categories: 

a. Data (input) required by the method 

1. the input needed for the method to function should be available 

2. responsibility sharing on user (dispatcher, pilot) providing the input required 

b. Objectives considered 

3. ability to deal with high/low number of objectives 

4. consideration of variability/uncertainty  

c. Human-machine interface considerations 

5. easiness of providing the input required 

6. easiness of providing the output required 

d. Other non functional considerations 

7. computational cost of the method 

8. easiness to implement the method 

9. the method should provide a necessary and sufficient condition method for Pareto 
optimality 

e. Other functional considerations 

10. other general preferences expressed by stakeholders 
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First, the characteristics of the problem have been considered to filter the number of potential 
methods across all the optimisation phases. Then, remaining candidate methods were further analysed 
considering the particularities of each of the execution phases. 

In particular, it has been stablished that established that the main high-level objectives relevant for an 
airline can be reduced to only two: 

1. Cost: which is a complex objective build from the aggregation of three key performance 
indicators (KPIs): 

a. cost of fuel, 

b. cost of IROPS, including hard and soft passenger costs (considering connecting and 
non-connecting passengers), and 

c. other costs, which account for extra crew and maintenance costs, but most 
importantly for reactionary costs. 

2. On-Time Performance (OTP): which is considered as a binary variable of achieving on-time 
performance (i.e., arrival delay ≤ 15 minutes or not) 

Pilot3 should support the crew by providing solutions which would produce the best outcome in 
average, the optimiser will be risk-neutral. For this reason no further objectives linked to uncertainty 
will be added. 

Note that the details on the optimisation technique that will be used to optimise the trajectories 
considering the multi-criteria framework will be defined in WP4. Further factors will then be 
considered, such as the possibility of exploring the space of search to provide more than one 
alternative which can be considered optimal, or the mathematical modelling of the flight trajectory 
with uncertainty. 

4.1 Generation phase 

The consultation with the Advisory Board has established that the problem faced by Pilot3 is a multi-
objective optimisation with only two objectives: Cost and On-Time Performance (OTP). Cost is a 
complex objective built from the aggregation of three key performance indicators (KPIs): cost of fuel, 
cost of IROPS, and other costs. OTP is considered a binary variable indicating if on-time performance 
is reached (i.e., arrival delay≤15 minutes) or not. The binary nature of the OTP objective implies that it 
can be considered as a requirement (to be checked) or as a constraint (to be maintained if possible). 

It has also been indicated that the optimisation should focus on minimising cost, and on producing the 
trade-off (in cost) required to achieve the OTP, if possible. This has led to the selection of the 
Lexicographic ordering multi-criteria optimisation method to capture this trade-off. Trajectories will 
be generated considering cost as first objective and OTP as second. If OTP is not achieved, then the 
trajectory generator will be re-executed forcing OTP (if possible), by adding it as a constraint, and then 
minimising the cost as a second objective. 

The generation phase will not select a solution but generate different trajectories in the Pareto front 
so that the decision maker can explore the alternatives after their ranking. 
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4.2 Ranking phase 

The Ranking phase will perform a discrete optimisation to filter and rank the solutions produced by 
the Generation phase. As indicated, cost is a complex objective formed by three different KPIs. 
Different preferences between these costs could be pre-defined (during the configuration of Pilot3) by 
the airlines. Indicating a two-by-two ranking of relative importance of KPIs has been deemed possible 
by the Advisory Board. 

The multi-criteria selection method most suitable for this process is the Compromise Ranking Method, 
also known as the VIKOR method, improved by introducing the Analytical Hierarchy Process for 
assigning the weights of relative importance of attributes. 

The ranking will be performed independently among the trajectories which do not meet the OTP, and 
the trajectories which achieve OTP (if any). 

4.3 Selection phase 

The Selection phase will rely on the interaction with the pilot via the Human-Machine Interface. The 
pilot will receive information on the alternatives and will be able to explore and compare the ranked 
trajectories. Some tactical operational indicators will be computed to facilitate this process (e.g., 
number of flight level changes required). The crew will be able to dismiss trajectories, add constraints, 
and re-execute the optimisation to re-evaluate the alternatives. Note that the ranking of alternatives 
could include the previously generated (and not yet dismissed) trajectories. 

The specific requirements and design of the interface will be performed as part of WP4 activities. 
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5 Next steps and look ahead 

This deliverable has defined the multi-criteria optimisation methods that will be considered for 
implementation in Pilot3. These findings will be translated into detailed requirements and 
implemented as part of the activities of WP4 - Model development. The first prototype will be 
delivered by March 2021 (D4.1 Crew Assistant Decision model description (first release) and D4.2 - 
Crew Assistant Decision model software package (first release)). Note that the multi-criteria 
optimisation methods selected present the framework of optimisation in terms of how the different 
objectives will be used for the generation of optimised trajectories and their ranking and filtering. 
However, the details on the optimisation technique that will be used will be defined in WP4. The 
technique implemented will have to consider other requirements such as the need of providing a 
solution within a restricted time, and the possibility of exploring the space of search to provide more 
than one alternative which can be considered optimal (if they exist). 

Detailed information on the interaction with the Advisory Board and data gathering activities (first 
Advisory Board meeting and follow-up consultation), which were used to produce D1.1 - Technical 
Resources and Problem definition (Pilot3 Consortium, 2020) and provided input for the selection 
process of the multi-criteria mechanism described in this deliverable, will be described in D3.1 - Airlines 
data collection report (due July 2020). 

Additional feedback from the Advisory Board (and external experts and stakeholders) will be gathered 
as part of the First release Pilot3 workshop planned in April 2021. With the feedback gathered the final 
version of Pilot3 will be implemented. As part of the verification and validation activities (WP5), 
scenarios will be defined and further interaction with the Advisory Board be sought. The verification 
and validation plan will be reported in D5.1 - Verification and validation plan (due July 2020). 
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7 Acronyms 

AB: Advisory Board 

AHP: Analytic Hierarchy Process  

ATC: Air Traffic Control 

ATM: Air Traffic Management 

CI: Cost Index 

CSJU: Clean Sky 2 Joint Undertaking 

CVaR: Conditional Value at Risk 

DM: Decision Maker 

DX.Y: Deliverable number (X=workpackage, Y=deliverable numbering within workpackage) 

ELECTRE: ELimination Et Choix Traduisant la REalité 

GDF: Geoffrion-Dyer-Feinberg Method 

H2020: Horizon 2020 research programme 

HMI: Human machine interface 

IROPs: Irregular Operations costs 

ISWT: Interactive Surrogate Worth Trade-off method 

KPI: Key Performance Indicator 

OM: Operations Manual 

OTP: On-Time Performance 

PI: Performance Indicator 

SPOPT: Sequential Proxy Optimisation Technique 

STOM: Satisficing Trade-Off Method 

TMA: Terminal Manoeuvring Area 

VaR: Value at Risk  

VIKOR: VIsekriterijumska Optimizacija I Kompromisno Resenje (Multicriteria Optimization and 
Compromise Solution) 
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Appendix A Comparative tables of multi-objective 
optimisation methods 

This Annex presents a detailed literature review of multi-objective optimisation methods classified by 
families considering the domain characteristics of Pilot3. The tables have been colour-coded to 
indicate their suitability for the general characteristics of Pilot3 problem: 

• Red: some criteria make this method not compatible for Pilot3.  

• Yellow: some criteria would raise difficulties when applying this method to our problem.  

• Green: desired criteria are all met when using these methods for our problem. 

In the pros/cons column, text (following the same colour coding as the cells, with black for additional 
information) is included to emphasise advantages and drawbacks of the methods, in light of Pilot3 
needs and characteristics.  

Note also that some methods might not neatly fit in one category but present characteristics of more 
than one. Finally, and since no method is found to be perfect for all criteria, a combination of several 
methods can be considered. 

A.1 A posteriori methods 
These methods are appealing as they do not require any input from the decision maker (DM) to select 
candidate Pareto efficient solutions. Instead a large number of these solutions (ideally the whole 
Pareto front) is generated first and presented to the DM. These methods could be considered a 
systematic approach, but they then have a high computational cost, which makes them usually 
prohibitive for real time application 

Table 2. Review a posteriori methods 

Method Short description Pros/cons 

Weighting method Associates each objective 
function with a weighting 
coefficient and minimise the 
weighted sum of the objectives 
→ single objective function 

Problem solved repetitively by 
changing the weight values 

• Pareto optimal as long as non-zero 
weights are used 

• Easy to implement 

• Inability to capture points on non-
convex portions of the Pareto front 
(Possibility of convexifying the non-
convex Pareto set by raising the 
objective functions to a high enough 
power under certain assumptions) 

• Computationally expensive 

Epsilon-constraint 
(or bounded 
objective function) 
method 

One of the objective 
functions is selected to be 
optimised and all the other 
ones are converted into 

• Solutions can be found in non-convex 
areas of the Pareto front 

• Computationally expensive for certain 
applications (more expensive than 
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Method Short description Pros/cons 

constraints by setting an 
upper bound to each of them. 

Problem solved repetitively by 
changing the value of these 
bounds. 

weighting methods since number of 
constraints increases) 

Hybrid method 
(combining 
weighting method 
and Epsilon-
constraint method) 

 • Any Pareto optimal solution can be 
found independently of the convexity of 
the problem 

• Computationally expensive (see 
Epsilon-constraint method) 

 

A.2 No preference methods 
These methods are only useful if the decision maker does not have any special expectations of the 
solution and she is satisfied simply with some optimal solution 

Table 3. Review no preference methods 

Method Short description Pros/cons 

Compromise programming 
(or global criterion) 

Distance between some reference 
point and the feasible objective 
region is minimised. 

Several alternatives exist to define 
either this reference point or the 
metric for measuring the distances. 

Another particular case of this 
method is the Tchebycheff solution 
(also known as Egalitarian solution or 
min-max optimisation), where the 
maximum distance to the ideal 
objective vector is chosen as decision 
performance index, in such a way 
that the system is no better-off than 
its worse-off individual.  

• Simple method to use 

• Obtain a solution where 
no special hopes are set 

• Pareto optimal 

Multi-objective Proximal 
Bundle Method 

From a given starting point in the 
Pareto front moves in a direction 
where the values of all the objective 
functions improve simultaneously 
(Mäkelä, 1993).  

• Weakly Pareto optimal 
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A.3 A priori methods 
The main difficulty of these methods consists in understanding and correctly interpreting the 
conceptual significance of the preferences, which is not always obvious. Also, the decision maker might 
not necessarily know beforehand what is possible to attain in the problem and how realistic her 
expectations are. Because they are a key point in the selection of the method, the required (type of) 
inputs are specifically identified for each method. 

Table 4. Review a priori methods 

Method Short description Pros/cons 

Value/Utility 
function 

Weighting method can be considered 
as special case of value function, 
where utilities are linear and additive 

Input: DM gives an accurate and 
explicit mathematical form of the 
value function that represents her 
preferences globally. 

• Pareto optimal as long as non-
zero weights are used 

• A complete ordering in the 
objective space is set and a single 
objective optimisation problem is 
solved. 

• Difficulty to encode 
mathematically the real 
preferences of the decision 
maker. 

Lexicographic 
ordering 

DM arranges the objective functions 
according to their absolute 
importance. Then the most 
important objective function is 
minimised (or maximised). If the 
problem has an unique solution, it is 
the solution of the whole multi-
objective optimisation problem. 
Otherwise, the 2nd most important 
objective function is minimised, but 
adding a new constraint in the 
problem to guarantee that the most 
important objective function 
preserves its optimal value found in 
the previous step. If this new 
problem has an unique solution, it 
becomes the solution of the whole 
multi-objective optimisation 
problem, otherwise the process goes 
on as described above with the third, 
fourth, etc. objectives. 

Input: absolute order of importance 
of objectives (but the most important 
may remain the only one optimised) 

• Always provides Pareto optimal 

• A maximum of N optimisations 
are done (N=number of 
objectives) 

• Robust method 

• Simplicity 

• It is very unlikely that the process 
can optimise lower prioritised 
objectives, since an unique 
solution is likely to be found in 
the first steps of the process. 

• The method does not allow a 
small increment of an important 
objective function to be traded 
off with a great decrease of a less 
important objective function, 
which might be often appealing 
to the DM, i.e, order is definite 
and rigid.  
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Method Short description Pros/cons 

Hierarchical 
approach 

Modification of lexicographic 
ordering where the upper bounds 
obtained when minimising more 
important objective functions are 
relaxed by so-called worsening 
factors. These relaxations allow to 
trade off higher prioritised objectives 
in front of lower prioritised ones, 
exploring in this case, a widest area 
of the Pareto front containing 
solutions that can be more 
interesting to the DM. 

Input: order of importance of 
objective + relaxing/trade-off factor, 
i.e: most important goal is goal M but 
if I can improve goal N by only 
worsening M by less than X%, it is ok. 

• Always provides Pareto optimal 

• A maximum of N optimisations 
are done (N=number of 
objectives) 

• Reduces the sensitivity of the 
final solution to the initial 
objective-function ranking 
process 

• Setting the relaxation factors 
might not be an obvious task for 
the decision maker. 

Goal programming The DM specifies (optimistic) 
aspiration levels for some of the 
objective functions (or all of them) 
forming goals, which are added in 
form of constraints in the 
optimisation problem. Then, any 
deviations from these aspiration 
levels are minimised, using a 
weighted function 

Input: goal/target value for each 
objective function 

• Goal-setting can be an 
understandable and easy way of 
making decision, but this is highly 
dependent on the application 

• Weights do not have so direct an 
effect on the solution obtained 
(as in the a-priori weighting 
method) but are still relative to 
each other 

• No direct physical meaning of 
weights 

• There is no guarantee that it 
provides Pareto optimal 
solutions. 

• For large problems, 
computational burden could be 
an issue. 

• Not appropriate to use if it is 
desired to obtain trade-offs 

Physical 
programming 

Maps general classifications of goals 
and objectives, and verbally 
expressed preferences, to a utility 
function. DM quantitatively classifies 

• Pareto optimal 

• Able to effectively optimise 
objective functions with 
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Method Short description Pros/cons 

different ranges of values for each 
metric. 

It provides a means of incorporating 
preferences without having to 
conjure relative weights. 

Input: design metrics (KPI) functions 
of design parameters (variables), 
then DM specifies numerical ranges 
corresponding to different degrees of 
preference (desirable, tolerable, 
undesirable, etc.). These ranges 
include limits on the values of the 
metrics, which are modelled as 
additional constraints. 

significantly different orders of 
magnitude 

• Allows one to make effective use 
of available information 

• Superior to the weighted sum 
method and to compromise 
programming in its ability to 
represent the complete Pareto 
optimal set with an even 
distribution of points 

• Requires significant familiarity 
with each objective and 
constraint 

• Initial coding can be relatively 
complicated 

Weighting method Associate each objective function 
with a weighting coefficient and 
minimise the weighted sum of the 
objectives → single objective 
function 

DM specifies beforehand a weighting 
vector representing his preferences, 
but some consider that instead of 
relative importance weighting 
coefficients should represent the rate 
at which DM is willing to trade off 
values of the objective functions 

Input: relative weight for each 
objective 

 

• Pareto optimal as long as non-
zero weights are used 

• Objective function should be 
normalised, otherwise role of the 
weighting coefficients may be 
greatly misleading 

• Weighting coefficients not easy 
to interpret and understand for 
average DM 

Weighted 
Tchebycheff 

Utopian objective vector is 
established. Distance from utopy 
point to feasible objective region, 
measured by a weighted Tchebycheff 
metric is minimised. 

Input: relative weight for each 
objective 
 

• Pareto optimal as long as non-
zero weights are used 

• Weighting coefficients not easy 
to interpret and understand for 
average DM 
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Method Short description Pros/cons 

Epsilon-constraint 
(or bounded 
objective function) 

One of the objective functions is 
selected to be optimised and all the 
other ones are converted into 
constraints by setting an upper 
bound to each of them. 

Input: one objective function to be 
minimised (single most important) 
and upper bounds for the other ones 

• Pareto optimal under certain 
assumptions 

• Non trivial choice of objective 
function + upper bounds to 
obtain a desirable solution → 
application dependent 

HIBRID between 
weighted and 
bounded 

The primary objective function is a 
weighted sum of all the objective 
functions and is subject to the 
constraints of the ε-constraint 
method. 

Input: weights + bounds of criteria 

• Yields a Pareto optimal solution 
for any ε. 

HIBRID between 
weighted and 
lexicographic 
(combined 
approach) 

Several objective functions may 
belong to the same class of 
importance in the lexicographic 
order. In each priority class, a 
weighted sum of the deviational 
variables is minimised 

Input: ranking of objective + weights 

 

HIBRID between 
lexicographic and 
goal programming 

Lexicographic approach of goal 
programming: DM must specify a 
lexicographic order for the goals in 
addition to the aspiration levels. Goal 
at the highest priority level is 
supposed to be infinitely more 
important than goal at the 2nd level, 
etc 

Input: ranking of objective + goal 
values 

• Order is definite and rigid 

VIKOR Ranking and selecting from a set of 
alternatives, and determines 
compromise solutions for a problem 
with conflicting criteria, which can 
help DM to reach a final decision 

Combination of compromise 
programming (see no-preference 
methods below) and a weighting 
method. VIKOR ranks alternatives 
and determines the solution named 

• Effective tool in multicriteria 
decision making, particularly in 
situations where DM is not able, 
or does not know to express her 
preference at the beginning of 
system design 

• Initial weights of relative 
importance of the attributes not 
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Method Short description Pros/cons 

compromise that is the closest to the 
ideal from an initial set of (given) 
weights. 

Can be started without interactive 
participation of DM, but DM is in 
charge of approving final solution 
and her preference must be included 

Input: give weights of criteria 
(expressing the DM’s preference as 
the relative importance of the 
criteria) + best and worst value of 
each criteria 

easy to interpret and understand 
for average DM 

• Weights may be assigned using 
AHP (see interactive methods) 

• Suitable for discrete decision 
problem with non-
commensurable (different units) 
and conflicting criteria 

• Suitable when compromising is 
acceptable for conflict resolution 

• DM should be willing to approve 
solution closest to the ideal 

 

A.4 Interactive methods 
If the decision maker has enough time and capabilities to interact with the system, many of the weak 
points of the previous classes could be overcome. Namely, only part of the Pareto optimal point has 
to be generated and the decision maker does not have to know any global preference structure, since 
they are specified as the solution process evolves. At each iteration, some information is given to the 
decision maker and (s)he is asked then to answer some questions or provide some other type of 
information. After a reasonable number of iterations, the process stops. These methods differ by the 
type and amount of information that is given to (and provided by) the decision maker and how the 
overall problem is transformed into a single objective optimisation problem. 

Stopping criteria are: 

• DM gets tired of the process;  

• some algorithm stopping (convergence) rule is fulfilled; or 

• DM finds a desirable solution and wants to stop.  

Gardiner and Vanderpoorten (1997) have studied that median number of iterations has been between 
3 and 8. 

Table 5. Review iterative methods 

Method Short description Pros/cons 

VIKOR DM can give new values of parameters 
during algorithm 

Input: updated values of weights after 
being presented by possible solutions 

• See a-priori methods 
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Method Short description Pros/cons 

Interactive 
Surrogate 
Worth Trade-
off method 
(ISWT) 

Based on𝜖𝜖-constraint method. Aims to 
maximise an underlying (implicitly known) 
value function. The opinions of the DM 
concerning the trade-off rates at the 
current solution point determine a search 
direction 

Input: at the beginning of the process: 
objective function to minimise + upper 
bounds of others. During process: select 
the most satisfactory solution for the 
continuation (using provided trade-off 
rates) 

• All alternatives are Pareto optimal 

• Convergence rate of ISWT greatly 
depends on the accuracy and 
consistency of the answers of the 
DM 

• Lots of different assumptions to be 
satisfied to guarantee that the 
algorithm works (correctness of 
trade-off rate for instance) 

Geoffrion-
Dyer-Feinberg 
Method (GDF) 

Same idea as ISWT, at each iteration, a 
local approximation of an underlying 
value function is generated and 
maximised. In GDF, marginal rates of 
substitution specified by DM are used to 
approximate the direction of steepest 
ascent of the value function, which is then 
maximised by a gradient-based method. 

Input: at the beginning of the process: 
reference objective function to minimise + 
upper bounds of others. During process: 
specify marginal rates of substitution 
between the reference function and the 
other objectives at the current solution 

• Difficulties of DM in determining 
rates of substitution 

• Final solution not necessarily 
Pareto optimal (neither the 
different alternatives to choose 
from) 

• Consistent and correct marginal 
rates of substitution needed at 
each iteration 

• Value function must be 
continuously differentiable, 
strongly decreasing, etc (hard to 
check for practical applications) 

Sequential 
Proxy 
Optimisation 
Technique 
(SPOT) 

Includes some properties of ISWT + GDF • Pareto optimal 

• Same drawbacks of previous 
methods 

Tchebycheff 
method 

Utopian objective vector is established. 
Distance from utopia point to feasible 
objective region, measured by a weighted 
Tchebycheff metric is minimised. 

Different solutions are obtained with 
different weighting vectors 

Solution space reduced by working with 
sequences of smaller and smaller subsets 
of weighting vector space leading to 
smaller subsets of Pareto optimal set 

• Pareto optimal if using 
lexicographic weighted 
Tchebycheff 

• Role of DM quite easy to 
understand: only has to compare 
several alternative objective 
vectors and select the most 
preferred one 

• Ease of comparison depends on 
number of objective functions 
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Method Short description Pros/cons 

At each iteration, different alternative 
objective vectors are presented to DM 
who is asked to select the most preferred 
one 

Input: initial weights, at each iteration 
choice of preferred solution for DM 

• Personal capabilities of DM play an 
important role 

• Reduced flexibility of method since 
discarded parts of the weighting 
vector cannot be restored if DM 
changes her mind → some 
consistency is required 

• Computational cost for large 
problems 

Step method Similar to Tchebycheff but aims to find 
satisfactory solutions instead of 
optimising 

Input: initial weights (not critical) and 
then at a certain Pareto optimal objective 
vector, DM indicates both: functions that 
reached acceptable values and those 
whose values are too high (unacceptable). 
DM then allows the values of some 
acceptable objective to increase so that 
unacceptable can have lower values 

• Information handled easy to 
understand (no complicated 
concepts introduced to DM) 

• Not necessarily Pareto optimal 

• It may be difficult to estimate 
appropriate amounts of increment 
that would allow desired amount 
of improvement in objective to be 
decreased → indirect control of 
the solution 

• Nadir vector (upper bounds of 
Pareto set) not easy to determine 

Reference 
Point Method 

Based on a reference point of aspiration 
level (feasible of infeasible point that is 
reasonable of desirable for DM) 

Input: initial reference point (aspiration 
level for each obj). Once alternatives 
(obtained with several close ref points) 
are presented to DM, choose if one is 
satisfactory, else DM specifies new ref 
point 

• Reference points should be easy 
and intuitive for DM to specify and 
their consistency is not essential 

• Perturbating the reference point 
allows DM to get better 
conception of possible solutions 

• More direct and more explicit way 
than using for example weighting 
coef 

• Does not need consistency from 
DM (though convergence not 
necessarily fast then) 

GUESS 
method 

Similar to ref point method but only one 
optimal solution presented to DM at each 
iteration 

Trial and error method 

• Reference points should be easy 
and intuitive for DM to specify 
and their consistency is not 
essential 
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Method Short description Pros/cons 

Input: initial reference point + bounds 
(optional). If solution presented is not 
satisfactory DM specifies new ref point 

• More direct and more explicit way 
than using for example weighting 
coef 

• Does not need consistency from 
DM (though convergence not 
necessarily fast then) 

• Weakly pareto optimal 
• Nadir vector (upper bounds of 

Pareto set) not easy to determine 

Satisficing 
Trade-Off 
Method 
(STOM) 

Pareto optimal solution (obtained by 
optimising a scalarising function) is 
presented to DM 

Input: initial reference point + DM 
classifies possible solutions into: 1. 
unacceptable → then specify aspiration 
levels, 2. acceptable and can be relaxed, 
3. acceptable and values must be kept as 
they are 

• Pareto optimal if scalarising 
function well chosen 

• Same comments as Ref point and 
GUESS method, and in practice, 
classifying the objective functions 
into 3 classes and specifying 
amounts of increment and 
decrement for their values is a 
subset of specifying new reference 
point 

• Does not need consistency from 
DM 

Light beam 
search 

Projects a focused beam of light from the 
reference point onto the Pareto optimal 
set 

Input: DM can specify best and worst 
values for each objective function, as well 
as preference and veto thresholds. 
Present one solution + Pareto neighbours 
of it to DM. DM can compare a set of 
alternatives and affect this set in different 
ways 

• Pareto optimal 

• Specifying threshold may be 
demanding for DM, but they can 
be altered at any time 

• May be computationally expensive 
to find Pareto neighbours 

Outranking 
methods 

Well-established method with a large 
history of successful real-word 
applications. The method compares all 
couples of alternatives and determine 
which are preferred by systematically 
comparing the alternatives for each 
criterion, trying to establish outranking 
relations between alternatives according 
on the basis of for how many components 
the decision maker judges indifference, 

• Ability to take ordinal scales into 
account without converting the 
original scales into abstract ones 
with an arbitrary imposed range 
and at the same time maintain the 
original verbal meaning 
thresholds can be considered 
when modelling imperfect 
knowledge, permitting the 
utilisation of incomplete value 
information, such as judgements 
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Method Short description Pros/cons 

weak preference, preference or no-
preference.  

These decisions can be complemented, 
for instance, with veto thresholds, which 
prevents a good performance in some 
components of the objective vector from 
compensating for poor values on some 
other components. 

Popular examples of outranking methods 
are ELECTRE (ELimination Et Choix 
Traduisant la REalité) (Roy, 1968; Figueira 
et al., 2005) and PROMOTHEE (Brans et al, 
1986) families 

ELECTRE: 2 main parts: 1st, the 
construction of one or several outranking 
relations, which aims at comparing in a 
comprehensive way each pair of actions; 
2nd, an exploitation procedure that 
elaborates on the recommendations 
obtained in the first phase. The nature of 
the recommendation depends on the 
problem being addressed: choosing, 
ranking or sorting 

Input: quantify the relative importance of 
criteria (importance/weight coefficients) + 
use thresholds of indifference and 
preference (veto thresholds: express the 
power attributed to a given criterion to be 
against the assertion “a outranks b”, 
when the difference of the performances 
between g(b) and g(a) is greater than this 
threshold.) 

PROMOTHEE: The preference structure of 
PROMETHEE is based on pairwise 
comparisons. In this case the deviation 
between the evaluations of two 
alternatives on a particular criterion is 
considered. For small deviations, the 
decision-maker will allocate a small 
preference to the best alternative and 
even possibly no preference if he 
considers that this deviation is negligible. 

on ordinal measurement scales 
and partial prioritisation (Yanga et 
al. 2012) 

• Usually the Electre Methods are 
used to discard some alternatives 
to the problem, which are 
unacceptable. After that we can 
use another MCDA to select the 
best one. The Advantage of using 
the Electre Methods before is that 
we can apply another MCDA with 
a restricted set of alternatives 
saving much time. 

• Number of interactions with the 
DM (i.e., number of queries to the 
DM asking for each pair) grows 
quadratically with the number of 
optimisation objectives. 
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Method Short description Pros/cons 

The larger the deviation, the larger the 
preference 

Input: information between the criteria 
(weights of relative importance of the 
different criteria) + information within 
each criterion (pairwise comparison) 

Analytic 
hierarchy 

process 
(AHP) 

Primarily based on the pair wise 
comparison of matrices that DM uses to 

establish preferences between 
alternatives for different criteria and the 

rating methods. 

AHP generates a weight for each 
evaluation criterion according to DM 

pairwise comparisons of the criteria. The 
higher the weight, the more important 
the corresponding criterion. Next, for a 

fixed criterion, the AHP assigns a score to 
each option according to DM pairwise 

comparisons of the options based on that 
criterion. The higher the score, the better 

the performance of the option with 
respect to the considered criterion. 

Finally, the AHP combines the criteria 
weights and the options scores, thus 

determining a global score for each 
option, and a consequent ranking. The 

global score for a given option is a 
weighted sum of the scores it obtained 

with respect to all the criteria 

This method includes both the rating and 
comparison methods. 

 

Input: DM pairwise comparisons of 
criteria + for a fixed criterion DM pairwise 
comparisons of the options based on that 

criterion. 

 

• Very flexible and powerful tool 
because scores, and therefore 
final ranking, are obtained on 

the basis of the pairwise relative 
evaluations of both the criteria 

and the options provided by 
user. 

• Computations made by the AHP 
are always guided by the DM 
experience, and the AHP can 

thus be considered as a tool that 
is able to translate the 

evaluations (both qualitative and 
quantitative) made by DM into a 

multicriteria ranking. 
• Simple because there is no need 

of building a complex expert 
system with DM’s knowledge 

embedded in it 
• No weight 

• Can be used to assign weights of 
relative importance of different 

attributes needed in other 
methods 

• May require a large number of 
evaluations by the user, 

especially for problems with 
many criteria and options. 

Although every single evaluation 
is very simple, since it only 

requires DM to express how two 
options or criteria compare to 

each other, the load of the 
evaluation task may become 

unreasonable. In fact the 
number of pairwise comparisons 

grows quadratically with the 
number of criteria and options. 
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Method Short description Pros/cons 

• For instance, when comparing 10 
alternatives on 4 criteria, 
4·3/2=6 comparisons are 

requested to build the weight 
vector, and 4·(10·9/2)=180 

pairwise comparisons are 
needed to build the score matrix 

That is for p alternatives and n 
criteria, n(n-1)/2 comparisons to 

build weight vector and n.p(p-
1)/2 pairwise comparisons to 

build score matrix 

• To reduce DM’s workload the 
AHP can be completely or 

partially automated by specifying 
suitable thresholds for 

automatically deciding some 
pairwise comparisons 
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Appendix B Review on robustness in optimisation 
 

This Annex presents the review of different considerations of robustness in optimisation under 
uncertainty: 

1. Strict robustness, 

2. Cardinality constrained robustness, 

3. Adjustable robustness, 

4. Light robustness, 

5. Recoverable robustness, 

6. Regret robustness, and 

7. Some further robustness concepts 

B.1 Strict robustness 
The most common concepts used in robust optimisation belong to the family of min-max robustness 
concepts (e.g., Bokrantz and Fredriksson, 2017; Ehrgott et al., 2014; Eichfelder et al. 2017; Kuroiwa 
and Lee, 2012). The approach is also known as classic robust optimisation, one-stage robustness, 
absolute deviation or simply robust optimisation. For minmax robustness, the objective functions are 
optimised in the worst case over all scenarios. The solutions computed are said to be min-max robust 
efficient. 

Denoting the set of strictly robust solutions with respect to the uncertainty set 𝒰𝒰 by 

𝑆𝑆𝑆𝑆(𝒰𝒰) = �ℱ(𝜉𝜉)
𝜉𝜉𝜉𝜉𝒰𝒰

 

the strictly robust counterpart of the uncertain optimisation problem is given as:  

(SR)   𝑚𝑚𝑚𝑚𝑚𝑚 sup
𝜉𝜉𝜉𝜉𝒰𝒰

𝑓𝑓(𝑥𝑥, 𝜉𝜉) 

s. t. 𝑥𝑥 𝜖𝜖 𝑆𝑆𝑆𝑆(𝒰𝒰) 

𝑥𝑥𝜖𝜖𝑥𝑥. 

This approach is particularly applicable in the case when all scenarios that may occur should be taken 
into consideration (when constructing a bridge that must be stable, no matter which traffic scenario 
occurs, or for constructing airplanes or nuclear power plants, for instance). However, high degree of 
conservatism of strict robustness is not applicable to all situations which call for robust solutions. For 
example, the application of strict robustness in designing the timetable in public transportation would 
mean that all announced arrival and departure times have to be met, no matter what happens. This 
could be achieved by introducing high buffer times, which will lead to a practically inapplicable 
timetable.  

In order to overcome the conservatism pertaining in the mentioned approach, the following methods 
have been introduced with the aim to relax the strict robustness. 
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B.2 Cardinality Constrained Robustness 
This concept has been proposed by Bertsimas and Sim (2004) for linear programming problems for the 
purpose of overcoming the conservatism of strict robustness by shrinking the uncertainty set 𝒰𝒰. The 
author considered that it is unlikely that all coefficients of one constraint change simultaneously to 
their worst-case values. Instead, they restricted the number of coefficients which are allowed to be 
changed. 

Considering a constraint of the form 𝑎𝑎1𝑥𝑥1+. . . +𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 ≤ 𝑏𝑏 with an uncertainty 𝒰𝒰 = {𝑎𝑎𝜖𝜖ℝ𝑛𝑛: 𝑎𝑎𝑖𝑖 ∈
[𝑎𝑎�𝑖𝑖 − 𝑑𝑑𝑖𝑖 ,𝑎𝑎�𝑖𝑖 + 𝑑𝑑𝑖𝑖], 𝑚𝑚 = 1, … ,𝑚𝑚}, their robustness concept requires a solution x to satisfy: 

�𝑎𝑎�𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖 + max
𝑆𝑆⊆{1,…,𝑛𝑛},

|𝑆𝑆|=Γ

��𝑑𝑑𝑖𝑖|𝑥𝑥𝑖𝑖|
𝑖𝑖∈𝑆𝑆

� ≤ 𝑏𝑏 

for a given parameter 𝛤𝛤 ∈ {0, … ,𝑚𝑚}. In this way, solution x to this model hedges against all scenarios 
in which at most 𝛤𝛤 many uncertain coefficients may deviate from their nominal values at the same.  

B.3 Adjustable Robustness 
Similar to two-stage programming in stochastic optimisation, Ben-Tal et al. (2003) introduced the new 
approach in robust optimisation called adjustable robustness. The authors assume that variables can 
be decomposed into two sets. The values for the here-and-now variables have to be found by the 
robust optimisation algorithm in advance, while the decision about the wait and-see variables can 
wait until the actual scenario 𝜉𝜉 𝜖𝜖 𝒰𝒰 becomes known. The approach assumes that the variables 𝑥𝑥 =
(𝑢𝑢, 𝑣𝑣) are split into 𝑢𝑢𝜖𝜖𝑥𝑥1 ⊆ ℝ𝑛𝑛1  and 𝑣𝑣 𝜖𝜖 𝑥𝑥2 ⊆ ℝ𝑛𝑛2  with 𝑚𝑚1 + 𝑚𝑚2 = 𝑚𝑚, where the variables 𝑢𝑢 need to 
be determined before the scenario 𝜉𝜉 𝜖𝜖 𝒰𝒰 becomes known, while the variables 𝑣𝑣 may be determined 
after 𝜉𝜉 has been realised. Thus, we may also write 𝑥𝑥(𝜉𝜉) to emphasise the dependence of 𝑣𝑣 on the 
scenarios. The uncertain optimisation problem (𝑃𝑃(𝜉𝜉), 𝜉𝜉 𝜖𝜖 𝒰𝒰) is rewritten as:  

𝑃𝑃(𝜉𝜉) min 𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝜉𝜉) 

𝐹𝐹(𝑢𝑢, 𝑣𝑣, 𝜉𝜉) ≤ 0 

(𝑢𝑢, 𝑣𝑣) ∈ 𝑥𝑥1 × 𝑥𝑥2. 

When fixing the here-and-now variables, one has to make sure that for any possible scenario 𝜉𝜉 𝜖𝜖 𝒰𝒰 
there exists 𝑣𝑣 𝜖𝜖 𝑥𝑥2 such that (𝑢𝑢, 𝑣𝑣) is feasible for 𝜉𝜉. The set of adjustable robust solutions is therefore 
given by: 

aSR = {𝑢𝑢𝜖𝜖 𝑥𝑥1 ∶ ∀𝜉𝜉 ∈ 𝒰𝒰 ∃𝑣𝑣 𝜖𝜖𝑥𝑥2 𝑠𝑠. 𝑡𝑡. (𝑢𝑢, 𝑣𝑣) ∈ ℱ(𝜉𝜉)} = �𝑃𝑃𝑃𝑃𝑥𝑥1(ℱ(𝜉𝜉)
𝜉𝜉𝜉𝜉𝒰𝒰

) 

There are several variations of the concept of adjustable robustness. Instead of two stages, multiple 
stages are possible. For example, Bertsimas and Caramanis (2010) proposed the approach of finitely 
adaptable solutions in which instead of computing a new solution for each scenario, a set of possible 
static solutions is computed, such that at least one of them is feasible in each stage. 

B.4 Light Robustness 
The approach is applied by Fischetti and Monaci (2009) who further develop the concept of cardinality 
constrained robustness. The idea of light robustness is that a solution must not be too bad in the 
nominal case and thus, a certain nominal quality is fixed. Among all solutions satisfying this standard, 
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the concept asks for the most “reliable” one with respect to constraint violation. The general lightly 
robust counterpart is of the following form: 

(𝐿𝐿𝑆𝑆)    min�𝜔𝜔𝑖𝑖𝛾𝛾𝑖𝑖

𝑚𝑚

𝑖𝑖=1

    

s. t. 𝑓𝑓�𝑥𝑥, 𝜉𝜉� ≤ 𝑓𝑓 ∗ �𝜉𝜉� + 𝜌𝜌 

𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 𝛾𝛾  ∀𝜉𝜉 ∈ 𝒰𝒰 

𝑥𝑥 ∈ 𝑥𝑥, 𝛾𝛾 ∈ ℝ𝑚𝑚 

where 𝜔𝜔𝑖𝑖 models a penalty weight for the violation of constraint 𝑚𝑚 and 𝜌𝜌 determines the required 
nominal quality.  

B.5 Recoverable Robustness 
The recoverable robustness is a two-stage concept very similar to adjustable robustness. The concept 
has been developed in Cicerone et al. (2007), Conde and Candia (2007), Liebchen et al. (2009) and 
Stiller (2008). Its basic idea is to allow a class of recovery algorithms 𝒜𝒜 that can be used in case of a 
disturbance. A solution 𝑥𝑥 is called recovery robust with respect to 𝒜𝒜 if for any possible scenario 𝜉𝜉 ∈ 𝒰𝒰 
there exists an algorithm 𝐴𝐴 ∈ 𝒜𝒜 such that 𝐴𝐴 applied to the solution 𝑥𝑥 and the scenario 𝜉𝜉 constructs a 
solution 𝐴𝐴(𝑥𝑥, 𝜉𝜉) ∈ ℱ(𝜉𝜉), i.e., a solution which is feasible for the current scenario. The recovery robust 
counterpart according to the formulation given in Conde and Candia (2007) is the following: 

(𝑆𝑆𝑆𝑆)    min
(𝑥𝑥,𝐴𝐴)𝜉𝜉ℱ(𝜉𝜉�)×𝒜𝒜

𝑓𝑓(𝑥𝑥) 

s. t.𝐴𝐴(𝑥𝑥, 𝜉𝜉)𝜖𝜖ℱ(𝜉𝜉) ∀𝜉𝜉𝜖𝜖𝒰𝒰 

It can be extended by including the recovery costs of a solution 𝑥𝑥: Let 𝑑𝑑(𝐴𝐴(𝑥𝑥, 𝜉𝜉)) be a possible vector-
valued function that measures the costs of the recovery, and let 𝜆𝜆 𝜖𝜖 Λ be a limit on the recovery costs, 
i.e., 𝜆𝜆 ≥ 𝑑𝑑(𝐴𝐴(𝑥𝑥, 𝜉𝜉)) for all 𝜉𝜉 ∈ 𝒰𝒰. Assume that there is some cost function 𝑔𝑔: Λ → ℝ associated with 
𝜆𝜆.  

Settings 

𝐴𝐴(𝑥𝑥, 𝜉𝜉, 𝜆𝜆) 𝜖𝜖 ℱ′(𝜉𝜉) ⟺ 𝑑𝑑(𝐴𝐴(𝑥𝑥, 𝜉𝜉, ) ≤ 𝜆𝜆 ∧ 𝐴𝐴(𝑥𝑥, 𝜉𝜉) 𝜖𝜖 ℱ(𝜉𝜉) 

gives the recovery robust counterpart with limited recovery costs: 

(RR − LIM)   min
(𝑥𝑥,𝐴𝐴,𝜆𝜆)𝜉𝜉ℱ(𝜉𝜉�)×𝒜𝒜×Λ

𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝜆𝜆) 

s. t.𝐴𝐴(𝑥𝑥, 𝜉𝜉) 𝜖𝜖 ℱ(𝜉𝜉) ∀𝜉𝜉𝜖𝜖𝒰𝒰 

The computational tractability of this robustness concept heavily depends on the problem, the 
recovery algorithms and the uncertainty under consideration. 

B.6 Regret Robustness 
The concept of regret robustness differs from the other robustness concepts insofar it usually only 
considers uncertainty in the objective function. Instead of minimising the worst-case performance of 
a solution, it minimizes the difference to the objective function of the best solution that would have 
been possible in a scenario. In some publications, it is also called deviation robustness. Let 𝑓𝑓∗(𝜉𝜉) 
denote the best objective value in scenario 𝜉𝜉 ∈ 𝒰𝒰. The min-max regret counterpart of an uncertain 
optimisation problem with uncertainty in the objective is then given by: 
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(Regret)   𝑚𝑚𝑚𝑚𝑚𝑚 sup
𝜉𝜉𝜉𝜉𝒰𝒰

(𝑓𝑓(𝑥𝑥, 𝜉𝜉) − 𝑓𝑓∗�𝜉𝜉�) 

s. t.𝐹𝐹(𝑥𝑥) ≤ 0 

𝑥𝑥 ∈ 𝑥𝑥. 

The regret robustness concept finds its broad application in location theory and in scheduling 
problems. 

B.7 Some Further Robustness Concepts 
 

• Reliability. Another approach to robust optimisation is to relax the constraints of strict 
robustness. This leads to the concept of reliability of Ben-Tal and Nemirovski (2000), in which 
the constraints 𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 0 are replaced by 𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 𝛾𝛾 for some 𝛾𝛾 ∈ ℝ≥0

𝑚𝑚 . A solution x which 
satisfies 𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 𝛾𝛾 for all 𝜉𝜉 ∈ 𝒰𝒰: 

𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 𝛾𝛾 𝑓𝑓𝑓𝑓𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 ∈ 𝒰𝒰  

is called reliable with respect to 𝛾𝛾. The goal is to find a reliable solution which minimises the original 
objective function in the worst case. 

• Soft Robustness. The basic idea of soft robustness as introduced in Ben-Tal et al. (2010) is to 
handle the conservatism of the strict robust approach by considering a nested family of 
uncertainty sets, and allowing more deviation in the constraints for larger uncertainties. 
Specifically, instead of an uncertainty set 𝒰𝒰 ⊆ ℝ𝑚𝑚, a family of uncertainties 

{𝒰𝒰(𝜀𝜀) ⊆ 𝒰𝒰}𝜀𝜀>0 with 𝒰𝒰(𝜀𝜀1) ⊆ 𝒰𝒰(𝜀𝜀2) for all 𝜀𝜀2 ≥ 𝜀𝜀1 is used. The set of soft robust solutions is then 
given as: 

softR = {𝑥𝑥 ∈𝑥𝑥: 𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 𝜀𝜀 ∀𝜉𝜉 ∈ 𝒰𝒰(𝜀𝜀),  𝜀𝜀 > 0} 

 

Note that strict robustness is a special case with 𝒰𝒰(𝜀𝜀) = 𝒰𝒰 for all 𝜀𝜀 > 0.  

• Comprehensive Robustness. While the adjustable robust approach relaxes the assumption that 
all decisions have to be made before the realised scenario becomes known, the approach of 
comprehensively robust counterparts Ben-Tal et al. (2006) also removes the assumption that 
only scenarios defined in the uncertainty set 𝒰𝒰 need to be considered. Instead, using a 
distance measure 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡 in the space of scenarios, and a distance measure 𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡����� in the solution 
space, they assume that the further away a scenario is from the uncertainty set, the further 
away the corresponding solution is allowed to be from the set of feasible solutions. As in 
adjustable robustness, the dependence of 𝑥𝑥 on the scenario 𝜉𝜉 is allowed, and we may write 
𝑥𝑥(𝜉𝜉). The adjustable robust counterpart is extended to the following problem:  

CRC  min 𝑧𝑧 

𝑠𝑠. 𝑡𝑡. 𝑓𝑓(𝑥𝑥(𝜉𝜉), 𝜉𝜉) ≤ 𝑧𝑧 + 𝛼𝛼𝑜𝑜𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡(𝜉𝜉,𝒰𝒰) ∀𝜉𝜉 

𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡�����(𝑥𝑥(𝜉𝜉),ℱ(𝜉𝜉)) ≤ 𝛼𝛼𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡(𝜉𝜉,𝒰𝒰) ∀𝜉𝜉 

where 𝛼𝛼,𝛼𝛼0 denote sensitivity parameters. 
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• Uncertainty Feature Optimisation. Instead of assuming that an explicit uncertainty set is given, 
which may be hard to model for real-world problems, the uncertainty feature optimisation 
(UFO) approach (Eggenberg et al. 2011) rather assumes that the robustness of a solution is 
given by an explicit function. For an uncertain optimisation problem 𝑃𝑃(𝜉𝜉), let 𝜇𝜇: ℝ𝑛𝑛 → ℝ𝑝𝑝 be 
a measure for 𝑝𝑝 robustness features. The UFO-counterpart of the uncertain problem is then 
given by: 

(UFO)  vecmax𝜇𝜇(𝑥𝑥) 

s. t.𝐹𝐹(𝑥𝑥) ≤ 0 

𝑓𝑓(𝑥𝑥) ≤ (1 + 𝜌𝜌)𝑓𝑓∗�𝜉𝜉� 

𝑥𝑥 ∈ 𝑥𝑥 

where 𝑓𝑓∗�𝜉𝜉� denotes the best objective value to the nominal problem. 

B.8 Application of robustness concept in different engineering 
problems 

Table 6, taken from (Source: Goerigk and Schöbel, 2016), lists some relevant applications where robust 
optimisation is applied comparing at least two algorithms to the same problem.  

Table 6. Papers presenting experiments comparing at least two algorithms for the same robustness 
concept (Source: Goerigk and Schöbel, 2016). 

Year Paper Problem Concept Algorithms 

2005 Montemanni and 
Gambardella Spanning tree Regret Branch and bound, MIP 

2006 Montemanni Spanning tree  Regret Bender’s decomp., MIP, 
branch and bound 

2008  Nikulin Spanning tree  Regret 
Simulated annealing, 
branch and bound, 
Bender’s decomp 

2008 Taniguchi, Yamada and 
Kataoka Knapsack  Strict  

Branch and bound with 
and without 
preprocessing 

2008 Velarde and Marti Capacitated 
sourcing  Adjustable Tabu search 

2009 Conde Critical path  Regret MIP and heuristic 

2010 de Farias, Zhao and 
Zhao 

Machine 
scheduling  Strict MIP with and without 

cuts 

2010 Bohle, Maturana and 
Vera 

Wine 
harvesting  cc* robust  MIP and scenario 

generation  

2010 Ng, Sun and Fowler Lot allocation  Strict  Branch-and-price and 
heuristics 
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Year Paper Problem Concept Algorithms 

2011 Catanzaro, Labbe and 
Salazar-Neumann Shortest path  Regret  IP with and without 

preprocessing 

2011 Pereira and Averbakh Assignment  Regret  MIP, Bender’s decomp., 
genetic algorithms 

2012 Kasperski, Makuchowski 
and Zielinski Spanning tree  Regret Tabu search and IP  

2012 Fischetti and Monaci Diverse  cc* robust MIP and cutting planes 

2012  Song, Lewis, Thompson 
and Wu Knapsack Strict Local search and branch 

and bound 

2013 Monaci, Pferschy and 
Serafini Knapsack cc* robust Dynamic programming 

and IP 

2013 Ouorou Capacity 
assignment Adjustable Approximations 

*“cc” abbreviates “cardinality constrained” 
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