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Downside Risk Measurement In Regime Switching
Stochastic Volatility

Sovan Mitra ∗

Abstract

Risk measurement is important to firms to enable management of risks, and ensure prof-
itability during different firm and market events. In particular, downside risk is an impor-
tant risk measure as it is a coherent risk measure, and it is also compatible with industry
risk management approaches such as stop losses. Whilst regime switching models have
been used for downside risk measurement, the regime switching models for stochastic
volatility dynamics have been limited and so restrict risk measurement. In this paper we
propose a new regime switching model that incorporates non-trivial stochastic volatility
dynamics, hence we are able to measure risk more realistically. We derive the downside
risk measure associated with our regime switching model, for risk measurement including
and excluding jump risk. We prove that the regime switching model converges to the
underlying continuous time asset pricing model, hence our risk measurement is consis-
tent. We provide a discretisation for the variance risk process, which is locally consistent
and enables computational implementation. We also provide numerical experiments to
illustrate our method.

Keywords: downside risk; regime switching; stochastic volatility; jump risk; risk man-
agement.

AMS subject classifications: 91G80, 62P05, 97M30

∗University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK Email: sovan.mitra@liverpool.ac.uk

sovan.mitra@liverpool.ac.uk


1 Introduction

Risk measurement is important to firms, as firms need to be able to manage their risks. The

importance of risk measurement has particularly increased since the commencement of the

Global Financial Crisis, where there were concerns of a global economic depression, and inap-

propriate risk measurement was considered a major cause of the Global Financial Crisis. One

particularly relevant risk measure is downside risk, this is the expected loss in relation to some

benchmark, or a numerical value. This risk measure is especially useful to risk management

because firms are more concerned with quantifying losses in relation to risk, rather than quan-

tifying gains, and downside risk achieves this objective. Additionally, many firms in industry

enforce stop losses, where firms sell assets if prices fall below some benchmark value. Therefore

the downside risk measure enables one to measure risk in an industry compatible approach.

Furthermore, risk measures in general enable firms to minimise losses and maximise potential

returns, determine their reserves, as well as inform hedging activities.

In order to measure the risk of assets, the traditional assumption of asset price modelling is

model volatility as a constant, in particular one assumes a continuous time process of geometric

Brownian motion. This implies asset returns are lognormally distributed and provides a simple

and analytically tractable model. The geometric Brownian motion model possesses many useful

theoretical properties, such as positive asset prices with probability 1, it enables the derivation

and analysis of a number of important financial topics e.g. derivative pricing.

Despite the benefits of geometric Brownian motion, the process is considered unsuitable for

asset price modelling for a number of reasons, in particular the assumption of constant volatility.

There is significant empirical (and theoretical) evidence to suggest that asset models have non-

constant volatility: firstly the implied volatility of option prices exhibit smiles (Renault and

Touzi, 1996) whereas a constant volatility model would predict no smile in empirical option

data. The return distribution of assets possess a fatter left tail and peakedness compared to

the distribution expected for constant volatility models (Durham, 2007). Most notably, the

stock market crash of 1987 empirically demonstrates a sudden and rapid change in volatility (a

comprehensive study is given in (Schwert, 1990)) that cannot be explained by constant volatility

models.

Consequently, correct risk modelling of assets must incorporate stochastic volatility to re-

alistically capture the risk dynamics of asset prices, that is volatility that is a function of an

additional random process. One method of stochastic volatility modelling is regime switching

(or Markov chains). A regime switching model implies that a model with u0 states, where

u0 ∈ N, will switch between N ∈ {1, 2, ..., u0} possible parameter values following some stochas-

tic process. This is an attractive method of modelling stochastic volatility for a number of
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reasons: firstly, it captures many of the empirical and theoretical properties of non-constant

volatility that are important in risk modelling, such as extreme price movements that were

exhibited during the Global Financial Crisis. Secondly, regime switching retains many of the

analytical advantages of the geometric Brownian motion model, unlike many other stochastic

volatility models (see for example (Heston, 1993) and (Hull and White, 1987)). Consequently,

the regime switching model enables us to develop closed form solutions and computational

methods.

In (Hardy, 2001) a stochastic volatility model is implemented using regime switching and

the downside risk measure (also called the conditional tail expectation) is analytically derived

with a closed form solution. The risk measure also has a maximum likelihood estimation

method derived, and it is also shown that the model provides a significantly better fit than

alternative models. However, there exist some areas for expansion in (Hardy, 2001): firstly,

the regime switching model only incorporates a limited set of volatility dynamics, hence the

risk measurement that can be captured by the model is restricted. Secondly, the relation of

the regime switching model to the associated continuous time, stochastic differential equation

model is not fully investigated. For example, how closely does the regime switching model

relate to the underlying continuous time stochastic differential equation? To what extent does

the regime switching model accurately capture the marginal distributions of the underlying

stochastic process? Consequently, one cannot know the extent to which the regime switching

model accurately allows risk measurement of the underlying process.

In this paper we propose a regime switching model that is able to model a wide range of

stochastic volatility processes, including jumps and other non-trivial stochastic processes. In

this paper we follow (Nguyen, 2018). We derive the downside risk measure for our regime

switching model, for risk measurement including jump risk and excluding jump risk. We de-

rive a discretised variance risk process, which has local consistency and enables computational

implementation. We also prove that our regime switching model provides consistent risk mea-

surement in that the model converges to the underlying continuous time stochastic differential

equation.

The plan of the paper is as follows: first we begin with preliminaries and related literature.

In the next section we introduce our underlying continuous time, stochastic differential equation

model for the asset model, which includes a wide range of stochastic volatility processes. We

then introduce our regime switching model associated with the underlying continuous time,

stochastic differential equation model. In the next section we derive the downside risk measure

for our regime switching model, without jump risk and including jump risk. In the next section

we prove that our risk measure is consistent with risk measurement on the underlying asset

model, as the number of regimes increase. Next, we conduct numerical experiments, analyse
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the results and finally we end with a conclusion.

2 Preliminaries

Let us assume that a probability space {Ω,F ,P} exists, where Ω denotes the sample space,

F denotes a collection of events in Ω with probability measure P, and we have a filtered

probability space {Ω,F , {Ft}t≥0,P}. We denote the set {Ft} as the set of information available

to an individual up to time t, so that

Ft1 ⊆ Ft2 ⊆ FT <∞, ∀t1 < t2 < T.

We also denote the set {Ft}, t ∈ [0, T ] as a filtration. Furthermore, for a given stochastic

process V (t), we define the filtration FVt to denote the information produced by V (t) on the

interval [0, t], as more information is revealed to an individual as time t progresses. Finally,

assume we have the probability space {Ω,F ,P} then we define a change of measure P ∼ Q to

be defined on the probability space {Ω,F ,Q}.
By Girsanov’s Theorem with respect to stochastic differential equations and change of prob-

ability measures, let us assume we have a family of information sets Ft over a period [0, T ]. We

define over [0, T ] the random process (also known as the Doleans exponential) υt:

υt = exp

{
−
∫ t

0

γ̂(u)dBP(u)− 1

2

∫ t

0

γ̂2(u)du

}
,

where BP(t) is the Wiener process under probability measure P and γ̂(t) is an Ft-measurable

process that satisfies the Novikov condition

EP
[
exp

{
1

2

∫ t

0

γ̂2(u)du

}]
<∞, t ∈ [0, T ].

Therefore BQ(t) is defined as a Wiener process with respect to Ft under probability measure

Q, where BQ(t) is given by

BQ(t) = BP(t) +

∫ t

0

γ̂(u)du, t ∈ [0, T ].

Let us define our asset pricing model as

dV (t)/V (t) = αdt+ β(·)dB(t),

where V (t) is the asset price at time t, α ∈ R is the drift, and β(·) is the volatility process. The

standard model for asset pricing assumes volatility as a constant (Black and Scholes, 1973),

that is we have geometric Brownian motion

dV (t)/V (t) = αdt+ βdB(t).
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Despite the analytical (and computational) advantages of geometric Brownian motion, the

model is not considered sufficient for risk measurement due to constant volatility. Firstly, em-

pirical option data frequently exhibits implied volatilities that are inconsistent with a constant

volatility model (Renault and Touzi, 1996). Secondly, the return distributions that would be

obtained for constant volatility models are not exhibited in empirical data (Durham, 2007).

Finally, the stock market crash of 1987 clearly exhibited a large and rapid change in volatility

that cannot be explained by constant volatility modelling (see for instance Bates (2018), Vo

and Ellis (2018) and Schwert (1990)).

As a result of constant volatility models being unable to accurately model asset pricing

dynamics, this has motivated new volatility models. The first development in non-constant

volatility modelling was time dependent volatility modelling (see for example (Wilmott et al.,

1998)):

dV (t)/V (t) = αdt+ β(t)dB(t).

We model volatility as a function of time t, and so volatility is no longer constant. In (Mer-

ton, 1973) derived the option pricing equation associated with this volatility model, using the

standard Black-Scholes equation where volatility is replaced by βc, where

βc =

√
1

T − t

∫ T

t

β2(τ)dτ ,

so that d1 and d2 in the Black-Scholes equation become:

d1 =

log

(
V (t)

K

)
+ α(T − t) +

1

2

∫ T
t
β2(τ)dτ√∫ T

t
β2(τ)dτ

,

d2 =

log

(
V (t)

K

)
+ α(T − t)− 1

2

∫ T
t
β2(τ)dτ√∫ T

t
β2(τ)dτ

,

where T denotes the option maturity, and K is the option strike price.

Local volatility modelling has been another method of non-constant volatility modelling,

where the volatility is a function of stock price and time, that is β = f(V (t), t). The Constant

Elasticity of Variance model (CEV) is given by (Cox and Ross, 1976)

dV (t)

V (t)
= αdt+ β(V (t))dB(t),

β(V (t)) = κ̃V η̃−1(t), for {η̃ ∈ R|0 ≤ η̃ ≤ 1}, κ̃ ∈ R+.

This model provides a flexible framework for modelling different volatility dynamics. For ex-

ample, for κ̃ = 0 we obtain Bachelier’s model of stock prices, while κ̃ = 1 gives the geometric
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Brownian motion model. The CEV model is also popular in industry and so has been extended

over time (for instance (Cox and Ross, 1976), (Cox et al., 1985) and (Schroder, 1989)), and

provides parsimonious calibration to option data ( see (Beckers, 1980) for more information).

Dupire’s local volatility model (Dupire, 1994) has Dupire’s equation, which is obtained by

applying the Fokker-Planck equation in terms of a call option H(t):

∂H(t)

∂T
= β2(V (t), T ).

V 2(t)

2
.
∂2H(t)

∂V 2(t)
− (r −D)V (t).

∂H(t)

∂V (t)
−D.H(t), (1)

where D is the asset dividend. It can be shown that from equation (1) we can derive

β(V (t), T ) =

√√√√√√√
∂H(t)

∂T
+ (r −D)V (t)

∂H(t)

∂V
+D.H(t)

V 2(t)

2
.
∂2H(t)

∂V 2(t)

. (2)

Hence equation (2) implies volatility β(V (t), T ) can be extracted from option data, however this

requires partial derivatives with respect to T and K. Consequently, we require a continuous

set of options data in K and T , and this is typically not available without excluding high

transaction costs(Nordén, 2003).

The most comprehensive development in volatility modelling has been stochastic volatility,

which can take into account empirical properties such as the clustering effect, fatter tail distri-

butions, implied volatility smiles and time scaling effects (Musiela and Rutkowski, 2005). The

stochastic volatility model is given by

dV (t)/V (t) = α1(V (t), t)dt+ β(t)dB1(t),

β(t) = f(dB2(t)),

where volatility is a function of a stochastic process that is driven by another (but possibly

correlated) Wiener process dB2(t), specified by correlation constant ρ where ρ ∈ {R|−1 ≤ ρ ≤
1}. The probability space (Ω,F ,P) is Ω = C([0,∞) : R2), with filtration {Ft}t≥0 to represent

information on two Wiener processes {B1(t), B2(t)}.
One of the first stochastic volatility models is (Johnson and Shanno, 1987), where

dβ(t) = α2β(t)dt+ βκ̃(t)η̃dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0}.

No analytical solution is provided for option prices in (Johnson and Shanno, 1987) , although

option prices are determined by Monte Carlo methods. Another stochastic volatility applies

the Ornstein-Uhlenbeck process (Scott, 1987):

dβ(t) = α2(κ̃− α(t))dt+ η̃dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0}.

The Hull-White Model (Hull and White, 1987) is an alternative stochastic volatility model:

dβ2(t)/β2(t) = α2dt+ η̃dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0},
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and one can obtain option prices using the Black-Scholes option pricing equation, with volatility

β̂2 where

β̂2 =
1

T̃ − t

∫ T̃

t

β2(s)ds.

The Heston stochastic volatility model (Heston, 1993) takes in account correlation between

Wiener processes corr(dB1(t), dB2(t)) = ρdt, where the volatility process is given by

dβ2(t) = α2(κ̃− β2(t))dt+ η̃β(t)dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0}. (3)

Whilst the models on non-constant volatility have been developed, separately the work on

risk measurement has been developed by (Artzner et al., 1999), which undertook an axiomatic

approach. The fundamental work of (Artzner et al., 1999) defines coherent risk measurement,

that is axioms that risk measures should obey in order to measure risk correctly, based on the

sample space of losses. If we assume we have a real valued random variable Y ∈ R within the

measurable space {Ω,F}, where Y follows a distribution of losses G, then a risk measure Φ(·)
is defined by

Φ(Y) : G 7→ R.

A risk measure is considered coherent (that is risk is measured correctly) if the risk mea-

sure abides to the coherency axioms (Artzner et al., 2003). This axiomatic approach to risk

measurement has proven beneficial to specifying risk measurement. The coherency axioms

are translation invariance, subaddivity, monotonicity and positive homogeneity and are given

(respectively) as

Φ(Y + k) = Φ(Y) + k, for k ∈ R,

Φ(Y1 + Y2) ≤ Φ(Y1) + Φ(Y2),

Φ(Y1) ≤ Φ(Y2),∀Y1 ≤ Y2,

Φ(kY) = kΦ(Y),∀k ∈ R≥0.

For the purposes of risk measurement we will assume risk is measured under the risk neutral

probability measure unless stated otherwise; this does not change any of the results but is used

for convenience and ease of comparsion.

The translation invariance axiom ensures that a cash position (reflected by a constant) has

no impact on risk, since cash is riskless. The subadditivity axiom implies that a portfolio

has less risk than the sum of the risk of the individual assets. This axiom takes into account

diversification in portfolios, and is also a criterion that disqualifies many risk measures as

coherent, for example VaR (Value at Risk). The monotonicity axiom implies that riskier assets

should have higher risk values, and the scale invariance implies that the magnitude of investment

does not affect the level of risk itself in the asset.
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There exist a large number of coherent (and non-coherent) risk measures that have been

studied in many papers (see for example (Szegö, 2005)). One of the most popular risk measures

in research and industry is Value at Risk (VaR), which is defined as

V aR(Y) = F(Y ≤ k)

where F(·) is the cumulative distribution function. Essentially, VaR specifies a quantile at

a given cumulative probability; this is typically 90%, 95%, and 99%. The VaR risk measure

benefits from analytical tractability, parsimonious computational implementation, and the risk

measure is popular with many managers as it is simple to comprehend. These advantages out-

weigh some of the criticisms of VaR, such as incorrect risk measurement of diversified portfolios.

Other popular risk measures include variance (or equivalently standard deviation) and sta-

tistical moments, that is we have the risk measure

Φ(Y) = E[Yn],

or in other words the nth moment, where E[.] is the expectation. The moment measure of risk

is a convenient measure, and it is well-known that moments give useful information about the

distribution of random variables. In fact in (Hoyland and Wallace, 2001) the moments are used

to produce scenarios for optimisation modelling.

One other class of risk measures are the upside and downside risk measures, and such risk

measures are coherent (Szegö, 2005) hence they will measure risk correctly. The upside risk

measure is given by

Φ(Y) = E[(Y − k)+],

and the downside risk is given by

Φ(Y) = E[(k − Y)+],

where k ∈ R is some constant. The upside risk measure enables us to gauge the expected gain

of Y beyond some threshold value k, whereas downside risk enables us to measure the loss in

Y below some threshold value k.

The downside risk measure is popular in industry because many firms are interested in

determining their expected performance, relative to some benchmark or constant k. For ex-

ample, firms are frequently interested in outperforming a stock market index, or some other

benchmark of performance. Hence the downside risk measure is able to quantify the risk of

underperforming such a benchmark. Secondly, the downside risk measure is able to incorporate

aspects of Behavioural Finance theory, hence the risk measure is more suited to actual investor

behaviour. In particular, the downside risk measure incorporates Prospect Theory, whereby

investors are sensitive to losses beyond some behavioural ”reference point”. The risk measure

is able to take into account such a reference point in terms of benchmark k.
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3 Asset Model

The regime switching model is associated with an underlying continuous time, stochastic differ-

ential equation that models the asset prices. Additionally, we want to model non-trivial price

processes of assets in order to realistically capture the risk of assets, in particularly we want

to include non-trivial stochastic volatility processes. Let us assume that our asset price V (t)

follows the process

dV (t) = α(·)V (t)dt+ β(.)V (t)dB1(t) + V (t)(eΛ(t) − 1)dN(t), (4)

where α(·) is the drift, B1(t) is a Brownian motion, Λ(t) =
∑N(t)

n=1 Z(n) with Z(n) for n=1,2,..

is a sequence of i.i.d. (independent and identically distributed) random variables, each with

the same density function fΛ(z) that defines the jump sizes. The N(t) represents a Poisson

process, with jump amplitude Λ(t), with rate λ > 0.

As mentioned previously, a key issue in the risk modelling of assets is the modelling of

the volatility process β(.), given that volatility modelling is an important component in asset

price moves. As the purpose of the asset model is to capture risk, we specify our model

to be a function of some parsimonious risk process. One approach is to use the Markowitz

model (Markowitz, 1952) as it is one of the most widely used measures of risk in industry. In

(Markowitz, 1952) there are n assets in a portfolio with return r(t) where

r(t) = [r1(t), r2(t), ...., rn(t)]T ,

E[r(t)] = µ,

with covariance matrix

Σ = E[(r(t)− µ)(r(t)− µ)T ],

and assets weights w = [w1, ..., wn]T . The purpose of (Markowitz, 1952) is to minimise

arg min
w

E[wTµ−wT r(t)], (5)

where the portfolio has expected return wTµ and variance wTΣw. Therefore the risk process

in (Markowitz, 1952) is modelled by the variance of assets or portfolios.

As variance is an important risk process in (Markowitz, 1952), in order to capture risk in

our model we also model volatility as a function of the variance process ϑ(t), that is β = f(ϑ),

similarly the drift is also a function of ϑ(t), that is α = f(ϑ(t)). Consequently our model

becomes

dV (t) = α(ϑ(t))V (t)dt+ β(ϑ(t))V (t)dB1(t) + V (t)(eΛ(t) − 1)dN(t).
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Moreover, to enable us to model a wide range of risk processes, we assume our variance process

ϑ(t) follows the stochastic differential equation

dϑ(t) = η̂(ϑ(t))dt+ σ̂(ϑ(t))dB2(t),

where σ̂(ϑ(t)) > 0 is a Brownian motion coefficient. The B1(t) and B2(t) are correlated

Brownian motions, that is E[dB1(t)dB2(t)] = ρdt, and {ρ ∈ R| − 1 ≤ ρ ≤ 1}, the N(t)

represents a Poisson process, with jump amplitude Λ(t), with rate λ > 0, and is independent

of either Brownian motions B1(t), B2(t). We now have a non-trivial and comprehensive asset

pricing model, which can take into account many realistic features of asset prices, in particular

stochastic jumps, stochastic volatility and correlated Brownian motions.

We apply Ito’s Lemma to log(V (t)) so that we have

d(log(V (t)) =
1

V (t)
dV̄ (t)− 1

2V 2(t)
(dV̄ (t))2 + d

∑
0<s≤t

[log(V (s))− log(V (s−)]

=

(
α(ϑ(t))− 1

2
β2((ϑ(t))

)
dt+ β(ϑ(t))dB1(t) + dΛ(t),

where V̄ (t) is the continuous function component of V (t). Let us now define

ĵ(x) =

∫ x

k

β(s)

ˆσ(s)
ds,

Γ(x) = L(ĵ(x)) = η̂(x)ĵ′(x) +
1

2
σ̂2(x)ĵ′′(x),

j(ϑ(t), ϑ(0)) = ρ(ĵ(ϑ(t))− ĵ(ϑ(0))),

where k is a constant. We then have

dj(ϑ(t), ϑ(0)) = ρdĵ(ϑ(t)) = ρΓ(ϑ(t))dt+ ρβ(ϑ(t))dB2(t).

Now let us set

B∗(t) =
(B1(t)− ρB2(t))√

1− ρ2
,

then E[dB∗(t)dB2(t)] = 0, where B∗(t) is a standard Brownian motion. Hence B∗(t) and B2(t)

are statistically independent Brownian motions.

If we now substitute the previous equation into our equation for d(log(V (t)) this gives

d(log(V (t)) =

(
α(ϑ(t))− 1

2
β2((ϑ(t))

)
dt+ dĵ(ϑ(t), ϑ(0))− ρΓ(ϑ(t))dt

+
√

1− ρ2β(ϑ(t))dB∗(t) + dΛ(t).

Let us also introduce S̃(t) = log

(
V (t)

V (0)

)
− j(ϑ(t), ϑ(0)), then we have

V (t) = V (0)exp(S̃(t) + j(ϑ(t), ϑ(0))). Moreover we can express

dS̃(t) =

(
α(ϑ(t))− 1

2
β2(ϑ(t))− ρΓ(ϑ(t))

)
dt+

√
1− ρ2tβ(ϑ(t))dB∗(t) + dΛ(t), (6)

dϑ(t) = η̂(ϑ(t))dt+ σ̂(ϑ(t))dB2(t). (7)
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We now have an equation for the asset price process, where the variance process dϑ(t) is

expressed in terms of an independent Brownian motion B2(t) from B∗(t). Additionally, this

equation will enable the regime switching risk analysis to be more easily derived.

We now wish to introduce our regime switching model related to our continuous time asset

pricing model. The regime switching model itself was introduced by Hamilton (see for instance

(Hamilton, 1989), (Hamilton, 1991), (Hamilton and Susmel, 1994), (Hamilton, 1994)) who

proposed that economic cycles follow regime switching processes. The objective of such models

is typically focussed towards econometric modelling, and so have been combined with ARCH-

type models, but our focus is on risk measurement. The rationale for economic time series

following regime switching processes are highly consistent with economic and financial theory.

For example, economic processes tend to exhibit memory or ”clustering effects” (see for example

(Engle, 1982)), hence high volatility events tend to be preceded by previous high volatility

events. Additionally, there exist statistical dependencies on switching from one ”mode” to

another ”mode”; in both cases regime switching models are able to incorporate such attributes.

We define our regime switching model as a u0-state, continuous time, Markov chain, where

u0 ∈ N+. We also have the random process φ(t) that determines the state, so that φ(t) ∈
{1, 2, ..., u0} and the transition between states is specified by the generator matrix Q. Given

that ϑ(·) is our risk variable we define ϑ(·) as a function of φ(t), thus we discretise ϑ(t) into

space {ϑ(1), ϑ(2), ..., ϑ(u0)}. Hence we have a u0-state, continuous time, Markov chain ϑ(φ(t)),

where φ(t) ∈ {1, 2, ..., u0}, with transition between states specified by the generator matrix Q.

We can now approximate S̃(t) by a regime switching jump diffusion process:

dS(t) = η(φ(t))dt+ σ(φ(t))dB∗(t) + dΛ(t), (8)

where

η(t) = α(ϑ(φ(t)))− 1

2
β2(ϑ(φ(t)))− ρΓ(ϑ(η(t))),

σ(φ(t)) =
√

1− ρ2β(ϑ(φ(t))).

It has been demonstrated in many papers that simple regime switching models are suffi-

ciently flexible to model a wide variety of asset price processes. For example, (Bollen, 1998)

utilises regime switching models to value American options, in (Mamon and Rodrigo, 2005)

regimes model the economy to price options and obtain analytic solutions, and in (Zhou and

Mamon, 2011) regime switching models are applied to model interest rate dynamics. Conse-

quently, the introduction of regime switching does not limit the modelling ability of the model.
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4 Downside Risk Measurement

In order to derive risk measures for our regime switching model, we will construct a lattice.

In our lattice construction we will restrict our trees to recombining trees, with 3 branches for

each node: an up move in the asset price, a down move in the asset price, and a no-price move

(denoted by the middle branch in the tree). We consider the finite time interval of interest for

risk analysis [0, T ], where T > 0, and divide [0, T ] into N ∈ N subintervals of length, that is

κ :=
T

N
. We now consider our model and measure the downside risk, with and without jump

risk.

4.1 Risk Measurement Without Jump Risk

We first consider our model without jump risk, that is

dS(t) = η(φ(t))dt+ σ(φ(t))dB∗(t). (9)

It is beneficial to consider our model without jump risk (also known as event risk) because

jump risk itself represents a significant and separate risk component of the model. In fact

the presence of jumps causes Black-Scholes replicating portfolios to contain unhedged risk (see

(Merton, 1976)) that is a function of the trading intervals. The jump components are considered

to model new and firm specific information on an asset (Merton, 1976) and the arrival of such

information follows a random process. Consequently, we would like to examine the model with

and without jump risk to have a better understanding of the risk.

Let us denote (S(k), φ(k)) := (S(t), φ(t))t=kκ to give the approximated state at the kth step

of the tree; let us also assume initially that (S(k), φ(k)) = (s, i) at time step k. Let σ̄ > 0 denote

the space step size for variable S; let us denote the number of upward lattice movements of

S(k+1) by κi, where κi ∈ N+. Let us also denote by pi,u, pi,d, pi,c the lattice branch probabilities

of upwards move, downwards move and no move (or middle move), respectively, where

pi,u + pi,d + pi,c = 1, where

0 ≤ pi,u ≤ 1,

0 ≤ pi,d ≤ 1,

0 ≤ pi,c ≤ 1,

by law of total probability. We define the probabilities as

pij = P (φk+1 = j|φk = i),∀i, j ∈ {1, 2, ..., u0},

therefore the three possible lattice branch values for S(k+1) are: s+κiσ̄
√
κ (for upwards move),

s−κiσ̄
√
κ (for downward move), and s (for no or middle branch move). As the purpose of the

11



model is to enable risk measurement, we apply a condition to ensure our lattice price moves are

meaningful in terms of risk and using equation (9). Consequently, we use the Markowitz risk

metric (that is equation (5)) and so we match the mean and variance implied by our model in

equation (9), to the mean and variance of our lattice. Hence we obtain

pi,u =
σ2
i + ηi(κiσ̄

√
κ) + η2

iκ
2(κiσ̄)2

, (10)

pi,d =
σ2
i − ηi(κiσ̄

√
κ) + η2

iκ
2(κiσ̄)2

, (11)

pi,c = 1− σ2
i + η2

iκ
(κiσ̄)2

. (12)

Our resultant lattice gives the following structure, starting from node (s, i) at step k, there will

be 3u0 possible nodes for (S(k + 1), φ(k + 1)) at step (k + 1). The (S(k + 1), φ(k + 1)) nodes

∀j ∈ {1, 2, .., u0} are given by:

(s+ κiσ̄
√

κ, j) with probability pijpi,u, (13)

(s− κiσ̄
√

κ, j) with probability pijpi,d, (14)

(s, j) with probability pijpi,c. (15)

In terms of lattice price moves, in order for the lattice to provide meaningful asset price

movements we impose the following constraint:

(κiσ̄)2 > σ2
i + η2

iκ.

This constraint again is determined in terms of providing meaningful movements in terms of

risk. The lattice movement (κiσ̄)2 should exceed asset movement due to the drift movement in

the asset (that is η2
iκ) plus movements associated with risk (that is we add σ2

i ). We note we

measure risk for each branch by squaring σi, hence all other terms are squared to provide an

appropriate scaling.

Now in order for our lattice model to be a viable model, we require branch probabilities

pi,c ∈ [0, 1], pi,u ∈ [0, 1], pi,d ∈ [0, 1]. This can be achieved with the following Lemma.

Lemma 1.

For the model

dS(t) = η(φ(t))dt+ σ(φ(t))dB∗(t),

the branch probabilities in the lattice model are necessarily bound within the following intervals

pi,c ∈ [0, 1], pi,u ∈ [0, 1], pi,d ∈ [0, 1] for i ∈ {1, 2, ..., u0}, ηi 6= 0, if

0 < κ ≤ min
1≤i≤u0

(κiσ̄)2 − σ2
i

η2
i

, where 0 < σi < κiσ̄ ≤ 2σi.

12



Proof.

We first determine the inequalities for pi,c: let us first prove pi,c ≥ 0. From equation (10) we

have

pi,c = 1− σ2
i + η2

iκ
(κiσ̄)2

⇒ 1− pi,c =
σ2
i + η2

iκ
(κiσ̄)2

,

(1− pi,c)(κiσ̄)2 = σ2
i + η2

iκ,

κ =
(1− pi,c)(κiσ̄)2 − σ2

i

η2
i

.

Also, given that

κ ≤ min
1≤i≤u0

(κiσ̄)2 − σ2
i

η2
i

⇒ pi,c ≥ 0.

We now prove pi,c ≤ 1. From equation (10) we have

pi,c = 1− σ2
i + η2

iκ
(κiσ̄)2

.

In order for pi,c ≤ 1 we require

(κiσ̄)2 ≥ σ2
i + η2

iκ,

κ ≤ (κiσ̄)2 − σ2
i

η2
i

.

This condition is met from the inequality

0 < κ ≤ min
1≤i≤u0

(κiσ̄)2 − σ2
i

η2
i

, where 0 < σi < κiσ̄ ≤ 2σi.

Hence we can conclude from the two inequalities that pi,c ∈ [0, 1].

Now let us determine the inequalities for pi,u: from equation (10) we have

pi,u =
σ2
i + ηi(κiσ̄

√
κ) + η2

iκ
2(κiσ̄)2

,

thus to ensure pi,u ≥ 0 we require

η2
iκ + ηiκiσ̄

√
κ + σ2

i ≥ η2
i

[
−(κiσ̄)

2ηi

]2

+ ηiκiσ̄

[
−(κiσ̄)

2ηi

]
+ σ2

i ,

≥ σ2
i −

(κiσ̄)2

4
.

Therefore we have pi,u ≥ 0.

We now prove the condition for pi,u ≤ 1: we have the inequality

0 < κ ≤ min
1≤i≤u0

(κiσ̄)2 − σ2
i

η2
i

⇒ η2
iκ ≤ (κiσ̄)2 − σ2

i

⇒ η2
iκ − (κiσ̄)2 + σ2

i ≤ 0.
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We also have ηiκiσ̄
√
κ ≤ (κiσ̄)2 ⇒ ηiκiσ̄

√
κ− (κiσ̄)2 ≤ 0. If we now combine both inequalities

we have

η2
iκ + ηiκiσ̄

√
κ + σ2

i − 2(κiσ̄)2 ≤ 0,

η2
iκ + ηiκiσ̄

√
κ + σ2

i ≤ 2(κiσ̄)2.

Thus from equation (10)

pi,u =
σ2
i + ηi(κiσ̄

√
κ) + η2

iκ
2(κiσ̄)2

,

we have pi,u ≤ 1. If we now combine both inequalities then we have 0 ≤ pi,u ≤ 1. By a similar

argument it can be shown 0 ≤ pi,d ≤ 1. This completes our proof. �

We now derive our downside risk measurement for our regime switching model. Assume we

wish to measure risk between time 0 and T, with threshold Υ. Let Xk
Υ(s, i) denote downside

risk measurement at time step k, for node with state (S(k), φ(k)) = (s, i), with final time step

k = N , we have

Xk
Υ(s, i) = (Υ− V (0)exp(s)]+, for i = 1, 2, ..., u0.

Now the downside risk at time k, ∀k ∈ [1, N − 1] can be calculated recursively, hence this

provides a significant efficiency in computation. The recursive calculation is

Xk
Υ(s, i) =

u0∑
j=1

pij(pi,uX
k+1
Υ (s+ κiσ̄

√
κ, j) + pi,cX

k+1
Υ (s, j) (16)

+ pij(pi,uX
k+1
Υ (s− κiσ̄

√
κ, j)). (17)

4.2 Risk Measurement with Jump Risk

We now wish to include jump risk in our model for risk measurement; to construct our lattice

for equation (8) whilst incorporating jumps we apply (Amin, 1993). Therefore, recalling that

(S(k), φ(k)) = (s, i) at time step k, the Poisson process with rate λ > 0, on the the interval

[kκ, ((k + 1)κ)), we have the probabilities: for a single jump given by λκ + O(h), for more

than one jump given by O(h), and for no jump is given by 1− λκ +O(h). We also assume by

choosing sufficiently small κ that multiple jumps do not occur within [kκ, ((k + 1)κ)). Now

with respect to the jump size Z(k), with probability density function fΛ(z), the cumulative

distribution function for Z(k) is given by

F (x) =

∫ x

−∞
fΛ(z)dy,

the probability density function is approximated using a discretisation {κσ̄
√
κ, κ = 0,±1,±2, ....}.

If we denote the approximated discrete jump size by Z̄(k), then the associated probability mass
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function for Z̄(k), ∀κ = 0,±1,±2, ..., is given by

P (Z̄(k) = κσ̄
√
κ) = dF (κ) = F ((κ+ 0.5)σ̄κ)− F ((κ− 0.5)σ̄κ).

For our lattice model, given (S(k), φ(k)) = (s, i), for 1 ≤ j ≤ u0 the next value (S(k +

1), φ(k + 1)) at the (k + 1) step is given by

(S(k + 1), φ(k + 1)) = (x+ κσ̄
√
κ, j), (18)

with probability

pij[(1− λκ)pi,u + λκdF (κi)],

for κ 6= −κi, 0, κi, otherwise with probability

pij[(1− λκ)pi,u + λκdF (κi)].

For the other branches in the lattice model we have

(x, κ) with probability pij[(1− λκ)pi,c + λκdF (0)],

(x− κσ̄
√
κ, j) with probability pij[(1− λκ)pi,d + λκdF (−κi)].

Now let κu, κd, κc ∈ {−κi, 0, κi} and if we now use this model for downside risk measurement

(taking into account jumps) then our recursive method (equation (16)) becomes

Xk
Υ(s, i) =

u0∑
j=1

pij

[ ∑
r=u,c,d

[pi,r(1− λκ) + λκdF (κr)]X
k+1
Υ (s+ κrσ̄

√
κ, j)

]

+

u0∑
j=1

pij

[ ∑
κ6=κu,κm,κd

λκdF (κ)Xk+1
Υ (s+ κσ̄

√
κ, j)

]
.

5 Variance Risk Process

The variance risk process was previously specified to be discretised so that it follows a Markov

chain, that is we have ϑ(φ(t)). We would like ϑ(φ(t)) to have local consistency and provide

a meaningful discretisation in terms of risk, rather than an arbitrary discretisation. Conse-

quently, we now define ϑ(φ(t)) more specifically using (Lo and Skindilias, 2014), where we can

approximate the ϑ(φ(t)) process by a locally consistent continuous time Markov chain ϑ(φ(t)),

with a state space ϑ = {ϑ(1), ϑ(2), ...., ϑ(u0)}, such that ϑ(i − 1) < ϑ(i). We note that we

require the associated generator matrix Q := [qij]u0×u0 , where

u0∑
j=0

qij = 0, ∀i = 1, 2, ..., u0,

qii ≤ 0, ∀i = 1, 2, ..., u0.
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Let ki = ϑi − ϑi−1 for i = 2, ..., u0, and k = {k1, k2, ..., ku0−1} then we specify Q elements as

qij =
η̂−(ϑ(i))

ki−1

+
σ̂2(ϑi)− (ki−1η̂

−(ϑi) + η̂+(ϑi))

ki−1(ki−1 + ki)
, for j = i− 1,

=
η̂+(ϑ(i))

ki−1

+
σ̂2(ϑi)− (ki−1η̂

−(ϑi) + η̂+(ϑi))

ki−1(ki−1 + ki)
, for j = i+ 1,

= −qi,i−1 − qi,i+1, for i = j,

= 0, for j 6= {i− 1, i, i+ 1}.

where x± = max(0,±x).

The equations for qij imply that qij values may not be well specified (for instance qij ≥ 0),

in fact for qij to be well specified we require

σ̂2(ϑi) ≥ ki−1η̂
−(ϑi) + η̂+(ϑi).

Hence we must specify ki,∀i. Trivially we can impose ki > 0,∀i, however this is not a useful

condition in terms of risk analysis; we want ki to provide meaningful steps in the change in

the state space, rather than an arbitrary choice of steps. The Sharpe ratio is a frequently used

ratio in risk analysis to determine if meaningful asset gains are being achieved for a given level

of risk. Hence we impose the following bound based on the optimal Sharpe ratio, so we have

max
1≤i≤u0−1

|η̂| − r
ϑi

= max
1≤i≤u0−1

|η̂|
ϑi
.

The maximisation removes r since r is a constant. We can alternatively express this as

min
1≤i≤u0−1

ϑi
|η̂|
.

Consequently we impose the condition for choosing ki

0 < max
1≤i≤u0−1

ki ≤ min
1≤i≤u0

σ̂2(ϑi)

|η̂(ϑi)|
.

Therefore

σ̂2(ϑi) ≥ ( max
1≤i≤u0−1

ki)|η̂(ϑi)|

≥ ki−1η̂
−(ϑi) + kiη̂

+(ϑi).

So we have a well defined qij, that is qij ≥ 0 for 1 ≤ i 6= j ≤ u0, and
∑m0

h=1 qij = 0,∀i =

1, 2, ...., u0. Furthermore from (Lo and Skindilias, 2014) we can deduce

E[κ(t+ ∆t)− κ(t)] = η̂(ϑ)κ,

E[κ(t+ ∆t)− κ(t)]2 = (σ̂(ϑ))2κ.

Consequently it can be shown ((Kushner, 1990)) that the Markov chain satisfies local consis-

tency conditions.
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To enable computational implementation of the variance process we require a grid specifi-

cation. Consequently, we apply a method based on finite difference methods in finance (see for

instance (Brandimarte, 2002), (Wilmott and Howison, 1995), (Wilmott et al., 1998)). In finite

difference methods there is a significant literature on grid discretisation, we apply a finite differ-

ence grid that employs coordinate transformation. For example, for the standard Black-Scholes

partial differential equation for the lognormal asset price process

∂C

∂t
+
σ2
c

2
V 2∂

2C

∂V 2
+ (r −D)V

∂C

∂t
− rC = 0,

can also be transformed with V = V (ξ) so that we have the partial differential equation in

terms of the new coordinate ξ, that is

∂C

∂t
+
σ2
c

2
.
V 2(ξ)

J(ξ)
.
∂

∂ξ

(
1

J(ξ)

∂C

∂ξ

)
+ (r −D).

V (ξ)

J(ξ)
.
∂C

∂ξ
− rC = 0,

where we use the Jacobian of transformation, that is

J(ξ) =
dV (ξ)

dξ
.

Whilst this method is a standard approach to coordinate transformation, it would be more

beneficial to concentrate grid points near critical values. In fact many coordinate transformation

methods exist for such approaches (see for example (Tavella and Randall, 2000)), we apply the

following standard transformation (Tavella and Randall, 2000):

J(ξ) = A(E2 + (V(ξ)− B)2)
1
2 ,

where V(ξ) is the transformed variable, A is a constant, E is a uniformity constant (to be

explained later), and B is the region of interest. If we have the boundary conditions V(ξ =

0) = Vmin and V(ξ = 1) = Vmax, where Vmin and Vmax are the minimum and maximum values

of V , respectively, then by integration we deduce

V(ξ) = B + Esinh(%2ξ + %1(1− ξ)),

where

%1 = sinh−1

(
Vmin − B

E

)
,

%2 = sinh−1

(
Vmax − B

E

)
.

We now apply this coordinate transformation method to our model. We set V = ϑ(i) ⇒
Vmin = ϑ(1),Vmax = ϑ(u0); our region of interest is ϑ(0) thus B = ϑ(0), and we set ξ = i

u0
. For

E is the uniformity constant, where uniformity in the grid increases with E. We set E = A
and A = ϑ(u0)− ϑ(1), we can then determine ϑ(i),∀i = 2, 3, ..., u0 − 1 by

ϑ(i) = ϑ(0) +Asinh
(
%2

i

u0

+ %1

(
1− i

u0

))
,

17



where

%1 = sinh−1

(
ϑ(1)− ϑ(0)

A

)
, %2 = sinh−1

(
ϑ(u0)− ϑ(0)

A

)
.

In order to apply our grid to computation we are required to calculate %1, %2, therefore we

need ϑ(1) and ϑ(u0). We want to determine ϑ(u0): as we measure risk within our branches

in terms of variance, therefore we want ϑ(u0) to be at least equal to its expected value plus

increase in value due to risk, hence we set ϑ(u0) = ζ(t) + αS(t), where α is between 3-4,

ζ(t) = E[ϑ(t)|ϑ(0)], with t = T/2 and S(t) the standard deviation of ϑ(t) conditional on ϑ(0).

For ϑ(1), given that ϑ(u0) = ζ(t) + αS(t) we would also want an equidistant difference from

ζ(t), hence we could assign ϑ(1) = ζ(t)− αS(t), however this leads to potentially small values

for ϑ(1). Thus to ensure a sufficiently large ϑ(1) values we assign ϑ(1) = max(ϑ̄, ζ(t)−αS(t)),

where ϑ̄ ≈ 10−5.

6 Risk Measurement Consistency

In order for our model to provide consistent risk measurement we require that equation (8)

converges to the underlying process (equation(6)). In particular we require convergence as

u0 → ∞, otherwise our model will never provide correct risk measurement. This is because

such a convergence implies convergence in the marginal distributions (to be discussed in the

proceeding sections), consequently we will have convergence in risk measurement (since risk

measurement is determined by the distribution properties of random variables).

To prove that equation (8) converges to the underlying process (equation(6)), as u0 → ∞,

we require the following Lemma.

Lemma 2.

Let dS̃∗(t) be the diffusion process

dS̃∗(t) =

(
α(ϑ(t))− 1

2
β2(ϑ(t))− ρΓ(ϑ(t))

)
dt+

√
1− ρ2tβ(ϑ(t))dB∗(t),

dϑ(t) = η̂(ϑ(t))dt+ σ̂(ϑ(t))dB2(t),

and let dS∗(t) be the process

dS∗(t) = η(φ(t))dt+ σ(φ(t))dB∗(t).

Then (S∗(t), ϑ(φ(t))) converges weakly to (S̃(t), ϑ(φ(t))) if Q = qij is specified by

qij =
η̂−(ϑ(i))

ki−1

+
σ̂2(ϑi)− (ki−1η̂

−(ϑi) + η̂+(ϑi))

ki−1(ki−1 + ki)
, for j = i− 1,

=
η̂+(ϑ(i))

ki−1

+
σ̂2(ϑi)− (ki−1η̂

−(ϑi) + η̂+(ϑi))

ki−1(ki−1 + ki)
, for j = i+ 1,

= −qi,i−1 − qi,i+1, for i = j,

= 0, for j 6= i− 1, i, i+ 1.
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Proof.

Let us prove (S∗(t), ϑ(φ(t))) converges weakly to (S̃(t), ϑ(φ(t))): firstly let us define ς(ϑ(t)) :=

(α(ϑ(t))− 1

2
β2(ϑ(t))− ρΓ(ϑ(t))), and set S̃(0) = s, ϑ(0) = ϑ, and we also recall that B∗(t) and

B2(t) are independent Brownian motions. Now let V = {ϑ(1), ϑ(2), ..., ϑ(u0)}, S is the state

space of S̃∗(t), ||f ||B = supx∈B |f(x)|, and let us define

Eu0 = ||LX(s, ϑ)− Lu0X(s, ϑ)||S×X,

where the infinitessimal generators L(.) are defined by

LX(s, ϑ) =
1

2
(1− ρ2)[β(ϑ)]2

∂2X

∂s2
+ ς(ϑ)

∂X

∂s
+

1

2
σ̂2(ϑ)

∂2X

∂ϑ2
+ η̂(ϑ)

∂X

∂ϑ
.

Also let S∗(0) = s, φ(0) = i and the generator for (S̃∗(t), ϑ(t)) is given by

Lu0X(s, ϑ(i)) =
1

2
(1− ρ2)[β(ϑ)]2

∂2X

∂s2
(s, ϑ(i)) + ς(ϑ(i))

X

s
(s, ϑ(i))

+
∑
j

qijX(s, ϑ(j)).

By (Mijatovic and Pistorius, 2011) then we can conclude (S∗(t), ϑ(φ(t))) converges weakly to

(S̃∗(t), ϑ(φ(t))), if Eu0(X)→ 0 , as ∆ϑ := maxi{|ϑ(i)−ϑ(i−1)} → 0, or equivalently u0 →∞.

To prove the convergence, we firstly use Q so that∑
j

qijX(s, ϑ(j)) = qi,i−1X(s, ϑ(i− 1)) + qi,iX(s, ϑ(i)) + qi,i+1X(s, ϑ(i+ 1)),

therefore

Lu0X(s, ϑ(i))

=
1

2
(1− ρ2)[β(ϑ)]2

∂2X

∂s2
(s, ϑ(i)) + ς(ϑ(i))

X

s
(s, ϑ(i))

+ η̃(ϑ(i))

[
−ki

ki−1(ki−1 + ki)
X(s, ϑ(i− 1)) +

ki − ki−1

kiki−1

X(s, ϑ(i)) +
−ki−1

ki(ki−1 + ki)
X(s, ϑ(i+ 1))

]
+

σ̂2

2

[
2

ki−1(ki−1 + ki)
X(s, ϑ(i− 1))− 2

ki−1ki
X(s, ϑ(i)) +

2

ki(ki−1 + ki)
X(s, ϑ(i+ 1))

]
.

This is a finite discretisation, and for convenience we use the notation

∇ϑX(s, ϑ(i)) =
−ki

ki−1(ki−1 + ki)
X(s, ϑ(i− 1)) +

ki − ki−1

kiki−1

X(s, ϑ(i)) +
−ki−1

ki(ki−1 + ki)
X(s, ϑ(i+ 1)),

and

∇2
ϑX(s, ϑ(i)) =

2

ki−1(ki−1 + ki)
X(s, ϑ(i− 1))− 2

ki−1ki
X(s, ϑ(i)) +

2

ki(ki−1 + ki)
X(s, ϑ(i+ 1)).

So we have

η̂(ϑ)
∂X

∂ϑ
(s, ϑ) +

1

2
σ̂2(ς)

∂2X

∂ϑ2
(s, ϑ),
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having a finite discretisation with a grid {ki = ϑi+1 − ϑi : i = 1, 2, ...., u0 − 1}:

η̂(ϑ(i))∇ϑX(s, ϑ(i)) +
σ̂2(ϑ(i))

2
∇2
ϑX(s, ϑ(i)).

Therefore we have

Eu0(X) ≤ ||η̂||[ϑ(1),ϑ(u0)]

∣∣∣∣∣∣∣∣∂X∂ϑ −∇ϑX

∣∣∣∣∣∣∣∣
S×X

+
1

2
||σ̂2||[ϑ(1),ϑ(u0)]

∣∣∣∣∣∣∣∣∂2X

∂ϑ2
−∇2

ϑX

∣∣∣∣∣∣∣∣
S×X

(19)

∴ Eu0(X) → 0, as max
i
{|ϑ(i)− ϑ(i− 1)} → 0. (20)

Hence by (Mijatovic and Pistorius, 2011) we can conclude (S∗(t), ϑ(φ(t))) converges weakly to

(S̃∗(t), ϑ(φ(t))).

Now let θ(χ) = E[exp(iχZ1)], where Z1 follows a Normal distribution, that is Z1 ∼ N(a, b).

As we have independence of the jump component so

E[exp(iS(t)χ+ iϑ(φ(t))$)] = exp(tλ(θ(χ)− 1))E[exp(iS∗(t)χ+ iϑ(φ(t))$)]

→ exp(tλ(θ(χ)− 1))E[exp(iS̃∗(t)χ+ iϑ(t))$)].

As exp(tλ(θ(χ)− 1))E[exp(iS̃∗(t)χ+ iϑ(t))$)] = E[exp(iS̃(t)χ+ iϑ(t))$)], therefore

E[exp(iS(t)χ+ iϑ(φ(t))$)] → exp(tλ(θ(χ)− 1))E[exp(iS̃(t)χ+ iϑ(t))$)].

Hence (S(t), ϑ(φ(t))) weakly converges to (S̃(t), ϑ(φ(t))) . This completes the proof. �

7 Numerical Experiments

In this section we conduct numerical experiments to illustrate our method for downside risk

measurement. We test against 3 portfolios with initial value {$18, 000, $18, 500, $19, 000}, across

a range of loss threshold values L in the range L ∈ {−$5000, $4000}, where a negative threshold

value indicates a portfolio gain in value. We set the time period of risk measurement to T = 0.25

or 3 months to provide sufficient time period for a wider range of future random values to be

realised. We also provide downside risk measurement results using a Monte Carlo simulation

approach, to provide a comparison for results as well as enabling error analysis.

In terms of the regime switching model employed for our numerical experiments, we provide

the following asset specification. Firstly, we require sufficient Markov states u0 to ensure that

we can model different volatility levels in the financial market, or alternatively we want to

choose u0 such that we are able to model a wide range of price dynamics. In Luo et al. (2019)

they model a wide range of asset dynamics, for a number of different financial assets, using 30

regimes and so we set u0 = 30 regimes. In terms of choice of time steps, given that T = 0.25

this implies we have the equivalent of 60 trading days or approximately 480 trading hours

(each month has approximately 20 trading days, and each trading day lasts for approximately
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8 hours). Additionally, we would not expect significant asset price moves in time intervals less

than 30 minutes (on average) based on empirical data, hence we set time steps to 1000 for

our numerical experiments (approximately equivalent to the number of 30 minute intervals in

T = 0.25) to adequately capture all asset pricing dynamics.

The Heston stochastic volatility model is utilised (see equation (3)) for modelling assets.

We choose the Heston model as it is able to model a wide range of asset pricing dynamics (such

as stochastic volatility and mean reversion) and so provides theoretical and empirical consistent

modelling advantages. In terms of industry and practical applications, the Heston model is a

beneficial model to apply because it is popular in the financial industry (see for instance Feng

and Wang (2018)and Zhang et al. (2016)). For example, the Heston model can enable pricing

of call options that can be consistent with market observations and data.

The Heston model is set to be consistent with market calibrated figures. We note that

the calibrated parameter values are not necessary for our analysis, however we explain them

for completeness. Firstly we set asset drift α1 = 0.1, as stock market returns are on average

approximately 10% per year, therefore 10% provides a realistic return in the stock market for

any asset. The correlation of Wiener processes corr(dB1(t), dB2(t)) = ρdt tends to be weakly

and positively correlated in financial markets, hence we set ρ = 0.1 and this is also consistent

with Ikonen and Toivanen (2009). The parameter κ̄ influences the long run value of β2, and

α2 is the rate of mean reversion of β2. As we would like sufficient volatility to ensure a wide

range of price dynamics in our model we therefore set κ̄ = 0.16 and α2 = 5. We impose the

Feller condition (see for instance Gatheral and Jacquier (2011) for more information) so that

β is not negative, thus 2α2κ̄ ≥ η̄2 and therefore we set η̄ = 0.9.

We now present our results.
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Figure 1: Graph of Sample Paths For Portfolio Value Over T=0.25 yr (With Initial Value $18,000)

Loss Downside Downside Absolute

Threshold L ($) Risk (MC) Risk (RS) Error

-4500 103.44 103.46 -0.0169

-2000 52.42 52.33 0.0850

0 22.57 22.43 0.1350

1600 8.52 8.40 0.1145

3000 3.02 2.94 0.0750

Table 1: Downside Risk Values for Different Loss Threshold Values L (Initial Portfolio Value $18,000)
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Risk Measure Risk Value ($)

Variance 8.9495× 106

Sharpe Ratio 0.0068

µn, n = 1 -435.04

µn, n = 2 9137800

µn, n = 3 −3.3637× 1010

µn, n = 4 4.44× 1014

V aRq, q = 90% 3061.8

V aRq, q = 95% 3912.6

V aRq, q = 98% 4815.3

V aRq, q = 99% 5367.1

Table 2: Additional Risk Measures For Portfolio With Initial Value $18,000

Loss Downside Downside Absolute

Threshold L ($) Risk (MC) Risk (RS) Error

-4600 106.31 106.33 -0.0173

-2000 53.87 53.78 0.0874

0 23.19 23.06 0.1387

1600 8.75 8.64 0.1177

3000 3.10 3.02 0.0771

Table 3: Downside Risk Values for Different Loss Threshold Values L (Initial Portfolio Value $18,500)

Loss Downside Downside Absolute

Threshold L ($) Risk (MC) Risk (RS) Error

-4700 109.18 109.20 -0.0178

-2100 55.33 55.24 0.0897

0 23.82 23.68 0.1425

1700 8.99 8.87 0.1209

3100 3.18 3.10 0.0792

Table 4: Downside Risk Values for Different Loss Threshold Values L (Initial Portfolio Value $19,000)
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Figure 2: Downside Risk For Portfolio (Initial Value $18,000)

Figure 3: Downside Risk For Portfolio (Initial Value $18,500)
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Figure 4: Downside Risk For Portfolio (Initial Value $19,000)

Figure 5: Absolute Error In Downside Risk Measurement For Different L and Initial Portfolio Values
$18,000, $18,500, $19,000
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The results of the numerical experiments are provided in Tables 1-4 and Figures 1-5, where

RS denotes the risk measurement under our regime switching model and MC denotes risk

measurement using Monte Carlo simulation. In Figures 2-4 the results associated with the

crosses relate to RS, whereas the results associated with the squares are associated with MC.

In MC simulation we simulate the stochastic process to obtain the distribution, and then utilise

the distribution to calculate the downside risk measure, as well as additional risk measures such

as VaR (Value at Risk).

In Figure 1 we provide a set of sample paths for the portfolio (with initial value $18,000),

over the time period of risk measurement (T=0.25). As can be seen from Figure 1, the stochas-

tic process (Heston model) leads to a wide range of values and dynamics over the time period.

In particular, we notice that the variation in values increases over time. Hence Figure 1 demon-

strates the importance of having risk measures, that is risk measures enable quantification of

the probability of different losses in the future.

In Tables 1,3 and 4 we calculate the downside risk measures; for robustness we test across

3 different portfolio values ($18,000, $18,500, $19,000 respectively for each table), and we test

across similar as well as different threshold values L across the portfolios. The results of

downside risk calculation under RS and MC are given in Tables 1,3 and 4, and plotted in

Figures 2-4, respectively. As expected, the downside risk decreases as L increases, since the

loss beyond the threshold L should be less likely as L increases. In Table 1 our method shows

that our downside risk measures are consistent with the downside risk measures obtained using

MC simulation; in fact Figures 2-4 show that the graphs for MC and RS are virtually identical,

giving a similar relationship between downside risk and L under both methods. Hence our RS

model provides acceptable risk measurement results.

To illustrate that the downside risk measure is a more preferable risk measure (as well

as more informative) compared to traditional risk measures, we calculated a number of risk

measures in Table 2 for the portfolio’s loss distribution. In Table 2 we calculated risk measures

for the portfolio with initial value $18,000, over time period T=0.25 yr, using a number of

traditional risk measures (see Szegö (2005) for more information). In particular we calculated

variance (which the standard Markowitz risk measure Markowitz (1991)), the Sharpe Ratio

Sharpe (1966), nth moments µn as well as Value at Risk (VaR) for different quantile values q

at the 90%, 95%, 98%, 99% values. As can be seen from Table 2 the Variance is a high figure,

implying that the portfolio is high risk. Similarly the Sharpe Ratio (using the current riskless

interest rate of 1%) and gives a relatively low value, which implies that the portfolio has a high

risk in relation the returns possible. Simillarly the first four moments are calculated and are

high figures, suggesting s high risk portfolio. However, the problem with these risk measures

is that they do not any indication of the degree of loss involved, consequently they are not
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as informative as the downside risk measures. The VaR risk measures are also calculated

at different quantiles q, these are more informative than the previous risk measures because

they provide an indication of the loss and the associated probabilities. However, the VaR risk

measure is not a coherent risk measure (unlike the downside risk measure) and so does not take

into account portfolio diversification. Hence VaR can be a misleading measure of risk.

We examine the error in our method compared to the Monte Carlo simulation method by

calculating the absolute error. In Tables 1,3 and 4 we provide the absolute error between the

Monte Carlo and Regime Switching calculations; these are plotted in Figure 5. The absolute

error between Monte Carlo and our method is relatively small, for example for L = −4500 in

Table 1the absolute error is -0.0169, and so our method is accurate. In Figure 5 we notice that

the absolute error is not monotonically increasing or decreasing with L, in fact absolute error

tends to decrease with the magnitude of L increases (either for positive or negative values). The

initial portfolio value also has a negligible effect on absolute error, with a marginal increase in

error as the initial portfolio value decreases. Therefore our method may incur more significant

error for downside risk measurement for |L| → 0 and small portfolio values.

8 Conclusion

Regime switching is a valuable modelling method, that is applicable to a range of applications,

however, regime switching tends to not model more complex stochastic volatility processes.

Consequently, the associated risk measures tend to be unable to provide realistic risk measure-

ment. In this paper, we provide a regime switching model that is able to capture a range of

non-trivial stochastic volatility processes. We derive the downside risk measure for this model,

with and without jump risk, and so can quantify risk with and without event risk. We also

prove that our risk measure can provide consistent risk measurement on the underlying asset

model, as the regime switching model converges to this model when the number of regimes

tends to infinity. We also provide a discretisation process for the variance process, which is

a fundamental risk process in financial models. Moreover, we conduct numerical experiments,

with market based parameters, to demonstrate our method and examine the results.

In terms of future work, we would like to investigate other regime switching models and

develop models for alternative applications, such as regime switching interest rate models, or

regime switching inflation models. Secondly, we would like to investigate other risk measures

and their relation to regime switching models, such as spectral risk measures. Finally, we would

like to investigate alternative computational methods for regime switching methods, as there is

a significant amount of research on computation of Markov processes, hence regime switching

research may benefit from applying such research.

27



References

Amin, K. I. (1993). Jump diffusion option valuation in discrete time. The Journal of Finance

48(5), 1833.

Artzner, P., F. Delbaen, J. Eber, and D. Heath (1999). Coherent Measures of Risk. Mathemat-

ical Finance 9(3), 203–228.

Artzner, P., F. Delbaen, J. Eber, D. Heath, and H. Ku (2003). Coherent multiperiod risk

measurement. Manuscript, ETH Zurich .

Bates, D. S. (2018). How crashes develop: Intradaily volatility and crash evolution. The Journal

of Finance 74(1), 193–238.

Beckers, S. (1980). The Constant Elasticity of Variance Model and Its Implications For Option

Pricing. The Journal of Finance 35(3), 661–673.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of

Political Economy 81(3), 637–654.

Bollen, N. (1998). Valuing options in regime-switching models. Journal of Derivatives 6(1),

38–49.

Brandimarte, P. (2002). Numerical methods in finance: a MATLAB-based introduction. Wiley.

Cox, J., J. Ingersoll Jr, and S. Ross (1985). A Theory of the Term Structure of Interest Rates.

Econometrica 53(2), 385–407.

Cox, J. and S. Ross (1976). The Valuation of Options for Alternative Stochastic Processes.

Journal of Financial Economics 3(1), 145–66.

Dupire, B. (1994). Pricing with a smile. Risk 7(1), 18–20.

Durham, G. (2007). SV mixture models with application to S&P 500 index returns. Journal

of Financial Economics 85(3), 822–856.

Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance

of United Kingdom Inflation. Econometrica 50(4), 987–1007.

Feng, Y. and M. Wang (2018). Cva for discretely monitored barrier option under stochastic

jump model. Finance Economics Readings p. 99–116.

Gatheral, J. and A. Jacquier (2011). Convergence of heston to svi. Quantitative Finance 11(8),

1129–1132.

28



Hamilton, J. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series

and the Business Cycle. Econometrica 57(2), 357–384.

Hamilton, J. (1991). A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of

Normal Distributions. Journal of Business & Economic Statistics 9(1), 27–39.

Hamilton, J. (1994). Time series analysis. Princeton.

Hamilton, J. and R. Susmel (1994). Autoregressive Conditional Heteroskedasticity and Changes

in Regime. Journal of Econometrics 64(1-2), 307–33.

Hardy, M. (2001). A Regime-Switching Model of Long-Term Stock Returns. North American

Actuarial Journal 5(2), 41–53.

Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Appli-

cations to Bond and Currency Options. Review of Financial Studies 6(2), 327–43.

Hoyland, K. and S. Wallace (2001). Generating Scenario Trees for Multistage Decision Prob-

lems. Management Science 47(2), 295–307.

Hull, J. and A. White (1987). The Pricing of Options on Assets with Stochastic Volatilities.

The Journal of Finance 42(2), 281–300.

Ikonen, S. and J. Toivanen (2009). Operator splitting methods for pricing american options

under stochastic volatility. Numerische Mathematik 113(2), 299–324.

Johnson, H. and D. Shanno (1987). Option Pricing when the Variance is Changing. The Journal

of Financial and Quantitative Analysis 22(2), 143–151.

Kushner, H. (1990). Numerical methods for stochastic control problems in continuous time.

SIAM Journal on Control and Optimization 28, 999–1048.

Lo, C. C. and K. Skindilias (2014). An improved markov chain approximation methodology:

Derivatives pricing and model calibration. International Journal of Theoretical and Applied

Finance 17(07), 1450047.

Luo, J., T. Klein, Q. Ji, and C. Hou (2019). Forecasting realized volatility of agricultural com-

modity futures with infinite hidden markov har models. International Journal of Forecasting

.

Mamon, R. and M. Rodrigo (2005). Explicit solutions to European options in a regime-switching

economy. Operations Research Letters 33(6), 581–586.

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance 7(1), 77–91.

29



Markowitz, H. (1991). Portfolio selection: efficient diversification of investments. Blackwell

Publishing,UK.

Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Manage-

ment Science 4(1), 141–183.

Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal

of Financial Economics 3(1-2), 125–144.

Mijatovic, A. and M. Pistorius (2011). Continuously monitored barrier options under markov

processes. Mathematical Finance 23(1), 1–38.

Musiela, M. and M. Rutkowski (2005). Martingale Methods In Financial Modelling. Springer,

New York.

Nguyen, D. (2018). A hybrid markov chain-tree valuation framework for stochastic volatility

jump diffusion models. International Journal of Financial Engineering 05(04), 1850039.

Nordén, L. (2003). Asymmetric option price distribution and bid–ask quotes: consequences for

implied volatility smiles. Journal of Multinational Financial Management 13(4-5), 423–441.

Renault, E. and N. Touzi (1996). Option Hedging and Implied Volatilities in a Stochastic

Volatility Model. Mathematical Finance 6(3), 279–302.

Schroder, M. (1989). Computing the constant elasticity of variance option pricing formula.

Journal of Finance 44(1), 211–219.

Schwert, G. (1990). Stock volatility and the crash of ’87. Review of Financial Studies 3(1),

77–102.

Scott, L. (1987). Option Pricing when the Variance Changes Randomly: Theory, Estimation,

and an Application. The Journal of Financial and Quantitative Analysis 22(4), 419–438.

Sharpe, W. (1966). Mutual Fund Performance. The Journal of Business 39(1), 119–138.
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