

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

The design and implementation of a P2P-based composite
event notification system.

Simon Courtenage
Steven Williams

School of Informatics

Copyright © [2006] IEEE. Reprinted from 20th International Conference on
Advanced Information Networking and Applications (AINA 2006). IEEE, Los
Alamitos, USA, pp. 701-706. ISBN 0769524664.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

The Design and Implementation of a P2P-Based Composite Event Notification
System

Simon Courtenage and Steven Williams
Cavendish School of Computer Science

University of Westminster
London, W1W 6UW, UK
courtes@wmin.ac.uk

Abstract

The development of large, open, and heterogeneous dis-
tributed systems is becoming increasingly dependent on
event services to bind together the components of an appli-
cation in such a way that they are able to react to changes
in other components.

One way to distribute event notifications around a
distributed environment is to use content-based pub-
lish/subscribe communication. Such a system mediates be-
tween publishers of information and subscribers who sign
up to receive information by routing messages across the
network from their source to the point of subscription us-
ing the message content and the client subscriptions. Al-
though content-based publish/subscribe has been used suc-
cessfully to develop simple event notification systems, in
which events are routed through from external publisher to
external client, more complex systems are possible that cre-
ate new events, known as composites, based on the detection
of patterns of events.

Composite event notification, however, poses a number
of challenges, including network management and network
routing. In this paper, we discuss the design and imple-
mentation of a composite event notification system over a
Chord-based peer-to-peer network using JXTA, and how we
have addressed these challenges.

1. Introduction

Publish/Subscribe systems [6] form an important com-

munications paradigm in distributed systems, one in which

servers (or producers of messages) are decoupled from

clients (or consumers) by the network. Instead of clients

contacting servers directly to request services or informa-

tion, clients register a subscription with the network, via

a local access point, to receive messages satisfying cer-

tain criteria. Servers publish information onto the network,

without knowing who will receive it, and the network (via

its servers or brokers) undertakes to route messages to the

appropriate clients based on the set of subscriptions cur-

rently in effect.

Within the publish/subscribe paradigm, there are many

different classifications of system based on how a subscriber

makes a subscription. Traditional publish/subscribe sys-

tems create channels, groups or topics, sometimes hierar-

chial, under which messages may be classified. In this case,

a subscription is simply a statement of the channel, group,

or topic that a user wants to receive messages from.

Another, more radical, approach, known as content-

based publish/subscribe, allows the subscriber to specify the

kind of message content they want to receive [2]. Content-

based routing relies on the subscriber being able to create a

subscription using criteria that specify conditions over the

message content, typically in the form of predicates over

the elements of the event notification structure. The advan-

tage of this style of publish/subscribe over more conven-

tional systems is the far greater flexibility that is permitted

in creating subscriptions. Subscribers are in effect allowed

to create their own message groupings rather than simply

sign up to predefined ones. Typical applications of this form

of publish/subscribe are event notification services, such as

Elvin [11], Siena [1] [2], Gryphon [13], and Hermes [9].

One of the key problems of content-based pub-

lish/subscribe concerns message routing. As messages ap-

pear on the network from publishers, individual servers in

the publish/subscribe network must examine the message

content in order to make routing decisions. The message

content must be compared against what is known about cur-

rent subscriptions in order to decide which server the mes-

sage should be routed to next. In order for this to hap-

pen, both publication and subscription must meet some-

where in the network - hence the typical use of broker or

rendezvous servers in content-based publish/subscribe sys-

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

tems. Most research in this area has been on the routing of

messages from external sources to subscribers, for example,

Elvin [11] and Hermes [9]. However, the issue of how to

route messages representing composite event notifications,

i.e., messages that are raised internally as a result of the oc-

currence of patterns of events is more complicated, because

of the complex re-configuration of routing paths within the

network needed to co-ordinate the routing of component

events of a pattern. A proposal for automatically generat-

ing event dissemination trees for configuring routing paths

for composite event notification notifications was presented

in [4]. This took the form of a simple functional event spec-

ification language whose expression structures could be au-

tomatically analyzed to gather the information necessary to

reconfigure the network as and when a new composite event

had to be detected. However, that work left open how the in-

formation derivable from a subscription expression should

be used.

In this paper, we describe the design and implementa-

tion of a distributed composite event notification system that

uses the functional event specification language from [4]

and which successfully solves the complex challenges of

network configuration and routing composite events. The

system is a content-based publish/subscribe network that

uses a DHT-based peer-to-peer system to carry out net-

work configuration and the JXTA open P2P framework

for event routing. We show how the FEL (Functional

Event Language) architecture is dynamically configured to

the requirements for routing composite event notifications,

as new client subscriptions are made, using the hashing

scheme provided by the underlying DHT-based P2P sys-

tem, and how the JXTA pipe abstractions simplify routing

of events.

2. Event Specification in FEL

An event is defined as the occurrence in a system of some

situation of interest, usually one which requires an auto-

matic response by the system [16]. In active databases [7]

[3], typical events are inserts or deletions from tables or ex-

tents. Detection of events permits the specification of ac-

tions to be carried out automatically by the system when

they occur.

In distributed systems, events are used to create an asyn-

chronous style of communication. In the client-server

model of distributed communication, client and server

processes communicate directly using explicit addresses,

with the server responding synchronously to client re-

quests. Distributed event-based systems allow an asynchro-

nous and decoupled communication model, known as pub-

lish/subscribe. Occurrences of events are represented by

event notifications, in the form of messages. Clients, or sub-

scribers, make known to the system what messages they are

interested in receiving, and the system undertakes to send

them all event notifications that match their interests asyn-

chronously, i.e., as and when they arise.

There are two general types of events: primitive and

composite. Primitive (or atomic) events are those happen-

ings that are considered atomic and instantaneous. They

occur either as the result of some internal state of affairs or

some external interaction with the system. The actual defi-

nition of primitive events depends upon the application do-

main. For example, in a real-time data application, atomic

events might be the publication of a particular stock market

transaction or of the result of a football match.

We define composite events as events that arise as the

result of the occurrence of other events, in some order or

pattern. For example, we might want to detect whenever

an event of type T2 occurs directly after we have seen the

occurrence of an event of type T1 (a sequence of T1 and

T2), or whenever either a T1 or a T2 type event occurs (a

disjunction of T1 and T2). The detection of such patterns of

component events can be represented by raising a compos-

ite event notification that represents the pattern occurrence

(including information about the pattern).

The heart of our publish/subscribe system is the sub-

scription language FEL (Functional Event Language) [4].

FEL is a simple but formal language for making subscrip-

tions in a content-based publish/subscribe network. It is

declarative and strongly-typed. Composite event specifi-

cations in the functional event language take the form of

functions, which expect a number of arguments. The argu-

ments to the function are the component events of a com-

posite event. Once these have been fully supplied, the

composite event value is produced. Being a functional

language, functions can be partially applied to their argu-

ments through currying. This models the way that com-

posite events progress towards their occurrence as compo-

nent events occur over time. In addition, the structure of the

functional expression that specifies a composite event pro-

vides vital information about how events should be routed

through the distributed system (see [4] for full details).

3. FEL Architecture

Content-based publish/subscribe systems work by

matching up subscriptions with publications. Typically, as

is the case with FEL, subscriptions are in terms of types of

events plus some predicates over the values of those types.

Matching subscriptions to publications means that subscrip-

tions and publications for particular event types must meet

at a certain point in the system so that they can be compared.

For this reason, content-based publish/subscribe systems

use a broker-oriented communications architecture, where

each broker is a server in the network and undertakes to re-

ceive publications and subscriptions for a particular event

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

type and match them. If a broker matches a subscription to

a publication, it then sends the publication onto the client

making the subscription.

Most content-based publish/subscribe systems deal with

primitive events. In this case, routing a message from a pub-

lisher to a subscriber is reduced to finding the right broker

node for a publication or a subscription. When a publication

arrives at a broker, it can be matched against known sub-

scriptions and, if successfully matched, sent by the broker

to the appropriate subscriber. In such systems, new event

types are created by publishers who advertise new events

they wish to publish.

One of the key problems to be solved in a composite

event notification system lies in the changes needed to the

topology of the network as new subscriptions create require-

ments for new composite events. This problem is differ-

ent to that posed by publications of new types of primitive

events. Advertisement of a new type of primitive event re-

quires only the election of a new broker, who may be chosen

by a simple hashing of the event type to a broker identifier

(as is the case in Hermes [9], for example). Once this has

been done, any subscription for publications of that type are

directed to the new broker by the same hashing scheme.

New composite events, however, are subscriber-driven,

not publisher-driven. New composite events may be re-

quired, even if there are no new types of events being

published, simply because subscribers wish to combine

them into different patterns. This asynchronous creation

of new event types to meet subscriber demand creates new

problems for management of the publish/subscribe network

topology.

As an example of this, Figure 1 shows a composite event

notification system comprised of two publishers P1 and P2,

publishing events of type A and type B respectively, a bro-

ker node B1 that receives events of these types and detects

sequences of type A events and type B events, and a sub-

scriber S1 who has subscribed to receive composite events

which represent sequences of type A and type B events.

P1

P2

B1 S1

Figure 1. Composite Event Notification with
Single Broker

If a new subscriber S2 wishes to be notified about dis-

junctions of A and B events, then this creates a new com-

posite event, and hence a new broker is required, as Figure 2

shows.

P1

P2

B1 S1

B2 S2

Figure 2. Composite Event Notification with
Multiple Brokers

It could be argued that a new broker is unnecessary if the

only difference between B1 and B2 is in the pattern of A

and B events they are detecting. However, if the broker is

located in the network by hashing the event type to a node

id, we cannot guarantee that a composite event type repre-

senting sequences of A and B will hash to the same broker

id as a disjunction of A and B. Also, the algorithms or state

machines used to detect patterns will be different for differ-

ent composite events even if the component events are the

same. For these reasons, therefore, it is simpler to split com-

posite event detection across different brokers, regardless of

which component events are involved.

However, adopting the approach of new brokers for new

composite event types, in response to new subscriptions cre-

ates two (related) problems for the organization of the event

notification network.

Firstly, publishers of a particular type of event no longer

know, as a result of hashing the primitive event type, the

identities of all the brokers to whom they should send event

notifications - this applies to publishers of primitive events

who are outside the publish/subscribe network and also to

servers within the network acting as composite event de-

tectors and publishers. This is because the identity of an

event detector broker is found by hashing the event type, but

in an event notification system with new composite events

being created dynamically, event notification publishers do

not know the identities of new composite events in order to

use this information to derive broker identifiers through the

hashing scheme (unless we choose to broadcast this infor-

mation throughout the network).

Secondly, the new locations to which publishers should

send their events come into existence asynchronously

with respect to the publishing of events, since they are

subscriber-driven. In an event notification network that pub-

lishes only primitive events (i.e,. simply routes external

events to subscribers), the identity of the broker is known

by a publisher when it joins the network - if a broker for the

event type does not exist, then the network elects a broker

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

to handle the new event type at the point when the publisher

joins. In an environment with dynamically-created compos-

ite events, however, new brokers that want to receive noti-

fications of a particular event may be started at any point

after a publisher of that event type has joined the network.

4. Decentralized Management in FEL using
Meteor

The solution proposed by FEL to these problems was to

make explicit in the structure of the subscription expression

all of the high-level routing information needed to config-

ure the publish/subcribe network. The key challenge, how-

ever, in the design of the FEL system architecture was how

to use the information provided by the subscriber to con-

figure the network, without imposing scalability constraints

on the network itself. For example, an initial proposal was

to overlay the network of event detector servers with a sta-

tic layer of management servers that would react to new

subscriptions by allocating unused event detector servers

to new composite events and create the necessary connec-

tions between them. However, the fact that this manage-

ment layer was static created its own scalability problems,

since the required capacity of the management layer de-

pended on an a priori assessment of the likely traffic on the

publish/subscribe network in terms of the number of differ-

ent events to be detected. If FEL was to be deployed in

a wide-area, internet-scale environment, for example, this

would be highly impractical.

Hence, we decided to investigate how to decentralize

the management processes in FEL. The principal manage-

ment activities involved identifying event detector brokers

in the publish/subscribe network. The approach we took

was to build FEL on top of a DHT-based peer-to-peer net-

work. Since all nodes in a DHT-based P2P system have

knowledge of the hashing scheme in use (in order to iden-

tify other nodes in the network), implementing the manage-

ment process as a hashing scheme results in decentraliza-

tion, since any node in the network can carry out manage-

ment activities by using the P2P hashing scheme.

The P2P architecture1 we used was Chord [5] [12].

Chord is a popular distributed P2P service with a single

operation: node lookup based on Distributed Hash Tables

(DHTs). According to the Chord protocol, each node in the

network is assigned a Chord id, derived from the hashed

value of its IP address (or some other address value). The

1As an aside, we note that in general peer-to-peer systems, it is quite

possible to have cycles in the network. For example, a search request in

a file-sharing P2P network can return to its originating node via a cyclical

route, requiring cycle detection or time-to-live counters. This does not oc-

cur in FEL because the FEL subscription language is strongly-typed and

does not allow infinite types, i.e., that a subscription expression for a com-

posite event cannot contain itself.

topology of the Chord P2P network is then arranged as a

ring of nodes in ascending order of Chord id value, with

each node maintaining a finger table containing the ad-

dresses of nodes further round the ring at certain intervals as

an aid to routing (see [12] for full details). Given a particu-

lar hash key, the Chord architecture allows fast and efficient

lookup of the P2P node associated with that particular key.

For our purposes, we used (with some modifications) Me-

teor [8], which implements Chord in Java using the JXTA

framework.

The architecture of the Meteor-based version of FEL is

illustrated in Figure 3. In order to achieve decentralization,

the nodes in the Meteor-based FEL system take on multi-

ple roles, acting as service containers. Each node can, by

spawning separate threads, act as the local access point for

an event notification to be published onto the network and

for a client subscription to enter the system, as well as act

an event detector for a particular event type. Each particu-

lar service, whether it be, for example, the local access point

for publication of a particular atomic event or a composite

event detector, is also given an identifier based on the hash-

ing of the event type associated with the service. This hash

id allows the service to be placed on a particular node on

the Chord ring, i.e., that node whose Chord id is the closest

successor to the service identifier.

Figure 3 illustrates this by showing four nodes in a 256-

node network with Chord ids 14, 48, 97, 167. Node 14, as

shown, is a container for two services: a composite event

detector (CED) and an atomic event detector (AED), i.e.,

a publisher of primitive events. Both the composite and

atomic event types have been hashed to associate values

with the CED and AED, which are shown as 10 and 191

respectively, and are therefore located on node 14, which is

the closest successor to the service identifiers. This allows

us to automatically balance the load around the network, for

example, as nodes enter and leave the network. For exam-

ple, if a new node joins with Chord id 255, then the AED

(with an id of 191) can be migrated from node 14 to node

255.

When a new user subscription is first created, it is sent to

a node based on a hash of the composite event type repre-

sented by the subscription. If the node that receives the sub-

scription does not currently contain an event detector for the

composite event, then one is created on the node. Similarly,

the component event types of the composite event are then

extracted and also hashed to locate their container nodes

on the P2P network. This process is followed until atomic

event detectors are reached or until a composite event de-

tector representing a subtree of the original subscription is

found (created as part of a previous subscription), resulting

in a traversal of the P2P nodes representing the composite

subscription expression graph.

As each subtree of the expression graph is completed

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Figure 3. FEL over Meteor

(including creation of new event detectors where neces-

sary), acknowledgement messages are returned to indicate

completion. The event detector discovery and acknowl-

edgement messages are carried by the underlying Meteor

layer of FEL, through a modified Meteor API that allows

application-generated messages to be injected into the P2P

network. However, the subscription is finalized at the ap-

plication layer by further, separate use of JXTA. Once an

event detector is ready, and before it sends acknowledge-

ment messages to its parent (i.e., its subtree of the subscrip-

tion graph has been fully configured), it creates a JXTA out-

put pipe to publish its event notifications if one does not

already exist. On receipt of the acknowledge message, the

parent event detector binds to the JXTA output pipe in order

to receive event notifications.

The use of JXTA, separate from the use of JXTA in the

Meteor implementation of Chord, for event publications has

the advantage that the P2P network is not congested by po-

tentially heavy volumes of event notifications. Instead, the

potentially expensive routing of messages around the Chord

ring are reserved for the much lighter load of messages im-

plementing new routing configurations. Direct use of JXTA

pipes for event publication also has the advantage of solving

the problem posed by the asynchronous, subscriber-driven

creation of new composite event detector nodes mentioned

in Section 2. A JXTA output pipe can be used to implement

a form of loosely-coupled multi-cast, where one source can

broadcast to potentially many clients, without needing to

know which clients are receiving the outputs written to the

pipe. This feature allows composite event detectors to con-

figure themselves to receive component event notifications

asynchronously without action on the part of the compo-

nent event detector. To implement discovery of which pipe

a composite event detector should bind to in order to receive

component events, we used the JXTA discovery service. A

composite event detector needs to know only the type of

the component event to use the JXTA discovery service to

locate the pipe and to bind to it. Using JXTA in this way

also has the further advantage that if an event detector is

migrated to another node (as nodes join or leave the un-

derlying P2P network), the routing of events between event

detectors through JXTA pipes is unaffected.

5. Related Work

The work most directly related to ours is Hermes [9].

Hermes is an attempt to develop a middleware-based

content-based event notification system, and delivers prim-

itive events using a broker-oriented P2P-based architecture.

In the composite event extension of Hermes [10], composite

event detectors are external to the event notification system

and have to be manually (and statically) placed at strategic

positions around the system, subscribing to receive compo-

nent events and, when a particular pattern is detected, inject-

ing the composite event back into the system disguised as a

primitive event. Although mobile CEDs are discussed, they

require a logical overlay layer is required to move CEDs

around the system, requiring as well additional administra-

tive services and potentially complex interactions between

event brokers to decide where they should be placed. Our

work avoids all the problems of complexity, manual inter-

vention, and administration posed by this approach by uti-

lizing the hashing scheme of the underlying P2P network to

perform automatic load balancing, service placement and

dynamic service migration, as well as the JXTA technology

to connect event brokers.

The peer-to-peer protocol Chord has been used before in

the implementation of publish/subscribe systems: for exam-

ple, content-based publish/subscribe systems using Chord is

described in Triantafillou et al [15] and Terpstra et al [14].

The primary goals of [14] are the robustness of routing

primitive events over a content-based publish/subscribe net-

work and the implementation of a filtering strategy on top of

a DHT-based P2P system. In [15], the concern is with how

range predicates (more complex filters on content, such as

less-than or greater-than) can be implemented for primitive

events in DHT-based P2P systems such as Chord where the

use of hashing to locate nodes makes support of filters other

than equality difficult.

6. Conclusion and Further Work

We have shown how a DHT-based P2P architecture and

the use of the JXTA P2P open framework can solve the

complex problems involved in the dynamic configuration

of a composite event notification system that uses content-

based routing of events. The DHT-based P2P layer allows

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

us to carry out management activities in the network in

a completely decentralized and automatic way, while the

use of JXTA pipes for routing messages allows event pro-

ducers to be decoupled from those who wish to asynchro-

nously sign up to receive events. The use of JXTA pipes

also greatly simplifies the management activities, for exam-

ple, of load balancing; no reconfiguration of routing paths

is needed as services are migrated, for example, since the

connection between event brokers is at the abstract level of

JXTA pipe identifiers.

The Meteor-based version of FEL has been used in a

small-scale evaluation exercise, using a Chord ring of 5-10

nodes, and has been shown to work well. Composite events

can be created and implemented in the network, with nested

composite events to create subscription expression trees of

arbitrary depth. Without manual intervention or static ad-

ministration, composite events can be detected as patterns

of component events occur and be routed onto subscribers.

The network also copes with dynamic creation of new com-

posite events as new subscriptions are made, as well as with

dynamic joining and leaving of nodes from the network (to

achieve this, we extended the Meteor implementation to al-

low a node to handover its subscriptions etc. before grace-

fully exiting the network).

The advantage of Chord for FEL is principally that man-

agement of the publish/subscribe network comes ”for free”

as a result of the performance of the hashing scheme used

in the underlying DHT-based P2P network. The perfor-

mance of FEL, therefore, is dependent on the performance

of the hashing scheme. In Chord, the distribution of the

load around the network ring has come under investigation,

which may affect the performance of the overlying pub-

lish/subscribe system. FEL, however, is not tied to using

Chord, but can make use of any DHT-based P2P architec-

ture.

Future work will concentrate on large-scale evaluation of

FEL in order to assess its performance with large numbers

of subscriptions and event notification volumes. This work

is currently underway.

7. Acknowledgements

We gratefully acknowledge the support of the UK En-

gineering and Physical Sciences Research Council (under

EPSRC Grant GR/S01573/01) for this work.

Our thanks to Nick Stenning for producing the diagram

in Figure 3.

References

[1] A. Carzaniga, D. Rosenblum, and A. Wolf. Interfaces and

algorithms for a wide-area event notification service, Oct.

1999.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and

evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, Aug.

2001.
[3] S. Chakravarthy and D. Mishra. Snoop: An Expressive

Event Specification Language for Active Databases. Data
and Knowledge Engineering, 14(1):1–26, November 1994.

[4] S. A. Courtenage. Specifying and detecting composite

events in content-based publish/subscribe systems. In 1st
International Workshop on Discrete Event-Based Systems,

jun 2002.
[5] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Mor-

ris, I. Stoica, and H. Balakrishnan. Building peer-to-peer

systems with Chord, a distributed lookup service. In IEEE,

editor, Eighth IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII). May 20–23, 2001, Schloss Elmau,
Germany, pages 81–86, 1109 Spring Street, Suite 300, Sil-

ver Spring, MD 20910, USA, 2001. IEEE Computer Society

Press.
[6] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec.

The many faces of publish/subscribe, 2001.
[7] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite

event specification in active databases: Model & implemen-

tation. In Proceedings of the 18th International Conference
on Very Large Databases, 1992.

[8] N. Jiang, C. Schmidt, V. Matossian, and M. Parashar. En-

abling applications in sensor-based pervasive environments.

In Proceedings of the 1st Workshop on Broadband Advanced
Sensor Networks (BaseNets 2004), San Jose, USA, October

2004.
[9] P. R. Pietzuch and J. M. Bacon. Hermes: A Distrib-

uted Event-Based Middleware Architecture. In Proc. of
the 1st Int. Workshop on Distributed Event-Based Systems
(DEBS’02), pages 611–618, Vienna, Austria, July 2002.

[10] P. R. Pietzuch, B. Shand, and J. Bacon. Composite event

detection as a generic middleware extension. IEEE Network,

18(1):44–55, 2004.
[11] B. Segall and D. Arnold. Elvin has left the building: A pub-

lish/subscribe notification service with quenching. In Pro-
ceedings of AUUUG’97, 1997.

[12] I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Bal-

akrishman. Chord: A scalable peer-to-peer lookup protocol

for internet applications. In Proceedings of the ACM SIG-
COMM, pages 149–160, Aug. 2001.

[13] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,

B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An in-

formation flow based approach to message brokering, 1998.
[14] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.

Buchmann. A peer-to-peer approach to content-based pub-

lish/subscribe. In Proceedings of the 2nd international
workshop on Distributed event-based systems, pages 1–8.

ACM Press, 2003.
[15] P. Triantafillou and I. Aekaterinidis. Content-based pub-

lish/subscribe over structured p2p networks. In 1st Inter-
national Workshop on Discrete Event-Based Systems, May

2004.
[16] D. Zimmer and R. Unland. The formal foundation of the

semantics of complex events in active database management

systems, 1997.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

