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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in its late stages when 

treatment options are limited. Unlike other common cancers, there are no population-wide 

screening programmes for PDAC. Thus, early disease detection, although urgently needed, 

remains elusive. Individuals in certain high-risk groups are, however, offered screening or 

surveillance. Here we explore advances in understanding high-risk groups for PDAC and 

efforts to implement biomarker-driven detection of PDAC in these groups. We review current 

approaches to early detection biomarker development and the use of artificial intelligence as 

applied to electronic health records (EHRs) and social media. Finally, we address the cost-

effectiveness of applying biomarker strategies for early detection of PDAC. 

Keywords: Pancreatic cancer, early detection, biomarkers, artificial intelligence, omics 

1. Introduction  

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive form of pancreatic cancer 
and is the focus of this review. PDAC is the third leading cause of cancer death in men and 
women combined in the United States [1] and the fourth in Europe [2]. The incidence of the 
disease is increasing and is mirrored by an increase in mortality; the overall 5-year survival rate 
is 13% [1]. The symptoms of PDAC can be vague, making it difficult to diagnose early, when the 
chances of effective treatment and cure are highest. Consequently, at the time of presentation, 
some 50% of patients have metastatic disease and 30-35% of patients have locally advanced 
disease [3]. Only 15 to 20% of patients are eligible for potentially curative surgery [4].   

 
Challenges of PDAC detection test development  
Despite its high mortality-to-incidence ratio, the prevalence of PDAC within the general 
population is relatively low with lifetime risk estimated as 1.7% [5]. Consequently, a PDAC test 
developed for population-wide screening would need to achieve exceptionally high specificity 
to be at an acceptable level [6]. False positives can provoke worry, unnecessary clinical work-
up and incur high costs. Therefore, the focus of current early detection strategies is on 
identifying people at high risk who are most likely to benefit from longitudinal surveillance, and 
developing biomarker and imaging-based modalities that will assist in PDAC surveillance [7]. 
Given the consequences of late diagnosis for the patient, high sensitivity is also desirable. A 
second notable challenge is the lack of bespoke pre-diagnostic cohorts in which to develop or 
test emerging biomarkers. Cohort development is costly and takes time. However, testing the 
performance of candidate biomarkers in samples taken prior to a diagnosis of pancreatic 
cancer is an important component  of biomarker development. Individual differences and 
tumour heterogeneity mean that in all likelihood multiple biomarkers will be needed to detect 
all individuals with PDAC.  
 

2. Surveillance for PDAC and high-risk groups 
 

a. Surveillance for PDAC  
 

i. Familial pancreatic cancer and hereditary cancer syndromes 

Jo
ur

na
l P

re
-p

ro
of



Individuals with a lifetime risk of PDAC exceeding 5% are considered at high risk. This includes 
people in families with familial pancreatic cancer , or with hereditary cancer syndromes [8]. 
Germline mutations in BRCA2, BRCA1, and PALB2 genes involved in the homologous 
recombination DNA damage repair pathway, are most frequent [9], with pathogenic mutations 
in BRCA2 conferring a 3.5 to 5.8-fold increased lifetime risk of PDAC compared to non-BRCA2 
mutation carriers. Around 1% of families with a history of PDAC have  mutations in the PALB2 
gene, which encodes a binding partner of BRCA2 [10]. Individuals with germline mutations in 
ATM, also involved in homologous DNA repair, have a significantly higher cumulative risk of 
developing PDAC compared to those with a family history but no identified mutation [11]. 
Germline genetic variations of the CDKN2A gene, which encodes the tumour suppressor 
protein p16, have a 5-24% lifetime risk of PDAC and a tendency to develop cancer at a younger 
age [12]. Peutz-Jeghers syndrome is an autosomal dominant condition caused by a mutation 
in the STK11 gene, which leads to high penetrance hamartomatous polyposis and a lifetime 
risk of 11-36% with an average diagnosis age of 41 years [13-15]. Lynch syndrome, caused by 
mutations in DNA mismatch repair genes, such as MSH2, MLH1, MSH6, PMS2, and EPCAM, 
significantly increases the risk of PDAC to 9 times that of the general population [16]. Li-
Fraumeni syndrome (LFS) is a genetic disorder caused by a mutation in the tumour suppressor 
gene TP53. Individuals with LFS have a significantly higher risk (relative risk of 7.3) of developing 
pancreatic cancer [17]. 
 
Individuals with hereditary pancreatitis (HP) also have a high risk of pancreatic cancer decades 
after the initial onset of pancreatitis.  HP carries a 30-40% estimated cumulative risk of 
developing pancreatic cancer by age 70 [18]. This condition is often linked to mutations in the 
PRSS1 gene causing autosomal dominant inheritance of the disease [19]. 
 
ii. Cystic lesions 
Mucinous pancreatic cysts, including Intraductal Papillary Mucinous Neoplasms (IPMNs) and 
Mucinous Cystic Neoplasms (MCNs) are believed to give rise to up to 15% of PDACs [20]. IPMNs 
are categorised based on their location, into main duct (MD-IPMN), branch duct (BD-IPMN) 
and mixed type (MT-IPMN). The high incidence of PDAC associated with MD-IPMN and MT-
IPMN argues for their surgical resection, while BD-IPMN are less likely to have high grade 
dysplasia or be associated with PDAC and are not recommended for surgery [21]. Mutational 
profiles (in somatic genes) can aid in the identification of cystic type. Serous cystadenomas, a 
common non-malignant cyst type, are associated with mutations in VHL, while mutations in 
KRAS or GNAS are common in the cyst fluid of IPMNs and MCNs [22]. Recently, it has emerged 
that patients with IPMN carrying a PDAC-predisposing germline mutation are at higher risk of 
malignant transformation and merit an intensive follow-up [23]. 
 
iii. Surveillance modalities  
Surveillance of individuals at high risk of PDAC is recommended using endoscopic ultrasound 
(EUS) or magnetic resonance imaging/cholangiopancreatography (MRI/MRCP), with consensus 
statements on the standardisation of EUS imaging and reporting, and MRI screening and 
reporting respectively published by The Pancreatic Cancer Early Detection (PRECEDE) 
Consortium [24, 25]. Both modalities have advantages and limitations, and their choice should 
be based on a case-by-case basis, according to the patient’s features and the centre’s 
availability. The PRECEDE and International Cancer of the Pancreas Screening  Consortia have 
provided detailed indications of the screening interval to adopt [26, 27]. Individuals with 
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hereditary pancreatitis and PRSS1 mutation are offered surveillance with CT scanning due to a 
markedly elevated risk of PDAC [28]. 
 
b. New-onset diabetes as a facilitator of early detection 
At the time of diagnosis of PDAC, approximately 85% of patients have glucose dysregulation, 
with 40 – 65% of patients having diabetes mellitus (DM) [7]. While approximately 15% of DM 
in PDAC patients is long-standing (present >3 years), the remainder is new-onset diabetes 
mellitus (NOD). In effect, NOD is an early warning sign of the presence of PDAC, and individuals 
with NOD over 50 years have a 6 to 8-fold higher risk of PDAC than the general population [29-
31]. Pancreatic cancer-associated diabetes is a form of pancreatogenic diabetes (commonly 
referred to as type 3c diabetes), which results from exocrine pancreatic disease, including 
pancreatic cancer and chronic pancreatitis. Unlike type 1 and type 2 disease, type 3c is caused 
by structural and functional damage to the pancreas.  
 
Developing strategies to enable screening of individuals with NOD for PDAC is a priority [6, 32]. 
A significant challenge is the low prevalence of PDAC (0.8-1%) in this high-risk group, requiring 
enrichment for those most at risk, i.e. most likely to have PDAC [7]. The Enriching New-Onset 
Diabetes for Pancreatic Cancer (ENDPAC) tool utilises three factors, age, change in weight and 
change in blood glucose to stratify individuals with NOD into low, intermediate or high risk for 
PDAC [33].  ENDPAC is currently undergoing evaluation in a randomised controlled trial [34]. 
The feasibility of integrating a cancer decision support tool into primary care has already been 
demonstrated [35]. Biomarkers to support risk stratification are much needed. The UK Early 
Detection Initiative (UK-EDI) study is recruiting individuals with NOD to investigate biomarkers 
capable of detecting type 3c diabetes in this group [32]. Type 3c diabetes is often misdiagnosed 
as type 2 disease meaning opportunities to detect PDAC earlier are being lost. Distinguishing 
type 3c from type 2 diabetes at the point of diabetes diagnosis, will select a sub-population for 
PDAC screening [36].  
 
For a summary of ongoing trials and studies for early PDAC detection see Table 1.   
 
Table 1: Trials and Studies addressing early detection of PDAC. 

Trial Name Target Population(s) Biomarker of Interest Refer-
ence 

UK-EDI  
United Kingdom Early Detection 
study 
(United Kingdom) 

1. NOD 
2. Aged 50 years and 
above 

Plasma protein biomarker panel 
differentiating between type-3c 
and type 2 diabetes; germline 
alterations  

[37] 

Early Detection Initiative 
(ENDPAC evaluation) 
Enriching New-onset Diabetes 
for Pancreatic Cancer 
(United States) 

1. NOD 
2. Aged 50 years and 
above 
3. Index weight and left-
window weight values 
available 

ENDPAC risk score based on age 
at diagnosis and left-window 
weight and blood glucose 
measurements 

[34] 

PANLIPSY  1. Confirmed PDAC Circulating Tumour Cells, [38] 
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Early detection of pancreatic 
cancer by liquid biopsy 
(France) 

2. Benign pancreatic 
disease  
3. Healthy controls 

ctDNA, EVs, circulating immune 
system, circulating cell- free 
nucleosomes, proteins, and 
microbiota 

VAPOR  
Volatile organic compound 
Assessment in Pancreatic ductal 
adenOcaRcinoma 
(United Kingdom) 

1. Confirmed PDAC 
2. Benign pancreatic 
conditions (NOD and CP) 
3. Healthy controls  

Volatile organic compounds in 
exhaled breath  

[39] 

EUROPAC  
European Registry of Hereditary 
Pancreatitis and Familial 
Pancreatic Cancer 
(United Kingdom) 

1. Family history of PDAC 
- two or more First 
Degree Relatives (FDRs) 
2. Gene mutation - BRCA 
1/2 
3. Peutz-Jeghers, Lynch, 
Familial Atypical Multiple 
Mole Melanoma 
(FAMMM) syndrome 

Genomic map [40] 

PCDC (PANXEON) 
PANcreatic cancer Exosome Early 
detectiON  
(United States, Japan, Republic of 
Korea) 

PDAC (stages I-IV) and 
healthy controls 

Panel of 13 miRNAs [41] 

ASCEND-PANCREATIC 
AssesSment of Early-deteCtion 
basEd oN liquiD Biopsy in 
PANCREATIC Cancer  
(China) 

1. Early stage PDAC 
2. Benign pancreatic 
disease 
3. Healthy controls 

cfDNA methylation, circulating 
tumour DNA (ctDNA) mutation, 
serum protein markers and 
blood miRNA markers 

[42] 

DAYBREAK Study  
iDentification and vAlidation 
Model of Liquid biopsY Based 
cfDNA Methylation and pRotEin 
biomArKers for Pancreatic 
Cancer 
(China) 

1. Confirmed PDAC 
diagnosis 
2. Benign pancreatic 
diseases 

Biomarkers of cfDNA 
methylation, serum protein 
markers, blood miRNA markers 

[43] 

The PREPAIRD Study 
Personalized Surveillance for 
Early Detection of Pancreatic 
Cancer in High Risk Individuals 
(Norway) 

1. Germline mutation in a 
PC susceptibility gene 
(CDKN2A, STK11, TP53, 
PRSS1) 
2. Strong family history of 
PC 

Personalized surveillance 
program for early diagnosis of 
pancreatic cancer  

[44] 

PRO-TECT 
PRedictiOn Algorithms for the 
DeTECTion of Early-Stage 

Individuals above the age 
50 with minimum 6 
month from study entry 

Pancreatic risk prediction using 
a machine learning model - if 
increased 18-month risk of 

[45] 
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Pancreatic Cancer  
(United States) 
 

pancreatic cancer, participants 
undergo MRI 

ExoLuminate Study  
for Early Detection of Pancreatic 
Cancer 
(United States) 
 

1. Without PDAC but 
with family history of 2 
or more FDRs; BRCA1, 
BRCA2, PALB2, ATM, 
MLH1, MSH2, MSH6, 
PMS2, EPCAM 
pathogenic or likely 
pathogenic variant and 1 
FDR or Second Degree 
Relative with PDAC; 
FAMMM, Peutz-Jeghers, 
Hereditary pancreatitis 
with PRSS1  
2. Pancreatic cysts 
3. Acute or chronic 
pancreatitis 
4. Stage I or II PDAC 

Extracellular vesicles isolated 
from blood plasma 

[46] 

U01-Biomarkers 
for Noninvasive and Early 
Detection of Pancreatic Cancer 
(United States) 
 

1. Diagnosed PDAC, 
pancreatic neoplasms 
2.Pancreatitis 
3. Diabetes 
4. Healthy controls 

Cell-free and exosomal miRNA 
biomarkers using small RNA-
Seq in matched tissues and 
plasma in different cohorts 

[47] 

NODMED 
New Onset Diabetes 
Management for Earlier 
Detection of Pancreatic Cancer  
(United States) 

Individuals above the age 
of 50 years with newly 
diagnosed type-2 
diabetes who will 
undergo noninvasive test 
and upon “detected” 
result, an MRI imaging 
will be performed 

5-hydroxymethylcytosine 
signatures in circulating cell 
free DNA - Bluestar Genomics 
 

[48] 

PANDOME 
A Pancreatic Cancer Screening 
Study in Individuals With New-
Onset or Deteriorating Diabetes 
Mellitus  
(United States) 

Individuals above the age 
of 50 years with: 
1. Confirmed DM within 
last 12 months with 
record of prior normal 
HBA1c 
2. DM without confirmed 
duration without record 
of prior normal HbA1c 
3. Transition from pre-
diabetes to DM 
4. Deteriorating DM with 
>2% spike in HbA1c 
within last 6 months 

1. MRI/MRCP at baseline 
2. Further imaging upon 
recommendation of study 
committee  
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PRECEDE  
Pancreatic Cancer Early 
Detection Consortium  
(United States) 

Individuals: 
1. Without PDAC but 
with two or more FDRs; 
RCA1, BRCA2, PALB2, 
ATM, MLH1, MSH2, 
MSH6, PMS2, EPCAM 
pathogenic or likely 
pathogenic variant AND 
1 first or second degree 
relative; FAMMM; Peutz-
Jegher syndrome with 
STK11; Hereditary 
pancreatitis with PRSS1 
2. Pancreatic cysts 

Pathogenic germline variants 
(PGVs) in Pancreatic Cancer 
predisposition genes 

[50] 

PANC-O-MICS 
Precision Imaging for Early 
Detection and Targeted 
Treatment Monitoring in 
Pancreatic Cancer 
(France) 

Individuals with: 
1.Confirmed PDAC 

The diagnostic performance of 
the radiomic and multiomic 
algorithm in pancreatic cancer 
detection and therapeutic 
response monitoring. 

[51] 

The LINFU®  
A Noninvasive Method for 
Increasing Exfoliation of 
Pancreatic Ductal Cells Into 
Pancreatic Fluid) U.S. Registry for 
the Detection of Low and High- 
Grade Atypia and Early, 
Asymptomatic PDAC 
(United States) 

High risk asymptomatic 
patients being screened 
for pancreatic cancer 
who are scheduled for 
EUS± FNA, MRI/MRCP, 
ERCP, CT or CEUS. 

The total number of 
asymptomatic pancreatic 
ductal adenocarcinomas and 
their noninvasive precursor 
lesions identified with LINFU® 
by analysis of pancreatic fluid 
will be compared to the 
number of these lesions 
identified with current 
screening tests, including EUS- 
FNA, MRI/MRCP, ERCP, CT and 
CEUS. 

[52] 

UroPanc Study 
(United Kingdom) 

1.Symptomatic group 
with suspected PDAC 
2.Asymptomatic group 
from EUROPAC trial 
(high-risk of developing 
PDAC) 

Urinary biomarker panel 
(LYVE1, REG1B, TFF1), and 
affiliated PancRISK score alone 
or in combination with plasma 
CA19-9 

[53] 

DETECT 
Evaluation of a Mixed Meal Test 
for Diagnosis and 
Characterization and Type 3c 
Diabetes Mellitus Secondary to 
Pancreatic Cancer and Chronic 
Pancreatitis  
(United States) 

1. PDAC 
2. Chronic pancreatitis 
3. Healthy controls 

Pancreatic Polypeptide, 
glucose, C-peptide, insulin, 
glucagon, GLP-1, and GIP levels. 
 

[54] 
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ADEPTS 
Accelerated Diagnosis of 
neuroendocrine and Pancreatic 
TumourS 
(United Kingdom) 
 

1. Suspected PDAC 
2. High-risk PDAC 
3. Healthy controls 
 

Blood, urine and tissue 
specimens 

[6] 

 

 

3. Biomarkers for early PDAC detection: Current state-of-the-art  
 

a. Challenges 

The lack of control biospecimens, such as from individuals with diabetes and chronic 
pancreatitis can weaken biomarker studies and ultimately impede translation of biomarker 
candidates to clinical use. Furthermore, with the majority of published biomarker candidates 
discovered or evaluated in samples from individuals already diagnosed with PDAC, 
understanding the performance of biomarkers in the months prior to PDAC diagnosis is 
challenging. The best characterised biomarker in a pre-diagnostic setting is CA19-9, the only 
biomarker in routine use for managing PDAC. It increases from 2 years prior to diagnosis, 
becoming highest close to diagnosis [55-57]. Using samples from the Prostate, Lung, Colorectal 
and Ovarian Cancer Screening Trial, Fahrmann and colleagues [57] reported CA19-9 to have a 
sensitivity of 60% at 99% specificity within 0 to 6 months before diagnosis. O’Brien et al. [55] 
reported a sensitivity of 68% at 95% specificity up to 1 year prior to diagnosis in samples from 
the UK Collaborative Trial of Ovarian Cancer Screening . Pre-diagnostic PDAC samples, collected 
with the specific purpose of PDAC detection and where samples and data directly relevant to 
PDAC are collected are desperately needed. The efforts of the Chronic Pancreatitis, Diabetes 
and Pancreatic Cancer (CPDPC) Consortium and UK-EDI to collect clinical data and longitudinal 
biospecimens for individuals with NOD that allow selection and testing of biomarkers in pre-
diagnostic PDAC samples are therefore vital [36, 58].  
 

b. Types of Biomarkers 

i. Protein-based biomarkers  
Multiple studies have proposed protein biomarkers as tools for early detection, usually in 
panels of two or more proteins and often combined with CA19-9. Here we focus only on studies 
that incorporated evaluation of protein biomarkers in samples taken prior to PDAC diagnosis.  
Oldfield et al. [32] identified IL1-Ra and adiponectin as promising candidate biomarkers to 
distinguish individuals with pancreatogenic diabetes (type 3c; T3cDM) from those with type 2 
diabetes mellitus (T2DM), with the aim of earlier detection of PDAC in NOD. IL1-Ra and 
adiponectin yielded an area under the receiver operating characteristic curve (AUC) of 0.90 for 
T3cDM vs T2DM and 0.91 for T3cDM vs NOD. Notably, IL1-Ra was significantly upregulated in 
pre-diagnostic PDAC samples up to 12 months prior to diagnosis.  
 
Blyuss et al. [59] developed a risk score, PancRISK based on measurement of three proteins in 
urine (LYVE1, REG1B and TFF1), patient age and urine creatinine. Inclusion of CA19-9 resulted 
in a sensitivity of 0.96 with a specificity of 0.96 for the distinction of healthy controls from 
individuals with PDAC. In prediagnostic samples, PancRISK, combined with CA19-9, achieved 
an AUC of 0.892 up to 1 year before PDAC diagnosis, and 0.77 up to 2 years [60]. In a more 
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recent study, Nene et al. used ensemble modelling with cross-validation resampling to 
demonstrate the performance of a 20-feature panel, including proteins and clinical 
features[61]. The stacked ensemble approach achieved an AUC of 0.91 up to 1 yr prior to PDAC 
diagnosis and an AUC of 0.85 up to 2 years prior. These studies highlight the beneficial 
complementarity of protein biomarkers and clinical features in identifying individuals at risk of 
PDAC. 
 
ii. Metabolic markers 
The changes in glucose regulation observed in PDAC are an indicator of broader metabolic 
alterations occurring during tumour development, and several studies have reported 
metabolic markers as potential biomarkers for early disease detection. Wolpin et al. found that 
elevated circulating levels of branched chain amino acids (BCAAs) were associated with a 
greater than 2-fold increased risk of future PDAC diagnosis [62]. Systemic elevation in BCAAs is 
likely linked to tumour-driven muscle breakdown, with increased levels among the earliest 
metabolic changes in cancer cachexia, occurring before significant weight loss is observed. 
Wolpin’s study reported the strongest elevation in risk, associated with BCAAs, to be present 
in individuals whose blood was collected 2 to 5 years prior to PDAC diagnosis, when occult 
disease is likely present.  
 
Future diagnostic tools will be enhanced by their ability to distinguish PDAC from chronic 
pancreatitis. Metabolic markers have been suggested to have a role here. In a case-control 
study (n=914 subjects) Mayerle et al. found a nine-metabolite panel, in combination with 
CA19-9, to exhibit good accuracy (AUC=0.94; 95% CI 0.91–0.97) in the differentiation of PDAC 
from chronic pancreatitis [63]. Further development of metabolic biomarkers of PDAC will benefit 
from validation in relevant cohorts, including individuals with NOD. 
 
iii. Cell-free DNA (cfDNA)  
Cell-free DNA (cfDNA), generated by apoptosis, necrosis and active secretion, is found in blood, 

urine, saliva, and other extracellular fluids. A subfraction of cfDNA corresponds to tumour cell-

free DNA (ctDNA). One of the first reports of cfDNA in PDAC using next-generation sequencing 

of 54 genes showed diagnostic accuracy of 97.7%, highlighting 5 genes (KRAS, TP53, APC, 

FBXW7, and SMAD4) [64]. Of more recent interest is the use of methylation signals from 

targeted circulating free DNA and machine learning classifiers for multi-cancer early detection 

(MCED). In one of the largest studies to-date, which included individuals already diagnosed 

with cancer or under investigation for suspected cancer, an MCED test using methylation 

signals on cfDNA detected 61.9% (13/21) of stage I, 60% (12/20) of stage II, 85.7% (18/21) of 

stage III, and 95.9% (70/73) of stage IV pancreatic cancers [65]. Recent data from the 

PATHFINDER study further indicate the potential of MCEDs applied in the detection of early-

stage cancer in asymptomatic populations, however, more evidence will be needed to 

understand the true power of MCEDs in this setting [66]. An alternative approach relies on the 

targeted detection of differential 5-hydroxymethylcytosine (5hmC) methylation patterns in 

cfDNA of PDAC patients compared to non-cancer control subjects, particularly in genes 

associated with pancreas development or function, and cancer [67]. Incorporating machine 

learning an algorithm, based on 5hmC differential profiling and additional genomic features, 

was developed and had a sensitivity of 68.3% for stage I/II PDAC with varying diabetes status, 

with an overall specificity of 96.9% [68]. 
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iv. RNA-based biomarkers  
RNA biomarkers from body fluids include messenger RNA (mRNA), microRNA (miRNA), long 
non-coding RNA (lncRNA), piwi interacting RNA (piRNA), and circular RNA (circRNA). Elevated 
FKBP1A mRNA levels in circulating white blood cells of PDAC patients suggest its potential as 
an early detection biomarker [69]. Studies have also linked lncRNAs like HOTTIP, MALAT-1, 
HOTAIR, MEG3, CASC2, H19, and LINC01559 to tumour functions, though further research is 
needed [70]. 
 
Extracellular vesicles (EVs), small lipid-bilayer nanovesicles released by cells, facilitate 
intercellular communication and carry biomolecules, including RNA  [71].  Exosomes from 
PDAC patients have been found to over-express coding RNAs, such as WASF2, ARF6, 
SNORA74A, and SNORA25[72].  
 
More recently, miRNAs have emerged as critical modulators of tumour biology, impacting 
tumour initiation, progression, and metastasis, making them novel biomarkers [73, 74]. 
miRNAs are categorised as oncogenic or tumour-suppressive. Aberrant expressions of miRNAs 
have been found in PDAC [75, 76], with upregulation of miR-21, miR-221, miR-210 and miR-
155 and reduced expression of miR-34a/b, let-7, miR-146a, and miR-126 reported [77-80]. 
miR-210, miR-21, and miR-155, associated with enhanced cellular proliferation, migration, 
invasiveness, hypoxia, and cancer stemness [79, 80]. The implementation of miRNA expression 
as a non-invasive diagnostic tool for early diagnosis for pancreatic cancer has been widely 
studied [73, 81].  
 
The minimal-invasive nature of miRNA-based tests, and their stability as potential biomarkers, 
offers significant advantages over tissue biopsies for routine screening and early detection. 
However, challenges remain due to limited tissue/disease specificity and selectivity, especially 
in early-stage PDAC. Standardising miRNA profiling and validation in large-scale trials is 
essential, along with accessible biobanks for independent patient samples. 
 
v. Tumour-educated platelets  
Cancer cells release factors stimulating platelet production in bone marrow, leading to an 
elevation in platelet levels in many cancers, including PDAC [82]. Tumour cells further influence 
platelets by triggering activation, aggregation, and release of intracellular contents [83]. 
Activated platelets in-turn interact with circulating tumour cells [84], potentially shielding them 
from immune surveillance and attracting stromal cells to distant sites, creating favourable 
environments for metastasis. Cancer-reprogrammed platelets, termed Tumour-Educated 
Platelets (TEPs), have emerged as promising non-invasive liquid biopsy candidates due to their 
unique molecular signatures acquired when altered by cancer cells [85]. 

Research is establishing solid links between platelets and PDAC. Cooke et al. found that platelet 

aggregation was significantly higher in patients with metastatic PDAC compared to healthy 

individuals [86], suggesting that the presence of the tumour may trigger platelet activation. 

Mitrugno and colleagues reported that platelets co-cultured with the PDAC cell line, PANC-1 

induced cell proliferation by activation of c-Myc [87]. Additionally, both the proteome content 

[88] and several miRNAs [89] are altered when comparing the platelets of PDAC patients and 

healthy subjects. Moreover, the mRNA profiles of PDAC TEPs were found to be different 
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between KRAS mutant PDAC and KRAS wild-type [90]. Finally, in a study of 18 different 

tumours, PDAC included, a TEP RNA-based test showed promise for the detection of cancer as 

well as determining the site or origin [91].   

vi. Volatile organic compounds (VOCs) in PDAC  
Volatile organic compounds (VOCs) are a group of carbon-containing compounds that are 

sufficiently volatile to be in the gaseous form at ambient temperature and pressure, and which 

are released as by-products of metabolism in humans [92, 93]. Endogenously-produced VOCs 

can be exhaled in breath or detected in the headspace of biofluids such as urine and are 

measured using analytical techniques including mass-spectrometry and sensors [94-96]. 

Changes in metabolic pathways occurring early in PDAC development [97] are thought to 

contribute to an altered VOC profile in the breath of patients with cancer compared to those 

without [98]. 

 

Using mass spectrometry techniques, characteristic VOC signatures with sensitivity ranging 
from 70-100% and specificity 74-92% have been identified in the breath of patients with PDAC 
compared to controls [99-101]. Meanwhile, an electronic nose sensor has demonstrated 80% 
sensitivity and 92% specificity for the identification of PDAC patients using exhaled breath VOCs 
[102]. These studies have all been undertaken in symptomatic patients. Thus, their findings 
offer the potential for breath testing to be used to triage PDAC patients with non-specific 
symptoms who may otherwise only be diagnosed at a much later stage. Breath testing is 
deemed highly acceptable to patients and healthcare professionals alike, given its non-invasive 
nature and ease of use [103], making breath VOCs an attractive choice of biomarker for 
improving the earlier detection of PDAC. The potential to detect PDAC using urinary VOC 
measurement has also been demonstrated [104, 105]. 
 
Though promising, the feasibility studies undertaken thus far have involved small samples sizes 

(n < 200 participants). VAPOR-1 (Volatile organic compound assessment in pancreatic ductal 

adenocarcinoma; Table 1) is a multi-centre breath test study currently recruiting 771 

participants across 18 hospital sites in the United Kingdom [ClinicalTrials.gov: NCT05727020]. 

The study aims to validate previously identified breath VOC biomarkers and refine the cancer 

detection model. This will be followed by a double-blind validation study, VAPOR-2. 

 

vii. Paper-based substrates for the detection of biomarkers 
A colorimetric paper-based nano-immunosensor, using gold nanoparticles (AuNPs) as a 
catalyst for colorimetric signals, has been used to detect PEAK1, an oncogenic pseudokinase 
overexpressed in PDAC [106]. This method enhances detection sensitivity by 10 folds, 
compared to AuNPs-based colorimetric immunoassays without signal amplification [107]. A 3D 
paper-based electrochemiluminescence immuno-device has also been developed for 
multiplexed biomarker detection and was shown to detect CA19-9 and other tumour markers 
in serum [108]. Moccia et al. used a peptide nucleic acid as a recognition element for miRNA-
492 on a screen-printed electrochemical biosensor, obtaining a detection limit of 6nM, and 
demonstrating applicability for detection in serum [109]. Furthermore, a sensor for the 
biomarker miRNA-141, which is downregulated in PDAC tissues, has been developed using 
graphene oxide-quantum dots and an ssDNA detection probe, with integration in mobile 
devices. [110]. 
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viii. Tumour interstitial fluid 
A novel biomarker discovery approach, named EXPEL, that allows sampling of soluble 
biomarkers from fresh tissue has been developed [111]. The procedure uses rapid, pressure-
assisted, interstitial fluid extrusion from tissue while preserving the specimen for full routine 
clinical pathology investigation. The method, described for colorectal cancer [111], gives access 
to proteins, metabolites, RNA, DNA and exosomes, enabling holistic biomarker discovery 
through OMICS profiling. Owing to its non-destructive nature, the technique provides both 
clinicians and researchers with the opportunity to analyse identical material. An additional 
method, PANEXPEL, specific for pancreatic cancer has been developed [112]. During 
endoscopic ultrasound-guided needle biopsy, once the needle-biopsy is collected, the contents 
are rinsed in a preservation solution, filtered for cells/tissue fragments and the flow-through 
discarded. Investigation of the discarded liquid, has found it to be ideal for preserving proteins, 
metabolites, DNA & RNA s, which can be extracted using simple biochemical procedures. A 
prospective clinical collection (ClinicalTrials.gov: NCT03791073) of over 200 samples from all 
suspected PDAC patients examined in the CHU Montpellier has begun.  
 
ix. Microbiome 
The microbiome is altered during cancer development and progression, making microbial-

derived molecules attractive as potential biomarkers [113, 114]. Seminal studies in PDAC have 

shown that faecal microbiota can affect the tumour microbiome which in turn moderates the 

immune response and patient survival [115]. Kartal et al. [116] employed shotgun 

metagenomic and 16S rRNA amplicon sequencing to over 200 patients in a multicentric study, 

identifying a classifier comprising 27 microbial species that enabled discrimination of PDAC 

across different disease stages from controls. Likewise, using faecal and saliva metagenomics 

data, Nagata et al. [117] derived signatures including 30 gut, and 18 oral species associated 

with PDAC. Recent studies have established that composite microbial communities can serve 

as early diagnostic and prognostic biomarkers for pancreatic tumours [118]. Interestingly, gut 

virome (viruses that infect gut bacteria) have been proposed more recently as an additional 

promising layer of information that can be used to diagnose PDAC in a non-invasive fashion 

[119].  
 

4. OMICS for Biomarkers of Early Detection and Population 

Stratification 
 

a. Germline variants and polygenic risk score 
Single nucleotide polymorphisms (SNPs) remain unchanged from birth to death, making their 
measurement through genotyping unbiased by contingent factors, such as the exposome, and 
rendering them attractive risk stratification biomarkers. Following the sequencing of the 
human genome, the first genome wide association studies (GWAS) were successfully 
performed, initially on common diseases and traits, and subsequently on rarer ones, such as 
PDAC [120]. Findings from GWAS were different than predicted. Single or small number of risk 
alleles with great effect sizes explaining a large proportion of the variance of each disease, or 
SNPs in genes known to be involved with the disease, such as p53, BRCA1 or ATM for many 
cancer types, it emerged that SNPs were associated with, at best, modest increase in risk, and 
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were often in unknown genes or in intergenic regions, labelled as gene deserts. Greater insight 
from further GWASs showed that, while the individual effect of each SNP is small, the 
combined effect of SNPs, calculated using polygenic risk scores (PRS) is not. For PDAC around 
30 significant SNPs, predisposing for risk have been identified through GWAS or more focused 
studies, carried out by large international consortia [120-128]. Several PRS, using SNPs 
identified by the GWAS, have been analysed, and validated in multiple studies and they all 
show large effect sizes comparable to high penetrance mutations, usually surpassing 
established risk factors such as smoking and diabetes [129-134]. Galeotti and colleagues in a 
study conducted in the context of the PANDoRA consortium found that individuals with a high 
count of risk alleles (>80th percentile) had more than three times the risk compared to 
individuals in the lowest count of risk alleles (<20th percentile): OR=3.24 (95% CI 2.86 to 3.67, 
p=1.20×10−63). The results were replicated using PanScanI-III and PanC4 data with very similar 
results [130]. In the same manuscript the authors combined the effect of the PRS with smoking 
and diabetes, obtaining very large effect sizes OR=14.37 (95% CI 5.57 to 37.09, p=3.64×10−8) 
for the highest versus lowest quintile. Interestingly, Ke and colleagues using a machine learning 
integrative PDAC risk prediction model found that PRS was, after age, the second most 
important feature of the model [131]. Although proven to be a good strategy for risk 
stratification, PRS cannot yet be used to predict PDAC occurrence in the general population. In 
the future when more risk loci are discovered, PRS could become an extremely useful tool 
especially for high-risk individuals, such as family members of PDAC patients and individuals 
with new-onset diabetes.  
 
b. ScRNA-Seq Spatial transcriptomics and early PDAC detection 
The ability to stratify cancer patients accurately is necessary for personalised precision 
diagnosis. Moreover, heightened understanding of the biology underpinning PDAC subtypes 
could help direct our choices of early detection biomarkers. The advent of spatial technology 
[135] and its combination with single cell RNA Sequencing (scRNA-Seq) technology [136] has 
enabled ScRNA-Seq Spatial transcriptomics studies (scRNA-Seq-ST) on PDAC patient tissue 
sections, revealing gene expression profiles of different cell subtypes, including tumour, acinar, 
ductal, stromal and immune cells. scRNA-Seq-ST studies on PDAC have focused on 
characterising tumour heterogeneity, analysing precursors to PDAC, including IPMN and PanIN 
lesions, and profiling tumour subtypes [137]. Using two spatial transcriptomic technologies, 
Agostini et al. identified markers of different grades of IPMN [138]. The capacity for spatial 
transcriptomic technology to map the trajectory of normal cells all the way through to 
malignant ones opens opportunities for detecting early changes that could lead to useful 
biomarkers.  
 

5. Artificial Intelligence (AI) and Models to predict risk 

 

a. Machine Learning for detection of PDAC 
Machine learning (ML) methods and artificial intelligence (AI) algorithms facilitate extraction 
of substantial information and patterns from big data. Various types of data, including medical 
images, data produced by omics technologies and patient records can be used as input to train 
and test the models generated by ML and AI algorithms for early detection of PDAC [139-142]. 
Deep learning and ML methods, such as convolutional neural network (CNN) or support vector 
machine (SVM), have been applied for detection of PDAC [139, 141, 143, 144].  
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b. EHR-based machine learning (ML) and deep learning (DL) models to predict the risk of PDAC  
The advent of electronic health records (EHRs) has substantially increased the type and volume 
of patient data available for development of ML and DL algorithms for predicting PDAC risk 
[131, 140, 142, 145-154]. For example, PrismNN and PrismLR models were developed from 
EHRs of U.S. PDAC cases (n= 35,387) and controls (n=1,500,081), which uses neural networks 
and logistic regression, respectively. These models predicted patients with high PDAC risk 6-18 
months before diagnosis [142]. Another study used ML model with ~6.2 million patients 
(~24,000 cases) from the Danish National Patient Registry (DNPR) and 3 million patients 
(~3,900 cases) from the U.S. Using the DNPR, the optimal model predicted pancreatic cancer 
occurrence within 36 months of diagnosis with an AUC of 0.83 when disease events within 
three months of cancer diagnosis were excluded from training [140].  
Since 2011, several studies using EHRs to predict PDAC cancer risk have been conducted [131, 

140, 142, 145-155]. The most frequently included variables were known PDAC risk factors such 

as gender, age, smoking, alcohol consumption, pancreatitis, diabetes, and weight, as well as 

clinical or laboratory data. The number of variables employed in a model ranged from 9 [156] 

to 87 [152]. Of ML and DL algorithms used to build predictive models for PDAC risk, the Random 

Forest algorithm was the most frequently employed, and the most used metric was the Area 

Under the Curve (AUC) of a Receiver Operator Characteristic curve (ROC). Santos et al. have 

compared 38 PDAC risk prediction models, most of which showed high accuracy. Limitations 

included a high risk of bias caused by inadequate reporting practices and the inclusion of 

individuals with advanced-stage tumours, which may skew the results [157]. 

 

c. Challenges in bringing Artificial Intelligence into clinical use for PDAC  
Despite their potential, AI- and ML-based models are not ready for implementation into clinical 
practice. Significant challenges include the heterogeneity in variables, algorithms, and 
evaluation metrics employed by the studies, which make comparisons difficult. In addition, 
progress is hampered by the small number of participants used to build risk prediction models 
for PDAC. Factors contributing to these small numbers include the relative rarity of the disease 
and sociodemographic disparities during the recruitment process, with Black patients and 
patients treated at non-academic medical centres in the US less likely to be enrolled in clinical 
trials. [158-160]. Model overfitting is also a problem and occurs when a model is too complex 
and perfectly learns from training data but fails to generalize correctly on testing data [161, 
162]. This lack of generalization is harmful since the model may display a poor discrimination 
ability, may produce inaccurate risk estimations, and may fail validation with an external cohort 
[163]. Furthermore, the models commonly use AUC of a Receiver Operator Characteristic 
curve, which frequently fails to find a clinical applicability [164]. In particular, when the number 
of cases is greater than the number of controls, AUC/ROC may be misleading when interpreting 
the specificity of a model [164]. The precision-recall curve represents a less biased evaluation 
metric [164], although it may be difficult for clinicians to understand and interpret [165]. 
Another challenge with the applicability of these algorithms is their “black-box” nature, which 
hinders model interpretability [154]. To address this challenge, the use of eXplainable AI (XAI) 
has recently been implemented, enabling the decision-making process of the algorithm to be 
comprehensible. To date, only 5 studies have employed XAI in the context of PDAC risk 
prediction, highlighting the novelty of this approach [140, 145, 166-168]. Notably, all of these 
studies employed the same algorithm, SHapley Additive exPlanations [169], which is 
considered the gold standard. Finally, there are a number of other potential pitfalls that pose 
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a challenge to the implementation of AI- and ML-based models in clinical practice. These 
include challenges related to the construction and deployment of models, as well as the 
development of appropriate policies, the management of data shifts and variability, and the 
financial costs associated with the implementation of such models [165, 170, 171]. 
 
d. Social media for early detection of PDAC 
Social media platforms leverage different forms of communication to enhance public 
engagement with health information, thereby representing a viable and powerful option for 
the dissemination of medical knowledge [172, 173]. These platforms can reach individuals who 
are excluded from experimental trials and protocols, promoting early screening [6] and could 
improve pancreatic cancer outcomes by increasing awareness of risk factors and encouraging 
aided early symptom research [174]. Furthermore, participation in social media groups where 
individuals can communicate with healthcare professionals may enhance individual awareness 
on the disease, as previously reported for other diseases [175, 176]. 
Netnographies represent an example of how ethnographies can be implemented in the digital 
context to study interactions and behaviours within online communities [6, 177]. The 
employment of pattern analysis and topic modelling of users’ online posts, netnographies may 
allow the identification of behavioural trends and contents with the potential to predict early 
PDAC [6]. 
Sentiment analysis is a natural language processing method that employs machine and deep 
learning and rule-based approaches to analyse emotions expressed in digital texts [178]. 
Through the analysis of emotions in online posts, sentiment analysis may allow the 
identification of shared lexical features for early PDAC screening and detection [179]. 
Despite the considerable potential of social media for the early PDAC detection, there are 

significant challenges to overcome, mostly related to the quality of information and resources 

about the disease [180] and the dissemination of misinformation [181, 182]. To realize the 

potential of social media to aid early detection of PDAC, methodologies need to be 

implemented, and online information needs to be monitored to prevent harmful decisions. 

Ethical concerns related to the reuse of an individual’s data must also be considered, 

particularly in the absence of adequate regulatory frameworks. Of particular relevance is the 

issue of the explicit informed consent of the users in reusing their data and that of 

anonymization [183]. In this context, research conducted with social media data should always 

consider contextual factors and, when possible, use basic interaction data, providing also full 

transparency on the types of data and their use [184].  

 

e. Cost-effectiveness of implementing biomarkers in early detection of PDAC 
Cost-effectiveness analysis (CEA) aims to evaluate the costs and effects of alternative methods 
for detecting PDAC. Health benefits are typically measured in quality-adjusted life years. To 
inform key stakeholders of the potential economic value of a new method, CEA should 
preferably be done at an early stage; that is, even before its clinical effectiveness is fully 
established [185]. Ghatnekar et al. [186] presented an example of an early-stage cost-
effectiveness model to assess the benefits of a biomarker-driven screening method for the 
early detection of PDAC. Based on assumptions about PDAC incidence, test sensitivity and 
specificity, and relevant costs, they concluded that specific risk groups, including individuals 
with new-onset diabetes (NOD), could be screened at an acceptable cost. More detailed clinical 
prediction models have recently been developed and validated to identify patients with NOD 
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at highest risk for PDAC. These include the QCancer® (Pancreas) model [187] and the widely 
cited Enriching New-Onset Diabetes for Pancreatic Cancer (ENDPAC) model [188]. Schwartz et 
al. [185] contended that risk-based screening using the ENDPAC score is straightforward to 
implement and likely to be cost-effective in the USA if more than 25% of pancreatic cancer 
patients diagnosed by screening are resectable. Using a population-representative NOD cohort 
from The Health Improvement Network network of European databases, Wang et al. [189] 
found that an early detection strategy targeting individuals with NOD with a minimum 
predicted three-year PDAC risk of 1.0% to 2.0% may be cost-effective, depending on 
willingness-to-pay  thresholds in different countries. Based on all current evidence, Stefanova 
et al. [190] concluded that screening the NOD high-risk group for PDAC becomes cost-effective 
when an optimal biomarker signature can be selected. 
 
 

6. Conclusion  
 

The scientific literature contains abundant proposals for biomarkers with capacity to detect 

PDAC early. Almost invariably these candidates have been identified and validated in samples 

taken from individuals already diagnosed with PDAC. The performance of biomarkers in Stage 

I and II disease is often hailed as evidence that the biomarkers detect early disease, and this 

may be so. However, PDAC advances rapidly and the ability of biomarkers to detect the disease 

in the months leading to diagnosis, unless tested, remains unknown. Pre-diagnostic cohorts, 

such as the NOD cohorts [32, 58], that deposit samples and data from individuals prior to a 

diagnosis of PDAC have a vital role to play. These cohorts, however, are difficult and costly to 

assemble and by definition take time to mature, as the participants progress to a diagnosis of 

cancer. Nonetheless the need for high quality samples, stored rapidly and to exacting standard 

operating protocols remains key to unlocking effective early biomarkers, and shortcuts in 

either cohort assembly or high-quality sample collection ultimately waste time and effort.  

Due to individual differences, and tumour heterogeneity, it has long been understood that no 
single biomarker will detect all individuals with PDAC, but rather panels of biomarkers will be 
needed. Going further, future models that integrate fluid-based biomarkers with AI algorithms 
of EHRs, for example, present an important opportunity to improve the precision and efficiency 
of early PDAC detection. Imaging technologies have advanced, as have methods for analysing 
image data, including radiomics and AI algorithms. Advances in imaging and data analysis for 
PDAC detection are reviewed elsewhere [191]. Wearable health technology, particularly 
flexible electronics, have garnered attention for their potential to monitor patient health more 
affordably, with quick access to health data, non-invasive methods, and the ability to scale up 
production [192]. There are currently no wearables that can detect pancreatitis or pancreatic 
cancer, however, emerging data regarding early, subtle signs of cancer in general, may be 
amenable to detection by electronic sensors and monitoring of behaviour using smartphones 
or wearables [193]. 
 

In parallel with biomarker development, it is important to assess the cost-effectiveness of 

proposed tests, to assist policymakers with decisions regarding implementation. Equally, 

gauging whether the tests will be acceptable to the individuals for whom they are being 
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developed and whether those individuals can be reached is essential. Community outreach 

should therefore be integral to biomarker research. 

Although our understanding of the biology underpinning PDAC has advanced significantly in 
recent years, there remains much to learn. Fundamental research on this disease will continue 
to contribute to early detection strategies. To ascertain the true performance of early 
detection approaches, ideally clinical validation in carefully designed trials and ultimately 
evaluation in real-world contexts is needed [194]. 
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