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Abstract—In food industry, quality and safety parameters 

are direct related with consumers’ health condition. There is a 
growing interest in developing non-invasive sensorial techniques 
that have the capability of predicting quality attributes in real-
time operation. Among other detection methodologies, Fourier 
transform infrared (FTIR) spectroscopy has been widely used 
for rapid inspection of various food products. In this paper, an 
advanced clustering-based neurofuzzy identification model has 
been developed to detect meat spoilage microorganisms during 
aerobic storage at various temperatures, utilizing FTIR spectra. 
A clustering scheme has been utilized as an initial step for 
defining the fuzzy rules while an asymmetric Gaussian 
membership function has been used in the fuzzification part of 
the model. The proposed model not only classifies meat samples 
in their respective quality class (i.e. fresh, semi-fresh and 
spoiled), but also predicts their associated microbiological 
population directly from FTIR spectra. Results verified the 
superiority of the proposed scheme against the adaptive neuro-
fuzzy inference system, multilayer perceptron and partial least 
squares in terms of prediction accuracy. 

 Keywords—Neuro-fuzzy systems, neural networks, meat 
spoilage, sensors, clustering. 

I. INTRODUCTION 

In the past few decades, meat industry has enormously 
flourished, due to the continuing growth of worldwide 
demand for improved food quality [1]. Interest in meat quality 
is determined by the effort to supply the consumer with a 
consistent high quality product at a reasonable price. Such 
realization is linked with the accurate assessment of meat 
quality utilizing modern techniques for quality evaluation [2]. 
However, the shelf life of meat is low and the consumption of 
spoiled meat products could cause serious health hazards. 
Beef, as one of the most commercially consumed muscle 
foods, although is a good food source for proteins and other 
vital nutrients it is also considered as an ideal substrate for the 
growth of pathogenic microorganisms and consequently 
spoilage. Currently, meat safety is mainly relied on regulatory 
inspection and sampling protocols. Additionally, although a 
plethora of chemical and microbiological methods have been 
proposed for the detection and measurement of bacterial meat 
spoilage, the majority of them are considered as time-
consuming processes [3]. Meat industry however needs rapid 
analytical methods and in the past such analysis had been 
carried out through the usage of high-performance liquid 

chromatography (HPLC) and gas chromatography-mass 
spectrometry [4]. The majority of these methods are however 
invasive and the introduction of accurate and non-destructive 
sensing technologies to detect the spoilage bacteria as well as 
pathogenic bacteria with a high degree of dependency in food 
products is highly desirable. Various rapid, non-invasive 
methods based on analytical instrumental techniques, such as 
Fourier transform infrared spectroscopy (FTIR) [5], Raman 
spectroscopy [6], hyperspectral imaging [7] and electronic 
nose technology [8] have been explored for their potential as 
reliable “meat quality” sensors. The “mechanism” of these 
approaches is based on the assumption that the metabolic 
activity of micro-organisms on meat, results in biochemical 
changes, with the simultaneous formation of metabolic by-
products, which could contribute to spoilage. The 
quantification of these metabolic activities is associated to a 
unique “signature”, providing thus information about the type 
and rate of spoilage [9]. Over the last few years, FTIR has 
been considered as a very important tool in food analysis. The 
application of chemometric-based techniques to associate 
FTIR spectral data with meat spoilage is not new and it has 
been investigated in the past [10]. However, the main focus on 
those studies was related only to the detection of bacterial 
spoilage, in terms of microbiological analysis. FTIR spectral 
data collected directly from the surface of meat were verified 
that they could be used as biochemical interpretable 
“signatures”, in an attempt to obtain information on early 
detection of microbial spoilage of chicken breast and rump 
steaks [11]. A number of partial least squares (PLS) models 
and simple multilayer neural networks (MLP) have been 
investigated to correlate, not only spectral data from FTIR 
spectroscopy analysis with beef spoilage and its associated 
total viable bacteria counts-TVC, but also to associate spectral 
data with quality classes defined by sensory assessment of the 
samples [12]. Recently, two advanced machine learning 
methodologies based on adaptive fuzzy logic systems (AFLS) 
[13] and on Extended Normalized Radial Basis Functions 
Neural Networks [14] have been proposed, utilizing the same 
dataset used earlier in [12]. These two simulation studies 
demonstrated the effectiveness of the detection approach 
based on FTIR spectroscopy which in combination with an 
appropriate machine learning strategy could become an 
effective tool for monitoring meat spoilage. The main 
objective of this paper is to associate FTIR spectral data with 
beef spoilage during aerobic storage at various temperatures 



(0, 5, 10, 15, 20 °C) utilizing a further improved hybrid 
intelligent learning-based prediction system. The same 
information of FTIR spectra, as well as the correlated 
microbiological analysis (i.e. total viable counts - TVC) used 
in [12-13], has been also utilized in this paper. In the current 
study, an Asymmetric Gaussian Fuzzy Inference Neural 
Network (AGFINN) which is made up of Asymmetric 
Gaussian membership functions associated with a clustering 
scheme, has been developed to predict not only the microbial 
load (as TVC) on meat surface, but also to simultaneously 
classify beef samples to one of three quality classes, based on 
their biochemical profile provided by FTIR spectral 
information. The proposed MIMO AGFINN system utilizes 
the centre of average method as a defuzzification method and 
unlike the Adaptive Neuro Fuzzy Inference System (ANFIS) 
and AFLS model, it includes a clustering component which 
defines the number of fuzzy rules. In the AGFINN model, the 
main issue of “curse of dimensionality” is considerably 
minimized, as for each input variable, the number of 
membership functions (MF) is equal to the number of fuzzy 
rules. Thus,  in this scheme the number of fuzzy rules is 
independent from the number of input variables, creating thus 
a novel “multi-dimensional inspired” rule layer, in contrast to 
ANFIS’s architecture. Despite the widespread usage of the 
standard symmetric Gaussian membership functions, 
AGFINN alternatively utilizes an asymmetric membership 
function. It has been considered from literature, that 
variability and flexibility features are higher in asymmetric 
Gaussian functions compared to the standard one. Thus, such 
function could partition input space more effectively [15].  

Results from AGFINN are compared against models 
based on AFLS, ANFIS, MLP and PLS [13]. Such 
comparison is considered as an essential practice, as we have 
to emphasize the need of induction to the area of food 
microbiology, advanced learning-based modelling schemes, 
which may have a significant potential for the rapid and 
accurate assessment of meat spoilage. Such an accurate 
assessment prediction could allow a more efficient 
management of products in the food chain. 

II. FTIR SAMPLING AND ANALYSIS 

The FTIR experimental case was performed at the 
Agricultural University of Athens, Greece, and information 
related to FTIR spectra, as well as the correlated 
microbiological analysis (i.e. total viable counts - TVC) from 
beef fillets, was provided to the first author for research 
purposes. A description of the experimental methodology as 
well as the related microbiological analysis of the meat 
samples is described in [12]. FTIR spectral information was 
used as a way to obtain metabolic “signatures” of beef fillet 
samples during storage in aerobic conditions at five different 

storage temperatures (0, 5, 10, 15, and 20 o C ). Typical FTIR 

spectral data in the range of 11800 1000cm−− collected from 
fresh, semi-fresh and spoiled beef fillet samples stored at 0, 10 

and 20 o C respectively are shown in Fig. 1. Due to the multi-
variable nature of FTIR data, a principal component analysis 
(PCA) was applied on spectral data used for training purposes. 
PCA scheme was implemented in MATLAB (R2018a), with 
the aid of PLS_Toolbox (ver. 8.7, Eigenvector.com). For this 
particular experimental case study, although the total variance 

(100%) of the dataset was explained by 34 principal 
components (PCs), only the first five PCs were associated 
with the 98.25% of the total variance, as shown in Table I. 

 
Fig. 1. FTIR spectra collected from beef samples  

The variability (%) of the first three PCs is dominant to the 
overall contribution and this is also illustrated from a 
visualization of the first three orthonormal principal 
component coefficients for each variable, and the principal 
component scores for each observation in a single plot, as 
shown at Fig. 2. 

TABLE I.  RESULTS OF PCA SCHEME 

PCs PCA 
 Eigenvalue Prop. % Cum. prop. % 
1 190.080 70.925 70.925 
2 48.083 17.941 88.867 
3 12.754 4.759 93.626 
4 7.215 2.692 96.318 
5 5.194 1.938 98.256 
6 1.807 0.674 98.930 
7 1.070 0.399 99.329 

 
Thus, only the first five principal components from the PCA 
scheme were used as inputs to the various simulation models 
developed for this specific case study.  

 
Fig. 2. 3-D plot for the first three principal components 

In parallel, microbiological analysis was performed, and 
resulting growth data from plate counts were log10 
transformed and fitted to the primary model of Baranyi & 
Roberts  in order to verify the kinetic parameters of microbial 
growth (maximum specific growth rate and lag phase 
duration) [12]. The population dynamics of total viable counts 



(TVC) for beef fillet storage at different temperatures, under 
aerobic conditions, is illustrated in Fig. 3.  

 
Fig. 3. Growth curves of TVC at various temperatures  

III. ARCHITECTURE OF AGFINN 

In this paper we propose a connectionist model of fuzzy 
system in the form of a feed-forward multi-layer network, 
which can be trained using an iterative algorithm. The 
proposed AGFINN design is illustrated by a traditional 
MIMO structure, shown in Fig. 4, which includes also a 
clustering initialization step. 

 
Fig. 4. Structure of AGFINN system 

The gradient descent (GD) algorithm has been used as a 
learning scheme, while AGFINN’s output is calculated via a 
“centre average” (CA) defuzzification method. The first three 
layers L1, L2 and L3 are associated to the premise part (i.e. IF 
part) of a fuzzy systems, while layer L5 relates to the 
equivalent consequent part (i.e. THEN part). Layer L4 
represents the normalization layer, and is applied to the 
outputs from L3. In this paper, centres derived from the 
clustering method were used for the initialization for the 
centres of fuzzy MFs. Based on AGFINN’s architecture the 
number of fuzzy rules equals the number of clusters. In 

addition, the spread parameters for each MF σ ij  are initialized 

based on the following equation   
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In the above equation, elements in matrix U , correspond to 

the MFs of input kx  from the thi  cluster, as they were 
derived from the clustering scheme.   

A. Clustering-based Initialization 
The applied clustering algorithm at layer L2 consists of 

two stages [16]. In the first stage, a method similar to Learning 
Vector Quantization (LVQ) algorithm generates crisp c-
partitions of the data set. The number of clusters c and the 
cluster centres ,   1,..., ,iv i c=  obtained from this stage are 
used by Fuzzy c-means (FCM) algorithm in the second stage. 
The first stage clustering algorithm determines the number of 
clusters by dividing the learning data into these crisp clusters 
and calculates the cluster centres which are the initial values 
of the fuzzy cluster centres derived the second stage 

algorithm. If we consider that  np
1[ ,..., ]   R= ∈nX x x  be a 

learning data, then the first cluster is created starting with the 
first data vector from X and the initial value of the cluster 
centre is taking as a value of this data vector. Then other data 
vectors are included into the cluster but only these ones which 
satisfy the following condition 

k ix v D− <    (2) 

where  , 1, ...,k  X  k nx ∈ =  and ,  1,...,iv i c= are cluster centres, 
cp

1[ ,..., ]    RnV v v= ∈ , the constant value D is fixed at the 

beginning of the algorithm. Cluster centres iv are updated for 

each cluster (i.e., 1, ...,i c= ) according to the following 
equation 

( 1) ( ) ( ( ))i i t k iv t v t x v tη+ = + −   (3) 

where 0,1, 2, ...t = denotes the number of iterations, 

[0,1]tη ∈  is the learning rate and it is decreasing during the 

execution of the algorithm (depending on the number of 
elements in the cluster). At the end of first stage, the number 
of clusters c is defined, while the dataset is divided into the 
clusters. In addition, the values of cluster centers iv 1,...,i c= , 

which can be used as initial values for the second stage 
clustering algorithm, are calculated. In the second stage, the 
classic fuzzy c-means algorithm has been used to optimize 
the values of cluster centers.  

B. AGFINN: Learning analysis  
The clustering pre-processing step practically indicates the 

generation of the fuzzy rules base. Thus, fuzzy rules can be 
formulated by the following equation:  
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where U are the sets derived from the c-partition of training 
data X and cR  are the fuzzy normalized rules [17]. The 
proposed configuration of AGFINN scheme is thus illustrated 
as:  

Layer 1: Nodes at this stage simply forward input variables 

1 2, ,..., nx x x  to L2. 

Layer 2: This is premise part in a fuzzy IF-THEN structure, 
which utilizes an asymmetric Gaussian MF with the following 
form  

( )

( )

( )

2

2

1
exp ; ,

2

1
        exp ; ,

2

1   
  ; ,

0  

i ij
ij i ijleft

ij

i ij
i ijright

ij

i
i

x c
A U x c

x c
U x c

if a x b
where U x a b

otherwise

σ

σ

  −  = − −∞ +     
  −  − ∞     

≤ <
= 


   (5) 

The MF in the above equation includes two types of spreads, 

namely left
ijσ and right

ijσ respectively, which modify the 

traditional Gaussian MF to a rather non-symmetric style that 
can provide different output characteristics, as shown in Fig. 
5.  

 

Fig. 5. Structure of Asymmetric MF 

Following the clustering stage, an initial value for spread (
init
ijσ ) has been calculated. As AGFINN utilizes two spreads, 

one located at the left of the initial centre parameter and one 

at the right, both spreads are initialized as init left right
ij ij ij/ 2σ = σ = σ

. Thus, during the first iteration of the training process, the 
total spread of any asymmetric MF has been equalled to

total left right
ij ij ijσ = σ + σ . Upon the arrival of any input variable from 

L1, its position (left/right) against the specific centre parameter 
for each MF needs to be recorded via a specific MF index 
allocated for each MF. This index is then used in the backward 
learning phase to update that particular spread parameter. The 
value of this index is then updated accordingly to any new 

input arrival from L1. During forward training phase, total
ijσ is 

used as the spread used in the Gaussian function which has the 
specific form 
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where 
total

ij ijb σ= , i  represent the number of MF/rules, while 

j denotes the specific input variable. During the backward 

learning phase, a new spread 
new
ijσ value is calculated via the 

GD learning method. Based on the information stored at that 
specific MF index, either the left or right spread is updated as

left or right new
ij ij / 2σ = σ . For the next iteration step, in the forward 

training phase, the spread parameter will be equal again as
total left right
ij ij ijσ = σ +σ , incorporating however the relative 

adjustment of one of its components. 

Layer 3: This layer represents the “classic” fuzzy rules layer. 
The multiplication has been used as a fuzzy AND operation, 
thus output has the following form: 

  ( )
n

i ji j
j

R A x= ∏    (7) 

In this proposed architecture, the number of rules is the same 
as the number of clusters.  

Layer 4: At this normalization layer, each normalized rule is 
calculated by:  
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Layer 5: Finally, this is the consequent stage of the AGFINN 
scheme, which has the following form 

                
1

c

i ij j
j

O w R
=

=    (9) 

AGFINN’s training involves the usage of the gradient descent 
(GD) algorithm for the parameters’ tuning for AGFINN 
scheme. During, this phase, correction signals are calculating 
from the AGFINN’s output backward to the premise part of 
the model and all network’s parameters are adjusted. Thus, the 
weights at the defuzzification layers are updated as: 

       ( 1) ( ) wki ki kiW t W t Wη+ = + Δ    (10) 

The ijc and ijb parameters of the proposed membership 

function are tuned via the following equation 
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where 
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 are the components extracted from the 

following chain rule configuration: 
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All learning rates parameters ( wη , cη , bη ) in our simulation 
have been set with a constant value of 0.15. The partial 
derivative components in Eq. 12 are then calculated as 
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AGFINN model has been implemented using MATLAB (ver. 
R2018a, Mathworks.com).   

IV. RESULTS AND DISCUSSIONS 

A machine learning approach, based on the proposed 
AGFINN model, has been adopted in order to create a 
prediction system. The real challenge in this paper is to 
propose a new and improved learning-based structure which 
could be considered as a benchmark method towards the 
development of efficient intelligent methods in food quality 

analysis. For this reason, produced results are compared with 
those obtained by AFLS and ANFIS neurofuzzy models as 
well as against MLP networks and PLS-based regression 
models. Such schemes have become popular modelling 
techniques in food science and technology in recent years. The 
final dataset, consisted of 74 beef patterns, include 
information from the various storage temperatures, the first 
five PCs and the sampling times. In this research study, two 
distinct procedures have been considered. In the first 
procedure, as the number of observations/samples is small, the 
separation of the dataset into training and testing subsets 
(hold-out method) was considered that it would further reduce 
the number of data and would result in insufficient training of 
the network. Therefore, in order to improve the robustness of 
identification process, the leave-1-out cross validation 
technique was employed to evaluate the performance of the 
developed AGFINN model.  

AGFINN’s input layer includes seven input nodes (i.e. 
storage temperature, sampling time, and the values of the five 
principal components). After many trials, it has been found 
that only 8 rules are necessary for the proposed model to 
achieve an acceptable performance for this particular 
case/experiment. The output layer consists of two nodes, 
corresponding to the predicted quality class (fresh, semi-fresh, 
spoiled) of meat samples and the total viable counts (TVC), 
respectively. As both output parameters are dependent, in the 
sense that quality class is related to microbiological counts and 
vice versa, a model that combines both these measurements 
have been considered to be desirable. In order to 
accommodate both classification and modelling tasks in the 
same model-structure, the classification task has been 
modified accordingly. Rather than trying to create a distinct 
classifier, an attempt has been made to “model” the classes 
[13]. Initially, values of 10, 20 and 30, have been used 
respectively, to associate the three classes with a cluster 
centre. During the identification process, output values of 
[ ]5,15 were associated to “fresh” class with cluster centre 10, 

values of [ ]15.01, 25  were associated to “semi-fresh” class 

with cluster centre 20, and finally values of [ ]25.01,35  were 
associated to “spoiled” class with cluster centre 30. The 
second output node has been assigned to the total viable 
counts (TVC).  

TABLE II.  CLASSIFICATION PERFORMANCE OF AGFINN 

 
The performance of the model in the prediction of TVC for 
each meat sample was determined by the bias (Bf) and 
accuracy (Af) factors, the mean relative percentage residual 
(MRPE) and the mean absolute percentage residual (MAPR), 



and finally by the root mean squared error (RMSE) and the 
standard error of prediction (SEP) [13].  

 
Fig. 6. AGFINN prediction model for TVC 

Results revealed that the classification accuracy of the 
AGFINN model was very satisfactory in the characterization 
of beef samples, indicating the advantage of a neurofuzzy 
approach in tackling complex, nonlinear problems, such as 
meat spoilage. The classification accuracy obtained from 
AGFINN, is presented in the form of a confusion matrix in 
Table II. The plot of predicted (via AGFINN) versus observed 
total viable counts is illustrated in Fig. 6, and shows a very 
good distribution around the line of equity (y=x), with almost 
all the data included within the ±0.5 log unit area.  

TABLE III.  PERFORMANCE OF AGFINN MODEL FOR TVC 

 
Statistical index – 
AGFINN (leave-one-
out) 

Fresh Semi-
fresh 

Spoiled Overall 
AGFINN 

Mean squared error 
(MSE) 

0.0926 0.0769 0.0748 0.0810 

Root mean squared 
error (RMSE) 

0.3043 0.2772 0.2736 0.2846 

Mean relative 
percentage residual  
(MRPR %) 

-0.694 -0.039 -1.227 -0.7976 

Mean absolute 
percentage residual 
(MAPR %) 

6.5690 4.2171 2.8023 4.3299 

Bias factor (Bf) 1.0039 0.9991 1.0117 1.0064 
Accuracy factor (Af) 1.0670 1.0427 1.0280 1.0437 
Standard error of 
prediction (SEP %) 

7.2716 4.4592 3.2473 4.3313 

 
A close inspection reveals some interesting conclusions. 

Two samples, as shown from Fig. 6, are outside the border line 
of the ±0.5 log unit area and they are associated to the fresh 
“0F4” and spoiled “10F14” sample respectively. “0F4” 
corresponds to a beef fillet, stored at 0oC and collected after 
72h of storage, while “10F14” corresponds to a beef fillet, 
stored at 10oC and collected after 104h of storage. The 
performance of the AGFINN model to predict TVCs in beef 
samples in terms of statistical indices is presented in Table III. 

The SEP rate for fresh samples is shown to be higher 
compared to semi-fresh and spoiled samples. This is explained 
by the fact that the ranges of TVCs for both fresh and semi-
fresh samples are comparatively close, as shown also from 
Fig. 6. The distinction between these two classes is more 
difficult, compared to the case of spoiled samples. In addition 
to AGFINN model, AFLS, ANFIS, MLP, and PLS models 
have been implemented developed to predict TVCs [13]. The 
same leave-1-out cross validation technique, as well as the 
same training dataset has been utilized also for this case.  

TABLE IV.  PERFORMANCE OF COMPARABLE MODELS FOR 
TVC 

 
Statistical index 
leave-one-out 

AFLS ANFIS MLP PLS 

Mean squared error 
(MSE) 

0.139 0.196 0.286 1.4936 

Root mean squared 
error (RMSE) 

0.373 0.443 0.535 1.2221 

Mean relative 
percentage residual  
(MRPR %) 

-0.758 -0.693 -2.057 -0.239 

Mean absolute 
percentage residual  
(MAPR %) 

5.359 5.962 7.506 17.919 

Bias factor (Bf) 1.005 1.003 1.016 0.9609 

Accuracy factor (Af) 1.054 1.060 1.076 1.2121 

Standard error of 
prediction (SEP %) 

5.671 6.743 8.150 18.596 

 
AFLS shares like AGFINN,  the same defuzzifier output 

as well as the AGFINN’s premise part, without however any 
clustering stage, while utilizing the classic Gaussian 
membership function. AFLS’s optimal performance was 
achieved with a structure of 12 fuzzy rules. ANFIS performed 
very satisfactory, its performance however was achieved with 
a high computational cost, by utilizing two membership 
functions for each input variables and 128 fuzzy rules. An 
MLP network has been also implemented using the same 
FTIR dataset utilizing two hidden layers (with 12 and 6 nodes 
respectively). The PLS method is a linear multivariate 
regression method, used currently in many food microbiology 
applications, and in our case, the nonlinear iterative partial 
least squares algorithm (NIPALS) has been chosen as its 
appropriate learning scheme. Performances of all these 
models in predicting TVCs in beef samples in terms of 
statistical indices are presented in Table IV.  

TABLE V.  CLASSIFICATION PERFORMANCE OF AGFINN 
(CASE 2) 

 



AGFINN model outperformed all models, indicating thus its 
efficiency in handling problems with nonlinear 
characteristics. Although AGFINN, AFLS and MLP share the 
same learning training algorithm, i.e. the gradient descent 
method, the different “philosophy” in building the proposed 
neurofuzzy architecture, allowed AGFINN model to achieve 
such superior performance.   

 
Fig. 7. AGFINN prediction model for TVC (Case 2) 

In order to investigate further the capabilities of AGFINN 
model in this prediction problem, a second experiment was 
carried out, where the initial FTIR dataset was divided into a 
training subset with approx. 75% of the data, and a testing 
subset with the remaining 25% (i.e. 19 samples). Similarly to 
previous case, AFLS, ANFIS and MLP models have been also 
evaluated for comparison reasons, to associate the same 
spectral data from FTIR analysis with beef fillet spoilage 
during aerobic storage at different temperatures. For this 
particular case, after trials, it has been found that 10 rules were 
necessary for the proposed model to achieve an acceptable 
performance for this particular case/experiment. The training 
set consisted of 55 samples, while 19 (7 fresh, 5 semi-fresh 
and 7 spoiled) meat samples were included in the testing 
subset.  

TABLE VI.  PERFORMANCE OF AGFINN MODEL FOR TVC 
(CASE 2) 

Statistical index - 
(19 test) 

Fresh Semi-
fresh 

Spoiled Overall 
AGFINN 

Mean squared error 
(MSE) 

0.1314 0.4459 0.1875 0.2348 

Root mean squared 
error (RMSE) 

0.3625 0.6677 0.4330 0.4846 

Mean relative 
percentage residual 
(MRPR %) 

0.1052 1.4208 0.7227 0.6789 

Mean absolute 
percentage residual 
(MAPR %) 

7.7555 8.9653 3.8137 6.6216 

Bias factor (Bf) 0.9942 0.9801 0.9917 0.9896 
Accuracy factor (Af) 1.0821 1.0957 1.0390 1.0695 
Standard error of 
prediction (SEP %) 

9.4017 10.2635 4.8376 7.5362 

Table V illustrates these testing results. It has to be mentioned, 
that only one semi-fresh meat sample, was identified as 
spoiled one. In addition, AGFINN’s second output modelled 
successfully the TVCs, as illustrated in Fig. 7. In this case, the 
plot of the predicted vs. the observed TVC for the testing 
dataset, have shown reasonably good distribution around the 
line of equity without any particular trend, with the majority 
of data (ca. 78.95%) included within the ± 0.5 log unit area. 
The performance of the AGFINN model to predict TVCs in 
beef samples for this second simulation, in terms of statistical 
indices is presented in Table VI. Based on the calculated 
values of the bias factor fB , it can be assumed that the 

neurofuzzy network under-estimated TVCs in semi-fresh and 
overall samples ( fB <1), whereas for the remaining cases was 

almost optimal (ca. 0.99). However, a closer comparison of 
AGFINN performance from these two simulation case studies 
reveals a problem with the limited number of samples for 
training. The SEP index is much worse in this second case, 
and this reflects an open problem in learning-based systems, 
i.e. the need to have as large as possible training datasets.   

TABLE VII.  PERFORMANCE OF COMPARABLE MODELS   
(CASE 2) 

Statistical index - (19 test) Overall 
AFLS 

Overall 
ANFIS 

Overall 
MLP 

Mean squared error (MSE) 0.286 0.4998 0.6697 
`Root mean squared  
error (RMSE) 

0.534 0.7070 0.8183 

Mean relative percentage 
residual (MRPR %) 

-1.298 7.5060 -0.7773 

Mean absolute percentage 
residual (MAPR %) 

7.282 10.3494 9.7201 

Bias factor (Bf) 1.007 0.9081 0.9964 
Accuracy factor (Af) 1.075 1.1313 1.1019 
Standard error of prediction 
(SEP %) 

8.311 10.9953 12.7269 

 
Similarly to the previous case study, AFLS, ANFIS and MLP 
models have been developed to predict TVCs for this reduced 
dataset. Results are illustrated in Table VII. AFLS system 
utilizing 15 fuzzy rules managed to provide a rather 
satisfactory response compared to AGFINN, whereas both 
ANFIS and MLP revealed some modelling difficulties to 
tackle adequately datasets with small number of samples. 
Overall results revealed that prediction accuracies of the 
AGINN model were better compared with the performances 
of other models, in the characterization of meat samples for 
this reduced number of samples, indicating again the 
superiority of this proposed neurofuzzy approach in tackling 
complex, nonlinear problems such as the meat spoilage. 

V. CONCLUSIONS 

In conclusion, this simulation study demonstrated the 
effectiveness of the detection approach based on FTIR 
spectroscopy which in combination with an appropriate 
learning-based modelling scheme could become an effective 
tool for monitoring meat spoilage during aerobic storage at 
various temperatures. The collected spectra could be 
considered as biochemical “signatures” containing 
information for the discrimination of meat samples in quality 
classes corresponding to different spoilage levels, whereas in 
the same time could be used to predict satisfactorily the 



microbial load directly from the sample surface. The 
realization of this strategy has been fulfilled with the 
development of a novel neurofuzzy model which incorporates 
an asymmetric Gaussian membership functions as well as a 
clustering component ant for defining the fuzzy rules. Overall 
prediction for TVCs has been considered as very satisfactory, 
although lower performance was observed especially for the 
fresh samples. Prediction performances of MLP and PLS 
schemes revealed the deficiencies of such systems which have 
been utilized widely in the area of Food Microbiology, while 
in the same time the performance of neurofuzzy systems 
justified the hypothesis of using this type of hybrid 
architectures in the area of Food science. 
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