
OCL Plus: Processes and Events in
Object-Centred Planning

Shahin SHAH a,1 and Lukáš CHRPA a and Peter GREGORY a

and Thomas. L. MCCLUSKEY a and Falilat JIMOH a

a Department of Informatics,
School of Computing and Engineering

University of Huddersfield, UK

Abstract. An important area in AI Planning is the expressiveness of planning do-
main specification languages such as PDDL, and their aptitude for modelling real
applications. This paper presents OCLplus, an extension of a hierarchical object
centred planning domain definition language, intended to support the representa-
tion of domains with continuous change. The main extension in OCLplus provides
the capability of interconnection between the planners and the changes that are
caused by other objects of the world. To this extent, the concept of event and pro-
cess are introduced in the Hierarchical Task Network (HTN), object centred plan-
ning framework in which a process is responsible for either continuous or discrete
changes, and an event is triggered if its precondition is met. We evaluate the use of
OCLplus and compare it with a similar language, PDDL+.

Keywords. continuous planning, processes and events, object centered planning

1. Introduction

The control mechanisms of real-world planning problems need to be able to represent
and reason with rich and detailed knowledge of such phenomena as movement and re-
source consumption in the context of uncertain and continuously changing environmental
conditions [1]. Traditionally, physical systems with discrete and continuously-varying
aspects have been represented using the mathematical notion of a hybrid dynamical sys-
tem. This is a system that has a state made up of a set of real and discrete-valued vari-
ables that change over time according to some fixed set of constraints. Hybrid systems
are used for modelling in applications such as embedded control systems [2].

The research-led standard domain model language in planning is PDDL (planning
domain description language), which is based around a world view of parameterised ac-
tions and states, where it is assumed that a controller generates a collection of instanti-
ated actions to solve some goal posed as state conditions. It has been extended to cope
with real applications such as crisis management [4] and work-flow generation [13],
and has versions which can represent time and resources [5]. More expressive modelling
languages such as PDDL+ have been developed for applications where reasoning about

1Corresponding Author: Shahin Shah e-mail: s.shah@hud.ac.uk

STAIRS 2012
K. Kersting and M. Toussaint (Eds.)
© 2012 The Authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-096-3-282

282

processes and events in a mixed discrete/continuous world is necessary [6]. PDDL+
was recently used in an application for developing multiple battery usage policies [7].
Although PDDL is designed for logical precondition achievement, specialist forms of
planning can be incorporated into the language using procedural attachment [3].

Despite its widespread acceptability, a serious problem with PDDL is that it re-
flects the concerns of those working in generative planning, rather than the execution and
scheduling orientation of many applications. In contrast, scientists at NASA Ames de-
veloped the application-oriented language families HSTS [12] and then NDDL [11] for
their applications in the Space arena. NDDL is fundamentally different to PDDL in that
encodings are based around representations of objects and object instances, which persist
in predefined timelines of continuous activities. Each activity has a start and end time
interval (to represent uncertainty of duration), and the distinction between action and
state is effectively blurred. Plan generation and execution are therefore linked to a much
greater degree than with PDDL. NDDL has features to represent uncertain lengths of
activities, though it does not support the representation of continuous processes. NDDL’s
concept of timelines are related to the idea of crafting abstract plans as in the input lan-
guages to HTN (Hierarchical Task Network) systems [8]. The idea of pre-written hierar-
chical plans to formulate possible behaviours has long been a popular type of formalism
in which to encode dynamic knowledge for AI applications.

This paper describes PhD research motivated by knowledge formulation for auto-
mated planning and scheduling. Although the concept of automated planning in a contin-
uously changing environment has been here in the AI planning community for decades,
and has been taken seriously by many researchers, the central problems of designing ef-
fective representation languages and planning engines in this area still remain. We have
adopted the concept of event and process, and found that these two powerful components
can form the basis for modelling domains with continuous changes. In this context, we
have extended the existing OCLh to encode such domain models, calling it OCLplus,
originally proposed by McCluskey [10]. OCLplus is derived from GIPOs [8] Object
Centred Language (OCL) [9]. OCLh is a structured formal language to acquire HTN type
domain models. The main thrust of OCLh is to identify the potential states of any object
before the operators are defined. OCLplus is more expressive than its previous version
as it supports continuous behaviour in the object centred HTN domain modelling. The
main extension in OCLplus is the temporal attribute of a process which may or may not
be interrupted by an event. In OCLplus time is modelled explicitly as a real quantity, like
in PDDL+.

In the first part of the paper we start by re-visiting the constructs of OCLh. Next we
define the planning for continuous changes. In the third section of the paper we define the
OCLplus for event and process. Finally, we discuss our progress, compare the language
with PDDL+, and describe our plans for future research.

2. Background and Terminology

In this section we provide an overview of the background to this work. We will discuss
existing formalisms for representing continuous planning problems and approaches used
to solve planning problems for continuous changes. We first, however, provide a back-
ground of the OCL formalism (Complete description of OCL formalism can be found in
[9]), on which the OCLplus language is an extension.

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning 283

2.1. The OCL Planning Formalism

In the OCLh a specification of the model M of a domain of interest D , which consists
of sets of:

• object Identifiers: Objs
• sort defintion: Sorts
• predicate definition: Prds
• substate class expression: Exps
• Invariants: Invs+ (Positive Invariants) and Invs− (Negative Invariants)
• Operators: Ops

Definition 1 (Object Identifier) An object identifier is a unique term that refers to a
particular object in D .

Objects (Objs) in a model are classed as dynamic or static as appropriate - dynamic
objects are those that may have a changing truth value throughout the course of plan
execution, and dynamic objects are each associated with a changeable state.

A ground, dynamic object description is specified as a tuple (s, i,e), where i is the
object’s identifier, s is the primitive sort of i, and e is its substate, a set of ground dynamic
predicates that all re f er to i.

Definition 2 (Object Expressions) An object expression (oe) is a generalisation of a
object description, and is specified using dynamic and possibly static predicates.

In OCLh is the idea of an object expression is crucial. Goals and operator precon-
ditions are written as collections of object expressions. To define object expressions (oe)
we need to introduce some notation that will be used throughout the paper.

• A legal substitution is a sequence of replacements, where each replacement sub-
stitutes a variable of sort s by a term which has s as either its primitive sort or its
supersort.

• A set of static predicates are consistent if there is a legal substitution that instan-
tiates them to facts asserted as true in the OCLh domain model.

• If p ⊆P then let dyn(p) and stc(p) be the dynamic and static predicates in p,
respectively.

If oe ⊆ P , then (s, i,oe) is called an object expression if there is an ss ∈
substates(j) for some object identifier j of primitive sort s’, and a legal substitution t
such that

• it = j
• dyn(oe)t ⊆ ss
• s′ = s or s′ is a subsort of s
• stc(oe)t is consistent

In this case object (s′, j,ss) is said to satisfy (s, i,oe). Since i could be a dynamic
object identifier or variable, we refer to it as an object term.

Definition 3 (Sort) A sort is a set of object identifiers in M denoting objects in D that
share a common set of characteristics and behaviours. Sorts are either primitive or non-

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning284

primitive. Non-primitive sorts are defined as the union of objects from two or more other
sorts. A sort is primitive if it is not defined in terms of other sorts.

Sorts in OCLh can be hierarchical. A sort hierarchy with object identification is shown
in Example 1, containing 4 dynamic primitive sorts truck, package, train, traincar.

sorts(physical obj, [vehicle, package])
sorts(vehicle, [railv,roadv])
sorts(roadv, [truck])
sorts(railv, [train, traincar])
sorts(location, [city location,city])
sorts(city location, [tcentre,not tcentre])
sorts(tcentre, [train station])
sorts(not tcentre, [clocation,post office])
sorts(route, [road route, rail route])
objects(train station, [city1 ts1,city2 ts1,city3 ts1])
objects(clocation, [city1 cl1,city1 cl2,city2 cl1,city3 cl1])
objects(post office, [post 1])
objects(city, [city 1, city 2, city 3])
objects(train,[train 1])
objects(traincar,[traincar 1])
objects(road route, [road route 1,road route 2,road route 3])
objects(rail route,[rail route 2,rail route 3,rail route 4])
objects(truck, [truck 1, truck 2, truck 3])
objects(package,[pk 1, pk 2])

Example 1: A simple sort hierarchy

Definition 4 (Substate Class Expression) A substate is defined as a set of ground, dy-
namic predicates that describes the situation of the dynamic object it is mapped to. A
substate class is defined by a collection of predicate expressions: a substate belongs to a
class if and only if it satisfies one of the expressions.

In OCLh developers specify all the legal substates that a typical object of a sort may
occupy at the same time as developing the operator set. This helps in the understanding
and debugging of the domain model, as well as contributing to the efficiency of planning
tools. The specification is written implicitly as a list of predicate expressions such that
any legal ground substitution of one of the expressions will be a hierarchical component
of a substate. The legal substates of identifier i are thus all ground expressions having a
component from exactly one of the predicate expressions at each level in the hierarchy.

The substate of Object in Example 2 actually has three hierarchical components -
at, relating to physical objects, and moveable, available, relating specifically to trucks.
Objects are described by predicates through their primitive sort (here -truck), but they
also inherit the dynamic predicates from supersort (physical obj).

(physical obj, T, [[at(T,L)]]),
(truck, T, [[moveable(T),busy(T)]])

Example 2: Hierarchical substate specification for trucks

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning 285

Definition 5 (Substate Transition Machine) A substate transition machine is a Finite
State Machine that describes the dynamics of a sort. Each node in the Finite State Ma-
chine (FSM) is annotated with a predicate expression defining a substate class. Each arc
in the FSM represents a possible transition.

Definition 6 (Invariants) An invariant in OCLh describes some set rules and facts to im-
plement some constraints on the domain model in order to maintain, debug or to speed-
up online planning.

Invariants can be a) positive invariant (Invs+) is an expression called atomic invariants
which must be true in every planning state. A negative invariant (Invs−) is an expression
called inconsistency constraints which must be false in each planning state.

Definition 7 (Operator) An operator term in OCL and OCLh comprises an identifier
and a list of parameters. There are three component to an operator: prevail conditions
(conditions on substates that are true before and after execution of the operator), neces-
sary effects (conditions that need to be true before the execution of the operator and are
necessarily changed after it) and conditional effects (conditions on substates that if they
were true before the operator executes, then they will be changed after it).

An operator often know as primitive operator in OCLh, has components (Name, Prevail,
Necessary, Conditionals), in the syntax like:

operator(O (V1,. . . ,Vn),
[SSPrevV1 ,. . .]
[SSNecPreVk ⇒ SSNecPostVk ,. . .]
[SSCondPreVm ⇒ SSCondPostVm ,. . .])

Example 3: Syntax of primitive operator

O is the operator’s Name, (V1,. . . , Vn) is a set of parameters that their states are
required to make the operator happens.

[SSPrevV1 ,. . .] is called Prevail conditions. It is a set of the substates of objects that
must be true before the operator can be executed and remain true during execution.

[SSNecPreVk ⇒ SSNecPostVk ,. . .] is called Necessary conditions. It is a set of nec-
essary object transitions, SSNecPreVk indicates the substate of object Vk before the task,
while SSNecPostVk indicates the substate afterwards.

[SSCondPreVm ⇒ SSCondPostVm ,. . .] is called Conditionals conditions. It is a set of
conditional transitions, that if their exists an object V , its substates satisfy SSCondPreVm

before the operator is executed, its substates will then be changed to SSCondPostVm after
the execution of the operator. The object parameter in the Conditionals are therefore
universally quantified over its sort, excluding any objects necessarily changed by the
operator.

A primitive operator O can be applied to a state S if there is a grounding substitution
t for Necessary and Prevail such that each transition in Necessaryt can be applied to an
object description in S, and each object expression in Prevailt is satisfied in S.

The new world state is S with

• the changes made to a set of objects as specified in the necessary transitions

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning286

• all other objects not affected by the necessary transitions, but which satisfy the
LHS of a transition in Conditionals, changed according to that transition.

Example 4: shows a primitive operator of ‘translog domain’ specifying the move-
ment of trucks between different cities.

Name: move(V, O, L, R),
Prevail: [],
Necessary:

[sc(truck,V, [at(V,O),movable(V),in city(O,City)]⇒
[at(V,L),in city(L,City1),ne(City,City1),connects(R,City,City1),is of sort(R,road route)])],

Conditionals:
[sc(package,P,[loaded(P,V),at(P,O)]⇒ [loaded(P,V),at(P,L)])]

Example 5: Example of primitive operator

Definition 8 (Compound Operator) A CompoundOperator in OCLh is an action,
which cannot be executed directly, requires further expansion until the primitive opera-
tors are found.

In OCLh, compound actions including, a) methods and, b) achieve(Goal) actions.

a) Methods

Methods are compound actions that can be expanded further down under certain
restrictions. By eliminating the lower level tasks and orderings and variable binding that
may lead to dead ends, the search space of a method expansion is greatly reduced.

The syntax of a method is as following:

Name: method(C (V1,. . . , Vn),
Pre: [SSV1 ,. . .]
Transitions: [SSPreVk ⇒ SSPostVk ,. . .]
Statics: [ST1,. . .]
Temps: [before(N1,N2),. . .]
Body: [T1,,. . . ,TN1 ,. . . ,TN2 ,. . .])

Example 6:Syntax of a compound task (Method)

A method is defined as (Name,Pre,Transitions,Statics,Temps,Bodies), that:

• Name of the method’s name is C followed by its parameters (V1,. . . , Vn)
• Pre is a set of object substate expressions that must be true so that method C can

be performed. Unlike the prevail in a primitive operator, substates [SSV1 ,. . .] may
be affected by the method while the expansion of C .

• Transitions is a set of necessary state transitions similar to Necessary in the prim-
itive operator case. However, because the method need to be expand to primitive
operators, not like necessary in the primitive operators, transitions are the basic
substates transitions known at top level. There may be more substates changes
happens at the method expanding.

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning 287

• Statics is the static constraints binding the parameters in the action. Again, the
expansion of the method may bring more static constraints in later.

• Temps and Body are the restrictions of the expansion of the methods. Body defines
the lower level tasks of its expanding. Ti can be a name of a primitive operator,
or an achieve(goal) action (we will discuss it later) or a name of method that can
be further expanded. Temps is the temporal orders of the lower level tasks. Here,
number N1 and N2 refers to the N1th and N2th tasks in the body list – TN1 and TN2 .
That TN1 must be executed before TN2 .

The following example shows a method for transport a package from one location
to another location.

Name: transport(P,O,D),
Pre: [],
Transitions:

[sc(package, P, [at(P,O)]⇒ [at(P,D),delivered(P)])]
Statics: [ne(O,D)],
Temps: [before(1,2), before(2,3)],
Body:

[achieve(se(package, P,[waiting(P),certified(P)])),
carry direct(P,O,D),
deliver(P,D)]

Example 5: Example of a method

In this example, the necessary substate transition of the method is package P must
be changed from [at(P,O)] to [at(P,D], the method can only be applied when package
P has the situation that it is [at(P,O)]. As defined by statics constraints, in this method,
location O can’t be the same as location D.

It can be expanded to actions: T1: achieve(se(package, P,[waiting(P), certified(P)])),
T2: carry direct(P,O,D), and T3: deliver(P,D), follow the order T1 before T2, and the T3.

b) Achieve(Goal) action

In Example 5, we have an achieve(Goal) action
achieve(se(package, P,[waiting(P), certified(P)])).
Goal is a set of objects substates expressions that needs to be achieved by any ac-

tions. The expansion of an achieve(Goal) action is restrict by its precondition and Goal
conditions. It can be expanded to any set of actions before we know its preconditions.

Definition 9 (OCL Planning Task) Given a set of objects, invariants, ground initial sub-
states, a set of goal substates and operators, an OCL planning task is to find a sequence
of actions that each intermediate state satisfies all invariants and the final state satisfies
the goal substates.

3. Continuous Planning

Continuous planning deals with the planning in an environment where continuous
changes may occur during the plan execution. In the PDDL+, continuous time is mod-

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning288

elled as real valued numbers. These numeric quantities are mainly dependent on the con-
tinuous processes. Planning in the continuous time environment is very complex. The
well-known ’bath filling’ domain is used as an example to express the continuous plan-
ning problem. An automated bath filling domain ’starts filling the bath tub in any pre-set
time and it stops if it fills up to certain pre-set level’. The bath filling domain has been
simulated by McCluskey [10] for continues process by using GIPO III’s Plan Stepper.
The procedure of the simulation for events and processes retracts all the stored nodes and
each of them comes in turn. In the Plan stepper simulation (Figure 1), it is assumed that
if there is more than one event triggers at the same time that must be independent to each
other. Moreover, if there is an event triggers during process execution, it assumes not to
interfere the process.

Figure 1. Bath filling domain simulation for continues time using GIPO III

In this extension of OCLplus we can represent the bath filling domain in terms of
events and processes.

4. Continuous Planning in OCLplus

Continuous planning consists of processes which are responsible for either continuous
or discrete change of object values (substates). A process is represented by a set of (re-
current) functions defined on a (local) time interval beginning at 0 (start of the process)
modifying values of the objects (substates).

Definition 10 (Process) A process is defined as a finite set of functions p={ f p
1 , f p

2 , . . . , f p
n }

such that each function f p
i is defined as a mapping T → (M)p

i where T is a time interval
and (M)p

i stands for a substate. Functions can be defined recurrently.
We say that a function affects an object if and only if a range of values of the function

is a corresponding substate of the object. We also say that a process affects an object if
and only if one or more of its functions affects the object.

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning 289

For example, we have a process f illing tub for filling the tub. The process contains
only one function (representing a water level in the tub) which can be defined in the
following way: f (n) = f (0)+n ·V (V is a volume filled in one time unit). For emptying
the tub (empty tub process), we can have the similar function: f ′(n) = f ′(0)−n ·V ′.

Processes can be executed or terminated by (OCLplus) operators or events. Opera-
tors (or actions which stands for ground instances of operators) can be applied by user
(or agent) if their preconditions are met. Events, on the other hand, are triggered auto-
matically (without user’s or agent’s interference) if their preconditions are met. Deter-
ministic events are triggered always while non-deterministic events might be triggered if
their preconditions are met.

Definition 11 (OCLplus Operator) An OCLplus operator o is a tuple o = (pre(o),
start(o),stop(o)) where pre(o), a precondition of o, is a set of expressions which must
be true before applying o, start(o) is a set of processes which start after o is applied
(if not already running) and stop(o) is a set of processes which are stopped after o is
applied.

Definition 12 (Event) An event e is a tuple e = (pre(e),start(e),stop(e)) where
pre(e),start(e) and stop(e) are defined in the same way as in OCLplus operator case. If
an event e is deterministic then it is triggered always whenever its precondition (pre(e)
is met. If an event e is non-deterministic then if its precondition (pre(e)) is met then it
may be triggered.

Considering our bath example, we can define an operator start f illing (with empty
precondition) which executes the process f illing tub. We can also define an operator
stop f illing having a precondition that water level in the tub must be at least l and
which stops the process f illing tub. If the tub has an overflow drain, then we can define
a deterministic event over f low which triggers the process empty tub when the water
level reaches a critical value lc. Similarly, we can define an event stop over f low which
triggers when the water level falls below the critical value.

However, it might happen that operators or events with contradictory effects (e.g.
some operator or event is going to execute a process while some other operator or event
is going to stop it) can be executed at the same time. Therefore, it must be explicitly
specified (in the problem definition) which effect has a priority.

Processes which are only responsible for modifying object values work with local
information, i.e., a process does not know whether any other process affects values of the
same objects. Therefore, we have to keep a global information about the actual object
values. For this purpose we have to introduce a special object representing global time
ct and a special process pt representing a global timer. The global times starts at the
beginning of the planning process and no operator or event can stop it. For an object c it
must hold the following (c(t) refers to value of c in time t):

• Prevailing: if no running process affects the value of c in an open time interval
(t, t ′), then ∀x ∈ (t, t ′) : c(x) = c(t)

• Exclusivity: if there is only one running process and only one of its function f
affects the value of c in an open time interval (t, t ′) (the process starts in the time
t and ends in the time t ′), then ∀x ∈ (t, t ′) : c(x) = f (x− t).

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning290

• Simultaneous affecting: if a set of the functions { f1, . . . , fk} defined in the run-
ning processes affect the value of c in an open time interval (t, t ′) and all the
functions from the set are in the recurrent form (i.e. f (n) = f (0)+ g(n)), then
∀x∈ (t, t ′) : c(x)= c(t)+∑gi(t ′−t) (note that f1(0)= f2(0)= . . .= fk(0)= c(t)).

First two conditions are straightforward to follow because it is obvious that value of
the object cannot be modified if no running process affect it or if just one function (in the
running processes) affect the value of the object then it is modified directly according to
the function. If more functions affect the same object in the same time then the functions
must be in defined in the recurrent form which means, informally said, that such a func-
tion only increases or decreases the value of the object. In our example, if the processes
f illing tub and empty tub run simultaneously, then both affect the water level in such a
way that in n units of time it is changed by nV −nV ′.

However, if functions (in the running processes) modify the value of the object by
assignment regardless of object’s previous value (e.g. f (n) = x), then it may cause in-
consistency (e.g. the object cannot have two different values at the same time).

An (OCLplus) Planning Task is defined via sets of objects, substates, processes,
(OCLplus) operators, Events and initial and goal situations. An initial situation gives all
the objects initial values (e.g. the water level is 2). A goal situation is defined by a set of
expressions (e.g. the water level is greater than 5).

Definition 13 (OCLplus Planning Task) An OCL Plus Planning Task is a tuple Π =
(O,S,P,O,E , I,G) where O is a set of objects, S in a set of substates, P is a set of
processes, O is a set of OCL Plus operators, E is a set of events, I is a set of initial
ground substates and G is a set of goal expressions.

Since we deal with planning, we have to somehow represent a plan. In contrast to
classical planning, where a plan is a sequence of actions, here we have to consider also
events and time-stamps in which an action (an instance of an operator) or event was
executed.

Definition 14 (Plan) A plan π is a sequence of pairs (ai, ti) or (e j, t j) where (ai, ti) de-
notes an action ai executed in time ti and (e j, t j) denotes an event e j triggered in time
t j.

A plan is valid if all action/event-time-stamp pairs follows the following conditions:

• for all action-time-stamp pairs (ai, ti) it holds that pre(ai) is met in time ti
• for all event-time-stamp pairs (ei, ti) it holds that pre(ei) is met in time ti
• if pre(ei) is met in time ti and ei is a deterministic event, then (ei, ti) must be in

the plan

A plan is a solution of (OCLplus) planning task if the plan is valid and all goal
expressions are satisfied at some point.

In our simple ’bath filling’ example, where in the initial situation the water level
is 2 and we want to increase it to 5 (the goal situation), then we simply execute the
action start f illing in time 0. It starts the process f illing tub which eventually causes
increasing the water level to the desired value.

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning 291

5. Future Work

This work is the start of a larger programme of study in developing OCLplus. There
are semantic issues relating to concurrency for which there remain unresolved questions.
For example, given two events that trigger with the same precondition but which have
conflicting effects, which of them is executed (or is the model invalid). Many similar
issues to this one are resolved in particular ways in the PDDL+ language. However,
given the multi-valued nature (the state machines that represent object states can be seen
as finite domain variables) of OCLplus, we will reconsider these issues as it could be
possible that alternative semantics are more appropriate.

Also, we wish to allow a greater degree of syntactic expression in OCLplus than is
available in PDDL+. The value of the global (and local process) clock(s) will be available
as a fluent to precondition on (but of course never to explicitly change) and to use on the
right hand side of assignments. One benefit to this is that it will be far simpler to construct
goals such as minimising the sum tardiness of several jobs. Although the authors have
not demonstrated this, it is likely that this is possible to achieve the same result in pure
PDDL+ using dummy actions or processes. However, if this were possible in the core
language, planning algorithms could exploit this feature.

Clearly, a modelling language in isolation is not our final goal: we do intend to con-
tinue development on both hierarchical and non-hierarchical planning systems. Clearly,
solving planning problems with continuous time and exogenous events is a difficult task,
but we envisage that some features inherent in OCL provide promising avenues in gain-
ing leverage here. We expect that one benefit to using a multi-valued representation will
be the exploitation of similar structures as Domain Transition Graphs(DTG) and Causal
Graphs studied in the context of SAS+. For example, analysis of the DTG of an object
may reveal which processes are required to solve an OCLplus problem. Modelling is also
an important issue and we will develop a greater range of domains to experiment on.

6. Conclusions

This paper presents an extension of a well-known language OCL, earlier used in GIPO
to model planning domains, to OCLplus that allows modelling also features character-
istic for continuous planning (e.g. processes). Processes are responsible for continuous
or discrete changes of object values. Actions, executed by a user, and events, executed
automatically, are responsible for executing and terminating processes. OCLplus, there-
fore, enables modelling of continuous planning tasks, however, some issues need to be
addressed in future as discussed before. For instance, if actions or events executed in the
same time have conflicting effects. Introducing OCLplus is obviously not a final goal.
Our plans for future work consist of developing planning systems exploiting advantages
of object centred modellling. Moreover, the planing systems should support hierarchisa-
tion (such as in HTNs) which allows to solve more complex (real-world) problems.

References

[1] John Bresina, Nicolas Meuleauy, Sailesh Ramakrishnan, David Smith, and Rich Washingtonx. Planning
under continuous time and resource uncertainty: A challenge for ai. In In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence, pages 77–84. Morgan Kaufmann, 2002.

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning292

[2] L.P. Carloni, R. Passerore, A. Pinto, and A. Sangiovanni-Vincentelli. Languages and tools for hybrid
systems design. 2006.

[3] Patrick Eyerich, Thomas Keller, Bernhard Nebel, and Albert ludwigs-universitt Freiburg. Combining
action and motion planning via semantic attachments. In International Conference on Automated Plan-
ning and Scheduling, 2010.

[4] J. Fdez-Olivares, L. Castillo, O. Garcia-Perez, and F. P. Reins. Bringing users and planning technol-
ogy together: experiences in SIADEX. In Proceedings of the Sixteenth International Conference on
Automated Planning and Scheduling (ICAPS 2006), pages 11 – 20, Cumbria, UK, 2006.

[5] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning domains . In
Technical Report, Dept of Computer Science, University of Durham, 2001.

[6] M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning. Journal of Artificial
Intelligence Research, 27:235 – 297, 2006.

[7] Maria Fox, Derek Long, and Daniele Magazzeni. Automatic construction of efficient multiple battery
usage policies. In International Conference on Automated Planning and Scheduling, 2011.

[8] T. L. McCluskey, D. Liu, and R. M. Simpson. GIPO II: HTN Planning in a Tool-supported Knowledge
Engineering Environment. In Proceedings of the Thirteenth International Conference on Automated
Planning and Scheduling, pages 92 – 101. AAAI Press, Menlo Park, California, 2003.

[9] T. L. McCluskey and J. M. Porteous. Engineering and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence, 95:1–65, 1997.

[10] T.L. McCluskey and R.M. Simpson. Tool support for planning and plan analysis within domains en-
bodying continuous change. In Workshop on Plan Analysis and Management held in conjunction with
The 16th International Conference on Automated Planning and Scheduling, (ICAPS 2006), June 2006.

[11] C. McGann. How to solve it: Problem solving in Europa 2.0. Technical report, NASA Ames Research
Centre, 2006.

[12] N. Muscettola. HSTS: Integrating planning and scheduling. In Intelligent Scheduling, pages 169–212.
Morgan Kaufmann, 1994.

[13] A. Riabov and Z. Liu. Scalable planning for distributed stream processing systems. In Proceedings of
the Sixteenth International Conference on Automated Planning and Scheduling, Cumbria, UK, 2006.

S. Shah et al. / OCL Plus: Processes and Events in Object-Centred Planning 293

