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Abstract	
  
Generation of neutralising antibodies with broad specificity would be one of the 

effective approaches to control HIV-1 spread. It is clear that a method that allows rapid 

generation of neutralising antibodies is needed. This project aims at developing a novel 

approach to rapidly access human anti-HIV-1 antibodies in vitro by using ribosome 

display and selection from DNA libraries of HIV-1 patients. 

 

Two single-chain antibody libraries (M325 and K530) were constructed from two 

HIV-1 long-term non-progressors, whose sera showed cross-neutralising activities 

against various HIV-1 strains across a range of clades. In each library, total RNA was 

extracted from blood of each donor and used to synthesise cDNA. Families of 4 κ light 

chains, 9 λ light chains and 8 heavy chains were generated by using RT-PCR 

amplification. These fragments were then assembled with all possible combinatorial 

pairs to form diversified repertories in the form of VL-link-VH-partial CH. 

 

Both libraries were subjected to ribosome display for in vitro selection of functional 

antibodies. Ribosome display is a cell-free technique used to generate proteins that can 

bind to an immobilised antigen. During this process, the translated proteins are 

associated with their mRNAs, enabling a simultaneous selection of functional proteins 

and their gene. The employment of ribosome display facilitated rapid screening of two 

large libraries against recombinant gp120 (generated from patient K530).  

 

Ten selected antibodies were expressed as single-chain variable fragments in 

Escherichia. coli. High activity antibodies were purified from both total cell extract 

and periplasmic fraction using optimised expression and purification conditions. These 

antibodies showed various binding activities against gp120 and modest neutralising 

activities against a laboratory HIV-1 clone. Remarkably, an identical CDR3 sequence 

was observed in a number of selected antibodies from the two separated libraries, 

indicating a strong selection of functional antibodies by ribosome display.  

 

This study has provided a novel, in vitro method to select potentially neutralising 

monoclonal antibodies against HIV-1.  
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1.1 AIDS/HIV Background  

 

 

1.1.1 The epidemic of AIDS 

 

The human immunodeficiency virus (HIV) is a member of the genus Lentivirus in the 

Retroviridae family that causes acquired immune deficiency syndrome (AIDS). The 

Joint United Nations Programme on HIV/AIDS (UNAIDS) reported that more than 25 

million people have died from AIDS in the world, and an estimate of 33.3 million 

people have been infected by HIV, including 2.6 million new cases in 2009 (UNAIDS, 

2010). Although antiretroviral therapy (ART) has greatly increased the survival rate 

and quality of life among infected individuals, only 5.2 million people can access, 

leaving 65% of the population who still need treatment today (UNAIDS, 2010). 

Moreover, an effective vaccine is still an elusive goal, despite considerable research 

efforts that have been attempted over the past three decades. 

 

 

1.1.2 The discovery of HIV 

 

The initial articles related to AIDS were published by the Centres for Disease Control 

and Prevention (CDC) in 1981 (CDC, 1981a, CDC, 1981b). AIDS symptoms were 

originally noticed in homosexual males. Subsequently, similar symptoms were 

observed in haemophiliacs, intravenous drug users and heterosexual Haitians in the 

following years (Selik et al., 1984). The term AIDS designated by the CDC was first 

used in 1982, when 593 people were diagnosed with the syndrome, with 243 deaths 

(CDC, 1982). 

 

HIV was first isolated in 1983, when Barré-Sinoussi and her colleagues at the Pasteur 

Institute recovered a virus from the lymph node of a French patient who had persistent 

generalised lymphadenopathy, a disease that was suspected to be associated with AIDS 

(Barre-Sinoussi et al., 1983). This virus was later called lymphadenopathy-associated 

virus (LAV) by Montagnier (Montagnier et al., 1984b), who shared the Nobel Prize in 

Physiology or Medicine 2008 with Barré-Sinoussi for their discovery of HIV. LAV 

contained reverse transcriptase (RT) activity and shared some characteristics of human 
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T-cell leukaemia virus (HTLV) (Barre-Sinoussi et al., 1983), which made some early 

investigators to believe that HTLV was isolated from AIDS patients (Gallo et al., 

1983). However, LAV grew to substantial titre in CD4+ cells and killed them, instead 

of immortalising the lymphocytes in culture (Montagnier et al., 1984a). In early 1984, 

Gallo and associates isolated another human retrovirus from the peripheral blood 

mononuclear cells (PBMCs) of AIDS patients (Gallo et al., 1984). This virus was 

named HTLV-III but later was confirmed as the same as LAV (Chang et al., 1993). At 

the same time, Levy and co-workers reported their identification of retroviruses from 

different AIDS groups, as well as from asymptomatic individuals (Levy et al., 1984). 

These viruses were named the AIDS-associated retroviruses (ARVs), and it was the 

first time a healthy carrier state for the AIDS virus was observed. The three prototype 

viruses, LAV, HTLV-III and ARV, were soon recognised as belonging to the same 

group of retroviruses, which was given a separate name HIV by the International 

Committee on Taxonomy of Viruses in 1986 (Coffin et al., 1986). 

 

A second AIDS virus was later discovered from patients in West Africa, particularly 

the Cape Verde Islands and Senegal (Clavel et al., 1986). This virus differs by more 

than 55% from the previously isolated HIV-1 strains, and was designated as HIV-2. 

The genome of HIV-2 is similar to that of HIV-1 (figure 1.1), except that the viral 

protein U (vpu) gene is restricted to HIV-1 and the viral protein X (vpx) gene is 

restricted to HIV-2 (Cohen et al., 1988, Tristem et al., 1990). HIV-2 is less pathogenic 

than HIV-1. Individuals infected by HIV-2 usually survive longer without showing the 

disease, maintain a higher level of CD4+ cells and show a reduced rate in transmission 

than those infected with HIV-1 (Kanki et al., 1992, Reeves and Doms, 2002, Donnelly 

et al., 1993). Therefore, most of the studies have been focused on HIV-1. 
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Figure 1.1 Genomic maps of HIV-1 and HIV-2  

The genome of HIV-1 and HIV-2 are very similar, except that the vpu gene is 

restricted to HIV-1 and the vpx gene is restricted to HIV-2.  
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1.1.3 The heterogeneity of HIV 

	
  

HIV is featured by its extensive heterogeneities in biology and serology, which is 

reflected by the variable genetic sequences of the virus. The viral RT is very error 

prone during replication (Preston et al., 1988, Roberts et al., 1988). Research by Coffin 

indicated that HIV replicates on almost a daily basis and up to 10 base changes in the 

HIV genome can occur in a single replicative cycle (Coffin, 1995). In addition, 

recombination of two or more different HIV strains may occur in a single cell, 

generating a mosaic DNA genome (McCutchan, 2006). The total viral genomic 

sequences can differ by 6% to 10% among different individuals (Levy, 2007). The high 

mutation rate and diverse genome give rise to enormous changes on viral phenotype, 

especially the regulatory and envelope proteins (Martins et al., 1991). The envelope 

protein presented on the surface of HIV can vary up to 35% between subtypes and 20% 

within subtypes (Gaschen et al., 2002).  

 

Based on the full-length viral genome sequencing and amino acid analysis, HIV-1 can 

be classified into four groups: the “major” group M, the “Outlier” group O, a “non-

M/non-O” group N and a recently discovered group P (Robertson et al., 2000, Plantier 

et al., 2009). More than 90% of HIV-1 infections belong to HIV-1 group M, which can 

be further divided into at least nine subtypes (clades): A, B, C, D, F, G, H, J and K 

(figure 1.2). Each subtype differs from the others by at least 15 to 20% in amino acid 

sequences in the group-specific antigen (Gag) and envelope glycoprotein (Env) region 

(Robertson et al., 2000). In some cases, recombinant viruses become epidemiologically 

important branches and they are called circulating recombinant forms (CRFs) 

(McCutchan, 2006). Viruses recombining from four or more subtypes are called 

complex (cpx).  Currently 16 CRFs have been recognised from the group M (Peeters et 

al., 2003, Robertson et al., 2000). Two previously designated HIV-1 subtypes, E and I, 

were renamed CRF_01AE and CRF_04cpx respectively when they were identified 

recombinants (Anderson et al., 2000). The subtypes responsible for the majority of 

global infections are A, B, C, D, CRF01_AE and CRF02_AG (Robertson et al., 2000). 

Group O individuals were initially found in Cameroon (Peeters et al., 1997) and 

accounts for about 25% of viral isolates from Cameroon (Ayouba et al., 2001). Group 

N infections were only found in a few cases in Cameroon and this group appears to be 

more similar to chimpanzee simian immunodeficiency virus (SIV) than other HIV-1 
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groups (Peeters et al., 2003). A new group of HIV-1 isolates (group P) was identified 

from a Cameroonian woman in 2009 (Plantier et al., 2009). This virus is closely related 

to gorilla SIV and genetically distinct from HIV-1 groups M, N and O. 

 

Although HIV-2 is very rare compared to HIV-1 and is located in a few countries in 

West Africa, eight distinct groups of HIV-2 (A to H) have been identified. Group A 

and B account for the most prevalence of HIV-2, while the other six groups have only 

one representative infection (Chen et al., 1997, Yamaguchi et al., 2000, Damond et al., 

2004). Differences between HIV-2 groups are nearly as much as that between the M, 

N, O and P groups of HIV-1, with up to 25% variation in the amino acid sequences of 

the Gag, Polymerase (Pol) and Env (Zagury et al., 1988).  

 

 

 
 

Figure 1.2 The different levels of HIV classification 
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1.1.4 The origin of HIV 

	
  

Based on molecular evolutionary studies of primate lentiviruses, it has been proposed 

that HIV-1 came into the human population from primates about 30 to 100 years ago 

(Sharp et al., 2001). Other investigators argued that this virus could have appeared in 

human population earlier (Leigh Brown and Holmes, 1994). Although there are several 

explanations and hypothesises for the origin of HIV-1 presented, the most common and 

generally accepted idea is that HIV-1 was derived from SIV found in chimpanzees 

(Gao et al., 1999). It is generally proposed that the HIV-1 groups M, N and O entered 

the human population by three separate cross-species transmissions of chimpanzee SIV 

(Huet et al., 1990, Corbet et al., 2000). Studies on recently isolated SIV samples 

provided evidence that group M most likely originated from chimpanzees in South 

Eastern Cameroon, while group N originated from chimpanzees in South Central 

Cameroon (Keele et al., 2006). By contrast, no direct evidence has been found to link a 

SIV isolate to HIV-1 group O yet (Keele et al., 2006). Recently, viruses isolated from 

the Western Lowland Gorilla resembled group O (Van Heuverswyn et al., 2006), 

suggesting that gorillas may be involved in the transmission of SIV to humans.  

  

HIV-2 is genetically close to SIV isolates in monkeys in West Africa, especially sooty 

mangabeys (Marlink, 1996). It is believed that the two most prevalent groups A and B 

were originated from sooty mangabeys from Ivory Coast (Santiago et al., 2005). 

 

 

1.1.5 The structure of HIV 

 

HIV exists as roughly spherical shape (figure 1.3) with a diameter of approximately 

100 to 120 nm (Kuznetsov et al., 2003). The viral proteins are designated with 

numbers reflecting the protein sizes in kilodaltons (kDa). A mature virus is surrounded 

by a lipid bilayer membrane, on which about 70 trimeric Envs are embedded (Chan et 

al., 1997, Kuznetsov et al., 2003). The Env consists of an external surface 

glycoprotein, gp120 and a transmembrane glycoprotein, gp41, both derived from a 160 

kDa precursor glycoprotein, gp160 (McCune et al., 1988). 
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Three structural Gag proteins are located inside the virus: matrix (MA, p17), capsid 

(CA, p24) and nucleocapsid (NC, p7) (Freed, 1998). The MA forms an inner shell just 

inside the viral membrane; recent evidences suggested that MA might be a regulatory 

protein involved in enhancing HIV pathogenesis (Li et al., 2010). The CA protein 

constitutes a conical core inside MA, coating two identical copies of single-stranded 

RNA. The NC interacts with viral RNA and is required for RNA splicing and RNA 

encapsidation (Zhang and Barklis, 1995). All these three Gag proteins are cleaved from 

a polyprotein precursor, p55, by the viral protease (PR) (Mervis et al., 1988, Kohl et 

al., 1988).  

 

The two copies of RNA are located inside the capsid (p24) and are linked together at 

the 5’ end (Jossinet et al., 1999). The dimerisation initiation site (DIS) on the linkage is 

a hairpin structure and plays a role in virus maturation and recombination 

(Balakrishnan et al., 2003). The 5’ and 3’ end of HIV RNA encode a long terminal 

repeat (LTR) sequence, which regulates integration and virus replication (Temin, 1981, 

Vicenzi et al., 1994). There are three enzymes closely associated with the viral RNA: 

the reverse transcriptase (RT, p66, p51), the protease (PR, p10) and the integrase (IN, 

p32). RT is also called RNA-dependent DNA polymerase, and plays an important role 

in viral replication by transcribing the RNA into double-stranded DNA (Baltimore, 

1970). The PR cleaves viral proteins into their functional forms. The IN incorporates 

the viral DNA into host cell chromosomal DNA (Brown et al., 1989). All three 

enzymes are cleaved from Pol precursor polyprotein (Jacks et al., 1988).  

 

HIV also has two regulatory proteins, transactivator of transcription (Tat, p14) and 

regulator of virion expression (Rev, p19), which are essential for viral replication 

(Fisher et al., 1986, Sodroski et al., 1986). Tat is a major protein that up-regulates HIV 

replication. It also induces T cell apoptosis (Westendorp et al., 1995) and co-receptors 

expression on cell surfaces (Huang et al., 1998), and blocks natural killer (NK) cell 

activities (Zocchi et al., 1998). Rev affects viral protein expression by regulating 

messenger RNA (mRNA) splicing and transporting unspliced mRNA to the cytoplasm 

of cell for protein translation (Malim et al., 1988, Malim et al., 1989).  
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Figure 1.3 Structure of HIV  

Trimeric glycoprotein gp120 and gp41 are embedded on HIV surface membrane. From 

outside to viral centre are structural proteins matrix (MA, p17) and capsid (CA, p24). 

Inside CA are two copies of single-stranded RNA, linked at their 5’ end by 

dimerisation initiation site (DIS). Structure protein nucleocapsid (NC, p7) and three 

enzymes reverse transcriptase (RT, p66, p51), protease (PR, p10) and integrase (IN, 

p32) are presented inside the viral core.  
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In addition, two accessory proteins closely associated with the core, namely negative 

factor (Nef, p27) and virus infectivity factor (Vif, p23). Nef regulates virus replication 

(Garcia and Miller, 1991) and activates cellular proteins (Sawai et al., 1994) while Vif 

increases virus infectivity (Strebel et al., 1987) and cell-to-cell transmission (Fisher et 

al., 1987), and helps in proviral DNA synthesis and assembly (Borman et al., 1995). 

Other accessory proteins include viral protein R (Vpr, p15), viral protein U (Vpu, p16, 

only presents on HIV-1) and viral protein X (Vpx, p15, only presents on HIV-2), 

which mainly help in virus replication, virus release and viral infectivity, respectively 

(Greene and Peterlin, 2002). 

 

 

1.1.6 The life cycle of HIV 

 

The life cycle of HIV starts by gp120 attaching to its cellular receptor cluster of 

differentiation 4 (CD4) (Dalgleish et al., 1984). The CD4 receptor is expressed on the 

surface of T helper cells, macrophages and dendritic cells. It has four immunoglobulin 

like domains (D1 to D4), in which D1 region is involved in HIV binding (Arthos et al., 

1989). Gp120 consists of five variable domains (V1-V5) with five constant domains 

(C1-C5), and the outer surface of gp120 is heavily glycosylated (Wei et al., 2003). A 

major binding site has been identified to locate on C4 domain near the 3’ end of gp120 

(Lasky et al., 1987, Sweet et al., 1991). Studies showed that other discontinuous, 

conserved regions also interact with the binding sites on CD4 (Thali et al., 1993).  

 

After attachment to the CD4 protein, a conformational change occurs on the gp120, 

leading to interactions between the gp120 and its co-receptors (figure 1.4). HIV 

generally needs chemokine receptors for additional attachment, the most common ones 

are CCR5 for macrophage-tropic isolates (Cheng-Mayer et al., 1997) and CXCR4 for 

T cell line-tropic isolates. The viruses that use these co-receptors are referred to as R5 

and X4 viruses, respectively (Berger et al., 1998). The co-receptor binding and tropism 

are mainly determined by the V3 loop of gp120, as well as the V1 and V2 regions 

(Hartley et al., 2005). Mutation studies showed that as few as three amino acid changes 

in the V3 loop were sufficient to change R5 virus to X4 virus (Shioda et al., 1992). The 

attachment to co-receptors brings the virus closer to the cell, and exposes gp41 to a 

fusion domain on the cell (Sattentau and Moore, 1991).  
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Figure 1.4 A schematic illustration of HIV entry 

HIV entry can be divided into three steps: (1) gp120 attaches to CD4 receptor; (2) 

conformational change in gp120, which induces gp120 to bind to co-receptor, CCR5 or 

CXCR4; (3) structural rearrangement in gp41 allows the virus and cell membrane 

fusion and ultimately entry of the virus into the target cell. 
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Virus and CD4+ cell fusion is a critical step in HIV life cycle. The fusion between viral 

and the host cellular membranes allows the entry of viral capsid into the cell (Pascual 

et al., 2005). Mutation studies indicated that several domains of gp120 (the V1/V2 

domain, the V3 loop and the C4 domain) and gp41 could contribute to membrane 

fusion (Sullivan et al., 1993, Page et al., 1992, Suphaphiphat et al., 2007). However, 

the exact mechanism for the nucleocapsid entry remains unclear. Hypotheses include 

intermixing of the outer lipid membranes of the virus and the cell (i.e. semifusion) 

(Haywood, 1994), and involvement of Gag protein in viral core entry (Spearman et al., 

1994). 

 

After HIV has entered the cell, the reverse transcription of viral RNA starts by 

formation of a RNA-DNA hybrid helix (Baltimore, 1970), followed by the synthesis of 

a second strand of cDNA by RT. The double-stranded viral DNA is then transported to 

the cell nucleus, where it is integrated into host cell DNA by viral integrase (IN) 

(Brown et al., 1989, Bushman et al., 1990). The integrated viral DNA is known as 

proviral DNA, and it can be dormant for a long time. Upon activation, the proviral 

DNA is transcribed to generate mRNA by the host cell RNA polymerase II. The 

primary mRNA transcripts contain multiple introns and can be processed to yield more 

than 30 alternative mRNAs by various levels of splicing (Schwartz et al., 1990). 

Doubly spliced mRNA can translate to the major regulatory proteins, particularly Nef, 

Tat and Rev (Greene and Peterlin, 2002); partially spliced mRNA has the potential to 

express the Env precursor (gp160), Vif, Vpu and Vpr; the unspliced mRNA can be 

expressed as Gag and Gag-Pol precursor proteins or serve as the genomic RNA. The 

gp120 and gp41 is in fact generated by an endoprotease cleavage of gp160 precursor 

before transportation to the plasma membrane of the cell (Hallenberger et al., 1992). 

The two nascent viral RNA are also transported to the plasma membrane with Gag and 

Gag-Pol precursor proteins. Assembly and package of the virion takes place by 

budding through plasma membrane of the cell (Freed and Martin, 1996, Booth et al., 

2006). During this process, the Gag and Gag-Pol precursor proteins are cleaved by 

protease to form the proper HIV proteins, which result in a mature virion (figure 1.5).  
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Figure 1.5 The life cycle of HIV  

The life cycle of HIV includes multiple steps: (1) the viral surface envelope protein 

(purple cycle) attaches to cellular receptors (blue block); (2) the viral membrane fuses 

to the cell membrane; (3) the viral nucleoid enters the cell; (4) the viral RNA is reverse 

transcribed into double-strand DNA (green line) by RT (green cycle); (5) the viral 

DNA is integrated into host chromosome (orange straight line) by IN; (6) the proviral 

DNA is transcribed into mRNA; (7) the mRNA translates to various viral proteins 

(precursors); (8) viral RNA and envelope protein are assembled at the cell membrane; 

(9) a fully functional mature virion is produced. 
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1.1.7 The cell-mediated responses of HIV infection 

 

HIV infection is controlled by anti-HIV-specific activities from both CD8+ and CD4+ 

cells. The HIV-specific CD8+ T cell response appears within the first few weeks of 

HIV infection, and expands rapidly to 10% of the total circulating CD8+ T cells when 

the viral load peaks (Borrow et al., 1994, Wilson et al., 2000). CD8+ T cells play an 

important role in controlling viral replication and disease progression. Clinical studies 

showed that patients with stronger CD8+ cytotoxic T lymphocyte (CTL) responses had 

a slower disease progression compared to those with lower CTL responses (Musey et 

al., 1997). Furthermore, studies on asymptomatic long-term non-progressors (LTNPs) 

(Rinaldo et al., 1995) and HIV-exposed but uninfected Gambian women (Rowland-

Jones et al., 1995) revealed the strong association between their lack of disease and a 

high level of CD8+ CTL activity. In an animal model experiment, the depletion of 

CD8+ lymphocytes during primary SIV infection resulted in a rapid and marked 

increase in viraemia, which was again suppressed with the presence of SIV-specific 

CD8+ T cells (Schmitz et al., 1999). These observations suggest the importance of 

CD8+ T cells in effective control of viremia and could form the basis of an HIV-1 

vaccine strategy. 

 

HIV-specific CD8+ T cells can function by direct killing of HIV infected cells or by 

secreting a number of antiviral factors. Unlike the neutralising antibodies that only 

target viral envelope proteins, the CD8+ CTLs may recognise a variety of HIV 

peptides, such as Gag, RT, Env and some accessory proteins (McMichael and 

Rowland-Jones, 2001). As the infection progresses, CD8+ T cell responses decline and 

fail to suppress viral load persistently. CTLs are believed to exert a selective force on 

HIV in vivo, giving rise to viruses that have mutated critical peptides and eventually 

escape CTL recognition (McMichael and Rowland-Jones, 2001).  This has been 

confirmed by several clinical studies where mutated epitopes have been observed to 

avoid CD8+ CTL responses (Phillips et al., 1991, Borrow et al., 1997, Price et al., 

1997). 

 

CD4+ T cell response almost appears at the same time of CD8+ T cell response (Pitcher 

et al., 1999). CD4+ T helper (TH) cells can be divided into TH1 and TH2 subsets, 

which both respond to HIV infection through production of cytokine (Mosmann et al., 
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1986). TH1 produces interleukin (IL)-2, interferon (IFN)-γ and tumour-necrosis factor 

(TNF)-α that can facilitate cell-mediated immunity; TH2 produces IL-4, 5, 6, 10 and 

13 that increase antibody production (humoral immunity). In addition, CD4+ T cells 

are important in the priming and maintenance of CD8+ T cells (Sun et al., 2004). Mice 

studies indicated that CD8+ T cell memory development was impaired with the 

depletion of CD4+ T cells (Shedlock and Shen, 2003, Sun and Bevan, 2003). However, 

since CD4+ T cells are the principal targets of HIV, the CD4+ T cell response is 

diminished at the early stage of infection and its contribution to the immune system is 

severely compromised. Vaccines that can elicit both CD4+ and CD8+ T cell responses 

to HIV may be beneficial to control viral infection at the early stage. 

 

 

1.1.8 The humoral responses of HIV infection 

 

Antibodies usually appear within one to two weeks after the acute infection. Generally 

IgG1 antibody dominates in all the clinical stages, while levels of other antibody 

classes can vary on different clinical stages (Barker et al., 1995). The early antibodies 

recognise Gag protein and are not neutralising (Busch et al., 1995). They induce 

antibody dependent cellular cytotoxicity (ADCC) against gp120 and gp41 (Evans et 

al., 1989), by which infected cells are recognised by effector NK cells or by 

monocytes/macrophages bearing fragment crystallisable (Fc) receptors and eventually 

destroyed (Yagita et al., 1992).  

 

Neutralising antibodies targeting Env normally appear after two to three months and 

their antiviral activities vary greatly between individuals (McKnight et al., 1992, Li et 

al., 2006). Most studies on neutralising antibodies indicated that a number of regions 

on gp120 and gp41 are sensitive to antibody neutralisation: the V3 loop, the V1, V2 

region and the CD4 binding domain of gp120, the membrane-proximal external region 

(MPER) of gp41 and the carbohydrate moieties covering viral envelope (figure 1.6) 

(Chanh et al., 1986, Muster et al., 1993, Trkola et al., 1996). While most of the 

identified neutralising antibodies recognise and neutralise a particular virus isolate, 

there are a few broadly neutralising monoclonal antibodies (mAb) that show cross-

clade neutralising activity against different viral strains (see below). 
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Figure 1.6 Broadly neutralising mAbs against HIV 

A variety of broadly neutralising mAbs have been identified, allowing targeting 

different epitopes on the surface of HIV. The figure illustrates the bilayer viral 

membrane, the viral envelope spike gp41 and gp120, and the glycans (dark blue and 

green). Broadly neutralising mAbs recognise at least four distinct epitopes on the 

envelope spike: b12, VRC01 and HJ16 target the CD4 binding sites on gp120; PG9 

and PG16 target the V1/V2 and V3 loop on gp120; 2G12 targets the outside glycans; 

2F5 and 4E10 target the MPER of gp41. The figure is adapted from (Burton and 

Weiss, 2010). 
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The characterised neutralising mAbs are described in detail below: 

 

b12 

The b12 antibody, isolated in early 1990s by Burton and his colleagues from a phage 

display library assembled from 5 ml of bone marrow cells of a LTNP donor, was the 

first identified and most extensively characterised broadly neutralising mAb against 

HIV-1 (Burton et al., 1991, Burton et al., 1994). Epitope mapping identified an epitope 

(RPVVSTQLLLNGSLAEEEVV) that overlaps the CD4 binding site of gp120 (Barbas 

et al., 1992). Therefore, the antibody could block HIV from attaching to CD4 receptor 

and thus prevent infection. Analysis of the b12 crystal structure in complex with gp120 

showed its binding to the outer domain surface of gp120 with high affinity without 

additional gp120 conformational constraints (Zhou et al., 2007). In comprehensive 

cross-clade neutralisation analysis b12 effectively neutralised 50% of 90 viruses 

crossing almost every subtypes, including primary isolates (Binley et al., 2004). In vivo 

studies also showed that b12 protected macaques from simian human 

immunodeficiency virus (SHIV) challenge (Parren et al., 2001). 

 

2G12 

The mAb 2G12 was produced from immortalised peripheral blood lymphocyte (PBL) 

by electrofusion (Buchacher et al., 1994). 2G12 recognises a complex mannose-

dependent epitope on the carbohydrate-covered silent face of the gp120 outer domain 

(Trkola et al., 1996, Sanders et al., 2002). 2G12 can neutralise HIV in subtype A, B 

and D, but not clade C nor CRF01_AE. This insensitivity of neutralising ability may be 

due to the absence of one or more glycans required for efficient 2G12 binding to gp120 

(Binley et al., 2004). In passive transfer studies 2G12 can protect macaques from viral 

infection, especially in combination with other broadly neutralising mAbs (Baba et al., 

2000, Mascola et al., 1999). The crystal structure of 2G12 indicates that the antibody 

can achieve nanomolar-binding affinity to a glycan array because of its unusual 

configuration of the antigen-binding fragments (Fabs) (Calarese et al., 2003). The 

variable heavy chains of the antibody have exchanged positions to interact with the 

light chain of the neighbouring Fab, resulting in a single, large antigen-binding site.  

 

2F5 and 4E10 
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The 2F5 and 4E10 mAbs were also isolated by Buchacher and his colleagues 

(Buchacher et al., 1994). These two broadly neutralising mAbs recognise two 

conserved linear epitopes (ELDKWAS and NWFDIT, respectively) on MPER of gp41. 

2F5 and 4E10 can bind to the envelope trimer at various stages of infection, and 

neutralisation may occur by interrupting gp41 refolding (Crooks et al., 2005). 4E10 

showed very broad neutralising activity across all HIV clades tested, with modest 

potency relative to b12 (Binley et al., 2004). However, 4E10 exhibits wide variation 

between different assay systems. 2F5 has a broad neutralising activity against clade A, 

B, D and CRF01_AE, but does not neutralise clade C viruses. Both 2F5 and 4E10 are 

unusual in having long complementarity-determining region 3 (CDR3) (22 and 18 

amino acids respectively) (Zwick et al., 2004, Cardoso et al., 2005), which are very 

rarely present in infected patients. Recent experiments have shown that both 2F5 and 

4E10 can protect macaques from mucosal challenge of SHIV (Hessell et al., 2010). 

 

PG9 and PG16 

Walker and his colleagues identified two antibodies PG9 and PG16 with exceptional 

neutralising breadth and potency through a large-scale direct functional screen of 

approximately 30,000 B cells (Walker et al., 2009). PG9 and PG16 were isolated from 

a clade A donor, and recognise an epitope encompassing V1/V2 and V3 variable loops 

on gp120. Interestingly, even though PG9 and PG16 efficiently neutralised more than 

70% of the 162 viruses including primary isolates, they didn’t bind to monomeric 

gp120 or gp41. This observation suggested that the epitopes targeted by these two 

antibodies might be preferentially expressed only on trimeric HIV envelope. A very 

long H-CDR3 loop of 28 residues was also defined on both antibodies and structural 

study revealed that the long CDR H3 loop forms a novel, sulphated “hammerhead” 

sub-domain that mediate potent neutralisation (Pejchal et al., 2010). 

 

HJ16 

A broadly neutralising mAb HJ16 was discovered by Corti and his colleagues (Corti et 

al., 2010). This antibody, isolated by improved Epstein-Barr Virus (EBV) 

immortalisation method (Traggiai et al., 2004), recognises a novel epitope proximal to 

the CD4 binding site on gp120. HJ16 showed reactivity that was comparable in 

breadth, but distinct from another CD4 binding site-specific neutralising mAb b12. In 

addition, unlike most antibodies that preferentially neutralise tier-1 isolates 
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(homologous vaccine strains that are very sensitive to neutralisation), HJ16 

preferentially neutralises tier-2 isolates (primary isolate Env clones) (Corti et al., 

2010). 

 

VRC01 and VRC02 

Wu and his colleagues successfully identified two broadly, potent neutralising mAbs 

VRC01 and VRC02 using a genetically engineered gp120. The newly designed gp120, 

showed no binding to most of non-neutralising antibodies, but preferentially bound to 

broadly neutralising antibodies (Wu et al., 2010). Targeting specifically to the 

conserved CD4 binding site, VRC01 and VRC02 neutralised about 90% of 190 viral 

strains represented all major circulating HIV-1 subtypes. Both antibodies exhibited 

high levels of somatic mutations. Detailed analysis of the antibody sequences revealed 

32% of variable region of heavy chain (VH) and 17% to 19% of variable region of 

kappa chain (Vκ) nucleotides had mutated from the putative germline sequences. More 

importantly, the isolation of VRC01 and VRC02 from an HIV-1 infected donor using a 

rationally designed Env has demonstrated that such neutralising antibodies were indeed 

elicited in human (table 1.1).  
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Table 1.1 

MAb Target epitopes Neutralising ability Special features 

b12 CD4-binding site Potently neutralise 50% of 90 

viruses across all subtypes 

Long CDR3 loop 

2G12 Complex mannose Neutralise subtype A, B and D VH domain swap 

2F5 Membrane proximal 

region of gp41 

Neutralise subtype A, B, D and 

CRF01_AE 

Long CDR3 

region 

4E10 Membrane proximal 

region of gp41 

Modestly neutralise 90 viruses 

across all subtypes 

Long CDR3 

region 

PG9 

PG16 

V1/V2 and V3 

domain 

Potently neutralise more than 

70% of 162 viruses across 

almost all subtypes 

Long, sulphated, 

“hammerhead” H-

CDR3 loop  

HJ16 Proximal to CD4 

binding site 

Neutralising ability comparable 

to, and generally complementary 

to b12; preferentially neutralise 

tier-2 isolates 

Preferentially 

neutralise tier-2 

isolates 

VRC01

VRC02 

Conserved CD4 

binding site 

Neutralise 91% of 190 viral 

strains represented all major 

circulating HIV-1 subtypes 

Highly mutated 

VH and Vκ 

 

Table 1.1 Broadly neutralising mAbs 
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1.1.9 Long-term non-progressor (LTNP) 

 

Individuals who have been HIV positive for 7 to 15 years (different authors use 

different time spans) but not on ART and have not developed AIDS are defined as 

long-term non-progressors (LTNPs). LTNPs normally maintain stable CD4+ counts of 

500-600 cells/µl. A subset of LTNPs can even control their viral load to undetectable 

level and are named elite suppressors (ES). LTNPs have a number of characteristics 

that distinguish them from other HIV-1 infected individuals. A study of 68 LTNPs 

indicated that LTNPs maintain lower median plasma viral RNA than controls (6,000 vs. 

40,000 RNA copies/ml), but the levels can vary greatly between individuals (Candotti 

et al., 1999). Research showed that the CD4+ T cell-associated viruses were much 

lower in LTNPs. Moreover, a high level of anti-HIV-1 CD8+ memory CTL specific for 

viral protein Gag, Pol and Env was also associated with lack of AIDS progression in 

LTNPs, indicating that CD8+ memory CTL response may play an important role in 

controlling HIV replication and preventing disease development in LTNPs (Rinaldo et 

al., 1995, Greenough et al., 1999).  

 

Many studies defining the viral genetic characteristics of LTNP have focused on 

deletion of nef gene of HIV. A cohort of LTNPs (one blood donor and six blood 

transfusion recipients) was well studied (Deacon et al., 1995). HIV-1 sequences from 

their PBMCs had similar deletions of the nef gene. However, various results have been 

shown in subsequent studies, and nef deleted gene was only partially shown or absent 

in other LTNP studies (Greenough et al., 1999). What role the nef gene plays in LTNP 

is not known. 

 

Meanwhile, studies on human genetic variability that may affect HIV susceptibility 

have been focusing on CCR5 receptor. Several studies showed that a deletion of 32 

base pairs in the CCR5 gene might be responsible to the resistance of HIV infection. 

The truncated protein cannot be detected by virus at the cell surface (Liu et al., 1996). 

However, others showed that CCR5 might not be the only reason for the lack of 

disease in LTNP (Cohen et al., 1997, Morawetz et al., 1997). No differences of 

immunological and virologic parameters were found between LTNPs with deleted 

CCR5 and those with wild-type CCR5, thus indicating other factors are involved. 
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Although the factor which determines the HIV infection and disease progression in 

LTNPs remains unknown, LTNPs have become an important subject in HIV and AIDS 

research. Many studies on HIV pathogenesis, immunogenesis and vaccine design are 

based on this cohort of individuals. In this study, samples from more than 300 HIV-1 

positive patients have been screened at Barts and The London Hospital, Queen Mary, 

University of London. Two serum samples from LTNPs M325 and K530 were found 

to have the wild type CCR5 and they displayed cross-clade neutralising activity (Weiss 

et al., 1986) at high titres (see appendix 1), suggesting neutralising antibodies might 

have been generated by the two patients. 

 

 

1.1.10 Ribosome display 

 

It has been shown that broadly neutralising mAbs can be isolated by phage display 

(Burton et al., 1991), electrofusion or EBV transformation (Buchacher et al., 1994). 

Recently, a high-throughput functional screening approach has been used to isolate 

potent neutralising mAbs from B cell culture (Walker et al., 2009).  

 

In this study, ribosome display technology was investigated for in vitro antibody 

discovery from libraries made from HIV-1 LTNPs. Ribosome display is a cell-free 

system, in which DNA library can be rapidly screened without the need for cloning 

(He and Taussig, 1997). Like all other display technologies, ribosome display uses the 

same principle of linking proteins (phenotype) and DNA (genotype) for selection. 

Ribosome display produces stable Antibody-Ribosome-mRNA (ARM) complexes to 

link individual antibody fragments to their corresponding mRNA (He and Taussig, 

2002). The formation of ARM complexes is achieved through deletion of the stop 

codon from the mRNA, which causes stalling of the translating ribosome at the end of 

mRNA with the nascent polypeptide not released. The linkage of protein-mRNA 

allows simultaneous selection of desirable antibodies with their encoding mRNA 

which can be recovered and amplified as DNA by RT-PCR (He et al., 2004). Through 

repeated cycles, specific antibodies originally presented in rare species can be enriched 

and isolated from a very large population. Ribosome display enables screening 

libraries with up to 1012-13 members in a single reaction.  
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1.1.11 E. coli expression of proteins 

 

Expression systems for producing recombinant protein (e.g. antibody) include those 

derived from bacteria (Baneyx, 1999), yeast (Cregg et al., 2000), Baculovirus (Kost et 

al., 2005) and mammalian cells (Rosser et al., 2005). Among these, Escherichia coli 

(E. coli) is widely used for expression of recombinant proteins due to its relative 

simplicity, low cost, easy cultivation, the well-studied genetics and the availability of 

compatible tools (Sorensen and Mortensen, 2005). Moreover, varieties of plasmids and 

bacterial hosts including mutant strains are available, making it possible to express 

protein under a condition of choice. Although expression of soluble proteins in E coli 

is still a bottleneck, a couple of empirical rules have been developed to guide the 

design and selection of an expression system (Makrides, 1996).  

 

Recombinant expression plasmids contain a promoter to control protein synthesis; it 

should also exhibit a minimal level of basal transcriptional activity. The minimal basal 

transcription is controlled by a suitable suppressor, which in most cases is lac 

repressor, encoded by lacI gene or its mutants. Most widely used promoters can be 

induced by using either a thermal method or chemical inducers, e.g. Isopropyl	
  β-­‐D-­‐1-­‐

thiogalactopyranoside (IPTG) (Hannig and Makrides, 1998). In this study, pSANG 

vector, adapted from pET26(+) vector (Novagen, Nottingham, UK), utilises a T7/lac 

hybrid promoter which combines the strong T7 promoter with the lac operator (figure 

1.7). Basal expression of the protein is controlled by the lac repressor, encoded by the 

lacI gene. The T7 promoter requires the presence of the T7 RNA polymerase in the 

expression system, such as BL21(DE3) strain (Martin et al., 2006). Another vector 

(pABEXT) used in this study was modified from pMAL-c2X vector (New England 

Biolabs, Hitchin, Herts, UK). pABEXT vector contains the tac promoter, which is also 

controlled by the lac repressor, encoded by the lacIq gene (figure 1.8). The tac 

promoter is not as strong as T7 promoter, but it allows expression in E. coli without the 

need for T7 RNA polymerase.  
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Figure 1.7 Schematic view of the expression cassettes of the pSANG10-3F vector 

The single-chain antibody encoding genes are sub-cloned at the NcoI/NotI sites. 

Picture is adapted from (Martin et al., 2006). 

 

 

 
 

Figure 1.8 Schematic view of the expression cassettes of the pABEXT vector 

pABEXT vector is constructed using pMAL-c2X vector as backbone. The single-chain 

antibody encoding genes are sub-cloned at the NcoI/NotI sites.  
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Apart from the expression vector, the choice of a strain and its genetic background also 

affects protein expression. Some key features for an expression strain have been 

identified. These include deficiency in the most harmful proteases, maintenance of 

expression plasmid stability and the genetic elements relevant to the expression system 

(e.g., DE3) (Sorensen and Mortensen, 2005). E. coli BL21 is a robust host strain and 

has been used widely in recombinant expression applications. BL21 is deficient in two 

proteases, OmpT and Lon, reducing the possibility of protein degradation and thus 

allowing isolation of intact recombinant proteins. BL21(DE3) is the preferred host for 

vectors containing T7 promoter , as it encodes the T7 RNA polymerase gene under the 

control of lacUV5 promoter. To eliminate the rare codon bias in E. coli expression, 

BL21(DE3) strain was further modified to introduce a plasmid pRARE encoding some 

rare transfer RNAs (tRNAs) to overcome the shortage of the rare tRNA pools from 

bacteria (Novy et al., 2001). In this study, the DNA ligation with pSANG vector was 

firstly used to transform XL1-blue strain due to its high transformation efficiency and 

blue/white screening; positive clones were subsequently transformed into 

BL21(DE3)pRARE strain for protein expression. Antibodies that are used in functional 

assays were produced by this method. An alternative strategy was also attempted in 

this study, in which the DNA ligation with pABEXT vector was transformed into XL1-

blue strain for both cloning and expression without the second transformation step. 

This strategy was performed for a quick screening purpose. Figure 1.9 illustrates the 

two different approaches for expression of proteins in E. coli.  
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Figure 1.9 Two strategies of antibody expression 

Two strategies were used in this study to express antibodies selected by ribosome 

display: (1) antibodies were cloned into pSANG vector and expressed in 

BL21(DE3)pRARE cells as illustrated to the left of the figure; (2) antibodies were 

cloned into pABEXT vector and expressed in XL1-blue cells as illustrated to the right 

of the figure.  
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The way to express proteins also affects protein yields. The expression strategies in 

general include synthesis of the proteins in (1) the reducing environment of the 

cytoplasm; (2) the oxidising environment of the periplasmic space, which is located 

between the cytoplasm and outer membranes, or (3) direct secretion of the protein into 

the culture medium (Gualerzi and Pon, 1990). The cytoplasmic expression approach 

benefits from a high expression level through a strong promoter, but most proteins 

produced form insoluble aggregates as inclusion bodies (Makrides, 1996). The 

advantages of recovering recombinant proteins from inclusion bodies are high yield 

(Zhuo et al., 2005), protection from proteases (Grune et al., 2004) and permitting 

production of proteins that are lethal to the host cells (Miroux and Walker, 1996). 

However, a tedious refolding process is needed to regain soluble active protein. Since 

refolded proteins often do not reproduce their original biological activities, efforts have 

been directed to avoid or minimise the formation of inclusion bodies (Schein, 1991). 

Secretion of proteins into periplasmic space (periplasmic expression) or extracellular 

medium (extracellular secretion) provides an alternative to facilitate correctly folded 

proteins. They are achieved by using a leader sequence, such as OmpT, OmpA, PelB 

and MalE (Blight et al., 1994). Compared with cytoplasmic expression, this strategy 

allows simpler purification, protection of proteins from proteolysis, generation of 

higher N-terminus authenticity and enhancement of disulfide bond formation (Jonasson 

et al., 2002).  

 

Another factor affecting efficient protein expression in E. coli is the codon usage. 

Certain codons are rare in E. coli while abundant in heterologous genes from sources 

such as eukaryotes (Kane, 1995, Rosano and Ceccarelli, 2009). Expression of genes 

with rare codon in E. coli may lead to translational errors and severely impair the 

translation efficiency. The most problematic codons include Arginine (AGA, AGG, 

CGA and CGG), Glycine (GGA and GGG), Isoleucine (AUA), Leucine (CUA) and 

Proline (CCC) (Sorensen and Mortensen, 2005). Approaches to decrease codon bias 

include site-directed mutagenesis of the target sequence (Calderone et al., 1996) and 

complement of gene encoding the tRNA cognate to the problematic codons (Dieci et 

al., 2000). Assembly of rare tRNA genes into plasmid such as pRIG and pRARE in the 

host strain has shown to be able to significantly enhance the expression of some codon 

biased genes (Baca and Hol, 2000).  
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1.1.12 HIV-1 Antibody neutralisation assay 

 

The anti-HIV-1 antibody activity resulting in the prevention of virus entry into cells is 

an important functional attribute. This may be achieved by binding to the viral surface 

protein envelope, preventing virus attachment and/or entry into cells (Wyatt and 

Sodroski, 1998). Neutralisation epitopes for HIV-1 include the CD4 binding domain 

(Burton et al., 1991), the hypervariable regions (V1, V2 and V3) of gp120 (Haigwood 

et al., 1990, Fung et al., 1992, Gorny et al., 1991, Pinter et al., 1993), the MPER of 

gp41 (Buchacher et al., 1994, Stiegler et al., 2001) and the mannose residues on the 

outer face of gp120 (Trkola et al., 1996, Scanlan et al., 2002).  

 

The HIV-1 neutralisation assay is designed to analyse the activity of neutralising 

antibodies. Many parameters may affect this neutralisation assay, and thus a 

standardised in vitro assay is important for meaningful comparisons of the quality and 

potency of neutralising antibodies. Early studies on HIV-1 neutralising antibody 

responses relied on the ability of T-cell line adapted (TCLA) viruses to infect cell lines. 

Sera or recombinant antibodies were used to co-culture with TCLA virus, and 

parameters such as syncytium-formation, viral proteins or cell survival were measured 

to evaluate reduction of infection (Nara et al., 1987, Hanson et al., 1990, Montefiori et 

al., 1988). However, neutralisation of TCLA viruses poorly predicted primary isolate 

neutralisation because the adapted primary viruses in T-cell lines are highly sensitive 

to neutralisation (Wrin et al., 1995). To mimic the in vivo environment, assays using 

patient viruses to infect seronegative PBMCs were subsequently developed. Primary 

viruses or clinical isolates were co-cultured with the test sera or mAbs, and viral 

protein or reverse transcription was measured to indicate viral replication (Mascola, 

1999, Mascola et al., 2002). However, these assays require the use of PBMCs from 

different individuals, which display differential susceptibility to HIV-1 infection and 

impair the experiment reproducibility (Daar et al., 1990, Zhou and Montefiori, 1997). 

 

Recently, a technology that uses pseudovirus in a neutralisation assay (Richman et al., 

2003) was adapted and refined by Montefiori. The pseudoviruses are generated by 

incorporating HIV-1 Env cloned from primary isolates into Env-deficient laboratory-

adapted strains, which were only capable of a single round of infection (Montefiori, 
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2005). The neutralising activity of test sera or antibodies is measured by reduction of 

infectivity on reporter cell lines, such as TZM-bl that contains the β-galactosidase and 

luciferase as sensitive markers (Wei et al., 2002). Compared to the PBMC assay, the 

pseudoviral system has advantages on the ability to produce generically identical virus 

in each stock, and rapid test for neutralisation against primary patient Envs from 

various clades (Polonis et al., 2008). In general, this system greatly enhanced the 

consistency, accuracy and reproducibility of the neutralisation assay. Despite the 

discrepancies reported between reporter cell line-based pseudovirus assays and PBMC-

based assays (Binley et al., 2004), the pseudovirus assay has been recommended by the 

HIV Vaccine Trials Network (HVTN) and National Institutes of Health (NIH) as the 

standard assay for evaluating neutralising antibody responses (Mascola et al., 2005). 
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1.2 Aims of the project 

 

 

Despite of three decades of intensive research, an effective vaccine for the prevention 

of HIV infection has proved to be elusive. Significant efforts have been made in 

understanding the molecular biology of the HIV vaccines, in particular the role of viral 

encoded protease and reverse transcriptase. Moreover, an understanding of the 

molecular functions that allow viral whole cell recognition and cell entry has also 

being elucidated. With the detailed knowledge of the protease and the reverse 

transcriptase, considerable success has been achieved in developing drugs to target 

these molecules for the disruption of virus propagation.  

 

The current approach for the treatment of the HIV positive individuals relies on a 

cocktail of these drugs. However, ideally what is required is a vaccine that may prevent 

the initial infection, or hold an infection in check. With the detailed understanding of 

the viral surface molecular architecture, molecules responsible for the attachment to 

the cell surfaces and viral entry have been identified. It may be possible to target some 

of these surface molecules to prevent either initial attachment or subsequent entry into 

the whole cell, such as gp120. However, since it is heavily glycosylated, the peptide 

sequences are possibly hidden from the immune surveillance molecules. 

Notwithstanding, it was shown that immune sera from HIV-1 LTNPs are capable of 

neutralising a broad range of HIV isolates. To date, a number of broadly neutralising 

human mAbs have been isolated. Analysis of these antibodies by epitope mapping 

facilitates to identify the amino acid sequences capable of inducing broadly protective 

HIV antibodies. Studies on such many different neutralising antibodies would help us 

to understand both the molecular mechanism and the nature of the broadly neutralising 

responses. It is clear that methods are needed to rapidly select many different 

neutralising antibodies for analysis and characterisation. 

 

This study aimed to establish an approach to identify neutralising mAbs in vitro using 

cell-free ribosome display from cDNA libraries made from patient PBMCs, combined 

with homologous and heterologous gp120 selection. Secondly, the relationship 

between binding, neutralising activity and the antibody subclasses was also 

determined. The donors (M325 and K530) had previously been identified as LTNPs 
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with broadly neutralising activity against clade B, C, CRF02_AG. The hypothesis was 

to investigate the antibody repertoire to determine whether similar antibody solutions 

were used in this common broad neutralisation activity. It was reasoned that donor 

M325 should have antibodies directed against gp120 derived from K530. 

 

The followings are the main steps involved in this project: 

(1) Construction of ribosome display libraries from two HIV-1 LTNPs; 

(2) Carrying out ribosome display to select antibodies against antigen gp120; 

(3) E. coli cloning and expression of selected population as single-chain variable 

fragment (scFv); 

(4) ELISA screening for potential gp120 binders; 

(5) Analysis and characterisation of binders. 
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Chapter 2  

 

Materials and Methods 
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2.1 Materials  

 

 

2.1.1 Molecular biology reagents/kits 

 

MP biomedicals, Illkirch, France 

Taq & Go Ready to Use PCR Mix 

 

New England Biolabs, Hitchin, Herts, UK 

10X NEBuffer 3, 10X T4 DNA ligase reaction buffer, 100 base pair (bp) DNA ladder, 

Protoscript	
   ® First Strand cDNA Synthesis Kit, restriction Endonucleases HindIII, 

NcoI, NdeI, NotI, T4 DNA ligase  

 

Promega, Southampton, Hampshire, UK 

Bright-GLo Luciferase reagent, TNT® T7 Quick Coupled Transcription/Translation 

System  

 

Qiagen, Crawley, West Sussex, UK 

Ni-NTA Spin Columns, QIAquick Gel Extraction Kit, QIAprep Spin Miniprep Kit, 

QIAexpress Kit  

 

Roche Diagnostics Ltd., Burgess Hill, West Sussex, UK 

DNase I recombinant  

 

Sigma-Aldrich, Poole, Dorset, UK 

Amicon Centrifugal Filter Units  

 

Thermo Fisher Scientific, Loughborough, Leicestershire, UK 

SuperScript® III One-Step RT-PCR System with Platinum® Taq DNA Polymerase, 

TOPO TA Cloning® Kit for Sequencing, TRIZOL® Reagent  
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2.1.2 Chemicals 

 

Becton, Dickinson and Company, Oxford, UK 

Bactotryptone, Yeast extract  

 

BIO-RAD Laboratories Ltd., Hemel Hempstead, Hertfordshire, UK 

Precision plus protein dual Xtra standards  

 

GBIOSCIENCES, Maryland Heights, MO 63043-3202, U.S.A. 

Nickel chelating resin  

 

Merck, Darmstadt, Germany 

5-bromo-4-chloro-3-indolyl phosphate (BCIP), Nitro blue tetrazolium (NBT)  

 

Sigma-Aldrich, Poole, Dorset, UK 

Agarose, β-mercaptoethanol, dithiothreitol, Diethylaminoethyl (DEAE)-dextran, Mg 

acetate, Monoclonal anti-polyHistidine-alkaline phosphatase antibody produced in 

mouse  

 

Thermo Fisher Scientific, Loughborough, Leicestershire, UK 

0.2 ml PCR tube, 50 ml centrifuge tube, 5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside (X-gal), 96 well flat bottom opaque Nunc plate, acetic acid glacial, 

acrylamide: bis-acrylamide 29:1 solution 40%, ammonium persulfate, Bovine serum 

albumin (BSA), Bromophenol blue, CaCl2, carbenicillin, chloramphenicol, Coomassie 

brilliant blue R-250, Diethylpyrocarbonate (DEPC)-treated H2O, Dulbecco's modified 

Eagle medium (DMEM), F96 MaxiSorp Nunc-Immuno plate, glucose, glycerol, 

Glycine, guanidine hydrochloride, guanidine thiocyanate, imidazole, Immobilon-P 

transfer membrane, Isopropyl β-D-1-thiogalactopyranoside  (IPTG), isopropyl alcohol, 

kanamycin, KCl, Luria Bertani (LB) agar, LB broth, methanol, MgCl2, MgSO4, NaCl, 

p-Nitrophenyl phosphate (pNPP), Sodium dodecyl sulphate (SDS), tetracycline, 

Tetramethylethylenediamine (TEMED), Tris base, Tween 20  
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2.1.3 Equipments 

 

BIO-RAD Laboratories Ltd., Hemel Hempstead, Hertfordshire, UK 

Mini-PROTEAN Tetra Electrophoresis System, Mini Trans-Blot Cell  

 

BMG Labtech, Aylesbury, UK 

FLUOstar OPTIMA  

 

Clare Chemical Research, Dolores, USA 

Dark Reader Transilluminator DR-88X  

 

Thermo Fisher Scientific, Loughborough, Leicestershire, UK 

Nanodrop 1000 Spectrophotometer  

 

Wallac, PerkinElmer, Cambridge, UK 

VICTOR Plate Reader  

 

 

2.1.4 Oligonucleotide primers 

 

All the oligonucleotide primers used for antibody library construction, ribosome 

display and scFv expression are listed in the table 2.1. Primers/oligonucleotides were 

synthesised from Invitrogen (Paisley, UK). 
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Table 2.1 

First strand cDNA and variable fragments (reverse) 
HuKF TCC AGA TTT CAA CTG CTC ATC AGA TGG CGG 
HuLF GGC TTG GAG CTC CTC AGA GGA GGG YGG GAA 
CH2F GGG TRT CCT TGG GTT TTG GGG GGA A 

Variable kappa (Vκ) (forward) 
VK1 GAC ATC CRG DTG ACC CAG TCT CC 
VK2346 GAT ATT GTG MTG ACB CAG WCT CC 
VK36 GAA ATT GTR WTG ACR CAG TCT CC 
VK5 GAA ACG ACA CTC ACG CAG TCT C 

Variable lambda (Vλ) (forward) 
VL1 CAG TCT GTS BTG ACG CAG CCG CC 
VL1459 CAG CCT GTG CTG ACT CAR YC 
VL15910 CAG CCW GKG CTG ACT CAG CCM CC 
VL2 CAG TCT GYY CTG AYT CAG CCT 
VL3A TCC TAT GWG CTG ACW CAG CCA C 
VL3B TCC TAT GAG CTG AYR CAG CYA CC 
VL3DLP16 TCC TCT GAG CTG AST CAG GAS CC 
VL6 AAT TTT ATG CTG ACT CAG CCC C 
VL78 CAG DCT GTG GTG ACY CAG GAG CC 

Variable heavy (VH) (forward) 
VH1 CAG GTC CAG CTK GTR CAG TCT GG 
VH1257 CAG GTG CAG CTG GTG SAR TCT GG 
VH2 CAG RTC ACC TTG AAG GAG TCT G 
VH3A GAG GTG CAG CTG KTG GAG WCC 
VH3B GAG GTG CAG CTG KTG GAG WCT 
VH4 CAG GTG CAG CTG CAG GAG TCS G 
VH4DP63 CAG GTG CAG CTA CAG CAG TGG  
VH6 CAG GTA CAG CTG CAG CAG TCA 

T7-variable kappa (T7 Vκ) (forward) 
VK1T7 CTA TAG GAA CAG ACC ACC ATG GCC GAC ATC CRG DTG ACC CAG TCT CC 
VK2346T7 CTA TAG GAA CAG ACC ACC ATG GCC GAT ATT GTG MTG ACB CAG WCT CC 
VK36T7 CTA TAG GAA CAG ACC ACC ATG GCC GAA ATT GTR WTG ACR CAG TCT CC 
VK5T7 CTA TAG GAA CAG ACC ACC ATG GCC GAA ACG ACA CTC ACG CAG TCT C 

T7-variable lambda (T7 Vλ) (forward) 
VL1T7 CTA TAG GAA CAG ACC ACC ATG GCC CAG TCT GTS BTG ACG CAG CCG CC 
VL1459T7 CTA TAG GAA CAG ACC ACC ATG GCC CAG CCT GTG CTG ACT CAR YC 

VL15910T7 CTA TAG GAA CAG ACC ACC ATG GCC CAG CCW GKG CTG ACT CAG CCM 
CC 

VL2T7 CTA TAG GAA CAG ACC ACC ATG GCC CAG TCT GYY CTG AYT CAG CCT 
VL3AT7 CTA TAG GAA CAG ACC ACC ATG GCC TCC TAT GWG CTG ACW CAG CCA C 
VL3BT7 CTA TAG GAA CAG ACC ACC ATG GCC TCC TAT GAG CTG AYR CAG CYA CC 
VL3DLP16T7 CTA TAG GAA CAG ACC ACC ATG GCC TCC TCT GAG CTG AST CAG GAS CC 
VL6T7 CTA TAG GAA CAG ACC ACC ATG GCC AAT TTT ATG CTG ACT CAG CCC C 
VL78T7 CTA TAG GAA CAG ACC ACC ATG GCC CAG DCT GTG GTG ACY CAG GAG CC 

Kappa link-heavy (κ link VH) (forward) 
VH1K CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA CAG GTC CAG CTK GTR 



	
   	
   	
  50	
  

CAG TCT GG  

VH1257K CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA CAG GTG CAG CTG GTG 
SAR TCT GG  

VH2K CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA CAG RTC ACC TTG AAG 
GAG TCT G 

VH3AK CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA GAG GTG CAG CTG KTG 
GAG WCC 

VH3BK CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA GAG GTG CAG CTG KTG 
GAG WCT 

VH4K CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA CAG GTG CAG CTG CAG 
GAG TCS G 

VH4DP63K CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA CAG GTG CAG CTA CAG 
CAG TGG G 

VH6K CCG CCA TCT GAT GAG CAG TTG AAA TCT GGA CAG GTA CAG CTG CAG 
CAG TCA 

Lambda link-heavy (λ link VH) (forward) 
VH1L CCC TCC TCT GAG GAG CTC CAA GCC CAG GTC CAG CTK GTR CAG TCT GG 
VH1257L CCC TCC TCT GAG GAG CTC CAA GCC CAG GTG CAG CTG GTG SAR TCT GG 
VH2L CCC TCC TCT GAG GAG CTC CAA GCC CAG RTC ACC TTG AAG GAG TCT G 
VH3AL CCC TCC TCT GAG GAG CTC CAA GCC GAG GTG CAG CTG KTG GAG WCC 
VH3BL CCC TCC TCT GAG GAG CTC CAA GCC GAG GTG CAG CTG KTG GAG WCT 
VH4L CCC TCC TCT GAG GAG CTC CAA GCC CAG GTG CAG CTG CAG GAG TCS G 
VH4DP63L CCC TCC TCT GAG GAG CTC CAA GCC CAG GTG CAG CTA CAG CAG TGG G 
VH6L CCC TCC TCT GAG GAG CTC CAA GCC CAG GTA CAG CTG CAG CAG TCA  

Combination (T7AB is forward, CH2Not is reverse) 
T7AB GCA GCT AAT ACG ACT CAC TAT AGG AAC AGA CCA CCA TGG CC 
CH2Not CCG GGA TGC GGC CGC GGT RTC CTT GGG TTT TGG GGG GAA 

Ribosome display (EP1, IP1 and LP1 are reverse, Kz1 is used on both directions) 

EP1 GCT ACC GCC TCC ACT CCC ACC GCC AGA TCC CCC ACC CGA GCC TCC CCC 
TGA ACC GCC TCC CCG GGA TGC GGC CGC RGT RTC CTT GG 

IP1 GAA CAG ACC ACC ATG AG GAA GAC TGA YGG TCC 
Kz1 GAA CAG ACC ACC ATG 

LP1 
GCTGCT ACC GCC TCC ACT CCC ACC GCC AGA TCC CCC ACC CGA GCC TCC 
CCC TGA ACC GCC TCC CCG GGA TGC GGC CGC GAA CAG ACC ACC ATG AG 
GAA GAC 

scFv expression (reverse) 
TJ011 GCC CGC GGC CGC TGT GCC CCC AGA GGT G 
TJIgG24 GCC CGC GGC CGC TGT GCT CTC GGA GGT G 

 

Table 2.1 Primers used in PCR 

Primers Degenerate codons used for synthesising variable regions are: M=A/C; 

R=A/G; W=A/T; S=G/C; Y=C/T; K=G/T; V=A/G/C; H=A/C/T; D=A/G/T; B=G/C/T; 

N=A/G/C/T. Primer directions are shown in brackets. 
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2.1.5 Plasmids 

 

Protein expression vector pSANG10-3F (Martin et al., 2006) was provided by Dr. John 

McCafferty (Department of Biochemistry, University of Cambridge). Plasmid pMal-

c2X (used to construct vector pABEXT) was purchased from New England Biolabs 

(Hitchin, Herts, UK).   

 

 

2.1.6 Cell culture 

 

E. coli strain XL1-blue [recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac (F´ 

proAB lacIqZΔM15 Tn10 Tetr)] competent cells used for plasmid transformation were 

purchased from Stratagene (California, USA). E. coli strain BL21(DE3)pRARE 

competent cells used for protein expression were made from E. coli BL21(DE3) [F– 

dcm ompT hsdS(rB
– mB

–) gal λ(DE3)] (Merck, Nottingham, UK) with plasmid pRARE 

in Dr. Angray Kang’s lab (School of Life Sciences, University of Westminster, UK).  

 

PBMCs from two HIV-1 patients (M325 and K530) were kindly provided by Dr. 

Hanna Dreja (Centre for Infectious Disease, Institute of Cell and Molecular Science, 

Barts and The London, Queen Mary, University of London, UK). Serum neutralising 

activities of these two patients were tested by Dr. Hanna Dreja and are listed in the 

appendix 1.  

 

Recombinant antigen gp120 generated from HIV-1 virus isolated from patient K530’s 

serum was provided by Dr. Simon A. Jeffs (Wright-Fleming Institute, Division of 

Medicine, Imperial College London, UK). This was selected because it was 

homologous for use in screening the K530 library and heterologous for the M325 

library. 
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2.2 Construction of human single-chain antibody libraries 

 

From each of the two individual patient PBMCs (M325 and K530), a human single-

chain antibody library was constructed respectively, and designated M325 and K530. 

First, total RNA was extracted from the corresponding patient PBMCs. The RNA was 

then used to synthesis first strand complementary DNA (cDNA) using specific primers 

followed by PCR using designed primers to amplify the variable regions. Finally 

single-chain antibody libraries were constructed by assembling all individual variable 

regions of light chains (VLs) with individual heavy chains (VH-CH1-hinge-partial 

CH2) by PCR. Detailed procedures are described below.  

 

 

2.2.1 Total RNA extraction 

 

PBMCs from patient M325 were isolated from 100 ml of the whole blood using Ficoll 

gradient centrifugation prior to the treatment with 5 ml of TRIZOL® Reagent for 

homogenisation, while PBMCs from patient K530 were recovered from 20 ml of the 

whole blood by the same way and the isolated PBMCs had been stored at -80°C for 3 

years before use.  To extract total RNA from the PBMCs K530, 2 ml of TRIZOL® 

Reagent was added to disrupt cells and dissolve cell components, as well as eliminate 

the potential hazards of HIV-1 infection.  

 

Total RNA was isolated using TRIZOL® Reagent according to the manufacture’s 

instruction. In brief, 0.2 ml of chloroform was added per 1 ml of TRIZOL® Reagent 

used for the initial homogenisation, and the sample was shaken vigorously for 15 

seconds and incubated at room temperature for 15 minutes. The sample was then 

centrifuged at 12000 g for 15 minutes at 4°C, and the upper aqueous phase was 

transferred to a fresh tube. RNA was precipitated from the aqueous phase by adding 

0.5 ml of isopropyl alcohol for every 1 ml of TRIZOL® Reagent. After incubation at 

room temperature for 10 minutes, the mixture was centrifuged at 12000 g for 10 

minutes at 4°C. The supernatant was carefully removed, and the RNA pellet was 

washed with 1 ml of 75% ethanol per 1 ml of TRIZOL® Reagent, and centrifuged at 

7500 g for 5 minutes at 4°C. The RNA was dried in air for 10 minutes, before re-

dissolved by addition of 30 µl of DEPC-treated H2O and stored at -80°C. 
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2.2.2 First strand cDNA synthesis 

 

Three first strand cDNAs (Vκ, Vλ and heavy chain) were synthesised from total RNA 

using Protoscript	
  ® First Strand cDNA Synthesis Kit with specific primers (HuKF, 

HuLF and CH2F, respectively), according to the manufacturer’s instructions. Briefly, 1 

µg of total RNA was incubated at 70°C for 5 minutes with 30 pmol of primer, 40 nmol 

of dNTP mix and sufficient DEPC-treated H2O to a final volume of 16 µl. The mixture 

was cooled down on ice for at least 30 seconds before adding 2 µl of M-MuLV 

Reverse Transcriptase Reaction Buffer (10X RT Buffer), 1 µl of M-MuLV Reverse 

Transcriptase  (25 units) and 1 µl of RNase inhibitor (10 units). The mixture was 

incubated at 42°C for 1 hour, followed by 95°C for 5 minutes to inactivate the 

enzymes. 1 µl of RNase H (2 units) was then added to the mixture for 20 minutes at 

37°C to degrade the remaining RNA. Finally the mixture was incubated at 95°C for 5 

minutes to inactivate the enzyme. Synthesised first strand cDNAs were used to 

construct individual Vκ, Vλ and heavy chain fragments, respectively. 

  

 

2.2.3 Single-chain antibody library construction 

 

Individual fragments including 4 Vκ, 9 Vλ, and 8 heavy chains (VH-CH1-hinge-partial 

CH2) were amplified by PCR (figure 2.1). 5’-primers specific for individual Vκ, Vλ 

and VH families were designed to amplify all the functional variable regions of 

Immunoglobulin (Ig) G family (Sblattero and Bradbury, 1998). In order to identify the 

subclasses of neutralising mAbs, 3’-primers for heavy chains were designed to anneal 

at the beginning region of CH2 domain, thus amplifying VH-hinge-CH1 and partial 

CH2 which provides the information of immunoglobulin subclasses (IgG1, 2, 3 or 4). 

A secondary PCR was performed to introduce restriction endonuclease sites NcoI at 

the 5’ end of the VL (Vλ and Vκ) and NotI at the 3’ end of the CH2 for the cloning 

purpose, as well as a synthetic linker to join VL to heavy chain. Individual VL was 

linked with individual heavy chain through PCR to form Vκ-link-VH-CH1-hinge-

partial CH2 and Vλ-link-VH-CH1-hinge-partial CH2. In this way, a total of 104 

combinations of light chain and heavy chain families were generated (Figure 2.2).  
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Figure 2.1 Illustration of single-chain antibody library construction 

(1) Individual fragment (4 Vκ, 9 Vλ and 8 heavy chains) were generated by PCR; (2) 

each fragment was introduced restriction endonuclease sites and a linker sequence by 

PCR; (3) each light chain and heavy chain was assembled to each other, forming the 

single-chain antibody library. 
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Figure 2.2 Illustration of combinations of light chains and heavy chains 

In both libraries, individual light chain families and heavy chain families were 

randomly combined one by one by PCR assembly. 104 combinations were mixed for 

the use of ribosome display. 
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Taq & Go Ready to Use PCR Mix was employed in all PCR amplification. The 

following is the standard reaction mixture: 10 µl of 5X Taq & Go Ready to Use PCR 

Mix, 25 pmol of each primer, 2 µl of template and sufficient DEPC-treated H2O to a 

final volume of 50 µl. PCR was carried out using the condition of one cycle at 94°C 

for 5 minutes, followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing 

at 50-60°C (depending on the primer pairs) for 30 seconds and extension at 72°C for 1 

minute, and one cycle of final extension at 72°C for 10 minutes.  

 

20 µl of PCR products were analysed by gel electrophoresis with 1.5% (w/v) agarose. 

DNA fragment size was determined by comparison with 100 bp DNA ladder. For 

purifying DNA from agarose gels, the piece of gel containing the desired DNA 

fragment was excised under Dark Reader Transilluminator DR-88X to eliminate 

ultraviolet (UV) damage and the DNA was extracted from the gel using QIAquick Gel 

Extraction Kit according to the manufacturer’s instructions. Briefly, excised agarose 

gel was dissolved in 300 µl of QG buffer (5.5 M guanidine thiocyanate, 20 mM Tris-

HCl, pH 6.6) and incubated at 50°C for 10 minutes. The solution was mixed with 100 

µl of isopropyl ethanol before loaded to QIAquick spin column and centrifuged at 

13000 g for 1 minute. The column was washed with 750 µl of PE buffer (20 mM NaCl, 

2 mM Tris-HCl, 80% ethanol, pH 7.5) and centrifuged at 13000 g for 1 minute. DNA 

was eluted in 30 µl of DEPC-treated H2O and stored at -20°C. 
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2.3 Ribosome display 

 

Both single-chain antibody libraries were screened by in vitro ribosome display 

according to protocol described (He and Taussig, 2007) with slight modifications. The 

steps of ribosome display cycle are illustrated in figure 2.3.  

 

 

2.3.1 Full-length generation of ribosome display construct  
 

To display antibodies on the surface of ribosome, the 5’ end of the library should 

contain T7 promoter and a eukaryotic translation initiation (Kozak) sequence (Kozak, 

1987). This was achieved by designing a T7AB primer (5’- GC AGC TAA TAC GAC 

TCA CTA TAG GAA CAG ACC ACC ATG GCC -3’). On the other hand, to 

efficiently recover the cDNA from ribosome complexes after selection without prior 

mRNA isolation, a primer annealing at the position about 60-80 bp upstream of the 3’ 

end is required as ribosome occupies about 60 nucleotides at the 3’ end. This would 

lead to the generation of cDNA short of 60-80 nucleotides (He and Taussig, 2005). An 

extension primer (EP1) was thus designed  (5’- GCT ACC GCC TCC ACT CCC ACC 

GCC AGA TCC CCC ACC CGA GCC TCC CCC TGA ACC GCC TCC CCG GGA 

TGC GGC CGC RGT RTC CTT GG -3’), which covers the missing 60-80 nucleotides. 

Using the primers T7AB and EP1, a full-length DNA construct was obtained by PCR. 

The generated full-length DNA is directly used for the subsequent cycle of ribosome 

display.  

 

 

2.3.2 Antigen coating 

 

10 µg of antigen (recombinant gp120) in a volume of 20 µl was used to coat a 0.2 ml 

PCR tube at 4°C overnight. After washing twice with 100 µl of phosphate buffered 

saline (PBS, 137 mM NaCl, 2.5 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4, pH 

7.4), the PCR tube was blocked with 100 µl of 10 mg/ml BSA in PBS at room 

temperature for 1 hour. The PCR tube was then washed by 100 µl of PBS three times 

followed by ribosome display washing buffer (PBS containing 0.01% Tween 20, 5 mM 

Mg acetate and 0.1% BSA, pH 7.4) and kept at 4°C before use. 
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Figure 2.3 Ribosome display flow chart 

 (1) cDNA library mixture is extended at 3’ end to generate the full-length construct by 

PCR; (2) in vitro coupled transcription/translation is set up, individual antibody 

fragments are generated through ribosome-directed protein synthesis and physically 

linked with its translating mRNA due to the absence of the stop codon; (3) Antibody-

Ribosome-mRNA (ARM) complex is added to antigen gp120-coated tube for in vitro 

selection, unbound ARM complexes are washed away; (4) RT-PCR recovery of cDNA 

from selected mRNA sequences, single primer PCR is set up to amplify the sequences 

with primer Kz1; (5) full-length cDNA is regenerated by PCR, which can be used as 

template for the subsequent round of ribosome display or cloning for E. coli 

expression. 
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2.3.3 Coupled transcription/translation 

 

In vitro coupled transcription/translation was performed with TNT® T7 Quick 

Coupled Transcription/Translation System. The reaction was set up by mixing 20 µl of 

TNT T7 Quick Master Mix, 0.5 nmol of methionine (both provided in the kit), 50 nmol 

of Mg acetate, 0.1-1 µg of DNA (product from section 2.3.1) and DEPC-treated H2O 

making up to a final volume of 25 µl, and incubating at 30°C for 60 minutes. In order 

to remove input DNA, 60 units of DNase I were added to the TNT mixture and 

incubated at 30°C for 20 minutes. Then the mixture was diluted with 35 µl of cold PBS 

containing 5 mM of Mg acetate before transferring to antigen-coated PCR tube, and 

incubating at 4°C for 2 hours.  

 

 

2.3.4 cDNA recovery by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

 

After washing 5 times with ice cold ribosome display washing buffer and 2 times with 

cold distilled H2O, the PCR tube was treated with 8 µl of DEPC-treated H2O heated at 

75°C for 10 minutes; then 20 nmol of deoxyribonucleotide triphosphate (dNTP, 

provided in ProtoScript ® First Strand cDNA Synthesis Kit) and 20 pmol of primer 

IP1 were added to the tube and heated at 70°C for 5 minutes, followed by rapid cooling 

on ice for at least 30 seconds. RT-PCR recovery was performed with ProtoScript ® 

First Strand cDNA Synthesis Kit, by adding 200 units of M-MuLV reverse 

transcriptase, 10 units of RNase inhibitor (both provided in the kit), 10 nmol of 

dithiothreitol and DEPC-treated H2O to make up to a final volume of 20 µl. The 

mixture was incubated at 42°C for 75 minutes followed by 80°C for 5 minutes. The 

cDNA generated was ready for amplification by single primer PCR (figure 2.4). 

 

 

2.3.5 Single primer PCR and generation of full-length cDNA construct 

 

Single primer PCR was carried out with 10 µl of 5X Taq & Go Ready to Use PCR 

Mix, 50 pmol of primer Kz1, 2 µl of recovered cDNA as template and DEPC-treated 

H2O to a final volume of 50 µl. The cycling was carried out by: one cycle of initiation 
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at 94°C for 5 minutes, 30 cycles of 94°C for 30 seconds, 48°C for 30 seconds and 72°C 

for 1 minute, and finally, one cycle at 72°C for 10 minutes. 1 µl of the PCR product 

was used as the template to carry out another 30 cycles PCR under the same condition 

to further amplify the selected cDNA. The second PCR product was analysed by gel 

electrophoresis and purified with QIAquick Gel Extraction Kit. Purified cDNA product 

was used as template to extend the cDNA fragment to full-length and introduce 

restriction site NotI at the 3’ end, with 25 pmol of each primer T7AB and LP1 and 

annealing temperature at 55°C. The regenerated full-length cDNA can be used as 

template in additional rounds of ribosome display or E. coli cloning. 

 

 

 
 

Figure 2.4 Primer design for in situ reverse transcription and single primer 

amplification 

Primer IP1 was designed to introduce a 15 bp Kozak sequence to the 3’ end of mRNA, 

leading to the generation of single-stranded cDNAs with a complementary flanking 

sequence at both 5’ and 3’ ends, which can be amplified with a single primer Kz1. 

Kozak sequence (bold) and T7 sequence (underlined) are shown. 
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2.4 Cloning and DNA sequencing 

 

 

2.4.1 Chemically competent cell preparation 

 

Chemically competent XL1-blue and BL21(DE3)pRARE cells were prepared using the 

Cohen method (Cohen et al., 1972). In brief, 5 single colonies of E. coli cultured on 

Luria Bertani (LB) agar (containing 12.5 µg/ml of tetracycline for XL1-blue strain and 

25 µg/ml of chloramphenicol for BL21(DE3)pRARE strain) were transferred into 10 

ml of LB media and grown at 37°C, 250 rpm overnight. The culture was then added 

into 200ml of fresh LB media supplemented with the required antibiotics. The culture 

continued to grow at 37°C, 250 rpm until optical density (OD)600 was 0.4 to 0.5. After 

cooling down on ice for 30 minutes, the culture was split in 50 ml volumes into four 

centrifuge tubes and subsequently centrifuged at 1000 g for 7 minutes at 4°C. Each 

pellet was resuspended in 12.5 ml of cooled 100 mM MgCl2 and centrifuged at 1000 g 

for 7 minutes at 4°C. Then 25 ml of cooled 100 mM CaCl2 was added to each pellet 

and the mixture was left on ice for 30 minutes, followed by centrifugation at 1000 g for 

7 minutes at 4°C. Finally, each pellet was resuspended in 1 ml of 100 mM CaCl2 

containing 15% glycerol, and aliquots (50 µl) were flash frozen in dry ice and stored at 

-80°C. 

 

 

2.4.2 Cloning, digestion and ligation  

 

TOPO cloning was used to clone the PCR product selected by ribosome display. The 

reaction was set up with TOPO TA Cloning® Kit according to manufacturer’s 

instructions. 4 µl of DNA recovered from ribosome display selection was ligated into 1 

µl of TOPO vector and 1 µl of salt solution (provided in TOPO TA Cloning® Kit for 

Sequencing) and incubated at room temperature for 1 hour, before transforming into 

XL1-blue competent cells for blue/white colony screening. Plasmid DNA from 

positive colonies was extracted for sequencing (see below). 
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To express selected scFv in E. coli, restriction enzyme digestion followed by ligation 

into expression vector was performed as following: 30 µl of purified DNA was 

incubated with 5 units of each restriction enzyme NcoI and NotI in the presence of 1X 

NEBuffer 3, 100 µg/ml BSA and H2O to a final volume of 50 µl. The reaction mixture 

was incubated at 37°C for 3 hours. Digested product was examined by gel 

electrophoresis on 2% (w/v) agarose gel, and subsequently purified with QIAquick Gel 

Extraction Kit, as described in section 2.2.3. 

 

After digestion with restriction enzymes NcoI and NotI, the scFv was inserted into 

expression vector pSANG10-3F, which was also digested with the same restriction 

enzymes NcoI and NotI. Ligation reaction was set up by mixing 7 µl of purified scFv, 1 

µl of purified pSANG10-3F, 1 µl containing 20 units of T4 DNA ligase and 1 µl of 

10X T4 DNA ligase reaction buffer making up to a final volume of 10 µl. The reaction 

mixture was incubated at room temperature for 1 hour before transforming into XL1-

blue competent cells. Positive plasmid DNA was identified and used to transform 

BL21(DE3)pRARE cells for protein expression. 

 

Since the use of pSANG 10-3F vector requires two transformation steps prior to 

protein expression, an alternative vector was constructed to allow single transformation 

and immediate production. pABEXT vector was created by double digesting pMAL-

c2X vector with restriction enzyme NdeI and HindIII, and ligating the insert between 

the NdeI and HindIII sites of pSANG10-3F vector (Figure 2.5). The constructed 

pABEXT vector encodes tac promoter (de Boer et al., 1983) and PelB leader sequence 

(Milstein et al., 1972). The tac promoter facilitates protein expression in E. coli XL1-

blue strain, while the PelB leader sequence enables protein secretion into periplasm of 

E. coli therefore crude extract of secreted proteins can be tested quickly in ELISA. A 

full sequence of pABEXT vector is shown in the appendix 2. 
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Figure 2.5 Construction of pABEXT vector 

pABEXT vector was constructed by using pMAL-c2X vector as backbone, and 

inserting the fragment between NdeI and HindIII sites of pSANG10-3F vector. The 

constructed pABEXT vector consists tac promoter and PelB leader sequence, and both 

6XHis-tag and tri-FLAG-tag for protein purification and detection. 
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2.4.3 E. coli transformation 

 

For DNA cloning, TOPO ligation mixture was transformed into XL1-blue competent 

cells on X-gal plate to perform blue/white screening. 50 µl of XL1-blue competent 

cells were thawed on ice for 5 minutes and added 6 µl of TOPO ligation mixture. After 

incubation on ice for 5 minutes, the cells were heat shock in a 42°C water bath for 1 

minute, followed by placing the tube on ice for 5 minutes. 250 µl of pre-warmed SOC 

(20 mg/ml Bactotryptone, 5 mg/ml Yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgSO4, 10 mM MgCl2, 0.4% glucose, pH 7.0) was added to the tube and incubated at 

37°C, 250 rpm for 1 hour. All the mixture was plated on X-gal plate (LB agar 

containing 40 µg/ml of X-gal, 200 µM of IPTG and 100 µg/ml of carbenicillin) and 

incubated at 37°C overnight. 

 

For protein expression, the pSANG and scFv ligation mixture was transformed into 

XL1-blue competent cells on LB agar plate supplemented with 50 µg/ml of kanamycin 

using the same protocol as described above. 

 

 

2.4.4 Plasmid DNA miniprep and DNA sequencing 

 

Clones identified from X-gal plate was grown in 10 ml of LB media supplemented 

with 100 µg/ml carbenicillin at 37°C, 250 rpm overnight. The overnight culture was 

centrifuged at 1000 g for 10 minutes, and plasmid DNA was isolated from cells using 

QIAprep® Spin Miniprep Kit according to manufacturer’s instructions. In brief, the 

cell pellet was resuspended in 250 µl of P1 buffer (50 mM Tris-HCl, 10 mM EDTA, 

50 µg/ml RNase, pH 8.0) and transferred into a 1.5 ml micro-centrifuge tube. The cells 

were lysed by adding 400 µl of P2 buffer (0.2 M NaOH, 1% SDS) and inverting the 

tube 5 times. The solution was neutralised by adding 580 µl of N3 buffer (4 M 

guanidine hydrochloride, 0.5 M potassium acetate, pH 4.2) and inverting the tube 5 

times. The mixture was centrifuged at 13000 g for 10 minutes, and the supernatant was 

carefully transferred to QIAprep spin column and centrifuged at 13000 g for 1 minute. 

Then the column was washed once with 500 µl of PB buffer (5 M guanidine 

hydrochloride, 20 mM Tris-HCl, 38% ethanol, pH 6.6), followed by 750 µl of PE 
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buffer (20 mM NaCl, 2 mM Tris-HCl, 80% ethanol, pH 7.5). After discard the flow-

through, the column was centrifuged at 13000 g for 1 minute again to remove residual 

wash buffer. Purified DNA was eluted by adding 30 µl of DEPC-treated H2O and 

centrifuged at 13000 g for 1 minute.  

 

Purified plasmid DNA was sequenced at the Wolfson Institute for Biomedical 

Research, University College London using primers M13-20 (5'-GTA AAA CGA 

CGG CCA GT-3') and M13 rev (5'-GGA AAC AGC TAT GAC CAT G-3'). 
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2.5 Protein expression and purification 

 

 

2.5.1 Protein expression with pSANG vector 

 

Clones of interest were expressed as scFv after DNA sequencing. DNA was amplified 

by PCR using primer T7AB (5’- GC AGC TAA TAC GAC TCA CTA TAG GAA 

CAG ACC ACC ATG GCC -3’) and reverse primer TJ011 (5’- GCC CGC GGC CGC 

TGT GCC CCC AGA GGT G -3’, for IgG1 sequences), or TJIgG24 (5’- GCC CGC 

GGC CGC TGT GCT CTC GGA GGT G -3’, for IgG2, IgG4 sequences). After 

digestion with restriction enzymes NcoI and NotI, the scFv was inserted into 

expression vector pSANG10-3F and transformed into XL1-blue competent cells. 

Positive plasmid DNA was identified and used to transform BL21(DE3)pRARE cells 

for protein expression. 

 

BL21(DE3)pRARE was chosen for expressing antibody scFv as mentioned in 1.1.11.  

5 single colonies from LB agar supplemented with 50 µg/ml of kanamycin and 25 

µg/ml of chloramphenicol were grown in 10 ml of LB media at 37°C, 250 rpm 

overnight with required antibiotics. Before induction, 700 µl of overnight culture was 

made a bacterial stock by mixing with 300 µl of 50% glycerol and stored at -80°C. The 

remaining culture was used for protein expression by adding into 200 ml of fresh LB 

media supplemented with appropriate antibiotics. The culture was grown at 37°C, 250 

rpm until OD600 reached 0.5, and then incubated on ice for 30 minutes. To make an 

uninduced sample as the control, 1 ml of culture was taken out and centrifuged at 

13000 g for 1 minute. Protein expression was induced by adding IPTG into the culture 

at the final concentration of 0.3 mM and the culture was incubated at 20°C, 250 rpm 

for 20 hours. 1 ml of the induced culture was collected for protein analysis (section 

2.5.5). 
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2.5.2 Protein expression with pABEXT vector 

 

To facilitate a high throughput, an alternative expression strategy was performed using 

pABEXT vector. Selected cDNA from ribosome display was digested with NcoI and 

NotI directly (figure 2.6). Single-chain product (VL-link-VH-CH1-hinge-partial CH2) 

at the size of approximately 1200 bp was ligated into pABEXT vector. Proteins were 

expressed in 50 ml scale with the method described in section 2.5.1, and extracted by 

osmotic shock (see 2.5.3). The crude extract was used to perform ELISA against 

recombinant gp120 as described in 2.6.1. Positive clones were subsequently sequenced 

with primer M13-20, and standard protocol performed with these clones as described 

above. 

 
 
 
2.5.3 Purification of proteins from E. coli periplasm (osmotic shock) 

 

The proteins expressed in the periplasm of E. coli were extracted by osmotic shock, 

and subsequently purified with a column supplemented with Nickel chelating resin, as 

described in The QIAexpressionistTM -- A handbook for high-level expression and 

purification of 6xHis-tagged proteins, fifth edition. Basically, the cells from a 200 ml 

culture were collected by centrifugation at 3000 g for 20 minutes at 4°C. The cell pellet 

was resuspended in 5 ml of TES buffer [30 mM Tris base, 1 mM 

Ethylenediaminetetraacetic acid (EDTA), 20% sucrose, pH 8.0]. The cells were 

incubated on ice for 10 minutes and centrifuged at 9000 g for 20 minutes at 4°C. The 

supernatant (periplasmic fraction 1) was collected and stored on ice, while the cell 

pellet was resuspended in 5 ml of 5 mM MgCl2. After incubating for 10 minutes on 

ice, the suspension was centrifuged at 9000 g for 20 minutes at 4°C. The supernatant 

(periplasmic fraction 2) was collected and mixed with periplasmic fraction 1. 

Remaining cell pellets were analysed for the non-secreted recombinant protein 

expression.  

 

The periplasmic fractions were subsequently purified using a Ni-NTA column, which 

was equilibrated with lysis buffer (50 mM NaH2PO4, 500 mM NaCl, 10 mM 

imidazole, pH 8.0). At the same time, 3.3 ml of 4X lysis buffer (200 mM NaH2PO4, 2 
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M NaCl, 40 mM imidazole, pH 8.0) was added to the supernatant, which was then 

loaded to the column. The column was washed with 5 ml of wash buffer (50 mM 

NaH2PO4, 500 mM NaCl, 20 mM imidazole, pH 8.0), and the protein was eluted with 

0.5 ml of elution buffer (50 mM NaH2PO4, 500 mM NaCl, 500 mM imidazole, pH 8.0) 

by 5 times. Purified proteins were flash frozen on dry ice and stored at -20°C. 

 

 

2.5.4 Purification of proteins from E. coli total extracts  

 

Recombinant proteins were also extracted from total cell lysate of E. coli and affinity 

purified with Ni-NTA spin columns using the protocol described in Ni-NTA Spin Kit 

Handbook, second edition and The QIAexpressionistTM -- A handbook for high-level 

expression and purification of 6xHis-tagged proteins, fifth edition. Briefly, the cells 

from 200 ml culture were collected by centrifugation at 3000 g for 20 minutes at 4°C. 

The cell pellet was resuspended in 5 ml of lysis buffer (50 mM NaH2PO4, 500 mM 

NaCl, 10 mM imidazole, pH 8.0). 500 µg of lysozyme and 5 µmol of 

phenylmethanesulfonyl fluoride (PMSF) were added to the suspension, in order to 

break E. coli cell walls and inhibit protease. The cell membrane was disrupted by 

sonicating the suspension for 30 seconds by 6 times using an ultrasonic probe, 

followed by incubating on ice for 1 hour. Soluble protein was collected by performing 

centrifugation at 19000 g for 45 minutes at 4°C, and transferring supernatant to a fresh 

tube. Recombinant protein was subsequently purified by Ni-NTA spin column, which 

was equilibrated with 600 µl of lysis buffer before use. The supernatant was loaded to 

spin column and centrifuged at 2000 g for 2 minutes at 4°C. The column was washed 

with 600 µl of wash buffer (50 mM NaH2PO4, 500 mM NaCl, 20 mM imidazole, pH 

8.0). Finally, protein was eluted in 100 µl of elution buffer (50 mM NaH2PO4, 500 mM 

NaCl, 500 mM imidazole, pH 8.0) by 5 times.  
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Figure 2.6 Antibody expression in two vectors 

Ribosome display selected antibodies were expressed either in pSANG vector in the 

form of scFv, or in pABEXT vector in the form of single-chain for a quick screening 

purpose. Note antibodies were expressed at different sizes because of the two different 

methods. 
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To remove the excess salt from eluted proteins, centrifugal filter units was used to 

desalt and also concentrate the purified proteins according to the manufacturer’s 

instructions. Eluted protein fractions were mixed and loaded to Amicon filter column, 

and centrifuged at 13000 g for 15 minutes at 4°C to remove most of the solvent. The 

remaining solution was diluted with 450 µl of PBS, followed by centrifugation at 

13000 g for 15 minutes at 4°C. The column was inverted in a clean collection tube, and 

centrifuged at 1000 g for 2 minutes at 4°C to collect concentrated and desalted protein. 

Protein concentration was determined by Nanodrop 1000 spectrophotometer in 

accordance with manufacturer’s instructions. The proteins were flash frozen and stored 

at -80°C. 

 

 

2.5.5 Electrophoresis analysis of scFv proteins 

 

Recombinant proteins purified by the methods described in section 2.5.3 and 2.5.4 

were analysed by Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) and western blotting. SDS-PAGE was prepared using Laemmli system 

(Laemmli, 1970) with some modifications. 12% Resolving gel [12% acrylamide/bis 

(29:1), 360 mM Tris base, 0.1% SDS, 0.1% ammonium persulphate, 0.1% TEMED, 

pH 8.8] and 4% Stacking gel [4% acrylamide/bis (29:1), 60 mM Tris base, 0.1% SDS, 

0.1% ammonium persulphate, 0.1% TEMED, pH 6.8] were used to detect protein 

fragments. Cell pellets (uninduced and induced samples from section 2.5.1) were 

dissolved in 50 µl of 4X protein gel loading buffer (62.5 mM Tris base, 2% SDS, 5% 

β-mercaptoethanol, 0.05% Bromophenol blue, 10% glycerol, pH 6.8) and heated at 

95°C for 5 minutes. 36 µl of other samples from protein purification (soluble fraction, 

flow-through, wash fraction and elution1-4) were diluted with 12 µl of 4X protein gel 

loading buffer and heated at 95°C for 5 minutes. Typically 20 µl (10 µl for uninduced 

and induced samples) was loaded on each well of the gel, while 5 µl of protein marker 

was used as standards. Electrophoresis was performed using a Mini-PROTEAN Tetra 

Electrophoresis System with running buffer (25 mM Tris base, 192 mM glycine, 0.1% 

SDS), and 200 volts were applied for 45 minutes. Gels after SDS-PAGE can be used 

for Coomassie blue staining or for western blotting. 
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For Coomassie blue staining (Meyer and Lamberts, 1965), the proteins were visualised 

on gels by dye staining using the solution containing 0.025% (w/v) Coomassie brilliant 

blue R-250 in 10% (v/v) acetic acid, in a microwave until boiling followed by 1 minute 

on rocking table. Finally, the gel was destained using 10% (v/v) acetic acid by boiling 

in a microwave.  

 

For western blotting, the proteins were transferred from the gel to Immobilon-P 

transfer membrane using a Mini Trans-Blot Cell with transfer buffer (25 mM Tris base, 

192 mM glycine, 20% methanol) (Towbin et al., 1979), and 100 volts were applied for 

1 hour. The membrane was blocked with 2% milk powder (Tesco)/PBS at room 

temperature for 1 hour. After washing with Tris buffered saline Tween 20 (TBST, 50 

mM Tris base, 150 mM NaCl, 0.1% Tween 20, pH 7.4) twice, the membrane was 

incubated with monoclonal anti-polyHistidine-alkaline phosphatase antibody produced 

in mouse (1: 20000 diluted in 2% milk/PBS) at room temperature for 2 hours. The 

membrane was then washed 5 times with TBST, and protein bands were visualised by 

adding substrate [0.02% BCIP and 0.03% NBT in AP buffer (100 mM Tris-HCl, 100 

mM NaCl, 5 mM MgCl2, 0.05% Tween 20, pH 9.5)] and incubating at room 

temperature for 2 to 5 minutes.  

 

Protein markers were used for SDS-gel and western blotting. They were made by 

mixing 4 recombinant proteins together: pET32a plasmid (20 kDa), Red Fluorescent 

Protein (RFP) in pSANG (30 kDa), MopB protein in pSANG (42 kDa) and Heat Shock 

Protein (HSP) 70 in pET16b (75 kDa). These protein standards were confirmed by 

comparing with commercial Precision plus protein dual Xtra standards in SDS-PAGE 

and western blotting.  
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2.6 Functional assays 

 

 

2.6.1 ELISA 

 

Antibody binding to recombinant gp120 was examined by Enzyme-linked 

immunosorbent assay (ELISA). F96 MaxiSorp Nunc-Immuno plates were coated with 

100 µl of 1 µg/ml of gp120 in PBS overnight. As a negative control, 100 µl of 1 µg/ml 

of BSA/PBS was coated. Plates were blocked with 2% milk/PBS at room temperature 

for 1 hour, followed by washing with TBST 5 times. Purified antibodies diluted at 5-25 

µg/ml in PBS were incubated in the wells at room temperature for 2 hours. Plates were 

washed with TBST for 5 times before adding monoclonal anti-polyHistidine-alkaline 

phosphatase antibody (1: 10000 diluted in 2% milk/PBS) at room temperature for 2 

hours. The assay was developed with 1 mg/ml pNPP in 0.2 M Tris (pH 8.0). After 

incubating at room temperature for 2 hours, the absorbance at 405 nm was measured 

using a VICTOR plate reader. Both sample and control were performed in triplicate. 

 

 

2.6.2 Neutralisation assay 

 

The neutralisation assay was performed at the Centre for Infectious Disease, Blizard 

Institute of Cell and Molecular Science, Barts and The London, Queen Mary, 

University of London. The neutralising activity was measured by luciferase-based 

assay in TZM-bl cell (Li et al., 2005). Antibodies were tested at the starting 

concentration of 50 µg/ml followed by two 4-fold dilutions in 50 µl of Dulbecco's 

modified Eagle medium (DMEM) with 10% Foetal calf serum (FCS) in a 96 well flat 

bottom opaque Nunc plate. 50 µl of virus prepared from replication competent HIV-1 

molecular clones was added and left at 37°C for 1 hour. 104 TZM-bl cells in 100 µl of 

DMEM with 10% FCS, containing 50 µg/ml of Diethylaminoethyl (DEAE)-dextran, 

were added to the virus-antibody mixtures. Wells with protein elution buffer (i.e. PBS) 

were included as virus control (cell + virus), and wells with cells alone were included 

as the cell control. Neutralising plasma (1:20 dilution) from patient K530 was used as 

the positive control. After incubation at 37°C for 48 hours, 150 µl of the medium was 
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removed from each well. 50 µl of Bright-GLo Luciferase reagent was added to 

remaining cells and incubated for 2 minutes. Luminescence was measured using a 

FLUOstar OPTIMA. Neutralisation percentage was calculated as 100 X [1 - (sample 

luminescence / virus control luminescence)] after the cell alone control luminescence 

was subtracted.  
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3.1 Construction of single-chain antibody libraries 

 

 

3.1.1 Construction of the single-chain antibody library from patient M325  

 

 A total of 98 µg RNA was isolated from 100 ml of blood of donor M325 and 20 µg 

RNA was from 20 ml of blood of donor K530. Both RNA samples were used as the 

template to generate required cDNA synthesis followed by PCR amplification of 

individual Vλ, Vκ and heavy chain using specific primers designed (see the materials 

and methods). 

 

Figure 3.1 shows the PCR production of individual Vκ and Vλ light chain fragments 

from patient M325 using antibody family-specific primers. DNA bands with expected 

size were excised and recovered. 

 

 
 

Figure 3.1 PCR products of 4 Vκ chains and 9 Vλ chains in library M325 

Lane 1, 100bp ladder; lane 2, Vκ1; lane 3, Vκ2346; lane 4, Vκ36; lane 5, Vκ5; lane 6, 

Vλ1; lane 7, Vλ1459; lane 8, Vλ15910; lane 9, Vλ2; lane10, Vλ3A; lane 11, Vλ3B; 

lane 12, Vλ3DLP16; lane 13, Vλ6; lane 14, Vλ78. The expected size of products (~380 

bp) is indicated.  
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However, PCR generation of VH from the synthesised cDNA only led to production of 

about 50% of the VH families with the expected size, while the rest failed to produce 

detectable bands. To solve this problem, one-step RT-PCR, in which the reverse 

transcription is coupled with PCR, was performed, leading to the successful generation 

of all the VH families using the identical set of primers directly from mRNA template 

in the total RNA extract (figure 3.2). The heavy chains (780bp) were identified, based 

on their sizes. Despite some non-specific PCR bands were also detected on the gel, the 

correct-sized bands were eluted, pooled and used for DNA assembly (see below). 

 

 

 

Figure 3.2 PCR products of 8 heavy chains in library M325 

Lane 1, 100bp ladder; lane 2, VH1; lane 3, VH1257; lane 4, VH2; lane 5, VH3A; lane 

6, VH3B; lane 7, VH4; lane 8, VH4DP63; lane 9, VH6. The expected size of the 

products (~780 bp) is indicated. 
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Both the eluted light chains and heavy chains were then combined and assembled 

individually. Analysis by gel electrophoresis shows the successful linkage of light 

chains with heavy chains. Interestingly, VHs linked with kappa chains gave stronger 

bands than the VHs linked with lambda chains. A representative gel picture (Vκ and 

Vλ linked with VH1) is shown as figure 3.3. The assembled fragments were pooled 

and stored for use. This library was called Library M325. 

 

 
 

Figure 3.3 PCR products of Vκ-VH1 and Vλ-VH1 combinations in library M325   

Combinations with VH1 families are chosen to illustrate the single-antibody library 

M325 construction. Lane 1, 100bp ladder; lane 2, Vκ1-VH1; lane 3, Vκ2346-VH1; 

lane 4, Vκ36-VH1; lane 5, Vκ5-VH1; lane 6, 100bp ladder; lane 7, Vλ1-VH1; lane 8, 

Vλ1459-VH1; lane 9, Vλ15910-VH1; lane 10, Vλ2-VH1; lane 11, Vλ3A-VH1; lane 

12, Vλ3B-VH1; lane 13, Vλ3DLP16-VH1; lane 14, Vλ6-VH1; lane 15, Vλ78-VH1. 

The expected size of the products (~1200 bp) is indicated. 
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3.1.2 Construction of the single-chain antibody library from patient K530  

 

An alternative library from patient K530 was also constructed using the same 

procedure described for the library M325 in 3.1.1, with following modifications: VL, 

VH fragments from first 30 cycles of PCR were separated on an agarose gel, purified 

and then used as the template for amplification by PCR for further 30 cycles using the 

same set of primers. Subsequent combinations were carried out using the same 

protocol as the library M325, using purified DNA from second round of PCR as 

templates. Figure 3.4, 3.5 and 3.6 show the gel analysis of the assembled DNA 

fragments with the expected sizes, indicating correct construction of the library in the 

form of VL-link-VH-CH1-hinge-partial CH2 as designed. 

 

 	
   	
    
 

Figure 3.4 PCR products of 4 Vκ chains and 9 Vλ chains in library K530 

Lane 1, 100bp ladder; lane 2, Vκ1; lane 3, Vκ2346; lane 4, Vκ36; lane 5, Vκ5; Lane 6, 

100bp ladder; lane 7, Vλ1; lane 8, Vλ1459; lane 9, Vλ15910; lane 10, Vλ2; lane 11, 

Vλ3A; lane 12, Vλ3B; lane 13, Vλ3DLP16; lane 14, Vλ6; lane 15 Vλ78. Products are 

from two rounds of 30 cycles PCR. The expected size of products (~380 bp) is 

indicated.  
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Figure 3.5 PCR products of 8 heavy chains in library K530 

Lane 1, 100bp ladder; lane 2, VH1; lane 3, VH1257; lane 4, VH2; lane 5, VH3A; lane 

6, VH3B; lane 7, VH4; lane 8, VH4DP63; lane 9, VH6. Products are from two rounds 

of 30 cycles PCR. The expected size of the products (~780 bp) is indicated. 

 

	
    
   

Figure 3.6 PCR products of Vκ-VH1 and Vλ-VH1 combinations in library K530 

Combinations with VH1 families are chosen to illustrate the single-antibody library 

K530 construction. Lane 1, 100bp ladder; lane 2, Vκ1-VH1; lane 3, Vκ2346-VH1; lane 

4, Vκ36-VH1; lane 5, Vκ5-VH1; lane 6, 100bp ladder; lane 7, Vλ1-VH1; lane 8, 

Vλ1459-VH1; lane 9, Vλ15910-VH1; lane 10, Vλ2-VH1; lane 11, Vλ3A-VH1; lane 

12, Vλ3B-VH1; lane 13, Vλ3DLP16-VH1; lane 14, Vλ6-VH1; lane 15, Vλ78-VH1. 

The expected size of the products (~1200 bp) is indicated. 
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3.2 Ribosome display and antibody selection 

 

Individual PCR libraries were combined and extended at the 3’ end with a spacer for 

ribosome display as described in section 2.3.1. The full-length PCR products (about 

1225 bp) were added into TNT coupled reticulocyte lysate and the mixture was 

incubated at 30°C for 1 hour to generate ARM complexes. The translation mixture was 

then added into wells coated with 0.5 mg/ml of antigen gp120 for additional one hour. 

After washing, the bound ARM complexes on wells were directly subjected to in situ 

RT-PCR to recover the selected genetic information. Recovered PCR product was 

analysed by agarose gel electrophoresis (Figure 3.7).  

 

In a preliminary selection, no RT-PCR product was detected after 30 cycles of PCR, 

while product can be seen with 40 cycles of PCR. This indicates that the DNA 

fragment being selected is rare and thus, further cycles are required. However, stop 

codons were observed in the PCR products after 40 cycles, indicating that too many 

PCR cycles may have introduced mutations into the DNA fragments (i.e., when dNTPs 

in the PCR reaction become limiting, the error rate of the Taq polymerase increases). 

This problem has been avoided by performing the first PCR by 30 cycles, followed a 

second PCR of 30 cycles with replenished dNTPs. DNA sequencing shows no stop 

codon generated in this method. 

 

In order to increase the recovery sensitivity, an in situ RT-PCR procedure developed 

by He and Taussig was performed using a single-primer (He and Taussig, 2007). In 

this method, an internal primer IP1 was designed to contain both a sequence for 

hybridising to the upstream region of 3’ mRNA (to avoid the stalling ribosome) and a 

sequence identical to the 5’ region of mRNA (as illustrated in figure 2.4). cDNA 

synthesis using IP1 leads to the generation of single-stranded cDNAs with a 

complementary flanking sequence at both 5’ and 3’ ends, which can be effectively 

amplified by PCR using a single primer (He and Taussig, 2007). As the internal primer 

IP1 anneals at 28 amino acids upstream of the C terminal, the PCR product recovered 

was 75bp shorter than original full-length size. In order to perform the subsequent 

ribosome display cycle, the recovered PCR fragment was then extended by second 

PCR with long primers T7AB and LP1 to add the T7 promoter and protein initiation 
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elements, as well as extend the 3’end into the full-length product (1225bp) (Figure 3.7, 

right). 

 

 

 
 

Figure 3.7 PCR products after one round of ribosome display 

PCR products after 1 round of ribosome display were run on 1.5% (w/v) agarose gels. 

The expected size of the amplified product with single-primer Kz1 is  ~1150 bp, and 

the expected size of the full-length product amplified with T7AB and LP1 is ~1225 bp. 

DNA bands shown in rectangles were excised from the agarose gel and purified as 

described in section 2.2.3. Lane 1, 100 bp ladder; lane 2, single-primer PCR product 

after 1 round of ribosome display against antigen gp120 from library M325; lane 3, 

single-primer PCR product after 1 round of ribosome display against BSA from library 

M325 (negative control); lane 4, 100 bp ladder; lane 5, single-primer PCR product 

after 1 round of ribosome display against antigen gp120 from library K530; lane 6, 

single-primer PCR product after 1 round of ribosome display against BSA from library 

K530 (negative control); lane 7, 100 bp ladder; lane 8, full-length PCR product using 

DNA purified from lane 2 as template (~1225 bp); lane 9, amplification of DNA 

purified from lane 2 with primer Kz1 (~1150 bp, to compare with lane 8). 
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To select antibodies against gp120, three rounds of ribosome display were initially 

performed using the library M325. However, sequence analysis of 3 random selected 

clones revealed the same sequence among them, indicating a strong enrichment of this 

sequence in the three-cycle selection. In order to select more diverse antibodies, a 

single round of ribosome display was carried out from both libraries M325 and K530. 

Ribosome selected cDNA products were cloned into E. coli XL1-blue and screened for 

blue/white clones on a X-gal plate. Table 3.1 lists the CDR3 sequence analysis of 10 

representative clones (7 from library M325 and 3 from library K530), which reveals 

that most of selected clones fall into several groups with very similar CDRs in both 

light chains and heavy chains, suggesting the selection worked. Interestingly, a 

sequence with the identical CDR3 of both light and heavy chains were identified with 

two clones from each of the two libraries (clones 011, 1-5 from library M325 and 

clones 2-2, 2-4 from library K530) (Table 3.1).   

 

IMGT website was used to analyse the sequences (Giudicelli et al., 2004). When 

aligning with online database, all the Vκ and VH domains have shown 99-100% 

similarities to published anti-HIV antibodies (Altschul et al., 1990). In contrast, no 

similar sequence of anti-HIV antibody was found for Vλ domains. Based on antibody 

subclasses, 7 out of 10 show the sequences of IgG1, and the rest belong to IgG2 or 

IgG4 families. The selected antibody families and subclasses are listed in table 3.2. 

Full DNA sequences of the selected 10 antibodies are shown in the appendix 3. 
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Table 3.1 

  Light chain Heavy chain 

Library Clone CDR3 FR4 CDR3 FR4 

011 QQYSASSST FGQG ARLAVDTVMVQGYFDL WGQG 

1-1 QSYDNRNQI FGGG VRQSLDNYAYHLDY WGQG 

1-5 QQYSASSST FGQG ARLAVDTVMVQGYFDL WGQG 

1-7 QSYEASSHEWV LGGG ARDEVTGTGVLDY WGQG 

I3 QRYGSSPRA FGPG ARDHVDTPMGLDY WSQG 

I4 QRYGSSPRA FGPG ARDHVDTPMGLDY WSQG 

M325 

M5 QAWDSSTVV SGGG ARQGYTHRDVLTRQKFYFYYMDV WGKG 

2-1 QSYDNRNQI FGGG VRQSLDNYAYHLDY WGQG 

2-2 QQYSASSST FGQG ARLAVDTVMVQGYFDL WGQG K530 

2-4 QQYSASSST FGQG ARLAVDTVMVQGYFDL WGQG 

 

Table 3.1 CDR3 sequences of the selected antibodies 

DNA sequencing of the selected clones from one round of ribosome display reveals 

their CDR3 and framework (FR) 4 sequences. Clones 011, 1-5 from library M325 and 

clones 2-2, 2-4 from library K530 show identical CDR3 sequences (shaded in blue), 

and clone 1-1 from library M325 appears to have same CDR3 sequence as clone 2-1 

from library K530 (shaded in yellow). 
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                                                             Table 3.2 

Library Clone VL family VH family Subclass 

011 Vκ1 VH2 IgG1 

1-1 Vλ6 VH3A IgG4 

1-5 Vκ1 VH2 IgG1 

1-7 Vλ6 VH6 IgG1 

I3 Vκ1 VH1 IgG1 

I4 Vκ1 VH1 IgG1 

M325 

M5 Vλ6 VH6 IgG4 

2-1 Vλ6 VH3A IgG2 

2-2 Vκ1 VH2 IgG1 K530 

2-4 Vκ1 VH2 IgG1 

 

Table 3.2 VL, VH families and subclasses of the selected antibodies 

DNA sequencing of the selected clones from one round of ribosome display reveals 

that the antibodies fall into several groups of VL, VH families and subclasses. E.g., 

clones 011, 1-5 from library M325 and clones 2-2, 2-4 from library K530 belong to the 

same VL, VH families and subclass (shaded in blue); clones I3 and I4 from library 

M325 belong to the same group (shaded in green); while clone 1-1 from library M325 

and clone 2-1 from library K530 have the same VL, VH families, but different 

subclasses (shaded in yellow). 



	
   	
   	
  85	
  

3.3 Protein expression and purification  

 

 

3.3.1 Calibration of protein markers 

 

In order to facilitate detection and monitoring protein size, especially in western 

blotting probed by an anti-His-tag antibody, His-tagged protein standard was created in 

our lab.  Four known recombinant proteins [pET32a plasmid (20kDa), RFP (30kDa), 

MopB protein (42kDa) and HSP 70 (75kDa)] were fused to a 6X His-tag and produced 

in E. coli, followed by affinity purification. These His-tagged proteins were mixed with 

the same ratio and used as the markers for the SDS-PAGE and western blotting, as 

described in section 2.5.5. A comparison of this lab-made protein marker and 

commercial protein marker is shown in figure 3.8.  

 

 
 

Figure 3.8 Comparison of lab-made protein marker with Bio-Rad standards  

5 µl of lab-made protein marker and 10 µl of Bio-Rad Precision plus protein dual Xtra 

standards were run on a 12% SDS-PAGE gel. The left picture shows the comparison of 

the size on SDS-PAGE stained by Coomassie blue; the picture in the middle shows the 

comparison on western blot, detected by monoclonal anti-polyHistidine-alkaline 

phosphatase antibody; the picture on the right is the Bio-Rad Precision plus protein 

dual Xtra standards.  
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3.3.2 Analysis of antibody expression and solubility in E. coli  

 

Protein expressed in pSANG vector was designed to secrete into the periplasmic space 

due to the presence of the PelB leader sequence at the 5’ end of the antibody scFv. To 

determine whether or not the antibodies were expressed in E. coli BL21(DE3)pRARE 

strain, the expressed antibody fragments were first examined by purifying the scFvs by 

Ni-NTA column from the total bacteria extracts under a denaturing condition with 8 M 

urea. After the His-tagged scFv protein was eluted from Ni-NTA column by decreasing 

the pH from 8.0 to 4.5, SDS-PAGE was used to analyse the purity and quantity (figure 

3.9, lane 7, 8 and 9). This shows that a dominated protein with expected scFv size was 

isolated and concentrated. Secondly, to determine whether the antibodies were soluble 

and correctly folded, the expressed antibody fragments were purified from the total cell 

extract under a native condition. 8 M urea was replaced by 50 mM NaH2PO4 in all the 

buffers but maintained the pH 8.0, and the scFv was eluted from the Ni-NTA column 

by increasing the imidazole concentration (figure 3.10, lane 7, 8 and 9). Finally, to 

examine whether the antibodies were secreted into the periplasmic space of E. coli, the 

periplasmic proteins were extracted by osmotic shock (see section 2.5.3), followed by 

Ni-NTA purification column (figure 3.11, lane 8 and 9). Figure 3.9-3.11 provides an 

example of the purification of the antibody pSANG-1-7, which was chosen to validate 

various purification strategies. The optimised purification conditions were then applied 

to other antibody fragments as shown in the appendix 4. 

 

 
Figure 3.9 Antibody 1-7 purified from total cell extract under the denaturing 
condition 
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Figure 3.10 Antibody 1-7 purified from total cell extract under the native 

condition 

 

 
 

Figure 3.11 Antibody 1-7 antibody purified from periplasmic fraction 
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The above figures (3.9-3.11) reveal the successful expression and purification of 

recombinant antibody fragment from E. coli. By comparing the uninduced (lane 2) and 

induced (lane 3) protein samples, it is shown that the recombinant antibody fragment 

was expressed at the expected size of 34 kDa upon IPTG induction. While large 

quantity of scFv was recovered under the denaturing condition (Figure 3.9, lane 7, 8 

and 9), only a small amount of the scFv was eluted under the native condition or from 

periplasm (figure 3.10 and 3.11), indicating that although recombinant scFv expressed 

in a large quantity, only a small fraction was soluble and secreted into periplasmic 

space. It was noticed that a number of contaminated proteins were also detected in the 

eluted samples (figure 3.10), which may reflect the inefficiency of IMAC purification 

under the native condition.  

 

To confirm the successful expression and secretion of soluble proteins, western 

blotting was applied and probed by monoclonal anti-polyHistidine-alkaline 

phosphatase antibody. Figure 3.12 shows the detection of the expressed scFv protein at 

34 kDa (lane 3) and eluted fractions (lane 7-10) from total cell extract purification 

under the native condition; while figure 3.13 shows the same protein expressed and 

purified from the periplasmic fraction. 

 

Four antibodies from library M325 (011, 1-1, 1-5 and 1-7) and three antibodies from 

library K530 (2-1, 2-2, 2-4) were expressed in pSANG vector and purified from both 

total cell extracts and periplasmic spaces, as described in chapter 2. It was shown that 

all seven antibody fragments were expressed, with an expected size of 33-34 kDa, 

which was again confirmed by western blotting with monoclonal anti-polyHistidine-

alkaline phosphatase antibody. These pictures also show that while more scFv protein 

was purified from total cell soluble fraction, secreted scFv protein recovered from the 

periplasmic fraction was much less. The antibodies 011, 1-1 and 2-1 did not show 

detectable scFv protein in the elution fractions when purified from periplasm by 

osmotic shock. See all SDS-PAGE and western blot pictures shown in the appendix 4. 

 

It has been estimated that an average yield of the scFv from the total soluble E. coli 

extract was about 100 – 500 µg from 200 ml of bacterial culture (i.e., 0.5-2.5 mg/L) 

after purification with Ni-NTA column followed by desalting with Centrifugal Filter 
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Units. However, the yield from the periplasm of E. coli is only 20 – 80 µg from 200 ml 

(i.e., 0.1-0.4 mg/L). Therefore, the total soluble cell fraction was used in the 

subsequent scFv purification. 

 

 

 
 

Figure 3.12 Antibody 1-7 purified from total cell extract under the native 

condition (western blot) 

 

 
 

Figure 3.13 Antibody 1-7 purified from periplasmic fraction (western blot) 
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3.3.3 Quick screening of antibodies expressed in pABEXT vector 

 

In order to rapidly screen antigen-binding antibodies, E. coli crude extract containing 

expressed antibodies without affinity purification was used directly in ELISA to test 

the binding to recombinant gp120 (as shown in figure 1.9). For this purpose, pABEXT 

vector was employed to express antibodies directly after one round of ribosome display 

in XL1-blue cells. In a preliminary study, total protein yield (purified under the 

denaturing condition) and soluble protein secretion (purified from the periplasm) were 

compared between pABEXT and pSANG vectors (figure 3.14, 3.15). Antibody 1-7 

exhibits lower protein yield when expressed in pABEXT vector (figure 3.14, lane 7, 8 

and 9), but comparable, if not more, soluble protein when it is expressed in pABEXT 

vector (figure 3.15, land 8 and 9). 

 

 

 
 

Figure 3.14 Comparison of protein yields between pABEXT and pSANG vectors 

Antibody 1-7 was expressed in pABEXT and pSANG vectors and purified from total 

cell extract under the denaturing condition. pABEXT vector showed less protein 

production than pSANG vector. 
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Figure 3.15 Comparison of soluble protein from periplasm between pABEXT and 

pSANG vectors 

Antibody 1-7 was expressed in pABEXT and pSANG vectors and purified from 

periplasm using Ni-NTA column. pABEXT vector showed no less secreted protein 

than pSANG vector. 
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In general, DNA fragments recovered from one round of ribosome display were 

digested with NcoI/NotI and ligated into pABEXT vector. E. coli XL1-blue was used 

to express the single-chain antibodies which contained the partial constant region 

(expected size of 44 – 46 kDa) (figure 2.6). 300 clones selected from library M325 and 

192 clones from library K530 were expressed in this method at 50 ml scale and the 

bacterially synthesised antibody fragments were extracted by osmotic shock and used 

directly for ELISA against recombinant gp120 and BSA (negative control). It has been 

shown that 20 clones from library M325 and 6 clones from library K530 demonstrated 

binding with varying degrees in the ELISA against gp120 derived from K530. Further 

test of these clones by ELISA in duplicate showed only 3 clones from library M325 

(I3, I4 and M5) were reliably showing the antigen binding. Figure 3.16 shows single-

chain antibody I3 was expressed at the expected size of 44 kDa (lane 3, 4 and 5). 

Compared with antibodies expressed in pSANG vector, antibodies I3, I4 and M5 

expressed in pABEXT vector were more viscous and difficult to analyse on gel 

electrophoresis. 

 

 

 
 

Figure 3.16 Single-chain antibody I3 expressed in pABEXT vector 

After one round of ribosome display, the selected antibodies were cloned into 

pABEXT vector directly and expressed in XL1-blue cells. An example of antibody I3 

expression and purification from both total cell extract and periplasm is shown here. 
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Subsequently, antibodies I3, I4 and M5 were sub-cloned and expressed in pSANG 

vector. These antibodies were again purified from both total cell extract and periplasm 

and analysed by SDS-PAGE and western blotting (figure 3.17, 3.18 and appendix 4). 

 

 

 
 

Figure 3.17 SDS-PAGE and western blot of antibody pSANG-I3 purified from 

total cell extract under the native condition 

 

 
 

Figure 3.18 SDS-PAGE and western blot of antibody pSANG-I3 purified from 

periplasmic fraction  
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3.3.4 Effect of the codon following the initiation codon AUG  

  

Some of the antibody fragments (such as pSANG-011 and pSANG 1-7) with distinct 

CDR sequences showed the expression at very low level (figure 3.19 and 3.20, left). 

Sequence studies also revealed that the codon following the initiation codon AUG was 

changed from GCC (Alanine) to GGC (Glycine). This could be the reason causing the 

poor protein expression (Bivona et al., 2010). In order to test this, the GGC (Glycine) 

was converted back to GCC (Alanine) by PCR. This has resulted in an improved 

protein level by 5-10 folds (Figure 3.19 and 3.20, right). 

 

 

  
 

Figure 3.19 Comparison of antibody pSANG-011 with one codon difference 

In left picture, an error codon of GGC (Glycine) was shown following the initiation 

codon AUG and the protein expression was very low after induction; in right picture, 

after correcting the error codon to GCC (Alanine), considerable protein expression was 

shown after induction. 
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Figure 3.20 Comparison of antibody pSANG-1-7 with one codon difference 

In left picture, an error codon of GGC (Glycine) was shown following the initiation 

codon AUG and the protein expression was very low after induction; in right picture, 

after correcting the error codon to GCC (Alanine), considerable protein expression was 

shown after induction. 
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3.3.5 Optimisation of protein expression  

 

To optimise protein expression, a number of conditions have been examined, including 

induction temperature and codon usage. Antibody induction was performed at 20°C for 

20 hours to minimise the formation of inclusion bodies and improve protein folding 

(Cabilly, 1989, Schein, 1993). However, it shows that protein solubility was not 

significantly improved when comparing to the protein expressed at 37°C for 3 hours 

(figure 3.21). 

 

 
 

Figure 3.21 Comparison of antibodies expression at different temperatures 

Antibody pSANG-011 was expressed at 37°C for 3 hours (left) and 20°C for 20 hours 

(right) separately. The improvement of protein yield and solubility was not significant. 
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The codon usage in the selected sequence (011, 1-1, 1-5, 1-7, I3, I4, M5, 2-1, 2-2 and 

2-4) were analysed to see if there was rare codon that was not covered by pRARE 

plasmid. pRARE encodes tRNA genes for rare codons Arginine (AGG, AGA), Glycine 

(GGA), Isoleucine (AUA), Leucine (CUA) and Proline (CCC) (Novy et al., 2001). 

However, a few codons that are also rare in E. coli were not included, such as Arginine 

(CGG, CGA) and Glycine (GGG). DNA sequencing shows that Arginine (CGG, CGA) 

and Glycine (GGG) presented in all the expressed proteins and consecutive rare codons 

presented in most sequences (1-1, 1-7, I3, I4, M5, 2-1, 2-2 and 2-4) as summarised in 

table 3.3. The presence of these rare codons may impede the translation of recombinant 

antibodies in E. coli (Kane, 1995). 
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Table 3.3 

Antibodies 
Rare codon  

CGA 

Rare codon  

CGG 

Rare codon  

GGG 

Consecutive 

rare codons 

011 2 3 6 0 

1-1 2 1 8 5 

1-5 2 3 6 0 

1-7 1 1 4 4 

I3 2 4 9 4 

I4 2 3 9 4 

M5 3 3 7 4 

2-1 2 1 8 1 

2-2 2 3 6 1 

2-4 2 3 6 1 

 

Table 3.3 Summary of rare codons excluded in pRARE plasmid and consecutive 

rare codons in expressed antibodies 

Rare codons Arginine (CGA and CGG) and Glycine (GGG) that are not included in 

pRARE plasmid are shown in all the expressed antibodies; consecutive rare codons 

such as CGG CGA, CGG ACG are shown in most of the antibody sequences. 
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3.4 Functional assays 

 

 

3.4.1 ELISA 

 

To examine the antibody specificity and binding, the 10 selected antibodies expressed 

in pSANG vector were tested in ELISA against recombinant gp120 generated from 

patient K530. The ELISA was performed on a 96-well Nunc plate. BSA was used as 

the negative control. Other negative controls include mAb-free wells. Bacterially 

expressed antibody fragments after purification from the total cell extract under the 

native condition at the final concentration of 25 µg/ml were incubated in each well 

(figure 3.22). As a comparison, antibodies purified from periplasm at the final 

concentration of 5 µg/ml were also included  (figure 3.23).  

 

 

 

Figure 3.22 Antibody binding to gp120 after purification from total cell extract 

under the native condition 

Antibodies purified from total cell extract showed binding activities to recombinant 

gp120 in ELISA (red columns), BSA was used as negative control (blue columns). 

MAb-free wells were also included as negative control (ctr).  
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While antibodies 1-7 and 2-2 showed highest binding affinity to gp120, other 

antibodies showed modest activity. However, they all bound specifically to gp120 

(figure 3.22). Binding to BSA was also observed from some samples (1-7, 2-2, I3, I4 

and M5), which may be caused by the use of BSA as blocking reagent in ribosome 

display. It was noticed that the signals of binding to gp120 were weaker when using 

the scFvs from the periplasm (figure 3.23) than that from total cell extract. The reduced 

binding observed with periplasmic scFvs was possibly due to a lower amount of 

antibody being recovered from the periplasm. Despite of less binding, the ELISA result 

using the antibodies from periplasm agrees with that from total cell extracts, 

confirming the binding activity of these antibodies. Based on figures 3.22 and 3.23, 

antibody 011, 1-7, 2-2, I3, I4 and M5 showed specific binding, while the other 4 

antibodies had less or no binding.  

 

 

   
 

Figure 3.23 Antibody binding to gp120 after purification from periplasmic 

fraction 

Antibodies purified from periplasmic fraction showed variable binding activities to 

recombinant gp120 in ELISA (red columns), BSA was used as negative control (blue 

columns). MAb-free wells were also included as negative control (ctr).  
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3.4.2 Neutralisation assay  

 

To examine the neutralising activity of the selected antibodies, TZM-bl cells were 

chosen for the assay. The antibodies purified from total cell extract under the native 

condition were used as they provided a higher amount of protein. In total, 10 selected 

antibodies from both libraries were incubated with K530 gp160-derived infectious 

chimeric molecular clones before assaying on TZM-bl cells. The neutralisation activity 

was measured by the reduction of Luciferase luminescence. Percentage of 

neutralisation is illustrated in figure 3.24. While three antibodies (1-5, 2-1 and 2-2) 

resulted in about 50% luminescence reduction in the assay, another three mAbs (1-1, 1-

7 and 2-4) displayed lower discrepancies compared to the control sample. This shows a 

modest neutralising activity, although they were not potent compared to plasma 

control.   

 

Thus, taking the ELISA data and neutralisation results together, clones 1-7 and 2-2 

showed best activities among 10 antibodies. Clones 1-1, 1-5, 2-1 and 2-4 showed 

modest function in both assays. The other four clones only showed binding in ELISA.  
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Figure 3.24 Percentage of neutralisation 

Chimeric molecular clones of HIV-1 gp160 derived from patient K530 were 

neutralised with 10 mAbs, at 50, 12 and 3 µg/ml respectively. Results were reported as 

percentage of neutralisation activity, relative to negative control with antibody-free 

wells. Each colour represents different antibody concentration, except plasma control 

was tested at 1:20, 1:80 and 1:320 dilutions, respectively. 
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Chapter 4 	
  
 

Discussion 
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Within 30 years of discovery, HIV has become one of the most pathogenic viruses 

circulating in human beings and caused more than 25 million deaths. With the 

increased understanding of the virus replication and infection mechanism, significant 

progress has been made to block the virus entry, suppress the virus replication and thus 

delay the disease progression. Despite seven classes of ART that are currently used in 

the treatment of HIV infection (nucleoside RT inhibitors, nonnucleoside RT inhibitors, 

protease inhibitors, fusion inhibitors, entry inhibitors, HIV integrase strand transfer 

inhibitors and multi-class combination products) (FDA, 2010), about 10 million 

infected individuals are still unable to access or afford to these therapies. Therefore, a 

protective vaccine with a relative low cost is urgently needed. To overcome the 

extraordinary mutability and genetic diversity of HIV, an effective vaccine needs to 

induce both T cell cytotoxic activity to recognise and eliminate infected cells and 

neutralising antibodies to prevent further viral replication (Johnston and Fauci, 2008). 

Current vaccine candidates generally focus on eliciting cytotoxic T cell responses 

(Letvin, 2005), yet only a limited number of broadly neutralising mAbs have been 

produced (Burton and Weiss, 2010). It will facilitate a deep understanding of the nature 

of HIV-induced immune responses if more broadly neutralising mAbs could be 

produced by a simple and practical method. This study aimed at establishing such a 

method to generate human antibodies in vitro by combining ribosome display selection 

with DNA libraries made from patient’s blood. 
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4.1 Single-chain antibody library construction 

 

Construction of the antibody libraries in this project was designed to achieve the 

followings: (1) to cover all possible rearranged variable regions, (2) to identify 

antibody subclasses, and (3) to use as little blood sample as possible. Two libraries 

M325 and K530 have been constructed by PCR to contain 13 VL families (9 Vλ 

families and 4 Vκ families) and 8 VH families, covering all the functional variable 

genes listed in human gene database, V BASE (Sblattero and Bradbury, 1998). This is 

in contrast with previously reported method in which only γ1 (Fd region) and κ chains 

were amplified by PCR (Burton et al., 1991). DNA sequencing of the functional 

antibody candidates after one round of ribosome display revealed both lambda chains 

and kappa chains, despite that most reported anti-HIV-1 neutralising mAb sequences 

are limited to Vκ and VH chains. Unlike mouse immunoglobulin in which kappa 

chains predominant, both kappa and lambda chains are similarly presented in human 

(Das et al., 2008). Isolation of functional lambda chains from two independent libraries 

in this study indicates that all families of variable regions should be included in the 

library for a selection.  

 

The relationship between antibody function and its subclass was also investigated in 

this study. Previous research on neutralising mAbs was focusing on variable fragment 

or Fab, and the limited reports on antibody subclasses were restricted to IgG1 or IgG3 

(Burton et al., 1994, Buchacher et al., 1994). Although IgG1 and IgG3 subclasses are 

generally believed to be much more effective activators of the classical complement 

pathway, some studies suggested that IgG2 is also effective in activating complement 

when the epitope density is high (Michaelsen et al., 1991). Interestingly, subclasses 

IgG2 and IgG4 were found in several antibody candidates by this study, as well as 

IgG1 subclass that accounts for majority of the selected sequences. This agrees with 

the relative concentration of human immunoglobulin subclasses (IgG1>IgG2>IgG3 

=IgG4) (Meulenbroek and Zeijlemaker, 1996), whereas the fact that no IgG3 subclass 

was found could be probably due to the limited number of selected candidates. The 

role of immunoglobulin subclasses in HIV-1 neutralisation needs to be investigated 

further. In this study, we designed the library to genetically encode sequences that 

would permit the identification of the immunoglobulin subclass linked to its variable 
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heavy and light chains. We could readily differentiate human kappa and lambda light 

chains, IgG1, 2, 3 and 4 subclasses for the heavy chains without performing ELISA as 

previously described (Buchacher et al., 1994). Although not carried out in this study, 

the approach could be further applied to elucidate IgA and IgE, providing complete 

coverage of the immune repertoire.  

 

Importantly this study shows that large human antibody libraries could be constructed 

from 20 ml of blood, and possibly as little as 5 ml (this is achievable based on the 

amount of total RNA that was used in this study: to assemble a library requires 3 µg of 

total RNA; the amount of total RNA recovered approximate to 1 µg per ml blood). The 

libraries could be immediately used for selection of specific antibodies by in vitro 

ribosome display without the need for DNA cloning, thus maintaining the original 

library size and diversity.  
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4.2 Ribosome display selection 

 

Ribosome display was used in this study to isolate functional single-chain antibodies. 

This technology could be developed as an alternative method to previously common 

used methods such as EBV immortalisation (Buchacher et al., 1994, Corti et al., 2010) 

or phage display (Burton et al., 1991). Ribosome display is featured to allow efficient 

screening of a very large library without compromising the library size by 

transformation efficiency. The PCR amplified DNA library is readily selected against 

immobilised antigens before cloning and transforming into bacteria. Theoretically the 

library size is only restricted by the available ribosomes in the system. Ribosome 

display is also a time-saving method. One round of selection and recovery process can 

be accomplished in just one day, as no cell culture is involved. The initial ribosome 

display experiments using M325 library against gp120 derived from K530 employed 

three rounds of selection. This resulted in the recovery of an enriched population 

comprised of a single sequence for the scFv. This high degree of enrichment resulted in 

reduced diversity. Subsequently, it was decided to use a single round of ribosome 

display to enrich and recover more diverse candidates. 

 

The antibodies from both libraries were affinity selected against the same antigen: 

recombinant gp120 derived from patient K530. Interestingly, clones with identical 

CDR3 region were found from the two separate libraries, e.g. mAbs 011, 1-5 were 

from library M325 while mAbs 2-2, 2-4 from library K530 (see table 3.1). The 

recovery of the similar sequences with identical H-CDR3 suggests the success of the 

selection from the libraries by ribosome display technology. Antibody CDRs, in 

particular H-CDR3, play an important role in determining antibody specificity and 

affinity. The selection of the identical H-CDR3 from the two different libraries 

suggests that this H-CDR3 region is a dominating functional sequence from the two 

HIV patients. By comparing with existing neutralising mAbs, the H-CDR3 selected in 

this study is shorter (only 15 amino acids). It was generally shown that the existing 

neutralising mAbs have a protruding long H-CDR3, e.g., while 2F5 has 22 residues, 

both b12 and 4E10 with 18 amino acids (Zwick et al., 2004, Cardoso et al., 2005, 

Saphire et al., 2001). Recent study identified a 28-residue H-CDR3 in two other 

neutralising mAbs PG9 and PG16 (Pejchal et al., 2010). These H-CDR3s are usually 

longer than the average length of H-CDR3 in humans (13 residues), rabbits (11 to 12 
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residues) and mice (9-10 residues) (Wu and Cygler, 1993). In this study, only one long 

H-CDR3 (23 residues) was discovered from the patient libraries. 

 

These antibodies selected from both libraries have specific binding activity in ELISA 

(especially mAb 1-7 from library M325 and mAb 2-2 from library K530) and 

neutralising activity, confirming in vitro selection from patient libraries can rapidly 

produce functional antibodies. This also agrees with the result of preliminary patient 

serum screening: Serum M325 (CRF02_AG) neutralises clade B, C and CRF02_AG, 

and serum K530 (clade C) neutralises clade B, C, CRF01_AE and CRF02_AG. The 

current study shows that antibodies capable of neutralising a recombinant clade C 

antigen could be isolated from the libraries (see results 3.4.2). 

 

In the future, the selected antibodies could be tested with different HIV-1 subtypes to 

further characterise their neutralising activity. The breadth of antibody neutralisation is 

an important and interesting criterion of anti-HIV-1 neutralising antibodies. The 

current results encourage the continuation or extension of this work to generate a panel 

of different mAbs that would facilitate the discovery of potential candidates for 

therapeutic application.  
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4.3 Protein expression 

 

The expression and purification of recombinant antibodies has proved to be a 

bottleneck in this study and many factors that may affect protein expression were 

investigated. A total of 10 antibodies (7 from library M325 and 3 from library K530) 

were tested and the soluble fractions either from whole cell lysate or periplasmic space 

were analysed. The recombinant scFv proteins with the correct sizes were confirmed 

by protein gel electrophoresis and western blotting analysis. Both the T7 promoter 

based pSANG and the lac promoter based pABEXT vectors have shown utility in 

producing a large amount of recombinant scFv proteins within hours following 

induction. However, it was noticed that inclusion bodies formed, possibly due to the 

foreign nature of human immunoglobulins, and/or the high expression rate (Arbabi-

Ghahroudi et al., 2005). One possible route to recover functional proteins from 

inclusion bodies is by protein refolding. This was not attempted in this study due to 

time constraints and the requirement to reengineer the scFv without a signal peptide for 

cytoplasmic expression (Arbabi-Ghahroudi et al., 2005). Instead, efforts were made to 

identify the optimal conditions to produce soluble proteins in sufficient quantity for the 

subsequent studies. These included the use of different expression systems and 

optimising the expression conditions and codon usages, and protein recovery under 

different conditions. 

 

A side-by-side comparison has shown that protein purification from the total cell lysate 

generated more recombinant proteins than that from periplasmic space. However, 

purification from the periplasmic space generated a better purity. Usually, oxidised 

periplasmic space facilitates the folding and assembly of recombinant scFv, and the 

secreted proteins can be extracted by a simple osmotic shock procedure with less 

contaminants from bacterial proteins (Makrides, 1996). However, in practical, a 

substantial amount of recombinant scFv was not extracted, possibly due to the 

inefficiency of osmotic shock that causes the poor recovery of the scFv. Isolation of 

scFv proteins from the total cell lysate may overcome this problem, thus resulting in a 

better recovery of scFv proteins (figure 4.1). In this study, antibodies purified from 

both methods have been compared, showing scFv proteins purified from both methods 

preserved the correct folding and function.  
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Figure 4.1 Illustration of two purification methods 

Periplasmic protein was purified by osmotic shock, in which some scFv protein might 

stick to membranes and remain in the cell; Total cell purification generates more scFv 

protein by sonication, but it also showed more contaminating proteins. The cytoplasm 

is shown by the white circle, and the periplasmic space is shown by the blue area. 
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To further improve the scFv in the future, a screening procedure may be adapted, 

which has allowed identifying optimised conditions for protein expression in E. coli by 

a single experiment (Islam et al., 2007). In addition, more suitable host strains such as 

those to enhance the disulfide bond formation in the bacterial cytoplasm could be 

tested (Prinz et al., 1997), e.g., Rosetta-gami B strain. 

 

The plasmid pABEXT vector contains the lac promoter. Unlike the pSANG vector, it 

does not require T7 RNA polymerase to express proteins. Therefore selected 

antibodies could be expressed in normal hosts such as XL1-blue cells, without the need 

for the extra steps of transforming the plasmid into host bacteria BL21(DE3)pRARE. 

Compared with pSANG vector, antibodies expressed in pABEXT vector showed a 

lower protein yield, but similar or more soluble protein could be obtained after 

purification from the periplasm of E. coli. However, proteins expressed in pABEXT 

vector are more viscous and difficult to analyse by SDS-PAGE. As both of the plasmid 

systems have advantages and disadvantages, combined use of these two systems was 

adapted. In general, the pABEXT vector was used when a quick screening of 

antibodies was required while the pSANG system was used when a large-scale 

production of the candidates was needed (see results 3.3.3).  

 

It was shown that scFvs from the periplasmic extract without further purification could 

be directly used for functional test of the antibodies in ELISA. Thus this method was 

used to screen bacterial clones after ribosome display selection. This crude extract of 

scFv proteins may contain contaminated proteins/peptides that may affect the ELISA 

results. Therefore, potential candidates identified by this screening method were re-

tested by His-tag affinity purification. In addition, some antibodies may be truncated 

resulting in shorter polypeptides from the pABEXT system, thus causing false positive 

in ELISA. These antibodies were ruled out by western blotting when they failed to 

show correct size or by directly DNA sequencing. A number of mutations were also 

detected; these may have been produced during multiple amplifying and cloning steps. 

In future, this could be reduced by using higher fidelity polymerases. 
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The expression temperature was also examined in this study. Cultivation at a reduced 

temperatures is a well-known technique to reduce the aggregation of recombinant 

proteins and improve soluble protein yields (Weickert et al., 1996). It has shown 

effective in improving the solubility of many difficult proteins, such as bacterial 

luciferase (Vasina and Baneyx, 1997). Various strategies have been developed to 

express protein, especially toxic and unstable proteins at temperatures as low as 4°C 

(Ferrer et al., 2003, Mujacic et al., 1999). In a routine antibody production, the 

standard condition for protein expression was set to 20°C for 20 hours to reduce the 

cellular protein concentration and improve protein folding. However, in this study 

expression at a lower temperature for a longer period of time showed a similar yield of 

soluble proteins as that expressed at 37°C for 3 hours, indicated by SDS-PAGE results 

(figure 3.21).  

 

Codon usage has also been tested to increase the expression level of soluble proteins. 

As the second codon following the initiation codon AUG has been known to be crucial 

to protein expression, which is explained by the influence of the composing 

nucleotides on the structure of the ribosomal binding site (Looman et al., 1987). As 

Alanine located at the second position has shown to increase protein expression 

(Bivona et al., 2010), the Glycine at second position was replaced by Alanine in the 

clones 011 and 1-7. This has led to the improvement of protein expression by 5-10 

folds, agreeing with the previously published observation (Bivona et al., 2010). 

 

Rare codons were also detected across the sequences from the selected candidates due 

to the foreign nature of human immunoglobulin origin. To eliminate the rare codon 

bias in E. coli, the pRARE plasmid containing 6 rare codons was inserted into host 

bacteria BL21(DE3). This would facilitate expression of human scFvs in E. coli. 

However, there were 3 other rare codons Arginine (CGG, CGA) and Glycine (GGG) as 

well as consecutive rare codons (e.g. CGG CGA, CGG ACG) detected in the selected 

antibodies (table 3.3), which may cause the difficulty of producing soluble proteins. 

This problem could be reduced by using commercially available plasmids, such as 

pRARE2, which contain more rare codons. An alternative method could be to use 

Rosetta host strains such as Rosetta-origami B strains that are designed to enhance the 

expression of eukaryotic protein. 
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4.4 Functional assays 

 

The selected antibody candidates have been demonstrated to be functional by both 

ELISA (figure 3.22, 3.23) and neutralisation assay (figure 3.24). Specific binding was 

observed in each antibody at 25 µg/ml against recombinant gp120 in ELISA (figure 

3.22). Furthermore, modest neutralising activity was observed from 6 antibodies (3 

from the library M325 and 3 from the library K530) at 50 µg/ml against recombinant 

gp160 (figure 3.24). The successful selection of functional antibody fragments by 

ribosome display technology from patient libraries suggests this could be an efficient 

route to rapidly generate specific antibodies in vitro. In addition, ribosome display is a 

powerful method for in vitro evolution of antibody fragments (He and Taussig, 2002), 

these selected antibodies can be further improved by ribosome display in a 

combination with mutagenesis. 

 

Antibody fragments 1-7 and 2-2 showed the highest activities in ELISA. The binding 

activity specific to the antigen suggests the correct folding of these proteins in bacteria. 

The results also suggest that the presence of 6XHis-tag and tri-FLAG-tag has no 

substantial effects on the function of the antibodies. A number of antibodies with the 

lower activity were also selected. These antibodies may be a background selection or 

may not fold correctly in E. coli, as they were selected in the format of antibody-

ribosome-mRNA complex produced in the rabbit reticulocyte lysate, a eukaryotic 

system. The functional antibodies purified from total cell or periplasm were 

functionally similar, showing either method could be used to produce the antibodies. 

However, in general, periplasmic space generates less scFvs but better folded 

fragments possibly due to the oxidizing environment and the presence of proteins that 

are important for folding and assembly of recombinant protein (Arbabi-Ghahroudi et 

al., 2005).  

 

Antibodies selected from the two libraries showed similar functions, suggesting the 

consistency of the method for the selection. It may also indicate these selected 

antibodies were functionally dominating molecules in the libraries. It would help to 

generate panels of different antibodies with more diversified sequences for a choice, 

especially for the therapy if more patient libraries could be generated in the future, and 
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selected with other defined antigens, such as trimeric gp120. Sequence studies show 

that the selected antibodies, despite very similar sequences and an identical CDR3 

region (e.g., 2-2 and 2-4), their antibody binding activities are not the same, suggesting 

their binding sites are not entirely determined by their CDR3 sequence. 

 

The neutralisation results suggest that antibodies with binding affinity to an antigen do 

not guarantee their function in neutralising the target in vivo. This has been observed 

by others working with HIV-1 neutralising mAbs (Burton et al., 1994), where they 

found that only a small part of the affinity selected antibodies (i.e., b12) showed potent 

neutralising activity even though other antibodies were also directed to the same 

binding site and had similar affinity to b12. Generally, antibodies can target many 

epitopes on HIV-1 Env protein, but potent neutralising activity could only be achieved 

by recognising the conserved epitopes that are essential for virus attaching and entry 

the cells (Wu et al., 2010). In this recent report, Wu and co-workers used molecular 

modelling to design the envelope protein to preserve only the CD4 binding site and 

eliminate extra antigenic regions of HIV-1. This “rational design of envelope”, which 

showed success in selecting antibody expressing B cells, could be used in our in vitro 

selection system in the future.  

 

It is of interest to note the PBMCs from donor K530 used to construct the antibody 

library were taken 3 years prior to PBMCs being taken for K530 gp120 isolation. 

During this 3-year period the HIV-1 virus surface proteins probably underwent some 

degree of genetic variations. The ability to recover antibodies that neutralise K530 

gp120 suggests these molecules were important in keeping the virus in check. It is 

possible that K530 gp120 emerged sooner or that the antibodies recognise a precursor 

to K530 gp120 that also recognise the current K530 gp120. The epitope may be a 

conserved functional epitope required by HIV-1. With the development of a method of 

capturing and accessing the antibody repertoire that in theory requires as little as 5 ml 

of blood, it should be possible to undertake longitudinal studies to follow the repertoire 

of the antibodies and the antigens. Such a study would facilitate a better understanding 

of HIV-1 escape and allow identification of broadly neutralising antibodies if 

recombinant antigen isolated from different timeline could be used, (e.g., recombinant 

gp120 from 0, 1, 3, 5 year of HIV-1 infection could be isolated from LTNP and used in 
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ribosome display, which could permit the production of broadly neutralising mAbs in 

the future). 

 

The caveats with the scFv approach adopted in comparison with naturally occurring 

serum antibodies are in lack of avidity, effector functions, and polyclonal specificities. 

The antibodies (IgG) in serum have two binding sites, secondly they also have Fc 

domains that can confer complement activation and/or binding to Fc receptors and are 

a cocktail of specificities. The recombinant scFvs are monovalent, lack effector 

functions and are mono-specific. However, if the neutralisation is purely a function of 

inhibiting virus attachment or entry, which is independent of effector function and does 

not require receptor cross-linking, then potent neutralising antibodies discovered in the 

scFv format would probably be very effective when engineered back to full-length IgG. 

Conversely it may be that more than one antibody specificity is required for 

neutralising a broad range of HIV-1 virus clades, thus the activity of polyclonal serum 

may not be readily reproduced by monoclonal antibodies as reported by (Scheid et al., 

2009, Mouquet et al., 2010). 
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4.5	
  Summary	
  

 

In summary, the project described in this thesis has established a novel approach for 

rapid selection of anti-HIV-1 antibody fragments by in vitro ribosome display of 

patient libraries. It could provide a powerful discovery tool for identification of 

therapeutic antibodies. The followings list the major results obtained: 

 

Two anti-HIV-1 antibody libraries (M325 and K530) have been constructed by PCR 

and can be used directly for ribosome display screening without the need for DNA 

cloning. It also shows that a library could be made using the blood sample of as little as 

20 ml; 

 

The eukaryotic ribosome display procedure has successfully led to the selection of 

functional human antibodies in vitro. Ten antibody candidates have been generated and 

their IgG subclasses have been identified by DNA sequencing.  

 

The selected recombinant antibodies have been expressed as scFv in E. coli, and a 

number of expression and purification conditions have been examined to generate 

soluble proteins.  

 

A rapid screening method has also been established using pABEXT vector, which 

facilitated E. coli expression and screening of individual clones for functional 

antibodies. 

 

The functions of the selected antibodies were confirmed in both ELISA and 

neutralisation assays. 
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4.6 Future studies 

 

In general, a procedure for the capturing and analysis of an immune repertoire that 

requires relatively small volumes of blood has been described. In the future, the 

approach will be refined and optimised to permit the construction of antibody libraries 

from as little as 5 ml of blood.  

 

In this study, we utilised monomeric gp120 as a capture antigen. The availability of 

trimeric gp120 and gp140 provides additional capture antigens.  

 

The scFvs isolated in this proof-of-concept study in future would be used to generate 

full-length IgG molecules produced in CHO cells using standard procedures. The 

recovered purified full-length IgG molecules would then be used in neutralising assays.  

  

With these refinements, it will be possible to undertake longitudinal studies capturing 

the repertoire of antibodies and antigens from sero-conversion through disease 

progression or lack of. 

 

These additional studies would permit a complete answer to the hypothesis that in a 

proportion of LTNP’s the pre-existence of antibodies that are able to cross neutralise 

viruses capable of evolving from those currently replicating ensures that virus load in 

held fully in check.  The effective control of virus replication by these antibodies 

prevents immune destruction and ensures the failure of disease to 

develop.  Understanding the factors controlling this balance between host and pathogen 

will inform the design of better therapeutic treatments and effective prophylactic 

vaccines against HIV. 
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Appendix 
 

1. Neutralising activity of patient sera 

 

Sera from two LTNPs (M325 and K530) were tested by Dr. Hanna Dreja (Centre for 

Infectious Disease, Institute of Cell and Molecular Science, Barts and The London, 

Queen Mary, University of London, UK). It was tested against different HIV-1 clades 

in TZM-bl assay (reciprocal dilution at which at least 60% of input virus was 

neutralised). Their neutralising activities are listed as following: 

 

Patient M325 (type CRF02_AG) 

Clade Titre 

B 80 

C 40 

CRF02_AG 160 

  

 

Patient K530 (type C) 

Clade Titre 

B 160 

C 160 

CRF01_AE 160 

CRF02_AG 1280 
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2. pABEXT vector sequence 

(Tac promoter is shaded in grey; Restriction digestion sites NcoI, NotI are underlined) 
 
CCGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGA
AGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCA
GAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCA
CGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTAC
ATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCG
TTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAA
TCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCG
GCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGG
GCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCT
GCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGT
ATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATT
GGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTC
TGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCG
GAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGC
TGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCT
GGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCG
GTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCA
CCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCA
ACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTG
AAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGG
CCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTG
AGCGCAACGCAATTAATGTAAGTTAGCTCACTCATTAGGCACAATTCTCATGTTTG
ACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCG
GAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCATAATTCGTGTCGCTCAA
GGCGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCATAACGGTTCTGGCA
AATATTCTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAAT
TGTGAGCGGATAACAATTTCACACAGGAAACAGCCAGTCCGTTTAGGTGTTTTCAC
GAGCACTTCACCAACAAGGACCATAGCATATGAAATACCTGCTGCCGACCGCTGC
TGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCCATGGCCCAGGTGCAGCTGCAGG
CGGCCGCATCCGCACATCATCATCATCATCACAAGCTGGACTACAAAGACCATGA
CGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAGTAATAA
AAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTA
CCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAA
GAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGC
AGCTTGGCTGTTTTGGCGGATGAGATAAGATTTTCAGCCTGATACAGATTAAATCA
GAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGTGG
TCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAG
TGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAA
GGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCT
CCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCC
GGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAG
AAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTTGTTTATTTTT
CTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTC
AATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATT
CCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA
GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC
TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTCCCAATGATG
AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCA
AGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCAC
CAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC
TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGA
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GGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCC
TTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACAC
CACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTA
CTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTG
CAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCT
GGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTA
AGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGA
ACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTG
TCAGACCAAGTTTACTCATATATACTTTAGATTGATTTACCCCGGTTGATAATCAG
AAAAGCCCCAAAAACAGGAAGATTGTATAAGCAAATATTTAAATTGTAAACGTTA
ATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAAT
AGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTT
GAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAAC
GTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCAC
CCAAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAA
AGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAA
GGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGT
CACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCG
TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAAC
GTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCT
TGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCT
ACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAA
CTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTA
GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCT
GTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAA
GACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCAC
ACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAG
CTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA
AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCC
TGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG
TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTT
TACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC
TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCA
GCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGA
TGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCAC
TCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATC
GCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCG
CCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTC
CGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAG
CTGCGGTAAAGCTCATCAGCGTGGTCGTGCAGCGATTCACAGATGTCTGCCTGTTC
ATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAA
AGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAA
GGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCA
CGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAA
ACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGC
CAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGC
GATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTT
ACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTT
GCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAG
TAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCG
CACCCGTGGCCAGGACCCAACGCTGCCCGAAATT 
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3. Nucleic acid and amino acid sequences of the selected scFvs 

(Link region and 6XHis-tag are shaded in grey)	
  

	
  

>011 (33.46 kDa) 

	
  

atgggcgacatccagttgacccagtctccctcctcactgtctgcgtctgcaggagacaga 
 M  G  D  I  Q  L  T  Q  S  P  S  S  L  S  A  S  A  G  D  R  
gtcaccctcacttgtcgggcgagtcagggcattagcaatgatttagcccggcttcagcag 
 V  T  L  T  C  R  A  S  Q  G  I  S  N  D  L  A  R  L  Q  Q  
aaaccagggaaagcccctaagtccctgatctatgctgcatccagtttgcaaagtggggtc 
 K  P  G  K  A  P  K  S  L  I  Y  A  A  S  S  L  Q  S  G  V  
ccatcaaagttcagcggcagtggatctgagacagaattcactctcaccatcagcagcctg 
 P  S  K  F  S  G  S  G  S  E  T  E  F  T  L  T  I  S  S  L  
cagcctgatgatcctgcaacttactactgccaacagtacagtgcatcttcttcgacgttc 
 Q  P  D  D  P  A  T  Y  Y  C  Q  Q  Y  S  A  S  S  S  T  F  
ggccaagggaccaaggtggaaattaaacgaactgtggctgcaccatctgtcttcatcttc 
 G  Q  G  T  K  V  E  I  K  R  T  V  A  A  P  S  V  F  I  F  
ccgccatctgatgagcggctgaaatctggacagatcaccttgaaggagtctggtccggcg 
 P  P  S  D  E  R  L  K  S  G  Q  I  T  L  K  E  S  G  P  A  
ctggtgaagcccacacagacgctcacactggcctgcgccgtctctgggctctcgctcagc 
 L  V  K  P  T  Q  T  L  T  L  A  C  A  V  S  G  L  S  L  S  
acgagtggagtgcgagtgggttggctccgtcagcccccagggaaggccccggagtggcta 
 T  S  G  V  R  V  G  W  L  R  Q  P  P  G  K  A  P  E  W  L  
gcacgcattgattgggacgatgacaagttctacaacacttctctgaagaccaggctcacc 
 A  R  I  D  W  D  D  D  K  F  Y  N  T  S  L  K  T  R  L  T  
ctctccaaggacacctccaaaaatcaagtggttcttacaatgaccatcatggaccccgtg 
 L  S  K  D  T  S  K  N  Q  V  V  L  T  M  T  I  M  D  P  V  
gacacaggcacctattactgtgcgcgcctcgccgtggatacagttatggtacagggatat 
 D  T  G  T  Y  Y  C  A  R  L  A  V  D  T  V  M  V  Q  G  Y  
tttgacttgtggggccagggaatcatggtcaccgtctcctcagcctccaccaagggccca 
 F  D  L  W  G  Q  G  I  M  V  T  V  S  S  A  S  T  K  G  P  
tcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccgcatcc 
 S  V  F  P  L  A  P  S  S  K  S  T  S  G  G  T  A  A  A  S  
gcacatcatcatcaccatcacaagctggactacaaagaccatgacggtgattataaagat 
 A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  G  D  Y  K  D  
catgacatcgattacaaggatgacgatgacaag 
 H  D  I  D  Y  K  D  D  D  D  K   
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>1-1 (34.16 kDa) 

	
  

atggccaattttatgctgactcagccccactctgtgtcggagtctccggggaagacggta 
 M  A  N  F  M  L  T  Q  P  H  S  V  S  E  S  P  G  K  T  V  
accatctcctgcacccgcaccagtggcagtattgccagcaagtatgtgcagtggtaccaa 
 T  I  S  C  T  R  T  S  G  S  I  A  S  K  Y  V  Q  W  Y  Q  
cagcgcccgggcagtgcccccacaactgtgatgtttgaggatagtcaaagaccctctggg 
 Q  R  P  G  S  A  P  T  T  V  M  F  E  D  S  Q  R  P  S  G  
gtccctgatcggttctctggctccatcgacagctcctccaattctgccttcctcaccatc 
 V  P  D  R  F  S  G  S  I  D  S  S  S  N  S  A  F  L  T  I  
gctggactgcagcctgaggacgaggctgactactattgtcagtcttatgataacagaaat 
 A  G  L  Q  P  E  D  E  A  D  Y  Y  C  Q  S  Y  D  N  R  N  
cagatcttcggcggagggaccaagttgaccgtcctaggtcagcccaaggctgccccctcg 
 Q  I  F  G  G  G  T  K  L  T  V  L  G  Q  P  K  A  A  P  S  
gtcactctgttcccaccctcctctgaggagctccaagccgaggtgcagctgttggagacc 
 V  T  L  F  P  P  S  S  E  E  L  Q  A  E  V  Q  L  L  E  T  
gggggaggcttagttcagcctggggggtccctgagactctcctgtgcagcctctagattc 
 G  G  G  L  V  Q  P  G  G  S  L  R  L  S  C  A  A  S  R  F  
agcttcaagaactactggatgcagtgggtccgccaacctccagggaaggggctggtgtgg 
 S  F  K  N  Y  W  M  Q  W  V  R  Q  P  P  G  K  G  L  V  W  
gtctcacgtatcaacaacgacggaaatcagaaaagatacgcggacggcgtgaagggccga 
 V  S  R  I  N  N  D  G  N  Q  K  R  Y  A  D  G  V  K  G  R  
ttcaccatctccagagacaacgccaagaacacgctgtccctgcaaatggacagtctacga 
 F  T  I  S  R  D  N  A  K  N  T  L  S  L  Q  M  D  S  L  R  
gccgaggacacggcggtgtattactgtgtcagacaatcccttgataattatgcttaccac 
 A  E  D  T  A  V  Y  Y  C  V  R  Q  S  L  D  N  Y  A  Y  H  
ttagactactggggccagggaaccctggtcaccgtctcctcagcctccaccaagggccca 
 L  D  Y  W  G  Q  G  T  L  V  T  V  S  S  A  S  T  K  G  P  
tcggtcttccccctggcgccctgctccaggagcacctccgagagcacagcggccgcatcc 
 S  V  F  P  L  A  P  C  S  R  S  T  S  E  S  T  A  A  A  S  
gcacatcatcatcaccatcacaagctggactacaaagaccatgacgtgattataaagatc 
 A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  V  I  I  K  I  
atgacatcgattacaaggatgacgatgacagta 
 M  T  S  I  T  R  M  T  M  T  V   
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>1-5 (33.45 kDa) 

	
  

atggccgacatccagttgacccagtctccctcctcactgtctgcgtctgcaggagacaga 
 M  A  D  I  Q  L  T  Q  S  P  S  S  L  S  A  S  A  G  D  R  
gtcaccctcacttgtcgggcgagtcagggcattagcaatgatttagcccggtttcagcag 
 V  T  L  T  C  R  A  S  Q  G  I  S  N  D  L  A  R  F  Q  Q  
aaaccagggaaagcccctaagtccctgatctatgctgcatccagtttgcaaagtggggtc 
 K  P  G  K  A  P  K  S  L  I  Y  A  A  S  S  L  Q  S  G  V  
ccatcaaagttcagcggcagtggatctgagacagaattcactctcaccatcagcagcctg 
 P  S  K  F  S  G  S  G  S  E  T  E  F  T  L  T  I  S  S  L  
cagcctgatgatcctgcaacttactactgccaacagtacagtgcatcttcttcgacgttc 
 Q  P  D  D  P  A  T  Y  Y  C  Q  Q  Y  S  A  S  S  S  T  F  
ggccaagggaccaaggtggaaattaaacgaactgtggctgcaccatctgtcttcatcttc 
 G  Q  G  T  K  V  E  I  K  R  T  V  A  A  P  S  V  F  I  F  
ccgccatctgatgagcggctgaaatctggacagatcgccttgaaggagtctggtccggcg 
 P  P  S  D  E  R  L  K  S  G  Q  I  A  L  K  E  S  G  P  A  
ctggtgaagcccacacagacgctcacactggcctgcgccgtctctgggctctcgctcagc 
 L  V  K  P  T  Q  T  L  T  L  A  C  A  V  S  G  L  S  L  S  
acgagtggagtgcgagtgggttggctccgtcagcccccagggaaggccccggagtggcta 
 T  S  G  V  R  V  G  W  L  R  Q  P  P  G  K  A  P  E  W  L  
gcacgcattgattgggacgatgacaagttctacaacacttctctgaagaccaggctcacc 
 A  R  I  D  W  D  D  D  K  F  Y  N  T  S  L  K  T  R  L  T  
ctctccaaggacacctccaaaaatcaagtggttcttacaatgaccaacatggaccccgtg 
 L  S  K  D  T  S  K  N  Q  V  V  L  T  M  T  N  M  D  P  V  
gacacaggcacctattactgtgcgcgcctcgccgtggatacagttatggtacagggatat 
 D  T  G  T  Y  Y  C  A  R  L  A  V  D  T  V  M  V  Q  G  Y  
tttgacttgtggggccagggaatcatggtcaccgtctcctcagcctccaccaagggccca 
 F  D  L  W  G  Q  G  I  M  V  T  V  S  S  A  S  T  K  G  P  
tcggtcttccccctggcgccctcctccaagggcacctctgggggcacagcggccgcatcc 
 S  V  F  P  L  A  P  S  S  K  G  T  S  G  G  T  A  A  A  S  
gcacatcatcatcaccatcacaagctggactacaaagaccatgacggtgattataaagat 
 A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  G  D  Y  K  D  
catgacatcgattacaaggatgacgatgacaag 
 H  D  I  D  Y  K  D  D  D  D  K  
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>1-7 (34.64 kDa) 

	
  

atggccaattttatgctgactcagccccgctctgtgtcggaatctccggggaggacggtg 
 M  A  N  F  M  L  T  Q  P  R  S  V  S  E  S  P  G  R  T  V  
atcatctcctgcacccgcagcactggcaccattgccgccaactatgtgcagtggtaccag 
 I  I  S  C  T  R  S  T  G  T  I  A  A  N  Y  V  Q  W  Y  Q  
cagcgcccgggcaattcccccaccactgtaatctttgaggataaccaaagaccctctggg 
 Q  R  P  G  N  S  P  T  T  V  I  F  E  D  N  Q  R  P  S  G  
gtccctgatcggttctctggctccatcgacagctcctccaactctgcctccctcaccatc 
 V  P  D  R  F  S  G  S  I  D  S  S  S  N  S  A  S  L  T  I  
cctagactgaagactgaggacgaggctgactactactgtcagtcttatgaagccagcagt 
 P  R  L  K  T  E  D  E  A  D  Y  Y  C  Q  S  Y  E  A  S  S  
catgagtgggtgctcggcggcgggaccaagctgaccgtcctaggtcagcccaaggctgcc 
 H  E  W  V  L  G  G  G  T  K  L  T  V  L  G  Q  P  K  A  A  
ccctcggtcactctgttcccaccctcctctgaggagctccaagcccaggtacagctgcag 
 P  S  V  T  L  F  P  P  S  S  E  E  L  Q  A  Q  V  Q  L  Q  
cagtcaggtccaggagtggtgaagccctcgcagaccctctcactcacctgtgccatctcc 
 Q  S  G  P  G  V  V  K  P  S  Q  T  L  S  L  T  C  A  I  S  
ggcgacagtgtctctagcgacagtggtgcttggaactggatcaggcagtccccatcggga 
 G  D  S  V  S  S  D  S  G  A  W  N  W  I  R  Q  S  P  S  G  
ggccttgagtggctgggaaggacatactacaggtccaagtggtccaagtggtataatgat 
 G  L  E  W  L  G  R  T  Y  Y  R  S  K  W  S  K  W  Y  N  D  
tatgcagtatctctgaaaagtcgaataaccattaatccagacacatccaagaaccagtcc 
 Y  A  V  S  L  K  S  R  I  T  I  N  P  D  T  S  K  N  Q  S  
tccctgcacctgaactctgtgactcccgaggacgcggctgtgtattactgtgcaagagac 
 S  L  H  L  N  S  V  T  P  E  D  A  A  V  Y  Y  C  A  R  D  
gaggtaactggaactggtgttttggactactggggccagggaaccctggtcaccgtctcc 
 E  V  T  G  T  G  V  L  D  Y  W  G  Q  G  T  L  V  T  V  S  
tcagcctccaccaagggcccatcggtcttccccctggcaccctcctccgagagcacctct 
 S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  E  S  T  S  
gggggcacagcggccgcatccccacatcatcatcaccatcacaagctggactacaaagac 
 G  G  T  A  A  A  S  P  H  H  H  H  H  H  K  L  D  Y  K  D  
catgacggtgattataaagatcatgacatcgattacaaggatgacgatgacaag 
 H  D  G  D  Y  K  D  H  D  I  D  Y  K  D  D  D  D  K  
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>2-1 (34.19 kDa) 

 
atggccaattttatgctgactcagccccactctgtgtcggagtctccggggaagacggta 
 M  A  N  F  M  L  T  Q  P  H  S  V  S  E  S  P  G  K  T  V  
accatctcctgcacccgcaccagtggcagtattgccagcaagtatgtgcagtggtaccaa 
 T  I  S  C  T  R  T  S  G  S  I  A  S  K  Y  V  Q  W  Y  Q  
cagcgcccgggcagtgcccccacaactgtgatgtttgaggatagtcaaagaccctctggg 
 Q  R  P  G  S  A  P  T  T  V  M  F  E  D  S  Q  R  P  S  G  
gtccctgatcggttctctggctccatcgacagctcctccaattctgccttcctcaccatc 
 V  P  D  R  F  S  G  S  I  D  S  S  S  N  S  A  F  L  T  I  
tctggactgcagcctgaggacgaggctggctactattgtcagtcttatgataacagaaat 
 S  G  L  Q  P  E  D  E  A  G  Y  Y  C  Q  S  Y  D  N  R  N  
cagatcttcggcggagggaccaagttgaccgtcctaggtcagcccaaggctgccccctcg 
 Q  I  F  G  G  G  T  K  L  T  V  L  G  Q  P  K  A  A  P  S  
gtcactctgttcccaccctcctctgaggagctccaagccgaggtgcagctgttggagacc 
 V  T  L  F  P  P  S  S  E  E  L  Q  A  E  V  Q  L  L  E  T  
gggggaggcttagttcagcctggggggtccctgagactctcctgtgcagcctctagattc 
 G  G  G  L  V  Q  P  G  G  S  L  R  L  S  C  A  A  S  R  F  
agcttcaagagctactggatgcagtgggtccgccaacctccagggaaggggctggtgtgg 
 S  F  K  S  Y  W  M  Q  W  V  R  Q  P  P  G  K  G  L  V  W  
gtctcacatatcaacaacgacggaaatcagaaaagatacgcggacggcgtgaagggccga 
 V  S  H  I  N  N  D  G  N  Q  K  R  Y  A  D  G  V  K  G  R  
ttcaccatctccagagacaacgccaagaacacgctgtccctgcaaatggacagtctacga 
 F  T  I  S  R  D  N  A  K  N  T  L  S  L  Q  M  D  S  L  R  
gccgaggacacggcggtgtattactgtgtcagacaatcccttgataattatgcttaccac 
 A  E  D  T  A  V  Y  Y  C  V  R  Q  S  L  D  N  Y  A  Y  H  
ttagactactggggccagggaaccctggtcaccgtctcctcagcctccaccaagggccca 
 L  D  Y  W  G  Q  G  T  L  V  T  V  S  S  A  S  T  K  G  P  
tcggtcttccccctggcgccctgctccaggagcacctccgagagcacagcggccgcatcc 
 S  V  F  P  L  A  P  C  S  R  S  T  S  E  S  T  A  A  A  S  
gcccatcatcatcaccatcacaagctggactacaaagaccatgacggtgattataaagat 
 A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  G  D  Y  K  D  
catgacatcgattacaaggatgacgatgacaag 
 H  D  I  D  Y  K  D  D  D  D  K   
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>2-2 (33.44 kDa) 

	
  

atggccgacatccaggtgacccagtctccctcctcactgtctgcgtctgcaggagacaga 
 M  A  D  I  Q  V  T  Q  S  P  S  S  L  S  A  S  A  G  D  R  
gtcaccctcactcgtcgggcgagtcagggcattagcaatgatttagcccggtttcagcag 
 V  T  L  T  R  R  A  S  Q  G  I  S  N  D  L  A  R  F  Q  Q  
aaaccagggaaagcccctaagtccctgatctatgctgcatccagtttgcaaagtggggtc 
 K  P  G  K  A  P  K  S  L  I  Y  A  A  S  S  L  Q  S  G  V  
ccatcaaagtccagcggcagtggatctgagacagaattcactctcaccatcagcagcctg 
 P  S  K  S  S  G  S  G  S  E  T  E  F  T  L  T  I  S  S  L  
cagcctgatgatccagcaacttactactgccaacagtacagtgcatcttcttcgacgttc 
 Q  P  D  D  P  A  T  Y  Y  C  Q  Q  Y  S  A  S  S  S  T  F  
ggccaagggaccaaggtggaaattaaacgaactgtggctgcaccatctgtcttcatcttc 
 G  Q  G  T  K  V  E  I  K  R  T  V  A  A  P  S  V  F  I  F  
ccgccatctgatgagcggctgaaatctggacagatcaccttgaaggagtctggtccggcg 
 P  P  S  D  E  R  L  K  S  G  Q  I  T  L  K  E  S  G  P  A  
ctggtgaagcccacacagacgctcacactggcctgcgccgtctctgggccctcgctcagc 
 L  V  K  P  T  Q  T  L  T  L  A  C  A  V  S  G  P  S  L  S  
acgagtggagtgcgagtgggttggctccgtcagcccccagggaaggccccggagtggcta 
 T  S  G  V  R  V  G  W  L  R  Q  P  P  G  K  A  P  E  W  L  
gcacgcattgattgggacgatgacaagttctacaacacttctctgaagaccaggctcacc 
 A  R  I  D  W  D  D  D  K  F  Y  N  T  S  L  K  T  R  L  T  
ctctccaaggacgcctccaaaaatcaagtggttcttacaatgaccgacatggaccccgtg 
 L  S  K  D  A  S  K  N  Q  V  V  L  T  M  T  D  M  D  P  V  
gacacaggcacctattactgtgcgcgcctcgccgtggatacagttatggtacagggatat 
 D  T  G  T  Y  Y  C  A  R  L  A  V  D  T  V  M  V  Q  G  Y  
tttgacttgtggggccagggaatcatggtcaccgtctcctcagcctccaccaagggccca 
 F  D  L  W  G  Q  G  I  M  V  T  V  S  S  A  S  T  K  G  P  
tcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccgcatcc 
 S  V  F  P  L  A  P  S  S  K  S  T  S  G  G  T  A  A  A  S  
gcacatcatcatcaccatcacaagctggactacaaagaccatgacggtgattataaagat 
 A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  G  D  Y  K  D  
catgacatcgattacaaggatgacgatgacaag 
 H  D  I  D  Y  K  D  D  D  D  K   
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>2-4 (33.48 kDa)  

	
  

atggccgacattcagttgacccagtctccctcctcactgtctgcgtctgcaggagacaga 
 M  A  D  I  Q  L  T  Q  S  P  S  S  L  S  A  S  A  G  D  R  
gtcaccctcacttgtcgggcgagtcagggcattagcaatgatttagcccggtttcagcag 
 V  T  L  T  C  R  A  S  Q  G  I  S  N  D  L  A  R  F  Q  Q  
aaaccagggaaagcccctaagtccctgatctatgctgcatccagtttgcaaagtggggtc 
 K  P  G  K  A  P  K  S  L  I  Y  A  A  S  S  L  Q  S  G  V  
ccatcaaagttcagcggcagtggatctgagacagaattcactctcaccatcagcagcctg 
 P  S  K  F  S  G  S  G  S  E  T  E  F  T  L  T  I  S  S  L  
cagcctgatgatcctgcaacttactactgccaacagtacagtgcatcttcttcgacgttc 
 Q  P  D  D  P  A  T  Y  Y  C  Q  Q  Y  S  A  S  S  S  T  F  
ggccaagggaccaaggtggaaattaaacgaactgtggctgcaccatctgtcttcatcttc 
 G  Q  G  T  K  V  E  I  K  R  T  V  A  A  P  S  V  F  I  F  
ccgccatctgatgagcggctgaaatctggacagatcaccttgaaggagtctggtccggcg 
 P  P  S  D  E  R  L  K  S  G  Q  I  T  L  K  E  S  G  P  A  
ctggtgaggcccacacagacgctcacactggcctgcgccgtctctgggctctcgctcagc 
 L  V  R  P  T  Q  T  L  T  L  A  C  A  V  S  G  L  S  L  S  
acgagtggagtgcgagtgggttggctccgtcagcccccagggaaggccccggagtggcta 
 T  S  G  V  R  V  G  W  L  R  Q  P  P  G  K  A  P  E  W  L  
gcacgcattgattgggacgatgacaagttctacaacacttctctgaagaccaggctcacc 
 A  R  I  D  W  D  D  D  K  F  Y  N  T  S  L  K  T  R  L  T  
ctctccgaggacacctccaaaaatcaagtggttcttacaatgaccaacatggaccccgtg 
 L  S  E  D  T  S  K  N  Q  V  V  L  T  M  T  N  M  D  P  V  
ggcacaggcacctattactgtgcgcgcctcgccgtggatacagttatggtacagggatat 
 G  T  G  T  Y  Y  C  A  R  L  A  V  D  T  V  M  V  Q  G  Y  
tttgacttgtggggccagggaatcatggtcaccgtctcctcagcctccaccaagggccca 
 F  D  L  W  G  Q  G  I  M  V  T  V  S  S  A  S  T  K  G  P  
tcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccgcatcc 
 S  V  F  P  L  A  P  S  S  K  S  T  S  G  G  T  A  A  A  S  
gcacatcatcatcaccatcacaagctggactacaaagaccatgacggtgattataaagat 
 A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  G  D  Y  K  D  
catgacatcgattacaaggatgacgatgacaag 
 H  D  I  D  Y  K  D  D  D  D  K   
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>I3 (33.5 kDa) 

	
  

atggccgacatccgggtgacccagtctccaggcaccctgtctttatcaccaggggaagga 
 M  A  D  I  R  V  T  Q  S  P  G  T  L  S  L  S  P  G  E  G  
gccaccctctcctgcagggccagtgagactgttaggttcaattacgtcgcctggtatcag 
 A  T  L  S  C  R  A  S  E  T  V  R  F  N  Y  V  A  W  Y  Q  
cagaaacctggccagcctcccaggctcctcatctatggtgcgtccaagagggccactggc 
 Q  K  P  G  Q  P  P  R  L  L  I  Y  G  A  S  K  R  A  T  G  
atcccagacaggtttagtggcagtgggtctgggaccgacttcgctctcaccatcagcaga 
 I  P  D  R  F  S  G  S  G  S  G  T  D  F  A  L  T  I  S  R  
ctagagcctgaagattttgcagtctattactgtcagcggtatggtagctcacctcgggcg 
 L  E  P  E  D  F  A  V  Y  Y  C  Q  R  Y  G  S  S  P  R  A  
ttcggcccagggaccaaggtggaattcaaacgaactgtggctgcaccatccgtcttcatc 
 F  G  P  G  T  K  V  E  F  K  R  T  V  A  A  P  S  V  F  I  
ttcccgccatctgatgagcagttgaaatctggacaggtccagcttgtacagtctggggct 
 F  P  P  S  D  E  Q  L  K  S  G  Q  V  Q  L  V  Q  S  G  A  
gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaagacttctggaggcaccttc 
 E  V  K  K  P  G  S  S  V  K  V  S  C  K  T  S  G  G  T  F  
agcagctatgctatcagttgggtgcgacaggcccccggacaggggcttgaatgggtggga 
 S  S  Y  A  I  S  W  V  R  Q  A  P  G  Q  G  L  E  W  V  G  
gggatcatccctccctctggcacaacaaactacgcacagaagatccggggcagagtcacg 
 G  I  I  P  P  S  G  T  T  N  Y  A  Q  K  I  R  G  R  V  T  
attaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgatatctgag 
 I  T  A  D  E  S  T  S  T  A  Y  M  E  L  S  S  L  I  S  E  
gacacggccgtgtattactgtgcgagagatcacgtggatacacctatgggccttgactat 
 D  T  A  V  Y  Y  C  A  R  D  H  V  D  T  P  M  G  L  D  Y  
tggagccagggaaccctggtcaccgtctcctcagcctccaccaagggcccatcggtcttc 
 W  S  Q  G  T  L  V  T  V  S  S  A  S  T  K  G  P  S  V  F  
cccctggcaccctcctccaagagcacctctgggggcacagcggccgcatccgcacatcat 
 P  L  A  P  S  S  K  S  T  S  G  G  T  A  A  A  S  A  H  H  
catcaccatcacaagctggactacaaagaccatgacggtgattataaagatcatgacatc 
 H  H  H  H  K  L  D  Y  K  D  H  D  G  D  Y  K  D  H  D  I  
gattacaagatgacgatgacagtaataaagctt 
 D  Y  K  M  T  M  T  V  I  K  L   
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>I4 (33.32 kDa) 

	
  

atggccgacatccaggtgacccagtctccaggcaccctgtctttatcaccaggggaagga 
 M  A  D  I  Q  V  T  Q  S  P  G  T  L  S  L  S  P  G  E  G  
gccaccctctcctgcagggccagtgagactgttaggttcaattacgtcgcctggtatcag 
 A  T  L  S  C  R  A  S  E  T  V  R  F  N  Y  V  A  W  Y  Q  
cagaaacctggccagcctcccaggctcctcatctatggtgcgtccaagagggccactggc 
 Q  K  P  G  Q  P  P  R  L  L  I  Y  G  A  S  K  R  A  T  G  
atcccagacaggtctagtggcagtgggtctgggaccgacttcgctctcaccatcagcaga 
 I  P  D  R  S  S  G  S  G  S  G  T  D  F  A  L  T  I  S  R  
ctagagcctgaagattttgcagtctattactgtcagcggtatggtagctcacctcgggcg 
 L  E  P  E  D  F  A  V  Y  Y  C  Q  R  Y  G  S  S  P  R  A  
ttcggcctagggaccaaggtggaattcaaacgaactgtggctgcaccatctgtcttcatc 
 F  G  L  G  T  K  V  E  F  K  R  T  V  A  A  P  S  V  F  I  
ttcccgccatctgatgagcagttgaaatctggacaggtccagcttgtacagtctggggct 
 F  P  P  S  D  E  Q  L  K  S  G  Q  V  Q  L  V  Q  S  G  A  
gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaagacttctggaggcaccttc 
 E  V  K  K  P  G  S  S  V  K  V  S  C  K  T  S  G  G  T  F  
agcagctatgctatcagttgggtgcgacaggcctccggacaggggcttgaatggatggga 
 S  S  Y  A  I  S  W  V  R  Q  A  S  G  Q  G  L  E  W  M  G  
gggatcatccctccctctggcacaacaaactacgcacagaagatccggggcagagtcacg 
 G  I  I  P  P  S  G  T  T  N  Y  A  Q  K  I  R  G  R  V  T  
attaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgatatctgag 
 I  T  A  D  E  S  T  S  T  A  Y  M  E  L  S  S  L  I  S  E  
gacacggccgtgtattactgtgcgagagatcacgtggatacacctatgggccttgactat 
 D  T  A  V  Y  Y  C  A  R  D  H  V  D  T  P  M  G  L  D  Y  
tggagccagggaaccctggtcaccgtctcctcagcctccaccaagggcccatcggtcttc 
 W  S  Q  G  T  L  V  T  V  S  S  A  S  T  K  G  P  S  V  F  
cccctggcaccctcctccaagagcacctctgggggcacagcggccgcatccgcacatcat 
 P  L  A  P  S  S  K  S  T  S  G  G  T  A  A  A  S  A  H  H  
catcaccatcacaagctggactacaagaccatgacggtgattataaagatcatgacatcg 
 H  H  H  H  K  L  D  Y  K  T  M  T  V  I  I  K  I  M  T  S  
attacaaggatgacgatgacagtaataaagctt 
 I  T  R  M  T  M  T  V  I  K  L   
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>M5 (34.94 kDa) 

	
  

atggccaattttatgctgactcagcccccctcagtgtccgtgtccccaggacagacagcc 
 M  A  N  F  M  L  T  Q  P  P  S  V  S  V  S  P  G  Q  T  A  
agcatcacctgctctggagataaattgggggataaatatgcttgttggtatcagcagaag 
 S  I  T  C  S  G  D  K  L  G  D  K  Y  A  C  W  Y  Q  Q  K  
ccaggccagtcccctgtcctggtcatccatcaagataacaagcggccctcagggatccct 
 P  G  Q  S  P  V  L  V  I  H  Q  D  N  K  R  P  S  G  I  P  
gagcgattctctggctccaattctgggaacacagccactctgaccatcagcgggacccag 
 E  R  F  S  G  S  N  S  G  N  T  A  T  L  T  I  S  G  T  Q  
gctatggatgaggctgactactactgtcaggcgtgggacagcagcactgtggtatccggc 
 A  M  D  E  A  D  Y  Y  C  Q  A  W  D  S  S  T  V  V  S  G  
ggagggaccaagctgaccgtcctaggtcagcccaaggctgccccctcggccactctgttc 
 G  G  T  K  L  T  V  L  G  Q  P  K  A  A  P  S  A  T  L  F  
ccgccctcctctgaggagctccaagcccaggtgcagctgcaggagtcgggcccaggactg 
 P  P  S  S  E  E  L  Q  A  Q  V  Q  L  Q  E  S  G  P  G  L  
gtgaagccctccgagaccctgaccctcaactgctctgtctctggtggctccataaataga 
 V  K  P  S  E  T  L  T  L  N  C  S  V  S  G  G  S  I  N  R  
tattactggagttggatccggcagtccccggggaatggactagagtggattggctacgtc 
 Y  Y  W  S  W  I  R  Q  S  P  G  N  G  L  E  W  I  G  Y  V  
tattctaacggaaataccaattacaacccctccctcgagagtcgagtcaccatctcagtc 
 Y  S  N  G  N  T  N  Y  N  P  S  L  E  S  R  V  T  I  S  V  
gacgtgtccaggaaccagttttccctgcagttgacctctgtgacggccgcagacacggcc 
 D  V  S  R  N  Q  F  S  L  Q  L  T  S  V  T  A  A  D  T  A  
ctatattactgtgcgcgacagggctatacgcatcgggatgtattgactcgtcaaaagttt 
 L  Y  Y  C  A  R  Q  G  Y  T  H  R  D  V  L  T  R  Q  K  F  
tacttctactacatggacgtctggggcaaagggaccacagtcatcgtctcctcagcctcc 
 Y  F  Y  Y  M  D  V  W  G  K  G  T  T  V  I  V  S  S  A  S  
accaagggcccatcggtcttccccctggcgccttgctccaggagcacctccgagagcaca 
 T  K  G  P  S  V  F  P  L  A  P  C  S  R  S  T  S  E  S  T  
gcggccgcatccgcacatcatcatcaccatcacaagctggactacaaagaccatgacggt 
 A  A  A  S  A  H  H  H  H  H  H  K  L  D  Y  K  D  H  D  G  
gattataaagatcatgacatcgattacaaggatgacgatgacaggtataaaagcctt 
 D  Y  K  D  H  D  I  D  Y  K  D  D  D  D  R  Y  K  S  L   
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4. SDS-PAGE and western blot of the expressed antibodies  

    (pSANG-011, 1-1, 1-5, 1-7, 2-1, 2-2, 2-4, I3, I4 and M5) 

 

 
 

 
 

 
 



	
   	
   	
  132	
  

 
 

 
 

 
 



	
   	
   	
  133	
  

 
 

 
 

 
 



	
   	
   	
  134	
  

 
 

 
 

 
 



	
   	
   	
  135	
  

 
 

 
 

 
 

 



	
   	
   	
  136	
  

 
 

 
 

 
 

 



	
   	
   	
  137	
  

Reference 
 

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. 1990. 
Basic local alignment search tool. J Mol Biol, 215, 403-10. 

ANDERSON, J. P., RODRIGO, A. G., LEARN, G. H., MADAN, A., DELAHUNTY, 
C., COON, M., GIRARD, M., OSMANOV, S., HOOD, L. & MULLINS, J. I. 
2000. Testing the hypothesis of a recombinant origin of human 
immunodeficiency virus type 1 subtype E. J Virol, 74, 10752-65. 

ARBABI-GHAHROUDI, M., TANHA, J. & MACKENZIE, R. 2005. Prokaryotic 
expression of antibodies. Cancer Metastasis Rev, 24, 501-19. 

ARTHOS, J., DEEN, K. C., CHAIKIN, M. A., FORNWALD, J. A., SATHE, G., 
SATTENTAU, Q. J., CLAPHAM, P. R., WEISS, R. A., MCDOUGAL, J. S., 
PIETROPAOLO, C. & ET AL. 1989. Identification of the residues in human 
CD4 critical for the binding of HIV. Cell, 57, 469-81. 

AYOUBA, A., MAUCLERE, P., MARTIN, P. M., CUNIN, P., 
MFOUPOUENDOUN, J., NJINKU, B., SOUQUIERES, S. & SIMON, F. 
2001. HIV-1 group O infection in Cameroon, 1986 to 1998. Emerg Infect Dis, 
7, 466-7. 

BABA, T. W., LISKA, V., HOFMANN-LEHMANN, R., VLASAK, J., XU, W., 
AYEHUNIE, S., CAVACINI, L. A., POSNER, M. R., KATINGER, H., 
STIEGLER, G., BERNACKY, B. J., RIZVI, T. A., SCHMIDT, R., HILL, L. 
R., KEELING, M. E., LU, Y., WRIGHT, J. E., CHOU, T. C. & RUPRECHT, 
R. M. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype 
protect against mucosal simian-human immunodeficiency virus infection. Nat 
Med, 6, 200-6. 

BACA, A. M. & HOL, W. G. 2000. Overcoming codon bias: a method for high-level 
overexpression of Plasmodium and other AT-rich parasite genes in Escherichia 
coli. Int J Parasitol, 30, 113-8. 

BALAKRISHNAN, M., ROQUES, B. P., FAY, P. J. & BAMBARA, R. A. 2003. 
Template dimerization promotes an acceptor invasion-induced transfer 
mechanism during human immunodeficiency virus type 1 minus-strand 
synthesis. J Virol, 77, 4710-21. 

BALTIMORE, D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour 
viruses. Nature, 226, 1209-11. 

BANEYX, F. 1999. Recombinant protein expression in Escherichia coli. Curr Opin 
Biotechnol, 10, 411-21. 

BARBAS, C. F., 3RD, BJORLING, E., CHIODI, F., DUNLOP, N., CABABA, D., 
JONES, T. M., ZEBEDEE, S. L., PERSSON, M. A., NARA, P. L., NORRBY, 
E. & ET AL. 1992. Recombinant human Fab fragments neutralize human type 
1 immunodeficiency virus in vitro. Proc Natl Acad Sci U S A, 89, 9339-43. 

BARKER, E., BARNETT, S. W., STAMATATOS, L. & LEVY, J. A. 1995. The 
human immunodeficiency viruses. In: LEVY, J. A. (ed.) The Retroviridae. 
New York: Plenum Press. 

BARRE-SINOUSSI, F., CHERMANN, J. C., REY, F., NUGEYRE, M. T., 
CHAMARET, S., GRUEST, J., DAUGUET, C., AXLER-BLIN, C., 
VEZINET-BRUN, F., ROUZIOUX, C., ROZENBAUM, W. & 
MONTAGNIER, L. 1983. Isolation of a T-lymphotropic retrovirus from a 



	
   	
   	
  138	
  

patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220, 
868-71. 

BERGER, E. A., DOMS, R. W., FENYO, E. M., KORBER, B. T., LITTMAN, D. R., 
MOORE, J. P., SATTENTAU, Q. J., SCHUITEMAKER, H., SODROSKI, J. 
& WEISS, R. A. 1998. A new classification for HIV-1. Nature, 391, 240. 

BINLEY, J. M., WRIN, T., KORBER, B., ZWICK, M. B., WANG, M., CHAPPEY, 
C., STIEGLER, G., KUNERT, R., ZOLLA-PAZNER, S., KATINGER, H., 
PETROPOULOS, C. J. & BURTON, D. R. 2004. Comprehensive cross-clade 
neutralization analysis of a panel of anti-human immunodeficiency virus type 1 
monoclonal antibodies. J Virol, 78, 13232-52. 

BIVONA, L., ZOU, Z., STUTZMAN, N. & SUN, P. D. 2010. Influence of the second 
amino acid on recombinant protein expression. Protein Expr Purif, 74, 248-56. 

BLIGHT, M. A., CHERVAUX, C. & HOLLAND, I. B. 1994. Protein secretion 
pathway in Escherichia coli. Curr Opin Biotechnol, 5, 468-74. 

BOOTH, A. M., FANG, Y., FALLON, J. K., YANG, J. M., HILDRETH, J. E. & 
GOULD, S. J. 2006. Exosomes and HIV Gag bud from endosome-like domains 
of the T cell plasma membrane. J Cell Biol, 172, 923-35. 

BORMAN, A. M., QUILLENT, C., CHARNEAU, P., DAUGUET, C. & CLAVEL, F. 
1995. Human immunodeficiency virus type 1 Vif- mutant particles from 
restrictive cells: role of Vif in correct particle assembly and infectivity. J Virol, 
69, 2058-67. 

BORROW, P., LEWICKI, H., HAHN, B. H., SHAW, G. M. & OLDSTONE, M. B. 
1994. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with 
control of viremia in primary human immunodeficiency virus type 1 infection. 
J Virol, 68, 6103-10. 

BORROW, P., LEWICKI, H., WEI, X., HORWITZ, M. S., PEFFER, N., MEYERS, 
H., NELSON, J. A., GAIRIN, J. E., HAHN, B. H., OLDSTONE, M. B. & 
SHAW, G. M. 1997. Antiviral pressure exerted by HIV-1-specific cytotoxic T 
lymphocytes (CTLs) during primary infection demonstrated by rapid selection 
of CTL escape virus. Nat Med, 3, 205-11. 

BROWN, P. O., BOWERMAN, B., VARMUS, H. E. & BISHOP, J. M. 1989. 
Retroviral integration: structure of the initial covalent product and its precursor, 
and a role for the viral IN protein. Proc Natl Acad Sci U S A, 86, 2525-9. 

BUCHACHER, A., PREDL, R., STRUTZENBERGER, K., STEINFELLNER, W., 
TRKOLA, A., PURTSCHER, M., GRUBER, G., TAUER, C., STEINDL, F., 
JUNGBAUER, A. & ET AL. 1994. Generation of human monoclonal 
antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus 
transformation for peripheral blood lymphocyte immortalization. AIDS Res 
Hum Retroviruses, 10, 359-69. 

BURTON, D. R., BARBAS, C. F., 3RD, PERSSON, M. A., KOENIG, S., 
CHANOCK, R. M. & LERNER, R. A. 1991. A large array of human 
monoclonal antibodies to type 1 human immunodeficiency virus from 
combinatorial libraries of asymptomatic seropositive individuals. Proc Natl 
Acad Sci U S A, 88, 10134-7. 

BURTON, D. R., PYATI, J., KODURI, R., SHARP, S. J., THORNTON, G. B., 
PARREN, P. W., SAWYER, L. S., HENDRY, R. M., DUNLOP, N., NARA, P. 
L. & ET AL. 1994. Efficient neutralization of primary isolates of HIV-1 by a 
recombinant human monoclonal antibody. Science, 266, 1024-7. 

BURTON, D. R. & WEISS, R. A. 2010. AIDS/HIV. A boost for HIV vaccine design. 
Science, 329, 770-3. 



	
   	
   	
  139	
  

BUSCH, M. P., LEE, L. L., SATTEN, G. A., HENRARD, D. R., FARZADEGAN, H., 
NELSON, K. E., READ, S., DODD, R. Y. & PETERSEN, L. R. 1995. Time 
course of detection of viral and serologic markers preceding human 
immunodeficiency virus type 1 seroconversion: implications for screening of 
blood and tissue donors. Transfusion, 35, 91-7. 

BUSHMAN, F. D., FUJIWARA, T. & CRAIGIE, R. 1990. Retroviral DNA integration 
directed by HIV integration protein in vitro. Science, 249, 1555-8. 

CABILLY, S. 1989. Growth at sub-optimal temperatures allows the production of 
functional, antigen-binding Fab fragments in Escherichia coli. Gene, 85, 553-7. 

CALARESE, D. A., SCANLAN, C. N., ZWICK, M. B., DEECHONGKIT, S., 
MIMURA, Y., KUNERT, R., ZHU, P., WORMALD, M. R., STANFIELD, R. 
L., ROUX, K. H., KELLY, J. W., RUDD, P. M., DWEK, R. A., KATINGER, 
H., BURTON, D. R. & WILSON, I. A. 2003. Antibody domain exchange is an 
immunological solution to carbohydrate cluster recognition. Science, 300, 
2065-71. 

CALDERONE, T. L., STEVENS, R. D. & OAS, T. G. 1996. High-level 
misincorporation of lysine for arginine at AGA codons in a fusion protein 
expressed in Escherichia coli. J Mol Biol, 262, 407-12. 

CANDOTTI, D., COSTAGLIOLA, D., JOBERTY, C., BONDUELLE, O., 
ROUZIOUX, C., AUTRAN, B. & AGUT, H. 1999. Status of long-term 
asymptomatic HIV-1 infection correlates with viral load but not with virus 
replication properties and cell tropism. French ALT Study Group. J Med Virol, 
58, 256-63. 

CARDOSO, R. M., ZWICK, M. B., STANFIELD, R. L., KUNERT, R., BINLEY, J. 
M., KATINGER, H., BURTON, D. R. & WILSON, I. A. 2005. Broadly 
neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a 
highly conserved fusion-associated motif in gp41. Immunity, 22, 163-73. 

CDC 1981a. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men-
-New York City and California. MMWR Morb Mortal Wkly Rep, 30, 305-8. 

CDC 1981b. Pneumocystis pneumonia--Los Angeles. MMWR Morb Mortal Wkly Rep, 
30, 250-2. 

CDC 1982. Current trends update on acquired immune deficiency syndrome (AIDS)--
United States. MMWR Morb Mortal Wkly Rep, 31, 507-8, 513-4. 

CHAN, D. C., FASS, D., BERGER, J. M. & KIM, P. S. 1997. Core structure of gp41 
from the HIV envelope glycoprotein. Cell, 89, 263-73. 

CHANG, S. Y., BOWMAN, B. H., WEISS, J. B., GARCIA, R. E. & WHITE, T. J. 
1993. The origin of HIV-1 isolate HTLV-IIIB. Nature, 363, 466-9. 

CHANH, T. C., DREESMAN, G. R., KANDA, P., LINETTE, G. P., SPARROW, J. 
T., HO, D. D. & KENNEDY, R. C. 1986. Induction of anti-HIV neutralizing 
antibodies by synthetic peptides. EMBO J, 5, 3065-71. 

CHEN, Z., LUCKAY, A., SODORA, D. L., TELFER, P., REED, P., GETTIE, A., 
KANU, J. M., SADEK, R. F., YEE, J., HO, D. D., ZHANG, L. & MARX, P. 
A. 1997. Human immunodeficiency virus type 2 (HIV-2) seroprevalence and 
characterization of a distinct HIV-2 genetic subtype from the natural range of 
simian immunodeficiency virus-infected sooty mangabeys. J Virol, 71, 3953-
60. 

CHENG-MAYER, C., LIU, R., LANDAU, N. R. & STAMATATOS, L. 1997. 
Macrophage tropism of human immunodeficiency virus type 1 and utilization 
of the CC-CKR5 coreceptor. J Virol, 71, 1657-61. 



	
   	
   	
  140	
  

CLAVEL, F., GUETARD, D., BRUN-VEZINET, F., CHAMARET, S., REY, M. A., 
SANTOS-FERREIRA, M. O., LAURENT, A. G., DAUGUET, C., 
KATLAMA, C., ROUZIOUX, C. & ET AL. 1986. Isolation of a new human 
retrovirus from West African patients with AIDS. Science, 233, 343-6. 

COFFIN, J., HAASE, A., LEVY, J. A., MONTAGNIER, L., OROSZLAN, S., TEICH, 
N., TEMIN, H., TOYOSHIMA, K., VARMUS, H., VOGT, P. & ET AL. 1986. 
Human immunodeficiency viruses. Science, 232, 697. 

COFFIN, J. M. 1995. HIV population dynamics in vivo: implications for genetic 
variation, pathogenesis, and therapy. Science, 267, 483-9. 

COHEN, E. A., TERWILLIGER, E. F., SODROSKI, J. G. & HASELTINE, W. A. 
1988. Identification of a protein encoded by the vpu gene of HIV-1. Nature, 
334, 532-4. 

COHEN, O. J., VACCAREZZA, M., LAM, G. K., BAIRD, B. F., WILDT, K., 
MURPHY, P. M., ZIMMERMAN, P. A., NUTMAN, T. B., FOX, C. H., 
HOOVER, S., ADELSBERGER, J., BASELER, M., ARTHOS, J., DAVEY, R. 
T., JR., DEWAR, R. L., METCALF, J., SCHWARTZENTRUBER, D. J., 
ORENSTEIN, J. M., BUCHBINDER, S., SAAH, A. J., DETELS, R., PHAIR, 
J., RINALDO, C., MARGOLICK, J. B., PANTALEO, G. & FAUCI, A. S. 
1997. Heterozygosity for a defective gene for CC chemokine receptor 5 is not 
the sole determinant for the immunologic and virologic phenotype of HIV-
infected long-term nonprogressors. J Clin Invest, 100, 1581-9. 

COHEN, S. N., CHANG, A. C. & HSU, L. 1972. Nonchromosomal antibiotic 
resistance in bacteria: genetic transformation of Escherichia coli by R-factor 
DNA. Proc Natl Acad Sci U S A, 69, 2110-4. 

CORBET, S., MULLER-TRUTWIN, M. C., VERSMISSE, P., DELARUE, S., 
AYOUBA, A., LEWIS, J., BRUNAK, S., MARTIN, P., BRUN-VEZINET, F., 
SIMON, F., BARRE-SINOUSSI, F. & MAUCLERE, P. 2000. env sequences 
of simian immunodeficiency viruses from chimpanzees in Cameroon are 
strongly related to those of human immunodeficiency virus group N from the 
same geographic area. J Virol, 74, 529-34. 

CORTI, D., LANGEDIJK, J. P., HINZ, A., SEAMAN, M. S., VANZETTA, F., 
FERNANDEZ-RODRIGUEZ, B. M., SILACCI, C., PINNA, D., 
JARROSSAY, D., BALLA-JHAGJHOORSINGH, S., WILLEMS, B., 
ZEKVELD, M. J., DREJA, H., O'SULLIVAN, E., PADE, C., ORKIN, C., 
JEFFS, S. A., MONTEFIORI, D. C., DAVIS, D., WEISSENHORN, W., 
MCKNIGHT, A., HEENEY, J. L., SALLUSTO, F., SATTENTAU, Q. J., 
WEISS, R. A. & LANZAVECCHIA, A. 2010. Analysis of memory B cell 
responses and isolation of novel monoclonal antibodies with neutralizing 
breadth from HIV-1-infected individuals. PLoS One, 5, e8805. 

CREGG, J. M., CEREGHINO, J. L., SHI, J. & HIGGINS, D. R. 2000. Recombinant 
protein expression in Pichia pastoris. Mol Biotechnol, 16, 23-52. 

CROOKS, E. T., MOORE, P. L., RICHMAN, D., ROBINSON, J., CROOKS, J. A., 
FRANTI, M., SCHULKE, N. & BINLEY, J. M. 2005. Characterizing anti-HIV 
monoclonal antibodies and immune sera by defining the mechanism of 
neutralization. Hum Antibodies, 14, 101-13. 

DAAR, E. S., LI, X. L., MOUDGIL, T. & HO, D. D. 1990. High concentrations of 
recombinant soluble CD4 are required to neutralize primary human 
immunodeficiency virus type 1 isolates. Proc Natl Acad Sci U S A, 87, 6574-8. 



	
   	
   	
  141	
  

DALGLEISH, A. G., BEVERLEY, P. C., CLAPHAM, P. R., CRAWFORD, D. H., 
GREAVES, M. F. & WEISS, R. A. 1984. The CD4 (T4) antigen is an essential 
component of the receptor for the AIDS retrovirus. Nature, 312, 763-7. 

DAMOND, F., WOROBEY, M., CAMPA, P., FARFARA, I., COLIN, G., 
MATHERON, S., BRUN-VEZINET, F., ROBERTSON, D. L. & SIMON, F. 
2004. Identification of a highly divergent HIV type 2 and proposal for a change 
in HIV type 2 classification. AIDS Res Hum Retroviruses, 20, 666-72. 

DAS, S., NIKOLAIDIS, N., KLEIN, J. & NEI, M. 2008. Evolutionary redefinition of 
immunoglobulin light chain isotypes in tetrapods using molecular markers. 
Proc Natl Acad Sci U S A, 105, 16647-52. 

DE BOER, H. A., COMSTOCK, L. J. & VASSER, M. 1983. The tac promoter: a 
functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U 
S A, 80, 21-5. 

DEACON, N. J., TSYKIN, A., SOLOMON, A., SMITH, K., LUDFORD-MENTING, 
M., HOOKER, D. J., MCPHEE, D. A., GREENWAY, A. L., ELLETT, A., 
CHATFIELD, C., LAWSON, V. A., CROWE, S., MAERZ, A., SONZA, S., 
LEARMONT, J., SULLIVAN, J. S., CUNNINGHAM, A., DWYER, D., 
DOWTON, D. & MILLS, J. 1995. Genomic structure of an attenuated quasi 
species of HIV-1 from a blood transfusion donor and recipients. Science, 270, 
988-91. 

DIECI, G., BOTTARELLI, L., BALLABENI, A. & OTTONELLO, S. 2000. tRNA-
assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif, 
18, 346-54. 

DONNELLY, C., LEISENRING, W., KANKI, P., AWERBUCH, T. & SANDBERG, 
S. 1993. Comparison of transmission rates of HIV-1 and HIV-2 in a cohort of 
prostitutes in Senegal. Bull Math Biol, 55, 731-43. 

EVANS, L. A., THOMSON-HONNEBIER, G., STEIMER, K., PAOLETTI, E., 
PERKUS, M. E., HOLLANDER, H. & LEVY, J. A. 1989. Antibody-dependent 
cellular cytotoxicity is directed against both the gp120 and gp41 envelope 
proteins of HIV. AIDS, 3, 273-6. 

FDA. 2010. Antiretroviral drugs used in the treatment of HIV infection [Online]. 
Available: http://www.fda.gov/oashi/aids/virals.html [Accessed 01 Mar 2011]. 

FERRER, M., CHERNIKOVA, T. N., YAKIMOV, M. M., GOLYSHIN, P. N. & 
TIMMIS, K. N. 2003. Chaperonins govern growth of Escherichia coli at low 
temperatures. Nat Biotechnol, 21, 1266-7. 

FISHER, A. G., ENSOLI, B., IVANOFF, L., CHAMBERLAIN, M., PETTEWAY, S., 
RATNER, L., GALLO, R. C. & WONG-STAAL, F. 1987. The sor gene of 
HIV-1 is required for efficient virus transmission in vitro. Science, 237, 888-93. 

FISHER, A. G., FEINBERG, M. B., JOSEPHS, S. F., HARPER, M. E., MARSELLE, 
L. M., REYES, G., GONDA, M. A., ALDOVINI, A., DEBOUK, C., GALLO, 
R. C. & ET AL. 1986. The trans-activator gene of HTLV-III is essential for 
virus replication. Nature, 320, 367-71. 

FREED, E. O. 1998. HIV-1 gag proteins: diverse functions in the virus life cycle. 
Virology, 251, 1-15. 

FREED, E. O. & MARTIN, M. A. 1996. Domains of the human immunodeficiency 
virus type 1 matrix and gp41 cytoplasmic tail required for envelope 
incorporation into virions. J Virol, 70, 341-51. 

FUNG, M. S., SUN, C. R., GORDON, W. L., LIOU, R. S., CHANG, T. W., SUN, W. 
N., DAAR, E. S. & HO, D. D. 1992. Identification and characterization of a 



	
   	
   	
  142	
  

neutralization site within the second variable region of human 
immunodeficiency virus type 1 gp120. J Virol, 66, 848-56. 

GALLO, R. C., SALAHUDDIN, S. Z., POPOVIC, M., SHEARER, G. M., KAPLAN, 
M., HAYNES, B. F., PALKER, T. J., REDFIELD, R., OLESKE, J., SAFAI, B. 
& ET AL. 1984. Frequent detection and isolation of cytopathic retroviruses 
(HTLV-III) from patients with AIDS and at risk for AIDS. Science, 224, 500-3. 

GALLO, R. C., SARIN, P. S., GELMANN, E. P., ROBERT-GUROFF, M., 
RICHARDSON, E., KALYANARAMAN, V. S., MANN, D., SIDHU, G. D., 
STAHL, R. E., ZOLLA-PAZNER, S., LEIBOWITCH, J. & POPOVIC, M. 
1983. Isolation of human T-cell leukemia virus in acquired immune deficiency 
syndrome (AIDS). Science, 220, 865-7. 

GAO, F., BAILES, E., ROBERTSON, D. L., CHEN, Y., RODENBURG, C. M., 
MICHAEL, S. F., CUMMINS, L. B., ARTHUR, L. O., PEETERS, M., SHAW, 
G. M., SHARP, P. M. & HAHN, B. H. 1999. Origin of HIV-1 in the 
chimpanzee Pan troglodytes troglodytes. Nature, 397, 436-41. 

GARCIA, J. V. & MILLER, A. D. 1991. Serine phosphorylation-independent 
downregulation of cell-surface CD4 by nef. Nature, 350, 508-11. 

GASCHEN, B., TAYLOR, J., YUSIM, K., FOLEY, B., GAO, F., LANG, D., 
NOVITSKY, V., HAYNES, B., HAHN, B. H., BHATTACHARYA, T. & 
KORBER, B. 2002. Diversity considerations in HIV-1 vaccine selection. 
Science, 296, 2354-60. 

GIUDICELLI, V., CHAUME, D. & LEFRANC, M. P. 2004. IMGT/V-QUEST, an 
integrated software program for immunoglobulin and T cell receptor V-J and 
V-D-J rearrangement analysis. Nucleic Acids Res, 32, W435-40. 

GORNY, M. K., XU, J. Y., GIANAKAKOS, V., KARWOWSKA, S., WILLIAMS, 
C., SHEPPARD, H. W., HANSON, C. V. & ZOLLA-PAZNER, S. 1991. 
Production of site-selected neutralizing human monoclonal antibodies against 
the third variable domain of the human immunodeficiency virus type 1 
envelope glycoprotein. Proc Natl Acad Sci U S A, 88, 3238-42. 

GREENE, W. C. & PETERLIN, B. M. 2002. Charting HIV's remarkable voyage 
through the cell: Basic science as a passport to future therapy. Nat Med, 8, 673-
80. 

GREENOUGH, T. C., BRETTLER, D. B., KIRCHHOFF, F., ALEXANDER, L., 
DESROSIERS, R. C., O'BRIEN, S. J., SOMASUNDARAN, M., 
LUZURIAGA, K. & SULLIVAN, J. L. 1999. Long-term nonprogressive 
infection with human immunodeficiency virus type 1 in a hemophilia cohort. J 
Infect Dis, 180, 1790-802. 

GRUNE, T., JUNG, T., MERKER, K. & DAVIES, K. J. 2004. Decreased proteolysis 
caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 
'aggresomes' during oxidative stress, aging, and disease. Int J Biochem Cell 
Biol, 36, 2519-30. 

GUALERZI, C. O. & PON, C. L. 1990. Initiation of mRNA translation in prokaryotes. 
Biochemistry, 29, 5881-9. 

HAIGWOOD, N. L., SHUSTER, J. R., MOORE, G. K., LEE, H., SKILES, P. V., 
HIGGINS, K. W., BARR, P. J., GEORGE-NASCIMENTO, C. & STEIMER, 
K. S. 1990. Importance of hypervariable regions of HIV-1 gp120 in the 
generation of virus neutralizing antibodies. AIDS Res Hum Retroviruses, 6, 
855-69. 



	
   	
   	
  143	
  

HALLENBERGER, S., BOSCH, V., ANGLIKER, H., SHAW, E., KLENK, H. D. & 
GARTEN, W. 1992. Inhibition of furin-mediated cleavage activation of HIV-1 
glycoprotein gp160. Nature, 360, 358-61. 

HANNIG, G. & MAKRIDES, S. C. 1998. Strategies for optimizing heterologous 
protein expression in Escherichia coli. Trends Biotechnol, 16, 54-60. 

HANSON, C. V., CRAWFORD-MIKSZA, L. & SHEPPARD, H. W. 1990. 
Application of a rapid microplaque assay for determination of human 
immunodeficiency virus neutralizing antibody titers. J Clin Microbiol, 28, 
2030-4. 

HARTLEY, O., KLASSE, P. J., SATTENTAU, Q. J. & MOORE, J. P. 2005. V3: 
HIV's switch-hitter. AIDS Res Hum Retroviruses, 21, 171-89. 

HAYWOOD, A. M. 1994. Virus receptors: binding, adhesion strengthening, and 
changes in viral structure. J Virol, 68, 1-5. 

HE, M., COOLEY, N., JACKSON, A. & TAUSSIG, M. J. 2004. Production of human 
single-chain antibodies by ribosome display. Methods Mol Biol, 248, 177-89. 

HE, M. & TAUSSIG, M. J. 1997. Antibody-ribosome-mRNA (ARM) complexes as 
efficient selection particles for in vitro display and evolution of antibody 
combining sites. Nucleic Acids Res, 25, 5132-4. 

HE, M. & TAUSSIG, M. J. 2002. Ribosome display: cell-free protein display 
technology. Brief Funct Genomic Proteomic, 1, 204-12. 

HE, M. & TAUSSIG, M. J. 2005. Ribosome display of antibodies: expression, 
specificity and recovery in a eukaryotic system. J Immunol Methods, 297, 73-
82. 

HE, M. & TAUSSIG, M. J. 2007. Eukaryotic ribosome display with in situ DNA 
recovery. Nat Methods, 4, 281-8. 

HESSELL, A. J., RAKASZ, E. G., TEHRANI, D. M., HUBER, M., WEISGRAU, K. 
L., LANDUCCI, G., FORTHAL, D. N., KOFF, W. C., POIGNARD, P., 
WATKINS, D. I. & BURTON, D. R. 2010. Broadly neutralizing monoclonal 
antibodies 2F5 and 4E10 directed against the human immunodeficiency virus 
type 1 gp41 membrane-proximal external region protect against mucosal 
challenge by simian-human immunodeficiency virus SHIVBa-L. J Virol, 84, 
1302-13. 

HUANG, L., BOSCH, I., HOFMANN, W., SODROSKI, J. & PARDEE, A. B. 1998. 
Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors 
and promotes infection with both macrophage-tropic and T-lymphotropic HIV-
1 strains. J Virol, 72, 8952-60. 

HUET, T., CHEYNIER, R., MEYERHANS, A., ROELANTS, G. & WAIN-
HOBSON, S. 1990. Genetic organization of a chimpanzee lentivirus related to 
HIV-1. Nature, 345, 356-9. 

ISLAM, R. S., TISI, D., LEVY, M. S. & LYE, G. J. 2007. Framework for the rapid 
optimization of soluble protein expression in Escherichia coli combining 
microscale experiments and statistical experimental design. Biotechnol Prog, 
23, 785-93. 

JACKS, T., POWER, M. D., MASIARZ, F. R., LUCIW, P. A., BARR, P. J. & 
VARMUS, H. E. 1988. Characterization of ribosomal frameshifting in HIV-1 
gag-pol expression. Nature, 331, 280-3. 

JOHNSTON, M. I. & FAUCI, A. S. 2008. An HIV vaccine--challenges and prospects. 
N Engl J Med, 359, 888-90. 



	
   	
   	
  144	
  

JONASSON, P., LILJEQVIST, S., NYGREN, P. A. & STAHL, S. 2002. Genetic 
design for facilitated production and recovery of recombinant proteins in 
Escherichia coli. Biotechnol Appl Biochem, 35, 91-105. 

JOSSINET, F., PAILLART, J. C., WESTHOF, E., HERMANN, T., SKRIPKIN, E., 
LODMELL, J. S., EHRESMANN, C., EHRESMANN, B. & MARQUET, R. 
1999. Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop 
structure and magnesium binding. RNA, 5, 1222-34. 

KANE, J. F. 1995. Effects of rare codon clusters on high-level expression of 
heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 6, 494-500. 

KANKI, P., M'BOUP, S., MARLINK, R., TRAVERS, K., HSIEH, C. C., GUEYE, A., 
BOYE, C., SANKALE, J. L., DONNELLY, C., LEISENRING, W. & ET AL. 
1992. Prevalence and risk determinants of human immunodeficiency virus type 
2 (HIV-2) and human immunodeficiency virus type 1 (HIV-1) in west African 
female prostitutes. Am J Epidemiol, 136, 895-907. 

KEELE, B. F., VAN HEUVERSWYN, F., LI, Y., BAILES, E., TAKEHISA, J., 
SANTIAGO, M. L., BIBOLLET-RUCHE, F., CHEN, Y., WAIN, L. V., 
LIEGEOIS, F., LOUL, S., NGOLE, E. M., BIENVENUE, Y., DELAPORTE, 
E., BROOKFIELD, J. F., SHARP, P. M., SHAW, G. M., PEETERS, M. & 
HAHN, B. H. 2006. Chimpanzee reservoirs of pandemic and nonpandemic 
HIV-1. Science, 313, 523-6. 

KOHL, N. E., EMINI, E. A., SCHLEIF, W. A., DAVIS, L. J., HEIMBACH, J. C., 
DIXON, R. A., SCOLNICK, E. M. & SIGAL, I. S. 1988. Active human 
immunodeficiency virus protease is required for viral infectivity. Proc Natl 
Acad Sci U S A, 85, 4686-90. 

KOST, T. A., CONDREAY, J. P. & JARVIS, D. L. 2005. Baculovirus as versatile 
vectors for protein expression in insect and mammalian cells. Nat Biotechnol, 
23, 567-75. 

KOZAK, M. 1987. An analysis of 5'-noncoding sequences from 699 vertebrate 
messenger RNAs. Nucleic Acids Res, 15, 8125-48. 

KUZNETSOV, Y. G., VICTORIA, J. G., ROBINSON, W. E., JR. & MCPHERSON, 
A. 2003. Atomic force microscopy investigation of human immunodeficiency 
virus (HIV) and HIV-infected lymphocytes. J Virol, 77, 11896-909. 

LAEMMLI, U. K. 1970. Cleavage of structural proteins during the assembly of the 
head of bacteriophage T4. Nature, 227, 680-5. 

LASKY, L. A., NAKAMURA, G., SMITH, D. H., FENNIE, C., SHIMASAKI, C., 
PATZER, E., BERMAN, P., GREGORY, T. & CAPON, D. J. 1987. 
Delineation of a region of the human immunodeficiency virus type 1 gp120 
glycoprotein critical for interaction with the CD4 receptor. Cell, 50, 975-85. 

LEIGH BROWN, A. J. & HOLMES, E. C. 1994. Evolutionary biology of human 
immunodeficiency virus. Annual Review of Ecology and Systematics, 25. 

LETVIN, N. L. 2005. Progress toward an HIV vaccine. Annu Rev Med, 56, 213-23. 
LEVY, J. A. 2007. HIV and the pathogenisis of AIDS, Washington, DC, Wiley-

Blackwell. 
LEVY, J. A., HOFFMAN, A. D., KRAMER, S. M., LANDIS, J. A., 

SHIMABUKURO, J. M. & OSHIRO, L. S. 1984. Isolation of 
lymphocytopathic retroviruses from San Francisco patients with AIDS. 
Science, 225, 840-2. 

LI, B., DECKER, J. M., JOHNSON, R. W., BIBOLLET-RUCHE, F., WEI, X., 
MULENGA, J., ALLEN, S., HUNTER, E., HAHN, B. H., SHAW, G. M., 
BLACKWELL, J. L. & DERDEYN, C. A. 2006. Evidence for potent 



	
   	
   	
  145	
  

autologous neutralizing antibody titers and compact envelopes in early 
infection with subtype C human immunodeficiency virus type 1. J Virol, 80, 
5211-8. 

LI, M., GAO, F., MASCOLA, J. R., STAMATATOS, L., POLONIS, V. R., 
KOUTSOUKOS, M., VOSS, G., GOEPFERT, P., GILBERT, P., GREENE, K. 
M., BILSKA, M., KOTHE, D. L., SALAZAR-GONZALEZ, J. F., WEI, X., 
DECKER, J. M., HAHN, B. H. & MONTEFIORI, D. C. 2005. Human 
immunodeficiency virus type 1 env clones from acute and early subtype B 
infections for standardized assessments of vaccine-elicited neutralizing 
antibodies. J Virol, 79, 10108-25. 

LI, S., BOZZO, L., WU, Z., LU, W. & ROMERIO, F. 2010. The HIV-1 matrix protein 
p17 activates the transcription factors c-Myc and CREB in human B cells. New 
Microbiol, 33, 13-24. 

LIU, R., PAXTON, W. A., CHOE, S., CERADINI, D., MARTIN, S. R., HORUK, R., 
MACDONALD, M. E., STUHLMANN, H., KOUP, R. A. & LANDAU, N. R. 
1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some 
multiply-exposed individuals to HIV-1 infection. Cell, 86, 367-77. 

LOOMAN, A. C., BODLAENDER, J., COMSTOCK, L. J., EATON, D., JHURANI, 
P., DE BOER, H. A. & VAN KNIPPENBERG, P. H. 1987. Influence of the 
codon following the AUG initiation codon on the expression of a modified lacZ 
gene in Escherichia coli. EMBO J, 6, 2489-92. 

MAKRIDES, S. C. 1996. Strategies for achieving high-level expression of genes in 
Escherichia coli. Microbiol Rev, 60, 512-38. 

MALIM, M. H., HAUBER, J., FENRICK, R. & CULLEN, B. R. 1988. 
Immunodeficiency virus rev trans-activator modulates the expression of the 
viral regulatory genes. Nature, 335, 181-3. 

MALIM, M. H., HAUBER, J., LE, S. Y., MAIZEL, J. V. & CULLEN, B. R. 1989. 
The HIV-1 rev trans-activator acts through a structured target sequence to 
activate nuclear export of unspliced viral mRNA. Nature, 338, 254-7. 

MARLINK, R. 1996. Lessons from the second AIDS virus, HIV-2. AIDS, 10, 689-99. 
MARTIN, C. D., ROJAS, G., MITCHELL, J. N., VINCENT, K. J., WU, J., 

MCCAFFERTY, J. & SCHOFIELD, D. J. 2006. A simple vector system to 
improve performance and utilisation of recombinant antibodies. BMC 
Biotechnol, 6, 46. 

MARTINS, L. P., CHENCINER, N., ASJO, B., MEYERHANS, A. & WAIN-
HOBSON, S. 1991. Independent fluctuation of human immunodeficiency virus 
type 1 rev and gp41 quasispecies in vivo. J Virol, 65, 4502-7. 

MASCOLA, J. R. 1999. Neutralization of HIV-1 infection of human peripheral blood 
mononuclear cells (PBMC). In: MICHAEL, N. L. & KIM, J. H. (eds.) HIV 
protocols. 

MASCOLA, J. R., D'SOUZA, P., GILBERT, P., HAHN, B. H., HAIGWOOD, N. L., 
MORRIS, L., PETROPOULOS, C. J., POLONIS, V. R., SARZOTTI, M. & 
MONTEFIORI, D. C. 2005. Recommendations for the design and use of 
standard virus panels to assess neutralizing antibody responses elicited by 
candidate human immunodeficiency virus type 1 vaccines. J Virol, 79, 10103-
7. 

MASCOLA, J. R., LEWIS, M. G., STIEGLER, G., HARRIS, D., VANCOTT, T. C., 
HAYES, D., LOUDER, M. K., BROWN, C. R., SAPAN, C. V., FRANKEL, S. 
S., LU, Y., ROBB, M. L., KATINGER, H. & BIRX, D. L. 1999. Protection of 



	
   	
   	
  146	
  

Macaques against pathogenic simian/human immunodeficiency virus 89.6PD 
by passive transfer of neutralizing antibodies. J Virol, 73, 4009-18. 

MASCOLA, J. R., LOUDER, M. K., WINTER, C., PRABHAKARA, R., DE ROSA, 
S. C., DOUEK, D. C., HILL, B. J., GABUZDA, D. & ROEDERER, M. 2002. 
Human immunodeficiency virus type 1 neutralization measured by flow 
cytometric quantitation of single-round infection of primary human T cells. J 
Virol, 76, 4810-21. 

MCCUNE, J. M., RABIN, L. B., FEINBERG, M. B., LIEBERMAN, M., KOSEK, J. 
C., REYES, G. R. & WEISSMAN, I. L. 1988. Endoproteolytic cleavage of 
gp160 is required for the activation of human immunodeficiency virus. Cell, 
53, 55-67. 

MCCUTCHAN, F. E. 2006. Global epidemiology of HIV. J Med Virol, 78 Suppl 1, 
S7-S12. 

MCKNIGHT, A., CLAPHAM, P. R., GOUDSMIT, J., CHEINGSONG-POPOV, R., 
WEBER, J. N. & WEISS, R. A. 1992. Development of HIV-1 group-specific 
neutralizing antibodies after seroconversion. AIDS, 6, 799-802. 

MCMICHAEL, A. J. & ROWLAND-JONES, S. L. 2001. Cellular immune responses 
to HIV. Nature, 410, 980-7. 

MERVIS, R. J., AHMAD, N., LILLEHOJ, E. P., RAUM, M. G., SALAZAR, F. H., 
CHAN, H. W. & VENKATESAN, S. 1988. The gag gene products of human 
immunodeficiency virus type 1: alignment within the gag open reading frame, 
identification of posttranslational modifications, and evidence for alternative 
gag precursors. J Virol, 62, 3993-4002. 

MEULENBROEK, A. J. & ZEIJLEMAKER, W. P. 1996. Human IgG Subclasses: 
useful diagnostic markers for immunocompetence, Amsterdam, CLB. 

MEYER, T. S. & LAMBERTS, B. L. 1965. Use of coomassie brilliant blue R250 for 
the electrophoresis of microgram quantities of parotid saliva proteins on 
acrylamide-gel strips. Biochim Biophys Acta, 107, 144-5. 

MICHAELSEN, T. E., GARRED, P. & AASE, A. 1991. Human IgG subclass pattern 
of inducing complement-mediated cytolysis depends on antigen concentration 
and to a lesser extent on epitope patchiness, antibody affinity and complement 
concentration. Eur J Immunol, 21, 11-6. 

MILSTEIN, C., BROWNLEE, G. G., HARRISON, T. M. & MATHEWS, M. B. 1972. 
A possible precursor of immunoglobulin light chains. Nat New Biol, 239, 117-
20. 

MIROUX, B. & WALKER, J. E. 1996. Over-production of proteins in Escherichia 
coli: mutant hosts that allow synthesis of some membrane proteins and globular 
proteins at high levels. J Mol Biol, 260, 289-98. 

MONTAGNIER, L., CHERMANN, J. C., BARRE-SINOUSSI, F., CHAMARET, S., 
GRUEST, J., NUGEYRE, M. T., REY, F., DAUGUET, C., AXLER-BLIN, C., 
VEZINET-BRUN, F., ROUZIOUX, C., SAIMOT, A. G., ROZENBAUM, W., 
GLUCKMAN, J. C., KLATZMANN, D., VILMER, E., GRISELLI, C., 
GAZENGAL, C. & BRUNET, J. B. 1984a. A new human T-lymphotropic 
retrovirus: characterization and possible role in lymphadenopathy and acquired 
immune deficiency syndromes. In: GALLO, R. C., ESSEX, M. E. & GROSS, 
L. (eds.) Human T-cell Leukemia/Lymphoma Virus. N.Y.: Cold Spring Harbor 
Laboratory. 

MONTAGNIER, L., GRUEST, J., CHAMARET, S., DAUGUET, C., AXLER, C., 
GUETARD, D., NUGEYRE, M. T., BARRE-SINOUSSI, F., CHERMANN, J. 
C., BRUNET, J. B. & ET AL. 1984b. Adaptation of lymphadenopathy 



	
   	
   	
  147	
  

associated virus (LAV) to replication in EBV-transformed B lymphoblastoid 
cell lines. Science, 225, 63-6. 

MONTEFIORI, D. C. 2005. Evaluating neutralizing antibodies against HIV, SIV, and 
SHIV in luciferase reporter gene assays. Curr Protoc Immunol, Chapter 12, 
Unit 12 11. 

MONTEFIORI, D. C., ROBINSON, W. E., JR., SCHUFFMAN, S. S. & MITCHELL, 
W. M. 1988. Evaluation of antiviral drugs and neutralizing antibodies to human 
immunodeficiency virus by a rapid and sensitive microtiter infection assay. J 
Clin Microbiol, 26, 231-5. 

MORAWETZ, R. A., RIZZARDI, G. P., GLAUSER, D., RUTSCHMANN, O., 
HIRSCHEL, B., PERRIN, L., OPRAVIL, M., FLEPP, M., VON OVERBECK, 
J., GLAUSER, M. P., GHEZZI, S., VICENZI, E., POLI, G., LAZZARIN, A. & 
PANTALEO, G. 1997. Genetic polymorphism of CCR5 gene and HIV disease: 
the heterozygous (CCR5/delta ccr5) genotype is neither essential nor sufficient 
for protection against disease progression. Swiss HIV Cohort. Eur J Immunol, 
27, 3223-7. 

MOSMANN, T. R., CHERWINSKI, H., BOND, M. W., GIEDLIN, M. A. & 
COFFMAN, R. L. 1986. Two types of murine helper T cell clone. I. Definition 
according to profiles of lymphokine activities and secreted proteins. J Immunol, 
136, 2348-57. 

MOUQUET, H., SCHEID, J. F., ZOLLER, M. J., KROGSGAARD, M., OTT, R. G., 
SHUKAIR, S., ARTYOMOV, M. N., PIETZSCH, J., CONNORS, M., 
PEREYRA, F., WALKER, B. D., HO, D. D., WILSON, P. C., SEAMAN, M. 
S., EISEN, H. N., CHAKRABORTY, A. K., HOPE, T. J., RAVETCH, J. V., 
WARDEMANN, H. & NUSSENZWEIG, M. C. 2010. Polyreactivity increases 
the apparent affinity of anti-HIV antibodies by heteroligation. Nature, 467, 
591-5. 

MUJACIC, M., COOPER, K. W. & BANEYX, F. 1999. Cold-inducible cloning 
vectors for low-temperature protein expression in Escherichia coli: application 
to the production of a toxic and proteolytically sensitive fusion protein. Gene, 
238, 325-32. 

MUSEY, L., HUGHES, J., SCHACKER, T., SHEA, T., COREY, L. & MCELRATH, 
M. J. 1997. Cytotoxic-T-cell responses, viral load, and disease progression in 
early human immunodeficiency virus type 1 infection. N Engl J Med, 337, 
1267-74. 

MUSTER, T., STEINDL, F., PURTSCHER, M., TRKOLA, A., KLIMA, A., 
HIMMLER, G., RUKER, F. & KATINGER, H. 1993. A conserved 
neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol, 
67, 6642-7. 

NARA, P. L., HATCH, W. C., DUNLOP, N. M., ROBEY, W. G., ARTHUR, L. O., 
GONDA, M. A. & FISCHINGER, P. J. 1987. Simple, rapid, quantitative, 
syncytium-forming microassay for the detection of human immunodeficiency 
virus neutralizing antibody. AIDS Res Hum Retroviruses, 3, 283-302. 

NOVY, R., DROTT, D., YAEGER, K. & MIERENDORF, R. 2001. Overcoming the 
codon bias of E. coli for enhanced protein expression. InNovations (Novagen, 
Inc. newsletter), 12, 1-3. 

PAGE, K. A., STEARNS, S. M. & LITTMAN, D. R. 1992. Analysis of mutations in 
the V3 domain of gp160 that affect fusion and infectivity. J Virol, 66, 524-33. 

PARREN, P. W., MARX, P. A., HESSELL, A. J., LUCKAY, A., HAROUSE, J., 
CHENG-MAYER, C., MOORE, J. P. & BURTON, D. R. 2001. Antibody 



	
   	
   	
  148	
  

protects macaques against vaginal challenge with a pathogenic R5 
simian/human immunodeficiency virus at serum levels giving complete 
neutralization in vitro. J Virol, 75, 8340-7. 

PASCUAL, R., MORENO, M. R. & VILLALAIN, J. 2005. A peptide pertaining to the 
loop segment of human immunodeficiency virus gp41 binds and interacts with 
model biomembranes: implications for the fusion mechanism. J Virol, 79, 
5142-52. 

PEETERS, M., GUEYE, A., MBOUP, S., BIBOLLET-RUCHE, F., EKAZA, E., 
MULANGA, C., OUEDRAGO, R., GANDJI, R., MPELE, P., DIBANGA, G., 
KOUMARE, B., SAIDOU, M., ESU-WILLIAMS, E., LOMBART, J. P., 
BADOMBENA, W., LUO, N., VANDEN HAESEVELDE, M. & 
DELAPORTE, E. 1997. Geographical distribution of HIV-1 group O viruses in 
Africa. AIDS, 11, 493-8. 

PEETERS, M., TOURE-KANE, C. & NKENGASONG, J. N. 2003. Genetic diversity 
of HIV in Africa: impact on diagnosis, treatment, vaccine development and 
trials. AIDS, 17, 2547-60. 

PEJCHAL, R., WALKER, L. M., STANFIELD, R. L., PHOGAT, S. K., KOFF, W. C., 
POIGNARD, P., BURTON, D. R. & WILSON, I. A. 2010. Structure and 
function of broadly reactive antibody PG16 reveal an H3 subdomain that 
mediates potent neutralization of HIV-1. Proc Natl Acad Sci U S A, 107, 
11483-8. 

PHILLIPS, R. E., ROWLAND-JONES, S., NIXON, D. F., GOTCH, F. M., 
EDWARDS, J. P., OGUNLESI, A. O., ELVIN, J. G., ROTHBARD, J. A., 
BANGHAM, C. R., RIZZA, C. R. & ET AL. 1991. Human immunodeficiency 
virus genetic variation that can escape cytotoxic T cell recognition. Nature, 
354, 453-9. 

PINTER, A., HONNEN, W. J., RACHO, M. E. & TILLEY, S. A. 1993. A potent, 
neutralizing human monoclonal antibody against a unique epitope overlapping 
the CD4-binding site of HIV-1 gp120 that is broadly conserved across North 
American and African virus isolates. AIDS Res Hum Retroviruses, 9, 985-96. 

PITCHER, C. J., QUITTNER, C., PETERSON, D. M., CONNORS, M., KOUP, R. A., 
MAINO, V. C. & PICKER, L. J. 1999. HIV-1-specific CD4+ T cells are 
detectable in most individuals with active HIV-1 infection, but decline with 
prolonged viral suppression. Nat Med, 5, 518-25. 

PLANTIER, J. C., LEOZ, M., DICKERSON, J. E., DE OLIVEIRA, F., 
CORDONNIER, F., LEMEE, V., DAMOND, F., ROBERTSON, D. L. & 
SIMON, F. 2009. A new human immunodeficiency virus derived from gorillas. 
Nat Med, 15, 871-2. 

POLONIS, V. R., BROWN, B. K., ROSA BORGES, A., ZOLLA-PAZNER, S., 
DIMITROV, D. S., ZHANG, M. Y., BARNETT, S. W., RUPRECHT, R. M., 
SCARLATTI, G., FENYO, E. M., MONTEFIORI, D. C., MCCUTCHAN, F. 
E. & MICHAEL, N. L. 2008. Recent advances in the characterization of HIV-1 
neutralization assays for standardized evaluation of the antibody response to 
infection and vaccination. Virology, 375, 315-20. 

PRESTON, B. D., POIESZ, B. J. & LOEB, L. A. 1988. Fidelity of HIV-1 reverse 
transcriptase. Science, 242, 1168-71. 

PRICE, D. A., GOULDER, P. J., KLENERMAN, P., SEWELL, A. K., 
EASTERBROOK, P. J., TROOP, M., BANGHAM, C. R. & PHILLIPS, R. E. 
1997. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants 
during primary infection. Proc Natl Acad Sci U S A, 94, 1890-5. 



	
   	
   	
  149	
  

PRINZ, W. A., ASLUND, F., HOLMGREN, A. & BECKWITH, J. 1997. The role of 
the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds 
in the Escherichia coli cytoplasm. J Biol Chem, 272, 15661-7. 

REEVES, J. D. & DOMS, R. W. 2002. Human immunodeficiency virus type 2. J Gen 
Virol, 83, 1253-65. 

RICHMAN, D. D., WRIN, T., LITTLE, S. J. & PETROPOULOS, C. J. 2003. Rapid 
evolution of the neutralizing antibody response to HIV type 1 infection. Proc 
Natl Acad Sci U S A, 100, 4144-9. 

RINALDO, C., HUANG, X. L., FAN, Z. F., DING, M., BELTZ, L., LOGAR, A., 
PANICALI, D., MAZZARA, G., LIEBMANN, J., COTTRILL, M. & ET AL. 
1995. High levels of anti-human immunodeficiency virus type 1 (HIV-1) 
memory cytotoxic T-lymphocyte activity and low viral load are associated with 
lack of disease in HIV-1-infected long-term nonprogressors. J Virol, 69, 5838-
42. 

ROBERTS, J. D., BEBENEK, K. & KUNKEL, T. A. 1988. The accuracy of reverse 
transcriptase from HIV-1. Science, 242, 1171-3. 

ROBERTSON, D. L., ANDERSON, J. P., BRADAC, J. A., CARR, J. K., FOLEY, B., 
FUNKHOUSER, R. K., GAO, F., HAHN, B. H., KALISH, M. L., KUIKEN, 
C., LEARN, G. H., LEITNER, T., MCCUTCHAN, F., OSMANOV, S., 
PEETERS, M., PIENIAZEK, D., SALMINEN, M., SHARP, P. M., 
WOLINSKY, S. & KORBER, B. 2000. HIV-1 nomenclature proposal. Science, 
288, 55-6. 

ROSANO, G. L. & CECCARELLI, E. A. 2009. Rare codon content affects the 
solubility of recombinant proteins in a codon bias-adjusted Escherichia coli 
strain. Microb Cell Fact, 8, 41. 

ROSSER, M. P., XIA, W., HARTSELL, S., MCCAMAN, M., ZHU, Y., WANG, S., 
HARVEY, S., BRINGMANN, P. & COBB, R. R. 2005. Transient transfection 
of CHO-K1-S using serum-free medium in suspension: a rapid mammalian 
protein expression system. Protein Expr Purif, 40, 237-43. 

ROWLAND-JONES, S., SUTTON, J., ARIYOSHI, K., DONG, T., GOTCH, F., 
MCADAM, S., WHITBY, D., SABALLY, S., GALLIMORE, A., CORRAH, 
T. & ET AL. 1995. HIV-specific cytotoxic T-cells in HIV-exposed but 
uninfected Gambian women. Nat Med, 1, 59-64. 

SANDERS, R. W., VENTURI, M., SCHIFFNER, L., KALYANARAMAN, R., 
KATINGER, H., LLOYD, K. O., KWONG, P. D. & MOORE, J. P. 2002. The 
mannose-dependent epitope for neutralizing antibody 2G12 on human 
immunodeficiency virus type 1 glycoprotein gp120. J Virol, 76, 7293-305. 

SANTIAGO, M. L., RANGE, F., KEELE, B. F., LI, Y., BAILES, E., BIBOLLET-
RUCHE, F., FRUTEAU, C., NOE, R., PEETERS, M., BROOKFIELD, J. F., 
SHAW, G. M., SHARP, P. M. & HAHN, B. H. 2005. Simian 
immunodeficiency virus infection in free-ranging sooty mangabeys 
(Cercocebus atys atys) from the Tai Forest, Cote d'Ivoire: implications for the 
origin of epidemic human immunodeficiency virus type 2. J Virol, 79, 12515-
27. 

SAPHIRE, E. O., PARREN, P. W., PANTOPHLET, R., ZWICK, M. B., MORRIS, G. 
M., RUDD, P. M., DWEK, R. A., STANFIELD, R. L., BURTON, D. R. & 
WILSON, I. A. 2001. Crystal structure of a neutralizing human IGG against 
HIV-1: a template for vaccine design. Science, 293, 1155-9. 



	
   	
   	
  150	
  

SATTENTAU, Q. J. & MOORE, J. P. 1991. Conformational changes induced in the 
human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. 
J Exp Med, 174, 407-15. 

SAWAI, E. T., BAUR, A., STRUBLE, H., PETERLIN, B. M., LEVY, J. A. & 
CHENG-MAYER, C. 1994. Human immunodeficiency virus type 1 Nef 
associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci U 
S A, 91, 1539-43. 

SBLATTERO, D. & BRADBURY, A. 1998. A definitive set of oligonucleotide 
primers for amplifying human V regions. Immunotechnology, 3, 271-8. 

SCANLAN, C. N., PANTOPHLET, R., WORMALD, M. R., OLLMANN SAPHIRE, 
E., STANFIELD, R., WILSON, I. A., KATINGER, H., DWEK, R. A., RUDD, 
P. M. & BURTON, D. R. 2002. The broadly neutralizing anti-human 
immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1--
>2 mannose residues on the outer face of gp120. J Virol, 76, 7306-21. 

SCHEID, J. F., MOUQUET, H., FELDHAHN, N., SEAMAN, M. S., VELINZON, K., 
PIETZSCH, J., OTT, R. G., ANTHONY, R. M., ZEBROSKI, H., HURLEY, 
A., PHOGAT, A., CHAKRABARTI, B., LI, Y., CONNORS, M., PEREYRA, 
F., WALKER, B. D., WARDEMANN, H., HO, D., WYATT, R. T., 
MASCOLA, J. R., RAVETCH, J. V. & NUSSENZWEIG, M. C. 2009. Broad 
diversity of neutralizing antibodies isolated from memory B cells in HIV-
infected individuals. Nature, 458, 636-40. 

SCHEIN, C. H. 1991. Optimizing protein folding to the native state in bacteria. Curr 
Opin Biotechnol, 2, 746-50. 

SCHEIN, C. H. 1993. Solubility and secretability. Curr Opin Biotechnol, 4, 456-61. 
SCHMITZ, J. E., KURODA, M. J., SANTRA, S., SASSEVILLE, V. G., SIMON, M. 

A., LIFTON, M. A., RACZ, P., TENNER-RACZ, K., DALESANDRO, M., 
SCALLON, B. J., GHRAYEB, J., FORMAN, M. A., MONTEFIORI, D. C., 
RIEBER, E. P., LETVIN, N. L. & REIMANN, K. A. 1999. Control of viremia 
in simian immunodeficiency virus infection by CD8+ lymphocytes. Science, 
283, 857-60. 

SCHWARTZ, S., FELBER, B. K., BENKO, D. M., FENYO, E. M. & PAVLAKIS, G. 
N. 1990. Cloning and functional analysis of multiply spliced mRNA species of 
human immunodeficiency virus type 1. J Virol, 64, 2519-29. 

SELIK, R. M., HAVERKOS, H. W. & CURRAN, J. W. 1984. Acquired immune 
deficiency syndrome (AIDS) trends in the United States, 1978-1982. Am J 
Med, 76, 493-500. 

SHARP, P. M., BAILES, E., CHAUDHURI, R. R., RODENBURG, C. M., 
SANTIAGO, M. O. & HAHN, B. H. 2001. The origins of acquired immune 
deficiency syndrome viruses: where and when? Philos Trans R Soc Lond B Biol 
Sci, 356, 867-76. 

SHEDLOCK, D. J. & SHEN, H. 2003. Requirement for CD4 T cell help in generating 
functional CD8 T cell memory. Science, 300, 337-9. 

SHIODA, T., LEVY, J. A. & CHENG-MAYER, C. 1992. Small amino acid changes in 
the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage 
tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A, 
89, 9434-8. 

SODROSKI, J., GOH, W. C., ROSEN, C., DAYTON, A., TERWILLIGER, E. & 
HASELTINE, W. 1986. A second post-transcriptional trans-activator gene 
required for HTLV-III replication. Nature, 321, 412-7. 



	
   	
   	
  151	
  

SORENSEN, H. P. & MORTENSEN, K. K. 2005. Advanced genetic strategies for 
recombinant protein expression in Escherichia coli. J Biotechnol, 115, 113-28. 

SPEARMAN, P., WANG, J. J., VANDER HEYDEN, N. & RATNER, L. 1994. 
Identification of human immunodeficiency virus type 1 Gag protein domains 
essential to membrane binding and particle assembly. J Virol, 68, 3232-42. 

STIEGLER, G., KUNERT, R., PURTSCHER, M., WOLBANK, S., VOGLAUER, R., 
STEINDL, F. & KATINGER, H. 2001. A potent cross-clade neutralizing 
human monoclonal antibody against a novel epitope on gp41 of human 
immunodeficiency virus type 1. AIDS Res Hum Retroviruses, 17, 1757-65. 

STREBEL, K., DAUGHERTY, D., CLOUSE, K., COHEN, D., FOLKS, T. & 
MARTIN, M. A. 1987. The HIV 'A' (sor) gene product is essential for virus 
infectivity. Nature, 328, 728-30. 

SULLIVAN, N., THALI, M., FURMAN, C., HO, D. D. & SODROSKI, J. 1993. 
Effect of amino acid changes in the V1/V2 region of the human 
immunodeficiency virus type 1 gp120 glycoprotein on subunit association, 
syncytium formation, and recognition by a neutralizing antibody. J Virol, 67, 
3674-9. 

SUN, J. C. & BEVAN, M. J. 2003. Defective CD8 T cell memory following acute 
infection without CD4 T cell help. Science, 300, 339-42. 

SUN, J. C., WILLIAMS, M. A. & BEVAN, M. J. 2004. CD4+ T cells are required for 
the maintenance, not programming, of memory CD8+ T cells after acute 
infection. Nat Immunol, 5, 927-33. 

SUPHAPHIPHAT, P., ESSEX, M. & LEE, T. H. 2007. Mutations in the V3 stem 
versus the V3 crown and C4 region have different effects on the binding and 
fusion steps of human immunodeficiency virus type 1 gp120 interaction with 
the CCR5 coreceptor. Virology, 360, 182-90. 

SWEET, R. W., TRUNEH, A. & HENDRICKSON, W. A. 1991. CD4: its structure, 
role in immune function and AIDS pathogenesis, and potential as a 
pharmacological target. Curr Opin Biotechnol, 2, 622-33. 

TEMIN, H. M. 1981. Structure, variation and synthesis of retrovirus long terminal 
repeat. Cell, 27, 1-3. 

THALI, M., MOORE, J. P., FURMAN, C., CHARLES, M., HO, D. D., ROBINSON, 
J. & SODROSKI, J. 1993. Characterization of conserved human 
immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon 
gp120-CD4 binding. J Virol, 67, 3978-88. 

TOWBIN, H., STAEHELIN, T. & GORDON, J. 1979. Electrophoretic transfer of 
proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some 
applications. Proc Natl Acad Sci U S A, 76, 4350-4. 

TRAGGIAI, E., BECKER, S., SUBBARAO, K., KOLESNIKOVA, L., UEMATSU, 
Y., GISMONDO, M. R., MURPHY, B. R., RAPPUOLI, R. & 
LANZAVECCHIA, A. 2004. An efficient method to make human monoclonal 
antibodies from memory B cells: potent neutralization of SARS coronavirus. 
Nat Med, 10, 871-5. 

TRISTEM, M., MARSHALL, C., KARPAS, A., PETRIK, J. & HILL, F. 1990. Origin 
of vpx in lentiviruses. Nature, 347, 341-2. 

TRKOLA, A., PURTSCHER, M., MUSTER, T., BALLAUN, C., BUCHACHER, A., 
SULLIVAN, N., SRINIVASAN, K., SODROSKI, J., MOORE, J. P. & 
KATINGER, H. 1996. Human monoclonal antibody 2G12 defines a distinctive 
neutralization epitope on the gp120 glycoprotein of human immunodeficiency 
virus type 1. J Virol, 70, 1100-8. 



	
   	
   	
  152	
  

UNAIDS, J. U. N. P. O. H. A. 2010. Global report: UNAIDS report on the global 
AIDS epidemic 2010. 

VAN HEUVERSWYN, F., LI, Y., NEEL, C., BAILES, E., KEELE, B. F., LIU, W., 
LOUL, S., BUTEL, C., LIEGEOIS, F., BIENVENUE, Y., NGOLLE, E. M., 
SHARP, P. M., SHAW, G. M., DELAPORTE, E., HAHN, B. H. & PEETERS, 
M. 2006. Human immunodeficiency viruses: SIV infection in wild gorillas. 
Nature, 444, 164. 

VASINA, J. A. & BANEYX, F. 1997. Expression of aggregation-prone recombinant 
proteins at low temperatures: a comparative study of the Escherichia coli cspA 
and tac promoter systems. Protein Expr Purif, 9, 211-8. 

VICENZI, E., DIMITROV, D. S., ENGELMAN, A., MIGONE, T. S., PURCELL, D. 
F., LEONARD, J., ENGLUND, G. & MARTIN, M. A. 1994. An integration-
defective U5 deletion mutant of human immunodeficiency virus type 1 reverts 
by eliminating additional long terminal repeat sequences. J Virol, 68, 7879-90. 

WALKER, L. M., PHOGAT, S. K., CHAN-HUI, P. Y., WAGNER, D., PHUNG, P., 
GOSS, J. L., WRIN, T., SIMEK, M. D., FLING, S., MITCHAM, J. L., 
LEHRMAN, J. K., PRIDDY, F. H., OLSEN, O. A., FREY, S. M., 
HAMMOND, P. W., KAMINSKY, S., ZAMB, T., MOYLE, M., KOFF, W. C., 
POIGNARD, P. & BURTON, D. R. 2009. Broad and potent neutralizing 
antibodies from an African donor reveal a new HIV-1 vaccine target. Science, 
326, 285-9. 

WEI, X., DECKER, J. M., LIU, H., ZHANG, Z., ARANI, R. B., KILBY, J. M., 
SAAG, M. S., WU, X., SHAW, G. M. & KAPPES, J. C. 2002. Emergence of 
resistant human immunodeficiency virus type 1 in patients receiving fusion 
inhibitor (T-20) monotherapy. Antimicrob Agents Chemother, 46, 1896-905. 

WEI, X., DECKER, J. M., WANG, S., HUI, H., KAPPES, J. C., WU, X., SALAZAR-
GONZALEZ, J. F., SALAZAR, M. G., KILBY, J. M., SAAG, M. S., 
KOMAROVA, N. L., NOWAK, M. A., HAHN, B. H., KWONG, P. D. & 
SHAW, G. M. 2003. Antibody neutralization and escape by HIV-1. Nature, 
422, 307-12. 

WEICKERT, M. J., DOHERTY, D. H., BEST, E. A. & OLINS, P. O. 1996. 
Optimization of heterologous protein production in Escherichia coli. Curr Opin 
Biotechnol, 7, 494-9. 

WEISS, R. A., CLAPHAM, P. R., WEBER, J. N., DALGLEISH, A. G., LASKY, L. 
A. & BERMAN, P. W. 1986. Variable and conserved neutralization antigens of 
human immunodeficiency virus. Nature, 324, 572-5. 

WESTENDORP, M. O., FRANK, R., OCHSENBAUER, C., STRICKER, K., DHEIN, 
J., WALCZAK, H., DEBATIN, K. M. & KRAMMER, P. H. 1995. 
Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. 
Nature, 375, 497-500. 

WILSON, J. D., OGG, G. S., ALLEN, R. L., DAVIS, C., SHAUNAK, S., DOWNIE, 
J., DYER, W., WORKMAN, C., SULLIVAN, S., MCMICHAEL, A. J. & 
ROWLAND-JONES, S. L. 2000. Direct visualization of HIV-1-specific 
cytotoxic T lymphocytes during primary infection. AIDS, 14, 225-33. 

WRIN, T., LOH, T. P., VENNARI, J. C., SCHUITEMAKER, H. & NUNBERG, J. H. 
1995. Adaptation to persistent growth in the H9 cell line renders a primary 
isolate of human immunodeficiency virus type 1 sensitive to neutralization by 
vaccine sera. J Virol, 69, 39-48. 



	
   	
   	
  153	
  

WU, S. & CYGLER, M. 1993. Conformation of complementarity determining region 
L1 loop in murine IgG lambda light chain extends the repertoire of canonical 
forms. J Mol Biol, 229, 597-601. 

WU, X., YANG, Z. Y., LI, Y., HOGERKORP, C. M., SCHIEF, W. R., SEAMAN, M. 
S., ZHOU, T., SCHMIDT, S. D., WU, L., XU, L., LONGO, N. S., MCKEE, 
K., O'DELL, S., LOUDER, M. K., WYCUFF, D. L., FENG, Y., NASON, M., 
DORIA-ROSE, N., CONNORS, M., KWONG, P. D., ROEDERER, M., 
WYATT, R. T., NABEL, G. J. & MASCOLA, J. R. 2010. Rational design of 
envelope identifies broadly neutralizing human monoclonal antibodies to HIV-
1. Science, 329, 856-61. 

WYATT, R. & SODROSKI, J. 1998. The HIV-1 envelope glycoproteins: fusogens, 
antigens, and immunogens. Science, 280, 1884-8. 

YAGITA, H., NAKATA, M., KAWASAKI, A., SHINKAI, Y. & OKUMURA, K. 
1992. Role of perforin in lymphocyte-mediated cytolysis. Adv Immunol, 51, 
215-42. 

YAMAGUCHI, J., DEVARE, S. G. & BRENNAN, C. A. 2000. Identification of a 
new HIV-2 subtype based on phylogenetic analysis of full-length genomic 
sequence. AIDS Res Hum Retroviruses, 16, 925-30. 

ZAGURY, J. F., FRANCHINI, G., REITZ, M., COLLALTI, E., STARCICH, B., 
HALL, L., FARGNOLI, K., JAGODZINSKI, L., GUO, H. G., LAURE, F. & 
ET AL. 1988. Genetic variability between isolates of human immunodeficiency 
virus (HIV) type 2 is comparable to the variability among HIV type 1. Proc 
Natl Acad Sci U S A, 85, 5941-5. 

ZHANG, Y. & BARKLIS, E. 1995. Nucleocapsid protein effects on the specificity of 
retrovirus RNA encapsidation. J Virol, 69, 5716-22. 

ZHOU, J. Y. & MONTEFIORI, D. C. 1997. Antibody-mediated neutralization of 
primary isolates of human immunodeficiency virus type 1 in peripheral blood 
mononuclear cells is not affected by the initial activation state of the cells. J 
Virol, 71, 2512-7. 

ZHOU, T., XU, L., DEY, B., HESSELL, A. J., VAN RYK, D., XIANG, S. H., YANG, 
X., ZHANG, M. Y., ZWICK, M. B., ARTHOS, J., BURTON, D. R., 
DIMITROV, D. S., SODROSKI, J., WYATT, R., NABEL, G. J. & KWONG, 
P. D. 2007. Structural definition of a conserved neutralization epitope on HIV-1 
gp120. Nature, 445, 732-7. 

ZHUO, Q., PIAO, J. H., WANG, R. & YANG, X. G. 2005. Refolding and purification 
of non-fusion HPT protein expressed in Escherichia coli as inclusion bodies. 
Protein Expr Purif, 41, 53-60. 

ZOCCHI, M. R., RUBARTELLI, A., MORGAVI, P. & POGGI, A. 1998. HIV-1 Tat 
inhibits human natural killer cell function by blocking L-type calcium channels. 
J Immunol, 161, 2938-43. 

ZWICK, M. B., KOMORI, H. K., STANFIELD, R. L., CHURCH, S., WANG, M., 
PARREN, P. W., KUNERT, R., KATINGER, H., WILSON, I. A. & 
BURTON, D. R. 2004. The long third complementarity-determining region of 
the heavy chain is important in the activity of the broadly neutralizing anti-
human immunodeficiency virus type 1 antibody 2F5. J Virol, 78, 3155-61. 

	
  
 

 


