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WP5 objectives
• Identification of metrics of the networks describing the interaction 

between the different elements in the model. 
• Analyse the results of the investigative and adaptive case studies
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Tasks status

Task 5.1: Metrics definition (M2-M11) UniBo

Task 5.2: Investigative case studies analysis (M7-M16) UniBo

Task 5.3: Adaptive case studies analysis (M17-M22) UniBo



Overview of presentation

• Classical metrics: delays, costs, etc. 
• In mean: average values 
• In tail: quantiles of distributions 
• standard network metrics 

• Non-classical network metrics 
• centrality 
• causality



Classical metrics



Standard ATM metrics
Definition

• Delay: 
• departure, arrival, and gate-to-gate delay 
• delays weighted with the number of passengers per flight 
• percentage of flights with delays larger than a given threshold 
• total delays 
• missed connections 
• departing (arrival) queue delay at airports 

• Cost: 
• excess costs of fuel 
• passenger costs: compensation, duty of care, cost of rebooking, 

soft costs 
• non-passenger costs: crew and maintenance 
• percentage of flights incurring different types of costs 
• total excess cost (M3-M1)



Standard ATM metrics 2
MEAN

How the averages change moving from the baseline to a scenario with some 
implemented mechanism

From time to time, it is crucial to select the subset of flights that is of 
interest for the analysis: regulated flights (e.g. UDPP), flights landing at 
airports with implemented E-AMAN, and so on
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ATM metrics in Domino

• Standard ATM metrics address `means’, but distributions might be important 
• Standard ATM metrics ignore the network aspects

Our approach in Domino

More focus on the extreme (tail) 
events for standard ATM metrics

New metrics scaled up to the 
network level 



New approach in Domino

More focus on the extreme (tail) 
events for standard ATM metrics

New metrics scaled up to the 
network level 



Extreme events
TAIL

Sometimes, it is more important focusing on extreme events

We can have two distributions of delays, e.g., with similar means but 
describing different kinds of extreme events: 
—> we have to look at the tail of distributions
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Extreme events: quantiles
TAIL

How to characterise extreme events looking at the distributions? 
     -quantile is the cut point dividing the distribution in two ranges containing  
observations on the left and              on the right
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For instance, when moving from the baseline to a scenario with Domino 
mechanism, a decrease of the 90%-quantile for the delay distribution, e.g., 
means less occurrence of extreme delays 
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New approach in Domino

More focus on the extreme (tail) 
events for standard ATM metrics

New metrics scaled up to the 
network level 



ATM network metrics

• Air traffic is naturally described as a network 

• In Domino, we aim to assess and quantify the impact of innovations in a 
certain scenario at the global level from the result of the ABM 

Network science provides us with tools to study the importance 
of the ATM subsystems, the interactions of network elements, 
the role of topology in the propagation of signals (e.g. delays or 
congestions) and in the network functioning  

However, we need to generalise the standard network metrics or to define new 
network metrics which are better suited to our objectives. 



Centrality 
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Clustering 
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Degree 
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Modularity 
and 
communities

Standard network metrics



Characteristics of the ATM network
The ATM system can be naturally described as a network of nodes, i.e. subparts 
of the system such as airports, E-AMAN, NM, etc., and links connecting the 
nodes, i.e. flights or other `interactions’ between subparts. 
The ATM system can have also a multi-layers structure when considering each 
airline as a layer in the network of airports and flights. 

It is a temporal (i.e. evolving in time), multilayer (i.e. different interacting agents, 
e.g. airlines) directed network with non-zero travel time (i.e. flight time). 



ATM network metrics

• Air traffic is naturally described as a network 

• In Domino, we aim to assess and quantify the impact of innovations in a 
certain scenario at the global level from the result of the ABM 

Network science provides us with tools to study the importance 
of the ATM subsystems, the interactions of network elements, 
the role of topology in the propagation of signals (e.g. delays or 
congestions) and in the network functioning  

We need to generalise the standard network metrics or to define new 
network metrics which are better suited to our objectives.



Non-classical network metrics



New ATM network metrics in Domino

Centrality metrics Causality metrics



Centrality metrics
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Classical network metrics: centrality, degree distribution, betweenness,  etc.

● Centrality metrics measure the importance of the network’s nodes 
based on their connectivity, i.e. the potential to move through the 
network passing from that node 

●  If suitably defined, centrality can be used to assess the preservation of 
possible passengers’ itineraries in the actual network 

● Existing centrality metrics are not sufficient, as they do not consider the 
effect of delays on connectivity 

● Need to introduce new centrality metrics 



Finding the most important nodes 

• ranking to identify key nodes (e.g., most important airports for connecting 
flights ) 

• spreading of `information’ (e.g. delays, costs) 
• travelling of passengers

Centrality

Centrality metrics quantify a node’s importance
Several definitions of importance -> several centrality metrics



Degree and strength

Centrality metrics

d=5

Directed network

din=3 
dout=2 

Weighted or multilink network

strength= sum of links’ weights

Local role of the 
node



Based on shortest paths and distances Based on walks

Centrality metrics

Betweenness 
centrality

Katz centrality
PageRank
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using shortest paths (like in ATM) 
• Computed fast with matrix algebra

Outgoing (incoming) Centrality: number of walks leaving (entering) a node, but 
weighted with the length of the walk 

Definition of centrality based on walks



Centrality for the ATM system?

• Walk based centrality 
In ATM words, a walk can be a passenger itinerary (1-
leg, 2-legs, and so on) or any possible trip 
• Trip centrality (considering any possible trip)
• Passengers’ centrality (considering only 

scheduled passengers’ itineraries) 
which accounts for ATM specific characteristics:
• Temporal structure (i.e. flights at the day of operation)  

Walks must be correctly time-ordered 

• Multilayer structure (i.e. interactions among airlines)  
Walks can be intra- or inter-layer, but inter-layer walks 
might have less probability to be used (e.g. because 
the imply a cost), therefore should be weighted less 

• Non-zero travel time (as any transportation system) 
(technical aspect: introduction of secondary nodes  
describing flights with given departure and arrival times) 

with a focus on the network of airports&flights



How to use centrality metrics
from an operative p.o.w?

• We observe the scheduled network (M0 files) and the realised one (M3 files) 
• Network of realised flights differs from schedule due to delays and 

cancellations 
• Delays can disrupt connections, but the entity of their effect on an airport’s 

connectivity depend in a complex way from the schedule 
• The loss of centrality quantifies this effect 
• The smaller the loss is, the better that subsystem works 
• How much does centrality change with implemented Domino mechanisms?  

—> we can quantify the improvement for each subsystem! 



An example of passengers’ centrality loss
Let us assume to consider three passengers’s itineraries:  
N passengers FCO -> LHR (black) 
M passengers FCO -> LHR -> OSL (blue) 
L  passengers FCO -> CDG -> MAD (red) 

Scheduled Realised

(Missed connection)

Centrality FCO = N+M+L Centrality FCO = N+L

• Passengers’ centrality loss (=M) quantifies the disruption of connections in 
terms of the number of passengers per disrupted itinerary 

• (Trip centrality loss quantifies the disruption of connections in terms of 
possible trips but weighted with the number of flights for each trip) 



New ATM network metrics in Domino

Centrality metrics Causality metrics



Causality metrics

● The interaction of the system’s elements fosters the transmission of 
signals on the network, like e.g. delays or congestions  

● These interactions create causality relations between the system’s 
elements 

● Detecting causality relations, we can assess the interdependence 
among the system’s elements 

● Granger causality is a method to detect causality relations, but 
improvements needed to be implemented for application to Domino

How to build the network of `interactions’?

Introducing more dynamic metrics, e.g. Granger causality, to study how the 
evolving ATM subsystems interact each other as times goes on.



Causality relations
• Let us focus on the network of airports 

and flights (although the method is 
more general). 

• Each airport is characterized by its 
“state of delay”, the average departure 
delay of its flights (suitably detrended 
for daily seasonality) 

• Does s2(t) influence s1(t)? (is there a 
causal relation?) 

s1(t)

s2(t)

s3(t)s4(t)

1-leg effect

2-legs effect

How do we detect causal relations?

• A causal relation between two airports could arise, e.g., when they are 
connected by direct flights because of reactionary delays (1-leg effect) but 
also when they are not connected directly (2- or more-legs effect)  

• Once pairwise causal relations are detected, we can build a second 
network where links are the causal relations

• Characterizing this network informs us on the delay propagation patterns



Causality

Causality metrics quantify the interactions of the system’s elements

• Granger causality: a time series “2” `Granger 
causes’ another time series “1” if the past history of 
“2” improves the prediction of the future of “1” 
when the past of “2” is taken into consideration 

• Well established statistical test to detect causality 
between time series [Granger (1969)] 

Granger causality in mean
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Causality for extreme events
Granger causality in tail • `GC in mean’ assumes linear dependence and 

weights equally small and `extreme’ events 
• Let us focus on the tail events, i.e. a time series of 

binary states: 
• 1, if the event is on the tail (i.e. above a given 

quantile) 
• 0, otherwise 

• Granger causality in tail: a test for causality (“2” 
helps to predict “1”), but considering only if an 
event is extreme or not! [Hong et al. (2009)] 
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What time series?

• The state of delay of a node-airport, e.g. average delays of flights per hour 
• The state of congestion, i.e. when the state of delay is `extreme’ 
• The state of cost of delay, e.g. to study how costs, and not delays, 

propagate throughout the system 
• … and so on (the method is very general) 



How to use causality metrics
from an operative p.o.w?
• less causal links is better  

a decrease of the node degree would represent an improvement!

• Overespression of feedback loops and mutual linkages in the GC network (w.r.t. 
the random case) —> enhancing delay propagation 

Baseline Domino mechanism

the decrease of these patterns due to innovations  
would represent an improvement

Mutual linkage

Feedback loop



Thank you!



Multilayer Causality network  
(layer = airline)

• When diversified per airline, the 
causality network has a multi-layer 
structure. 

• The multi-layer causality network 
can be adopted to characterise 
how different airlines interact 
each other and to quantify the 
level of interaction.

• Interaction 1: delay propagation within the same airline (intra-layer links)
• Interaction 2: local causality relation between two airlines at the same 

airport
• Interaction 3: when airline μ ‘Granger-causes’ delays to airline λ at some 

airport served by both companies (one-leg effects)
• Interaction 4: when airline μ ‘Granger-causes’ delays to airline λ at some 

airport which is not served by μ  (two or more-legs effects)


