

University of Westminster Eprints
http://eprints.wmin.ac.uk

Protecting federated databases using a practical
implementation of a formal RBAC policy.

Steve Barker
Department of Computer Science, King’s College, London

Paul Douglas
Cavendish School of Computer Science, University of Westminster

Copyright © [2004] IEEE. Reprinted from International Conference on Information
Technology: Coding and Computing (ITCC'04), 05-07 Apr 2004, Las Vegas, USA.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Protecting Federated Databases Using A Practical Implementation of a Formal
RBAC Policy

Steve Barker
King’s College
London, UK

steve@dcs.kcl.ac.uk

Paul Douglas
University of Westminster

London, UK
P.Douglas@wmin.ac.uk

Abstract

This paper describes the use of formally specified RBAC
policies for protecting federated relational database sys-
tems that are accessed over a wide area network. The
method that is described combines a formally specified
RBAC policy with both temporal and locational constraints.
It does not depend on any security mechanism supported by
a specific DBMS and is thus portable across platforms.

1. Introduction

Protecting databases from unauthorized access requests
has been recognized as important for many years. Nonethe-
less, vendors of database products typically provide very
limited means for protecting the data their DBMS will be
used to manage. Relational databases (RDBMSs) still dom-
inate the market, so discussion is limited here to RDBMSs
and the security mechanisms provided by SQL.

In the SQL92 standard [10], only grant and revoke
statements are provided with which to implement security.
These allow a limited subset of necessary access control
policies to be specified, even when combined with the use
of views [6]. The SQL:1999 standard improves on this by
including features for expressing RBAC policies. However,
these in turn are limited, and many currently available com-
mercial systems fail to implement them [14].

The need for multipolicy specification using high-level
specification languages with well-defined formal semantics
has recently been recognised and a number of candidate
proposals have been described in the literature [2, 8, 7, 12].
These proposals are generally theoretical in nature and lack
full implementations or any performance measures ([7] is
exceptional in the latter respect). More recently, [5] and [4]
have looked at methods of constructing practical implemen-
tations of such policies. However, [5] relied on using an
RDBMS that supports some sophisticated request modifi-

cation facilities [10] that RDBMSs do not offer as standard
features; [4] limited its implementation to a centralized sys-
tem and did not include temporal constraints. The contri-
bution of this paper is to investigate the application of for-
mally specified access control policies to non-centralized
databases, and to use a more sophisticated RBAC model
(i.e., one that does include temporal constraints); it is not
our intention to compare the theory upon which our ap-
proach is based with other work on access policy formu-
lation by logic programming.

Because earlier work has concentrated on centralized
databases, it has assumed that data access requests will typ-
ically come from within the organization that owns the data,
and that access requests will be made from local client ap-
plications (usually on the same subnet as the server, and
often within the same physical building that houses the
server). Common changes to organizational working prac-
tises mean this is now less likely. Federated databases,
where logical databases are formed from physically sepa-
rate databases located at different sites, and queried from
different physical locations, are increasingly common, and
this is the model considered by this paper. We have chosen
to use an internet browser as the client paradigm: this fits
well with the current trend towards increasingly integrated
desktop applications.

The remainder of the paper is organized as follows. In
Section 2, some basic notions in access control, RBAC,
temporal RBAC (TRBAC) and logic programming are de-
scribed. In Section 3, the representation of RBAC and TR-
BAC policies, by using stratified logic programs, is dis-
cussed. These policies are based on the RBACH2A model
that is informally defined in [17] and formally defined in [3].
Henceforth, we refer to the logic programs that imple-
ment RBACH2A or TRBACH2A policies as “RBAC pro-
grams”. In Section 4, we describe our implementation of
RBAC programs for protecting relational databases from
unauthorized access requests. In Section 5, we briefly con-
sider performance results for our approach. Finally, in Sec-
tion 6, some conclusions are drawn and suggestions for fur-

1

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

ther work are made.

2. Formal Policy Representation

The RBAC programs that are considered in this paper
are represented by using a finite set of normal clauses [13].

Definition 1 A normal clause is a formula of the form:

C ← A1, . . . , Am, not B1, . . . , not Bn.

The head, C, of the clause above is a single atom. The
body of the clause (i.e., A1, . . . , Am, not B1, . . . , not Bn)
is a conjunction of literals. Each Ai literal (i ∈ {1, .., m})
is a positive literal; each not Bj literal (j ∈ {1, .., n}) is
a negative literal. In the case of a negative literal, the rel-
evant type of negation is negation as failure [?]. Variables
in clauses appear in the upper case; constants appear in the
lower case.

An RBAC program S is defined on a domain of dis-
course that includes:

1. a set U of users;

2. a set O of database objects;

3. a set A of access privileges; and

4. a set R of roles.

The users in the case of our implementation will be ex-
ternal programs attempting to access the database, and the
database objects will be tables. The access privileges are
read and write.

Where these programs are extended to include temporal
constraints, we also employ a set T of time points. We view
time as a linearly ordered, discrete set of time points that
are isomorphic to the natural numbers. Since we are also
interested in the origin of the access request we additionally
require a set I of IP addresses.

We thus formally define access privileges using the fol-
lowing definitions:

Definition 2 An authorization is a 5-tuple (u, a, o, t, i)
that denotes that a user u (u ∈ U) has the a access priv-
ilege (a ∈ A) on the object o (o ∈ O) at time t (t ∈ T) from
IP address i (i ∈ I).

Definition 3 If a is an access privilege and o is an object
then a permission is a pair (a, o) that denotes that the a
access privilege may be exercised on o.

Definition 4 A permission-role assignment is a 4-tuple
(a, o, r, t) that denotes that the permission (a, o) is assigned
to the role r at time t.

Definition 5 A user-role assignment is a triple (u, r, t)
that denotes that the user u is assigned to the role r at time
t.

It is assumed in this paper that a closed policy [9] is be-
ing used to protect the database. However, the implemen-
tation of various open or hybrid policies require only mi-
nor modifications to the approach that we describe (see [7]).
Such policies are particularly likely to apply in the area of
databases accessed via the internet, where it is more likely
that we would wish to deny access permission to queries
originating from a specific group of IP addresses than only
to permit those from sites regarded as “safe”.

3. Representing RBAC Programs

The RBAC programs that we describe in this section
are based on the specification of RBAC as a normal clause
program from [2]. A user U is assigned to a role R at time T
by defining a 3-place ura(U, R, T) predicate in an RBAC
program. For example, ura(bob, r1, t) is used to record the
assignment of the user Bob to the role r1 at time t. To
record that the A access privilege on an object O is as-
signed to a role R at time T , clause form definitions of a
4-place pra(A, O, R, T) predicate are used. For example,
pra(read, o, r1, t) expresses that the role r1 is assigned the
read privilege on the database object o at time t.

An RBACH2A role hierarchy is expressed in an RBAC
program by a set of clauses that define a 2-place senior to
predicate as the reflexive-transitive closure of an irreflexive-
intransitive 2-place ds predicate that defines the set of pairs
of roles (ri, rj) such that ri is directly senior to role rj in an
RBACH2A role hierarchy (i.e., ri is senior to rj and there
is no role rk ∈ R such that ri is senior to rk and rk is senior
to ri).

In clause form logic, senior to is defined in terms of ds
thus (where ‘ ’ is an anonymous variable):

senior to(R1, R1) ← ds(R1,).
senior to(R1, R1) ← ds(, R1).
senior to(R1, R2) ← ds(R1, R2).
senior to(R1, R2) ← ds(R1, R3), senior to(R3, R2).

To represent that a user u is active in a role r at a time
t, an active(u, r, t) fact is appended to a RBAC program
whenever u requests to be active in r at time t and this re-
quest is allowed. The set of active facts in an RBAC pro-
gram at an instance of time t is the set of roles that users
have active at time t.

A set of allowed IP addresses is also stored in simple
1-place ip(I) predicates.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

The set of authorizations by an RBAC program is de-
fined by the clause:

permitted(U, A, O, T, I)
← time(T), ura(U, R1, T), active(U, R1, T),

senior to(R1, R2), pra(A, O, R2, T), ip(I).

This expresses that a user U has the A access privilege on
an object O at time T (extracted from the system clock us-
ing time(T)) requesting it from location I (extracted from
web server) if U is assigned to a role R1 at T , U is active in
R1 at T , R1 is senior to the role R2 in an RBACH2A role
hierarchy defined by the RBAC program, R2 is assigned
the A access privilege on O at T , and I is an allowed ad-
dress.

4. The Practical Implementation of RBAC
Programs

This section describes the practical implementation of
RBAC programs for protecting databases from unautho-
rized access.

A modular approach to developing the software that im-
plements our proposal has been adopted. There are three
principal components in our implementation:

• The Main Access Control Program.

• The Authorization Program.

• The Database System.

4.1. The Main Access Control Program

Java is used to implement the Access Control Program
(ACP). This is not the most efficient implementation (in
terms of performance overheads) that we could have em-
ployed. Because the authorization program (see below) is
accessed via a C library API, using C for the ACP would
have provided a more seamless interface and made the
use of an extra level of indirection unnecessary. The pro-
gram could then have been easily adapted into a CGI exe-
cutable, thus providing our web interface mechanism. How-
ever, there are a number of reasons why this is not the
best method. There are several well-known security prob-
lems associated with the use of CGI programs [18], and
these make CGI unsuitable as a vehicle for the implemen-
tation of a security control program. Java is now widely
used for a wide variety of Internet-based applications. It
offers comprehensive server programming support (using
Java Servlets) and excellent DBMS interfacing using JDB.
In addition, it is easy to access applications written in a va-
riety of other languages (through the Java Native Interface

(JNI) mechanism). Java’s support for distributed process-
ing means that it will also be well-suited for future devel-
opments that we are considering for access control in a dis-
tributed DBMS environment.

The ACP acts as a server program for all database ac-
cess requests: no other method of accessing the database is
allowed. Access is via a client application that will handle
all input of queries and output of data. It is assumed that
this client will operate within a browser window. A user,
whether on a local or remote host, will be presented with
an identical user interface and the physical location of the
server will thus be immaterial (and could change from time
to time as dictated by operational requirements).

Typically, a good quality interface will be achieved by
using a scripting language like Javascript, but for the pur-
pose of testing we used HTML. As a web server, we used
Apache’s Tomcat; Tomcat is the standard container for Java
servlet implementations [1].

The ACP is invoked by receiving a data access request
from a client. The validity of this data request is determined
by calling an authorization program, and passing it the fol-
lowing data:

• the user id and password (entered by the user);

• the IP address of the client (obtained from Tomcat);

• the current time (obtained from the system clock);

• the type of data access requested; and

• the database object the access request refers to.

The password would of course normally be encrypted,
but for testing purposes we omitted this step. The type of
data access requested is either read or write, where read
corresponds to an SQL “select” statement and write cor-
responds to any of “insert”, “update” or “delete”. In our
implementation we determine which is required by parsing
the query for the relevant operation. The database object is
a table; which one is determined once again by parsing the
query to find the table names referred to. Object granularity
is limited to tables in this implementation.

The authorization module returns a code indicating ei-
ther a granting or a denial of the requested data access.

If the request is granted, the query from the client is
passed to the DBMS by using a JDBC object. For all op-
erations (i.e., select, insert, update or delete) a status code
will be returned by the DBMS. Where the status code in-
dicates that an error has occurred, an error message will be
the output from the APC to the client. Where no error has
occurred, a message indicating success will be the output;
if the client’s query was a “select” statement, there will also
be the set of tuples returned by the DBMS.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

If the request is denied, this information is returned to the
client and the transaction is terminated. No query is passed
to the DBMS and no database activity occurs.

Each database transaction is authorized individually, so
the duration of a user session is precisely one transaction.
This does involve a certain processing overhead, but does
give a high level of security.

4.2. The Authorization Module

XSB [16] is used to implement the logic program that
defines the access control applicable to the database being
protected. XSB offers excellent performance that has been
demonstrated to be far superior to that of traditional Prolog-
based systems [15]. The actual calls are handled by the YA-
JXB [11] package. YAJXB makes use of Java’s JNI mech-
anism to invoke methods in the C interface library package
supplied by XSB. It also handles all of the data type con-
versions that are needed when passing data between C and
Prolog-based applications. YAJXB effectively provides all
the functionality of the C package within a Java environ-
ment. Although, as described above, this does involve some
additional overhead, the method is flexible and straightfor-
ward and, for these reasons, preferable to using either a low-
level sockets-based approach or a Java/Prolog hybrid.

Once invoked, XSB loads a program that contains the
Prolog expression of the RBAC policy described in Sec-
tion 3 above. This is used to determine whether the access
request that has been made is to be permitted or not. XSB’s
interface library provides a number of mechanisms for pass-
ing Prolog-style goal clauses from a calling program. Our
implementation constructed the goal clause in a Java String
and passed it to XSB using the xsb command string func-
tion via a YAJXB interface object. The actual call is:

i=core.xsb command string(command.toString());

where the assignment, as one would expect, handles the re-
turned value that indicates whether or not the request has
been granted. Because the authorization module is used
solely for the purpose of determining the validity of the ac-
cess request, no other returned data is required.

4.3. Database System

One of our objectives in designing this implementation
was that it should be as flexible as possible. The only as-
sumption we make is that the query will be expressed in
SQL,1 and any database that accepts SQL queries and that
has a JDBC driver could be used with this system. Be-
cause we do all query authorization before the database is

1We assume an SQL conforming to an SQL standard, but it would be
relatively simple to add an additional module to this software to convert
queries into other dialects of SQL, which would increase flexibility in the
case of heterogeneous federated systems.

accessed, the specific security provision of the DBMS is im-
material. We have successfully tested the system using both
Oracle and MySQL with no modification other than to the
JDBC driver information.

5. Performance Measures

Our authorization model does not introduce any addi-
tional network traffic, and this is always the largest time
overhead in any distributed system. The performance capa-
bilites of XSB (the additional component that our system in-
troduces to a traditional server architecture) have been well
documented ([15]). It could therefore be expected that the
system would work efficiently, and the results we have ob-
tained when testing the program bear this out. We used a
modified version of an RBAC program that we have used
for testing purposes before (see [5] and [4]). It includes
a definition of a 53 role RBACH2A role hierarchy that has
been represented by using a set of facts to represent all pairs
of roles in the senior to relation (a total of 312 senior to
facts). There is one user, one ura rule, 8 database objects
(tables), 720 pra rules and 15 ip rules. It is sufficient for
test purposes to use one user to demonstrate a worst-case
use of the access control information in an RBAC pro-
gram. This worst case test involves assigning a user u to
the unique top element in the RBACH2A role hierarchy,
such that u has complete access to all of the tables used in
the test queries. The permissions are assigned to the unique
bottom element in the RBACH2A role hierarchy. Hence,
our testing involves the maximum amount of multiple up-
ward inheritance of permissions.

The experiments were performed using XSB Version 2.5
on a Sun Ultra 60 server (2 450MHz CPUs and 1GB RAM)
running Solaris. In line with previous findings [4], the time
taken to evaluate an authorization request is typically less
than a hundredth of a second. This is a very small overhead
to introduce. In the case where the request is denied, this
time is instead of the DBMS access time, since no access
takes place. It follows that for unauthorized queries there is
actually a performance improvement gained from using this
approach.

6. Conclusions and Further Work

We have shown how the information in federataed re-
lational databases may be protected from unauthorized ac-
cess requests by using RBAC programs. The high-level
formulation of an access policy as a logic program makes it
relatively easy for a Database Administrator to express an
access policy, to reason about its effects and to maintain it.
We have demonstrated that the access policies that we use
for protecting relational databases may be efficiently imple-
mented.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

In future work, we intend to investigate the extension
of the approach that we have described here to Distributed
DBMS environments with more open access policies.

References

[1] The apache jakarta project, 1999.
http://jakarta.apache.org/tomcat/.

[2] S. Barker. Data protection by logic programming. pages
1300–1313. 1st International Conference on Computational
Logic, Springer, 2000.

[3] S. Barker. Secure deductive databases. pages 123–137. 3rd
Inat. Symp. on Practical Applications of Declarative Lan-
guages (PADL’01), Springer, 2001.

[4] S. Barker and P. Douglas. Practical rbac policy implementa-
tion for sql databases. IFIP WG 13, 2003, Kluwer, to appear.

[5] S. Barker, P. Douglas, and T. Fanning. Implementing rbac
policies in pl/sql. pages 27–36. IFIP WG 13, 2002, Kluwer,
2003.

[6] S. Barker and A. Rosenthal. Flexible security policies in sql.
pages 187–199. DBSec 2001, 2001.

[7] S. Barker and P. Stuckey. Flexible access control pol-
icy specification with constraint logic programming. ACM
Transations on Information and System Security, 2003.

[8] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A system
to specify and manage multipolicy access control models.
pages 116–127. IEEE 3rd International Workshop on Poli-
cies for Distributed Systems and Networks (POLICY 2002),
2002.

[9] S. Castano, M. Fugini, G. Martella, and P. Samarati.
Database Security. Addison-Wesley, 1995.

[10] C. Date. An Introduction to Database Systems. Addison-
Wesley, 2000.

[11] S. Decker. Yajxb. http://www-
db.stanford.edu/˜stefan/rdf/yajxb.

[12] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian.
Flexible support for multiple access control policies. In
ACM TODS, volume 26(2), pages 214–260, 2001.

[13] J. LLoyd. Foundations of Logic Programming. Springer,
1987.

[14] C. Ramaswarmy and R. Sandhu. Role-based access con-
trol features in commercial database management systems.
pages 503–511. Proc. 21st National Information Systems
Security Conference, 1998.

[15] K. Sagonas, T. Swift, and D. Warren. Xsb as an efficient
deductive database engine. page 512. ACM SIGMOD Pro-
ceedings, 1994.

[16] K. Sagonas, T. Swift, D. Warren, J. Freire, and P. Rao. The
XSB System Version 2.0, Programmer’s Manual, 1999.

[17] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model for
role-based access control: Towards a unified standard. pages
47–61. Proc. 4th ACM Workshop on Role-Based Access
Control, 2000.

[18] W3C. The world wide web security faq, 2002.
http://www.w3.org/Security/Faq/.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

