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Abstract

In this paper we provide a stock price model that explicitly incorporates credit
risk, under a stochastic optimal control system. The stock price model also incorpo-
rates the managerial control of credit risk through a control policy in the stochastic
system. We provide explicit conditions on the existence of optimal feedback controls
for the stock price model with credit risk. We prove the continuity of the value func-
tion, and then prove the dynamic programming principle for our system. Finally, we
prove the Viscosity Solution of the Hamilton-Jacobi-Bellman equation. This paper
is particularly relevant to industry, as the impact of credit risk upon stock prices
has been prominent since the commencement of the Global Financial Crisis.

Keywords: credit risk; stock price model; optimal control; regime switching; fi-
nancial crisis.

AMS subject classification: 93B52, 60J60, 49K30, 60J27.

1Tianjin University,
Center for Applied Mathematics,
Tianjin,
300072,
China.

2University of Dubai,
Academic city,
Emirates road,
Dubai,
UAE,
P.O.Box:14143.

1



∗corresponding author

University of Westminster,

School of Finance and Accounting,

35 Marylebone Road,

Marylebone,

London,

NW1 5LS,

United Kingdom.

email: s.mitra@westminster.ac.uk

2



1. Introduction

The Global Financial Crisis demonstrated the importance of credit risk in stock
price models: many firms with high credit risk experienced highly volatile price
moves, with some firms declaring bankruptcy (see for instance [20], [44],[15], [1]).
Whilst it is recognised in empirical literature that the credit risk of firms can affect
stock price behaviour (for example the well-known leverage effect [3], [16]), typically
the majority of stock price models do not incorporate an explicit relation between
stock prices and the credit risk dynamics. Moreover, key financial Theorems such
as the Modigliani-Miller Capital Structure Theorems [6] directly imply that stock
prices must be explicitly affected by the credit risk of firms. Yet the standard stock
price models of stochastic differential equations have no explicit relation to credit
risk. Consequently, stock price models are limited in their modelling in terms of
their relation to credit risk.

Given the importance of credit risk in stock price processes, especially since the
start of the Global Financial Crisis, we would like to have a stock price model that
directly incorporates credit risk dynamics. Additionally, whilst managers have little
direct control over the price of stocks (as it is typically dependent on numerous
external factors, such as investor psychology [28],[10], [29] and market sentiment
[49]), credit risk is within the direct control of the firm’s management. For example
the firm can "restructure" its debt, it can choose different borrowing instruments
(such as secured loans, unsecured loans, bonds etc.) as well as hedge out risks to
reduce credit risk e.g. interest rate risk and exchange rate risk.

The fact that management decision making, or equivalently a control policy,
impacts credit risk means that the stock price model with credit risk lends itself
to a stochastic optimal control model. For example, can we implement a control
policy that enables an optimal response to changing credit risk? How would this
impact a stock price model, with credit risk dynamics explicitly incorporated within
the model? Such an analysis lends itself to formulating the problem in terms of
stochastic control systems and is of importance to industrial applications.

Whilst many stochastic differential equation models exist for stock prices, the
incorporation of credit risk is limited and so does not provide a comprehensive model
for credit risk (such as jump-diffusion models). For example, whilst jump-diffusion
models can incorporate credit risk [55] there is no explicit link between credit risk
fundamentals and the stock price equation, essentially the jumps follow a random
process without any direct reference to credit fundamentals. In fact jump processes
are sometimes applied to enhance computational tractability (see for instance [17]),
rather than incorporating credit management fundamentals. Alternative models
to stochastic differential equations that incorporate credit risk exist, however such
models tend to be regression or heuristic models (such as in [12]) and so offer limited
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theoretical development. Consequently, the relation between management or control
policy, and the credit risk cannot be reflected in such models.

In this paper we present a stock price model that directly incorporates the credit
risk dynamics of the firm. We propose a new stock price model that incorporates
credit risk dynamics by formulating a SDE (stochastic differential equation) that
has a discrete process Λt, which is a continuous time, random jump process on a
finite state space. Typically, Λt is a continuous time Markov chain that models the
credit risk dynamics of the firm, and introduces a regime switching component to
the SDE modelling our stock price Xt.

Regime switching models have been used to model credit risk [37] and economic
factors [22],[48] hence this model is consistent with current financial modelling of
such factors. Additionally, we incorporate within our model the property that the
transition rate of Λt may also be dependent on the stock price of Xt. This is con-
sistent with financial theory, as current stock price performance also impacts credit
risk transitions. Furthermore, stochastic changes in an environment are increasingly
being modelled in Mathematics, with such models being applied in ecological sys-
tems, biological systems, Physics etc.; see for instance [2], [40],[51]. To the best of
our knowledge, our stock price model with credit risk dynamics is the first stock
price model of its kind.

In addition to modelling the credit risk dynamics in our stock price model, an-
other distinguishing feature of our model is the incorporation of a decision or control
variable which reflects management decisions to manage credit risk. This is repre-
sented by ut and controls the transition rate matrices of Λt (to be defined in pro-
ceeding sections), hence it directly impacts on the transition rate between different
credit risk levels and impacts the stock price Xt. This type of control is of particular
interest in finance and has not been examined before. In this paper all admissible
control policies, in terms of feedback control, are investigated. The compactification
method is expanded, so that we can determine full conditions to ensure the exis-
tence of optimal feedback controls, with respect to finite-horizon maximisation of
the expected stock price. It is also shown that the value function is continuous and
the dynamic programming principle is established. We then show that the value
function is a viscosity solution of the Hamilton-Jacobi-Bellman equation.

The plan of the paper is as follows: in the next section we introduce our stock
price model, and review current stock price models in the financial literature. In the
next section we state our main results, that is our key Theorems and a Proposition,
in respect of our stock price model. The proceeding section details the proofs of all
our Theorems and Proposition, and then finally we end with a conclusion.
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2. Preliminaries and Stock Price Model

In this section we introduce our stock price model with credit risk dynamics and
the relevant preliminaries. We then review the relevant stock price and credit risk
models in the financial literature.

2.1. Stock Price Model

Let there exist a probability space (Ω,F ,P) where Ω represents the sample space
of events, F denotes a collection of events in Ω, with probability measure P. We have
a filtered probability space {Ω,F , {Ft}t≥0,P}, and there also exists the complete
filtration {F}t≥0. In Finance the model for stock prices is represented by a stochastic
differential equation (SDE), that is

dXt = b(·)dt+ σ(·)dBt,

where Xt is the stock price at time t, b(·) is the drift, σ(·) is the volatility process,
and (Bt)t≥0 is an Ft Brownian motion.

For our stock price model under stochastic control, let the stock price Xt be
governed by the following SDE

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt, (1)

where we assume Xt ≥ 0 for all t, so that negative stock prices do not exist; b :

Rd×S → Rd; σ : Rd×S → Rd×d. Here S = {1, 2, ...., N}, where N <∞, represents
a finite state space. Let U = [λ1, λ2]N with λ2 > λ1 > 0. The random process (Λt)t≥0

is a continuous time jumping process on S whose transition probability satisfies the
equation:

P(Λt+δ=j|Λt= i,Xt=x, ut=u)=

uiqij(x)δ+o(δ), j 6= i,

1 + uiqii(x, u)δ + o(δ), j = i,
(2)

for δ > 0, x ∈ Rd, u = (u1, . . . , uN) ∈ U, i, j,∈ S.
The stochastic control system consists of two major variables (Xt,Λt): the stock

price Xt and is a continuous random variable that satisfies a SDE. Consequently the
SDE describes the continuous time evolution of the dynamical system of interest.
The second and discrete variable Λt is a jump process, on a finite state space which
represent the credit risk of the firm. The vector u = (u1, . . . , uN) is the control
term through which one can modify the transition rate of the process (Λt), and
the switching rate may vary according to different state of (Λt). In order that
diag(u1, . . . , uN)(qij(x)) is still a transition rate matrix, we suppose each uk, k =

1, . . . , N , is in the closed interval [λ1, λ2] with λ1 > 0.
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Let f : [0,∞) × Rd × S × U → R and g : Rd → R are two bounded continuous
functions. As a member of the firm or a stock investor, we would be interested in
maximising the following reward function

E
[ ∫ T

s

f(t,Xt,Λt, ut)dt+ g(XT )
]
, (3)

that is an expectation function of the stock price X at some finite time horizon
T . Such T will be fixed throughout this work. This maximisation will be achieved
by using the control policy or variable ut, which controls Λt, and this incorpo-
rates the management’s decision making control over debt or credit risk. We in-
clude E

[
g(XT )

]
in our reward function because an investor (or any member of the

firm) typically wants to maximise X at some future point in time T rather than at
some indefinite period. Furthermore, the maximisation is typically some function
of XT rather than just XT (such as expected utility) hence we include the func-
tion g(·). In addition to maximising some function of XT we also include the term
E
[ ∫ T

s
f(t,Xt,Λt, ut)dt

]
because investors may also be interested in maximising some

generic function over the starting time s and terminal time T .
Our stock price model fundamentally differs from standard models in two impor-

tant characteristics. Firstly, our stock price model dXt directly incorporates credit
risk: the term Λt reflects the credit risk of the company which typically impacts
the stock price dynamics; this is incorporated by Λt impacting b(·) and σ(·). Eco-
nomically, the state i represents the credit rating of the firm’s debt, hence a state
transition means the credit rating also changes. This explicit incorporation of credit
risk in stock price models typically does not exist, yet it is well known from em-
pirical evidence that credit risk is a significant factor in stock prices. Hence the
incorporation of credit risk in our model is a significant feature.

Secondly, our model incorporates the impact of management decisions upon
credit risk. The credit risk in firms is partly determined by management decisions,
rather than a function of exogenous factors (such as the economy). For example,
management can sell assets to reduce debts and improve credit risk, the firm may
change its borrowing specifications (such as borrowing on a fixed interest rate rather
than a variable interest rate loan), or hedge out some of it borrowing risks etc.. Con-
sequently, it is essential that the credit risk Λt is a function of some decision variable.
Our model incorporates the management aspect of credit risk by control variable ut,
which affects the transition probabilities of Λt. Hence our stock price model provides
a more realistic model of credit risk and stock pricing.

The transition Λt = i to Λt+∆t = j is specified by the transition rate matrix,
which is a state dependent and regime switching process. A regime switching repre-
sentation has been frequently used in finance to represent the dynamics of the credit
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risk, hence this model is consistent with current financial modelling. The transition
matrix for Λt determines the probability of Λt moving from one state i to another
state j (and this is partly controlled by ut). This transition rate matrix is also a
function of x and i (that is the current stock price and state, respectively). This
is because the current stock price x can be taken as a proxy measure of firm per-
formance, which impacts the credit risk of firms. The current state i also impacts
credit risk because the dynamics of credit risk is typically modelled as a function of
conditional information.

In our stock price model that incorporates credit risk, we would like to examine
the impact of policy decisions on Xt. Specifically, we will assume we have a control
variable ut that can control the transition rate matrix, which directly reflects the
management or control of debt in a firm. As the firm typically wants to manage its
debt in relation to stock price Xt, we would like to determine an optimal control
policy of ut in response to Xt. Precisely, we consider the following kind of control
policy :

ut = F (t,Xt,Λt)

for some suitable functions F : [0,∞) × Rd × S → U , which should ensure the
equations (1) and (2) admit a solution. This means that the control policy depends
on the time t, the stock price Xt, and the current credit risk level Λt. This control
policy reflects the decision of management on credit risk.

We note in passing that whilst other stochastic differential models, such as jump-
diffusion models, incorporate credit risk this modelling is limited in scope. For
example the jumps are follow a random process without any direct reference to
credit fundamentals, nor are jumps controlled by management or control policy
decisions. Consequently, the relation between management or control policy, and
the credit risk cannot be reflected in such models.

2.2. Current Stock Price and Credit Risk Models

We now review the asset pricing models for stocks and credit risk modelling. The
initial development of asset pricing models did not explicitly incorporate credit risk
factors; the standard model for asset pricing assumed constant volatility and drift
without any reference to credit risk factors [4], that is we have geometric Brownian
motion

dXt/Xt = bdt+ σdBt.

The geometric Brownian motion model has many analytical and computational ad-
vantages for stock price modelling. However the simplicity of the model means that
it is not able to take into account non-trivial pricing factors that are important to
asset pricing (such as credit risk management).
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The key development that has arisen in stock price modelling has focused on
volatility modelling, rather than other risk factors. For instance the first volatility
model development was time dependent volatility (see for example [50]) where

dXt/Xt = bdt+ σtdBt,

that is volatility is a function of time. In [41] the European call option price as-
sociated with this stock price model is derived, using the standard Black-Scholes
equation [4] with volatility replaced by σc where

σc =

√
1

T − t

∫ T

t

σ2
t dτ ,

and T is the maturity date of the option. A logical progression was the incorporation
of volatility as a function of stock price; the Constant Elasticity of Variance model
is a popular asset pricing model [9]

dXt/Xt = b1dt+ σ(Xt)dBt,

σ(Xt) = b2X
q−1
t , for {q ∈ R|0 ≤ q ≤ 1}, b2 ∈ R+.

A more comprehensive stock price model is incorporating stochastic volatility,
that is

dXt/Xt = b1(Xt, t)dt+ σtdB
1
t ,

σt = f(dB2
t ),

where volatility is a function of a stochastic process that is driven by another (pos-
sibly correlated) Wiener process dB2

t . For example, in [27] we have

dσt = b2σtdt+ σqt b3dB
2
t , for {q, b3 ∈ R|q, b3 ≥ 0}.

An alternative stochastic volatility model is the Hull-White Model [26]

dσ2
t /σ

2
t = b2dt+ σqt b3dB

2
t , for {q, b3 ∈ R|q, b3 ≥ 0},

where volatility σ̂ defined by

σ̂2 =
1

T − t

∫ T

t

σ2(s)ds,

enables one to determine European option prices using the Black-Scholes option
pricing equation [4]. The Heston stochastic volatility model [25] takes into ac-
count correlation between Wiener processes, that is corr(dB1

t , dB
2
t ) = ρdt, where
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the volatility process is given by

dσ2
t = b2(b̃− σ2

t )dt+ b3σtdB
2
t , for {b̃, b3 ∈ R|b̃, b3 ≥ 0}. (4)

As can be observed from the stock price models, they do not generally include credit
risk factors.

One additional group of financial stock price models that should also be men-
tioned is the stock price model governed by Levy processes; these are fundamentally
stochastic processes with independent, and stationary increments (see for instance
[18]). Essentially, there are two categories of Levy processes for financial models
[33]: jump-diffusion and infinite activity Levy processes. In terms of the jump-
diffusion models, we have a stochastic differential equation that has some jump
component, where the jump component represents some rare event that occurs over
a short interval of time (such as a stock market crash). Examples of such jump-
diffusion models include Merton’s jump-diffusion model [42], and the double expo-
nential jump-diffusion model in [34]. In infinite activity Levy processes, we can have
infinitely many jumps in a short interval of time; a review of such models can be
found in [8].

As stock price models did not explicitly take into account credit risk factors, this
consequently led to credit risk being modelled separately from stock price models.
The first archetypal credit risk model originated from the credit risk model first
proposed by Merton [43]. This assumes an option based model for credit risk, using
the Black-Scholes option pricing model [4]. Instead of modelling the stock price the
firm’s asset value At is modelled by a SDE:

dAt = (rf − ε)Atdt+ σAAtdBt, (5)

where σA is the asset volatility, rf is the riskless rate and ε ∈ R is the firm’s
dividend rate. Other credit risk models also model asset value (rather than stock
prices), for example Zhou [54] develops a credit risk model that incorporates jumps
in the underlying asset

AtdAt = (µ1 − λµ2)dt+ σdBt + (ξ − 1)dZt,

where µ1 is the expected return on the firm’s assets, µ2, λ are constants, dZt is a
Poisson process with intensity λ, and ξ represents the jump process.

Kim, Ramaswamy and Sundaresan [30] develop a credit risk model by valuing
debt in the form of corporate bondsGt, they also take into account stochastic interest
rates (whereas other credit risk models assume constant interest rates). The interest
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rates in [30] follow

drf = b1(b2 − rf )dt+ σ
√
rfdBt,

where b1 and b2 are constants. An additional advantage of the model is that it takes
into account the term structure of interest rates and the uncertainty of interest rates
over time.

Leland [36],[35] proposes a model that differs from other credit risk models by
taking into account strategic default. Therefore debt is modelled as an optimal capi-
tal structure problem and this is consistent with Miller-Modigliani Capital Structure
Theory [6]. The debt is modelled by a bond D̃T and is given by

D̃T =
λ

rf
+

(
χ− λ

rf

)(
1− e−rfT

rfT
− 1

T

∫ T

0

e−rf tςtdt

)
+

(
(1− ι)A∗ − λ

rf

)
1

T

∫ T

0

e−rf tς ′tdt,

where λ is the coupon payment per year, rf is the riskless rate, T is the maturity
date of the bond, χ is the total principal value of the bond, ςt is the cumulative dis-
tribution function of the passage time of bankruptcy, ς ′t is the associated probability
density function, A∗ is the asset value that triggers default, ι specifies the fraction
of asset values that is distributed to the bondholders in the event of default. As can
be seen, the stock price value is not incorporated within this credit risk model.

Another set of influential credit risk models is the intensity based models, where
the time of default τ is a random variable, under some risk neutral measure Q. For
example, one could apply the model

Q(τ > t) = exp

(
−
∫ t

0

γsds

)
,

where γs is some deterministic or stochastic process, representing the intensity of a
Poisson process. The time of the first jump in the Poisson process corresponds to τ .

The first passage time models represent another set of influential credit risk
models; such models determine the time at which some value or boundary is first
reached (typically at the time some credit related variable triggers some default
event). For example, [39] develops a model for valuing corporate debt that is exposed
to default risk as well as interest rate risk. In [7] a first passage time model is applied
in valuing fixed rate debt. Finally, we should also mention credit risk has also been
applied to the valuation of vulnerable European options, that is option valuation
where some counterparty or option writer is vulnerable to default, see for instance
[32], [38] and [31].

Despite the development of credit risk models and stock price models, typically
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credit risk and stock price models are modelled separately. Consequently, the in-
teraction between credit risk and stock prices is not explicitly incorporated within
any models. Additionally, no decision making variable of credit risk management
is incorporated within the credit risk, yet this is a fundamental aspect of credit
risk. Furthermore, the impact of the Global Financial Crisis has demonstrated the
importance of credit risk in stock prices. Consequently, there is a need to explicitly
incorporate credit risk in stock price models.

3. Main Results

In this section we present our main results, specifically our Theorems, Proposi-
tions and Definitions, and in the proceeding sections we derive the proofs. Now we
introduce the set of admissible feedback controls studied in this work.

Definition 1 For each (s, x, i) ∈ [0, T ) × Rd × S, an admissible control is a curve
α = (ut)t∈[s,T ] in the action space U satisfying

(i) SDEs (1) and (2) admit strong solution (Xt,Λt) with initial value (Xs,Λs) =
(x, i).

(ii) There exists a measurable map F : [s, T ] × Rd × S → U such that for almost
all t ∈ [s, T ], ut = F (t,Xt,Λt).

Let us denote by Πs,x,i the collection of all admissible controls α with initial point
(Xs,Λs) = (x, i). Given two bounded continuous functions f : [0,∞)×Rd×S×U →
R and g : Rd → R, the reward function with respect to the control α is given by

J(s, x, i, α) = E
[ ∫ T

s

f(t,Xt,Λt, ut)dt+ g(XT )
]
. (6)

The value function is defined by

V (s, x, i) = sup
{
J(s, x, i, α);α ∈ Πs,x,i

}
. (7)

An admissible control α∗ ∈ Πs,x,i is called optimal if it holds that V (s, x, i) =

J(s, x, i, α∗).
We now list below the assumptions used in our work:

(H1) There exists a constant C1 > 0 such that

|b(x, i)− b(y, j)|2 + ‖σ(x, i)− σ(y, j)‖2 ≤ C1(|x− y|2 + 1i 6=j),

for x, y ∈ Rd, i, j ∈ S, where ‖σ‖2 = tr(σσ′) and σ′ denotes the transpose of
the matrix σ.

(H2) For every x ∈ Rd, (qij(x)) is conservative, i.e. qi(x) := −qii(x) =
∑

j 6=i qij(x),
i ∈ S. Moreover, M := supx∈Rd,i∈S,u∈U uiqi(x) <∞.
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(H3) There exists a constant C2 > 0 such that for every i, j ∈ S, x, y ∈ Rd,

|qij(x)− qij(y)| ≤ C2|x− y|.

(H4) For every t ∈ [0, T ], x ∈ Rd, i ∈ S, u 7→ f(t, x, i, u) is a concave function.

We now state our Theorems.

Theorem 3.1. (Control): Under the conditions (H1)-(H4), for every (s, x, i) ∈
[0, T )×Rd×S, there exists an optimal admissible control α∗ ∈ Πs,x,i corresponding to
the value function V (s, x, i). Moreover, the value function V (s, x, i) is continuous.

In [47], Shao has investigated the existence of the optimal feedback control prob-
lem for regime-switching diffusion processes. In that paper, besides the control on
the transition rate matrix of (Λt), another control term in the coefficients of the
SDE for (Xt) is imposed. But in [47], only the existence of optimal relaxed control
(i.e. probability measure valued control policy) was established, which takes great
advantage of the characterization of compact set in the space of probability mea-
sures. In this work we further show the existence of an optimal classical control (i.e.
real valued control policy).

Let us introduce the σ-algebra associated with an admissible control. For an
α ∈ Πs,x,i, denote by (Xα

t ,Λ
α
t ) the controlled processes satisfying (1) and (2). Let

Fα
s,t = σ

{
(Br,Λ

α
r ); s ≤ r ≤ t

}
, s ≤ t ≤ T, (8)

where (Bt) is the Brownian motion given by (1). Corresponding to the filtration
{Fα

s,t}s≤t≤T , denote by T α
s,T the set of stopping times taking values in [s, T ].

Theorem 3.2 (Dynamic Programming Principle). Assume that (H1)-(H4) hold,
then it holds

V (s, x, i) = sup
α∈Πs,x,i

{
E
[ ∫ θ

s

f(r,Xα
r ,Λ

α
r , u

α
r )dr + V (θ,Xα

θ ,Λ
α
θ )
]
, for each θ ∈ T α

s,T

}
.

We now state our next definition, and so first define

A uh(t, x, i) =
d∑

k,l=1

akl(x, i)
∂2h

∂xk∂xl
(t, x, i) +

d∑
k=1

bk(x, i)
∂h

∂xk
(t, x, i)

+
∑
j 6=i

uiqij(x)
(
h(t, x, j)− h(t, x, i)

)
,

for u = (u1, . . . , uN) ∈ U . Also, consider the following Hamilton-Jacobi-Bellman
equation

− ∂v

∂t
(t, x, i)− sup

u∈U

{
A uv(t, x, i) + f(t, x, i, u)

}
= 0. (9)

Definition 3 Let v : [0, T ]× Rd × S → R be a continuous function.
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(i) v is called a viscosity subsolution of (9) if

−∂ϕ
∂t

(t0, x0, i0)− sup
u∈U

{
A uϕ(t0, x0, i0) + f(t0, x0, i0, u)

}
≤ 0,

for all (t0, x0, i0) ∈ [0, T ) × Rd × S and for all ϕ ∈ C2([0, T ) × Rd × S) such
that (t0, x0, i0) is a maximum point of v − ϕ.

(ii) v is called a viscosity supersolution of (9) if

−∂ϕ
∂t

(t0, x0, i0)− sup
u∈U

{
A uϕ(t0, x0, i0) + f(t0, x0, i0, u)

}
≥ 0,

for all (t0, x0, i0) ∈ [0, T ) × Rd × S and for all ϕ ∈ C2([0, T ) × Rd × S) such
that (t0, x0, i0) is a minimum point of v − ϕ.

(iii) We say that v is a viscosity solution of (9) if it is both a viscosity subsolution
and a viscosity supersolution of (9).

We now state our next Theorem.

Theorem 3.3. (Viscosity Solution): Assume that (H1)-(H4) hold, then the value
function V (s, x, i) is a viscosity solution of the Hamilton-Jacobi-Bellman equation

− ∂V

∂t
(t, x, i)− sup

u∈U

{
A uV (t, x, i) + f(t, x, i, u)

}
= 0 (10)

with the boundary condition V (T, x, i) = g(x) for (x, i) ∈ Rd × S.

4. Proof of the Results

In this section, we shall present the proofs and arguments of the previous Theo-
rems.

4.1. Proof of Control Theorem
In order to prove Theorem 3.1 (Control) we first generalize the set of control

policies to introduce the admissible relaxed controls in order to use the result of [47,
Theorem 2.3], and then show the optimality can be realized by a U -valued admissible
control policy.

Let P(U) denote the set of all probability measures over U , which is endowed
with the weak convergence topology. Since U is a compact set of RN , it is known
that so is P(U). For any measurable function h : U → R, it can be viewed as a
function on P(U) in the following natural way

h(µ) :=

∫
U

h(u)µ(du), µ ∈P(U)

provided the integral exists. We denote by

m1(µ) =

∫
U

uµ(du), µ ∈P(U)
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the first moment of µ, which must be finite by virtue of the compactness of U .
Definition 4 For each (s, x, i) ∈ [0, T ) × Rd × S, an admissible relax control is a
curve α̃ = (ut)t∈[s,T ] in the space P(U) satisfying

(i) SDEs (1) and (2) admit strong solution (Xt,Λt) with initial value (Xs,Λs) =
(x, i).

(ii) There exists a measurable map F : [s, T ] × Rd × S → P(U) such that for
almost all t ∈ [s, T ] ut = F (t,Xt,Λt).

The set of all admissible relaxed control α̃ with initial value (s, x, i) is denoted
by Π̃s,x,i. Correspondingly, we generalize the reward function J as follows:

J(s, x, i, α̃) = E
[ ∫ T

s

f(r,Xr,Λr, µr)dr + g(XT )
]

= E
[ ∫ T

s

∫
U

f(r,Xr,Λr, u)µr(du)dr + g(XT )
]
.

(11)

Let
Ṽ (s, x, i) = sup

{
J(s, x, i, α̃); α̃ ∈ Π̃s,x,i

}
. (12)

α̃ ∈ Π̃s,x,i is call optimal if J(s, x, i, α̃) = Ṽ (s, x, i). Note that Πs,x,i can be embedded
into Π̃s,x,i by putting µt(du) = δut(du), where δu stands for the Dirac measure at
the point u. Therefore,

V (s, x, i) = sup
α∈Πs,x,i

{J(s, x, i, α)} ≤ sup
α̃∈Π̃s,x,i

{J(s, x, i, α̃)} = Ṽ (s, x, i). (13)

Proof of Theorem 3.1. (Control): According to [47, Theorem 2.3], there exists
an optimal relaxed control α̃∗ = (u∗t ) ∈ Π̃s,x,i such that

Ṽ (s, x, i) = J(s, x, i, α̃∗) = E
[ ∫ T

s

f(t,X α̃∗

t ,Λα̃∗

t , µ
∗
t )dt+ g(X α̃∗

T )
]
,

where (X α̃∗
t ,Λα̃∗

t ) is the associated controlled process. Due to (H4) and Jensen’s
inequality, the concavity of f implies that

f(t, x, i, µ) =

∫
U

f(t, x, i, u)µ(du)

≤ f(t, x, i,m1(µ)), ∀ t ∈ [0, T ], x ∈ Rd, i ∈ S, µ ∈P(U).

Therefore, we have

Ṽ (s, x, i) ≤ E
[ ∫ T

s

f(t,X α̃∗

t ,Λα̃∗

t ,m1(µ∗t ))dt+ g(X α̃∗

T )
]
. (14)

On the other hand, let u∗t = m1(µ∗t ), t ∈ [s, T ]. It is clear that u∗t ∈ U by the
convexity of U = [λ1, λ2]N . We shall show that α = (u∗t ) satisfies the conditions
of Definition 1, and hence is the desired optimal admissible control. First, note
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that the control µ∗t acts on the transition rate matrix of (Λt) through m1(µt) = u∗t ,
so (X α̃∗

t ,Λα̃∗
t ) is also a controlled process corresponding to α satisfying SDEs (1)

and (2). Second, since α̃∗ = (µ∗t ) is an admissible relaxed control, there exists a
measurable map F : [s, T ]× Rd × S →P(U) such that for almost all t ∈ [s, T ]

µ∗t = F (t,X α̃∗

t ,Λα̃∗

t ).

Define
G(t, x, i) =

∫
U

uF (t, x, i)(du), t ∈ [s, T ], x ∈ Rd, i ∈ S.

Then G is a measurable map from [s, T ]× Rd × S to U , and

u∗t = G(t,X α̃∗

t ,Λα̃∗

t ),

which implies the condition (ii) of Definition 1 is satisfied. We conclude that α = (u∗t )

is an admissible control.
At last, noticing (14) and (13), we get

V (s, x, i) ≤ Ṽ (s, x, i) = J(s, x, i, α̃∗) ≤ J(s, x, i, α).

Also, J(s, x, i, α) ≤ V (s, x, i) by definition. Therefore,

V (s, x, i) = Ṽ (s, x, i) = J(s, x, i, α), (15)

and α = (u∗t ) is an optimal admissible control as desired.
The continuity of V (s, x, i) can be proved in the same way as [47, Theorem 3.1]

by noting V (s, x, i) = Ṽ (s, x, i) in (15), which is omitted to save space. �
Note that to obtain the existence of optimal classical control from the existence

of optimal relaxed control is not an easy work in general. We refer to Haussmann
and Lepeliter [24] for a general discussion on this topic.

4.2. Proof of Proposition: Dynamic Programming Principle

We prove Proposition 3.2 (Dynamic Programming Principle) by adopting the
classical method to establish the dynamic programming principle; see, for instance,
[45, Section 3.3]. On the one hand, according to the definition of the value function
and the pathwise uniqueness of SDEs (1) and (2) (cf. [52, Theorem 2.1] or [46,
Theorem 2.3]), it is easy to see that

V (s, x, i)

= sup
α∈Πs,x,i

{
E
[∫ θ

s

f(r,Xα
r ,Λ

α
r , u

α
r )dr+

∫ T

θ

f(r,Xα
r ,Λ

α
r , u

α
r )dr+g(Xα

T )
]}

≤ sup
α∈Πs,x,i

{
E
[ ∫ θ

s

f(r,Xα
r ,Λ

α
r , u

α
r )dr + V (θ,Xα

θ ,Λ
α
θ )
]}
.

(16)
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On the other hand, for every αε = (uεr) ∈ Πs,x,i and each stopping time θ ∈ T αε
s,T ,

due to Theorem 3.1, under the condition that (θ,Xαε
θ ,Λ

αε
θ ) = (t, y, j), there exists

an optimal admissible control α∗ = (u∗r) ∈ Πt,y,j such that

V (t, y, j) = J(t, y, j, α∗).

Then, according to the measurable selection theorem (cf. [11, Chapter 7] or [47,
Proposition 3.3]),

ũr =

uεr r ∈ [s, θ]

u∗r r ∈ [θ, T ].
(17)

is well defined such that α̃ := (ũr)r∈[s,T ] is in Πs,x,i. Hence J(s, x, i, α̃) ≤ V (s, x, i).
Moreover,

J(s, x, i, α̃) = E
[ ∫ T

s

f(r,X α̃
r ,Λ

α̃
r , ũr)dr + g(X α̃

T )
]

= E
[ ∫ θ

s

f(r,Xαε
r ,Λ

αε
r , u

ε
r)dr

+

∫ T

θ

f(r,Xα∗

r ,Λα∗

r , u
∗
r)dr+g(Xα∗

T )
]

= E
[ ∫ θ

s

f(r,Xαε
r ,Λ

αε
r , u

ε
r)dr + V (θ,Xαε

θ ,Λ
αε
θ )
]

Therefore,

V (s, x, i) ≥ E
[ ∫ θ

s

f(r,Xαε
r ,Λ

αε
r , u

ε
r)dr + V (θ,Xαε

θ ,Λ
αε
θ )
]
. (18)

By the arbitrariness of αε ∈ Πs,x,i, we have

V (s, x, i) ≥ sup
α∈Πs,x,i

{
E
[ ∫ θ

s

f(r,Xα
r ,Λ

α
r , u

α
r )dr + V (θ,Xα

θ ,Λ
α
θ )
]}
. (19)

The desired result follows from (16) and (19). �

4.3. Proof of Viscosity Solution Theorem

We prove Theorem 3.3 (Viscosity Solution) by firstly proving the supersolution
property of V and then the subsolution property of V .

Proof of Theorem 3.3. (Viscosity Solution): We first prove the viscosity super-
solution property of V . Let (t0, x0, i0) ∈ [0, T )×Rd×S and ϕ ∈ C2([0, T )×Rd×S)

be a test function such that

0 = (V − ϕ)(t0, x0, i0) = min
{

(V − ϕ)(t, x, i); (t, x, i) ∈ [0, T )× Rd × S
}
. (20)
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Take an arbitrary point ũ ∈ U and consider the constant control α = (ut) with
ut ≡ ũ. It is obvious that constant control α is admissible. Denote by (Xα

t ,Λ
α
t ) its

associated controlled process given by (1) and (2). Applying the dynamic program-
ming principle, Theorem 3.2, we have

V (t0, x0, i0) ≥ E
[ ∫ t

t0

f(r,Xα
r ,Λ

α
r , u

α
r )dr + V (t,Xα

t ,Λ
α
t )
]
, t0 ≤ t ≤ T,

where uαt = ũ. It follows from (20) that V ≥ ϕ on [0, T )× Rd × S. Thus,

ϕ(t0, x0, i0) ≥ E
[ ∫ t

t0

f(r,Xα
r ,Λ

α
r , u

α
r )dr + ϕ(t,Xα

t ,Λ
α
t )
]
. (21)

Applying Itô’s formula (cf. [52]) to ϕ ∈ C2([0, T )× Rd × S), we obtain

E
[ ∫ t

t0

(
f(r,Xα

r ,Λ
α
r , u

α
r ) +

∂ϕ

∂r
(r,Xα

r ,Λ
α
r ) + A ũϕ(r,Xα

r ,Λ
α
r )
)
dr
]
≤ 0. (22)

Dividing both sides of (22) by t − t0 and sending t downward to t0, by the almost
surely right continuity of paths of (Xα

r ,Λ
α
r ) and the mean value theorem, the random

variable inside the expectation in (22) converges almost surely to

− ∂ϕ

∂t
(t0, x0, i0)−A ũϕ(t0, x0, i0)− f(t0, x0, i0, ũ) ≥ 0. (23)

By the arbitrariness of ũ in U , it follows that V is a viscosity supersolution of
equation (10).

Next, we go to investigate the viscosity subsolution property. Let (t0, x0, i0) ∈
[0, T )× Rd × S and ϕ ∈ C2([0, T )× Rd × S) be a test function such that

0 = (V − ϕ)(t0, x0, i0) = max
{

(V − ϕ)(t, x, i); (t, x, i) ∈ [0, T )× Rd × S
}
. (24)

We will show the result by contradiction.
Assume

− ∂ϕ

∂t
(t0, x0, i0)− sup

u∈U

{
A uϕ(t0, x0, i0) + f(t0, x0, i0, u)

}
> 0. (25)

Then by the continuity of A uϕ and the compactness of U , there exist ε > 0 and
η > 0 such that for any 0 ≤ t− t0 < η, |x− x0| < η, it holds

− ∂ϕ

∂t
(t, x, i0)− sup

u∈U

{
A uϕ(t, x, i0) + f(t, x, i0, u)

}
≥ ε. (26)

Take a sequence of (tm)m≥1 in (t0, T ) such that limm→∞ tm = t0. For each u ∈ U
and its associated constant control α = (ut) with ut ≡ u, define a stopping time
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τ ∈ T α
t0,T

by

τα = inf{t ∈ [t0, T ]; |Xα
t − x0| ≥ η or Λα

t 6= Λα
t0
} ∧ (t0 + η). (27)

According to the dynamic programming principle Theorem 3.2, for eachm ≥ 1 there
exists an αm = (u

(m)
t ) ∈ Πt0,x0,i0 such that

V (t0, x0, i0) ≤ E
[ ∫ θm

t0

f(r,Xαm
r ,Λαm

r , uαm
r )dr + V (θm, X

αm
θm
,Λαm

θm
)
]

+
ε

2
(tm − t0),

where θm = tm ∧ ταm , (Xαm
t ,Λαm

t ) denotes the controlled process associated with
αm. Invoking (24), it follows that

ϕ(t0, x0, i0) ≤ E
[∫ θm

t0

f(r,Xαm
r ,Λαm

r , uαm
r )dr+ϕ(θm, X

αm
θm
,Λαm

θm
)
]

+
ε

2
(tm− t0). (28)

By virtue of Itô’s formula,

−E
[ ∫ θm

t0

f(r,Xαm
r ,Λαm

r , u(m)
r ) +

(∂ϕ
∂r

+ A u
(m)
r ϕ

)
(r,Xαm

r ,Λαm
r )dr

]
≤ ε

2
(tm − t0).

Invoking (26) and the definition of the stopping time ταm , we obtain that

E[θm − t0]

tm − t0
≤ 1

2
, m ≥ 1. (29)

On the other hand,

P(θm − t0 ≤ tm − t0) ≤ P
(

sup
s∈[t0,tm]

|Xαm
s − x0| ≥ η

)
+ P

(
sup

s∈[t0,tm]

|Λαm
s − Λαm

t0
| > 0

)
≤

E
[

sups∈[t0,tm] |Xαm
s − x0|2

]
η2

+ 1− e−M(tm−t0),

where in the last inequality we have used condition (H2). Therefore,

lim
m→∞

P(θm − t0 ≥ tm − t0) = 1.

Since
P(θm − t0 ≥ tm − t0) ≤ E[θm − t0]

tm − t0
≤ 1,

we obtain
lim
m→∞

E[θm − t0]

tm − t0
= 1, (30)

which contradicts (29). Consequently,

− ∂ϕ

∂t
(t0, x0, i0)− sup

u∈U

{
A uϕ(t0, x0, i0) + f(t0, x0, i0, u)

}
≤ 0, (31)

and V is a viscosity subsolution of (10).
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Consequently, V is a viscosity solution of (10). �

5. Numerical Experiments

In this section we conduct numerical experiments to demonstrate our main results
to the optimal control problem; this section also provides a precise study of the
optimal solutions from an operational and financial point of view. We calibrate our
model to empirical financial data on the S&P 500 index and describe our calibration
process. We present our empirical results and analyse our findings.

5.1. Model and Implementation

In this section we explain our model, we then discuss the calibration and imple-
mentation.

5.1.1. Model

To demonstrate empirical analyses on our model specified in equation (1), we
examine the equation:

dXt = bΛtXtdt+ σΛtXtdBt, X0 = x0 > 0, (32)

where (Bt) is a one-dimensional Brownian motion, and let (Xt,Λt) be the solution
to equation (32). We note that similar models to equation (32) have been widely
applied in finance (e.g. for modelling option prices in incomplete markets [19]) and
so provides a viable model for financial purposes.

The variable (Λt) is a continuous-time Markov chain over S = {1, 2}, indepen-
dent of (Bt), which represents the credit risk of the firm. Economically, a state
transition represents that the credit rating of the firm is also changing. This explicit
incorporation of credit risk in stock price models typically does not exist, yet it is
well known from empirical evidence that credit risk is a significant factor in stock
prices. This property distinguishes the model from standard stock price models as
dXt directly incorporates credit risk. We define Λt=1 to represent the good credit
rating or state of the firm, whereas Λt=2 defines the bad credit rating or state of
the firm.

As mentioned previously the credit risk in firms is partly determined by manage-
ment decisions, rather than exogenous factors (such as the economy). For example,
the management can sell assets to reduce debts and improve credit risk, or hedge
out some of its borrowing risks etc.. Consequently, it is essential that the credit
risk Λt is a function of some decision variable. Our model incorporates the man-
agement aspect of credit risk by the control variable ut, which affects the transition
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probabilities of Λt. We therefore specify the transition rate matrix for Λt as(
−u1q1 u1q1

u2q2 −u2q2

)
(33)

for u1, u2 ∈ U = [κ1, κ2] with κ1, κ2 > 0. Hence the probabilities for state transitions
are influenced by management decisions (or equivalently the control variables u1, u2).

In order to optimise the problem we require a reward function. We specify

g(x) =
xp

p
, x > 0, (34)

where 0 < p < 1 is a constant, and g(x) is the power utility function of CRRA
(constant relative risk aversion) type, and p is a constant that specifies the level of
risk aversion of the individual, We chose the CRRA utility function for our model
because the CRRA function is frequently used to model the risk averse behaviour
of investors. Our reward function is therefore given by

J(s, x, i, α) = E
[
g(XT )

]
,

where (Xt) is the solution to equation (32) with initial value (Xs,Λs) = (x, i). We
recall that we include E

[
g(XT )

]
in our reward function because an investor typically

wants to maximise X at some future point in time T , rather than at some undefined
period. Consequently, the value function V (s, x, i) is given by

V (s, x, i) = sup
α
J(s, x, i, α).

5.1.2. Calibration and Implementation

To calibrate our model in equation (32) a range of calibration methods exist
(see for example [21] and in particular regime switching calibration methods). We
apply the maximum likelihood estimation method for calibrating equation (32),
using the method given in [23]. This calibration method has been previously applied
to financial data, modelling financial applications and it is also utilised by the Society
of Actuaries. Hence the calibration method in [23] is suitable for our financial
modelling experiments.

Our model in equation (32) is a two state Markov chain, that is our variable (Λt)

is a Markov chain over S = {1, 2}. The calibration method in [23] is particularly
pertinent to two state Markov chains, such as in equation (32). In fact in [23] it was
found that no significant improvement in modelling was found if the Markov states
were increased to S = {1, 2, 3}. Hence the calibration method in [23] will provide
suitable calibration results for our numerical experiment.

Using the calibration method in [23], we obtain the state transition matrix asso-
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ciated with equation (33), hence we determine the transition probabilities P(Λt+δ=

j|Λt = i), ∀i, j. The parameter set {bΛt , σΛt} for the equation (32) is estimated by
determining the probability distribution parameters associated with each Markov
state in S = {1, 2}. The parameter set {bΛt , σΛt}, ∀Λt, is estimated using the
method in [23] by maximising the likelihood of the parameters with the respect to
the associated data set. As stated in [23] the maximisation of the likelihood func-
tions (and therefore the calibration of all parameters) may be achieved with any
standard search methods.

The model in equation (32) is calibrated using daily closing prices for the S&P
500 index. The S&P 500 index is a standard data set that is chosen for financial
modelling and Markov switching calibrations, see for instance [53], [23] and [13].
The S&P 500 index also provides a representative data set for most stock prices
that trade on most stock exchanges, hence our calibration and practical results will
be relevant to most stock price models.

The calibration was undertaken using S&P 500 index data over a time period
of 20 years, from January 1st 2000 to January 1st 2020; this trading period was
chosen for specific reasons in our numerical experiments. Firstly, the 20 year time
period provides a substantially large data set that covers multiple business cycles,
and multiple phases of the business cycle (such growth and expansion phases). Con-
sequently, our calibration results will not be bias towards any particular business
cycle, or a phase of a business cycle. Hence our calibration results will be more
reliable.

Secondly, we have chosen our data set’s time period to incorporate asset prices
prior to, during, and after the commencement of the Global Financial Crisis. As
the purpose of our model is to incorporate the impact of credit states upon asset
prices (in particular as a response to the impact that the Global Financial Crisis
was observed to have had on asset prices) we must therefore incorporate the Global
Financial Crisis time period in our data. Hence we include data before, during and
after the commencement of the Global Financial Crisis. This will provide more
pertinent practical results in our numerical experiments.

To obtain results on market risk on our model in equation (32) we require a sim-
ulation method. To simulate our model we apply Monte Carlo simulation so that we
can generate the associated stock price sample paths and produce results for market
risk measurement. To implement Monte Carlo simulation we apply a discretisa-
tion method to equation (32): we employ the Euler discretisation method, which
is a standard discretising method stochastic processes such as geometric Brownian
motion (see [5] for more information).

To measure market risk we applied the standard risk measure VaR (Value at
Risk), which is applied in industry [14]. The VaRζ risk measure, at the cumulative
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probability ζ, is defined as

Φ(Lt ≤ V aRζ) = ζ,

or, alternatively as

V aRζ = Φ−1(ζ),

where Lt = Xt−∆t − Xt, with ∆t set to 1 trading day. Hence V aRζ specifies the
maximum loss (over 1 trading day), at cumulative probability ζ, with Φ(.) as the
cumulative function on the loss distribution, and Φ(.)−1 as the associated inverse
cumulative distribution function. To enable comparison of losses at different prob-
abilities, we calculate the loss Lt in percentage terms, that is L̃t where

L̃t =
Xt−∆t −Xt

Xt−∆t

. (35)

In addition to V aRζ calculations, we also provide frequency plots of Lt over 1000
simulated trading days. The frequency plots also provide information on the distri-
bution of losses, and so provide more information on the risk profile.

To calculate the value function V (t, x, i) for our model (32), the solution is pro-
vided in the Appendix. The p in equation (34) is related to the degree of risk
aversion of an investor; as investors associated with the stock market tend to be risk
takers (rather than saving money in a bank account) we set p to reflect less conser-
vative investment. Consequently, we set p as low as possible within the boundaries
0 < p < 1, hence we set p = 0.1. Using our calibrated values for bi, σi we deduce
that φ(t) = φ1(t) = φ2(t) = eρ(T−t), ∀t ∈ [0, T ]. We then plot V (t, x, i) at t = 0,
using the equation V (t, x, i) = φ(t)g(x) (see the Appendix for more information) for
different x and T values.

To provide an extensive analysis from a financial and operational point of view,
we examine the impact of different control policy values u1, u2 upon our model
(32) through scenario analyses. The control policy values u1, u2 relate to differ-
ent management decisions and also correspond to different transition probabilities
P(Λt+δ = j|Λt = i). To examine different policy decisions we examine 4 different
scenarios, where we vary the transition probabilities as given in table 4. As can be
seen in table 4, the transition probabilities P(Λt+δ = j|Λt = i) are varied to reflect
different control policies (or equivalently u1, u2 values); scenario 1 represents worst
management, with management improving as the scenario number increases.

In table 4 we provide a wide range of transition probabilities P(Λt+δ = j|Λt= i),
for each scenario, whilst also specifying P(Λt+δ=j|Λt= i) within the bounded prob-
ability interval values [0, 1] and comparable to table 1 values. To give an example,
P(Λt+δ = 2|Λt = 1) is highest in scenario 1, implying that the probability of falling
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into a worse credit state is highest. Similarly under scenario 4, where we have the
best management, P(Λt+δ=2|Λt=1) is lowest and so implies it is least likely to fall
into the worse credit state.

To examine the control policy impact in terms of financial and operational points
of views, we simulate the credit states Λt and the stock price sample paths over
1000 time steps in each scenario. Additionally we provide a frequency plot and VaR
calculation over 1000 simulated trading days for each scenario. The frequency plots
and VaR measurements over different scenarios provide information on market risk
changes with control policies.

5.2. Results

In this section we present our results.
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5.2.1. Calibrated Results
Table 1: State Transition Probabilities P(Λt+δ=j|Λt= i)
P(.) j

1 2
i 1 0.96 0.04

2 0.21 0.79

Table 2: Drift bΛ and Volatility σΛ Parameters For Each State Λ
Λ

1 2
bΛ 0.01 -0.02
σΛ 0.035 0.078

Figure 1: Simulation Of Credit States (Λt) Over Time
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Figure 2: Simulation of Share Price Sample Paths
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Figure 3: Frequency Plot of Daily Losses
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Table 3: VaR (Value at Risk) Of Daily Losses L̃t
VaR Level ζ (%) Loss L̃t (%)
90 5.20
95 8.05
99 15.77

Figure 4: Value Function V (.) Over x and T
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5.3. Scenario Results
Table 4: Scenario State Transition Probabilities P(Λt+δ=j|Λt= i)
Scenario Λt =1 Λt =2

Λt+δ = 1 Λt+δ = 2 Λt+δ = 1 Λt+δ = 2

1 0.94 0.06 0.05 0.95
2 0.95 0.05 0.13 0.87
3 0.97 0.03 0.29 0.71
4 0.98 0.02 0.37 0.63

5.3.1. Scenario 1 Results

Figure 5: Simulation Of Credit States (Λt) Over Time (Scenario 1)
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Figure 6: Simulation of Share Price Sample Paths (Scenario 1)

0 200 400 600 800 1000

Time

0

20

40

60

80

100

120

S
h

a
re

 P
ri
c
e

27



Figure 7: Frequency Plot of Losses (Scenario 1)

Table 5: VaR (Value at Risk) Of Daily Losses L̃t (Scenario 1)
VaR Level ζ (%) Loss L̃t (%)
0.90 8.21
0.95 11.93
0.99 16.69
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5.3.2. Scenario 2 Results

Figure 8: Simulation Of Credit States (Λt) Over Time Scenario 2)
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Figure 9: Simulation of Share Price Sample Paths (Scenario 2)
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Figure 10: Frequency Plot of Losses (Scenario 2)

Table 6: VaR (Value at Risk) Of Daily Losses L̃t (Scenario 2)
VaR Level ζ (%) Loss L̃t (%)
0.90 6.27
0.95 9.77
0.99 16.24
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5.3.3. Scenario 3 Results

Figure 11: Simulation Of Credit States (Λt) Over Time (Scenario 3)
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Figure 12: Simulation of Share Price Sample Paths (Scenario 3)

0 200 400 600 800 1000

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

S
h

a
re

 P
ri
c
e

10
4

31



Figure 13: Frequency Plot of Losses (Scenario 3)

Table 7: VaR (Value at Risk) Of Daily Losses L̃t (Scenario 3)
VaR Level ζ (%) Loss L̃t (%)
0.90 4.56
0.95 6.96
0.99 10.92
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5.3.4. Scenario 4 Results

Figure 14: Simulation Of Credit States (Λt) Over Time (Scenario 4)
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Figure 15: Simulation of Share Price Sample Paths (Scenario 4)
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Table 8: VaR (Value at Risk) Of Daily Losses L̃t (Scenario 4)
VaR Level ζ (%) Loss L̃t (%)
0.90 3.80
0.95 5.37
0.99 7.97
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Figure 16: Frequency Plot of Losses (Scenario 4)

5.4. Analysis
Tables 1-2 provide the results of our calibration for the model in equation (32); we also

provide the associated Value function V (.) plot in figure 4 over different values of x and
T . In figures 1-3 we provide simulation results over 1000 time steps, using our calibrated
parameters in tables 1-2. In figure 1 we simulate the credit states Λt, in figure 2 we provide
3 simulated stock price sample paths, and in figure 3 we provide a frequency plot of daily
losses. In table 3 we also provide VaR risk measurement of daily losses, over different
VaR levels (or cumulative probabilities) at 90%, 95% and 99%. We provide VaR losses as
percentage losses (L̃t) to enable comparison to other VaR calculations.

The results in tables 1 and 2 are consistent with our expectations. In table 1 we
observe that P(Λt+δ = 1|Λt = 1) and P(Λt+δ = 2|Λt = 2) have high probabilities, implying
that the stock price tends to persist in its current state, rather than transitioning between
credit states. This is consistent with empirical observations, as credit states cannot change
quickly between good and bad states easily (since firms take time to resolve credit issues).

The calibration results for the volatility σΛ and drift values bΛ (in table 2) are consistent
with the credit states. In credit state Λ=1, b1 is positive and so implies that the stock is
growing with time, which is consistent with a good credit state. In Λ=2, b2 is negative
and so implies that the stock is decreasing with time, which is consistent with a bad credit
state. Additionally, the volatility σ2 in the bad credit state Λ=2 is higher than volatility
in the good credit state σ1. This is consistent with empirical and theoretical expectations
because volatility is considered a proxy for risk, hence volatility should increase when a
firm is in a worse credit state.

In figure 1 we simulate the credit states 1 and 2, over 1000 time steps, using our
calibration results. As expected, our model spends the majority of its time in state 1, with
the current state tending to persist rather than frequently switching between states. Using
the calibration results in tables 1-2, we simulate 3 sample paths of stock prices, over 1000
time steps, in figure 2. Such sample paths are consistent with our results, where we expect
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the model to be in state 1 for the majority of the time. Consequently, we expect stock
prices to grow over time.

In table 3 and figure 3 we provide risk analysis information on the model. In figure 3
the plot displays the daily losses and their frequencies, over a sample of 1000 time steps.
We note that negative losses imply positive price gains. The right hand tail of the plot
for positive losses implies that there is significant market risk, as tail losses are used as a
measure of market risk. In table 3 the VaR values at different levels also provide a measure
of market risk. We note that at the 99% level that the loss is 15.77%, suggesting that
significant market risk exists in the model as a stock market crash can be considered a
10% decline in a single trading day.

In figure 4 we present a plot of our value function V (.) at t = 0. We plot V (.) for
different x and T values, using the calibrated parameter values in tables 1-2 for our model.
As can be observed in figure 4 we notice that for larger values of T that it significantly
increases V (.); additionally at T = 10, 000 we notice that increasing x has an observable
impact on V (.). As V (.) gives the maximum expected utility associated with XT , we
expect V (.) to increase with x and T , as Xt tends to increase with both x and T .

In section 5.3 we provide our scenario results for different control policy values u1, u2;
this enables us to understand the optimal solutions from an operational and financial point
of view as we vary management or control policy values. The associated state transition
probabilities P(Λt+δ = j|Λt = i) for different control policy values u1, u2 are provided in
Table 4. For each scenario we provide a simulation over 1000 time steps of the credit states
Λt to examine the credit states. We simulate 3 stock price sample paths over 1000 time
steps to examine the different sample path behaviour under each scenario. We also provide
frequency plot distributions over 1000 samples and VaR risk measurements to analyse the
changes in market risk.

As can be seen in the credit state simulation graphs in figures 5, 8, 11, 14, the results
provide a consistent trend in their patterns. As the control policies u1, u2 (or equivalently
the management decisions) affect the transition probabilities P(Λt+δ = j|Λt= i), the stock
price persists in the worse credit state Λt = 2 more frequently. In scenarios 1 and 2,
where we have worse management, we can observe in figures 5 and 8 that the stock is more
frequently in state 2. However, in scenarios 3 and 4, where where have better management,
the stock is more frequently in state 1 (see figures 11 and 14).

In figures 6, 9, 12 and 15 we plot 3 sample paths under each scenario. As we can observe
in figures 6 and 9, in scenarios 1 and 2 we have poor management (or control policy) and
so the stock price does not tend to increase over time. This reflects the property that the
tendency to enter the worse credit states reduces the stock price. In the better managed
(or control policy) conditions of scenarios 3 and 4 we observe in figures 12 and 15 that the
stock prices are growing with time, reflecting that the stock tends to be in a better credit
state over time. Hence our results are consistent with our expectations, and demonstrate
the impact of the control policy values u1, u2 on asset prices.

We now analyse the market risk under each scenario by examining the frequency plot
and VaR values. As can be seen in figures 7, 10, 13 and 16 the choice of policy values u1, u2

has a significant impact on market risk. As the management improves (or equivalently the
policy values u1, u2) from scenario 1 to 4 we notice that market risk decreases. This is
because losses in the right hand tail of the frequency plots decrease; the right hand tail
becomes increasingly smaller and so the probability and magnitude of losses also decrease.
For example in figure 16 the right hand tail is essentially non-existent, implying low risk
of losses, however in figure 7 the right tail is substantial and so we can expect a higher
frequency and magnitude of losses. Such observations are consistent with our expectations
because worse management (or policy values u1, u2) lead to worse credit states, and so
causes higher losses.
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The changes in control policy values are reflected in the VaR risk measurement results
in tables 5-8. As can be observed in tables 5-8, the VaR losses L̃t at all probability levels ζ
are higher as the scenario number decreases; that is as the control policy or management
becomes worse. In fact in scenario 4, where we have better management, the VaR at 99%
is 7.97% whereas in scenario 1 the VaR at 99% is 16.69%. Therefore risk has more than
doubled from scenario 4 to 1, at the VaR 99% threshold for market risk measurement.

6. Conclusion

This paper provides the first stock price model that explicitly incorporates credit risk
dynamics, under a stochastic optimal control system. The stock price model is also able
to incorporate managerial control of credit risk through a control policy in the stochastic
system. This paper is particularly relevant given that credit risk was seen as a major cause
of the Global Financial Crisis. We provide explicit conditions on the existence of optimal
feedback controls for the stock price model with credit risk, we prove the continuity of the
value function, and then prove the dynamic programming principle for our system. Finally,
we prove the Viscosity solution of the Hamilton-Jacobi-Equation.

We provide numerical experiments to demonstrate our model, using data from the S&P
500 index to calibrate our model. The S&P 500 index data is sampled over a period of 20
years, from January 2000 to January 2020, and therefore provides a comprehensive data
set for analysis. Additionally, our data set includes data points before, during and after
the Global Financial Crisis, and so incorporates a pertinent credit risk event in our model.
Our empirical results are presented and discussed in the paper, and we find the empirical
results are consistent with our expectations.

In terms of future work, we would like to extend our model to include portfolios of
stocks, rather than individual stocks. This would be particularly relevant to industry as
firms typically hold positions in portfolios, rather than single assets. Secondly, we would
like to investigate different stochastic processes, such as mean reverting stochastic differen-
tial equations, and analyse the impact on control variables. Such mean reverting processes
are especially important to many cyclical asset prices such as commodities. Finally, in fu-
ture work we would like to investigate the pricing of derivatives, such as European options,
when applying our model with credit risk.
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Appendix

Proof of Value Function Solution
According to Theorem 3.3 the value function V is a solution to the Hamilton-Jacobi-

Bellman equation

− ∂V (t, x, i)

∂t
− sup

(u1,u2)∈[κ1,κ2]2

{
A uV (t, x, i)

}
= 0 (36)

with the boundary condition V (T, x, i) = g(x). Here

A uV (t, x, i) = bix
∂V

∂x
(t, x, i)− 1

2
x2σ2

i

∂2V

∂x2
(t, x, i)

+ uiqi(V (t, x, 3− i)− V (t, x, i)), i = 1, 2, x ∈ Rd, t ∈ [0, T ].

(37)

Based on the linear coefficients of (Xt), we are looking for the candidate solution to
(36) in the form

V (t, x, i) = φ(t, i)g(x).

By substituting such V (t, x, i) into (36), we derive that φ should satisfy the following
interaction system of ordinary differential equations (ODEs):

φ′1(t) + ρ1φ1(t) + sup
u1∈[κ1,κ2]

{
u1q1(φ2(t)− φ1(t))

}
= 0, (38)

φ′2(t) + ρ2φ2(t) + sup
u2∈[κ1,κ2]

{
u2q2(φ1(t)− φ2(t))

}
= 0, (39)

with φ1(T ) = φ2(T ) = 1, where we denote by φi(t) = φ(t, i) for i = 1, 2,

ρi = pbi +
1

2
p(p− 1)σ2

i , i = 1, 2.

The closed-form solutions to (38) and (39) are non-trivial, however we can consider
first a simple case, and then give an explicit solution inductively. If we consider the ODEs

φ′1(t) + ρ1φ1(t) + q1(φ2(t)− φ1(t)) = 0,

φ′2(t) + ρ2φ2(t) + q2(φ1(t)− φ2(t)) = 0.

The solutions are given explicitly by

φ1(t) =
β2 + ρ1

β2 − β1
eβ1(t−T ) +

β1 + ρ1

β1 − β2
eβ2(t−T ), (40)

φ2(t) =
(β1+ρ1)(β1+ρ1−q1)

q1(β1 − β2)
eβ1(t−T ) +

(β1+ρ1)(β2+ρ1−q1)

q1(β2 − β1)
eβ2(t−T ), (41)

where

β1 =
1

2

(
q1 + q2 − ρ1 − ρ2 +

√
(ρ1 − ρ2 + q2 − q1)2 + 4q1q2

)
,

β2 =
1

2

(
q1 + q2 − ρ1 − ρ2 −

√
(ρ1 − ρ2 + q2 − q1)2 + 4q1q2

)
.

Based on the solution to (??), (??), we consider the explicit solution to (38) and (39),
which further provides us the explicit form of the value function V (t, x, i) = φi(t)g(x). The
construction is divided into the following cases.

(i) If ρ1 = ρ2 = ρ, then φ1(t) = φ2(t) = eρ(T−t) for all t ∈ [0, T ].
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(ii) If ρ1 6= ρ2, then φ1(t) 6≡ φ2(t). Therefore, there exists t0 ∈ (0, T ] such that φ1(t) ≥
φ2(t) for all t ∈ [0, t0] or φ2(t) ≥ φ1(t), which depends on the specific values of
ρi, qi, T . As the method to construct solutions is similar, we assume that φ1(t) ≥
φ2(t) for t ∈ [0, t0]. Then, by virtue of (38) and (39), it holds

φ1(t) =
β̃2 + ρ1

β̃2 − β̃1

eβ̃1(t−T ) +
β̃1 + ρ1

β̃1 − β̃2

eβ̃2(t−T ), (42)

φ2(t) =
(β̃1+ρ1)(β̃1+ρ1−q1)

q1(β̃1 − β̃2)
eβ̃1(t−T ) +

(β̃1+ρ1)(β̃2+ρ1−q1)

q1(β̃2 − β̃1)
eβ̃2(t−T ), (43)

where

β̃1 =
1

2

(
κ1q1 + κ2q2 − ρ1 − ρ2 +

√
(ρ1 − ρ2 + κ2q2 − κ1q1)2 + 4κ1κ2q1q2

)
,

β̃2 =
1

2

(
κ1q1 + κ2q2 − ρ1 − ρ2 −

√
(ρ1 − ρ2 + κ2q2 − κ1q1)2 + 4κ1κ2q1q2

)
.

If φ1(t) < φ2(t) in [0, t0] we only need to modify the definition of β̃1, β̃2 to obtain the
explicit solution by (42) and (43). Inductively, we can obtain the explicit solutions
φ1(t) and φ2(t) on the whole interval [0, T ], and further the value function V (t, x, i) =
φi(t)g(x) as desired.
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