
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Coordinate Systems: Level Ascending Ontological Options

Partridge, C., Mitchell, A., Loneragan, M., Atkinson, H., De Cesare,

S. and Khan, M.

This is a copy of the author’s accepted version of a paper subsequently published in the

proceedings of the 2019 ACM/IEEE 22nd International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C). Munich, Germany 15 -

20 Sep 2019, IEEE doi:10.1109/MODELS-C.2019.00017.

The final published version is available online at:

https://dx.doi.org/10.1109/MODELS-C.2019.00017

© 2019 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://dx.doi.org/10.1109/MODELS-C.2019.00017
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Coordinate Systems:

Level Ascending Ontological Options

Chris Partridge

BORO Solutions Ltd

University of Westminster

0000-0003-2631-1627

Hayden Atkinson

CooperVision Ltd

0000-0002-5153-9116

Andrew Mitchell

BORO Solutions Ltd

0000-0001-9131-722X

Sergio de Cesare

University of Westminster

0000-0002-2559-0567

Michael Loneragan

QinetiQ Group PLC

Portsmouth, Hampshire, UK

mjloneragan@qinetiq.com

Mesbah Khan

OntoLedgy Ltd

University of Westminster

0000-0002-1327-6263

“Philosophy [nature] is written in that great book
whichever is before our eyes -- I mean the universe -- but we
cannot understand it if we do not first learn the language and
grasp the symbols in which it is written. The book is written in
mathematical language, and the symbols are triangles, circles
and other geometrical figures, without whose help it is
impossible to comprehend a single word of it; without which
one wanders in vain through a dark labyrinth.”

― Galileo, Il Saggiatore, 1623

Abstract—A major challenge faced in the deployment of

collaborating unmanned vehicles is enabling the semantic

interoperability of sensor data. One aspect of this, where there

is significant opportunity for improvement, is characterizing the

coordinate systems for sensed position data. We are involved in

a proof of concept project that addresses this challenge through

a foundational conceptual model using a constructional

approach based upon the BORO Foundational Ontology. The

model reveals the characteristics as sets of options for

configuring the coordinate systems. This paper examines how

these options involve, ontologically, ascending levels. It identifies

two types of levels, the well-known type levels and the less well-

known tuple/relation levels.

Keywords—BORO Foundational Ontology; Constructional

Ontology; Geometric Coordinate System Ontology; Power-

Type-Builder; Power-Tuple-Builder; Multi-Level Options;

Multi-Platform-Domain Sensor System.

I. INTRODUCTION

It is well-recognised that a major challenge currently
facing the deployment of collaborating unmanned vehicles is
semantic interoperability [1, 2], and that as this technology
develops, the requirements for interoperability are likely to
become both more stringent and complex. A common
(preferably open) data architecture is seen as key to resolving
this [1, 2]. Many of the current vehicles use systems and data
structures that are proprietary and have a single platform –
single domain heritage. These typically made no use of
conceptual models in their development, and so have a
lightweight (sometimes, non-existent) conceptual framework.
It is a situation with substantial opportunities for improvement
[3].

In most vehicles, sensors are the major producers of data,
with a significant proportion of this being sensed position
data. Sensed positions (typically structured as a triple of
coordinates) are relative to a coordinate system. Where there
are multiple platforms-domains, their sensors will use

different local coordinate systems. To be able to integrate this
sensor data into a single common picture, the integrating
system needs to know the various sensed positions’ coordinate
systems. For example, the integrating system might receive
two sensed position triples from different platform’s sensors
with the same coordinate numerals (such as <10, 20, 30>).
These would typically use different local coordinate systems
and if the integrating system does not know which coordinate
system each is relative to, it cannot interpret and integrate
them. The ‘20’ coordinate in the first triple might be relative
to a Cartesian coordinate system and so refer to a distance and
the coordinate in the second triple be relative to a Spherical
coordinate system and so refer to an azimuthal angle – or
maybe vice versa. In general, if the integrating system does
not know enough about the ‘owning’ coordinate systems, it
cannot interpret the position triples and so integrate them.

More generally, what is required is an understanding of
which characteristics of the coordinate system need to be
known so that the position triple can be interpreted.
Unfortunately, little work has been done on determining what
a full characterisation would look like. In practice, coordinate
systems are often not explicitly defined at all: it is assumed
that users of the sensors know enough about what their
coordinate system is. Where coordinate systems are defined,
the characterisation is partial and pragmatically ad hoc.

We are working on a Proof of Concept (PoC) project that
is assessing a radical approach to developing a suitable
conceptual architecture for articulating the full requirements.
The aim is to uncover the underlying conceptual foundations
revealing a clear fundamental picture and, in so doing, to strip
away any pre-conceptions remaining from the single
platform-domain heritage. To uncover its conceptual
foundation, we took a close technical look at the geometric
foundations of the world described by the sensor position data.
The project’s prime analytic tool is a constructional ontology
based upon the BORO Foundational Ontology [4, 5].

Early work has focused on three simple coordinate
systems for sensed positions and is clearly exposing an
underlying compositional geometric structure; one where
systems are built from a common set of ontological
components whose construction processes follow broadly
similar stages. In this paper, we focus on one aspect that is
interesting from a multi-level modelling perspective. We
investigate how to characterise the variety of coordinate
systems as a series of sets of options. We focus on how these
sets of options are embodied by generating objects at a higher
level. As well as the well-known ‘type’ multi-levels

(associated with Powertypes [6]), there is a second, less
appreciated, kind of level-ascending based upon
‘tuples/relations’. We characterise these here as combination
(types) and permutation (tuples/relations) options. This seems
to give us a full picture of the fundamental characteristics
needed to interpret the position.

A. Structure of this Paper

The body of the paper is structured into four parts. The first
part (Section II) aims to give a general context by briefly
outlining the overall project that framed this work, then
describing the specific coordinate system characteristics
challenge and how we aim to address it. It then goes on to
describe the initial PoC project that focuses on this specific
challenge. The next three parts of the paper contain the
technical analysis. The second part (Section III) provides a
methodological background by describing the ontological
framework that is being deployed to build the conceptual
model – and includes simple examples to introduce the two
kinds of options focused on in this paper. The third part
(Section IV) provides an overview of the ontology as an
introduction to the examples of the options as levels presented
in the fourth part (Section V). A final summary concludes the
paper.

II. THE PROJECT

The current PoC project showcases an approach to
building a foundational conceptual model that should be
capable of resolving the semantic integration problems that
multi-platform/domain sensor systems are currently facing. In
the following sections, we look at the context in more detail
and then give an overview of the requirements of the project.
We then note our insights and show how this motivates our
approach.

A. Context (In More Detail)

Unmanned vehicle collaboration across multiple
domains/environments (air, surface, land, underwater and
space) is recognised as a difficult engineering problem - Fig.
1 shows examples of both single and multiple
platform/domain manned and unmanned collaborating
vehicles.

Fig. 1. Single and Multi-Platform with Deictic Axes

One challenge is the semantic integration of the sensing
data into a single common picture – ground truth. A common
data architecture with agreed data structures and APIs would
simplify the challenge at the syntactic level. But this needs to
be supported by a common semantic model to ensure shared
semantics. The scope of such a model extends beyond the
APIs, as their semantic integrity depends upon the systems
behind them respecting (and so understanding) it.

The unmanned vehicle sensors process the raw data and
pass this on to other, typically centralised, systems for further
processing. The level of local onboard processing varies

depending upon various factors; for example, low bandwidth
restrictions might lead to a preference for onboard over
centralised remote processing. The sensors work on a local
basis of own position and measure other positions relative to
themselves – they may further process these measurements
before reporting or directly report a sensed position relative to
themselves. Directly reporting the local positions may be
preferred as this allows a centralised, consistent calculation of
errors.

At the core of these reports is a sensed position recorded
using coordinates. The data format of these coordinates is
apparently simple and easy to specify – a triple of numbers,
with a time-stamp. However, it has emerged that it is more of
a challenge to find a common data (and semantic) format to
characterise all the coordinate systems to which these
coordinates can (or could) belong. In large part, this is because
the common format will need to be able to accommodate
significantly more variety and complexity than the current
single platform-domain systems – and include enough detail
to make coordinate conversions between the systems, or to a
common system. The ways in which the systems vary include:

• Coordinate system. Unmanned vehicles should be easy
to add to (and remove from) the collaborative sensor
systems – whatever coordinate system they use. These
vehicles are likely to use new types of coordinate
systems which will need to be supported. So, some
general structure for coordinate systems needs to be
developed.

• Position and orientation. The unmanned platforms are
moving (with both distance and angular velocity)
relative to the main platform in all three dimensions –
so the position and orientation of their coordinate
systems will be both different and varying. So, some
general structure for position and orientation needs to
be developed.

• Angle and unit. There will typically be limited
governance over suppliers of the unmanned vehicles,
who are likely to use their own configuration for the
coordinate systems. For example, they may use
different distance units; one using kilometres, the other
miles. So, some general structure for distance and
angle units as deployed in coordinate systems needs to
be developed.

• Domain-specific simplifications. Platforms in the sea
domain have, in the past, often had more basic
requirements than other domains. For example, they
have typically used small-angle approximation, and
some even only considering yaw angular movements,
ignoring roll and pitch – as these are not so relevant for
single platforms in the sea domain. ([7, 8] describe
another simplification for position calculation.) More
generally, this raises the requirement, in multi-domain
systems, for these domain-specific simplifications to
be harmonised to avoid error-generating
inconsistencies.

• Direction. Different platforms and sensors will use
different directions within the orientations. For
example, the Cartesian z-axis often points downwards
for underwater and aerial platforms and an up direction
for surface platforms (in the maritime domain, this can
vary from ship to ship). So, some general structure for

directions as deployed in coordinate systems needs to
be developed.

B. The Project’s Aims

The PoC aims to build a conceptual model that will
support the semantic unification requirements of multiple
platform-domain systems. More generally, it aims to
showcase a general methodology for designing the data
architecture of this domain; one that involves a principled,
repeatable, auditable, extendable process. Such a process
should be able to identify the range of possible coordinate
systems characteristics (possibly exposing their foundations)
and design a parsimonious and elegant conceptual model for
representing them.

This should provide a degree of comfort that the data
architecture built from the conceptual model not only
accurately covers current requirements but is also relatively
future-proofed:

• that the process will identify a reasonably complete
range of possible configurations and

• that it will be easily extendable to new coordinate
systems.

It should also provide a benchmark for identifying gaps in
the existing data architectures.

C. Our Insights

The following three insights motivated the approach for
developing the conceptual framework outlined in this paper:

1. Each characteristic of the coordinate systems can be
thought of as an exhaustive set of independent
options. For example, the coordinate system’s surface
configuration type may be Cartesian, Cylindrical, or
Spherical—one of these options needs to be selected.
Generally, the sets of independent options seem to
come in two varieties (kinds), combinations and
permutations. These correspond, respectively, to
ways the system can be and to ways of organising the
system.

2. Currently, there is no obvious parsimonious and
elegant framework for organising these
characteristics waiting to be plucked off the shelf.
Standards, such as [9] and [10], do not (upon
inspection) provide the right kind of help. Neither
does theoretical work such as [11]. Though, of course,
all of these provide useful input. In some ways, this is
a surprising situation, as Euclidean coordinate
geometry has been researched extensively for
millennia. In other ways, it is not so surprising, as the
motivation for this research has not been to unearth
the characteristics that should drive a conceptual
model to support a data architecture.

3. The coordinate system characteristics that drive the
conceptual model are grounded in the system’s
geometry and that an understanding of these
characteristics will emerge from a clear picture of its
foundational geometrical features. (As a side note,
there is a revived interest in geometry as a
mathematical foundation for space and time – see, for
example [12] – as well as one in the foundations of
Euclid’s original geometric work – see, for example,
[13])

D. Our Approach

We decided to start with an ontological conceptual model
which would give us a technology agnostic picture. Given the
importance of exposing the geometric foundations, we
recognised the need to be geometry friendly. We choose a
foundational ontology that is extensional and four-
dimensional, the BORO Foundational Ontology [5], and
deploy it using a constructional approach [4]. We expected
this to not only expose the foundations of the range of possible
coordinate systems characteristics but also provide a
workspace for exploring the relative parsimony and elegance
of different conceptual structures. We also adopted as a goal
to understand what the ontology of the coordinate system
options is, to enable us to use this to design the data
architecture.

As a first stage, we started a PoC project for the limited set
of the three simplest local coordinate systems; Cartesian
(sometimes called Rectangular – though from our perspective
Planar would be more accurate), Spherical and Cylindrical.
We also assumed that we could simplify the geometry to
Euclidean affine space-time. We build upon earlier work we
have done with coordinate systems [14, 15]. This project is
under way, and this paper is based upon the early results.

III. ONTOLOGICAL FRAMEWORK

We have found it extremely useful to adopt a
constructional approach, but it is a highly technical – so here
and in the next section we only attempt a simple overview
(sufficient for our purposes), pointing the interested reader to
detailed expositions elsewhere. In this section, we introduce
the general background ontological framework: in the next
section we give an overview of the coordinate system
ontology. We start by briefly introducing the BORO
constructional ontology. We then give simple examples which
clearly illustrate how options (or possibilities) arise
ontologically from two key level-generating operations. And
so, the more complex (real) examples in the next section
should be easier to understand.

A. BORO Constructional Ontology

The BORO Foundational Ontology [5, 16] is an
extensional four-dimensional ontology. Its metaphysical
architecture (choices) are described in [17]. The
constructional approach to building ontologies is highly
technical and we recommend that readers interested in the
details consult [4], which uses the BORO Ontology as an
example. It is also well worth consulting Fine’s papers [18,
19] upon which this approach is based.

Fig. 2. BORO ONTOGENESIS – Generations 0 and 1

1) BORO ONTOGENESIS – Generations 0 and 1. [4]

introduces the notion of ONTOGENESIS, the construction

process for the ontology and the generational operations that

compose it. This process is described in the example SIMPLE

in [4]. The example is sufficiently expressive for our purposes

here. In overview the process is as follows (again, see [4] for

details). Constructional BORO requires some initial work to

generate a collection for the POWER operations to work on.

It takes as the initial START – generation 0 – the PluriVerse

(the fusion of all possible worlds) based upon its adoption of

priority monism [20]. The PluriVerse is then deconstructed

using SUM-DECOMPOSER into all possible parts (the

instances of BORO’s Elements) – generation 1 – as shown

diagrammatically in Fig. 2.

2) ONTOGENESISC. In the next sections, we describe

this project’s ontogenesis – called ONTOGENESISC –

looking at how the two POWER operations (POWER-TYPE-

BUILDER and POWER-TUPLE-BUILDER) work over the

generation 1 collection.

3) POWER-TYPE-BUILDER. The examples in [4]

focused on the TYPE-BUILDER constructor (in that paper,

following [19], this was called SET-BUILDER) and its

POWER operation – which we call, to remain consistent with

the BORO terminology, POWER-TYPE-BUILDER. The

POWER operation for a constructor applies the constructor to

all possible candidates from its input collection (of any size,

finite or infinite) – exhausting the ‘power’ of the constructor.

In the case of POWER-TYPE-BUILDER, the POWER

operation for the TYPE-BUILDER constructor, it generates

all the possible types by applying the TYPE-BUILDER

constructor to all possible sub-collections of the input

collection. These generated types then form part of the next

level or generation.
The generation 1 collection (Fig. 2) provides the initial

basis for POWER-TYPE-BUILDER generation. Applying
POWER-TYPE-BUILDER to this generates all the instances
of Elements Powertype – generation 2. Applying POWER-
TYPE-BUILDER to this generation generates all the instances
of Elements Powertype Powertype – generation 3. This is
shown diagrammatically in Fig. 3 up to generation 4.
Cumulatively, each application of the POWER-TYPE
BUILDER adds a link to the chains of instantiation.

Fig. 3. ONTOGENESISC - Pure POWER-TYPE-BUILDER Branch -

Generations 2 to 4

Note: The ‘Powertype’ in BORO’s Elements Powertype is
set-theoretic, the set of all subsets of Elements. This is the
result of applying TYPE-BUILDER to the complete output of
the POWER-TYPE-BUILDER used to construct generation 2,
which is done as part of the next generation.

4) POWER-TUPLE-BUILDER. [4] identified the atomic

TUPLE-BUILDER constructor (in that paper it is called

SEQUENCE-BUILDER following [19]) – again, see

referenced papers for technical details. Its POWER operation

was outside the scope of the paper’s examples but is needed

for this project, so we describe it here.
POWER-TUPLE-BUILDER applies the TUPLE-

BUILDER constructor to all possible sequences
(permutations) from sub-collections of the input collection.
These generated tuples then form part of the next level of
generation. We add the constructor TUPLE-BUILDER to our
ONTOGENESISC – with the additional operation, POWER-
TUPLE-BUILDER, to build generations. This operation can
be regarded as a generalisation of the mathematical notion of
a Cartesian Product, which is restricted to a fixed number of
tuple places.

In constructional BORO, POWER-TUPLE-BUILDER
operation starts at the same stage as POWER-TYPE-
BUILDER. Its first application is to the collection of all
possible individuals that emerges at generation 1. Applying
POWER-TUPLE-BUILDER to this generates all the
instances of BORO’s element tuples – generation 2. Note:
‘element tuples’ is the result of applying TYPE-BUILDER to
the complete output of the POWER-TUPLE-BUILDER
branch of generation 2, which is done as part of the next
generation. More generally, to keep things as simple as
required, POWER-TUPLE-BUILDER is only applied to the
collections generated by pure (unmixed) POWER-TYPE-
BUILDER generations. This is shown up to generation 4 in
Fig. 4.

Fig. 4. ONTOGENESISC with both POWER-TYPE-BUILDER and

POWER-TUPLE-BUILDER

We understand that it is unusual to consider tuple levels:
mainstream multi-level modelling does not consider tuple as a
basis for level hierarchies. However, if one considers their
(tuples) fundamental structure, they seem to have as much
claim as types to be regarded as level generating. As Fine
noted: “there is an intuitive distinction between wholes which
are like sets in being hierarchically organised and those which
are like sums in being ‘flat’, or without an internal division
into levels. The distinction, under the operational approach,
can be seen to turn on whether repeated applications of the
operation are capable of yielding something new.” [19, p.

566]. Given both types and tuples have this level-generating
property, it seems natural to treat both as generating levels.

B. Options (or Ways of Arranging) as Levels

In the project, we have found two broad kinds of option
that arise ontologically from these two level-generating
operations; combination and permutation. We give simple,
illustrative examples here to introduce the notion, to make it
easier to understand the project-based examples described
later. Though this association of levels with options may be
uncommon in conceptual modelling, something similar is
found in combinatorial mathematics, where combinations and
permutations are well-known types of arrangements: hence
these examples will look familiar to those found there.

1) Combination Options Example. Consider a game for

two players that is played with just the four aces (the ‘cards’)

from the standard deck of 52 playing cards. Assume that at the

start of the game, someone deals these into two equal piles of

two cards – two ‘hands’. Let’s say that hand one contains the

aces of hearts and diamonds and hand two the other two aces,

clubs and spades. We have talked about hands (piles), but

what type of object could these be. An obvious candidate is

the type (set) of the two cards – {hearts, diamonds}. If we

want to talk about the way the cards have been dealt, the two

hands (piles) that resulted – a ‘deal’ – then the obvious

candidate is the set of the two sets – {{hearts, diamonds},

{clubs, spades}}. If we want to talk about all the possible ways

the cards could have been dealt, all possible deals, then this

would be the set of all three possible deals – shown in Fig. 5

– the deal combinations.

Fig. 5. Set of All Possible Deals – the Three Deal Combinations

From a constructional point of view (and simplifying a
little), we start with the four aces and then apply TYPE-
BUILDER to all combinations of two cards to give us the
possible hands. We then apply TYPE-BUILDER to all
combinations of two hands that are disjoint, to give us all
(three) possible deals. We then apply TYPE-BUILDER to all
the deals – which gives us the single object ‘deal
combinations’. When hands are dealt, then the deal will be one
of these. The construction is shown diagrammatically in Fig.
6. Deal Combination is called a ‘combination’ (option)
because it contains the different possible ways of combining
hands.

The construction process makes clear how each object
emerges from ascending a level in the ONTOGENESIS
process. Individual cards emerge in generation 1, individual
hands in generation 2, deals in generation 3 and the deal
combinations in generation 4. This is shown diagrammatically
in Fig. 6.

Fig. 6. Deal Combination Construction

2) Permutation Options Example. So far, we have not

considered which player gets which hand. Reconsider the

deal where hand one contains the aces of hearts and diamonds

and hand two the other two aces, clubs and spades. What

ways could these hands be distributed (permuted) across the

two players – the player deals? Player A could have hand one

and player B hand two – or vice versa. Clearly, there are two

player deal permutation options, both with the same content

but ordered in different ways – see Fig. 7. These options are

called permutation options because they are ways of

arranging the hands among the players. And, as the members

of a set are not ordered, sets of hands cannot capture this

permutation structure, but tuples construction can; the tuple

<hand one, hand two> is different from the tuple <hand two,

hand one>.

Fig. 7. Two Player Deal Permutation Options

We can construct these two players’ deal permutations as
tuples by taking the two instances of the deal type and
applying TUPLE-BUILDER to the permutations of the two
instances. More generally, we can create all the possible
player deal permutations by taking every deal instance of deal
combinations and then applying TUPLE-BUILDER to the
two possible permutations of their two instances. If we apply
TYPE-BUILDER to these tuple permutations, we get the
object player deal permutations. See Fig. 8.

The constructional approach shows clearly how the
individual permutations are generated by TUPLE-BUILDER
– and so how permutations involve ascending tuple levels.

As before, the construction process makes clear how the
objects emerge from ascending a tuple level in the
ONTOGENESIS process; in this case, tuple permutations.
Individual cards emerge in generation 1, individual hands in
generation 2, player deals in generation 3 (via POWER-
TUPLE-BUILDER) and the player deal permutations in
generation 4. This is shown diagrammatically in Fig. 8.

Fig. 8. Player Deal Permutations

IV. THE COORDINATE SYSTEM CONSTRUCTIONAL ONTOLOGY

In this section, we provide a brief simplified overview of
the overall coordinate system constructional ontology as a
context for the multi-level option examples in the next section.
We hope to provide a fuller description of this ontology in
future papers.

A. Analysis Through Geometric Construction

The analysis is a kind of logical construction in the spirit
of Bertrand Russell (“Wherever possible, substitute
constructions out of known entities for inferences to unknown
entities.” [21, p. 363]) and Rudolf Carnap [22]. It involves a
search for both the grounding geometric objects and how these
are constructed. It usually takes substantial analysis and
experimentation to identify suitable grounding components
and associated elegant and parsimonious construction
processes.

It became clear from early in the analysis that there were
two sub-ontologies in play for this topic. The ‘pure’
coordinate system ontology and a deixis ontology that
explains how the platform is, in practice, used to situate the
coordinate systems. In the next two sub-sections, we give a
brief overview of these two. In this short paper, we only have
space to describe enough of the construction process to
provide a background for the example options in the next
section.

B. The Deixis Ontology - Situating the Coordinate System

In practice, the local coordinate systems are centred and
oriented around the platforms and sensors that use them.
These platforms often have their centre and orientation
physically marked using a series of physical plates specified
in the design. We call this the object’s deixis or attitude; its
orientation in space-time. Typically, this deixis is
conceptualised as three orthogonal axes (geometrically, lines)
[23] – Fig. 1 above. We label these lateral, longitudinal and
sagittal, using the standard anatomical deixis terms [24]. In the
ontology, we separate this concern into a discrete deixis sub-
ontology. This is then used as a basis for orienting the
coordinate systems.

C. The Coordinate System Ontology - Options

Sets of co-oriented geometric surfaces are fundamental
components of the ontology. In this section, we explain how
these emerge and then look at the overall stages in the
construction of the system.

The first two major options for a coordinate system are:

1. Reference frame – this is typically fixed by the object
– the local reference frame.

2. Coordinate system’s surface configuration type – in
this case, one of the three surface configuration types
in scope.

The three surface configuration types in scope are
compositional: they each decompose into three reusable
components – sets of co-oriented coordinate surfaces. What
distinguishes the system types is the combination of different
surface components, as enumerated in the TABLE I. below.

TABLE I. COORDINATE SYSTEM AND THEIR SURFACE TYPES

Coordinate System Component Coordinate Surface Types

Cartesian 3 × planes

Spherical sphere, cone and half-plane

Cylindrical cylinder, half-plane and plane

The empirical evaluation of the different possible
architectures against the data helped us to evolve a common,
staged geometric construction process across the coordinate
surface components - with variations for the different surfaces
– as listed in TABLE II. below.

TABLE II. COMMON STAGED COORDINATE SURFACE CONSTRUCTION

PROCESS

Order Stage Description

1 Surface
Orientation

Selecting the set of co-oriented surfaces

2 Solid
Ordering

Building a mereological ordering for the
surfaces – the process varies by surface.

3 Ratio
Scaling

In these three systems, shifting down one or
two dimensions to distance and angle ratios.

4 Unitising Selecting the unitised distance or angle ratios –
based upon the selection of unit.

5 Labelling Labelling the unit ratios

As this shows, much of the work in constructing the
overall system happens at the coordinate surface level. In this
paper, we take most of our examples from the first two stages.
The coordinate system is then assembled from its three surface
components. The systems align the components, typically
aligning their degenerate surface members, where these exist.
The degenerate surfaces lose one or more dimensions, and so
are lines or points – for example, the sphere with zero radius
is a point. So, the intersection of three surfaces, one from each
component set, picks out a point (as shown in Fig. 9) – and
conversely, every point can be picked out by the intersection
of three surfaces. So when each coordinate surface is given a
coordinate numeral label, each point is named by the
coordinate triple composed of the coordinate labels of the
three surfaces that include it.

Fig. 9. Three Coordinate Systems - Showing the Intersecting Surfaces That

Identify a Point

V. OPTIONS AS LEVELS - EXAMPLES

The previous sections have set up the context for the
coordinate system examples of options as levels. The
coordinate system ontology’s broad stages contain a series of
steps, which sometimes involve options. We have selected a
examples to illustrate the two types of options (combinations
and permutations) and how these merge from the
constructional ontology.

A. Coordinate Surfaces Orientation Combinations

As noted above, selecting the object selects the reference
frame. And, selecting the type of coordinate system, picks out
the types of the three surfaces that will be used. Each of the
places in the coordinate triple contains a numeral that labels a
surface of the chosen type.

To see what surfaces these are, consider the object at a
point in time. Assume that the selected coordinate surface type
is planes. Consider all the possible planes in its local reference
frame. Partition these into sets of planes that are parallel to one
another – the set of these is ‘co-oriented plane types’, a
combination. Each of these subsets will contain planes that
cover the whole of space; in other words, each point in space
will be in one and only one plane in every subset. Also, all the
subsets are disjoint, as members from different subsets will
not be parallel – so cannot be in the same subset. A
visualisation of this construction in Fig. 10 shows how
generational levels underpin the ‘co-oriented plane types’
combination.

Fig. 10. Coordinate Plane Surface – Generational Levels

There is a similar geometric construction with variations
for the other surfaces. For example, in the case of spheres, we
start as before, by considering all the possible spheres in the
objects’ reference frame. We then partition these based on
sharing a centre – in other words, being co-centred, hence co-
oriented.

When setting up the coordinate surface for the coordinate
system, the surface’s orientation needs to be selected. In the
case of planes, spheres and the other surfaces, the options for
orientation are the instances of the relevant sets of co-oriented
surfaces – which are level (generation) 3 objects – visualised
in Fig. 11. The three surfaces can then be grouped into a
coordinate proto-system – a system with only orientation.

Fig. 11. Visualisation of Sets of Co-oriented Surfaces – Planes, Spheres and

Cones.

B. Conical Surface Solidification Combinations

The goal of the solid ordering or solidification process in
TABLE II. is to end up with a set of solids – one for each
surface – where the solids are mereologically linearly ordered
– so, for every solid each of the other solids is either a part of
it or has it as a part. This is needed for the next ratio scaling
phase, which uses anthyphairesis – a mereologically based
process of reciprocal subtraction; for details see [25, 26].

The analysis shows that the surfaces require different
solidification constructions with different levels of options. It
took some investigation to devise elegant and parsimonious
constructions for some of the more complicated constructions.
Spheres and cylinders are relatively simple with no pragmatic
options; the solid is their finite interior (it would be unnatural
to select their infinite exteriors).

Cones are a useful example of something with a less
simple, but not too complicated option. Co-orientation
partitions the set of cones (surfaces) into disjoint sets of co-
oriented cones. It similarly partitions the set of conical solids
into corresponding disjoint sets of co-oriented conical solids;
in other words, each set of co-oriented cones has one
corresponding set of co-oriented conical solids. One way of
visualising this is to consider how each cone in a set of co-
oriented cones, being infinite, divides the space into two half-
spaces, both of which are in the corresponding set of co-
oriented conical solids – giving a one-to-two mapping, see
Fig. 12.

Fig. 12. Cone Dividing Space into Two Conic Solids

This one-to-two mapping from surfaces to solids is a
specific case of a more general situation that is reflected
downstream in ambiguity of angle identification. In the
simplest case, in plane geometry, where an angle is defined as
a relationship between two rays meeting at a vertex, there is
an ambiguity about which of the two angles is intended (in our
case, it is which of the two solids) – see Fig. 13 below. The
rays by themselves are insufficient to distinguish between the
two possible angles.

Fig. 13. Angle Identification

This can be avoided if one defines ‘angle’ in a similar way
to the Ancient Greek Carpus of Antioch, as a space between
the lines - quoted in [27, pp. 125–126]. Then in Fig. 13, there

are two spaces,  and , and therefore, two angles. Our
solidification strategy moves up a dimension and takes the
volume between two surfaces.

The Carpusian solid angle approach enables us to
distinguish between the two angles. However, we also need a
simple, consistent way to choose between the two conical
solids (angles) associated with each cone in a set of co-
oriented cones – which preserves a linear mereological
ordering that is then reflected in the eventual labelling. We do
this by exploiting the fact that each set of co-oriented conical
solids contains two rays as degenerate solids: where the three-
dimensional conical solids collapse into a one-dimensional
ray (half-line) with no volume. These two solids are
mereologically minimal; in other words, no other solid in the
set is part of them. We then divide the solids sets into two
subsets depending upon which of the degenerate solids they
have as a part. We can use the degenerate solids as an index
for each subset. Importantly, each subset is the basis of a
different coordinate system component (hence a combination
option), as it will result in a different way of labelling the
solids (and so surfaces) with an angle. If we do not know
which subset was chosen, we cannot interpret the label for the
angle.

C. Coordinate Surface – Planar Solid Sub-Sets

Permutations

The solidification process for planes is more complex,
involving more options. As for cones, co-orientation partitions
the set of planes (surfaces) into disjoint sets of co-oriented
planes. In the case of planes, one constructs the set of parallel-
boundaried planar solids – where one takes every pair of
parallel planes (possibly identical) and constructs the solid
that has the two planes as boundaries; in other words, the
interior between the two planes (it would be unnatural to select
either of the two single boundaried exteriors). Then co-
orientation partitions this set into corresponding disjoint sets
of co-oriented (parallel) planar solids; where each set of co-
oriented planes has one corresponding set of co-oriented
planar solids.

Note that every plane (surface) is contained in this parallel-
boundaried planar solids type as a degenerate solid.
Associated with each degenerate solid is a subset of this type
containing every solid that has the degenerate one as a
boundary. In coordinate system terms, these subsets represent
the combination options for picking a reference plane, namely,
the plane associated with the subset. The mereological
structure of the solids in each subset induces two linear
orderings each of which covers a half-space – the two
orderings have the reference plane as their only common
element. Intuitively, these orderings arrange mereologically
the solids on each side of the reference plane.

The scaling-ratio-unit process will label the surfaces via
the solids. But, the labels will not be unique as things stand –
they will appear twice, once in each subset. So, the subsets
need to be differentiated (rather than one selected) and there
are two ways (in the sense of permutations) of doing this, each
way giving a different labelling and thus a different
coordinate system. One can do this with a couple, where for
clarity, we label place 1 as positive and place 2 as negative.
Hence, this is a permutation option.

D. Deixis Mapping to Cartesian Proto Co-ordinate System

Permutations

As noted at the beginning of this section, we extract the
object’s attitude (its orientation in space-time) from the
coordinate system ontology into a deixis sub-ontology. This
deixis is used to situate the coordinate system, and so the
component coordinate surfaces. It turns out that the deixis
axes are not fundamental to the pure coordinate system
structure, and so are analysed away. However, they play a
critical part in how the deixis situates the coordinate system.
We illustrate this with an example that focuses on orientation,
as this is both clearer and simpler than accounting for the full
coordinate system.

We can define the orientation of a coordinate system as the
set of orientations of its component surfaces. In our terms, the
orientation of a coordinate surface is the set of co-oriented
surfaces (this is analogous in some ways to Frege’s abstraction
from parallel lines to directions [28]). This notion of oriented
surfaces can be easily extended to account for the orientation
of a coordinate system – and regarded as a stage in its
construction. An oriented coordinate system is one where its
three surfaces have all been oriented; we call this a proto
coordinate system.

As a side note, from this perspective, the Cartesian
coordinate system’s orientation does not involve axes directly
– it is just a set of three co-oriented plane types. The
conventional way of representing this with three orthonormal
axes, one for each plane surface type, may be simpler to
visualise but is misleading about the underlying ontology – as
any of the infinite lines parallel to it will construct an identical
orientation, the same set of co-oriented planes. One can regard
the axes as the mechanisms for constructing the co-oriented
surfaces rather than co-orientation itself.

However, the Cartesian axes are a good foundation for the
deixis geometry – the object’s attitude – as these are not
arbitrary as they go through the object’s centre. The three lines
(axes without direction) are the deictic base orientation.
However, some aspects of this orientation are abstracted away
in the mapping to the Cartesian coordinate system. One way
to appreciate this is to note that the same Cartesian proto
system is constructed in the cases where the deictic axes are
swapped (in other words, the axes are permuted). Physically,
this would happen if an Unmanned Underwater Vehicle were
to rotate in a way that any of its three deictic axes were
swapped – as shown in Fig. 14.

The six configurations in Fig. 14 are the six ways that the
situated object can view the Cartesian coordinate proto-
system. Another way to look at it is as the six ways to order
the three surfaces or as six ways to interpret the three Cartesian
coordinates relative to the object’s attitude. Given three
coordinate labels {x, y, z}, which is longitudinal (up-down)
from the deictic perspective? Any one of the three could be.
Hence the deictic base orientation has six permutations of the

underlying Cartesian coordinate system orientation – in other
words, this is a permutation option. For the full system, one
would need to consider other factors, such as direction (for
example, up versus down) which would multiply out the
permutations.

In a single platform sensor system, there is less of a need
to consider this point. There is less of a requirement to
distinguish between the deixis and coordinate systems, and
hence historically many single platform systems have merged
the two.

Fig. 14. Six Permutations of The Base Deictic Orientation.

VI. CONCLUSION

We have provided examples that show how both kinds of
option (combination and permutation) can arise in enterprise
projects. We have shown how the constructional approach can
be used as an analytic tool to identify the foundation levels in
a domain. And, how this approach gives a clear picture of how
these options fundamentally involve ascending levels – and so
are intrinsically multi-level. We have also shown, through the
permutation examples, how tuples/relations multi-levelling
complements type multi-levelling.

The unearthing of multi-levelling in a geometric domain
should add weight to the claims (often made in the
community) that multi-level modelling pervades conceptual
models. The claim we have argued for (that options are
inherently level ascending) should add further weight.

Though it is not the main goal of the paper, we have
provided some insight into how the conceptual foundation for
a multi-platform sensed position coordinate system could be

developed using the constructional approach and what it
would look like. We have included some examples that show
how the underlying fundamental structure is not transparent.
For example, how the analysis replaces the traditional
visualisation of the Cartesian system as three axes with the
less easy to visualise but more correct three co-oriented plane
types. These help make a case for a foundational analysis that
can reveal the underlying structure.

Finally, we have illustrated how a foundational approach
can help to future-proof systems. Single platform-domain
systems whose development focused on specific requirements
without a conceptual model of the foundations are not
designed with the options in mind and so cannot easily
accommodate the move to multi-platform-domain.

ACKNOWLEDGMENT

We want to acknowledge the help Steven Bradley and
Salvatore Florio gave us in the development of this paper.

REFERENCES

[1] U. S. D. Defense, Unmanned Systems Integrated Roadmap FY2017 -
2042. (2018) [Online]. Available:
https://www.hsdl.org/?abstract&did=826737.

[2] U. S. D. Defense, Unmanned Systems Integrated Roadmap FY2011 -
2036. (2011) [Online]. Available:
https://www.hsdl.org/?abstract&did=705359.

[3] C. Partridge et al., “Semantic Modernisation: Layering, Harvesting and
Interoperability.” in NATO Symposium IST-101 / RSY-024, Semantic
and Domain-based Interoperability. (2011).

[4] C. Partridge et al., “Developing an Ontological Sandbox: Investigating
Multi-Level Modelling’s Possible Metaphysical Structures.” in
MULTI-4th International Workshop on Multi-Level Modelling. pp.
226–34 (2017).

[5] C. Partridge, Business Objects: Re-Engineering for Re-Use.
Butterworth-Heinemann (1996).

[6] C. Partridge et al., “Formalization of the Classification Pattern: Survey
of Classification Modeling in Information Systems Engineering.”
Software & Systems Modeling. pp. 1–37 (2016).

[7] C. Partridge et al., “A Novel Ontological Approach to Semantic
Interoperability Between Legacy Air Defence Command and Control
Systems.” International Journal of Intelligent Defence Support
Systems. vol. 4, pp. 232–62 (2011).

[8] M. Lambert et al., “Demonstrating a Successful Strategy for Network
Enabled Capability.” in NATO Symposium IST-101 / RSY-024,
Semantic and Domain-based Interoperability. (2011).

[9] OMG, “Open Architecture Radar Interface Standard (OARIS).”
(2016).

[10] ISO, “ISO/IEC 18026: 2009 - Information Technology - Spatial
Reference Model (SRM).” (2009).

[11] P. Suppes et al., “Foundations of Measurement, Vol. II: Geometrical,
Threshold, and Probabilistic Representations.” (1989).

[12] F. Arntzenius et al., “Calculus as Geometry.” in Space, Time, and
Stuff. Oxford University Press (UK) (2014).

[13] I. Grattan-Guinness, “Numbers, Magnitudes, Ratios, and Proportions
in Euclid’s Elements: How Did He Handle Them?” Historia
mathematica. vol. 23, pp. 355–75 (1996).

[14] C. Partridge, “Geospatial and Temporal Reference - A Case Study
Illustrating (Radical) Refactoring.” in ONTOBRAS-2013 6th
Ontology Research Seminar in Brazil. (2013) [Online]. Available:
https://www.academia.edu/27433806/Geospatial_and_temporal_refer
ence_A_case_study_illustrating_radical_refactoring.

[15] C. Partridge, “An Information Model for Geospatial and Temporal
Reference.” (2011) [Online]. Available:
https://www.academia.edu/39988229/An_Information_Model_for_Ge
ospatial_and_Temporal_References.

[16] S. de Cesare et al., “BORO as a Foundation to Enterprise Ontology.”
Journal of Information Systems. vol. 30, pp. 83–112 (2016).

[17] C. Partridge, “Note: A Couple of Meta-Ontological Choices for
Ontological Architectures.” LADSEB CNR, Padova, Italy. (2002).

[18] K. Fine, “The Study of Ontology.” Noûs. vol. 25, pp. 263–94 (1991).

[19] K. Fine, “Towards a Theory of Part.” The Journal of Philosophy. vol.
107, pp. 559–89 (2010).

[20] J. Schaffer, “Monism: The Priority of the Whole.” Philosophical
Review. vol. 119, pp. 31–76 (2010).

[21] B. Russell, “Logical Atomism.” in Contemporary British Philosophy.
Personal Statements. pp. 356–83. ed. J. H. Muirhead. Allen & Unwin,
London (1924).

[22] R. Carnap, The Logical Structure of the World and Pseudoproblems in
Philosophy. tran. R. A. George University of California Press (1967).

[23] ISO, ISO 1503:2008 - Spatial Orientation and Direction of Movement
- Ergonomic Requirements. (2008).

[24] L. H. Hyman, Hyman’s Comparative Vertebrate Anatomy. University
of Chicago Press (1992).

[25] D. H. Fowler, The Mathematics of Plato’s Academy: A New
Reconstruction. Clarendon Press Oxford (1987).

[26] Z. R. Perry, “Mereology and Metricality.” Forthcoming.

[27] Proclus, A Commentary on the First Book of Euclid’s Elements. tran.
G. R. Morrow Princeton University Press (1970).

[28] G. Frege, The Foundations of Arithmetic: A Logico-Mathematical
Enquiry Into the Concept of Number. tran. J. L. Austin Basil Blackwell
& Mott (1950).

