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Abstract—A novel approach to signal filtering using 

digital alias-free signal processing (DASP) is presented in 
this paper. We propose an unbiased, fast-converging 
estimator of the output of a finite impulse response (FIR) 
continuous-time filter. The estimator processes 𝟐𝟐𝑵𝑵 signal 
samples collected with the use of random antithetical 
stratified (AnSt) sampling technique. To assess the 
estimator convergence rate as the function of 𝑵𝑵, we consider 
various forms of smoothness of the input signal, filter 
impulse response and windowing function. The cases are 
piecewise-continuous second-order derivative (SOD), 
piecewise-continuous first-order derivative (FOD) and 
piecewise-continuous zero-order derivative (ZOD). In each 
case we assume that the respective derivative has a finite 
number of bounded discontinuities. We prove that the 
proposed estimator converges to the true filter output at the 
rate of 𝑵𝑵−𝟓𝟓 in the first case. But for the other two the rate 
drops to 𝑵𝑵−𝟒𝟒 and 𝑵𝑵−𝟐𝟐 respectively.  
 

Index Terms—Random sampling, filter estimator, 
uniform convergence rate, antithetical stratification, 
derivative discontinuities.  
 

1. Introduction 
Sampling of continuous-time functions in classical digital 
signal processing (DSP) is carried out uniformly. Aliasing 
problem takes place when the utilized uniform sampling 
frequency is less than the Nyquist rate [1], [2]. Fortunately, 
cost-effective sub-Nyquist random sampling techniques have 
emerged as a promising approach, in digital alias-free signal 
processing (DASP), that can mitigate this issue [3]–[8]. 
Numerous publications have then been available exploring 
different implementations of DASP systems [9]–[13], including 
random filtering applications and estimators [14]–[21]. In 
particular, AnSt-based technique has been addressed in [17] to 
explore filtering of bandlimited randomly sampled signals. 
However, it does not include any reference to discontinuities 
that might present in the input signal or its various-order 
derivatives. The effect of such discontinuities on filtering 
estimators, including variance and uniform convergence rate, 
has been introduced in [20], [21] but only for stratified sampling 
(StSa) technique. StSa is different from AnSt sampling 
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technique in the way the random sampling points are acquired, 
and in the number of sampling points per each stratum. AnSt 
technique will be explained in more detail in the next section. 

Practically, discontinuities in the ZOD, FOD or SOD of the 
input signals occur so frequently in everyday applications. For 
instance, clipping or rectifying of continuous-time signals leads 
to discontinuities in one or more orders of derivative [22]. Other 
examples include communication signals, transient signals, 
power cut and digital data. In stock market field, ZOD, FOD or 
SOD discontinuities occur in some financial data due to major 
global events, such as COVID-19 pandemic [23]. Moreover, 
many smoothing window functions used in filtering also have 
discontinuities in some orders of the derivative. To name a few: 
Rectangular, Triangular, Hamming, Tukey and Exponential 
(Poisson) are all examples of such discontinuous averaging 
windows. 

Theoretically, in classical DSP applications, many 
mathematical functions, including discontinuous ones, can be 
used as the impulse response of some given filters. For 
example, in software-defined radios, digital audio processing, 
software-based filter design or similar applications, we may use 
one of the above-mentioned discontinuous windows, or even 
any generic function, as a filter that suits our application. 
Therefore, the work in this paper bridges the gap by addressing 
the implications of such realistic discontinuities on FIR filtering 
applications while considering AnSt as the utilized random 
sampling technique. 

 

 Related Work 
Many applications of DASP have been introduced in [6], [7] 
including estimation of the Fourier transform (FT) coefficients 
and filtering of randomly sampled signals. However, such 
general references neither consider cases where the processed 
signal has got some discontinuities nor mention anything 
related to stratification schemes, such as StSa or AnSt. Whereas 
other papers [9]–[11], [24] focus on spectral estimation of 
randomly sampled continuous-time signals using either total 
random (ToRa) sampling technique or StSa. A uniform decay 
rate of 𝑁𝑁−1 has been proven for the ToRa-based estimator and 
𝑁𝑁−3 for the StSa-based one. But then, no discussion about 
signal filtering or discontinuities have been provided there. 

In [25], an estimator based on AnSt technique is used to 
estimate the FT of a randomly sampled signal. The estimator 
was proven to be unbiased, and its variance has a uniform 
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convergence rate of 𝑁𝑁−5. However, a fundamental assumption 
has been made to apply the Taylor series expansion of the input 
signal properly. The assumption emphasized that the input 
signal should have continuous ZOD, FOD and SOD across the 
whole observation window, which is a necessary and sufficient 
condition for expanding functions to second-degree 
polynomials using Taylor series. In addition, [25] has not 
addressed the filtering case. 

The works in [20], [21] particularly, have presented 
discussions about the statistical properties of an FIR filter 
estimator that utilises StSa technique with the presence of 
discontinuities in the input signal or its FOD. Uniform 
convergence rates of 𝑁𝑁−2 and 𝑁𝑁−3 are proven for the filter 
estimator in these two cases, respectively. 

 

 Contributions 
The main contributions of this paper are: a) introduction of 
AnSt random sampling technique to estimate FIR filtering 
analytically and numerically; b) the study of the effects  of 
discontinuities in the input signal, the window function or the 
impulse response on the filter estimator, including: 1) devising 
mathematical expressions for the estimator variance in three 
considered cases related to the order of the derivative at which 
the discontinuities occur; 2) rigorously deriving the uniform 
convergence rates of the filter estimator in those cases. 

The reminder of this paper comprises five sections: the next 
section introduces the AnSt sampling technique. The filter 
estimator is introduced in Section 3. Whereas, the core of this 
paper is presented in Section 4, which includes all the 
mathematical derivations, statistical properties, and related 
discussion of the filter estimator. Several numerical examples 
are provided in Section 5 to verify the analytical results. Finally, 
the conclusion section summarises the main findings of this 
paper. 

 

2. Background: Antithetical Stratified Sampling 
The AnSt random sampling technique depends on the notion of 
stratification of an observation window. The window time 
interval, [0,𝑇𝑇], is divided into 𝑁𝑁 sub-intervals called strata. 
Subsequently, two sampling points are acquired per each 
stratum, as shown in Fig. 1. The first sampling point of the 𝑗𝑗-th 
stratum, 𝜏𝜏𝑗𝑗, is selected randomly using a probability density 
function uniformly distributed within the stratum’s time span. 
The second one is its antithetical counterpart and is given by 
𝜏𝜏𝑗𝑗𝐴𝐴 = 2𝐶𝐶𝑗𝑗 − 𝜏𝜏𝑗𝑗, where 𝐶𝐶𝑗𝑗 is the centre of the stratum. The 
process of selecting strata lengths is detailed in [24], [25]. 
Indeed, one of its simplest forms is to divide the whole 
observation window equidistantly. While this is not necessarily 
the optimum way of portioning and it is possible to improve 
estimation by choosing different arrangement, however, this 
greatly depends on a priori knowledge of the sampled signal. 
For example, we may have more strata concentrated around 
steep slopes of the sampled signal. But in this paper, we assume 
that the sampled signal is not known in advance, therefore, we 
choose the first stratification setup, where all strata are of equal 
lengths, i.e. the stratum length is 𝑇𝑇/𝑁𝑁. 
 

 
 In AnSt technique, two sampling points are acquired per each 

stratum. The time instant of the first point, 𝜏𝜏𝑗𝑗, is randomly selected within 
the stratum, while the time instant of the other one, 𝜏𝜏𝑗𝑗𝐴𝐴, is its antithetical 
counterpart. 𝜏𝜏𝑗𝑗 is chosen based on a uniformly distributed random process. 

 

3. The Filter Estimator 
Consider an LTI causal filter with an impulse response ℎ(𝑡𝑡), 
input signal 𝑥𝑥(𝑡𝑡), window function 𝑤𝑤(𝑡𝑡) defined over the 
interval [0,𝑇𝑇]. The windowed output signal 𝑦𝑦(𝑡𝑡) is given by 

𝑦𝑦(𝑡𝑡) = � 𝑥𝑥(𝜏𝜏)𝑤𝑤(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
𝑇𝑇

0
. (1) 

We define the integrated function in (1) as 𝑔𝑔(𝑡𝑡, 𝜏𝜏), 
𝑔𝑔(𝑡𝑡, 𝜏𝜏) ∶= 𝑥𝑥(𝜏𝜏)𝑤𝑤(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏). (2) 

 If 𝑔𝑔(𝑡𝑡, 𝜏𝜏) has continuous SOD within the observation 
window then, as we show later, the uniform convergence rate 
of the estimator proposed here is exactly 𝑁𝑁−5, where 𝑁𝑁 is the 
total number of strata within the window interval. This rate is 
similar to the one in [25] but for another application, i.e. the FT. 
However, if 𝑔𝑔(𝑡𝑡, 𝜏𝜏) has some bounded discontinuities in the 
SOD then the approach in [25] is not valid, since the main 
condition for applying Taylor series expansion is not satisfied. 
In this paper, we thoroughly explore cases when any of SOD, 
FOD or ZOD of the integrated function 𝑔𝑔(𝑡𝑡, 𝜏𝜏), has a finite 
number of discontinuities. 

We propose a filter estimator, 𝑦𝑦�(𝑡𝑡), which approximates the 
output 𝑦𝑦(𝑡𝑡) using 𝑁𝑁 independent and identically distributed 
(i.i.d) stratified random sampling points, along with their 𝑁𝑁 
antithetical counterparts. The estimator is defined by 

𝑦𝑦�(𝑡𝑡) ∶= ��𝑔𝑔�𝑡𝑡, 𝜏𝜏𝑗𝑗� + 𝑔𝑔�𝑡𝑡, 𝜏𝜏𝑗𝑗𝐴𝐴��
∆𝑗𝑗
2

𝑁𝑁

𝑗𝑗=1

, (3) 

where ∆𝑗𝑗 is the length of the 𝑗𝑗-th stratum (for equidistant strata, 
∆𝑗𝑗= 𝑇𝑇 𝑁𝑁⁄ ∶= ∆), and 𝜏𝜏𝑗𝑗 and 𝜏𝜏𝑗𝑗𝐴𝐴 are the time instants of the 𝑗𝑗-th 
antithetical sampling pair. The probability density functions 
(PDFs) of 𝜏𝜏𝑗𝑗 and 𝜏𝜏𝑗𝑗𝐴𝐴 are the same, and they are equal to 𝑝𝑝𝑗𝑗�𝜏𝜏𝑗𝑗� =
1/∆𝑗𝑗 within the 𝑗𝑗-th stratum and zero elsewhere. 
 We start the analysis by establishing Theorem 1, which 
determines one of the statistical properties of the estimator, (i.e. 
the unbiasedness). The proof of this theorem is presented in 
Appendix A, which depends on the notation illustrated in Fig. 
2 and listed in Table I. 
 
Theorem 1. The AnSt-based filter estimator, defined in (3), is 
unbiased for any 𝑡𝑡. 
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 The 𝑗𝑗-th stratum of the integrated function, 𝑔𝑔(𝑡𝑡, 𝜏𝜏), having SOD 
and FOD discontinuities at time instant 𝜏𝜏𝐷𝐷𝑗𝑗. Remark the left- and right-hand 
pieces 𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏) and 𝑔𝑔𝑗𝑗,𝑅𝑅(𝑡𝑡, 𝜏𝜏), respectively, alongside other notation.  

 
TABLE I 

Notation as Per The 𝑗𝑗-th Stratum 
 

∆𝑗𝑗 The length of the 𝑗𝑗-th stratum (= ∆ for equal strata) 

𝑆𝑆𝑗𝑗−1 The start time of the 𝑗𝑗-th stratum, with 𝑆𝑆0 = 0. 

𝑆𝑆𝑗𝑗 The end time of the 𝑗𝑗-th stratum, with 𝑆𝑆𝑁𝑁 = 𝑇𝑇. 

𝐶𝐶𝑗𝑗 The central time of the 𝑗𝑗-th stratum = (𝑆𝑆𝑗𝑗−1 + 𝑆𝑆𝑗𝑗)/2. 

𝜏𝜏𝐷𝐷𝑗𝑗 The time instant in the 𝑗𝑗-th stratum at which there is a 
discontinuity in one or more derivatives of 𝑔𝑔(𝑡𝑡, 𝜏𝜏). 

𝐴𝐴𝑗𝑗,𝐿𝐿 The 𝑗𝑗-th stratum left subinterval, [𝑆𝑆𝑗𝑗−1, 𝜏𝜏𝐷𝐷𝑗𝑗). 

𝐴𝐴𝑗𝑗,𝑅𝑅 The 𝑗𝑗-th stratum right subinterval, [𝜏𝜏𝐷𝐷𝑗𝑗 , 𝑆𝑆𝑗𝑗). 

𝐷𝐷𝑗𝑗  The time length of 𝐴𝐴𝑗𝑗,𝐿𝐿, where 𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏) is exactly 
matching the left part of 𝑔𝑔(𝑡𝑡, 𝜏𝜏) in the 𝑗𝑗-th stratum. i.e. 
𝐷𝐷𝑗𝑗 = 𝜏𝜏𝐷𝐷𝑗𝑗 − 𝑆𝑆𝑗𝑗−1. 

∆𝑗𝑗 − 𝐷𝐷𝑗𝑗  The time length of 𝐴𝐴𝑗𝑗,R, where 𝑔𝑔𝑗𝑗,R(𝑡𝑡, 𝜏𝜏) is exactly 
matching the right part of 𝑔𝑔(𝑡𝑡, 𝜏𝜏) in the 𝑗𝑗-th stratum. 

𝜏𝜏𝑗𝑗 The random time instant of the 𝑗𝑗-th sampling point. 

𝜏𝜏𝑗𝑗𝐴𝐴 The antithetical counterpart of 𝜏𝜏𝑗𝑗, i.e. 𝜏𝜏𝑗𝑗𝐴𝐴 = 2𝐶𝐶𝑗𝑗 − 𝜏𝜏𝑗𝑗. 

𝐾𝐾𝑗𝑗 The ratio 𝐷𝐷𝑗𝑗 ∆𝑗𝑗⁄ , i.e. the ratio of the time length from 
the beginning of the stratum to the discontinuity point 
to the whole length of the stratum, Therefore, 
0 ≤ 𝐾𝐾𝑗𝑗 ≤ 1. 

 
As per the result of Theorem 1, the variance of the estimator is 
equivalent to its mean-squared error (MSE). In the following 
sub-sections, we investigate the variance of the estimator in the 
presence of discontinuities in the integrated function. But first, 
we introduce a generic 𝑗𝑗-th stratum within which 𝑔𝑔(𝑡𝑡, 𝜏𝜏) has got 
some discontinuities. We assume that the number of strata is 

sufficiently large (or equivalently the stratum length is 
sufficiently small) so that within any stratum there is no more 
than one discontinuity in the SOD, FOD or ZOD.  

Fig. 2 depicts the 𝑗𝑗-th stratum of an integrated function with 
SOD and FOD discontinuities located at the time instant 𝜏𝜏𝐷𝐷𝑗𝑗. 
Two SOD-continuous sub-functions,  𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏) and  𝑔𝑔𝑗𝑗,𝑅𝑅(𝑡𝑡, 𝜏𝜏), 
are now defined per each stratum such that, 

𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏) ∶= �
𝑔𝑔(𝑡𝑡, 𝜏𝜏), 𝜏𝜏 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑥𝑥𝐿𝐿2𝑅𝑅(𝑡𝑡, 𝜏𝜏), 𝜏𝜏𝐷𝐷𝑗𝑗 ≤ 𝜏𝜏 ≤ 𝜏𝜏𝐷𝐷𝑗𝑗 + 𝛿𝛿 , (4a) 

𝑔𝑔𝑗𝑗,𝑅𝑅(𝑡𝑡, 𝜏𝜏) ∶= �
𝑔𝑔(𝑡𝑡, 𝜏𝜏), 𝜏𝜏 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅

𝑔𝑔𝑗𝑗,𝑥𝑥𝑅𝑅2𝐿𝐿(𝑡𝑡, 𝜏𝜏), 𝜏𝜏𝐷𝐷𝑗𝑗 − 𝛿𝛿 ≤ 𝜏𝜏 < 𝜏𝜏𝐷𝐷𝑗𝑗
 , (4b) 

where 𝑔𝑔𝑗𝑗,𝑥𝑥𝐿𝐿2𝑅𝑅(𝑡𝑡, 𝜏𝜏) and 𝑔𝑔𝑗𝑗,𝑥𝑥𝑅𝑅2𝐿𝐿(𝑡𝑡, 𝜏𝜏) are extrapolated extensions 
of the left- and right-hand parts of 𝑔𝑔(𝑡𝑡, 𝜏𝜏), in the 𝑗𝑗-th stratum, 
respectively, to 𝛿𝛿-wide neighbourhoods of the discontinuity 
point, 𝜏𝜏𝐷𝐷𝑗𝑗. And 𝛿𝛿 is a sufficiently large period of time that 
ensures the SOD continuity of both 𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏) and 𝑔𝑔𝑗𝑗,𝑅𝑅(𝑡𝑡, 𝜏𝜏) sub-
functions about 𝜏𝜏𝐷𝐷𝑗𝑗. Therefore, the integrated function can be 
represented by both sub-functions, across the whole 
observation window, as 

𝑔𝑔(𝑡𝑡, 𝜏𝜏) = ��
𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏), 𝜏𝜏 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑅𝑅(𝑡𝑡, 𝜏𝜏), 𝜏𝜏 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅

𝑁𝑁

𝑗𝑗=1

. (5) 

Since these sub-functions are continuous to the order of the 
second derivative and sufficiently extended to the 
neighbourhoods of 𝜏𝜏𝐷𝐷𝑗𝑗, they can be approximated individually 
by a second-degree polynomial using Taylor series expansion. 
Indeed, we conduct such expansion about the discontinuity 
point itself, as indicated in (10a) of the next section. 
 From now on, we drop the time shift parameter, 𝑡𝑡, from all 
functions and equations for the sake of simplicity and to save 
paper space, unless it is necessary to show it explicitly. Let the 
notation “≡” denote equivalence, then we have 𝑔𝑔(𝜏𝜏) ≡ 𝑔𝑔(𝑡𝑡, 𝜏𝜏), 
𝑔𝑔𝑗𝑗,𝐿𝐿(𝜏𝜏) ≡ 𝑔𝑔𝑗𝑗,𝐿𝐿(𝑡𝑡, 𝜏𝜏), 𝑔𝑔𝑗𝑗,𝑅𝑅(𝜏𝜏) ≡ 𝑔𝑔𝑗𝑗,𝑅𝑅(𝑡𝑡, 𝜏𝜏), 𝑦𝑦� ≡ 𝑦𝑦�(𝑡𝑡) and so on. 
∆ will replace ∆𝑗𝑗, as we assume all strata to be equidistant. 
 

4. Discontinuities in the Integrated Function 
The implications of the presence of discontinuities, in the 
integrated function, for the filter estimator vary according to the 
order of the derivative at which these discontinuities are 
existing. Let the differences between the left and right edges of 
the SOD, FOD and ZOD discontinuities (i.e. the amplitudes of 
the jumps) in the 𝑗𝑗-th stratum be defined as 𝐺𝐺2𝑗𝑗, 𝐺𝐺1𝑗𝑗 and 𝐺𝐺0𝑗𝑗, 
respectively. Then, we have 

𝐺𝐺2𝑗𝑗 ∶= 𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗�. (6a) 

𝐺𝐺1𝑗𝑗 ∶= 𝑔𝑔𝑗𝑗,𝐿𝐿
′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗�. (6b) 

𝐺𝐺0𝑗𝑗 ∶= 𝑔𝑔𝑗𝑗,𝐿𝐿 �𝜏𝜏𝐷𝐷𝑗𝑗� − 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗�. (6c) 

In the following sub-sections, we consider three main cases for 
the order of discontinuities in the integrated function: either 

ΔjSj-1 Sj

τDj

Dj Δj-Dj

τ
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x
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x
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they present in the SOD, FOD or ZOD. 
 

 Second-Order Derivative Discontinuities 
Suppose that there is a finite number (e.g. 𝑀𝑀) of bounded 
discontinuities in the SOD of the integrated function. Whereas 
neither FOD nor ZOD discontinuities exist. Assume the SOD 
discontinuities occur at time instants {𝜏𝜏𝐷𝐷𝑗𝑗} where 𝑗𝑗 is a positive 
index integer less than or equal to 𝑀𝑀. Hence, the following 
equations are valid, 

𝑔𝑔𝑗𝑗,𝐿𝐿 �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔 �𝜏𝜏𝐷𝐷𝑗𝑗�, (7a) 

𝑔𝑔𝑗𝑗,𝐿𝐿
′ �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔′ �𝜏𝜏𝐷𝐷𝑗𝑗�, (7b) 

𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� ≠ 𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗�. (7c) 

This means that 𝐺𝐺1𝑗𝑗 = 𝐺𝐺2𝑗𝑗 = 0, whereas 𝐺𝐺2𝑗𝑗 ≠ 0 in this case. 
To devise a mathematical expression for the variance and find 
the uniform convergence rate, we adopt the same approach as 
in [25], this makes it easy for comparison purposes. 

 Let 𝑍𝑍𝑗𝑗 be the sub-estimator related to the 𝑗𝑗-th stratum, thus 

𝑍𝑍𝑗𝑗 =
1
2
�𝑔𝑔�𝜏𝜏𝑗𝑗� + 𝑔𝑔�𝜏𝜏𝑗𝑗𝐴𝐴�� ∆ (8a) 

𝑍𝑍𝑗𝑗 =
∆
2
�
𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗�,   𝜏𝜏𝑗𝑗 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗�,   𝜏𝜏𝑗𝑗 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅
� +

∆
2
�
𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗𝐴𝐴�,   𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗𝐴𝐴�,   𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅
� (8b) 

𝑍𝑍𝑗𝑗 =
∆
2

⎩
⎪⎪
⎨

⎪⎪
⎧𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗� + 𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗𝐴𝐴�,                𝜏𝜏𝑗𝑗  𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗� + 𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗𝐴𝐴�,   𝜏𝜏𝑗𝑗 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅

𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗� + 𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗𝐴𝐴�,   𝜏𝜏𝑗𝑗 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗� + 𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗𝐴𝐴�,               𝜏𝜏𝑗𝑗  𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅⎭
⎪⎪
⎬

⎪⎪
⎫

 (8c) 

 
The expected value of 𝑍𝑍𝑗𝑗 is 

𝐸𝐸�𝑍𝑍𝑗𝑗� =
1
2
� 𝑝𝑝𝑗𝑗(𝜏𝜏)�𝑔𝑔(𝜏𝜏) + 𝑔𝑔(𝜏𝜏𝐴𝐴)�∆ 𝑑𝑑𝜏𝜏
∞

−∞

=
1
2
� 𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑆𝑆𝑗𝑗

𝑆𝑆𝑗𝑗−1
+

1
2
� 𝑔𝑔(𝜏𝜏𝐴𝐴)𝑑𝑑𝜏𝜏
𝑆𝑆𝑗𝑗

𝑆𝑆𝑗𝑗−1
, 

(9a) 

𝐸𝐸�𝑍𝑍𝑗𝑗�

=
1
2
� 𝑔𝑔𝑗𝑗,𝐿𝐿(𝜏𝜏)𝑑𝑑𝜏𝜏

 

𝐴𝐴𝑗𝑗,𝐿𝐿

+
1
2
� 𝑔𝑔𝑗𝑗,𝑅𝑅(𝜏𝜏)𝑑𝑑𝜏𝜏

 

𝐴𝐴𝑗𝑗,𝑅𝑅

+
1
2
� 𝑔𝑔𝑗𝑗,𝐿𝐿(𝜏𝜏𝐴𝐴)𝑑𝑑𝜏𝜏𝐴𝐴

 

𝐴𝐴𝑗𝑗,𝐿𝐿

+
1
2
� 𝑔𝑔𝑗𝑗,𝑅𝑅(𝜏𝜏𝐴𝐴)𝑑𝑑𝜏𝜏𝐴𝐴

 

𝐴𝐴𝑗𝑗,𝑅𝑅

. 

(9b) 

Using Taylor series to expand 𝑔𝑔𝑗𝑗,𝐿𝐿(𝜏𝜏), 𝑔𝑔𝑗𝑗,𝑅𝑅(𝜏𝜏), 𝑔𝑔𝑗𝑗,𝐿𝐿(𝜏𝜏𝐴𝐴) and 
𝑔𝑔𝑗𝑗,𝑅𝑅(𝜏𝜏𝐴𝐴) about 𝜏𝜏𝐷𝐷𝑗𝑗, equation (9b) can be rewritten as 

𝐸𝐸�𝑍𝑍𝑗𝑗�

=
1
2
� �𝑔𝑔𝑗𝑗,𝐿𝐿 �𝜏𝜏𝐷𝐷𝑗𝑗� + �𝜏𝜏 − 𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝐿𝐿

′ �𝜏𝜏𝐷𝐷𝑗𝑗�
 

𝐴𝐴𝑗𝑗,𝐿𝐿

+
1
2
�𝜏𝜏 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� + 𝑜𝑜 ��𝜏𝜏 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
�� 𝑑𝑑𝜏𝜏

+
1
2
� �𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� + �𝜏𝜏 − 𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗�
 

𝐴𝐴𝑗𝑗,𝑅𝑅

+
1
2
�𝜏𝜏 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� + 𝑜𝑜 ��𝜏𝜏 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
��𝑑𝑑𝜏𝜏

+
1
2
� �𝑔𝑔𝑗𝑗,𝐿𝐿 �𝜏𝜏𝐷𝐷𝑗𝑗� + �𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝐿𝐿

′ �𝜏𝜏𝐷𝐷𝑗𝑗�
 

𝐴𝐴𝑗𝑗,𝐿𝐿

+
1
2
�𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� + 𝑜𝑜 ��𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
��𝑑𝑑𝜏𝜏𝐴𝐴

+
1
2
� �𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� + �𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗�
 

𝐴𝐴𝑗𝑗,𝑅𝑅

+
1
2
�𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� + 𝑜𝑜 ��𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
�� 𝑑𝑑𝜏𝜏𝐴𝐴, 

(10a) 

𝐸𝐸�𝑍𝑍𝑗𝑗�

=
1
6
�𝐾𝐾𝑗𝑗3𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − �𝐾𝐾𝑗𝑗3 − 3𝐾𝐾𝑗𝑗2 + 3𝐾𝐾𝑗𝑗 − 1�𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

3

+
1
2
�1 − 2𝐾𝐾𝑗𝑗�𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗� ∆
2 + 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� ∆ + 𝑜𝑜(∆3). 

(10b) 

Remark that (10b) is the result of the integration in (10a) after 
working out the algebra and taking (7a)-(7c) into consideration. 
The estimator error associated with the 𝑗𝑗-th stratum is defined 
by 𝑒𝑒𝑗𝑗 ∶= 𝑍𝑍𝑗𝑗 − 𝐸𝐸�𝑍𝑍𝑗𝑗�. So, we have from (8b) and (10b) 

𝑒𝑒𝑗𝑗 = ∆
2
��
𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗�,   𝜏𝜏𝑗𝑗 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗�,   𝜏𝜏𝑗𝑗 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅
+ �

𝑔𝑔𝑗𝑗,𝐿𝐿�𝜏𝜏𝑗𝑗𝐴𝐴�,   𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝐿𝐿

𝑔𝑔𝑗𝑗,𝑅𝑅�𝜏𝜏𝑗𝑗𝐴𝐴�,   𝜏𝜏𝑗𝑗𝐴𝐴 ∈ 𝐴𝐴𝑗𝑗,𝑅𝑅
� −

�1
6
�𝐾𝐾𝑗𝑗3𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 𝑐𝑐1𝑗𝑗𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

3 +

𝑐𝑐2𝑗𝑗𝑔𝑔𝑗𝑗,𝑅𝑅
′ �𝜏𝜏𝐷𝐷𝑗𝑗� ∆

2 + 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� ∆� + 𝑜𝑜(∆3).  

(11) 

where 𝑐𝑐1𝑗𝑗 = 𝐾𝐾𝑗𝑗3 − 3𝐾𝐾𝑗𝑗2 + 3𝐾𝐾𝑗𝑗 − 1 and 𝑐𝑐2𝑗𝑗 = �1 − 2𝐾𝐾𝑗𝑗�/2. 
 The exact value of 𝑒𝑒𝑗𝑗 in (11) depends on the location of the 
SOD discontinuity with respect to the two antithetical sampling 
points of the 𝑗𝑗-th stratum, 𝜏𝜏𝑗𝑗 and 𝜏𝜏𝑗𝑗𝐴𝐴. Excluding the stratum’s 
centre and border limits, we end up with four possible results 
for 𝑒𝑒𝑗𝑗. However, they are similar regarding their effect on the 
estimator convergence rate, since they all have the same power 
terms of ∆, and the differences are only on some of the constant 
coefficients. To save paper space, we consider here one case 
only, that is when the SOD discontinuity is located between the 
two antithetical sampling points, i.e. 𝜏𝜏𝑗𝑗 < 𝜏𝜏𝐷𝐷𝑗𝑗 < 𝜏𝜏𝑗𝑗𝐴𝐴, 

𝑒𝑒𝑗𝑗

=
1
4
� 𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� + 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗�

2
∆

− 𝑐𝑐2𝑗𝑗 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗� ∆

2

+
1

12
�𝑐𝑐3𝑗𝑗𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 2𝐾𝐾𝑗𝑗3𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

3 + 𝑜𝑜(∆3) 

(12) 

where 𝑐𝑐3𝑗𝑗 = 1 − 6𝐾𝐾𝑗𝑗 + 6𝐾𝐾𝑗𝑗2 + 2𝐾𝐾𝑗𝑗3. 



The variance of the estimator for the  𝑗𝑗-th stratum, 𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�, is 
calculated by finding the second moment of 𝑒𝑒𝑗𝑗, 

𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗� = � 𝑝𝑝𝑗𝑗(𝜏𝜏)�𝑒𝑒𝑗𝑗�
2𝑑𝑑𝜏𝜏

∞

−∞
. (13) 

We now establish the following theorem for the variance of 
the AnSt-based filter estimator. For the proof, see Appendix B. 
 
Theorem 2. Assume that 𝑔𝑔(𝜏𝜏) is a real-valued and continuous 
function, and so is its FOD, across an observation window, 
[0,𝑇𝑇], while the SOD has a finite number, 𝑀𝑀, of bounded 
discontinuities within the same window. Then, the variance of 
the 𝑁𝑁-strata AnSt-based filter estimator, 𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�], converges 
uniformly at a rate of 𝑁𝑁−5 and satisfies 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝑁𝑁5(𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�]) =
𝑇𝑇5

720
�� �𝑔𝑔′′(𝜏𝜏)�2𝑑𝑑𝜏𝜏

𝑇𝑇𝑘𝑘

𝑇𝑇𝑘𝑘−1

𝑀𝑀+1

𝑘𝑘=1

. (14) 

where {𝑇𝑇𝑘𝑘}𝑘𝑘=1𝑀𝑀  is a set of time instants at which the SOD is 
discontinuous, with 𝑇𝑇0 ∶= 0 and 𝑇𝑇𝑀𝑀+1 ∶= 𝑇𝑇. 
 
Based on the results of Theorem 2, it is obvious that the uniform 
convergence rate of the estimator, 𝑁𝑁−5, is also applicable when 
there are no SOD discontinuities at all, since 𝑀𝑀, in this case, 
will be zero and (14) reduces to  

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝑁𝑁5(𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�]) =
𝑇𝑇5

720
� �𝑔𝑔′′(𝜏𝜏)�2𝑑𝑑𝜏𝜏
𝑇𝑇

0
. (15) 

 

 First-Order Derivative Discontinuities  
If the integrated function is continuous but not its FOD and 
SOD, rather, they are discontinuous at some 𝜏𝜏𝐷𝐷𝑗𝑗 points, then 

𝑔𝑔𝑗𝑗,𝐿𝐿 �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔 �𝜏𝜏𝐷𝐷𝑗𝑗�, (16a) 

𝑔𝑔𝑗𝑗,𝐿𝐿
′ �𝜏𝜏𝐷𝐷𝑗𝑗� ≠ 𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗�, (16b) 

𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� ≠ 𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗�. (16c) 

The impact of such discontinuities on the filter estimator is 
reflected on its variance and uniform convergence rate. The 
following theorem shows an exact expression for the variance 
that we have obtained. The proof is shown in Appendix C. 
 
Theorem 3. Assume that 𝑔𝑔(𝜏𝜏) is a real-valued continuous 
function, while its FOD and SOD are bounded and 
discontinuous at a limited number, 𝑀𝑀, of time instants, 
{𝜏𝜏𝐷𝐷𝑗𝑗}𝑗𝑗=1𝑀𝑀 . Then the variance of the AnSt-based filter estimator 
converges uniformly at a rate of 𝑁𝑁−4 and satisfies 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝑁𝑁4(𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�(𝑡𝑡)]) =
𝑇𝑇4

12
� 𝑐𝑐5𝑗𝑗  𝐺𝐺1𝑗𝑗2

 

𝑗𝑗∈ 𝐼𝐼𝑀𝑀

, (17) 

where 𝑐𝑐5𝑗𝑗 = 1 − 3 𝐾𝐾𝑗𝑗 + 6 𝐾𝐾𝑗𝑗2 − 6 𝐾𝐾𝑗𝑗3 + 3 𝐾𝐾𝑗𝑗4 and 𝐼𝐼𝑀𝑀 is a set of 
integers representing strata indices, i.e. 𝐼𝐼𝑀𝑀 = {𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, … , 𝑙𝑙𝑀𝑀}, 
at which the discontinuities do occur. 
 

Additionally, we can conclude from the proof of Theorem 3 
that a faster convergence rate of 𝑁𝑁−5 should be achieved if all 
𝐺𝐺1𝑗𝑗’s are precisely zeros, i.e. no FOD discontinuities at all, 
which is the same conclusion for the case discussed in the 
previous sub-section. 
 

 Zero-Order Derivative Discontinuities  
In this sub-section, we discuss the case where the integrated 
function itself is discontinuous. Suppose there is a finite 
number, 𝑀𝑀, of bounded ZOD discontinuities at some time 
instants, 𝜏𝜏𝐷𝐷𝑗𝑗’s, and so are the FOD and SOD. Hence, for any 𝑗𝑗-
th stratum having such discontinuities, we have  

𝑔𝑔𝑗𝑗,𝐿𝐿 �𝜏𝜏𝐷𝐷𝑗𝑗� ≠ 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� (18a) 

𝑔𝑔𝑗𝑗,𝐿𝐿
′ �𝜏𝜏𝐷𝐷𝑗𝑗� ≠ 𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗� (18b) 

𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� ≠ 𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗�. (18c) 

Theorem 4 concludes our findings in this case. The proof of this 
theorem is given in Appendix D. 
 
Theorem 4. Assume that 𝐼𝐼𝑀𝑀 = {𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, … , 𝑙𝑙𝑀𝑀  } is a set of 
integers denoting the indices of the strata which include ZOD 
discontinuities of 𝑔𝑔(𝜏𝜏). Additionally, assume that these 
discontinuities are bounded in magnitude. Then the rate of 
uniform convergence of the AnSt-based filter estimator is 
exactly 𝑁𝑁−2 and satisfies 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝑁𝑁2(𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�(𝑡𝑡)]) = 𝑇𝑇2 � 𝑐𝑐2𝑗𝑗2 𝐺𝐺0𝑗𝑗2
 

𝑗𝑗∈ 𝐼𝐼𝑀𝑀

, (19) 

Furthermore, if there are no ZOD discontinuities at all, i.e. 
𝐺𝐺0𝑗𝑗 = 0 for all values of 𝑗𝑗, then the proof of Theorem 4 clearly 
indicates that the uniform convergence rate will exactly be 𝑁𝑁−4. 
In addition, a faster rate, 𝑁𝑁−5, will be achieved if also 𝐺𝐺1𝑗𝑗 = 0 
for all 𝑗𝑗 values, which means no FOD discontinuities present at 
all. The last two conclusions for the convergence rate match the 
results demonstrated in the previous two sub-sections. 

Remark that the results of Theorems 2-4 suggest that the 
abstract values of the variance of the filter estimator depend on 
the number, the locations and the amplitudes of the 
discontinuities, in each case. Though, the key purpose of this 
paper is not identifying or eliminating such discontinuities, 
rather, it introduces an approach of employing antithetical 
random stratification technique to estimate an FIR filter output 
in some considered cases of the input signal. Our main interest 
is to prove the unbiasedness of the estimator, and to find how 
fast the uniform convergence rates of the estimator will be in 
those special cases (i.e. presence of discontinuities in different 
orders of the derivative.) According to the results of these 
theorems and even if there are no discontinuities at all, there is 
still a necessity for a priori knowledge of the SOD of the input 
signal, as indicated in (15), to determine the values of the 
estimator’s variance. Indeed, this is not the case in most 
practical applications, because if 𝑔𝑔′′(𝜏𝜏) is known in advance 
why we would need to sample the signal in the first place. 
Therefore, this work is not about using the specific values of the 



estimator’s variance in practical applications, yet it gives a 
general impression about what to expect regarding the amount 
of errors if the special considered cases are met. For the 
usability of the already derived variance expressions in real life 
applications, we will consider this very topic in a future 
publication, where the main focus will be on how to enhance 
the estimator’s performance and reduce the values of the 
variance in different cases. Essentially, this requires from us to 
employ special techniques that can predict, detect and supress 
the discontinuities in the integrated function. 
 

5. Numerical Results 
To verify our mathematical derivation of the estimator uniform 
convergence rates, we conduct two sets of numerical examples. 
In the first set, we only consider abstract functions which either 
have no discontinuities at all or have a finite number of bounded 
discontinuities. We approximate the integrals of such functions 
using AnSt-based estimator and compare the results with the 
actual integral values within an observation window [0,1.2] sec. 
Whereas the second set of examples include more practical 
AnSt-based estimator applications using a lowpass filter and 
input signals characterize functions with some discontinuities 
in their ZOD, FOD or SOD. 

Consider the theoretical (i.e. abstract) functions 
𝑔𝑔1(𝑡𝑡) = 𝑠𝑠𝑙𝑙𝑎𝑎(3.4𝜋𝜋𝑡𝑡) − 1.3 𝑐𝑐𝑜𝑜𝑠𝑠(5.8𝜋𝜋𝑡𝑡), (20a) 

𝑔𝑔2(𝑡𝑡) = 0.1𝑠𝑠𝑙𝑙𝑎𝑎 (3.4𝜋𝜋𝑡𝑡) + (𝑡𝑡 − 0.11)|𝑡𝑡 − 0.11| +
1.7(𝑡𝑡 − 0.22)|𝑡𝑡 − 0.22| − 2.9(𝑡𝑡 − 0.33)|𝑡𝑡 − 0.33|,  (20b) 

𝑔𝑔3(𝑡𝑡) = −7𝑐𝑐𝑜𝑜𝑠𝑠(5.8𝜋𝜋𝑡𝑡) + 10𝑆𝑆(8.4𝜋𝜋(𝑡𝑡 − 0.25),0.5),  (20c) 

𝑔𝑔4(𝑡𝑡) = −7 𝑐𝑐𝑜𝑜𝑠𝑠(5.8𝜋𝜋𝑡𝑡) + 10𝑆𝑆(17.7𝜋𝜋(𝑡𝑡 − 0.95), 0),  (20d) 

where 𝑆𝑆(𝑡𝑡,𝑙𝑙) is the MATLAB’s built-in sawtooth function. 
When 𝑙𝑙 is 0 or 1, 𝑆𝑆 is equivalent to the standard frac function, 
with 𝑓𝑓𝑉𝑉𝑎𝑎𝑐𝑐(𝑡𝑡) = 𝑡𝑡 − ⌊𝑡𝑡⌋, where ⌊. ⌋ denotes the floor function. 
Whereas, if 0 < 𝑙𝑙 < 1, then 𝑆𝑆 represents the triangle wave 
function 𝑡𝑡𝑉𝑉𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑙𝑙𝑒𝑒(𝑡𝑡) = 2/𝜋𝜋 × 𝑎𝑎𝑉𝑉𝑐𝑐𝑠𝑠𝑙𝑙𝑎𝑎(𝑠𝑠𝑙𝑙𝑎𝑎(𝑡𝑡)). In MATLAB, 
the sawtooth function is implemented in such a way that selects 
between the two function forms (frac or triangle) according to 
the variable 𝑙𝑙, which also determines where the maximum of 
the function is. Note that 𝑔𝑔1(𝑡𝑡) has no discontinuities at all, 
𝑔𝑔2(𝑡𝑡) has some bounded discontinuities which present in the 
SOD, but not in the FOD or ZOD, 𝑔𝑔3(𝑡𝑡) is a continuous 
function while its FOD and SOD are not, and 𝑔𝑔4(𝑡𝑡) has finite 
and bounded ZOD discontinuities. Figs. 3-6 show the plots of 
the functions alongside with the associated AnSt-based 
estimator’s MSEs (variances). 

In these AnSt-based estimation examples, we have carried 
out 64 independent Monte Carlo simulations per each example. 
This ensures that the outcome is smooth and reliable. It is seen 
that the uniform convergence rates of the AnSt-based estimator 
are in 𝑜𝑜(𝑁𝑁−5), 𝑜𝑜(𝑁𝑁−5), 𝑜𝑜(𝑁𝑁−4), and 𝑜𝑜(𝑁𝑁−2) for the abstract 
functions 𝑔𝑔1(𝑡𝑡), 𝑔𝑔2(𝑡𝑡), 𝑔𝑔3(𝑡𝑡), and 𝑔𝑔4(𝑡𝑡), respectively. These 
results confirm the analytical findings established in Section 3. 

 

 

 The function 𝑔𝑔1(𝑡𝑡) is continuous, and so are all its derivatives. The 
AnSt-based estimator’s uniform convergence rate is 𝑁𝑁−5. 

 

 The function 𝑔𝑔2(𝑡𝑡) is continuous, and so is its FOD, while there 
are some bounded discontinuities in the SOD. Though, the AnSt-based 
estimator’s uniform convergence rate is 𝑁𝑁−5, as well. 

 

 The function 𝑔𝑔3(𝑡𝑡) is continuous, but neither its FOD nor SOD is 
continuous. Therefore, the AnSt-based estimator converges uniformly at a 
slower rate of 𝑁𝑁−4. 
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 The function 𝑔𝑔4(𝑡𝑡) is discontinuous, and so are its FOD and SOD. 
The AnSt-based estimator converges uniformly at the slowest rate of 𝑁𝑁−2. 

 
On the other hand, a lowpass filter (LPF) with a cutoff 

frequency of 13kHz has been designed to check the 
effectiveness of our AnSt-based filter estimator. The input 
signals to the filter are sampled uniformly and randomly before 
the output results got compared. Four input signals have been 
considered: 1) continuous (no derivative discontinuities at any 
order); 2) continuous ZOD and FOD but not the SOD; 3) 
continuous ZOD with finite and bounded FOD and SOD 
discontinuities, and finally; 4) discontinuous (all orders of 
derivative). Fig. 7 shows the filter frequency response and the 
single-sided spectrum of a continuous input signal with no 
derivative discontinuities at all, whereas Figs. 8-11 depicts the 
single-sided spectra of the output signals (uniformly and 
randomly sampled). Observe how much the output spectra of 
the randomly sampled signals are close to those of the 
uniformly sampled ones even though the average random 
sampling frequency is only FARS=65.536kHz. In contrast, we 
would need a uniform sampling frequency of at least 126kHz, 
without using a pre-anti-aliasing filter, to avoid aliasing 
problem. In our examples, an actual uniform sampling rate of 
FUS=131.072kHz has been used. 

Remark that the spectrum errors of the AnSt-based filter 
estimator in Figs. 8-11 become larger as discontinuities present 
in the lower orders of derivative, i.e. error amounts increase 
when moving from Fig. 8 to Fig. 11. While in Fig. 12, the 
average random sampling frequency is only FARS =32.768kHz, 
i.e. one quarter of the total uniform sampling rate. Although the 
input signal in Fig. 12 has no discontinuities at all, the errors 
seem to be the maximum here. This is because of the nature of 
the AnSt-based estimator, which has a fast uniform 
convergence rate of 𝑁𝑁−5, in this case. Meaning, the smaller 
number of sampling points are used, the much more amount of 
errors appears. 

As already indicated for the previous set of examples, the 
second set of filter estimator numerical examples has been 
carried out by averaging 128 independent Monte Carlo runs, 
and not based on a single realisation. This ensures that the 
findings shown in Figs. 8-12 are confident and rules out the 
possibility that they are due to a particular sampling sequence. 

 

 Frequency response of the 13kHz-bandwidth LPF (dashed black), 
and spectrum of one of the continuous-time input signals (solid blue) with 
no derivative discontinuities at any order.  

 

 The spectra of the filter outputs based on uniformly sampled (blue) 
and AnSt randomly sampled (dashed red) signals. Case 1) the filter input is 
a continuous-time signal with no derivative discontinuities at any order (see 
Fig. 7 above.) Uniform sampling frequency is FUS=131.072kHz, whereas the 
average random sampling frequency is FARS=65.536kHz. 

 

 The spectra of the filter outputs based on uniformly sampled (blue) 
and AnSt randomly sampled (dashed red) signals. Case 2) the filter input is 
a continuous-time signal with only 6 bounded SOD discontinuities. 
FUS=131.072kHz, whereas FARS=65.536kHz. 
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 The spectra of the filter outputs based on uniformly sampled (blue) 
and AnSt randomly sampled (dashed red) signals. Case 3) the filter input is 
a continuous signal with 500 bounded FOD discontinuities. 
FUS=131.072kHz, whereas FARS=65.536kHz. 

 

 The spectra of the filter outputs based on uniformly sampled (blue) 
and AnSt randomly sampled (dashed red) signals. Case 4) the filter input is 
a discontinuous signal with 250 bounded ZOD discontinuities. 
FUS=131.072kHz, whereas FARS=65.536kHz. 

 

 The spectra of the filter outputs based on uniformly sampled (blue) 
and AnSt randomly sampled (dashed red) signals. The filter input is the 
same as that in Fig. 7, but unlike Case 1) of Fig. 8, the average random 
sampling frequency used here is only one quarter of the uniform sampling 
rate, i.e. FARS=32. 768kHz. 

 

6. Conclusion 
In this paper, we have demonstrated how to use the AnSt 
random sampling technique in a DASP-based filtering 
application. The proposed filter estimator is proven to be 
unbiased. However, this is only applicable for random sampling 
schemes with a uniform PDF and cannot be generalised for 
other types of distributions. Moreover, we have considered 
input signals that have finite number of bounded discontinuities 
in one or more orders of their derivatives. Having such 
discontinuities was found to be negatively affecting the 
variance of the estimator. If there are no discontinuities at all or 
the discontinuities only present in the SOD, then the rate of 
uniform convergence of the estimator, in these cases, is the 
fastest and it is exactly equal to 𝑁𝑁−5. Whereas a rate of 𝑁𝑁−4 is 
achieved if the FOD is discontinuous, as well. Finally, for the 
case that the ZOD is also discontinuous, then the rate is proven 
to be the slowest, where only 𝑁𝑁−2 is reached. Although our 
estimator is based on equidistant stratification, it is also 
applicable for other nonuniform partitioning subject to some 
mild conditions already defined in the literature. The presented 
numerical examples verify the mathematical derivations and 
results. 
 

Appendix A  
Proof of Theorem 1 
The expected value of  𝑦𝑦�(𝑡𝑡), given in (3), is 

𝐸𝐸[𝑦𝑦�(𝑡𝑡)] = 𝐸𝐸 ���𝑔𝑔�𝑡𝑡, 𝜏𝜏𝑗𝑗� + 𝑔𝑔�𝑡𝑡, 𝜏𝜏𝑗𝑗𝐴𝐴��
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Appendix B  
Proof of Theorem 2 
From (12) and (13), we have  
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𝑆𝑆𝑗𝑗
𝑆𝑆𝑗𝑗−1

𝜏𝜏𝐷𝐷𝑗𝑗�
2
∆ − 𝑐𝑐2𝑗𝑗  𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗� ∆
2 +

1
12
�𝑐𝑐3𝑗𝑗𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 2𝐾𝐾𝑗𝑗3𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

3 + 𝑜𝑜(∆3)�
2
𝑑𝑑𝜏𝜏.  

(B.1) 
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𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�

=
1

720
�𝑐𝑐4𝑗𝑗𝐺𝐺2𝑗𝑗2 + �𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗��� ∆

6 +  𝑜𝑜(∆6), 
(B.2) 

with 𝑐𝑐4𝑗𝑗 = 9 − 45𝐾𝐾𝑗𝑗 + 90𝐾𝐾𝑗𝑗2 − 110𝐾𝐾𝑗𝑗3 + 105𝐾𝐾𝑗𝑗4 − 60𝐾𝐾𝑗𝑗5 +
20𝐾𝐾𝑗𝑗6, and 𝐺𝐺2𝑗𝑗 is defined in (6a), above. 
Now, the variance of the whole 𝑁𝑁-strata AnSt-based filter 
estimator is  

𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�] = �𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

=
𝑇𝑇5

720𝑁𝑁5��𝑐𝑐4𝑗𝑗𝐺𝐺2𝑗𝑗2 + �𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑗𝑗��� ∆
𝑁𝑁

𝑗𝑗=1
+  𝑜𝑜(𝑁𝑁−5). 

(B.3) 

To check the uniform convergence rate of the estimator, we 
observe 𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�] as 𝑁𝑁 → ∞ by means of Riemann integration, 
lim
𝑁𝑁→∞

𝑁𝑁5(Var[𝑦𝑦�])

= lim
𝑁𝑁→∞

�
𝑇𝑇5

720
��𝑐𝑐4𝑗𝑗𝐺𝐺2𝑗𝑗2 + �𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗��� ∆

𝑁𝑁

𝑗𝑗=1

�. 
(B.4) 

 As the number of strata approaches infinity, ∆→ 0. And since 
𝑔𝑔(𝜏𝜏) is assumed to have an 𝑀𝑀 number of SOD discontinuities, 
within the observation window, then 𝑔𝑔′′(𝜏𝜏) will be a piecewise-
continuous function with 𝑀𝑀 + 1 pieces. Though, it is still 
integrable, with the left and right SOD parts in (B.4) reduce to 
just 𝑔𝑔′′(𝜏𝜏), because 𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� = 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� for all strata 

excluding the 𝑀𝑀 ones with discontinuities. Hence, (B.4) can be 
calculated by adding 𝑀𝑀 + 1 integral terms, 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝑁𝑁5(𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�]) =
𝑇𝑇5

720
�� �𝑔𝑔′′(𝜏𝜏)�2𝑑𝑑𝜏𝜏

𝑇𝑇𝑘𝑘

𝑇𝑇𝑘𝑘−1

𝑀𝑀+1

𝑘𝑘=1

. (B.5) 

□ 
 

Appendix C  
Proof of Theorem 3 
Evaluating the integrals in (10a), taking (16a)-(16c) into 
account, yields a new expression for the estimator’s error in the 
𝑗𝑗-th stratum, 𝐸𝐸�𝑍𝑍𝑗𝑗�,  

𝐸𝐸�𝑍𝑍𝑗𝑗�

=
1
6
�𝐾𝐾𝑗𝑗3𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 𝑐𝑐1𝑗𝑗  𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

3

+ 𝑐𝑐2𝑗𝑗  𝑔𝑔𝑗𝑗,𝑅𝑅
′ �𝜏𝜏𝐷𝐷𝑗𝑗� ∆

2 −
1
2
𝐾𝐾𝑗𝑗2 𝐺𝐺1𝑗𝑗  ∆2 + 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� ∆

+ 𝑜𝑜(∆3). 

(C.1) 

To find the new 𝑗𝑗-th based sub-estimator error, in this case, we 
compute 𝑒𝑒𝑗𝑗 = 𝑍𝑍𝑗𝑗 − 𝐸𝐸�𝑍𝑍𝑗𝑗� using (8b) and (C.1). Again, we are 
interested in one of the four almost similar expressions for 𝑒𝑒𝑗𝑗, 
that is, when 𝜏𝜏𝑗𝑗 < 𝜏𝜏𝐷𝐷𝑗𝑗 < 𝜏𝜏𝑗𝑗𝐴𝐴. 

𝑒𝑒𝑗𝑗

=
1
2
∆�2𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� −  𝑔𝑔𝑗𝑗,𝐿𝐿

′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝐷𝐷𝑗𝑗  −  𝜏𝜏𝑗𝑗�

− 𝑔𝑔𝑗𝑗,𝑅𝑅
′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗 + 2∆�𝐾𝐾𝑗𝑗 −

1
2
��

+
1
2
𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝐷𝐷𝑗𝑗 − 𝜏𝜏𝑗𝑗�

2

+
1
2
𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗 + 2∆�𝐾𝐾𝑗𝑗 −

1
2
��

2

�

+
1
6
∆ �−3∆𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝐾𝐾𝑗𝑗 − 1�2 + 6𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� �𝐾𝐾𝑗𝑗 − 1�

+ ∆2𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝐾𝐾𝑗𝑗 − 1�3�

−
1
6
∆𝐾𝐾𝑗𝑗 �6𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� − 3∆𝐾𝐾𝑗𝑗𝑔𝑔𝑗𝑗,𝐿𝐿

′ �𝜏𝜏𝐷𝐷𝑗𝑗�

+ ∆2𝐾𝐾𝑗𝑗2𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� + 𝑜𝑜(∆3). 

(C.2) 

 Now, the expected value of the estimator for one stratum is 
𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗� = ∫ 𝑝𝑝𝑗𝑗(𝜏𝜏)�𝑒𝑒𝑗𝑗�

2𝑑𝑑𝜏𝜏∞
−∞ = ∆∫ �𝑒𝑒𝑗𝑗�

2𝑑𝑑𝜏𝜏𝑆𝑆𝑗𝑗
𝑆𝑆𝑗𝑗−1

. We include here 
the final answer since, algebraically, it is quite long, yet it is 
straight forward. Thus, 

𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�

=
𝑐𝑐5𝑗𝑗
12

𝐺𝐺1𝑗𝑗2∆4 +
𝑐𝑐6𝑗𝑗
48

�𝐺𝐺2𝑗𝑗𝐺𝐺1𝑗𝑗�∆5 +
𝑐𝑐7𝑗𝑗
720

𝐺𝐺2𝑗𝑗2∆6

+
1

720
�𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

6 + 𝑜𝑜(∆6), 

(C.3) 

where 𝑐𝑐6𝑗𝑗 = 2𝑐𝑐2𝑗𝑗�3 − 6 𝐾𝐾𝑗𝑗 + 10 𝐾𝐾𝑗𝑗2 − 8 𝐾𝐾𝑗𝑗3 + 4 𝐾𝐾𝑗𝑗4�, and 
𝑐𝑐7𝑗𝑗 = 𝑐𝑐4𝑗𝑗 + 20 𝐾𝐾𝑗𝑗6.  For the 𝑁𝑁-strata AnSt-based filter 
estimator with a finite number, 𝑀𝑀, of bounded FOD and SOD 
discontinuities, we have, 

𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�(𝑡𝑡)] = �𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

= � �
𝑐𝑐5𝑗𝑗
12

𝐺𝐺1𝑗𝑗2∆4 +
𝑐𝑐6𝑗𝑗
48

�𝐺𝐺2𝑗𝑗𝐺𝐺1𝑗𝑗�∆5 +
𝑐𝑐7𝑗𝑗
720

𝐺𝐺2𝑗𝑗2∆6�
 

𝑗𝑗∈ 𝐼𝐼𝑀𝑀

+
𝑇𝑇5

720𝑁𝑁5 � �𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑛𝑛�𝑔𝑔𝑗𝑗,𝑅𝑅

′′ �𝜏𝜏𝐷𝐷𝑛𝑛��∆
𝑁𝑁

𝑛𝑛=1
𝑛𝑛∉ 𝐼𝐼𝑀𝑀

 + 𝑜𝑜(𝑁𝑁−5), 

(C.4) 

lim
𝑁𝑁→∞

𝑁𝑁4(Var[𝑦𝑦�(𝑡𝑡)]) =
𝑇𝑇4

12
� 𝑐𝑐5𝑗𝑗  𝐺𝐺1𝑗𝑗2

 

𝑗𝑗∈ I𝑀𝑀

. (C.5) 

To distinguish between the two summations in (C.4), we have 
used different subscripts, 𝑗𝑗 and 𝑎𝑎. Note that (C.5) proves that 
the variance of 𝑦𝑦�(𝑡𝑡) is converging at a uniform rate of 𝑁𝑁−4, and 
this completes the proof of Theorem 3. 

□ 

Appendix D  
Proof of Theorem 4 

We get an extra term in the expression of 𝐸𝐸�𝑍𝑍𝑗𝑗� when 
recalculating the integrals in (10a) and considering (18a)- (18c),  



𝐸𝐸�𝑍𝑍𝑗𝑗�

=
1
6
�𝐾𝐾𝑗𝑗3𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� − 𝑐𝑐1𝑗𝑗  𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� ∆

3

+ 𝑐𝑐2𝑗𝑗  𝑔𝑔𝑗𝑗,𝑅𝑅
′ �𝜏𝜏𝐷𝐷𝑗𝑗� ∆

2 −
1
2
𝐾𝐾𝑗𝑗2 𝐺𝐺1𝑗𝑗  ∆2 + 𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� ∆

+ +𝐾𝐾𝑗𝑗𝐺𝐺0𝑗𝑗∆ + 𝑜𝑜(∆3). 

(D.1) 

Analogous to the previous two sub-sections, we find the error 
term of the estimator in the 𝑗𝑗-th stratum, 𝑒𝑒𝑗𝑗, for the case when 
𝜏𝜏𝑗𝑗 < 𝜏𝜏𝐷𝐷𝑗𝑗 < 𝜏𝜏𝑗𝑗𝐴𝐴. So, by subtracting (D.1) out from (8b) and 
simplifying the result algebraically, we get 
𝑒𝑒𝑗𝑗

=
1
2
∆�2𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� −  𝑔𝑔𝑗𝑗,𝐿𝐿

′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝐷𝐷𝑗𝑗  −  𝜏𝜏𝑗𝑗�

− 𝑔𝑔𝑗𝑗,𝑅𝑅
′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗 + 2∆�𝐾𝐾𝑗𝑗 −

1
2
��

+
1
2
𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝐷𝐷𝑗𝑗 − 𝜏𝜏𝑗𝑗�

2

+
1
2
𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝜏𝜏𝑗𝑗 − 𝜏𝜏𝐷𝐷𝑗𝑗 + 2∆�𝐾𝐾𝑗𝑗 −

1
2
��

2

�

+
1
6
∆ �−3∆𝑔𝑔𝑗𝑗,𝑅𝑅

′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝐾𝐾𝑗𝑗 − 1�2 + 6𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� �𝐾𝐾𝑗𝑗 − 1�

+ ∆2𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗� �𝐾𝐾𝑗𝑗 − 1�3�

−
1
6
∆𝐾𝐾𝑗𝑗 �6𝑔𝑔𝑗𝑗,𝑅𝑅 �𝜏𝜏𝐷𝐷𝑗𝑗� − 3∆𝐾𝐾𝑗𝑗𝑔𝑔𝑗𝑗,𝐿𝐿

′ �𝜏𝜏𝐷𝐷𝑗𝑗�

+ ∆2𝐾𝐾𝑗𝑗2𝑔𝑔𝑗𝑗,𝐿𝐿
′′ �𝜏𝜏𝐷𝐷𝑗𝑗�� + 𝑜𝑜(∆3). 

(D.2) 

And the second moment of this error is equal to the sub-
variance related to the 𝑗𝑗-th stratum, 𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗� = ∆∫ �𝑒𝑒𝑗𝑗�

2𝑑𝑑𝜏𝜏𝑆𝑆𝑗𝑗
𝑆𝑆𝑗𝑗−1

, 

𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�

= 𝑐𝑐2𝑗𝑗2 𝐺𝐺0𝑗𝑗2 ∆2  +
1
2
𝑐𝑐2𝑗𝑗  𝑐𝑐8𝑗𝑗  �𝐺𝐺1𝑗𝑗𝐺𝐺0𝑗𝑗�∆3  

+
1

12
�𝑐𝑐5𝑗𝑗 𝐺𝐺1𝑗𝑗2 + 4𝑐𝑐2𝑗𝑗2𝑐𝑐9𝑗𝑗  �𝐺𝐺2𝑗𝑗𝐺𝐺0𝑗𝑗��∆4  

+
1

48
𝑐𝑐6𝑗𝑗  �𝐺𝐺2𝑗𝑗𝐺𝐺1𝑗𝑗�∆5  

+
1

720
�𝑐𝑐4𝑗𝑗  𝐺𝐺2𝑗𝑗2 + �𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑗𝑗� 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑗𝑗��� ∆

6 + 𝑜𝑜(∆6), 

(D.3) 

where 𝑐𝑐8𝑗𝑗 = 1 − 2𝐾𝐾𝑗𝑗 + 2𝐾𝐾𝑗𝑗2 and 𝑐𝑐9𝑗𝑗 = 1 − 𝐾𝐾𝑗𝑗 + 𝐾𝐾𝑗𝑗2. 
The expected value of the filter estimator is simply the 
summation of the 𝑁𝑁 individual sub-estimators. Hence, 

𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�(𝑡𝑡)] = ∑ 𝑉𝑉𝑎𝑎𝑉𝑉�𝑍𝑍𝑗𝑗�𝑁𝑁
𝑗𝑗=1 = ∑ �𝑐𝑐2𝑗𝑗2 𝐺𝐺0𝑗𝑗2 ∆2 + 

𝑗𝑗∈ 𝐼𝐼𝑀𝑀
1
2
𝑐𝑐2𝑗𝑗  𝑐𝑐8𝑗𝑗  �𝐺𝐺1𝑗𝑗𝐺𝐺0𝑗𝑗�∆3 + 1

12
�𝑐𝑐5𝑗𝑗  𝐺𝐺1𝑗𝑗2 +

4𝑐𝑐2𝑗𝑗2𝑐𝑐9𝑗𝑗  �𝐺𝐺2𝑗𝑗𝐺𝐺0𝑗𝑗��∆4 + 1
48
𝑐𝑐6𝑗𝑗  �𝐺𝐺2𝑗𝑗𝐺𝐺1𝑗𝑗�∆5 +

1
720

𝑐𝑐4𝑗𝑗  𝐺𝐺2𝑗𝑗2 ∆6� + 𝑇𝑇5

720𝑁𝑁5
∑ �𝑔𝑔𝑗𝑗,𝐿𝐿

′′ �𝜏𝜏𝐷𝐷𝑛𝑛� 𝑔𝑔𝑗𝑗,𝑅𝑅
′′ �𝜏𝜏𝐷𝐷𝑛𝑛��∆

𝑁𝑁
𝑛𝑛=1
𝑛𝑛∉ 𝐼𝐼𝑀𝑀

+

𝑜𝑜(𝑁𝑁−5).  

(D.4) 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝑁𝑁2(𝑉𝑉𝑎𝑎𝑉𝑉[𝑦𝑦�(𝑡𝑡)]) = 𝑇𝑇2 � 𝑐𝑐2𝑗𝑗2 𝐺𝐺0𝑗𝑗2
 

𝑗𝑗∈ 𝐼𝐼𝑀𝑀

, (D.5) 

 It is obvious from (D.5) that the AnSt-based filter estimator 
is converging uniformly at an exact rate of 𝑁𝑁−2. This completes 
the proof of Theorem 4.  

□ 
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