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A B S T R A C T

During the flight, the crew might consider modifying their planned trajectory, taking into account currently
available information, such as an updated weather forecast report or the already accrued amount of delay.
This modified planned trajectory translates into changes on expected fuel and flying time, which will impact
the airline’s relevant performance indicators leading to a complex multiple-criteria decision-making problem.
Pilot3, a project from the Clean Sky Joint Undertaking 2 under European Union’s Horizon 2020 research and
innovation programme, aims to develop an objective optimisation engine to assist the crew on this process.
This article presents a domain-driven approach for the selection of the most suitable multiple-criteria decision-
making methods to be used for this optimisation framework. The most relevant performance indicators, based
on airline’s objectives and policies, are identified as: meeting on-time performance, leading to a binary value in
a deterministic scenario; and total cost, which can be disaggregated into sub-cost components. The optimisation
process consists of two phases: first, Pareto optimal solutions are generated with a multi-objective optimisation
method (lexicographic ordering); second, alternative trajectories are filtered and ranked using a combination
of multi-criteria decision analysis methods (analytic hierarchy process and VIKOR). A realistic example of use
shows the applicability of the process and studies the sensibility of the optimisation framework.
. Introduction

During a flight, when a disruption (or an update on information
ffecting the trajectory prediction, such as a change of the weather fore-
ast) arises, the crew might consider modifying the planned trajectory
o optimise their operations. However, pilots face three main chal-
enges: (i) consider comprehensive optimisation objectives by translat-
ng fuel and time values, which are the two main variables adjusted
hen trajectories are modified, into performance indicators relevant to
irlines; (ii) account for the multi-objective nature of the problem, since
ifferent high-level goals are defined by airlines operators, such as min-
mising costs and maximising customer satisfaction; (iii) understand the
xpected deviations between planned and executed trajectories due to
he stochasticity of the operational environment. Pilot3, an innovation
ction from Clean Sky Joint Undertaking 2 under the European Union’s
orizon 2020 research and innovation programme, develops an opti-
isation engine, within a multiple-criteria decision-making (MCDM)

ramework, to assist the crew with this process.
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E-mail address: adeline.de.montlaur@upc.edu (A. Montlaur).
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Currently, available solutions to assist crew rely on systems embed-
ded in electronic flight bags (EFB) or commercial off-the-shelf tablets.
Historically, the first type of pilot support applications in such de-
vices aimed to reduce the amount of printed documents pilots needed
to carry-on. For instance, these applications allow digital briefings,
performance calculations, digital flight logging and reporting, digital
archive of navigation charts and airport diagrams. Examples of such
systems include FlySmart1 by Airbus, Boeing Onboard Performance
Tool2, eWAS Pilot3 from SITA and Lido/mPilot4 by Lufthansa Systems.
Moreover, increased aircraft connectivity has enabled the use of more
complex systems that can rely on cloud computation. For example,
Pacelab Flight Profile Optimizer5 considers the most up-to-date weather
forecast to optimise the flight vertical profile.

All these systems, however, rely on pre-computed costs or merit
functions that might not reflect the overall airline performance objec-
tives, this would imply a multi-objective optimisation, nor provide a
set of alternatives presenting the different trade-offs to be used by the
pilot. Therefore, the pilot is faced with the challenge of interpreting the
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results of these systems, as the costs they provide might not reflect the
verall situation.

Since Vilfredo Pareto first introduced the concept of Pareto optimal-
ty more than 120 years ago (Pareto, 1896), hundreds of researchers
ave addressed the problem of multi-objective (or criteria) optimisa-
ion. Dozens of methods, with subsequent refinements and extensions,
ave been proposed, especially in the last half-century, with thousands
f scientific publications in a wide diversity of applications, including
ir transportation systems (Asadi et al., 2021). Yet, none of these
ethods or refinements can be said to be generally superior to all

he others. In fact, selecting an appropriate MCDM method is by itself
MCDM problem, as seen in Guitouni and Martel (1998), Roy and

łowiński (2013) and Cinelli et al. (2022).
A multiplicity of aspects should be considered in this selection

rocess, and, to a certain degree, many of the comparison criteria are
ifficult to quantify and are based on the expertise and preferences of
he decision maker (DM). The features of the problem to be solved and
he capabilities of the DM should be charted before a solution method
an be chosen: some methods may suit some problems and some DMs
etter than others. For this reason, the selection of the method(s) must
e domain-driven.

From a general point of view, the criteria to consider when evaluat-
ng alternative MCDM methods can be defined among others as (Hobbs,
986):

• appropriateness: the method should be appropriate to the prob-
lem to be solved;

• ease of use: the effort and knowledge required from the analyst
and the DM should be considered;

• validity: the method should measure what it is supposed to and
the assumptions should be consistent with reality; and,

Nevertheless, some researchers have expanded the number of cri-
eria to consider, such as Gershon and Durckstein (1983) who present
8 different criteria. According to Stewart (1992), three criteria can
ummarise the main aspects that need to be assessed: (i) the input
equired from the DM must be meaningful and unequivocal; (ii) the
ransparency of the method should be assessed; and (iii) the final aspect
o consider is the method simplicity and efficiency.

During a flight, trajectory modifications are usually translated into
hanges on expected fuel and flying time, which will impact the air-
ine’s relevant performance indicators, leading to a complex MCDM
roblem. This paper provides a specific domain-driven approach to
dentify the criteria to be used, and to select the most suitable MCDM
ethod(s). Based on consultation with Pilot3 project’s Advisory Board,

omposed in part by airline representatives, dispatchers and pilots,
he airline’s most relevant objectives are first identified. A two-phase
CDM process is then started: first, Pareto optimal solutions are gen-

rated. Second, the obtained set of optimal alternative trajectories is
iltered and ranked. The most suitable MCDM methods are chosen for
oth phases. The resulting optimisation framework is able to consider
he multi-objective nature of the flight operations.

The paper is structured as follows: Section 2 introduces the current
light management practices with their limitations, as well as Pilot3
rchitecture configuration and its execution logic. Section 3 presents a
iterature review on potentially relevant MCDM methods. In Section 4,

domain-driven selection of the most suitable methods is conducted,
onsidering a set of criteria for the different phases of the Pilot3
ptimisation and decision-making processes. The paper then applies
he selected methods and the global optimisation process to a realistic
xample in Section 5 and closes with conclusions and further work in
2

ection 6.
. Context of the study

When assessing different alternatives to adjust the trajectory during
flight, the pilot should consider the airline’s targets and policies.

hese trajectory alternatives will result in the modification of two
light’s parameters: its expected duration (time) and/or the amount of
uel to be used. However, airlines do not necessarily focus on these
wo indicators (fuel and time) but on other high-level objectives (see
ection 4.1.1). This raises the need of multi-objective optimisation.

.1. Current tactical flight management

Current Flight Management Systems (FMS) (re)compute flight tra-
ectories by minimising a compound objective function that considers
oth fuel and time costs. In this two-objective optimisation problem,
weighting scalar – named cost index (CI) – is used to translate the

ariation in time and fuel into equivalent fuel usage. More specifically,
he CI represents the ratio between time and fuel costs (Airbus, 1998).
he CI could be considered as a proxy to the real indicators that
re relevant to the airline. An update of the CI in order to consider
he evolution of the operational environment is a complex task, and
ptimisation tools usually rely on prior-departure defined values (Cook
t al., 2009; Gurtner et al., 2021). This means that the pilot (or ground
ispatcher) must manually assess the trade-offs between alternatives.

Usually, the crew considers the outcome of these optimisations
long other available data (such as the list of on-board connecting
assengers, or previous experience on expected delay at arrival for
hat particular route), and estimate existing trade-offs, to decide if it
s worth recovering a given amount of time using a certain amount
f extra fuel. During this analysis and selection exercise, the crew
ight discard options, which they do not accept as valid (e.g. avoiding

hanging cruise altitude to a level where the pilot knows turbulence
s experienced), and mentally rank the different possibilities to select
he one that is considered best. Thus, the pilot is performing a manual
terative analysis of alternatives within a multi-criteria optimisation. On
op of this, uncertainties on the realisation of the trajectories, due to the
perational environment (e.g. actual weather encountered, holding at
rrival, taxi-in time), might lead to sub-optimal decisions.

Finally, different airlines might have different policies in place. Yet,
ne common approach to manage larger disruptions is to estimate
lternatives from the ground (e.g. monitoring flight operations by dis-
atchers) and to indicate to the pilot how they should operate (e.g.
hich CI to select). But even if the decision is performed on-ground,

he same principles of multi-criteria considerations (and uncertainty)
pply. In some instances, for example, when encountering small vari-
tions (e.g. weather update), or when considering tactical operational
ssues (e.g. where to perform the top of descent), pilots still maintain
ome autonomy. Moreover, pilots might still make decisions based on
heir own interpretation of priorities, which might vary from flight to
light. As previously indicated, current support systems are thus not
ble to consider the multi-objective dimension of the problem.

.2. Pilot3 – flight decision support tool

Pilot3 aims to develop a prototype decision-support tool able to
utomatically generate alternative trajectories for the pilot, considering
oth airlines objectives and operational uncertainty. The system must
resent these alternatives in a simple and effective manner with the
dequate level of information to understand the impact of the solutions
n the objectives (and sub-objectives: criteria) and the involved trade-
ffs. Finally, the tool must be able to accept and consider inputs for the
ilot, such as constraints. Pilot3 system is composed of five sub-systems:

• Alternatives generator, which computes different alternatives to be
considered by the system. This is a multi-objective optimisation
aiming at exploring Pareto solutions. The alternatives generator

considers inputs from two independent sub-systems:
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Fig. 1. Pilot3 execution diagram with example.
– performance indicators estimator, which provides information
on how to estimate the impact of each solution for the
different performance indicators (PIs) required to estimate
the optimisation objectives relevant to the airline.

– operational Air Traffic Management (ATM) estimator, which
estimates uncertainties linked to operational aspects. For
example, estimation of expected arrival procedure, holding
time, distance flown in terminal airspace due to arrival
sequencing and merging operations, or taxi-in time.

• Performance assessment module, which filters and ranks the al-
ternatives considering airlines and pilots’ preferences. This is a
multi-criteria decision analysis process and it is crucial to produce
a support tool suitable for the tactical analysis and exploration of
alternatives.

• Human machine interface (HMI), which presents information to the
crew in a simple but complete form to facilitate the understanding
of the trade-offs, and where inputs are required by the DM to
select and filter alternatives.

For more information on Pilot3 architecture the reader is referred
to Pilot3 Consortium (2020a, 2022). The full optimisation process can
be seen as an exploration of alternatives consisting in an optimisation
framework including the following phases (as presented in Fig. 1):

1. Configuration phase, performed prior the flight to indicate air-
line’s preferences and settings.

2. Generation phase, which aims at generating Pareto optimal so-
lutions.

3. Ranking phase, required to filter and rank the set of generated
optimal alternatives to facilitate its analysis by the crew.

4. Selection phase, where the pilot analyses the output of the
system and considers if further operational constraints should be
introduced in the optimisation.

2.2.1. Configuration phase
This phase will be performed by the airline prior to the flight. This

could be done strategically, or some parameters could be selected at
dispatching level on a flight-by-flight basis. The objectives of this phase
are to select how the indicators and the operational ATM parameters
should be estimated, and to configure Pilot3 to reflect the airline flight
3

policy. For example, in case of alternative trajectories with equivalent
impact on different criteria, which ones should be prioritised, etc.

2.2.2. Generation phase
This phase consists in solving a multi-objective optimisation (MOO)

problem, in which the alternatives generator generates feasible tra-
jectory alternatives based on airlines objectives and constraints. In
a MOO problem, one might have a set of Pareto optimal solutions
(i.e., solutions equally acceptable from a mathematical point of view),
and manually assessing all trade-offs arising from various objectives
might be a complex and time consuming task. Moreover, different
trajectories might lead to equivalent values on the objectives (e.g. two
different profiles might produce statistically equivalent expected cost
and on-time performance). Note that buffers could be considered when
assessing if different values of the objective function are deemed as
equivalent.

A first automatic generation and selection of candidate solutions
will be produced by the alternatives generator. The alternatives gen-
erator uses a trajectory generation engine that considers (Prats et al.,
2022; Delgado et al., 2022):

• objective functions as set by the airline key performance indica-
tors;

• constraints: operational (e.g. airways) and ad-hoc defined by the
pilot (e.g. ‘do not provide solutions which imply an altitude
change’);

• environment data (e.g. weather, aircraft performance); and
• information from the performance indicators estimator and the

operational ATM estimator on how to estimate these indicators and
operational parameters. Note that uncertainty might exist on the
PI to be estimated, e.g. for a given arrival time passengers might
or not miss a connection depending not only on the current flight
but on the status of the other flight in the network or airport
processes.

Trajectory optimisers tend to generate one set of commands to
produce a single alternative for a given trade-off between time and
fuel (Dalmau et al., 2018; Prats et al., 2022). This reduces the num-
ber of alternatives generated in this generation phase. Rounding (e.g.
considering the fuel consumption at a resolution of ten kilograms, or
the arrival delay at a resolution of one minute), using buffers (e.g.
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considering equivalent two trajectories whose expected costs lie within
a given range, due to uncertainty or in order to provide some flexibility
to the crew), and considering the addition of constraints may be used
to increase the number of potential trajectories considered equivalent.

2.2.3. Ranking phase
Once a finite set of feasible and optimal alternatives is known, a

multi-criteria decision analysis (MCDA) process takes place. The alter-
natives’ ranking phase is the first part of the performance assessment
module, and it consists in ranking the alternatives provided by the al-
ternatives generator. This post-processing of the trajectories generated
by the alternatives generator is performed to filter and pre-compute
how and which alternatives will be presented to the pilot.

This phase will consider the airlines’ policies with respect to the
different key performance indicators (KPIs). For example, two solutions
might provide the same cost but trading fuel cost and passenger cost.
One solution might produce lower fuel usage with higher expected cost
from compensation due to European air passenger rights regulation
Regulation 261 (European Commission, 2004), while another alterna-
tive might use more fuel but reduce the expected cost due to passengers
compensation, leading to equivalent total operating costs. In this case,
even if the total expected cost for both alternatives is equivalent, the
airline might define that passengers should be prioritised. Note that
this ranking considers information defined in the configuration phase
of Pilot3.

2.2.4. Selection phase
The final step of the performance assessment module considers pilot

operational related aspects via interaction with the HMI. Information
on the trajectories and their impact on the different indicators will be
presented to the pilot, who will be able to explore the alternatives,
rejecting solutions or, based on the information provided, adding new
constraints and requesting a re-evaluation of the alternatives. Note that,
this process implies at least the reevaluation of the ranking phase,
as the finite set of alternatives used in the MCDA is modified, e.g. if
alternatives are rejected. In some cases, it might also require the re-
generation of alternatives, e.g. if constraints are added. This will trigger
he generation phase, producing new alternatives, which will be added
o the set available for the ranking phase.

. Literature review of relevant MCDM methods

We present here a list of MOO methods that could be used in the
eneration phase where alternatives are generated based on airline’s
bjectives, and of MCDA methods suitable for the ranking phase of
he set of optimal alternatives, based on the airline’s flight policies.
ore details on this literature review can be found in Pilot3 Consortium

2020b).

.1. Generation phase: multi-objective optimisation methods families

In an MOO problem, a set of optimal solutions that are equally
cceptable from a mathematical point of view (the Pareto optimal
olutions) can be reached. Mathematically speaking, the problem is
olved when the Pareto optimal set is found. In order to finally select
ne solution (or a subset of solutions), this set must then be ranked
ccording to some preferences set by the decision maker(s).

A typical technique to select the preferred Pareto solution, consists
n assigning to each individual objective a given weight, which reflects
heir priority or relative importance. Then, a linearly weighted sum
f the individual optimisation objectives is typically done, yielding
o a single compound optimisation objective, which can be solved
ith standard (single-objective) optimisation techniques. As mentioned
efore, the optimisation done in current FMS (and in general by most
light planning or dispatching tools) uses, as objective function, a linear
4

eighted sum expressing the relative importance of fuel and time costs,
given by a weighting parameter: the cost index. As presented below,
this corresponds to an a priori MOO method.

Although the weighting technique is widely used in many ap-
plications (for its apparent simplicity), it presents several important
drawbacks. The first one is that choosing the exact values for the
different weights (if done beforehand) is not a straightforward task,
since it is based either on an intuition of the user about the relative
importance of different objectives, or on trial-and-error experimenta-
tion with different weighting values. Another problem is that once they
have been established, the optimisation algorithm will find the best
solution for that particular setting of weights, missing the opportunity
to find other solutions that may represent a considered better trade-off
between different objectives.

In this context, it is usual to perform a posteriori sensitivity studies,
but altering the weighting vectors linearly does not ensure that the
values of the objective functions also change linearly, making these
sensitivity studies not obvious to conduct. Furthermore, this method
has the limitation that it cannot find solutions in a non-convex region
of the Pareto front, which can happen when involving non-linear
constraints or objective functions (Miettinen, 1999). More difficulties
appear when the objective functions involve summations/subtractions
of terms representing different magnitudes (such as noise annoyance,
emissions, fuel consumption, flight time, reactionary delay, or missed
passenger connections), often with very different scales in their units
of measurement (non-commensurable functions). It is true that this can
be partially dealt with by normalising the different objectives, but this
approach suffers from a subtle problem rarely discussed: in general
there are several different ways of normalising, see for instance (Marler
and Arora, 2005); the decision about which normalisation procedure
should be applied tends to be ad-hoc, and different normalisation
techniques may lead to significantly different results.

Trying to overcome (some of) these issues, a plethora of MOO meth-
ods have been proposed in the last half-century. There are different
ways to classify MOO methods, according to different considerations.
Here, we adopt the classification presented by Miettinen (1999), which
is largely accepted in the literature. The classes are:

• Methods where a posteriori articulation of preference information
is used (a posteriori methods).

• Methods where a priori articulation of preference information is
used (a priori methods).

• Methods where no articulation of preference information is used
(no-preference methods): these methods could be used when no
opinions of the DM are sought, or when she cannot concretely
define what she prefers: these are not applicable to the current
problem since airlines show some preferences.

• Methods where progressive articulation of preference information
is used (interactive methods): these can be used when the DM
has enough time and capabilities to interact with the system,
which is not applicable to the generation phase of the considered
optimisation process.

3.1.1. Methods where a posteriori articulation of preference information is
used

The underlying philosophy of a posteriori methods is that the Pareto
front is generated first and presented to the DM, who will select the
most preferred solution among a palette of alternatives. This approach
could be useful when it is difficult for the DM to express an explicit
approximation of her preferences (see a priori methods below). Sev-
eral a posteriori methods are proposed in the literature, as outlined
in Miettinen (1999) and Marler and Arora (2004). The two principal
methods are the weighting method, which is a particular case of the
scalarisation approach presented above, with example of refinement
such as the exponential weighted criterion (Athan and Papalambros,
1996), and the epsilon-constraint (or bounded objective function) method,
where one of the objective functions is selected to be optimised and
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all the others are converted into constraints by setting upper bounds to
each of them (Haimes et al., 1971).

Hybrid methods are also possible, either combining the previous
two, or introducing weighting functions in compromise programming,
such as the weighted Tchebycheff approach, which is a popular method
for generating Pareto optimal solutions (Bowman, 1976).

These a posteriori methods present the advantage that the DM does
ot need to provide any explicit input. Nevertheless, many shortcom-
ngs arise with this approach, one of the main ones being the difficulty
f generating the Pareto front, which could be computationally too ex-
ensive. In this context, if only a limited number of Pareto solutions are
resented, these methods can be ineffective, failing to provide evenly
pread points accurately representing the complete Pareto optimal set.
inally, it is likely for the DM to have some difficulties in selecting
rom a large set of alternatives, and in many cases, presenting these
lternatives in an effective way might also be an issue (especially when
large number of objectives are considered).

.1.2. Methods where a priori articulation of preference information is used
In this case, the DM must specify her preferences, hopes or opinions

efore starting the process of generating the solutions. This can be
rticulated in many ways: in terms of goals, relative importance of
ifferent objectives, etc. It is worth noting that the weighting methods
resented above (including the hybrid methods using weights, such as
he weighted Tchebycheff approach) could be considered as a priori

methods, if the DM specifies beforehand weights for each objective
function representing her preferences. Similarly, the epsilon-constraint
method can also be considered in this class if the bounds for each
objective are also set a priori.

Although several authors have proposed methods or guidelines to
help the DM to set weights (or bounding values) in an effective manner,
understanding and correctly interpreting the conceptual significance of
the weights is not always obvious for average DM. This is indeed the
main difficulty of a priori methods, since the DM might not necessarily
know beforehand what it is possible to attain in the problem, nor how
realistic her expectations are.

A representative example of a priori methods would be the value
function method, where the DM must be able to give an accurate and ex-
plicit mathematical form of the value function that globally represents
her preferences (Keeney and Raiffa, 1976). Another classic one is the
lexicographic ordering, where the DM arranges the objective functions
according to their absolute importance. Then the most important ob-
jective function is optimised. If the problem has a unique solution, this
is the solution of the whole MOO problem. Otherwise, the second most
important objective function is optimised, but adding a new constraint
in the problem to guarantee that the most important objective function
preserves its optimal value found in the previous step. If this new
problem has a unique solution, this becomes the solution of the whole
MOO problem, otherwise the process continues as described above with
the remaining objectives (Fishburn, 1974). The hierarchical approach is
a modification of lexicographic ordering, where the upper bounds ob-
tained when optimising more important objective functions are relaxed
by so-called worsening factors (Bestie and Eberhard, 1997). In goal
programming, the DM specifies (optimistic) aspiration levels for some of
the objective functions (or all of them) forming goals, which are added
in form of constraints in the optimisation problem (Charnes et al., 1955;
Charnes and Cooper, 1961). Then, any deviations from these aspiration
levels are minimised. Physical programming maps general classifications
of goals and objectives, and verbally expressed preferences, to a util-
ity function. It provides a mean of incorporating preferences without
having to conjure relative weights (Marler and Arora, 2004). Finally,
weighting and weighted Tchebycheff methods can be considered as a priori

ethods when weights are set up beforehand.
5

3.2. Ranking phase: multi-criteria decision analysis methods

Many approaches have been considered to solve MCDA problems.
An overview of their main streams of thought and state of the art
can for instance be found in Belton and Stewart (2002) and Figueira
et al. (2016). Again the weighted sum model (WSM), or weighted linear
combination (WLC) or simple additive weighting (SAW), is a well-known
and simple MCDA method for evaluating a number of alternatives in
terms of a number of decision criteria.

Other MCDA methods are distance-based, such as the VIKOR
ethod, which is a combination of compromise programming and a
eighting method, and was originally developed to solve decision
roblems with conflicting and non-commensurable objective func-
ions (Opricovic, 1998; Opricovic and Tzeng, 2004, 2007). VIKOR
anks alternatives and determines the solution named compromise
referring to an agreement established by mutual concessions) that is
he closest to the ideal from an initial set of (given) weights. In the
ontext of airline transportation industry, VIKOR was used, along with
ther methods, to rank the best performing companies on financial and
perational performance aspects (Gudiel Pineda et al., 2018).

Outranking methods belong to another MCDA family, and consist
n comparing all couples of alternatives and determine which are
referred by systematically comparing the alternatives for each crite-
ion, trying to establish outranking relations based on for how many
omponents the decision maker judges indifference, weak preference,
reference or no preference. These decisions can be complemented,
or instance, with veto thresholds, which prevents a good performance
n some components of the objective vector from compensating for
oor values on some other components. Popular examples of out-
anking methods are ELECTRE (ELimination Et Choix Traduisant la
Ealité) (Roy, 1968; Figueira et al., 2005; Govindan and Jepsen, 2016)
nd PROMOTHEE families (Brans et al., 1986; Behzadian et al., 2010).

A similar approach to outranking methods is the analytic hierarchy
rocess (AHP), primarily based on the pairwise comparison of matrices
hat the DM uses to establish preferences between alternatives for
ifferent criteria and the rating methods (Saaty, 1994). This method
ncludes both the rating and comparison methods. Rationality requires
eveloping a reliable hierarchic structure or feedback network that in-
ludes criteria of various types of influence, stakeholders, and decision
lternatives to determine the best choice (Saaty, 1994).

Once again, hybrid interactive methods can also be used in MCDA,
uch as for example the combination of VIKOR and AHP methods,
an Cristóbal (2011).

. Domain-driven selection of methods

As presented in Section 2.2, the multi-objective optimisation frame-
ork used for the generation and selection of a trajectory to be flown
y the crew is divided in different phases. Each one of these phases
as different characteristics, which means that the method used at that
tage of the optimisation will be different. Yet, some of the characteris-
ics of the problem apply to all phases. To consider this, the process, to
elect the method(s) followed a two-stage approach, using input from
ifferent sources (see Fig. 2):

1. General filtering : the characteristics of the problem (tactical tra-
jectory optimisation) are considered with inputs from the tech-
nical definition and high-level requirements of the Pilot3 pro-
totype. Pilot3 is a Clean Sky 2 innovation action, and as such
receives feedback from an industrial organisation (Thales AVS
France SAS). This input is also considered as part of the re-
quirements for the tool. Finally, an Advisory Board composed by
airlines, pilots, dispatchers, experts and a representative of the
European Network Manager (Eurocontrol) has been composed
and a workshop was held to discuss the use of a decision-support

tool like Pilot3, including aspects related to flight operations
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Fig. 2. Approach followed to select the optimisation methods for generation and ranking phases.
and performance monitoring, among others. Their input is con-
sidered in this first general filtering. This activity (detailed in
Section 4.1) reduces the number of potential methods across
all the optimisation (or decision-making) phases (generation,
ranking and selection phase).

2. Specific filtering and selection: the specific characteristics of each
phase are then considered. A follow-up consultation with the
Advisory Board was conducted to validate the approach followed
by Pilot3 on the definition of objectives, how the information is
presented and available, etc, including as well views from pilots.
After this process, a final benchmarking and selection of method
process per phase was conducted. Section 4.2 presents in detail
this selection process.

The filtering and benchmarking of the MOO and MCDA methods was
conducted using 10 different criteria, grouped into 5 categories:

(a) Data (input) required by the method

1. the input needed for the method to function should be
available

2. share of responsibility between users (dispatcher, pilot) to
provide required inputs

(b) Objectives considered

3. ability to deal with high/low number of objectives
6

4. consideration of variability/uncertainty

(c) Human-machine interface considerations

5. easiness of providing the input required
6. easiness of providing the output required

(d) Other non functional considerations

7. computational cost of the method
8. easiness to implement the method
9. the method should provide a necessary and sufficient

condition method for Pareto optimality

(e) Other functional considerations

10. other general preferences expressed by stakeholders

Some of the above ten criteria used in this selection apply to all phases
and significantly restrict the number of possible candidate methods to
be used, while others have been used to further discriminate among
methods for a specific phase.

4.1. General filtering

This filtering of potential methods is based on the characteristics of
the problem and applied to classes and specific methods. Some of the
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criteria used to select the method(s) to be implemented significantly
restrict the number of potential methods that could be considered (see
First Stage in Fig. 2). This filtering is organised in three categories: the
haracteristics of the objectives to be considered (Section 4.1.1), the
ata required for the optimisation method (Section 4.1.2) and the other
onsiderations (Section 4.1.3).

.1.1. Objectives considered
First, in order to analyse the most suitable MCDM methods to be

sed, it is crucial to understand which are the objectives that should
e considered and their characteristics (see selection criteria b.3 ability
o deal with high/low number of objectives).

When an airline is operating its flights, their flight policies are
eflected in their airline Operations Manual (OM), which serves as
communication tool that conveys the airline flight policy, aviation

epartment’s goals and procedures to the entire company. Information
iven in the OM is communicated to the crew and flight dispatch
ersonnel through different internal training programmes and commu-
ication channels of the airline. This OM will define (and limit) some
f the actions to be performed when flights are disrupted.

Although flight policies may vary significantly from one company to
nother, there is a general consensus among the Advisory Board that
hese depend highly on:

• the airline network structure (hub-and-spoke network vs. point-
to-point network),

• the characteristics of a particular flight (long-haul flight vs. short-
haul flight), and

• the type of passengers served (individual-end consumers vs. high-
end business travellers).

For instance, for an airline operating hub-and-spoke network, a
iable connection of its transfer passengers is of the utmost importance.
n the other hand, flight policies of airlines operating point-to-point
etworks are rather oriented towards fuel saving. However, airlines
enerally allow for certain level of flexibility in their flight policies in
rder to accommodate for some characteristics of the particular flight
eflected in parameters such as, the seasonal traffic characteristics,
pecific flight requirements, and pilot’s decision (to a limited extent).

The objectives defined in flight policies are translated into opera-
ions through the CI. Most policies have a standard component (e.g.

default CI set to a given value for all flights), plus a variable component
defined as a function of the flight/event/situation (e.g. override CI to a
higher value). Note that CI is used as a proxy to manage/estimate the
flight in order to meet the airline’s objectives.

During a workshop with the Advisory Board, the most relevant
performance indicators (PIs), which are considered when selecting the
major aspects of airlines’ objectives and policies, were identified. Six
main indicators were selected as the most important ones (ordered by
relative importance):

1. Fuel cost,
2. On-time performance (OTP),
3. Passenger missed-connections,
4. Time in holding,
5. (Cost) of passenger disruption, and
6. Crew and maintenance cost.

Fuel cost indicator is relevant as fuel costs still constitute a large
portion of total operating costs. Although the sensitivity to fuel costs
could vary significantly among airlines with different business models,
there is still a clear consensus that fuel costs will play an important role
in the future. Note that a tool such as Pilot3 will focus on the extra fuel
cost used or saved tactically due to the management of the trajectory.

Passenger missed-connections are of high importance for airlines
operating very complex and large networks, as it affects both hard-costs
7

due to compensations (e.g. European Regulation 261) and soft-costs o
by directly altering the airline reputation (Cook and Tanner, 2015):
passenger disruption costs are a direct monetisation of the cost due to
passenger disruptions, including both connecting and non-connecting
passengers. Passenger missed-connections were therefore identified as a
proxy to the cost of passenger disruption due to their large contribution
on these costs for flight where these missed connections arise. However,
these two indicators can be grouped into IROPs (Irregular Operations)
costs.

In addition to fuel cost, airlines are also keen to minimise other
costs, such as crew and maintenance costs. Airlines may apply a variety
of policies regarding crew wages and salaries. However, most of them
acquire hourly-based policy, in which a pilot is paid based on the hours
spent in the air or/and on the ground. With strict policies regarding
pilot working hours in place, disruptions may lead to increased crew
costs and additional scheduled inefficiencies. Additionally, regular air-
craft maintenance checks are performed after predefined flight hours,
requiring a large majority of the aircraft’s components to be inspected
and/or replaced (Cook and Tanner, 2015).

The time in holding is usually out of the control capabilities of
airlines. However, the prevalence of holdings and sequencing and merg-
ing procedures (e.g. tromboning) could lead to sub-optimal decisions
(e.g. speed up a flight to recover delay to end up in a holding stack).
This is therefore not an indicator that airlines can act to reduce, but a
parameter that should be considered when optimising the trajectories
as part of the uncertainty in the system. For this reason, in the Pilot3
framework, it is part of the indicators estimated by the operational ATM
estimator.

In addition to fuel costs, airlines are also concerned about the on-
time performance, as this indicator is very often used to reflect the level
of service provided to passengers. Nowadays, OTP is being monitored
on a flight basis by most airlines in order to verify compliance with
OTP targets defined in their respective airline flight policies.

After this analysis of the different indicators, it was deemed that
four of them (fuel cost, passenger missed-connections, cost of passenger
disruption and crew and maintenance costs) could be directly translated
into cost. On-time performance is a binary indicator, which was diffi-
cult to monetise and therefore is kept independently. Finally, time in
holding, is considered as part of the uncertainty in the optimisation:
the trajectory generator deterministically computes the trajectory until
reaching FL100 in the arrival descent, but the final cost function is
calculated with respect to the arrival time at gate. Therefore the cost of
delay function should take into account the processes and uncertainty
between this point and the gate (holding, sequencing and merging and
taxi-in time).

It has thus been established that the main high-level objectives
relevant for an airline can be reduced to only two:

• Cost: complex objective built from the aggregation of three KPIs:

– cost of fuel,
– cost of IROPs, including hard and soft passenger costs (con-

sidering connecting and non-connecting passengers), and
– other costs, which account for extra crew and maintenance

costs, but most importantly for reactionary costs.

• On-Time Performance: considered as a binary variable (i.e.,
achieve arrival delay ≤ 15 min or not).

From an optimisation point of view, two objectives (cost and OTP)
re therefore considered. Note that to estimate the cost objective, its
omponents need to be estimated and to this end, low level indica-
ors (e.g. number of passengers missing connections) will need to be
stimated too. This is the role of the performance indicators estimator.

The characteristics of these two objectives have a significant impact

n the Pareto analysis of the solutions. By definition (it is generally
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Fig. 3. Pareto optimal solutions example total cost vs. on-time performance.

accepted that a flight meets OTP if it arrives before its scheduled in-
block time + 15 min6 ,7), OTP is a binary objective function, thus the
problem yields to 0, 1 or 2 possible Pareto efficient solutions. It could
happen that the given constraints on the trajectory make the optimisa-
tion infeasible. However, this should not be the typical situation, unless
the pilot is interacting with the system, asking for potential solutions
while setting different operational constraints in altitude, speed, etc. In
some cases, it would not be possible to tactically recover enough time
to achieve OTP. Therefore, only one Pareto efficient solution would
exist and the decision-support tool should focus on minimising the total
cost. In other cases, a trade-off may exist between achieving OTP and
reducing the cost.

Fig. 3 presents an example of one case where such trade-off exists.
There is a set of trajectories that do not achieve OTP, each one of them
with an expected different cost; and a second set of trajectories meeting
OTP, with another set of costs. The two highlighted points of Fig. 3 are
the Pareto optimal solutions.

A follow-up consultation with the Advisory Board confirmed that
providing to the pilot information on the ‘extra-cost’ of achieving OTP
with respect to the minimum cost, which does not respect the OTP, i.e.,
difference in cost between Solution 2 and Solution 1 in Fig. 3, would be
desirable and of great interest for airlines. Therefore, it is considered
that there is no preference from the DM between the two objectives.

Due to the nature of the MOO problem, with only two objectives
and up to two possible Pareto optimal solutions, the way to address this
becomes almost trivial and straightforward: the multi-criteria support-
decision tool will first optimise the trajectory considering only cost. If
OTP is not achieved with the optimised solution, then the alternatives
generator will try to impose achieving OTP as a constraint, to compute
the extra cost that it would represent (i.e., finding Solution 2 from
Fig. 3), in case this is achievable.

Finally, note that even if the problem has been reduced in terms
of objectives, trade-offs might still occur with respect to the KPIs
composing the cost objective (i.e., cost of fuel, IROPs and other costs),
and that irrespectively of these potential trade-offs, more than one
trajectory/solution could lead to a statistically equivalent total cost.
To allow the alternatives generator to generate several alternatives,
and avoid getting only the solution leading to the absolute minimum
total cost, cost buffers (from 10 to 300e, see Section 5.3) have been
considered. To do so, if we consider 𝐴 the set of all trajectory alterna-
tives 𝛼𝑖 (including all possible arrival times and total costs), 𝐶(𝛼𝑖) the
total cost of alternative 𝛼𝑖, and 𝑏 the allowed economic buffer, the set

6 OAG, On-time performance, https://www.oag.com/on-time-performance-
airlines-airports.

7 Bureau of Transportation Statistics, 2021, Airline On-Time Perfor-
mance and Causes of Flight Delays, https://www.bts.gov/explore-topics-and-
geography/topics/airline-time-performance-and-causes-flight-delays.
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of alternatives considered to have equivalent total costs, (within the
margin of the cost buffer) is obtained as:

{𝛼𝑖 ∈ 𝐴|𝐶(𝛼𝑖) ≤ min(𝐶(𝐴)) + 𝑏} (1)

These cost equivalent alternatives will then be ranked based on KPIs
preferences. Note that the generation of alternatives, even with these
cost buffers, will produce a small set of trajectories due to the nature
of the trajectory generators used, as presented in the example of
Section 5.3 (Dalmau et al., 2018).

4.1.2. Data required
Once KPIs and objectives are identified, it is important to capture

the preferences of the airlines of how to provide the input necessary to
the optimisation, in order to ensure the appropriate MOO method to be
selected (see criteria a.1 input needed for the method to function should
be available, a.2 share of responsibility between users (dispatcher, pilot) to
provide required inputs, c.5 easiness of providing the input required and
e.10 other general preferences expressed by stakeholders).

Experiments in psychology show that the amount of information
provided to the DM has a crucial role (Kok, 1986). Though more
information may increase the confidence of the DM in the solution
obtained, it may also lead to less percentage of the information used,
and thus it might worsen the quality of the solution. In this context,
some considerations on the visualisation of the results should also
be considered (criteria c.6 easiness of providing the output required).
The graphical representation of alternatives and the human machine
interface with the DM plays an important role and constitutes an
important challenge itself.

While airlines generally have a clear idea that OTP is important
for them, and they can easily perceive that arriving early/late is not
desirable, they acknowledge it is very hard to quantify this in terms of
cost, since the implications of arriving early/late are many (e.g. waiting
for gate, implications to handling processes, delay for passengers, crew
management, etc.). For this reason, OTP has been kept as an indepen-
dent objective (not monetised). This also implies that it is difficult to
compare cost and OTP in a quantified manner.

Further consultation with the Advisory Board was conducted to
identify if priorities could be established among the sub-objectives (cri-
teria) and indicators of the total cost. It was identified that alternatives
such as target setting, or quantification of goals was not suitable for
the criteria of cost (cost of fuel, cost of IROPs and other costs). On the
contrary, ranking their relative importance was the only easily available
input for the DM, i.e., indicating the order of importance of the sub-
costs if the total cost is kept constant, for example, if cost of fuel can
be traded for cost of IROPs. This ranking should be defined as part of
the configuration of the Pilot3 prototype (e.g. at dispatcher or strategic
level).

4.1.3. Other considerations
Despite current computational capabilities available, finding an ac-

ceptable solution to the MCDM problem may still be a limiting factor,
especially for (quasi) real-time applications and/or large problems with
many objectives and constraints. For real-time calculations needed in
this type of tactical decision-support tool, the computational cost of a
posteriori method is assumed to be prohibitive (criteria d.7 computa-
tional cost of the method). This, and the fact that the DM would have
difficulties selecting from a large panel of Pareto solutions (criteria c.6
easiness of providing the output required) were important enough reasons
to disregard a posteriori methods for the present application.

Based on these considerations, a priori MOO methods seem suitable
for the generation phase, where flight policies are set up beforehand,
whereas MCDA methods could be of used for ranking and selection
phases, where additional input from the decisions makers could be
obtained.

https://www.oag.com/on-time-performance-airlines-airports
https://www.oag.com/on-time-performance-airlines-airports
https://www.bts.gov/explore-topics-and-geography/topics/airline-time-performance-and-causes-flight-delays
https://www.bts.gov/explore-topics-and-geography/topics/airline-time-performance-and-causes-flight-delays
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4.1.4. Shortlist of optimisation methods
Within the available MOO a priori methods described in

Section 3.1.2, goal programming combines the drawbacks of not always
leading to Pareto solution (criteria d.9 the method should provide a
necessary and sufficient condition method for Pareto optimality), and the
fact that, though goal-setting seemed at first to be an understandable
and easy way of making decision, feedback from the Advisory Board
showed that it was not easily available for the airlines, even at planning
level (criteria a.1. input needed for the method to function should be
available and c.5 easiness of providing the input required).

After a follow-up consultation with the Advisory Board, it was made
clear that airlines would not be able to provide numerical targets
for KPIs, nor numerical bounds, nor relative weights of importance
between KPIs. Only ranking of importance would be an available input
from the DM.

Taking into account these restrictions, the following optimisation
methods were identified as suitable candidates, for a priori methods:

• Lexicographic ordering : DM arranges objective functions according
to their absolute importance. Then the most important objective
function is minimised (or maximised). If the problem has a unique
solution, it is the solution of the whole MOO problem. Otherwise,
the second most important objective function is minimised, but
adding a new constraint in the problem to guarantee that the most
important objective function preserves its optimal value found in
the previous step.

• Hierarchical approach: Modification of lexicographic ordering,
where the upper bounds obtained when minimising the most
important objective function are relaxed by so-called worsening
factors. These relaxations allow to trade off higher prioritised
objectives in front of lower prioritised ones, exploring in this case,
a widest area of the Pareto front containing solutions that can be
more interesting to the DM.

These methods could be used in the generation phase of the optimi-
ation process: from airline flight policies obtained in the configuration
hase of Pilot3, prioritisation of cost or of OTP is decided (with or
ithout trade-off) and a (reduced) subset of alternative trajectories is
enerated by the alternatives generator.

After this phase, several alternative trajectories may have been
btained, leading to equivalent values of both objectives (cost and
TP), but showing differences with respect to other KPIs such as cost
f fuel, IROPs, etc. Once this set of alternatives has been generated,
anking and selection is performed by the performance assessment
odule in interaction with the human-machine interface. The ranking

f alternatives is based on airline preferences in term of cost of fuel,
ROPs and other cost. In the ranking phase, using additional input from
irline policies and in the selection phase, where the pilot would have
mechanism allowing to compare and rank the optimal solutions, the

ollowing MCDA methods may be used:

• VIKOR: combination of compromise programming and weighting
method. VIKOR ranks the set of available alternatives and deter-
mines the solution named compromise, that is the closest to the
ideal from an initial set of (given) weights. Though initial weights
of relative importance of the attributes would be needed, and that
in our case they seem impossible to obtain directly from airlines,
these weights may be computed using a process similar to AHP,
which is described next.

• Analytic Hierarchy Process: generates a weight for each crite-
ria according to the DM pairwise comparisons of criteria: the
higher the weight, the more important the corresponding criteria.
Next, for a fixed criteria, AHP assigns a score to each alternative
solution according to pairwise comparisons of the alternatives
based on that criterion provided by the DM: the higher the score,
the better the performance of the option with respect to the
considered criteria. Finally, AHP combines the criteria weights
9

and the alternative scores, thus determining a global score for
each alternative, and a consequent ranking. The global score for
a given alternative is a weighted sum of the scores it obtained
with respect to all the criteria. It can either be used alone or
combined with the VIKOR method. This approach is applicable
to our case given that the number of considered criteria and
available trajectories would be limited; indeed, for problems with
many criteria and available alternatives, it may require a large
number of evaluations by the user.

4.2. Specific filtering and selection

Focusing on the particularities of the different phases of the optimi-
sation process, and after obtaining further feedback from the Advisory
Board, a selection of methods is performed for each of these phases,
and illustrated on the Second Stage of Fig. 2.

4.2.1. Generation phase
This phase aims at generating a (reduced) subset of alternative

trajectories based on the main two objectives to consider from the opti-
misation point of view: cost and OTP. This will enable the possibility to
tactically assess (either by the crew or by the dispatchers) the trade-off
between extra cost (e.g. by burning extra fuel) and achieving on-time
performance.

Based on this feedback and considering that the MOO problem can
present up to two different Pareto points, we propose, for the gener-
ation phase, to compute both (if they exist). Lexicographic ordering
will be used to generate these Pareto optimal solutions. Since one
of the objectives considered is binary (achieving or not OTP), using
lexicographic ordering allows us for an easy exploration of the Pareto
front (d.8. easiness to implement the method), as in an a posteriori method,

ith no relaxation factors needed (d.9 the method should provide a
ecessary and sufficient condition method for Pareto optimality). An a
osteriori lexicographic ordering is thus used in this case, where the
wo possible combinations of the objective rankings are considered:

1. Consider as first objective the total cost and as second ob-
jective achieving OTP. This will provide at least one possible
trajectory (note that several ones could lead to equivalent total
costs), which minimises the total cost (first objective); if OTP is
reachable with that cost, only trajectories meeting this objective
will be generated (second objective). This strategy is, there-
fore, robust against potential local minima issues: in situations
presenting a flat Pareto front (i.e., Fig. 3 with cost 1 = cost
2) ensuring that the selected solution minimises cost and also
achieves OTP.

2. If OTP is not achieved during the first step, then a possible trade-
off might exist between cost and OTP. To generate this possible
point, achieving OTP will be set as a constraint (first objective
fulfilled) and cost will then be minimised (second objective).
The computed trajectory(ies), if any, will be kept as a trade-off
alternative(s) to the one(s) generated in the first step (i.e., they
will have a higher cost than the previous ones but will achieve
OTP). Note that in some cases this might not be possible: e.g. no
trajectory can ensure OTP as the delay is already too high.

The generation phase thus aspires to provide several alternative
trajectories leading to equivalent minimum total costs or at a higher
cost but allowing reaching OTP.

4.2.2. Ranking phase
When starting the ranking phase of the optimisation process, several

alternative trajectories have been generated (all Pareto points) and the
objective is to rank and select them following the preferences of the
airlines. The MCDM problem is now a MCDA problem, involving a
limited number of alternatives.
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This ranking phase will aim at disaggregating the total cost into
sub-costs (or criteria), and at providing ranking of the alternative trajec-
tories based on preferences established by airline policies. Depending
on how these preferences can be expressed, different optimisation
methods could be selected. It is thus fundamental to capture if and how
airlines can share these preferences (see criteria a.1 input needed for
the method to function should be available). It was already established
that ranking of KPIs was the only easily available way of sharing
preferences, but further consultation with the Advisory Board indicated
that it should be possible to rate the most important KPIs two by two.
For example, they should be able to decide what cost component is
more important between fuel and IROPs:

• fuel is the more important; or
• IROPs is the more important; or
• fuel and IROPs are equally important.

A more detailed grading of relative importance (e.g. indicating if
this importance is moderate, strong, very strong), or numerical relative
importance on a scale (e.g. from 1 to 5), were deemed too complex.

Based on these characteristics for the ranking phase (possibility to
provide a simple ranking between criteria but no specific weights; and
having a limited number of criteria, see c.5 easiness of providing the
input required), we propose to use a compromise ranking method (AHP-
VIKOR). Both methods (AHP and VIKOR) are combined following a
similar process as in San Cristóbal (2011).

The VIKOR method is an effective tool in multi-criteria decision
making, particularly in situations where the DM is not able, or does not
know how to express her preference at the beginning of system design.
Even if airlines are able to express their preferences, when coming to
cost components it is not always an obvious decision to decide which
one is the overall most important (if any). When combining VIKOR
with AHP, their properties allow to solve problems with the following
characteristics, which match ours:

• Compromising is acceptable for conflict resolution: at this stage
of the problem, this is the case, else, if a single KPI overpasses all
others, the selection of the corresponding trajectory is obvious.

• The DM is willing to approve solution that is the closest to the
ideal (ideal or utopia point would correspond to the minimum
possible value of each cost KPI).

• The criteria are conflicting: e.g. going faster to decrease IROPs
cost will increase fuel consumption.

• The alternatives can be evaluated according to all established
criteria: here, all KPIs can be computed for each trajectory.

• The DM’s preference is expressed by weights, given or simulated:
here, given that the weights cannot be directly given by the DM,
the two-by-two preferences between KPIs will allow to assign
weights of relative importance of KPIs, using AHP.

For our optimisation problem, in some cases all alternatives will
chieve OTP, in others none will, a third possibility will be to solve
wo separated problems: rank the best options for OTP and rank the
est options for minimising the total cost. In each case, the 𝐽 alternative
rajectories are denoted as 𝛼1, 𝛼2, . . . , 𝛼𝐽 . For alternative 𝛼𝑗 the rating

of the 𝑖th attribute is denoted by 𝑓𝑖𝑗 . Thus, 𝑓𝑖𝑗 is the value of the
𝑖th objective function for the alternative 𝛼𝑗 . Finally let us define 𝑛 as
the number of criteria, 3 in our case. Then, the resulting compromise
ranking algorithm AHP-VIKOR has the following four steps.

Step I: Identify the criteria and compute the best (𝑓 ∗
𝑖 ) and worse

(𝑓−
𝑖 ) values of each criterion.
Step II: Compute 𝑠𝑗 =

∑𝑛
𝑖=1 𝑤𝑖

𝑓∗
𝑖 −𝑓𝑖𝑗

𝑓∗
𝑖 −𝑓

−
𝑖

and 𝑟𝑗 = max𝑖
[

𝑤𝑖
𝑓∗
𝑖 −𝑓𝑖𝑗

𝑓∗
𝑖 −𝑓

−
𝑖

]

for
= 1, 2, ., 𝐽 , where 𝑤𝑖 are the weights of criteria, expressing the DM’s
reference as the relative importance of the criteria. The weights of
elative importance of the attributes can be assigned using AHP (Saaty,
000). The steps for obtaining the weights 𝑤𝑖 are explained below and
artly follow the approach from Rao (2008):
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1. Find out the relative importance of the different criteria. To do
so, one has to construct a pairwise comparison matrix using a
scale of relative importance. The judgements are usually entered
using the fundamental scale defined in AHP. A criterion com-
pared with itself is always assigned the value 1 so the main
diagonal entries of the pairwise comparison matrix are all 1.
The numbers 3, 5, 7, and 9 would correspond to the verbal
judgements ‘‘moderate importance’’, ‘‘strong importance’’, ‘‘very
strong importance’’, and ‘‘absolute importance’’. Recall that,
after surveying a panel of DM (airlines, pilots, etc.), it was made
clear that defining such a differentiated judgement to compare
the kinds of cost would not be possible. Thus only one level of
relative importance is kept: ‘‘more important’’, and the value 3 is
assigned. Note that higher values could be used, but they lead to
lower consistency results, see sub-step 3 and Section 5.5, where
the impact of the value of relative importance is also discussed.
For example, here, we consider ranking preference input ob-
tained from the airline policies (pre-flight) under the following
form:

• IROPs cost (attribute 2) is more important than cost of fuel
(attribute 1).

• Cost of fuel (attribute 1) is more important than other costs
(attribute 3).

• IROPs cost (attribute 2) is more important than other costs
(attribute 3).

Assuming 𝑛 attributes, the pairwise comparison of attribute 𝑖
with attribute 𝑗 yields a square matrix 𝐀𝑛×𝑛 where 𝑎𝑖𝑗 denotes the
comparative importance of attribute 𝑖 with respect to attribute
𝑗. In the matrix, 𝑎𝑖𝑗 = 1 when 𝑖 = 𝑗 and 𝑎𝑗𝑖 = 1∕𝑎𝑖𝑗 . For our

3-attribute case, we thus obtain 𝐀 =
⎛

⎜

⎜

⎝

1 1∕3 3
3 1 3

1∕3 1∕3 1

⎞

⎟

⎟

⎠

2. Compute the weight vector 𝐰 = [𝑤1, 𝑤2, ., 𝑤𝑛] from the pairwise
comparison matrix 𝐀: first, 𝐀 is normalised, into a new matrix,
𝐀𝑛𝑜𝑟𝑚, then 𝑤𝑖 is computed as the average of the entries in row
𝑖 of 𝐀𝑛𝑜𝑟𝑚. Here we obtain: 𝐰 = [0.29, 0.57, 0.14]. That is, in
this example, and as expected, the highest weight is assigned to
IROPs cost, followed by cost of fuel and finally other costs. Note
again that if the airline was willing to, it could give more details
on the level of the relative importance (e.g. cost of fuel is strongly
more important than other costs, IROPs cost is moderately more
important than cost of fuel, etc.) or rate them with a numerical
scale, in order to obtain a finer tuning of the relative weights of
the KPIs.

3. Check the consistency of the pairwise comparison matrix 𝐀 and
obtained weights 𝑤𝑖, see San Cristóbal (2011) for the details.
Here we obtain a satisfying consistency value.

Step III: When applied to a given set of alternatives, the obtained
ompromise solution aims to provide a maximum group utility of the
ajority (by minimising the weighted sum of the differences between
PI values and their respective minima), and a minimum individual re-
ret of the opponent (by minimising the maximum difference between
KPI value and its minimum).

To that end, we compute 𝑞𝑗 = 𝜈
𝑠𝑗−𝑠∗

𝑠−−𝑠∗ + (1 − 𝜈) 𝑟𝑗−𝑟
∗

𝑟−−𝑟∗ , where 𝑠∗ =
min𝑗 𝑠𝑗 , 𝑠− = max𝑗 𝑠𝑗 and respectively for 𝑟∗ and 𝑟−, and 𝜈 is introduced
as a weight for the strategy of maximum group utility, whereas (1 − 𝜈)
is the weight of the individual regret. The solution obtained by min𝑗 𝑠𝑗
corresponds to a maximum group utility (‘‘majority’’ rule), and the
solution obtained by min𝑗 𝑟𝑗 to a minimum individual regret of the
‘‘opponent’’. Normally, the value of v is taken as 0.5, which is the
value chosen here. However, 𝜈 can take any value from 0 to 1, and the
sensibility of the method to the choice of 𝜈 is checked in Section 5.5.

Step IV: Rank the alternatives, by sorting the values 𝑠𝑗 , 𝑟𝑗 , and 𝑞𝑗
in increasing order into three ranking vectors 𝐬, 𝐫 and 𝐪. Propose as a
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Table 1
Flight characteristics.
Aircraft Origin Destination SIBT Number of

passengers
Connecting
passengers

Nominal CI Cruise flight level

A320 Madrid (LEMD) Frankfurt (EDDF) 9h10 171 65 10 kg/min FL380
compromise solution the alternative 𝛼(1), which corresponds to the best
ranked by 𝐪 (𝐪(1), the first position of 𝐪, is its minimum value), if the
following two conditions are satisfied:

(1) Acceptable advantage: 𝐪(2) − 𝐪(1) ≥ 𝐷𝐽 , where 𝐷𝐽 = 1∕(𝐽 − 1);
(2) Acceptable stability in decision-making: alternative 𝛼(1) must

also be the best ranked by 𝐬 or/and 𝐫.

If one of the conditions is not satisfied, then a set of compromise
solutions is proposed, which consists of:

• Alternative 𝛼(1) and 𝛼(2) (second best ranked by 𝐪) if only condi-
tion (2) is not satisfied, or

• Alternatives 𝛼(1), 𝛼(2), . . . , 𝛼(𝑀) if condition (1) is not satisfied.
𝛼(𝑀) is determined by looking for the maximum value of 𝑀
satisfying the relation 𝐪(𝑀) − 𝐪(1) < 𝐷𝐽 .

If neither condition is satisfied the set of solutions would be the
complete initial set.

4.2.3. Selection phase
The final phase of the decision-support tool consists in interacting

with the crew. This selection phase will be conduced via HMI. The crew
(or dispatchers) will be able to obtain the different ranked alternatives
and explore the trade-offs and cost components. When deciding if oper-
ating a given trajectory, many other tactical and operational parameters
beyond the airlines objectives are considered by the crew. Examples of
these include expected workload, interactions with ATC required, other
tactical information not available to the decision-support system, such
as the presence of weather turbulence at a given flight level, etc.

It could be possible to envisage a system capturing all these oper-
ational aspects and translating them into criteria to be considered as
part of the MCDM problem. However, this was deemed not practical,
as in some cases these parameters are difficult to assess and might vary
crew to crew. Instead, the decision-support tool will calculate some
operational indicators that might be relevant to the crew (e.g. number
of flight level changes, location of top of descend) and present this
information along the description of the trajectory. The crew will then
have an enhanced understanding of the impact of different alternatives
on the airlines goals, but they will also be able to assess the suitability
of the solutions and reject inadequate solutions.

If desired, operational constraints can be introduced by the crew,
e.g. do not descend, maintain top of descent after a given waypoint.
These constraints will feed the alternatives generator (see
Section 2.2.2). New trajectories will be generated as described in
the generation phase (see Section 4.2.1) and added to the pool of
trajectories still under consideration by the crew. This will trigger the
ranking phase and a further interaction with the crew via the HMI.

5. Example of application

A flight is modelled in this section to describe the application of
the MCDM framework. Assuming different initial delays, several case
studies are defined presenting the trajectory alternatives that would
be generated and ranked. The configuration required for the AHP-
VIKOR algorithm are maintained as defined in Section 4.2.2, that is,
considering IROPs as moderately more important than fuel and other
costs for airlines, and setting the algorithm tuning parameter 𝜈 to 0.5.
11
Fig. 4. First 50 passengers with connecting fights with the SOBT of on-going
connection.

Fig. 5. Possible fuel and delay variations with respect to nominal flight plan.

5.1. Flight characteristics

The characteristics of the flight, an Airbus A320 flight between
Madrid (LEMD) and Frankfurt (EDDF), are presented in Table 1. It is
an early flight scheduled to arrive to Frankfurt at 9h10 UTC with 38%
of passengers with further on-going connections. Fig. 4 represents the
first 50 passengers with connections as a function of the schedule off-
block time (SOBT) of their intended connection. Note that, in Frankfurt
the domestic minimum connecting time is 45 min, and 60 min for
international passengers. This means that passengers need at least that
time to ensure their connection.

5.1.1. Fuel and delay recovery estimation
Fig. 5 represents, for this flight, the variation in fuel and time

that can be achieved optimising the trajectory by selecting a different
CI with respect to the planned one (i.e., CI of 10 kg/min). These
fuel and delay trade-offs are computed using the trajectory optimiser
DYNAMO, an in-house aircraft trajectory prediction and optimisation
tool developed by UPC for research and development purposes (Dalmau
et al., 2018).

As observed, in this case, the flight can recover up to 6.4 min by
selecting a higher CI (100 kg/min), using in this case 154e extra of cost
of fuel (308 kg of fuel at a fuel cost of 0.5eper kg of fuel (Delgado et al.,
2021)). The flight could also consider slowing down, increasing its
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Fig. 6. Expected costs as a function of arrival time with case studies indicated.
delay by up to 2.2 min with a saving of 20e of fuel. Note that a different
optimiser could be used as part of the trajectory alternatives generation.
In this case, this range of delay and extra fuel would determine the
possible alternatives for the flight.

5.1.2. Cost of delay
As previously indicated, besides cost of fuel (see Section 5.1.1),

airlines consider passenger related costs (IROPs), which include com-
pensation, duty of care and costs generated due to missed connections,
and other costs (i.e., crew, maintenance, reactionary). For IROPs costs,
if passengers arrive to their final destination later than 180 min with
respect to their scheduled in-block time (SIBT), it is assumed that
they are entitled to economic compensation as regulated by Regulation
261/2004 (European Commission, 2004).

Fig. 6 represents the variation of all the different costs of delay as
a function of the arrival time at the destination gate. The cost of delay
function could be deterministic, or consider uncertainties related to the
operational environment, e.g. uncertainties associated with taxi-in time
or holdings at arrival, and intrinsic uncertainties to the processes which
generate the costs, e.g. missing a connection that depends on stochastic
parameters such as the probability that the connecting flight is still
available at a given time. The costs presented in Fig. 6 include the
integration of these uncertainties and therefore represent the expected
cost as a function of the arrival time. This generates smoother cost
functions instead of sharp transitions for IROPs and other costs. Note
that the fuel cost function of Fig. 5 is applied for each considered arrival
time, leading to a total cost specifically defined only for each case
study (see Section 5.2). For more information on the construction of
the stochastic cost function, the reader is referred to Delgado (2020,
2021). Finally, note that in this example reactionary delay costs are
not considered.

5.2. Case studies

Six different case studies are defined to represent different opera-
tional situations of interest for the application of the MCDM framework:

1. Case 1: Flight arriving at SIBT. In this case, OTP would always
be reached but the trajectory could still be optimised considering
trade-offs between fuel and cost of delay.
12
2. Case 2: Small expected arrival delay of 17 min, which would
present the opportunity to recover enough delay to meet OTP.

3. Case 3: Small expected arrival delay of 25 min, which would not
allow to meet OTP.

4. Case 4: High expected arrival delay of 55 min, with low variabil-
ity of delay cost around expected arrival time.

5. Case 5: High expected arrival delay of 75 min (expected in-block
time 10h25). As shown in Fig. 4, a significant amount of passen-
gers have a connecting flight before 11h25 (27 passengers). This
means that once the minimum connecting time is considered, an
initial delay of 75 min generates a high probability of missing
connections producing a high cost increment around that arrival
time (high variability of cost).

6. Case 6: High expected arrival delay of 103 min: the passengers
considered in the previous case would already missed their
connection, and even if cost of delay continues increasing, this
increment is not as steep. Note however, how in this case, the
cost of delay would dominate over the cost of fuel.

5.3. Generation of alternatives

The expected total cost of a given trajectory is obtained by adding
the expected costs of delay and fuel of this trajectory. Therefore, as
shown in Fig. 6, given an expected arrival time at the gate, the possible
available alternatives that the system will consider are obtained based
on the variations of time and fuel as indicated in Fig. 5.

If only total cost is minimised, due to the characteristics of the
cost of delay curve, only one alternative is generally found. Therefore,
to be able to consider more than one alternative, some buffer (extra
cost) should be used, as commented in Section 4.1.1 and presented in
Fig. 7, which shows the number of alternatives obtained, as a function
of the expected arrival time to the gate, and for different values of
buffer (parameter 𝑏 in Eq. (1)). With small buffers, e.g. 10e , several
alternatives can already be obtained. For example, if the flight is
expected to arrive at its SIBT (Case study 1), a range of 5 min can
be considered, for which all solutions lie within a maximum of 10e of
extra total cost with respect to the minimum total cost alternative.
However, if the initial expected delay is 75 min (Case 5), even with
300 e buffer, i.e., considering that all solutions up to 300 emore than



Journal of Air Transport Management 112 (2023) 102463A. Montlaur et al.
Table 2
Potential solutions from Generation phase — Case 2. For each trajectory, the difference of minutes (extra delay) with respect to the initial
solution is shown, as well as the total cost and sub-costs and their difference in Euros (𝛥) with respect to the solution with the lowest cost.
Alternative trajectory Extra delay [min] Total cost (𝛥) [e] Cost of fuel (𝛥) [e] IROPs (𝛥) [e] Other costs (𝛥) [e] OTP

Trajectory1 −6 4872 (25) 4767 (79) 8 (0) 97 (0) Yes
Trajectory2 −5 4858 (11) 4743 (55) 9 (1) 106 (9) Yes
Trajectory3 −4 4849 (2) 4725 (37) 10 (2) 114 (17) Yes
Trajectory4 −3 4847 (0) 4713 (25) 11 (3) 123 (26) Yes

Trajectory5 −2 4849 (2) 4705 (17) 12 (4) 132 (35) No
Trajectory6 −1 4852 (5) 4698 (10) 13 (5) 141 (44) No
Trajectory7 No 4858 (11) 4694 (6) 14 (6) 150 (53) No
Trajectory8 1 4864 (17) 4690 (2) 16 (8) 158 (61) No
Trajectory9 2 4872 (25) 4688 (0) 17 (9) 167 (70) No
Fig. 7. Range of equivalent solutions as a function of buffer (in euros) and expected
arrival time. Top: meeting OTP, bottom: not meeting OTP.

the minimum total cost should be retained by the generation phase, less
than one minute can be used for an alternative trajectory. This is due
to the fact that cost of delay grows very fast and even a few minutes
of extra delay represent a very high extra cost. Therefore, the optimal
trajectory is recovering as much delay as possible, and the savings on
fuel obtained with other solutions are lower than the extra cost of delay
generated, despite considering this 300 emargin.

Fig. 7 also shows how there is a time range (close to arriving to
destination at OTP) where a trade-off between achieving OTP or not
is possible. As shown in Fig. 5 only a maximum of 6.4 min can be
recovered and extra 2.2 min can be accrued by slowing down. This
means that if the flight is expected to arrive later than 6.4 min after
OTP it will not be possible to meet OTP, and if the flight is expected to
arrive earlier than 2.2 min before OTP then it will always meet OTP.

Table 2 shows the details of all the possible alternatives for Case 2
(expected arrival delay of 17 min): four trajectories reach OTP, and five
13
do not. The costs of these trajectories are disaggregated into sub-costs
(KPIs) and can be presented in the so-called performance matrix. As
seen in Fig. 5, as some delay can be recovered at the expense of higher
fuel cost, Table 2 shows for each alternative trajectory the difference of
minutes (extra delay) with respect to the initial solution, and the total
cost and sub-costs and their difference in Euros (𝛥) with respect to the
solution with the lowest cost. Recall that the number of alternatives
retained will vary as a function of the cost buffer used.

5.4. Ranking of alternatives

Table 3 shows the results obtained for each case study when ap-
plying the ranking algorithm described in Section 4.2.2. It presents
the ranked solutions, indicating the difference on arrival time with
respect to the expected arrival time of the flight. In each case, several
cost buffers are considered generating different numbers of possible
alternatives (see column ‘Number of available options’ in Table 3). Note
that there is a maximum buffer per case study, since at some point
the maximum number of alternatives will be reached and there will no
further benefit of increasing the cost buffer. For example, in the case
study presented in Table 2, once the buffer is ≥25e all alternatives are
already considered. Note that this table shows all trajectories that will
be kept after the ranking of the alternatives, that is, it can be seen how
as a decision aid tool, it will help the pilot by presenting for example
the three best options out of nine available ones. The pilot would be
provided with these ranked options, and the information of whether
they are OTP or not. These trajectories present trade-offs, or differences
among their sub-objectives (or criteria), fuel, IROPs and other costs,
which make them ‘equivalent’ (with no acceptable advantage, see
Section 4.2.2), while dominating all other alternatives.

For example, in Case study 1, with a buffer of 20e , a total of 6
alternatives are generated (considering this buffer) and after applying
the ranking only three solutions (recovering 1, 2 or 3 min of delay)
are kept, being 1 min of recovery the preferred option. Note that, all
options reach OTP, as the flight was expected to arrive at its SIBT.
Therefore, it should be expected that fuel cost is the only cost and
thus that slowing down to save fuel should be the only possible option.
However, as indicated in Section 5.1.2, the cost function considers
uncertainties linked to operations, e.g. holdings, missed connections.
This means that IROPs costs, even if low, are not null. It can be
seen that if cost buffer is low, the ranked solutions are close to SIBT
(first ranked solution recovers only 1 min), while when the cost buffer
increases, increasing the number of available options, slightly earlier
options are proposed (recovering 3 min) in order to lower the IROPs
costs (considered here as the most relevant cost).

In some cases, increasing the number of alternatives can change the
ranked solutions even though the new alternatives are not kept. This
is because VIKOR algorithm looks for a compromise solution, which is
the closest one to the utopia point, and that adding alternatives usually
changes the location of this point.

Case 2, whose details of costs are available in Table 2, presents the
possibility of reaching, or not, OTP. As indicated in the methodology,
these alternatives are treated independently. Depending on the cost
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Table 3
Results (ranked solutions) as a function of allowed cost buffer after applying the ranking
algorithm.

Case studies Ranked solution
(Extra delay
[min])

Allowed cost
buffer

Number of
available
options

OTP

1 −1, 0, −2 10e 5 Yes
−1, −2, −3 20e 6
−3, −2, −1 50e 8
−3, −4, −2 100e 9

2 (OTP) −4 10e 2 Yes
−5, −4 20e 3
−5, −6 50e 4

2 (non-OTP) −2, −1 10e 3 No
−1, −2 20e 4
−1, −2 50e 5

3 −4, −5, −3 10e 5 No
−4, −3 20e 7
−4, −5, −3 50e 9

4 −5, −4 10e 3 No
−5, −6, −4 20e 5
−4, −5, −3 50e 7
−3, −4, −2, −5 100e 9

5 −6 – 1 No

6 −6 10e 2 No
−6, −5 20e 3
−5, −6 50e 4
−5, −4, −6 100e 5
−4, −5, −6 200e 6
−4, −5, −3 300e 7

buffer considered, the OTP alternatives will recover between 4 and
5 min of delay, while the alternatives not meeting OTP will recover
between 1 and 2 min. These alternatives will be presented to the crew
independently, with information on the cost difference required to meet
OTP.

Case 3, which does not allow to reach OTP solutions, shows that
arriving 4 min earlier is the best ranked solution for all possible cost
buffers (a cost buffer of 50e includes all possible alternatives), and
t is just one minute earlier than the absolute minimum of total cost
obtained for recovering 3 min), which is also included in the ranked
olutions.

Case 4, which has a delay of 55 min, sees IROPs costs increase more
apidly than in the previous cases. As a consequence, if the airline only
llows a low cost buffer, the solutions that are kept aim at recovering as
uch delay as possible. By increasing the cost buffer, new alternatives,

orresponding to lower fuel cost, are kept and made available to the
rew, but since they lead to higher IROPs costs, which is the most
mportant cost considered here, in all cases, ranked solutions aim at
ecovering almost as much delay as possible (4-5 min). If cost buffer is
ery large, the compromise solution, to not penalise fuel cost too much,
s found with a recovery of 3 min.

Case 5 shows a point in the cost of delay function where a signif-
cant amount of passengers have a high probability of missing their
onnection. As costs of delay are computed considering their associ-
ted uncertainties, instead of a high discrete step (which would force
olutions before the discontinuity), cost of IROPs increases with a high
radient with respect to delay, as the likelihood (and hence expected
ost) of missing connections increases over the arrival delay. For this
eason, no alternative trajectory can be found, even within a cost buffer
f 300e. The cost of delay increases so rapidly that only recovering as
uch delay as possible (6 min, which would allow expected saving of
000e) is retained as a possible solution by the alternatives generation
hase, and no ranking algorithm is used.

Finally, Case 6, corresponding to 103 min of delay, shows high and
apidly increasing IROPs costs (some more passengers have a higher
14

ikelihood of missing their connection). However, a high amount of
ROPs cost has already materialised and cannot be recovered. In this
ontext, if cost buffer is low the optimal solution consists in recovering
s much time as possible (up to 6 min). When increasing the cost buffer,
s IROPs cost does not grow as fast as in the previous case over time,
ome compromise solutions are proposed by the ranking algorithm.
ote that in this case, and as IROPs costs still increase significantly
ver time, the maximum cost buffer considered (300e) only allows to

get seven alternatives (out of a possible maximum of nine).

5.5. Sensitivity of the ranking phase

As indicated in Section 4.2.2, two parameters need to be tuned
within the execution of the combination of AHP and VIKOR algorithm
used in the ranking phase.

First, recall that in the determination of the weights of the criteria,
AHP was used by creating a matrix 𝐀 representing the relative impor-
tance of one criteria to all others. Since level of relative importance
(corresponding to ‘‘moderate’’, ‘‘strong’’, ‘‘very strong’’, and ‘‘absolute’’
importance) could not be precisely specified by the DM, moderate
importance was considered, leading to a constant numerical value of 3
in 𝐀. We found that choosing a higher value led to inconsistent weights,
due to the fact that the same level of relative importance is set between
all pairs of attributes. Higher values are thus discarded. We have also
tried to set the constant value in 𝐀 to 2. The resulting weights obtained
with AHP in this case (𝐰 = [0.31, 0.49, 0.20]) are consistent and logically
more alike for each attribute. When comparing results between both
sets of weights in the 23 cases where the ranking algorithm was applied,
we observed either the same results are kept (in 44% of the cases),
a change of order of ranking (26%), or an additional alternative is
proposed by the algorithm (30%). The choice of the value of the relative
importance parameter in 𝐀 has thus some influence on the results, but
it can be considered as limited since, it does not drastically change the
results. We recall that in most of the cases, the preferred alternative
is not considered as superior enough to the others to be the only one
offered, and that the objective is to provide to the crew a list of options
(which remains the same in 70% of the cases and includes one more or
one less option in the remaining 30%). The final option will be selected
by the pilot in the selection phase.

Then a second tuning parameter 𝜈, corresponding of the weight of
the strategy of maximum group utility versus of the individual regret,
was set to a ‘‘neutral’’ value of 0.5. In this example, changing this value
does not affect the results, unless extreme values (≤0.1 or ≥0.9) are
chosen. It is thus considered that maintaining the commonly used value
of 0.5 is adequate.

6. Conclusions and further work

During a flight, the crew may contemplate modifying their planned
trajectory, considering new available information. Trajectory modifica-
tions will be translated into changes on expected fuel and flying time,
which will impact the airline’s relevant performance indicators, leading
to a complex MCDM problem. Pilot3, a project from the Clean Sky
Joint Undertaking 2 under European Union’s Horizon 2020 research
and innovation programme, aims to develop an objective optimisation
engine to assist the crew on this process. This article details the domain-
driven approach followed to select the most suitable MCDM methods
within this optimisation framework.

This article presented the relevance of a domain-driven approach to
select the most adequate methods for trajectory optimisation consid-
ering airlines’ preferences and needs. Current systems simplify flight
trajectory optimisation by translating the multi-objective problem of
considering airlines’ needs into a minimisation of trip fuel and time
combined, with a pre-defined weight (cost index), into a single ob-
jective optimisation. The research described in this paper contributes
to the identification of the actual objectives that are relevant by the
airlines, defined with the support of an Advisory Board composed of
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aviation experts (representing industry, airlines, pilots, dispatchers):
meeting on-time performance (OTP) and reducing the total operating
cost. Trip time (and hence cost index) is just a proxy used for conve-
nience. Further analysis has identified that cost is composed of three
sub-components: fuel, IROPs (passenger related) and other costs.

The MCDM framework described in this article enables the devel-
opment of trajectory optimisers that move away from the use of proxy
variables (such as the cost index) and that can directly use the criteria
of relevance of the airlines. The optimisation of the trajectory becomes
part of a MCDM framework that considers multiple objectives. The
particularities of the problem (and the domain) enable the possibility of
the exploration of Pareto solutions, as the set of alternative trajectories
is limited. Consulted experts indicated that different operations might
require the prioritisation of equivalent solutions as a function of the
ifferent components of the total cost. As only three sub-objectives
criteria) are identified, qualitative pair-wise preferences can be de-
ined. With these considerations and as demonstrated in this article,
n optimisation architecture composed of a lexicographic optimisation
o identify the Pareto solutions, followed by an AHP-VIKOR algorithm
s suitable for such a MCDM framework.

The MCDM process consists of two phases: first, Pareto optimal
olutions are generated with an a priori MOO method (lexicographic
rdering), as total cost is deemed the most important factor. Assessing
he potential trade-off required to achieve OTP is also relevant for
irlines and therefore, if OTP is reachable, trajectories meeting OTP
hile minimising the extra cost are generated. An economic buffer can
e established to identify equivalent total cost solutions. Second, the set
f optimal alternative trajectories is filtered and ranked using a com-
ination of MCDA methods (analytic hierarchy process and VIKOR).
his is possible as two-by-two ranking of sub-cost components can be
rovided by airlines as a set of preferences.

The example of an Airbus A320 flight between Madrid and Frankfurt
hows the applicability of the process. It can be seen how in different
ases, representing different scenarios when the flight could arrive
n time, or with some delay, a ranked reduced set of options, with
quivalent total costs, is offered to the crew to help them choose the
ost adequate one. In the hypothesis considered here, where IROPs

osts would be more important for the airline, the optimiser tends
o propose options recovering time, but the fastest alternative is not
ecessarily always selected, since the solutions aim at a compromise
etween all sub-costs and in some cases the required fuel cost will be
onsidered too high for the benefit obtained on the expected IROPs
osts. In general, the total delay that can be recovered, with the used
rajectory generator, is low. This means that the number of alternatives
or which a trade-off between meeting OTP or not exists is very low.

ith a relatively low economic buffer (10e), the number of alternatives
ept by the filtering phase is already larger than the one minimising the
otal cost. This depends significantly on the evolution of the expected
ost of delay as a function of the arrival time.

The effect of the choices of the two tuning parameters of the AHP-
IKOR algorithm used for the filtering and ranking of alternatives
as been found to be rather limited, proving the robustness of the
ptimisation framework proposed.

This framework has been integrated into the Pilot3 prototype, which
rovides dynamic cost functions (Delgado et al., 2022). The trajectory
enerator used in this article considers modifying the CI as the only
ontrol variable, providing a rather low range of arrival times (Prats
t al., 2022). A full trajectory optimiser, allowing also the consideration
f operational constraints provided by the crew could be used. This
ill increase the range of alternatives with a larger trade-off between

uel and delay recovered. Further work should be performed on the
ssessment of the most suitable HMI to present the information and
acilitate the exploration of alternatives to the crew.

At the time of conducting this research, the environmental impact
f aviation was not considered an independent objective to be opti-
15

ised, as it was not deemed relevant for tactical flight operations by
he experts of the aforementioned Advisory Board. The environmental
mpact of a flight was directly linked to CO2 emissions, which is
lready accounted by fuel cost (and consumption), as CO2 emissions
re proportional to fuel burn. However, the importance of non-CO2
spects of aviation on the environment is gaining relevance (Dahlmann
t al., 2023; Thor et al., 2023) and the mitigation of these aspects
ight require the adjustment of trajectories in a more complex manner,

.g. with route or flight level changes (Matthes et al., 2018; Simorgh
t al., 2022). The addition of this objective as part of the ranking of
olutions should be still feasible with the AHP-VIKOR algorithm. The
otal number of indicators considered is still small and the pair-wise
anking could still be defined for all of them. Note that this definition
f preferences could be done strategically, at dispatching and/or at
re-departure, therefore not having an impact on crew workload.

Yet, if the environmental impact of the flight is considered as a
eneral objective to be minimised (as the total cost and meeting OTP),
he generation of trajectories would not necessarily present solely two
areto trajectories, as it is the case in the work described in this
rticle. Therefore, other approaches instead of aiming at generating
ll Pareto solutions might be used, such as computing the trajectories
ith an Interactive Evolutionary Multiobjective Optimisation (Branke
t al., 2008; Xin et al., 2018). This highlights the importance of the
omain-driven analysis of the problem when selecting the optimisation
lgorithms. The methodological approach described in this article to
elect the most suitable method could be reapplied with these new
onsiderations.

ata availability

Data will be made available on request

cknowledgements

This work has been performed as part of Pilot3 project which
as received funding from the Clean Sky 2 Joint Undertaking (JU)
nder grant agreement No 863802. The JU receives support from the
uropean Union’s Horizon 2020 research and innovation programme
nd the Clean Sky 2 JU members other than the Union. The opinions ex-
ressed herein reflect the authors’ views only. Under no circumstances
hall the Clean Sky 2 Joint Undertaking be responsible for any use that
ay be made of the information contained herein.

eferences

irbus, 1998. Getting to Grips with the Cost Index. Technical report, Tech. report,
Airbus Flight Operations Support & Line Assistance, Blagnac, France.

sadi, E., Schultz, M., Fricke, H., 2021. Optimal schedule recovery for the aircraft gate
assignment with constrained resources. Comput. Ind. Eng. 162, 107682.

than, T.W., Papalambros, P.Y., 1996. A note on weighted criteria methods for
compromise solutions in multi-objective optimization. Eng. Optim. 27, 155–176.

ehzadian, M., Kazemzadeh, R.B., Albadvi, A., Aghdasi, M., 2010. PROMETHEE: A
comprehensive literature review on methodologies and applications. European J.
Oper. Res. 200 (1), 198–215.

elton, V., Stewart, T.J., 2002. Multiple Criteria Decision Analysis: An Integrated
Approach. Springer, New York, NY.

estie, D., Eberhard, P., 1997. Dynamic system design via multicriteria optimization.
In: Fandel, G., Gal, T. (Eds.), Multiple Criteria Decision Making. In: Lecture Notes
in Economics and Mathematical Systems, vol. 448, Springer, Berlin, Heidelberg.

owman, V., 1976. On the relationship of the tchebycheff norm and the efficient
frontier of multiple-criteria objectives. In: Thieriez, H. (Ed.), Multiple Criteria
Decision Making. In: Lecture Notes in Economics and Mathematical Systems, vol.
130, Springer Verlag, Berlin.

ranke, J., Deb, K., Miettinen, K., Słowiński, R., 2008. Multiobjective Optimization:
Interactive and Evolutionary Approaches. Springer, Berlin, Heidelberg.

rans, J.P., Vincke, P., Mareschal, B., 1986. How to select and how to rank projects:
The PROMETHEE method. European J. Oper. Res. 24, 228–238.

harnes, A., Cooper, W., 1961. Management Models and Industrial Applications of
Linear Programming. Wiley, New York.

harnes, A., Cooper, W.W., Ferguson, R.O., 1955. Optimal estimation of executive

compensation by linear programming. Manage. Sci. 1 (2), 138–151.

http://refhub.elsevier.com/S0969-6997(23)00106-0/sb1
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb1
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb1
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb2
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb2
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb2
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb3
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb3
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb3
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb4
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb4
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb4
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb4
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb4
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb5
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb5
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb5
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb6
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb6
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb6
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb6
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb6
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb7
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb8
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb8
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb8
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb9
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb9
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb9
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb10
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb10
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb10
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb11
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb11
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb11


Journal of Air Transport Management 112 (2023) 102463A. Montlaur et al.

D

D

D

D

D

E

F

F

F

G

G

G

G

G

H

H

Cinelli, M., Kadziński, M., Miebs, G., Gonzalez, M., Słowiński, R., 2022. Recommending
multiple criteria decision analysis methods with a new taxonomy-based decision
support system. European J. Oper. Res. 302 (2), 633–651.

Cook, A., Tanner, G., 2015. European Airline Delay Cost Reference Values, Updated
and Extended Values. Technical report, University of Westminster.

Cook, A., Tanner, G., Williams, V., Meise, G., 2009. Dynamic cost indexing - managing
airline delay costs. J. Air Transp. Manag. 15 (1), 26–35.

Dahlmann, K., Grewe, V., Matthes, S., Yamashita, H., 2023. Climate assessment of
single flights: Deduction of route specific equivalent CO2 emissions. Int. J. Sustain.
Transp. 17 (1), 29–40.

almau, R., Melgosa, M., Vilardaga, S., Prats, X., 2018. A fast and flexible aircraft
trajectory predictor and optimiser for ATM research applications. In: Proceedings
of the 8th International Congress on Research in Air Transportation (ICRAT).
Eurocontrol and FAA, Castelldefels, Catalonia.

elgado, L., 2020. Crew multi-criteria decision support tool estimating performance
indicators and uncertainty. In: Airline Group of the International Federation of
Operational Research Societies (AGIFORS).

elgado, L., 2021. Machine learning to improve tactical flight decision making: the
case of Pilot3. In: Thematic Challenge 2 – AI, ML and Automation, 4th Workshop.
Engage KTN.

elgado, L., de la Torre, D., Prats, X., 2022. Considering TMA holding uncertainty into
in-flight trajectory optimisation. In: IWAC 2022, ENRI International Workshop on
ATM/CNS. ENRI, Tokyo, Japan.

elgado, L., Gurtner, G., Mazzarisi, P., Zaoli, S., Valput, D., Cook, A., Lillo, F., 2021.
Network-wide assessment of ATM mechanisms using an agent-based model. J. Air
Transp. Manag. 95, 102108.

uropean Commission, 2004. Regulation (EC) No 261/2004 of the European Parliament
and of the Council of 11 February 2004 establishing common rules on compensation
and assistance to passengers in the event of denied boarding and of cancellation
or long delay of flights, and repealing Regulation (EEC) No 295/91, 17 February
2004, 1-7.

igueira, J., Greco, S., Ehrogott, M., 2016. Multiple Criteria Decision Analysis: State of
the Art Surveys. Springer, New York, NY.

igueira, J., Mousseau, V., Roy, B., 2005. ELECTRE methods. In: Multiple Criteria
Decision Analysis: State of the Art Surveys. Springer, Berlin, pp. 133–153.

ishburn, P.C., 1974. Lexicographic orders, utilities and decision rules: A survey.
Manage. Sci. 20 (11), 1442–1471.

ershon, M., Durckstein, L., 1983. An algorithm for choosing of a multiobjective
technique. In: Essays in Economics and Mathematical Systems 209. Springer-Verlag,
Berlin, Heidelberg, pp. 53–62.

ovindan, K., Jepsen, M.B., 2016. ELECTRE: A comprehensive literature review on
methodologies and applications. European J. Oper. Res. 250 (1), 1–29.

udiel Pineda, P.J., Liou, J.J., Hsu, C.-C., Chuang, Y.-C., 2018. An integrated MCDM
model for improving airline operational and financial performance. J. Air Transp.
Manag. 68, 103–117.

uitouni, A., Martel, J.-M., 1998. Tentative guidelines to help choosing an appropriate
MCDA method. European J. Oper. Res. 109 (2), 501–521.

urtner, G., Delgado, L., Valput, D., 2021. An agent-based model for air transportation
to capture network effects in assessing delay management mechanisms. Transp.
Res. C 133, 103358.

aimes, Y.Y., Lasdon, L.S., Wismer, D., 1971. On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Trans.
Syst. Man Cybern. 47, 296–297.

obbs, B., 1986. What can we learn from experiments in multiobjective decision
analysis? IEEE Trans. Syst. Man Cybern. 16, 384–394.
16
Keeney, R., Raiffa, H., 1976. Decisions with Multiple Objectives: Preference and Value
Tradeoffs. John Wiley & Sons, New York.

Kok, M., 1986. The interface with decision makers and some experimental results in
interactive multiple objective programming methods. European J. Oper. Res. 26,
96–107.

Marler, R., Arora, J., 2004. Survey of multi-objective optimization methods for
engineering. Struct. Multidiscip. Optim. 26 (6), 369–395.

Marler, R.T., Arora, J.S., 2005. Function-transformation methods for multi-objective
optimization. Eng. Optim. 37 (6), 551–570.

Matthes, S., Dahlmann, K., Grewe, V., Frömming, C., Lührs, B., Linke, F., Shine, K.,
Irvine, E., Yin, F., 2018. Mitigation potential of environmental optimized aircraft
trajectories – How to perform environmental optimization of aircraft trajectories
impact in Europe. In: 8th SESAR Innovation Days. Saltzburg, Austria.

Miettinen, K., 1999. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston - London -Dordrecht.

Opricovic, S., 1998. Multicriteria Optimization of Civil Engineering Systems (Ph.D.
thesis). Faculty of Civil Engineering, Belgrade.

Opricovic, S., Tzeng, G.H., 2004. The compromise solution by MCDM methods: A
comparative analysis of VIKOR and TOPSIS. European J. Oper. Res. 156, 445–455.

Opricovic, S., Tzeng, G.H., 2007. Extended VIKOR method in comparison with
outranking methods. European J. Oper. Res. 178, 514–529.

Pareto, V., 1896. Cours d’économie politique. Rev. Econ..
Pilot3 Consortium, 2020a. D1.1 – Technical Resources and Problem Definition.

Technical report, Pilot3 Consortium.
Pilot3 Consortium, 2020b. D2.1 – Trade-Off Report on Multi Criteria Decision Making

Techniques. Technical report, Pilot3 Consortium.
Pilot3 Consortium, 2022. D5.2 – Verification and Validation Report. Technical report,

Pilot3 Consortium.
Prats, X., de la Torre, D., Delgado, L., 2022. In-flight cost index optimisation upon

weather forecast updates. In: 41th Proceedings of the AIAA/IEEE Digital Avitonics
Systems Conference. DASC.

Rao, R., 2008. A decision making methodology for material selection using an improved
compromise ranking method. Mater. Des. 29, 1949–1954.

Roy, B., 1968. Classement et choix en présence de points de vue multiples (La méthode
ELECTRE). Rev. Fr. Inf. Rech. 8, 57–75.

Roy, B., Słowiński, R., 2013. Questions guiding the choice of a multicriteria decision
aiding method. EURO J. Decis. Process. 41 (1), 69–97.

Saaty, T.L., 1994. How to make a decision: The analytic hierarchy process. INFORMS
J. Appl. Anal. 24.

Saaty, T., 2000. Fundamentals of Decision Making and Priority Theory with AHP. RWS
Publications, Pittsburgh.

San Cristóbal, J., 2011. Multi-criteria decision-making in the selection of a renewable
energy project in Spain: The VIKOR method. Renew. Energy 36, 498–502.

Simorgh, A., Soler, M., González-Arribas, D., Linke, F., Lührs, B., Meuser, M.M., Diet-
müller, S., Matthes, S., Yamashita, H., Yin, F., Castino, F., Grewe, V., Baumann, S.,
2022. Robust 4D climate optimal flight planning in structured airspace using
parallelized simulation on GPUs: ROOST V1.0. EGUsphere 2022, 1–39.

Stewart, T., 1992. A critical survey on the status of multiple criteria decision making
theory and practice. OMEHA 20, 569–586.

Thor, R.N., Niklaß, M., Dahlmann, K., Linke, F., Grewe, V., Matthes, S., 2023. The
CO2 and non-CO2 climate effects of individual flights: simplified estimation of CO2
equivalent emission factors. Geosci. Model Dev. Discuss. 2023, 1–24.

Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., Liu, B., 2018. Interactive
multiobjective optimization: A review of the state-of-the-art. IEEE Access 6,
41256–41279.

http://refhub.elsevier.com/S0969-6997(23)00106-0/sb12
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb12
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb12
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb12
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb12
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb13
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb13
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb13
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb14
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb14
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb14
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb15
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb15
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb15
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb15
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb15
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb16
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb17
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb17
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb17
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb17
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb17
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb18
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb18
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb18
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb18
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb18
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb19
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb19
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb19
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb19
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb19
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb20
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb20
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb20
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb20
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb20
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb21
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb22
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb22
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb22
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb23
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb23
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb23
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb24
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb24
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb24
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb25
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb25
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb25
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb25
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb25
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb26
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb26
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb26
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb27
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb27
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb27
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb27
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb27
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb28
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb28
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb28
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb29
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb29
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb29
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb29
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb29
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb30
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb30
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb30
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb30
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb30
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb31
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb31
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb31
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb32
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb32
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb32
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb33
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb33
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb33
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb33
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb33
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb34
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb34
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb34
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb35
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb35
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb35
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb36
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb37
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb37
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb37
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb38
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb38
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb38
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb39
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb39
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb39
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb40
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb40
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb40
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb41
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb42
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb42
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb42
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb43
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb43
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb43
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb44
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb44
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb44
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb45
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb45
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb45
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb45
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb45
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb46
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb46
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb46
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb47
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb47
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb47
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb48
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb48
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb48
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb49
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb49
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb49
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb50
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb50
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb50
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb51
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb51
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb51
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb52
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb53
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb53
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb53
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb54
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb54
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb54
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb54
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb54
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb55
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb55
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb55
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb55
http://refhub.elsevier.com/S0969-6997(23)00106-0/sb55

	Domain-driven multiple-criteria decision-making for flight crew decision support tool
	Introduction
	Context of the study
	Current tactical flight management
	Pilot3 – Flight decision support tool
	Configuration phase
	Generation phase
	Ranking phase
	Selection phase


	Literature review of relevant MCDM methods
	Generation phase: multi-objective optimisation methods families
	Methods where a posteriori articulation of preference information is used
	Methods where a priori articulation of preference information is used

	Ranking phase: multi-criteria decision analysis methods

	Domain-driven selection of methods
	General filtering
	Objectives considered
	Data required
	Other considerations
	Shortlist of optimisation methods

	Specific filtering and selection
	Generation phase
	Ranking phase
	Selection phase


	Example of application
	Flight characteristics
	Fuel and delay recovery estimation
	Cost of delay

	Case studies
	Generation of alternatives
	Ranking of alternatives
	Sensitivity of the ranking phase

	Conclusions and further work
	Data availability
	Acknowledgements
	References


