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ON THE STRUCTURE, CONVERGENCE AND PERFORMANCE OF AN 
ADAPTIVE I/Q MISMATCH CORRECTOR

Ediz Çetin, Izzet Kale and Richard C. S. Morling 
University of Westminster, Department of Electronic Systems,  

Applied DSP and VLSI Research Group, 
London W1W 6UW, United Kingdom 

 

Abstract— The I/Q mismatches in quadrature radio receivers 
results in finite and usually insufficient image rejection, 
degrading the performance greatly. In this paper we present a 
detailed analysis of the Blind-Source Separation (BSS) based 
mismatch corrector in terms of its structure, convergence and 
performance. The results indicate that the mismatch can be 
effectively compensated during the normal operation as well as in 
the rapidly changing environments. Since the compensation is 
carried out before any modulation specific processing, the 
proposed method works with all standard modulation formats 
and is amenable to low-power implementations. 

Keywords—phase and gain errors, I/Q mismatch, blind source 
separation, adaptive signal processing, digital receivers. 

I. INTRODUCTION 
The I/Q mismatches in quadrature radio transceivers limit 

the image rejection (IR) that can be achieved resulting in a 
finite IR, degrading the bit-error-rate (BER) [1]-[7]. In 
general, it is difficult to eliminate circuit mismatches and 
obtain a high image-rejection ratio. For optimal system 
operation, wideband IR is required for a broad range of 
operating temperatures and signal power levels. This is not 
achievable using a one-time optimisation technique, such as 
trimming. Several adaptive techniques have been proposed to 
estimate and compensate the quadrature receiver errors [1]-
[7]. In [4] and [5] the Gram-Schmidt orthogonalisation 
procedure is proposed for correcting the I/Q errors by using 
test/pilot signals. In [1] and [2] an interference cancellation 
based adaptive I/Q corrector is proposed. In this paper we 
carry out a detailed analysis of the non-data/pilot aided BSS 
based imbalance compensator developed for the quadrature 
receivers in [7]. 

The paper is organized as follows: Section II defines the 
model of the gain and phase imbalance compensator. Section 
III describes the performance analysis and the simulation 
results, while concluding remarks are given in Section IV. 

II. BSS-BASED I/Q CORRECTOR 

A. Effects of I/Q Errors 
In this section we will briefly describe the effects of phase 

and gain mismatches of the analog front-end. PSK modulated 
signal can be represented as: 
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where, di is the M-ary data, di ∈{0, 1, …, M-1}. However, in 
the presence of analog front-end impairments the erroneous 
received baseband I and Q signals can be expressed as: 
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where ( )εα5.011 +=g , ( )εα5.012 −=g  and ϕε and αε 
represent the phase and gain mismatches respectively. In the 
ideal case the I and Q channels are not correlated however in 
the presence of phase and gain errors there is a correlation 
between them. The cross-correlation, in the presence of phase 
and gain errors, at zero-lag is given in (3) and shown in Fig. 1. 
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Figure 1 Cross-correlation Function  
As it can be seen from Fig. 1, amount of phase and gain errors 
determine the cross-correlation between the I and Q channels. 

B. Application of BSS to I/Q Correction 
In the theoretical derivation of the algorithm the following 

notations will be used: 
Transmitted I/Q Signals: T

QI zszsz )]()([)( =s  
Received I/Q Signals: T

QI zrzrz )]()([)( =r  
Corrected I/Q Signals: T

QI zczcz )]()([)( =c  
Mixing Vector: T

i
k

i
k

i
k

i Lhhz )]()0([)( ][][][ K=H  
Coefficient Vector: T

i
k

i
k

i
k

i Lwwz )]()0([)( ][][][ K=W  
where Li is the filter order and i=1,2. In the presence of I and 
Q phase and gain mismatches the received signal r[k] can be 
expressed as [7]: 
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][][ kk Hsr =                                                                           (4) 
where H is the unknown non-singular mixing matrix which is 
determined by the phase and gain errors [7] and s[k] is the 
transmitted signal. Given the received vector r[k], the source 
separation problem comprises the recovery of the original 
signals in an unsupervised way by finding a de-mixing  matrix 
W hence recovering the sources: 
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Application of the BSS to the I/Q problem is depicted in Fig 2. 
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Figure 2 Application of the BSS to I/Q correction 

In the next section the structures for the I/Q channel phase and 
gain error compensation will be looked at 

C. Structures for the Solution 
In this section we will first derive the general properties of the 
solutions to the I/Q phase and gain correction before 
discussing any specific criterion or adaptive method. The only 
assumption we make is that the transmitted signals, sI[k] and 
sQ[k] are orthogonal and not correlated witch each other. 
Hence, this assumption implies that: 

nnksksE QI ∀=− 0]][][[                                                   (6) 
Possible feed-forward solution to the source separation 
problem is depicted in Fig 3. 

W1(z)

+

rI[k]

rQ[k]
-

-

+

Adaptive Algorithm

ΣΣΣΣ

cI[k]

cQ[k]

ΣΣΣΣ

W2(z)

 
Figure 3 BSS-based I/Q corrector [7] 
For the feed-forward case the source estimates, cI(z) and cQ(z), 
become: 
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When the filters converge, i.e. )()( 11 zHzW =  and 
)()( 22 zHzW = then the source estimates become: 
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As it can be seen from (8) the I and Q channels have the same 
gain and are orthogonal again. Also, 1))()(1( 21 ≈− zHzH  and 
can be safely ignored. An alternative implementation for the 
separation structure is found by placing the filters in the 
feedback loop. The structure is shown in Fig 4. 
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Figure 4 BSS-based I/Q corrector 
For the feed-back case the source estimates, cI(z) and cQ(z), 
become: 
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When the filters converge, i.e. )()( 11 zHzW =  and 
)()( 22 zHzW = then the source estimates become: 
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As it can be seen from (10) the I and Q channels have the 
same gain and are orthogonal again. The filter W1 identifies 
the crosstalk from Q to I channel and the filter W2 identifies 
the crosstalk from I to Q. These estimates are then subtracted 
to yield estimates of sources sI[k] and sQ[k] that are 
separated/uncorrelated 

D. Adaptation of W1(z) and W2(z) 
In the previous section, while deriving the general 

properties of the structures for the I/Q correction, no specific 
criteria or adaptive method has been proposed for the 
adaptation of filters W1(z) and W2(z). In this section we look 
into the use of simple Least-Mean-Squares (LMS) algorithm 
[8] to update filter coefficients. The proposed algorithm is 
derived as an intuitive extension of the classical LMS 
Adaptive-Noise Canceller (ANC). 

The proposed structure is re-drawn in Fig. 5 with two 
cross-coupled ANC’s highlighted. The Mean Square Errors 
(ξ1 and ξ2) can be expressed as: 
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where R1=E[RQ[k]RQ[k]T] and R2=E[RI[k]RI[k]T] are the 
input auto-correlation matrices and P1=E[rI[k]RQ[k]] and 
P2=E[rQ[k]RI[k]] are the cross-correlation matrices. The 
criterion of the LMS adaptive noise cancellers, ANC 1 and 
ANC 2, is to minimize the energies ξ1[k] and ξ2[k] in the 
signal estimates cI[k] and cQ[k] respectively. 
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Figure 5 BSS-based I/Q corrector 
An interesting property of the LMS algorithm is its 
decorrelation property [8]. When the algorithm has converged 
the signals cI[k] and rQ[k] as well as cQ[k] and rI[k] are 
decorrelated over the length of the adaptive filter [8]. This 
gives: 
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Minimization of ξ1[k] and ξ2[k] thus equivalent to 
decorrelation of the signal estimates cI[k] and cQ[k] with the 
interference references rQ[k] and rI[k] respectively. To show 
this more rigorously, the mixing filter H2(z) is first set to zero. 
The ANC 1 in Fig. 3 is then applied under the mild 
assumption that filters H1(z) and W1(z) are both of order L1. 
First the expressions for the minimization are given as: 
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Next expressions are derived for the decorrelation: 

0

]][])[][[(]][][[

1

1

=−=

−==

RWP

RRWRC kkkrEkkcE QQ
T

IQIrc QI         (14) 

Comparing the above equations indeed shows the equivalence: 

00 =∇≡= ξ
QI rcC                                                     (15) 

As a conclusion we may say that the LMS algorithm is an 
adaptive decorrelation algorithm. Same analysis applies to the 
ANC 2 in the bottom branch as well. As illustrated in Section 
C, it is indeed possible to obtain the desired source estimates 
when the structure of Fig. 3 is used. The update equations are 
given as: 
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where L1 and L2 are the filter orders. If the set of update 
equations (16) converge, cI[k] and cQ[k] will be decorrelated 
over the length of both filters [8]: 
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The decorrelation property of the proposed algorithm can be 
shown in the frequency domain by using the frequency 
domain equivalent of the cross-correlations, the cross-

spectrum. The expression for zero cross-spectrum of the signal 
estimates yields: 
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Hence, decorrelation is indeed a necessary condition for signal 
separation and restoration of the orthogonality and equal 
amplitudes of the I and Q channels. 

III. PERFORMANCE EVALUATION  
To analyse the performance of the proposed structure, we 

consider linearly modulated communications signals, namely 
M-PSK and M-QAM with ideal symbol rate sampling. We 
assume an AWGN and Rayleigh Fading channels and phase 
and gain errors of 30° and 6 dBs respectively. 

The performance of the adaptive algorithm is characterised 
by the Modelling-ERRor (MERR). This gives a global figure 
for the quality of the identification of the coupling filters 

)(1 zH  and )(2 zH  by )(1 zW  and )(2 zW . The curve of the 
MERR versus time (or frames) shows the modelling 
performance of the proposed algorithm. What is more, the 
MERR can be used to observe the convergence rate and/or the 
steady state performance of the proposed adaptive system. The 
MERR is defined as the squared norm of the difference of the 
transfer functions between the original filters used in the 
mixture and the estimated filters, relative to the squared norm 
of the mixture filter. It is given as: 
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In the time domain it is defined as the expected value of the 
sum of squares of the difference between the original and the 
estimated filters. It is expressed as follows: 
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where Li is the filter order (i=1,2). First we will investigate the 
influence of the filter order (Li) on the performance of the 
proposed solution. The filter order cannot be chosen arbitrarily 
small. There must be sufficient degrees of freedom to model 
the unknown impulse responses h1[k] and h2[k]. Fig. 6 depicts 
the modelling error for different filter tap lengths (li= Li+1) 
using 16-PSK modulated signals. 
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Figure 6 Modelling Error for different filter tap length li 
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From Fig. 6 we can see that, longer filters converge slower. 
What is more, increase of the filter tap lengths leads to larger 
misadjustment as expected [8]. Hence, filter order of 1 (i.e. li 
=2-taps) is chosen for the proposed algorithm. Modelling error 
for different step-sizes (µ) using 16-PSK modulated signals is 
shown in Fig. 7. 
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Figure 7 Modelling Error for different filter length Li 
Step-size values, smaller than 0.0005 and larger than 0.001, 
that made the system unstable were discarded from the Fig. 7. 
As it can be seen from Fig. 7 step-size, µ=0.0005, gives the 
best performance. 

We now concentrate on the application of the proposed 
algorithm to different modulation formats. We consider two 
cases: (i) 32-PSK with an SNR of 32dB and (ii) 16-QAM with 
an SNR of 20dB. Figs 8 and 9 depict the constellation and eye 
diagrams for the application of the BSS-based corrector to 32-
PSK for an SNR=32dB and 16-QAM for an SNR=20dB. 
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Figure 8 Constellation and Eye Diagrams (a) Original, (b) 
With phase and gain error and (c) Corrected, for 32-PSK 
modulated signals. 
As it can be seen, the erroneous constellation and eye 
diagrams of Fig. 8 (b) are transformed (c) almost matching the 
ideal diagrams of (a). 
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Figure 9 Constellation and Eye Diagrams (a) Original, (b) 
With phase and gain error and (c) Corrected, for 16-QAM 
modulated signals 
Once again, the erroneous constellation and eye diagrams of 
(b) are transformed to those of (c) almost matching the ideal 
diagrams of (a). Fig. 10 depicts the modelling error for both of 
the above cases. 
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Figure 10 Modelling Error for (a) 32-PSK and (b) 16-QAM 
As it can be seen, de-mixing filters W1(z) and W2(z) almost 
match the mixing filters H1(z) and H2(z); hence the modelling 
errors are almost zeroed starting from frames 1100 for (a) and 
4000 for (b). 

Another performance measure is the capability of the 
adaptive algorithm in tracking non-stationary environments 
i.e. time varying and frequency dependent phase and gain 
errors. In order to show the robustness of the proposed 
approach we start by adapting the filters to the 30° phase and 
6 dB of gain error. We then switch the phase error to 15° and 
the gain error to 3 dB. This enables us to examine the tracking 
behaviour of the structure to the reaction to phase and gain 
error changes. Fig. 11 depicts the tracking capability of the 
proposed algorithm. 
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Figure 11 Tracking Capability 
As it can be seen from the Fig. 11, the modelling error is 
almost zeroed from 4000 frames then we change the phase and 
gain errors to 15° and 3dB respectively. The filters track the 
changes rapidly and the modelling error is once again zeroed 
after 2000 frames. Hence the algorithm is capable of tracking 
the changes in the environment promptly. 

Another performance measure is the capability of the 
adaptive algorithm in fading environments In order to show 
the robustness of the proposed approach we use Rayleigh 
Fading channel instead of the AWGN channel. Fig. 12 depicts 
the simulation results.  
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Figure 12 Constellation and Eye Diagrams (a) Original, (b) 
With phase and gain error and (c) Corrected, for 16-QAM 
modulated signals with Rayleigh Fading Channel. 
As it can be seen from the constellation and eye diagrams of 
Fig. 12, the algorithm is capable of removing the phase and 
gain errors with fading channels without the need to carry out 
channel equalisation. 

The modelling error for 16-QAM modulated signal with 
Rayleigh Fading Channel and phase and gain errors of 30° and 
6 dB respectively is depicted in Fig. 13. As it can be seen from 
Fig. 13 the proposed algorithm is able to identify and closely 
model the mixing filter impulse responses h1[k] and h2[k]. The 
modelling error is almost zeroed after 950 frames. 
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Figure 13 Modelling Error 16-QAM with fading channel 

IV. CONCLUSIONS 
In this paper we have presented the simulation study of 

results derived analytically for a BSS centred I/Q mismatch 
compensator employing an LMS driven FIR filter set-up. The 
study examined our algorithm’s performance for a variety of 
modulation formats, and reported on M-QAM and M-PSK in 
this paper. As the algorithm is independent of modulation 
scheme and format its applicability in different 
communications environments has been demonstrated, 
through numerous simulation experiments and only a few 
representative examples reported here. The algorithm should 
work with all standard modulation formats such as PAM, 
QAM, PSK, GMSK and OFDM. The algorithms ability to 
compensate and minimize the analog front-end non-linearities 
in rapidly changing environments has also been demonstrated. 
Furthermore, the algorithm’s performance has been 
scrutinized under a noisy Rayleigh Fading channel 
environment and has been demonstrated to work satisfactorily. 
As the adaptive scheme reported in this paper has a very low 
computational complexity, it is amenable to low-complexity, 
low-power software/custom hardware implementations. 
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