
TYPE Original Research

PUBLISHED 05 February 2025

DOI 10.3389/fnbot.2025.1546731

OPEN ACCESS

EDITED BY

Di Wu,

Southwest University, China

REVIEWED BY

Zhongbo Sun,

Changchun University of Technology, China

Jiawang Tan,

Chinese Academy of Sciences (CAS), China

Kaiyuan Yang,

The University of She�eld, United Kingdom

*CORRESPONDENCE

Jiahao Wu

william_wu.zj@foxmail.com

RECEIVED 17 December 2024

ACCEPTED 08 January 2025

PUBLISHED 05 February 2025

CITATION

Zhao Y, Wu J and Zheng M (2025)

Noise-immune zeroing neural dynamics for

dynamic signal source localization system and

robotic applications in the presence of noise.

Front. Neurorobot. 19:1546731.

doi: 10.3389/fnbot.2025.1546731

COPYRIGHT

© 2025 Zhao, Wu and Zheng. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Noise-immune zeroing neural
dynamics for dynamic signal
source localization system and
robotic applications in the
presence of noise

Yuxin Zhao1, Jiahao Wu2* and Mianjie Zheng3

1School of Humanities, University of Westminster, London, United Kingdom, 2School of Information

and Intelligent Engineering, Guangzhou Xinhua University, Guangzhou, Guangdong, China, 3School of

Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Time angle of arrival (AoA) and time di�erence of arrival (TDOA) are two

widely used methods for solving dynamic signal source localization (DSSL)

problems, where the position of a moving target is determined by measuring

the angle and time di�erence of the signal’s arrival, respectively. In robotic

manipulator applications, accurate and real-time joint information is crucial for

tasks such as trajectory tracking and visual servoing. However, signal propagation

and acquisition are susceptible to noise interference, which poses challenges

for real-time systems. To address this issue, a noise-immune zeroing neural

dynamics (NIZND) model is proposed. The NIZND model is a brain-inspired

algorithm that incorporates an integral term and an activation function into the

traditional zeroing neural dynamics (ZND)model, designed to e�ectivelymitigate

noise interference during localization tasks. Theoretical analysis confirms that

the proposed NIZND model exhibits global convergence and high precision

under noisy conditions. Simulation experiments demonstrate the robustness

and e�ectiveness of the NIZND model in comparison to traditional DSSL-

solving schemes and in a trajectory tracking scheme for robotic manipulators.

The NIZND model o�ers a promising solution to the challenge of accurate

localization in noisy environments, ensuring both high precision and e�ective

noise suppression. The experimental results highlight its superiority in real-time

applications where noise interference is prevalent.

KEYWORDS

dynamic signal source localization, robotic manipulator, angle-of-arrival (AoA) scheme,

time-di�erence-of-arrival (TDOA) scheme, trajectory tracking scheme, noise-immune

zeroing neural dynamics (NIZND)

1 Introduction

Generally, in a dynamic signal source localization system, a sensor array is deployed

within a reasonable range. This array is used to measure real-time dynamic variables, such

as time of arrival differences and arrival angles, from a dynamic target object to individual

sensors. Subsequently, a mathematical model is established based on the mobile target

object’s position and the real-time dynamic variables acquired by the sensors. Finally,

an appropriate solving method is employed to achieve real-time solutions, obtaining the

accurate real-time position of the dynamic signal source.
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The solving of dynamic signal source localization (DSSL)

problems continues to be utilized in numerous scientific computing

and engineering applications. In recent years, an increasing number

of scholars have started to work on this class of problems. Such

problems play a crucial role in a wide range of applications such

as quadrotor positioning (Zhao et al., 2021), robotics (Xie et al.,

2024b; Sun et al., 2024), smart furniture (Nassar et al., 2019), mine

personnel operations (Zare et al., 2021), and so on (Jin et al., 2024a;

Liu et al., 2024, 2022;Wu et al., 2023). However, an overview of real-

life production shows that dynamic source location tracking has

not been effectively applied in areas where it seems to be urgently

needed. For example, in the case of mega-malls (Ali et al., 2019),

where satellite coverage is not available but positioning is urgently

required, dynamic source location tracking combined with 3D

positioning solutions can be used to achieve indoor positioning and

thus enable navigation indoors (Guo et al., 2019a; Kunhoth et al.,

2020). From a lifestyle perspective, this is much more convenient

and practical.

Various source location solutions have proven effective and

can be broadly classified into the following three categories. (1)

Time of arrival (TOA) scheme, where localization is achieved by

measuring the time it takes for a signal emitted from a source

to reach several different location sensors. (2) Time of Difference

of Arrival (TDOA) scheme, where positioning is achieved by

measuring the difference between the time of arrival of the signal

from the source at the main sensor and the time of arrival of the

signal at each of the other different position sensors, respectively,

and then calculating the positioning. (3) Angle of Arrival (AoA)

scheme, where positioning is achieved by measuring the angle of

arrival of the signal emitted from the source to each of the sensors

at different locations (Guo et al., 2019b; Wu et al., 2019a).

The TOA scheme is one of the most common schemes

of location. For example, Guo et al. (2019b) proposed a self-

clustering measurement combination scheme. The scheme deals

with the unclear relationship between the TOA measurement data

and signal source in the multi-source location problems. Wu

et al. (2019a) introduced synchronization errors into the TOA

scheme based on the no-line-of-sight (NLOS) positioning model,

which improves the positioning accuracy in NLOS propagation.

Besides, to further tolerate measurement errors, NLOS errors,

and synchronization errors, Wu et al. (2019b) proposed two

new artificial neural network localization schemes and a TOA

measurement scheme. As an improvement of the TOA scheme,

the TDOA scheme has been the subject of many positioning

studies. For instance, Wu P. et al. (2019) proposed a hybrid firefly

algorithm (Hybrid FA) scheme that combines the weighted least

squares algorithm and FA. This scheme reduces the calculation

amount of common passive positioning methods and improves

the positioning accuracy (Wu P. et al., 2019). Wang et al.

(2020) proposed a TDOA estimation based on Kronecker product

decomposition, which applies to effectively identify the relative

acoustic impulse response between two microphones. To be

suitable for short-distance positioning problems, Pérez-Solano et al.

(2020) proposed a UWB indoor positioning system based on the

TDOA scheme. To date, various methods have been developed and

introduced to improve the AoA scheme. Monfared et al. (2020)

used the Non-Data-Aided iterative algorithm to iterate between

angle and position estimation steps to gradually improve the AoA

positioning accuracy. Then, Monfared et al. (2021) improved the

performance of the AoA scheme by comparing the variance of the

middle estimated position of different combinations of all possible

anchor point sets with pre-calculated thresholds. In addition, Zhou

et al. (2022) proposed an angular domain AoA estimation scheme

to locate the user. Another, Hong et al. (2020) studied the AoA

positioning in visible light and improved the accuracy of the AoA

positioning based on the quadrant-solar-cell and third-order ridge

regression machine learning algorithm.

All three of these source localization schemes have their

advantages and disadvantages. However, the TOA scheme is simple

and has low complexity, but since TOA uses the transmission time

of the base station and the target to be measured to calculate

the transmission distance to further determine the location of

the tag, which requires clock synchronization between each base

station and the target to be measured, TOA is susceptible to clock

interference in complex indoor environments, resulting in serious

errors in positioning accuracy. TDOA scheme, compared with the

TOA scheme, does not need to keep the clock synchronization

between each base station and the target to be measured, but

only needs to synchronize between base stations. This makes the

TDOA scheme easier to implement and its application is broader.

Compared with the other two schemes, the AoA scheme is suitable

for positioning at shorter distances and is generally used as an

auxiliary tool for primary coarse positioning (Jin et al., 2016;

Ferreira et al., 2005; Jiang and Wang, 2003).

Robotic manipulators have gained significant attention in

recent years and have been employed across various fields (Xie et al.,

2024a; Jin et al., 2024c; Sun et al., 2003). The trajectory tracking

of robotic manipulators is a crucial topic in robotic investigation

(Jin et al., 2024b; Xie and Jin, 2023; Lian et al., 2024). In Zhai

and Xu (2020), a singularity avoiding sliding mode control was

presented, achieving trajectory tacking for robotic manipulators. By

leveraging vector pseudo distance, Yang et al. (2022) developed an

obstacle avoidance control method for a redundant manipulator,

which outperforms traditional methods using Euclidean distance.

A learnable motion control strategy was designed in Xu et al.

(2020). Through utilizing position and velocity information, it can

address the parameter adjusting problem in the controller.

The recurrent neural dynamic (RND)model is often considered

a classical intelligent computational approach and has been

extensively studied in many scientific and engineering fields (Li

et al., 2019a; Zhang et al., 2018; Li et al., 2019b). Neural dynamics

transmits and updates information through neurons, representing

a brain-inspired algorithm. On this basis, a traditional gradient-

based RND model (TGND) was proposed by Xiao et al. (2019) to

deal with time-varying matrix inversion problems. However, Jin

et al. (2022) pointed out that the TGND model could not make

effective use of the time derivative information in solving time-

varying problems, and the obtained state solutions would generate

a time lag error. As the time lag error can seriously hinder the

solution of dynamic localization problems. Therefore, traditional

zeroing neural dynamic (TZND) (Dai et al., 2024), named after

their inventors, were considered as a way to effectively utilize

time derivatives to time-varying problems. Researchers have then

continued to explore and investigate and devise various improved
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ZND models to solve different time-varying problems, including

the application of activation functions. In Yan et al. (2021), A TZND

model was proposed to solve a receding horizon control scheme for

a redundant manipulator.

On the one hand, as the dimensionality of solving dynamic

localization problems and the degrees of freedom of robotic

manipulator increases, the currently available methodologies are

constructed to have low accuracy and long solution times when

dealing with this type of problem. On the other hand, noise

interference, as an important factor affecting accuracy, should

further enhance the robustness and usability of the existing

TZND model to achieve facing various noise disturbances brought

about by realistic environments. To this end, a Noise-Immune

Zeroing Neural Dynamics (NIZND) model activated by SBP is

proposed in this paper to solve the DSSL problem and trajectory

tracking scheme under noisy interference conditions. In the ideal

environment without noise, the error of this model converges

globally to zero; in the conditions of constant and randomnoise, the

proposed NIZNDmodel converges globally to a bounded range. To

visually explain the design framework idea of this paper, a graphical

representation of structure of this paper is shown in Figure 1.

The remainder of this article is arranged as follows. In Section

2, the DSSL problem is presented and transformed by both TDOA

and AoA methods. Next, the specific design procedure of the

proposed NIZND model is presented in Section 3, which also

presents the derivation of the subsequent simulation part of the

comparison models. Then, the corresponding analyses and proofs

of the global convergence and robustness of the proposed NIZND

model are presented in Section 4. After that, Section 5 provides

several sets of illustrative simulation experiments that verify the

high accuracy as well as the strong robustness of the NIZNDmodel

in its application to TDOA, AoA, and trajectory tracking schemes.

Finally, the conclusion is summarized in Section 6.

Before ending the introduction, the main contribution of this

paper is listed as follows:

• In this paper, a novel NIZND model is proposed to solve the

DSSL and trajectory tracking problem of robotics, which has

higher accuracy solution results and faster convergence speed

in the iterative process than the traditional ZND model.

• A special activation function termed the SBP function in

the real-valued domain is presented for constructing the

NIZND model. Furthermore, this paper analyzes the anti-

noise performance of the framework under different noise

conditions and compares the performance of other models

through theorems and proofs.

• Corresponding experimental results are executed for the

DSSL problem and robotic problem, and the extraordinary

superiority of the NIZNDmodel is demonstrated by designing

several sets of controlled simulation experiments.

2 Problem formulation and related
work

Generally, the purpose of positioning technology is to set up

base stations in a reasonable range, and the actual distance of

the target object measured by base stations is calculated by the

scheme to get an accurate target trajectory. In other words, utilizing

the coordinates of base stations to measure the distance of the

target object (Jin et al., 2020; Dai et al., 2021). Then, we introduce

some essential definitions of the positioning schemes to model the

geometric relationship between the target object and base stations

into a time-varying dynamic matrix system.

2.1 Angle-of-arrival

The AoA scheme via measuring the horizontal and pitch angles

between base stations and the target to calculate the intersection

point. Then, according to the intersection point of direction

line is formed between each base station and the target object

to implement the positioning operation. For simplicity, Figure 2

illustrates the principle of the AoA scheme under two base stations.

Note that the AoA scheme can be extended to a multi-base stations

scheme, which enables to improvement of the performance of

this scheme.

Suppose that the horizontal angles and the pitching angles of

the m base stations are Eα = [α1(t), · · · ,αm(t)]T ∈ R
m and Eβ =

[β1(t), · · · ,βm(t)]T ∈ R
m, respectively. The superscript T indicates

the transpose operation of a matrix or vector. The position of the

target object at time t is expressed as p(t) = [px(t), py(t), pz(t)]
T ∈

R
3, and coordinates of base stations are S = [Es1,Es2, · · · ,Esm] ∈

R
3×m, where sm = [xm, ym, zm] ∈ R

3 (Jin et al., 2020). According

to the principle of AoA scheme, the geometric relationship between

horizontal and pitch angle is formulated as

αi(t) = tan(
py(t)− yi

px(t)− xi
), (1)

βi(t) = tan(
pz(t)− zi

√

(px(t)− xi)2 + (py(t)− yi)2
). (2)

We further define the dynamic matrix Q1(t) ∈ R
2m×3 and

dynamic vector Eh1(t) ∈ R
2m as follows:

Q1(t) =
[

Ev1(t) E1m×1 E0m×1

E0m×1 Ev2(t) −E1m×1

]

, Eh1(t) =
[

Ev3(t)
Ev4(t)

]

,

where vector Ev1, Ev2, Ev3, and Ev4 are constructed as

Ev1(t) =









− tanα1(t)
...

− tanαm(t)









, Ev2(t) =















tanβ1(t)

sinα1(t)
...

tanβm(t)

sinαm(t)















,

Ev3(t) =









y1 − x1tan(α1(t))
...

ym − xmtan(αm(t))









,

Ev4(t) =















y1tanβ1(t)

sinα1(t)
− z1

...
ymtanβm(t)

sinαm(t)
− zm















.
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FIGURE 1

Block diagram of the structure of this paper.

FIGURE 2

An illustration of the AoA scheme for dynamic signal source

localization under two base stations.

Therefore, the geometric relationship between the target object

Ep(t) and base stations S is constructed as

Q1(t)p(t) = h1(t). (3)

2.2 Time-di�erence-of-arrival

TDOA is a time difference based localization scheme. The

position of a target object is determined bymeasuring the difference

in signal propagation time from the target object to multiple base

stations and obtaining its distance difference (Dai et al., 2021).

Firstly, the purpose of TDOA is to utilize time differences to get

dynamic distance differences between the target object and the base

station. Such as distance differences:

1lj(t) = lj(t)− l1(t) = c1gj = c(gj − g1), (4)

where j ∈ {2, · · · , n}, symbol c represents the signal transmission

speed.1gj is the time difference between the arrival of the signal at

the jth base station and the first base station. gj is the time it takes

for the signal from the target object to reach the jth base station.

lj(t) denotes the dynamic distance between the target object and jth

base station, and it satisfies:

l2j (t) = (xj − px(t))
2 + (yj − py(t))

2 + (zj − pz(t))
2

= cj − 2(xjpx(t)+ yjpy(t)+ zjpz(t))+ p2x(t)+ p2y(t)+ p2z(t),

(5)

where cj = x2j + y2j + z2j . Subsequently, combining the Equations 4,

5, we get:

1l2j (t)+ 2l1(t)1lj(t) = cj − c1 − 2(1xpx(t)+1ypy(t)+1zpz(t)),

where 1x = xj − x1, 1y = yj − y1, 1z = zj − z1. The

following matrix Q2 and dynamic vector Eh2(t) are furnished for

further implementing the TDOA scheme (Equation 4):

Q2 =













x21 y21 z21
x31 y31 z31
...

...
...

xn1 yn1 zn1













∈ R
n×3,

Eh2(t) =













1
2 (c2 − c1 −1l22(t))−1l2(t)l1(t)
1
2 (c3 − c1 −1l23(t))−1l3(t)l1(t)

...
1
2 (cn − c1 −1l2n(t))−1ln(t)l1(t)













∈ R
n.

Now, the TDOA scheme (Equation 4) is converted into the

following as Q2(t)p(t) = h2(t). In summary, the AoA (Equations 1,

2) and TDOA scheme (Equation 4) based DSSL can be transformed

as the following dynamic linear equation problem:

Q(t)p(t) = h(t). (6)
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3 NIZND model formulate

In this section, we construct the NIZND model to realize the

AoA (Equations 1, 2) and TDOA scheme (Equation 4). To solve

the DSSL problem (Equation 6) effectively, we first present the

design process of the TGND model and the TZND model. Then,

the second part designs the NIZND model with noise immunity

based on the existing models.

3.1 Existing problem solver

The TGND model based on the gradient descent idea is often

used to solve dynamic matrix system optimization problems (Tang

and Zhang, 2023; Zhang et al., 2024; Lv et al., 2019). To monitor the

performance of the model at any time, a performance metric called

the error function is designed as

ǫ(t) = Q(t)p(t)− h(t) ∈ R
n. (7)

Then, a squared operation based on the error function can be

written as e(t) = ‖ǫ(t)‖22/2. Moreover, according to the design

philosophy of the TGNDmodel (Xiao et al., 2020), we have:

− ∂e(t)

∂p(t)
= −QT(t)ǫ(t). (8)

Finally, according to the above negative gradient descent

information, one has:

ṗ(t) = −ωQT(t)ǫ(t)

= −ωQT(t)(Q(t)p(t)− h(t)),
(9)

where the parameter ω > 0 represents a scalar-valued factor used

to control the convergence rate of TGNDmodel (Equation 9).

As well as the TGND model (Equation 9), the TZND model

is also a widely applied (Liao et al., 2024, 2022; Sun et al., 2022)

and effective method for solving time-varying linear matrix systems

(Equation 6). To begin with, the error function setting rules are the

same as in equation (Equation 7). Then, the corresponding TZND

model can be derived from the design formula:

ǫ̇(t) = −κ̺(ǫ(t)), (10)

where κ > 0 denotes a fixed parameter designed to control the

speed of the solution process, and ̺(·) denotes the scalar-oriented
activation function. From the above equation, the following

equation can be formulated as follow:

Q(t)ṗ(t) = −Q̇(t)p(t)+ ḣ(t)− κ̺(ǫ(t)). (11)

3.2 NIZND model construction

The evolution function of the proposed NIZND model is

formulated as

ǫ̇(t) = −γ ̺(ǫ(t))− µχ
(

ǫ(t)+ γ
∫ t

0
̺(ǫ(τ ))dτ

)

, (12)

where γ > 0 ∈ R and µ > 0 ∈ R are the design parameters.

Symbol χ(·) denotes the feedback-oriented activation function. In

this paper, the following three activation functions are used to

activate the model:

3.2.1 Simplified activation function

̺ (ǫi) = k ∗ Lipι (ǫi) .

3.2.2 Sign-bi-power function

̺ (ǫi) = a1 ∗ Lipι (ǫi)+ a2 ∗ Lip
1
ι (ǫi) .

3.2.3 Combined activation function

̺ (ǫi) = b1Lip
ι (ǫi)+ b2ǫi.

Futhermore, the function Lipι (·) can be defined as

Lipι (ǫi) =















|ǫi|ι, ǫi > 0,

0, ǫi = 0,

−|ǫi|ι, ǫi < 0,

where ι > 0. Consequently, it can be concluded that the proposed

NIZND model with adaptive activation function for solving the

DSSL problem (Equation 6) is written as

Q(t)ṗ(t) = −Q̇(t)p(t)+ ḣ(t)− γ ̺(ǫ(t))

− µχ
(

ǫ(t)+ γ
∫ t

0
̺(ǫ(τ ))dτ

)

.
(13)

Allowing for different noises interference, in order to further

analyze and verify the influence of various noises on the NIZND

model (Equation 13), the following form of the NIZND model

(Equation 13) disordered by measurement noises is deemed:

Q(t)ṗ(t) = −Q̇(t)p(t)+ ḣ(t)− γ ̺(ǫ(t))

− µχ
(

ǫ(t)+ γ
∫ t

0
̺(ǫ(τ ))dτ

)

+ ρ(t),
(14)

where ρ(t) ∈ R
n is the inevitable noise during positioning. The

system update is performed by p(t) acting as neurons, and the

proposed NIZND is a brain-inspired algorithm.

4 The theoretical analysis

In this section, the convergence of the NIZNDmodel (Equation

13) to solve the DSSL problem (Equation 6) under ideal conditions

and its robustness to different localization noises are demonstrated

through theoretical analysis. Four theorems and corresponding

proof procedures are summarized below.
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4.1 Convergence

Theorem 1: Considering the DSSL problem (Equation 6) with

non-noise perturbed, starting from any initial position within a

certain range, the positional states generated by the proposed

NIZND model (Equation 13) will converge to the theoretical

position of the DSSL problem (Equation 6). That is to say, the

residual error ||ǫ(t)||2 produced by the NIZND model (Equation

13) globally converges to zero.

Proof: First, a Lyapunov function is constructed for analyzing

the convergence performance of the NIZND model (Equation 13):

F1(t) =
ǫT(t)ǫ(t)

2

{

> 0, ǫ(t) 6= 0,

= 0, ǫ(t) = 0.
(15)

Taking into account the subsequent proof process, let us define

ς(t) = ǫ(t)+
∫ t

0
̺(ǫ(τ ))dτ . (16)

Thus, the derivative of ς(t) with respect to t can be written as

ς̇(t) = dς(t)

dt
= ǫ̇(t)+ ̺(ǫ(t)). (17)

Without loss of generality, the fixed parameters in the NIZND

model (Equation 13) are set as γ = µ = 1. Then, substituting

Equation 13 into Equation 18, we can obtain:

ς̇(t) = −9(ǫ(t)). (18)

In the same principle as the construction of Equation 15,

another Lyapunov equation is defined as

F2(t) =
ςT(t)ς(t)

2

{

> 0, ς(t) 6= 0,

= 0, ς(t) = 0.
(19)

Consequently, the derivative of the Equation 19 is:

Ḟ2(t) = −ςT(t)̺(ǫ(t))

{

< 0, ς(t) 6= 0,

= 0, ς(t) = 0.
(20)

Since F2(t) is positive definite when ς(t) 6= 0 and Ḟ2(t) is

negative definite when ς(t) 6= 0. Therefore, according to Lyapunov

stability analysis, ς(t) globally converges to zero. Furthermore,

when ς(t) = 0, it follows from the LaSalle’s invariance principle

that (Equation 18) can be reformulated as

ǫ̇(t) = −̺(ǫ(t)). (21)

In light of the Equation 21, the time derivative of Equation 15

is expressed as

Ḟ1(t) = −ǫT(t)̺(ǫ(t))

{

< 0, ǫ(t) 6= 0,

= 0, ǫ(t) = 0.
(22)

Similarly, Equations 15, 22 satisfy Lyapunov’s second theorem,

the error function ǫ(t) can converge to zero globally. The proof is

completed.

4.2 Robustness

Theorem 2: The residual error ||ǫ(t)||2 of the constant noise

ρ(t) = ρ ∈ R
n perturbed NIZND model (Equation 13) for

solving the DSSL (Equation 6) globally converges to zero in the

situation of −µχ(ς(t)) + ρ ≤ 0. The parameter ς(t) represents

the intermediate variable which is definition as Equation 16.

Proof: For the convenience of further derivation and analysis,

the time derivative of intermediate variable ς(t) with constant noise

ρ is written as ς̇(t) = −µχ(ς(t))+ ρ, and its ith subelement is:

ς̇i(t) = −µχ(ςi(t))+ ρi. (23)

We present the following Lyapunov candidate function F3(t) =
ς2i (t)/2 and its time derivative is written as

Ḟ3(t) = ςi(t)
(

−µχ
(

ςi(t)
)

+ ρi
)

. (24)

Obviously, the sign of the ςi(t) will affect the positive and

negative of Ḟ3(t). Therefore, we divide ςi(t) into three situations

and discussed them in detail one by one.

4.2.1 ςi(t) < 0
In this case, according to the definition of power bounded

adaptive function, we have χ(ςi(t)) < 0. Consequently, the

following three subcases are provided to guarantee the negative

definiteness of Ḟ3(t).

• Firstly, in the situation of −µχ
(

ςi(t)
)

+ ρi > 0. On account

of ςi(t) < 0 and Equation 24, the time derivative of candidate

function Ḟ3(t) < 0. Therefore, according to the Lyapunov

theory, we can summarize that the system (Equation 23) is

globally convergent. That is to say, −µχ
(

ςi(t)
)

approaches

to constant noise ρi over time until −µχ
(

ςi(t)
)

+ ρi = 0.

In addition, the convergence performance of model (Equation

23) will be demonstrated in the following text simulation.

• Secondly, in the situation of −µχ
(

ςi(t)
)

+ ρi = 0. Evidently,

it can infer that Ḟ3(t) = 0 and ςi(t) = χ−1 (ρi/µ). In general,

the system (Equation 23) is steady and ςi(t) convergent to a

ball surface will be verified again by the following simulation.

• Thirdly, in the situation of −µχ
(

ςi(t)
)

+ ρi < 0. Due to

ςi(t) < 0 and −µχ
(

ςi(t)
)

+ ρi < 0, Ḟ3 > 0. It can be

readily deduced that the system (Equation 23) diverges and

the absolute value of χ
(

ςi(t)
)

grows bigger due to the absolute

value of ςi(t) turn larger. In light of the power-bounded

adaptive activation function’s upper χ+ and lower χ− bounds

will influent the robustness of the system (Equation 23) in

this situation, therefore, we further divide the situation into

the following two subcases. When µχ− ≤ ρi, there always

exists a time instant t to transform system (Equation 23) in

to case of −µχ
(

ςi(t)
)

+ ρi = 0, which infer the system

tend to steady. On the contrary, when µχ− > ρi, the system

(Equation 23) diverges as time evolves. Consequently, to avoid

the divergence of the system, it is necessary to properly adjust

the value of scale parameter µ in Equation 23 as well as

Equation 13.
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4.2.2 ςi(t) = 0
Obviously, in this sence χ(ςi(t)) = 0 and ς̇i(t) = ρi. It

manifests that ςi(t) > 0 when constant noise ρi > 0 or ςi(t) < 0

when ρi < 0. Accordingly, ςi(t) only exist as a transient state and

the system (Equation 23) is unstable when ρi 6= 0, which indicates

the situation will turn back to case in ςi(t) < 0 or ςi(t) > 0.

4.2.3 ςi(t) > 0
The situation in this part is similar to the situation when ςi(t) <

0, so it is omitted there.

In view of 0 < ρ < µχ+ or µχ− < ρ < 0, limt→∞ ς(t) =
χ−1(ρ/µ). Next, it can be obtained that limt→∞ ς̇(t) = 0. Thus,

according to the above conditions, at time t tending to infinity,

ς̇(t) = ǫ̇(t) + γ ̺(ǫ(t)) = 0. The following equation is derived

from Equation 12:

ǫ̇(t) = −γ ̺(ǫ(t)). (25)

The derivation of Equation 25 can be obtained from Theorem

1, so the proof is omitted here. Further, in view of 0 < ρ < µχ+
or µχ− < ρ < 0, ς̇(t) = −µχ(ς(t)) + ρ ≤ 0, that is to say,

the NIZNDmodel (Equation 13) for solving the DSSL (Equation 6)

globally converges to zero.

The proof is completed.

Theorem 3: Beginning with a randomly generated initial

position vector p(0), the residual error of the NIZND (Equation 13)

model perturbed by the bounded random noise h̄(t) converges to a

bounded range, where ρ(t) = h̄(t) ∈ R
n represents the bounded

random noise.

Proof: Taking into account the interference of bounded random

noise h̄(t), the activation function is set uniformly as a linear

activation function, so that the NIZND model (Equation 13) be

equivalent to the following equation in this situation as follows:

ǫ̇(t) = (−γ − µ)ǫ(t)− γµ
∫ t

0
ǫ(τ )dτ . (26)

By defining

si(t) =
[

ǫi(t)
∫ t
0 ǫi(τ )dτ

]

,V =
[

−γ − µ −γµ
1 0

]

,w =
[

1

0

]

,

the Equation 26 can be written as

ṡi = Vsi(t)+ wh̄i(t), (27)

where h̄i(t) denoted the ith element of the bounded random noise

h̄(t). Moreover, it is elicited that:

si(t) = exp(Vt)si(0)+
∫ t

0
exp(V(t − τ ))wh̄i(τ )dτ . (28)

In terms of the definition of the triangle inequality, the

following inequation is obtained as

∥

∥si(t)
∥

∥

2
≤

∥

∥exp(Vt)si(0)
∥

∥

2

+
∥

∥

∥

∥

∫ t

0
exp(V(t − τ ))wh̄i(τ )dτ

∥

∥

∥

∥

2

≤
∥

∥exp(Vt)si(0)
∥

∥

2

+
∫ t

0
‖ exp(V(t − τ ))w‖2

∣

∣h̄i(τ )
∣

∣ dτ .

(29)

To further solve the linear differential equation with higher

order constant coefficients (Equation 26), it can be divided into the

following three cases according to the parameter 1 = (γ + µ)2 −
4γµ.

Case I: For the case of1 > 0, it can be easily premised that Ŵ1,2 =
(

(−γ − µ)±
√

(γ + µ)2 − 4γµ
)

/2, from which Ŵ1 6= Ŵ2. Thus,

it can be gotten that:

exp(Vt)si(0) =
[

ǫi(0)(Ŵ1 exp(Ŵ1t)−Ŵ2 exp(Ŵ2t))
Ŵ1−Ŵ2

ǫi(0)(exp(Ŵ1t)−exp(Ŵ2t))
Ŵ1−Ŵ2

]

,

exp(Vt)w =
[

(Ŵ1 exp(Ŵ1t)−Ŵ2 exp(Ŵ2t))
Ŵ1−Ŵ2

(exp(Ŵ1t)−exp(Ŵ2t))
Ŵ1−Ŵ2

]

,

where Ŵ1 = −µ, Ŵ2 = −γ , Ŵ1 6= Ŵ2. In order to discuss the

magnitude of the values of A and B, they are divided into two cases

for analysis in detail.

• For the subcase of Ŵ1 > Ŵ2, it is naturally acquired that
(

Ŵ1 exp (Ŵ1t)− Ŵ2 exp (Ŵ2t)
)

/(Ŵ1 − Ŵ2) < exp(Ŵ1t) and
(

exp (Ŵ1t)− exp (Ŵ2t)
)

/(Ŵ1 − Ŵ2) < exp(Ŵ1t)/(Ŵ1 − Ŵ2).

Thus, it is further obtained that:

∥

∥exp(Vt)si(t)
∥

∥

2
≤

√

(γ − µ)2 + 1

γ − µ exp (Ŵ1t)
∣

∣ǫi(0)
∣

∣ ,

∥

∥exp(Vt)w
∥

∥

2
≤

√

(γ − µ)2 + 1

γ − µ exp (Ŵ1t) .

Then, we could get:

∣

∣ǫi(t)
∣

∣ ≤
∥

∥si(t)
∥

∥

2
≤

√

(γ − µ)2 + 1

γ − µ exp (Ŵ1t)
∣

∣ǫi(0)
∣

∣

−
√

(γ − µ)2 + 1

Ŵ1(γ − µ) max
0<τ<t

∣

∣h̄i(τ )
∣

∣ .

At last, the upper bound of error can be calculated as

follows:

lim
t→∞

sup ‖ǫ(t)‖2 ≤
ψ

√

k((γ − µ)2 + 1)

µ(γ − µ) .

• For the subcase of Ŵ1 < Ŵ2, likewise, the proof process

is the same as for Ŵ1 > Ŵ2. Thus, we can deduce that

limt→∞ sup ‖ǫ(t)‖2 ≤ ψ
√

k((γ−µ)2+1)

µ(γ−µ) . Case II: For the case

of 1 = 0, it can be clearly inferred that µ = γ . In view of the

above condition, we can know that:

exp(Vt)si(0) =
[

ǫi(0)Ŵ1t exp(Ŵ1t)

ǫi(0)t exp(Ŵ1t)

]

,

exp(Vt)w =
[

Ŵ1t exp(Ŵ1t)

t exp(Ŵ1t)

]

,
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from which Ŵ1 = Ŵ2 = (−γ − µ)/2. According to the

proof of Lemma 1 in , t
√

Ŵ2
1 + 1 exp(Ŵ1t) < υ exp(−δt) with

υ > 0, δ > 0.

|| exp(Vt)w||2 = t

√

Ŵ2
1 + 1 exp(Ŵ1t) < υ exp(−δt),

and

∣

∣ǫi(t)
∣

∣ ≤
∥

∥si(t)
∥

∥

2
≤ υ exp(−δt)

∣

∣ǫi(0)
∣

∣ + υ

δ
max
0<τ<t

∣

∣h̄i(τ )
∣

∣ .

Finally,

lim
t→∞

sup ‖ǫ(t)‖2 ≤
ψυ

√
k

δ
,

where ψ = max1≤i≤k

{

max0≤τ≤t |h̄i(τ )|
}

. Therefore,

perturbed by the bounded random noise h̄(t), the residual

errors ǫ(t) of the proposed NIZND model (Equation 13) for

solving DSSL problem (Equation 6) are bounded. The proof is

completed.

5 Illustrative simulation experiments

In this section, corresponding localization examples and

compare experiments are designed and performed to demonstrate

the feasibility, efficiency, and superiority of the proposed NIZND

model (Equation 13). Note that all the following simulation

experiments are run on a computer with an AMD Ryzen 5

5600H with Radeon Graphics @3.30 GHz CPU, 16-GB memory,

NVIDIA GeForce RTXTM 3050 GPU, and Windows 11, 64-bit

operating system.

5.1 Simulation experiments on AoA

Firstly, five sets of randomly-generated initial states are utilized

to solve the DSSL problem (Equation 6) by using the NIZNDmodel

(Equation 13), with the corresponding initial conditions picked

as follows. We choose the number of base stations to be 8, the

coordinates of base stations:

S =







−11 10 −11 10 −11 10 −11 10

−10 −10 10 10 −10 −10 10 10

−10 −10 −10 −10 30 30 30 30






,

the five sets of randomly-generated initial states:

P(0) =







−5 −2 0.5 −2 −5

5 3 2.5 −3 0

0 −5 −0.5 −2 −5






,

the trajectory position of the target object in 3-D space:

p∗(t) =







5cos(5t)

5sin(5t)

10t






,

the scalar-oriented and the feedback-oriented activation function:

̺ (ǫi) = 20 ∗ Lip3 (ǫi)+ 20 ∗ Lip 1
3 (ǫi) .

Secondly, the purpose of Figure 3 is to demonstrate the validity

of Theorem 1 by means of the AoA scheme (Equations 1, 2).

Specifically, the simulation results among the five sets of initial

values solved by the proposed NIZND model (Equation 13) of

AoA scheme (Equations 1, 2) are demonstrated in Figure 3. As

shown in Figures 3A–D, a comparison of five different initial values

of results reveals that the trajectories of the five sets of random

initial values approximately coincide with the theoretical value

trajectory. Moreover, it is worth noting that from Figures 3E–

G, the performance is evaluated from the linear representation,

logarithmic representation of approximation errors, and the

components of approximation errors in the x,y,z directions,

which prove that the proposed NIZND model (Equation 13)

globally converges to zero. Therefore, the proposed NIZND model

(Equation 13) can be solved for the DSSL problem (Equation 6)

at a certain time by the AoA scheme (Equations 1, 2). Similarly,

the results of the correlational analysis are set out in Table 1.

The average steady-state residual error and maximum steady-state

residual error of the NIZND model (Equation 13) converge to

2.918×10−3 and 6.402×10−3 when γ = µ = 3, 8.627×10−3 and

1.885× 10−3 when γ = µ = 20, which is less than the two residual

errors of TGND model (Equation 9) and TZND model (Equation

11) under the same conditions.

5.2 Simulation experiments on TDOA

In this part, the experiments on the TDOA scheme 4

shown in Figure 4 also reveal the validity of Theorem 1. For

comparison, initial conditions for the TDOA scheme 4 simulation

experiments are the same as in the previous section. The

corresponding performance comparisons of the proposed NIZND

model (Equation 13) are referenced by Figure 4 and Table 2. From

the overlap degree in Figures 4A–D, choosing five sets of random

initial values, the NIZND model (Equation 13) can gradually

converge to a theoretical solution by solving the DSSL problem

(Equation 6) with the TDOA scheme (Equation 4) in a noise-free

operating environment. Additionally, the results obtained from the

preliminary analysis of convergence performance can be seen that

the proposed NIZND model (Equation 13) globally converges to

zero in Figures 4E–G. Overall, the TDOA scheme (Equation 4) can

be solved by the proposed NIZNDmodel (Equation 13) and used to

solve the DSSL problem (Equation 6). Further analysis of the data

is presented in Table 2. As can be seen from the table above, the

first group reported significantly less average steady-state residual

error andmaximum steady-state residual error than the other three

groups under the same model. Moreover, the average steady-state

residual error and maximum steady-state residual error for the

NIZND model (Equation 13) are 3.917 × 10−5 and 7.236 × 10−5,

respectively, when the coefficients γ = µ = 3; and 3.895 × 10−4

and 7.207× 10−4, respectively, when the coefficients γ = µ = 20.

Taken together, these results show that the convergence accuracy

of the proposed NIZND model (Equation 13) for solving the DSSL
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FIGURE 3

Five sets of unequal initial values are randomly generated to solve the DSSL problem (Equation 6) with the AoA scheme (Equations 1, 2) under

noise-free conditions. (A) Three-dimensional trajectory map. (B) Top view. (C) Main view. (D) Left view. (E) The linear representation of the

approximation errors ||ǫ(t)||2. (F) The logarithmic representation of the approximation errors ||ǫ(t)||2. (G) The components of approximation errors in

the x,y,z directions.

TABLE 1 Comparison of the average steady-state residual error (ASSRE) and maximum steady-state residual error (MSSRE) among TGNDmodel, TZND

model, and the proposed NIZND model (Equation 13) when solving the DSSL problem (Equation 6) using the AoA scheme (Equations 1, 2).

Average steady-state residual error Maximal steady-state residual error

Model Parameters with NF⋆ with CN⋆ with LN⋆ with RN⋆ with NF⋆ with CN⋆ with LN⋆ with RN⋆

TGND ω = 3 2.325× 100 2.252× 101 Infinity 1.084× 101 3.010× 100 2.520× 101 Infinity 1.208× 101

ω = 20 3.385× 10−1 2.347× 101 Infinity 1.166× 101 4.614× 10−1 2.467× 101 Infinity 1.248× 101

TZND κ = 3 1.784× 10−2 7.879× 100 Infinity 3.959× 100 7.809× 10−2 8.654× 100 Infinity 4.179× 100

κ = 20 7.401× 10−3 1.181× 100 Infinity 5.926× 10−1 2.844× 10−2 1.236× 100 Infinity 7.181× 10−1

NIZND γ = 3,µ = 3 2.918× 10−3 1.239× 10−2 3.352× 10−2 1.706× 10−2 6.402× 10−3 2.422× 10−2 3.983× 10−2 3.993× 10−2

γ = 20,µ = 20 8.267× 10−4 1.145× 10−3 1.472× 10−3 3.267× 10−3 1.885× 10−3 2.736× 10−3 3.116× 10−3 8.667× 10−3

⋆NF, CN, LN, and RN indicate noise free, constant noise 8, linear noise 2t, and random noise 8× [0, 1], respectively.

problem (Equation 6) under the same conditions is higher than that

of the other two models.

5.3 Performance under noise perturbed

In this part, the approximation errors of two localization

schemes are presented in the form of residual plots and numerical

tables to show the experimental results of solving the DSSL

problem (Equation 6) under various noisy environments, i.e.,

constant noise ρ(t) = 8, linear noise ρ(t) = 2t, and

random noise ρ(t) ∈ 8 × [0, 1]. As a comparison, the

experimental results of AoA scheme (Equations 1, 2) and TDOA

scheme 4 are generated by three models, i.e., TGND model

(9), TZND model (11), and the proposed NIZND model (13).

The corresponding localization results are shown in Figures 5,

6 and Tables 1, 2. Figures 5, 6 demonstrate the approximation

errors ‖ǫ(t)‖2 of AoA and TDOA scheme under three kinds

of noises with parameters ω = κ = γ = µ = 3,

respectively.

From the visualization results in Figures 5A, D, it can be

seen that the proposed NIZND model (Equation 13) converges

promptly to 10−2 under constant noises, at which point the

proposed NIZND model (13) yields better convergence accuracy

than the TGND (Equation 9) and TZND models (Equation

11). At the same time, Figures 5B, E illustrates the proposed

NIZND model (Equation 13) converges smoothly to 10−2 under

the linear noise, while those of the TGND (Equation 9) and
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FIGURE 4

Five sets of unequal initial values are randomly generated to solve the DSSL problem (Equation 6) with the TDOA scheme (Equation 4) under

noise-free conditions. (A) Three-dimensional trajectory map. (B) Top view. (C) Main view. (D) Left view. (E) The linear representation of the

approximation errors ||ǫ(t)||2. (F) The logarithmic representation of the approximation errors ||ǫ(t)||2. (G) The components of approximation errors in

the x,y,z directions.

TABLE 2 Comparison of the average steady-state residual error (ASSRE) and maximum steady-state residual error (MSSRE) among TGNDmodel, TZND

model, and the proposed NIZND model (Equation 13) when solving the DSSL problem (Equation 6) using the TDOA scheme (Equation 4).

Average steady-state residual error Maximal steady-state residual error

Model Parameters with NF⋆ with CN⋆ with LN⋆ with RN⋆ with NF⋆ with CN⋆ with LN⋆ with RN⋆

TGND ω = 3 6.404× 100 2.019× 101 Infinity 1.043× 101 1.037× 101 2.225× 101 Infinity 1.541× 101

ω = 20 6.193× 10−1 2.017× 101 Infinity 1.018× 101 2.024× 100 2.182× 101 Infinity 1.483× 101

TZND κ = 3 4.726× 10−2 6.418× 100 Infinity 3.333× 100 1.174× 10−1 6.719× 100 Infinity 3.849× 100

κ = 20 2.246× 10−2 1.006× 100 Infinity 5.221× 10−1 6.632× 10−2 1.101× 100 Infinity 7.771× 10−1

NIZND γ = 3,µ = 3 3.917× 10−5 5.636× 10−3 2.780× 10−2 1.752× 10−2 7.236× 10−5 1.951× 10−2 3.350× 10−2 3.506× 10−2

γ = 20,µ = 20 3.895× 10−4 4.241× 10−4 7.759× 10−4 2.607× 10−3 7.207× 10−4 8.047× 10−4 1.557× 10−3 7.007× 10−3

⋆NF, CN, LN, and RN indicate noise free, constant noise 8, linear noise 2t, and random noise 8× [0, 1], respectively.

TZND models (Equation 11) are of divergence. As Table 1

depicted, the average steady-state residual error and maximum

steady-state residual error of the TGND (Equation 9) and

TZND (Equation 11) models converge to infinity. Considering

the case of linear noises in Figures 5C, F, we can see that

the error of the proposed NIZND model (13) resulted in the

lowest value of the number. Specifically, Table 1 also shows the

same results.

Likewise, the experimental results for the TDOA scheme 4 have

a similar trend to the experimental results for the AoA scheme

(Equations 1, 2). It is worth mentioning that Figures 6B, E and

Table 2 can demonstrate the convergence of the TGND model

(Equation 9) and the TZND model (Equation 11) for solving

the DSSL problem (Equation 6), which is undoubtedly a great

challenge for dynamic localization from the real environment.

Under noises situation, combing with the visualization results

(Equation 6), both the (Equation 9) and the TZND model

(Equation 11) are worse than that of the proposed NIZND

model (Equation 13). Of the Table 2, the average steady-state

residual error and maximum steady-state residual error of

the proposed NIZND model (Equation 13) are also less than

those of the other two comparison models. Furthermore, the

larger the coefficients γ , µ of the proposed NIZND model

(Equation 13), the higher its convergence accuracy under noisy

conditions, which indicates the strong robustness of the proposed

model (Equation 13).
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FIGURE 5

The approximation errors of comparisons among NIZND (Equation 13), TZND (Equation 11) and TGND (Equation 9) models based on AoA scheme

under various of noises. (A) The linear representation of the approximation error ||ǫ(t)||2 under constant noise. (B) The linear representation of the

approximation error ||ǫ(t)||2 under linear noise. (C) The linear representation of the approximation error ||ǫ(t)||2 under random noise. (D) The

logarithmic representation of the approximation error ||ǫ(t)||2 under constant noise. (E) The logarithmic representation of the approximation error

||ǫ(t)||2 under linear noise. (F) The logarithmic representation of the approximation error ||ǫ(t)||2 under random noise.

5.4 Application to the robotic manipulator

To further demonstrate the effectiveness and robustness of the

proposed NIZND model (Equation 13), a simulation is conducted

on a robotic manipulator employing NIZND model (Equation 13)

for achieving precise trajectory tracking. The trajectory tracking

of a robotic manipulator is to obtain the joint angle θ(t) for

the desired trajectory rd(t) at each time instant. Specifically, the

trajectory tracking of a robotic manipulator is achieved by solving

the following equation:

J(θ(t))θ̇(t) = ṙd(t), (30)

where J(θ(t)) represents the Jacobian matrix and θ̇(t) is the joint

velocity. Then, the proposed NIZND model (Equation 13) is

employed to obtain the solution to trajectory tracking scheme

(Equation 30) under noise perturbation. Simulation results are

shown in Figure 7. Figure 7A depicts the actual trajectory and

given trajectory of the robotic manipulator. The movement process

is displayed in Figure 7B. Figures 7C, D illustrate the joint angle

and tracking error during the tracking task. Solved by NIZND

model (Equation 13), the trajectory tracking task is successfully

accomplished with minor tracking error, demonstrating the

effectiveness and robustness of the proposed NIZND model

(Equation 13).

5.5 Summary

In summary, the proposed NIZND model (Equation 13)

demonstrates superiority over the three models. Moreover, these

comparative results suggest an association between convergence

performance and the coefficients taken. In the above experiments,

by comparing the performance differences between the models

under the same noise conditions, it is clear that the proposed

NIZND model (Equation 13) is characterized by high convergence

accuracy and strong robustness. In general, the proposed NIZND

model (Equation 13) has a higher convergence accuracy in the

noise-free condition. In addition, its strong robustness enables

it to maintain good convergence performance under the three

noise conditions. In contrast, the robustness is enhanced by

increasing the values of the two coefficients of the proposedNIZND

model (Equation 13), which can be adapted to complicated noise

disturbances in realistic environments.

6 Conclusion

In this paper, a novel noise-immune zeroing neural dynamics

(NIZND) model has been proposed for solving the dynamic signal

source localization tracking (DSSL) and robotic trajectory tracking

problem. Additionally, taking into account the effect of noise in
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The approximation errors of comparisons among NIZND (Equation 13), TZND (Eqution 11) and TGND (Equation 9) models based on TDOA scheme

under various of noises. (A) The linear representation of the approximation error ||ǫ(t)||2 under constant noise. (B) The linear representation of the

approximation error ||ǫ(t)||2 under linear noise. (C) The linear representation of the approximation error ||ǫ(t)||2 under random noise. (D) The

logarithmic representation of the approximation error ||ǫ(t)||2 under constant noise. (E) The logarithmic representation of the approximation error

||ǫ(t)||2 under linear noise. (F) The logarithmic representation of the approximation error ||ǫ(t)||2 under random noise.
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FIGURE 7

Simulation results of trajectory tracking scheme (Equation 30) solved by the proposed NIZND model (Equation 13). (A) The actual trajectory and given

trajectory. (B) The movement of the robotic manipulator. (C) Joint angle. (D) Tracking error.

real scenes, four theorems, and the corresponding proof process

are presented. Specifically, the results of the proposed theromes are

shown that the proposedNIZNDmodel process global convergence

and enhances robustness. Then, the superiority of the model in

solving the DSSL problem was verified by computer simulations

and experiments compared to other models. Additionally, it has

been applied in a robotic manipulator to further demonstrate

the effectiveness and robustness of the proposed NIZND model.

Finally, it is worth mentioning that possible future investigations

will optimize the proposed NIZND model to better cope with the

problems posed by realistic DSSL.
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