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Introduction

There are two approaches to building long-lived and flexible Grid systems: exhaustive and generic. The former approach
provides rich systems satisfying every service request from applications but consequently its implementation suffers from
very high complexity. In the latter approach, we represent only the basic set of services (minimal and essential) and thus
overcome the complexity of the exhaustive approach. However, to achieve the full functionality of the system, we must
make this lightweight core platform reconfigurable and expandable. One of the possible solutions here is to identify and
describe the basic set of features of the component model and to consider any other functions as pluggable components
which can be brought on-line whenever necessary (9).

Establishing the theoretical foundations of the generic processes involved in designing and functioning of such Grid
systems is highly important. Significant part of this research lies in the area of formal specification and verification of the
core component model and the properties of the desired Grid systems.

Fractal Component Model

We depart from the Fractal component model (6), a modular and extensible component model. The Fractal specification
defines a set of notions necessary for the model, an API (Application Program Interface), and an ADL (Architecture
Description Language).

Components are characterized by their content and the membrane. If the content of a component is hidden (in which
case it is simply a black box) we call it primitive. If a component is constituted by a system of some other components
(sub-components) it represents a composite component controlled by the membrane.

Fractal is a multi-level specifications. Depending on their conformance level, Fractal components can feature intro-
spection and/or configuration. The control interfaces are used in the Fractal model to allow configuration (reconfiguration),
and are defined as non functional. A functional interface can provide the required functionalities and we call it the server
interface. Alternatively, a client interface requires some other functionalities. Component interfaces are linked together by
bindings.

Reconfiguration is obtained by triggering appropriate actions on three interfaces: life-cycle, binding, and content
control interface. A reconfiguration can be triggered by any component that has a reference to a correct non-functional
interface.

In this work we focus on predefined categories of reconfigurations and on proving properties on these reconfiguration.
As far as the reconfiguration is concerned we use the classical assumption that replacing a component by a similar one is
safe for the system.

Specification of the Fractal component model in temporal logic

We provide the formal framework for the components in a specific branching-time temporal logic, or SNF ¢y, (Separated
Normal Form for Computation Tree Logic) (5), and then directly apply temporal resolution as a deductive verification tool.
Taking into account potential applications of CTL-type logics in specification and verification of concurrent and dis-
tributed systems, two combinations of future time temporal operators, < (‘sometime’) and [] (‘always’), are useful in
expressing fairness (7): < [1p (p is true along the path of the computation except possibly some finite initial interval of



it) and [J<p (p is true along the computation path at infinitely many moments of time). It has been shown that SNF ¢y,
can express these simple fairness constraints and their Boolean combinations (2; 3). In (1; 2) a clausal resolution over the
set of clauses SNF 1, has been defined while the search strategies for this method were presented in (4).

These developments allow us to argue on behalf of the following formal framework to reason about the configura-
tions/reconfigurations protocols of a Grid component model:

FCM — ECTL" — SNFu(FCM) — BTR

Here we suggest the specification of the Fractal component model (FCM) in the logic ECT'L ™ with the subsequent trans-
lation into SNF ¢, (FCM), the SNF ¢y, based formal specification of FCM, and application of the ‘branching temporal
resolution” method (BTR), the temporal resolution technique defined over the set of SNF ¢y, clauses.

Example Specification

Let us consider a simple printing queue component model which consists of a client and one printing queue component as
primitives. The client interfaces of the client are of type C'I, and the server interfaces of the printing queue are of type ST .,..
In the fractal model four controller interfaces are defined, for reasons of space, we will only specify the safe-unbinding
part of a reduced Life-Cycle Controller (LCC) so that it can be used in the deductive reasoning (Figure 1).
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Figure 1: Example in Fractal

Dealing with non-functional interface. Let the propositions Prim, . .., Prim,, refer to all our primitive controllers.
Each Prim; has a form Prim,(C1,,SI,), i.e. when true it specifies that a Primitive with Client Interface C'I,, is bound
to the Server Interface SI,.. In our example we have two primitives, one for the Printing Queue and one for the Client
using the Printing Queue.

LCC is a proposition which when true signifies that the Life Cycle Controller is active.

Before introducing the Life Cycle Controller Formula we would need to specify how components are started and
stopped. Here we will only provide a partial specification of the Life Cycle Controller and two primitive components; we
only deal with the formula that captures the bindings of the two components. We will model the start of the components
by attaching them to start.

Now we introduce the specification of the Simplified Life-Cycle Controller:

-LCC A —~(Primy(Cl,, SI.) V Primy(Cl,, SI.)) =
ALJLCC = (Primi1(Cl,, SI;) A Primzs(Cl,, SI))

which states that if neither of the components are bound and the LCC is not active then in all possible computations when
the LCC is active then we must have the two components bound.

Specification of reconfiguration scenarios.

When a controller needs to dynamically reconfigure the scenario, some properties that we assumed as always true may not
hold anymore, for example a component might be removed from the model, or another added, making the system to have
to take into consideration other possible paths which have just opened.

The Client can set a request for printing of the type req(CI,, SI,). When true, this proposition states that a printing
request has been raised by the client which has binding (CI,, SI,). The Printing queue specification is represented as
print(CI,, SI,) which states that a printing request has been satisfied by the printer which has binding (C1,,S1I.). We
will take in consideration the safety part of the specification and its requirements (8). Using the specifications of the
components we are able to generate a complete specification for the example considered. To verify the properties of this
specification we extract relevant sets of SNF crp, clauses (3) and then apply a clausal temporal resolution method (5).
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