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Abstract: In the food industry, quality and safety issues are associated with consumers’ health
condition. There is a growing interest in applying various noninvasive sensorial techniques to obtain
quickly quality attributes. One of them, hyperspectral/multispectral imaging technique has been
extensively used for inspection of various food products. In this paper, a stacking-based ensemble
prediction system has been developed for the prediction of total viable counts of microorganisms in
beef fillet samples, an essential cause to meat spoilage, utilizing multispectral imaging information.
As the selection of important wavelengths from the multispectral imaging system is considered
as an essential stage to the prediction scheme, a features fusion approach has been also explored,
by combining wavelengths extracted from various feature selection techniques. Ensemble sub-
components include two advanced clustering-based neuro-fuzzy network prediction models, one
utilizing information from average reflectance values, while the other one from the standard deviation
of the pixels’ intensity per wavelength. The performances of neurofuzzy models were compared
against established regression algorithms such as multilayer perceptron, support vector machines
and partial least squares. Obtained results confirmed the validity of the proposed hypothesis to
utilize a combination of feature selection methods with neurofuzzy models in order to assess the
microbiological quality of meat products.

Keywords: neural networks; ensemble systems; fuzzy logic; beef; total viable counts; regression;
multispectral imaging; machine learning

1. Introduction

The food industry is constantly concerned about the quality of their products, as
consumers always expect to find food products with excellent quality but at affordable
prices [1]. In order to meet such consumers’ expectations, food industry requires some
suitable detection methods to guarantee the quality of their products. Muscle foods, which
include both meat and poultry, have been considered an integral part of the human diet
for many years. Beef is one of the widely consumed commercial muscle foods throughout
the world and there is an expectation that this trend will be increased based on consumers’
food preferences, due to health, nutrition and diet factors [2]. However, beef is also an
ideal substrate for the growth of pathogenic microorganisms. Muscle foods, like beef,
are defined as spoiled if organoleptic changes make them not acceptable to the consumer.
These organoleptic changes could include, among others, changes in appearance (discol-
oration), the perception of off-odors, or even possible changes in taste. Obviously, such
changes depend also on the type of species of microflora present in the meat, as well as
the environment where the food is stored [3]. It has been widely accepted that visible
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organoleptic spoilage of meat is a result of decomposition and the formation of metabolites
caused by the growth of microorganisms, which leads to the conclusion that growth to
high numbers of bacteria is a precondition for meat spoilage [4]. Hence, the total viable
count (TVC) of bacteria is considered as an important microbiological index for the quality
and safety evaluation of meat as it “reflects” the level of freshness, contamination and
spoilage. This index is useful to predict the shelf life of meat and distinguish meat spoilage
during storage, as meat’s nutritious surface is favorable to the growth of a wide range of
bacteria [5]. In general, a high TVC value in food indicates significant contamination by
microorganisms and, potentially, a rapid spoilage situation.

The current practice to ensure the safety of meat still relies on regulatory inspection
and sampling regimes. However, such procedure seems insufficient because it cannot satis-
factorily guarantee consumer protection, since 100% inspection and sampling is technically,
financially and logistically impossible. A variety of chemical, physical and microbiological-
based methods have been explored for the detection and measurement of bacterial safety
or spoilage in meat. These include enumeration methods based on microscopy and adeno-
sine triphosphate (ATP) bioluminescence, as well as detection methods utilizing either
immunological or nucleic acid-based procedures [6]. Nevertheless, these methods are
time consuming, laborious, destructive and unsuitable for modern meat industrial pro-
cessing and production technologies which prefer the adoption of techniques able to
provide results in real time if possible [7]. During previous years, relevant analysis and
screening methods had been carried out on meat utilizing expensive sensorial devices
such as high-performance liquid chromatography (HPLC) and gas chromatography-mass
spectrometry [8].

Alternative, non-expensive, rapid and noninvasive methods have been investigated for
this purpose, not only to address consumers’ safety concerns but also to improve the level
of efficiency in the meat supply chain in terms of profit and productivity. Such methods,
involve various analytical lab instruments, like Fourier transform infrared spectroscopy
(FTIR) [9], hyperspectral and multispectral imaging systems, Raman spectroscopy and
electronic noses [10]. The detection approach of these sensorial devices is based on the
concept that any produced metabolic activities for each sample of meat is considered as
an individual “signature”, which practically includes essential information for the level of
TVC [11]. With recent advances in imaging technology during the last decade, the spectral
type of imaging (i.e., hyperspectral and multispectral) has been explored as a potential
tool for monitoring the level of safety and quality of several agricultural products. This
specific type of imaging concept, practically combines spectroscopy and conventional
imaging approaches, and provides the user with spectral as well as spatial information of
the examined product [12].

Multispectral imaging assisted with multivariate methods have been explored for the
estimation of TVC in minced pork meat samples through the use of the VideometerLab
(Videometer A/S, Hørsholm, Denmark) multispectral imaging (MSI) system [7], while an
alternative imaging system, based on hyperspectral imaging (HSI) concept, has been inves-
tigated for the evaluation of tenderness in pork meat as well as for potential Escherichia coli
contamination [13]. An HSI system has been also used to assess the TVC in pork samples
during refrigerated storage, via acquired reflectance spectra extracted from sample images.
Both partial least square regression (PLSR) and support vector machine regression (SVR)
models for predicting TVC were built for comparative analysis [14]. A fusion of acquired
spectral and texture features from a HSI system has been attempted as a way to improve
the pH estimation in salted pork [15]. Adulteration of food has a long history and still
is a common practice around the world. In the case of meat, it is linked with economic
and safety implications, as it is rather challenging to detect specific ingredients and/or
distinguish between species when evaluating meat visually. The detection of potential
adulteration in minced beef has been explored through a HSI system [16], while a similar
detection system utilizing multivariate techniques and machine learning algorithms has
been used to distinguish between four processed beef burger patty categories, consisting of
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various ingredients and adulterants (pork, lamb, ostrich and textured vegetable protein) at
selected levels [17].

One of the most important challenges with HSI/MSI systems, in terms of data analysis,
is the extraction of useful information from the high dimensional hyperspectral data
that contains redundant information. This has been achieved through the integration
of modern analytical platforms with computational and chemometric techniques [18].
Dimensionality reduction techniques are generally applied to such cases in order to decrease
the number of attributes needed for modelling. Such techniques not only speed up the
data processing time but also contribute to a higher accuracy performance of the developed
models. The current dimensionality reduction methodology mainly utilizes either the
Principal Component Analysis (PCA) which is an unsupervised algorithm, or feature
selection (FS) approaches, which are based on the concept of selecting specific wavelengths.
These FS schemes have the advantage that the selected “original” attributes have a physical
interpretation compared to the principal components found in PCA schemes. One main
representative of these FS schemes includes partial least squares (PLSR) technique, a well-
known regression approach, which has been also utilized as a method for dimensionality
reduction based on the latent variables concept [19]. The choice of regression analysis
method is an additional challenging problem for constructing a robust and universal model
as well. Two well-known methods have been usually utilized; RLRS and support vector
machine regression (SVR), a well-known nonlinear method that simplifies the regression
problem by mapping the low dimensional nonlinear space into a high dimensional linear
space based on kernel function [20].

The main objective of this paper is to associate spectral information acquired by a MSI
system from aerobically stored beef fillet samples with the prediction of TVC of bacteria,
an essential index for determining meat spoilage. The adopted approach provides an
alternative methodology in predicting the TVC based on acquired MSI spectra. Although
similar MSI-based approaches [21,22] utilize information only from the mean reflectance
spectrum of the sample, the proposed methodology, extends this initial data source by
considering additional information from the corresponding standard deviation of the pixels’
intensity per wavelength. Data analysis for TVC prediction is carried out separately for
each of these first-order statistics (FOS) features (i.e., mean and standard deviation). For
each FOS feature case, initially a number of well-known feature selection techniques have
been employed to identify the most important attributes (i.e., wavelengths), and through a
simple fusion scheme, based on majority voting, the most important wavelength variables
are then chosen. These chosen wavelengths are then considered as inputs for a novel
clustering-based asymmetric Gaussian fuzzy inference neural network (CAGFINN), which
eventually predicts the TVC for that specific FOS feature case. The testing performances of
CAGFINN models are compared against well-established machine learning methods, like
support vector regressor (SVR), multilayer perceptron (MLP), PLSR, as well as an advanced
wavelet neural network (WNN) scheme using a number of established evaluation metrics.
Both individual predictions from CAGFINN models are then combined through a stacked-
based ensemble nonlinear scheme which essentially calculates the final TVC prediction.
Practically, the overall “idea” of the implemented methodology is to highlight the utilization
of advanced learning-based models in the area of food microbiology, which could provide,
potentially, an alternative approach for the detection of meat spoilage which currently relies
mainly on the use of RLSR models.

2. Data Acquisition and Proposed Framework
2.1. Experiment and Data Acquisition

The entire experiment and the associated data acquisition from the application of MSI
system to meat samples, was accomplished at the Agricultural University of Athens, Greece.
Details of the specific MSI-based experiment and the associated microbiological analysis for
those beef samples used in the experiment can be found in [21]. Briefly, fresh beef filets were
obtained from a meat market in Athens without performing any kind of preprocessing,
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like washing, removal of fat or connective tissue, before packaging. The acquired meat was
divided into small portions of 50 g and packed aerobically in manually wrapped trays with
air-permeable plastic film, ensuring that no direct contact of the film with the meat sample
was occurred. These samples were then stored at the following temperatures 0, 4, 8, 12
and 16 ◦C in incubators for up to 434 h, subjected to storage temperature, until the effect
spoilage was detected. At specific time-steps during storage, samples in duplicate were
taken in order to be used for both microbiological and MSI-based analysis. Meat samples
were analyzed at every 24 h intervals for the 0 ◦C and 4 ◦C cases, 10–12 h for the 8 ◦C cases,
6 h and 4–6 h for 12 ◦C and 16 ◦C cases, respectively. During microbiological analysis, the
acquired growth data were log10 converted and a model, created by Baranyi and Roberts,
was utilized to confirm various kinetic factors of microbial growth (maximum growth
rate as well as lag phase length) for the TVC estimation. In this research study, in total,
84 meat samples were considered and the growth curves of TVC for fillet beef samples at
those mentioned temperatures as a function of storage time are illustrated at Figure 1. An
inspection at these graphs revealed that the TVC ranged from 3.058–9.885log10 cfu cm−2

and that the growth rate is increased faster as the storage temperature increases.
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2.2. Multispectral Imaging Acquisition

Acquired multispectral images from each meat sample were obtained through the
use of VideometerLab (Videometer A/S, Hørsholm, Denmark). The specific MSI system
produces images in 18 distinct wavelengths, ranging from 405 to 970 nm. The wavelengths
utilized in this MSI systems are: 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700,
850, 870, 890, 910, 940 and 970 nm. Meat samples were presented in Petri dishes and
collected at the same time as microbiological analysis occurred [21]. The meat sample was
set in a specially made (Ulbricht) sphere, which was coated with matte titanium paint and
ensured a uniform reflection of the projected light so that a uniform light formed on the
entire sphere. The digital camera on top of the sphere was a part of the receiving system,
which gathered surface reflections and recorded the data with a standard monochrome
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CCD imaging sensor. Light-emitting diodes (LEDs) were set at the rim of the sphere and
each wavelength of LEDs with narrowband spectral radiation distribution was evenly
distributed across the entire edge. These characteristics undertake the best dynamic range
and minimize the gloss-related effects, shadow effects and specular reflections. The result
is a monochrome image with 32-bit floating point precision for each LED type, giving in
the end, a multispectral 3D cube of dimensionality 1280 × 960 × 18 [23]. A necessary
and important step in MSI system processing, after finishing image acquisition, is the
image segmentation process which is to extract meaningful feature parts in the image,
including the edges and regions. The objective of this process, using VideometerLab
software (v.2.12.39), was to identify only the meat fillet as the Region of Interest (ROI) from
the background or any other undesired regions such as the Petri dish as well as meat fat.
To exclude the background from the images, a Canonical Discriminant Analysis (CDA) was
considered, while a simple threshold used for segmentation [24].

Following the segmentation process, for each image, and for each specific wavelength,
the mean reflectance spectrum was obtained via the averaging the pixels’ intensity in the
region of interest (ROI). In addition, for each wavelength, the standard deviation (sd) of
the pixels’ intensity was also calculated [21]. The acquired mean reflectance values and
their correlated standard deviations (totally 36 attributes) for each meat sample practically
constitute the spectral signature for this specific sample. Figure 2 illustrate an example
of mean and standard deviation reflectance spectra acquired from beef fillets samples,
respectively. A close look on these selected “mean” spectra at Figure 2, lead to some
interesting conclusions. Although these selected samples are associated with different
temperatures, their “mean” spectra follow a common pattern with an increased trend in
the reflectance’s magnitude especially for the visible part (400–700 nm), while their related
reflectance values are decreased in the near infrared range. According to the literature,
most of the spectral information used for meat discrimination is contained in the visible
and near infrared region [25], therefore the proposed feature extraction process will also try
to verify this specific scenario.
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2.3. Integrated Analytical Framework

Figure 3, illustrates the proposed analytic concept, following the imaging information
acquisition from VideometerLab MSI system. The acquired spectral dataset includes
two types of first-order statistics (FOS) features, the mean reflectance spectrum and the
corresponding standard deviation of the pixels’ intensity per wavelength. Thus, each
imaging data meat sample consisted of 18 wavelength attributes for each of these two FOS
features, respectively. As illustrated from Figure 3, the analysis for these two FOS features
has been implemented in parallel.
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Initially, for each FOS feature case, seven well-known FS methods (Boruta, Recursive
Feature Elimination, Genetic Algorithms and four regression-based schemes) have been
investigated to identify their most important attributes (i.e., wavelengths). Unfortunately,
there is not any FS algorithm that could provide an optimal performance in terms of dimen-
sionality reduction. Thus, the main idea at this stage is to combine these individual selected
wavelengths and choose the most important ones based on the majority voting criterion.

In parallel to this FS analysis, principal component analysis (PCA) has been also
implemented for each FOS feature case, as PCA is a well-known dimensionality reduction
scheme which usually appears in many food-related applications. One of the aims of this
paper is to identify potential advantages of the proposed FS methodology over PCA. Two
clustering-based neurofuzzy (NF) models have been employed to predict the TVC for
each FOS feature case. The proposed NF model incorporates a “self-defined” clustering
component in terms of self-determining the number of clusters, which eventually will equal
to the number of fuzzy rules. In this paper, a number of well-known evaluation metrics
have been applied to estimate NF’s performance. The overall TVC prediction is achieved
through the use of a stacked ensemble scheme. The individual CAGFINN models are
used as base-models in this proposed stacked scheme, while a nonlinear regression model
acts as a meta-estimator. The use of a nonlinear regression model instead of the well-used
linear regression, has been decided by the fact that such model can effectively combine the
predictions of the base models in a nonlinear manner.

3. Features Extraction Methodology
3.1. A Principal Component Analysis Approach

In high-dimensional feature space cases, not-important attributes usually lead not only
to unsatisfactory classification/regression accuracy, but also impose an added difficulty
in finding potentially useful knowledge. This problem can be rectified through the use
of Principal Component Analysis (PCA) technique [26]. In this study, the standard PCA
algorithm has been applied on the multispectral information for both mean and sd feature
components. As it is illustrated at Table 1, the first 5–6 principal components (PC) for each
feature case can be utilized as input variables to the various regression models developed
for this specific case study. PCA analysis is a standard and well-used dimensionality
reduction approach in the area of food microbiology and these selected PCs, for both
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feature components, will be utilized as input vectors to the NF models at next stage in order
to explore potential advantages of the proposed feature fusion scheme. The PCA analysis
as well as the following feature selections methods were implemented through R (v.4.1.3).

Table 1. PCA analysis for “mean” and “sd” feature cases.

PCs PCA-Mean PCA-sd

Eigenvalue Prop. % Cum. Prop. % Eigenvalue Prop. % Cum. Prop. %

1 726.577 77.043 77.043 46.397 81.975 81.975

2 126.239 13.386 90.429 3.735 6.600 88.574

3 72.162 7.652 98.081 3.154 5.573 94.147

4 14.212 1.507 99.587 2.020 3.568 97.715

5 2.037 0.216 99.803 0.579 1.023 98.739

6 0.657 0.070 99.873 0.274 0.484 99.223

3.2. A Fusion Approach of Feature Selection Algorithms

As PCA is an unsupervised method, its extracted PCs that reflect the directions of
highest variation are not necessarily associated to changes in the outcome variable (i.e.,
desired target). Additionally, such dimensionality reduction retains the issue of variables’
interpretation. The determination of finding which actual attributes are considered impor-
tant is becoming a critical issue, and feature selection (FS) schemes provide an alternative
solution to PCA. These schemes have been categorized into three groups, based on how
they combine the selection algorithm and the model building: filter methods, wrapper
methods and embedded methods. Many times, however, a randomly chosen FS method
is selected with the expectation that it can perform the task adequately. In this paper, an
alternative approach has been adopted in the context of FS: the combination or ensemble
approach. The idea of combining multiple FS techniques is inspired from classifier en-
sembles [27]. The main concept behind this ensemble approach, is that we are not certain
which specific wavelengths are the most important ones. In addition, many FS schemes
have different criteria in the selection of their important variables. Under this proposed
scenario, several well-known FS methods are implemented separately and their related
important variables are extracted. The hypothesis in this paper is not only to assess the level
of importance of these variables but also to check if common selected variables appear in
these individual FS results. One simple way to implement this hypothesis, is a combination
via the use of a voting scheme in order to choose the most relevant/important attributes.
A general overview of the fusion approach is illustrated in Figure 4, where the “majority
voting” concept has been chosen to fuse/select the final variables. For each FS technique,
its associated list of variables is sorted based on their importance and the final output is a
list which includes variables (i.e., wavelengths) that correspond to the most selective ones.

3.3. Feature Selection Techniques

Seven well-known FS methods have been chosen to contribute to the proposed fusion
scheme shown in Figure 4. Initially, the Boruta algorithm and Recursive Feature Elimination
(RFE), which both utilize random forest models for feature relevance estimation have been
explored [28]. Genetic Algorithms (GA) attempt to computationally mimic the processes
by which natural selection operates [29]. The remaining four schemes are practically
regression-based methods; however, with variations in their operational “philosophy”. The
Least Absolute Shrinkage and Selection Operator (LASSO) aims in minimization of the
residual sum of squares while adding a constraint to the sum of the absolute values of the
coefficients being less than a constant. A modified version of the stepwise (SW) technique,
namely forward stepwise regression that utilizes the Akaike information (AIC) criterion [30]
and the Relative Feature Importance (RFI) scheme [31] have been also considered. The final
scheme is based on partial least squares regression (PLSR) which has been used widely in
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the area of Chemometrics [19]. The 18 distinct wavelengths obtained by the MSI system
are shown in Table 2 with their associated coding (1 to 18). Similarly to the PCA case, FS
techniques were applied separately to the “mean” and “sd” related features, respectively.
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Table 2. List of wavebands (nm).

No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Wavebands (nm) 405 435 450 470 505 525 570 590 630 645 660 700 850 870 890 910 940 970

3.3.1. Boruta Feature Selection Method

Boruta algorithm belongs to the wrapper family of FS techniques and is implemented
around the random forest (RF) method. During its operation, the original dataset is
extended by adding copies of original attributes (the so-called shadow attributes), as the
main idea is to compare the importance of the real predictor variables with those shadow
variables using statistical testing and several runs of RF algorithm. Figure 5 illustrates
the results for “mean”-based wavebands revealing the related attributes’ importance. The
columns in green are “confirmed” while the ones in red are not. During the decision process,
some attributes shown with a yellow color are considered by the algorithm as “uncertain”.
In the figure, the three blue bars are introduced by the algorithm itself and represent
ShadowMax, ShadowMin and ShadowMean. Boruta’s advantage is that it clearly decides
if a variable is important or not and helps to select variables that are statistically significant.

Based on these results, it seems that wavebands no. 12, 11, 9, 10, 8 and 1 are the first
six most important attributes for the mean-based case, while, similarly, wavebands, no. 8,
12, 4, 6, 5 and 11 have been considered as important attributes for the sd-based case.
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3.3.2. Recursive Feature Elimination Selection Method

Recursive Feature Elimination (RFE) is probably the most used wrapper-based al-
gorithm for selecting the most significant attributes. RFE utilizes a backward selection
procedure in order to choose the ideal combination of input attributes. Initially, a model is
created using all available attributes while their importance in the model is calculated. Then,
the algorithm rank-orders the attributes and eliminates those with the least importance
iteratively based on some evaluation metrics, like RMSE for regression.

After the removal of the least important attribute(s), the model is rebuilt and impor-
tance scores are computed again. Finally, the optimal attributes subset is then used to train
the final model. In practice, RF algorithm is frequently used in this method due to use of
some “post hoc” pruning of not essential attributes [32]. Figure 6 illustrates the outcome
of RFE algorithm for RF based scheme for the “sd” spectral feature. For the “sd” case,
the most important attributes are: “StdDev.08”, “StdDev.12”, “StdDev.04”, “StdDev.07”,
“StdDev.01”, “StdDev.05” and “StdDev.11”, with the first two attributes to have a clear
advantage over the remaining ones. Similarly, for the “mean” case, the most important
attributes are: “Mean.12”, “Mean.11”, “Mean.09”, “Mean.10”, “Mean.08” and “Mean.01”.

3.3.3. Genetic Algorithms (GA) Selection Method

Genetic Algorithms (GA) are inspired by Darwin’s theory of evolution from natural
selection in the survival of the fittest. GA work with a set of candidate solutions (i.e.,
population) and produce sequential populations of alternate solutions that are represented
by a chromosome. Chromosomes are evaluated for their quality, based to a given fitness
function and are sorted accordingly. In this research, the gafs() R-based function, has been
used to extract the most important attributes for both “mean” and “sd” cases. During
the GA process, the appropriate crossover and mutation probabilities were set by the
function to 0.8 and 0.1, respectively. In the final search, for the “mean” case, the following
wavebands have been considered as important ones in that order: “Mean.01”, “Mean.09”,
“Mean.12”, “Mean.11”, “Mean.07”, “Mean.08” and “Mean.05”, while for the “sd” case the
related attributes were: “StdDev.04”, “StdDev.06”, “StdDev.07”, “StdDev.08”, “StdDev.12”,
“StdDev.15”, “StdDev.16” and “StdDev.17”.
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3.3.4. Stepwise Selection Method

Stepwise regression is a regression-based model that has been used widely for FS
processes. It can be implemented either by forward methods or backward methods, or by
combing both methods. In this research, a hybrid scheme has been adopted, where the
algorithm starts with forward selection and after each attribute (other than the first one) is
selected to the model, a backward scheme is performed to check if any of those selected
attributes could be eliminated without increasing significantly the Residual Sum of Squares
(RSS). The orthogonal least squares algorithm has been used in this regression stepwise
process. In our case study, for the “mean” case, the following wavebands have been con-
sidered as important ones: “Mean.12”, “Mean.07”, “Mean.02”, “Mean.01”, “Mean.09” and
“Mean.05”, while for the “sd” case the final selected waveband attributes are: “StdDev.08”,
“StdDev.06”, “StdDev.05”, “StdDev.04”, “StdDev.07”, “StdDev.02” and “StdDev.11”.

3.3.5. LASSO Selection Method

LASSO (Least Absolute Shrinkage and Selection Operator) regression is practically a
modification of linear regression. The method tries to minimize the RSS but also adds a
constraint to the sum of the absolute values of the coefficients being less than a constant.
This modification allows LASSO to act as a FS method, because the shrinkage of the
coefficients is such that some coefficients can be shrunk exactly to zero. The calculation of
the amount of penalty/constraint, i.e., lambda (λ), by crossvalidation is a requirement, and
for the “mean” and “sd” cases, the minimum lambda has been calculated as 0.0011 and
0.00066, respectively. Figure 7 illustrates the selection of appropriate attributes for “mean”
case. Those attributes with either higher positive or lower negative values are considered
as the most important ones. Thus, the selected wavebands based on Lasso scheme for the
“mean” case are: “Mean.02”, “Mean.05”, “Mean.09”, “Mean.07”, “Mean.12”,“Mean.11” and
“Mean.01”, while for the “sd” case: “StdDev.06”, “StdDev.05”, “StdDev.04”, “StdDev.08”,
“StdDev.03” and “StdDev.07”.
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3.3.6. Relative Importance from Linear Regression Selection Method

In order to judge the relative importance of the input attributes in an approximation
linear regression model, the magnitude and signs of the regression coefficients are normally
considered. However, this approach is quite arbitrary, and sometimes unconvincing.
Relative importance can be used to assess which attributes contributed to explaining the
linear model’s R-squared value. Relative importance systems have been estimated using the
Lindeman, Merenda and Gold (LMG) metric for correlated input relative importance [33].
The following attributes have been considered as important ones: “Mean.11”, “Mean.12”,
“Mean.10”, “Mean.09”, “Mean.08”, “Mean.06”, “Mean.05”, “Mean.03” and “Mean.02”. The
“sd” case, however, was proved to be more complex, as only few wavebands revealed a
higher importance compared to the others. This proves the difficulty to model the “sd”
case study via a linear regression approach. In this case, the most important attributes were:
“StdDev.08”, “StdDev.12”, “StdDev.06”, “StdDev.04”, “StdDev.07” and “StdDev.05

3.3.7. Partial Least Squares Regression (PLSR) Selection Method

PLS regression method is probably the most used technique for FS in the area of food
microbiology. It is an effective multivariate statistical method for analyzing the linear
relationships between multiple independent and dependent variables. The idea of using
PLSR in FS is based on filtering [34]. Wavelength bands are filtered based on the strength
of the related regression coefficients. For the “mean” case study, the following attributes
have been considered as important ones: “Mean.05”, “Mean.07”, “Mean.01”, “Mean.06”,
“Mean.04”, “Mean.08”, “Mean.15” and “Mean.13”. Figure 8 illustrates the results from
PLSR for “mean” case. The “sd” case, however, was proved again to be more complex,
as more wavebands than the “mean” case revealed to have high in terms of magnitude
coefficients. The most important features in this case were: “StdDev.04”, “StdDev.08”,
“StdDev.05”, “StdDev.15”, “StdDev.10”, “StdDev.18”, “StdDev.07” and “StdDev.12”.

3.3.8. Features Fusion

All selected features which have been extracted from those seven FS methodologies,
are considered as inputs to the proposed feature fusion scheme. Table 3 illustrates the
most important features (i.e., wavelengths) for each FS scheme for the “mean” case. For
each FS method, chosen features are shown with their importance ranking. Only a few
of the whole group of available wavelengths have been considered as important ones.
Despite the different nature of these FS schemes, a number of specific wavelengths are
common to the majority of these schemes. Based on ranking, as well as the importance
level, the following wavelengths have been finally chosen for the “mean” case: “Mean.12”,
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“Mean.11”, “Mean.09”, “Mean.01”, “Mean.05”, “Mean.07”, “Mean.02” and “Mean.08”.
These chosen wavelengths are also indicated in Table 3 via a red color.
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Table 3. Proposed Fusion for “mean” case.

Method\Bands No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Boruta 6th 7th 8th 5th 3rd 4th 2nd 1st

RFE 6th 9th 7th 5th 3rd 4th 2nd 1st 8th

Stepwise 4th 3rd 6th 2nd 5th 1st

Lasso 7th 1st 2nd 4th 3rd 6th 5th

GA 1st 7th 5th 6th 2nd 4th 3rd

Relative Importance 9th 8th 7th 6th 5th 4th 3rd 1st 2nd

PLSR 3rd 5th 1st 4th 2nd 6th 8th 7th

A closer look to this table, reveals also an interesting outcome related to PLSR scheme,
which has been extensively used as a FS method in many related applications in food
microbiology. Specific wavelengths, not appeared in other methods, have been considered
as important ones. This specific result verifies the choice of implementing a number of FS
methods and their subsequent fusion. The selected wavelengths from this fusion scheme
for the “mean” case, practically “verifies” the suggestion extracted from [25], as the most
important information is mainly provided from wavelengths located at the visible part of
the MSI system.

Similarly to the previous “mean” case, Table 4 illustrates the most important features
(i.e., wavelengths) for each FS scheme for the “sd” case. Based on their importance ranking,
the following wavelengths have been finally chosen for this case: “StdDev.08”, “StdDev.04”,
“StdDev.05”, “StdDev.06”, “StdDev.12” and “StdDev.07”. Unlike to the previous case, fewer
wavelengths are common to the majority of these FS schemes. Additionally, in some FS
schemes, like GA and PLSR, a few wavelengths with a high wave number have been
chosen. The diversity of selected wavelengths in the “mean” and “sd” cases, reveal also the
importance of having multiple FOS features extracted from raw MSI images, which could
potentially improve the overall TVC prediction.



Sensors 2023, 23, 9451 13 of 27

Table 4. Proposed Fusion for “sd” case.

Method\Bands No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Boruta 7th 3rd 5th 4th 1st 6th 2nd

RFE 5th 3rd 6th 4th 1st 7th 2nd

Stepwise 6th 4th 3rd 2nd 5th 1st 7th

Lasso 5th 3rd 2nd 1st 6th 4th

GA 1st 2nd 3rd 4th 5th 6th 7th 8th

Relative Importance 7th 4th 6th 3rd 5th 1st 2nd 8th

PLSR 1st 3rd 7th 2nd 5th 8th 4th 6th

4. Clustering-Based Asymmetric Neurofuzzy Architecture

The proposed clustering-based asymmetric Gaussian fuzzy inference neural network
(CAGFINN), shown in Figure 9, incorporates a “self-defined” clustering component in
terms of self-determining the number of clusters which eventually will equal to the number
of fuzzy rules. Similarly to other neuro-fuzzy models, CAGFINN follows the traditional
TSK-based style, which has the advantage of modelling nonlinear processes with relatively
fast training speed, due to the presence of linear units in its defuzzification part.
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In the proposed CAGFINN structure the first three layers L1, L2 and L3 constitute
the premise part (i.e., IF part) of a traditional fuzzy logic-based system, while layer L5 is
associated to the consequent part (i.e., THEN part). Layer L4 is practically the normalization
layer and is applied to the outputs from L3.

In this scheme, derived centers from the integrated clustering unit are used for the
initialization for the centers of fuzzy membership functions (MFs). The proposed clustering
scheme consists of two stages [35]. Initially, a fully supervised process which resembles with
the well-known Learning Vector Quantization (LVQ) algorithm determines the number
of clusters by dividing the data into these crisp groups and then calculates the initial
coefficients of cluster centers. In the second stage, the classic fuzzy c-means (FCM) scheme
is applied to optimize these coefficients of the cluster centers.
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In the premise part of CAGFINN model, the number of produced clusters corresponds
to the number of fuzzy rules. In addition, the spread parameters for each MF, σij, are
initialized based on the Equation (1),

σij =

(
n

∑
k=1

uik(xkj − cij)
2

/
n

∑
k=1

uik

)1/2

(1)

where elements in matrix U correspond to the MFs of input xk from the ith cluster, as
they were calculated by the FCM scheme used at the second stage of proposed clustering
initialization process. Thus, fuzzy rules can be formulated by the following equations,
based on the adopted configuration:

IF (x1 is Ui
1 AND . . . AND xq is Ui

q) THEN y =
c
∑

j=1
f jRj,

where, f j = wj1x1 + . . . + wjnxn + wj(n+1)

(2)

where U are the sets derived from the c-partition of training data X and Rc are the fuzzy
normalized rules. The proposed configuration of CAGFINN schemes is explained below
layer by layer:

Layer 1: Nodes at this stage simply forward input variables x1, x2, . . . , xn to L2.
Layer 2: This is premise part in a fuzzy IF–THEN structure, where utilizes an asymmetric
Gaussian MF with the following form:

Aij = exp

− 1
2

(
xi−cij

σ
le f t
ij

)2
U

(
xi;−∞, cij

)
+

exp

− 1
2

(
xi−cij

σ
right
ij

)2
U

(
xi; cij, ∞

)
where U(xi; a, b) =

{
1 i f a ≤ xi < b
0 otherwise

(3)

The MF in Equation (3) includes two types of spreads, namely σ
le f t
ij and σ

right
ij , respec-

tively, which transform the classic Gaussian MF to a nonsymmetric output form. Moreover,
this approach utilizes a “pseudo” function that requires two spreads—left and right—and
a common center parameter. Following the FCM clustering stage, an initial value for
spread (σinit

ij ) has been calculated. As CAGFINN utilizes two spreads, one located at the
left of the initial center parameter and one at the right, both spreads are initialized as
σinit

ij /2 = σ
le f t
ij = σ

right
ij . Thus, during the first iteration of the training process, the total

spread of any asymmetric MF has been equaled to σtotal
ij = σ

le f t
ij + σ

right
ij . Upon the arrival of

any input variable from L1, its position (left/right) against the specific center parameter for
each MF needs to be recorded via a specific MF index allocated for each MF. This index is
then used in the backward learning phase to update that particular spread parameter. The
value of this index is then updated accordingly to any new input arrival from L1. During
forward training phase, σtotal

ij is used as the spread used in the Gaussian function which
has the specific form:

Aij = exp

(
−
(
xi − cij

)2

2b2
ij

)
(4)

where bij = σtotal
ij , i represent the number of MF/rules, while j denotes the specific input

variable. During the backward learning phase, a new spread σnew
ij value is calculated

via the gradient descent (GD) learning method. Based on the information stored at that
specific MF index, either the left or right spread is updated as σ

le f t or right
ij = σnew

ij /2. For
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the next iteration step, in the forward training phase, the spread parameter will be equal
again as σtotal

ij = σ
le f t
ij + σ

right
ij , incorporating, however, the relative adjustment of one of

its components.

Layer 3: This layer represents the “classic” rules layer. The multiplication has been used as
a fuzzy AND operation, thus output has the following form:

Ri =
n

∏
j

Aji(xj) (5)

In this proposed architecture, the number of rules is the same as the number of clusters.

Layer 4: At this normalization layer, each normalized rule is calculated by:

Ri =
Ri

c
∑

j=1
Rj

(6)

Layer 5: Finally, this is the consequent stage of the CAGFINN scheme which has the
following form:

O =
c

∑
j=1

f jRj (7)

where f j = wj1x1 + . . . + wjnxn + wj(n+1) illustrates the “consequent linear parameters” of
the TSK-based scheme. Inspired by ANFIS’s hybrid learning algorithm, similar analysis
has been performed for the case of CAGFINN scheme. Training process includes the use of
recursive least squares method (RLS) for the consequent parameters, while the gradient
descent (GD) algorithm has been employed for the premise part [36]. During, the backward
“training” phase, the error signals are calculated from the output layer backward to the
premise (i.e., membership) layers, and parameters at both defuzzification and fuzzifica-
tion sections are fine-tuned. All modelling schemes for the TVC prediction have been
implemented in MATLAB (ver. R2019b, Mathworks.com (accessed on 1 October 2023)).

5. Predictive Models for the Estimation of Total Viable Counts in Meat Samples

The main objective in this paper is the efficient estimation of TVC on beef samples
based only on data acquired by an MSI system. No additional information, such as the
specific time-steps at which beef samples were analyzed during storage, or the classification
groups (fresh, semifresh or spoiled) of the acquired samples was utilized. The rationale of
using only spectral information was justified by the fact, that sometimes such additional
information may not be instantly available. The main concept of the proposed framework,
shown at Figure 3, is the TVC prediction not via a single regression model, but rather
through an ensemble scheme, where the predictions of its individual FOS-based feature
components through the aid of a metalearning algorithm, are combined in order to produce
the final outcome. Two regression models, based on the proposed clustering-based neuro-
fuzzy regression model (CAGFINN), have been trained and evaluated separately for the
“mean” and “sd” cases, respectively. However, as we are interested, initially, to assess the
performance of CAGFINN scheme acting as TVC prediction model, obtained results are
compared with those obtained by MLP neural networks, SVM, PLSR schemes and wavelet
neural networks (WNN). Although, MLP and PLSR schemes have been already applied
in this domain [37], the comparison is also extended with the addition of SVM as well as
an advanced WNN model [38]. The main reason for using this specific WNN model, is
related to the fact that this structure includes an additional linear-coefficients-weights layer
that resembles the TSK defuzzification scheme found in CAGFINN. The dataset, consisted
of 84 meat samples, include the selected input variables (i.e., wavelengths) chosen by the
feature selection fusion scheme, and the associated TVC prediction obtained by microbio-
logical analysis. In this research study, two distinct procedures have been considered for the

Mathworks.com
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training/testing stages. In the first procedure, as the number of observations/samples is
small, the separation of the dataset into training and testing subsets (hold-out method) was
considered that it would further reduce the number of data and would result in insufficient
training of the network. Therefore, in order to improve the robustness of identification
process, the leave-1-out cross validation (LOOCV) technique was employed to evaluate
the performance of all developed models for both “mean” and “sd” feature cases. In order
to investigate further the capabilities of the implemented models for the TVC prediction,
a second experiment was also carried out, where the initial dataset was divided into a
training subset with approx. 90% of the data and a testing subset with the remaining 10%
(i.e., eight samples). The performances of developed regression models for the prediction of
TVC, for both “mean” and “sd” cases, are evaluated through a number of well-established
metrics. Initially the Bias factor (Bf) and accuracy factor (Af) performance indicators, which
have been extensively used in food microbiology, have been applied [39]. The bias factor
measures the bias of the data, while the accuracy factor measures of the scatter of the data.
These indicators are shown in the following equations:

B f = 10(∑ log (
_
y i/yi)/n) (8)

and
A f = 10(∑ |log (

_
y i/yi)|/n) (9)

where
_
y , y represent the predicted and desired responses, while n is the number of obser-

vations. The usual measures of goodness-of-fit for model comparison in food microbiology
is performed, in addition to Bf and Af with the squared correlation coefficient (R2), known
also as coefficient of determination. In our case, it can be interpreted as the proportion of
the variance in the predicted TVC response from the actual/objective TVC response. The
higher the value (0 ≤ R2 ≤ 1), the better is the prediction by the model. The coefficient
of determination and its equivalent correlation coefficient (R) is also one of well-known
metrics used for determining the effect size. Effect size is a statistical concept that measures
the strength of the relationship between two variables on a numeric scale and is used
mainly in health-related domains, like psychology. Alternatively, the effect size, as a way
to compare two variables, is also calculated as the difference between the two variables’
means. Two similar metrics of this type are also considered in this paper for the evaluation
of the implemented regression models [40]. The first is the standardized mean difference
(theta) scheme, which is shown in the following equation:

theta =
y− ycalc

σy
(10)

where y, ycalc represent the means of the desired and predicted response, respectively, while
σy, is the standard deviation of the desired response. A slightly different approach is the
Cohen’s d effect size metric which is defined as difference between the two means divided
by the pooled standard deviation from the data and is defined by the following equation.

cohen′s d =
y− ycalc
σpooled

=
y− ycalc√

(ny − 1)σ2
y + (nycalc − 1)σ2

ycalc
ny + nycalc

(11)

Cohen’s suggestion that effect sizes can be categorized as small, medium or large is
associated with the amount of overlap of the two involved variables.

However, R2 is considered as a suitable criterion for model comparison on the assump-
tion that the error is normally distributed and not dependent on the mean value. In fact,
the distribution of the error is not clearly known in the case of microbial/bacteria growth,
so this index must be used with caution, particularly in nonlinear-based regression models
and hence additional evaluation metrics must be employed for model comparison [41]. In-
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spired by the regularly used metrics in regression problems, the mean absolute percentage
error (MAPE), the root mean squared error (RMSE), the standard error of prediction (SEP),
the absolute percentage error (APE) and the mean absolute error (MAE) metrics have been
also considered as evaluation measurements for our case study [35].

Finally, three additional chemometric indicators, which are used extensively in spec-
troscopic applications, namely residual prediction deviation (RPD), range error ratio (RER)
and the ratio of performance to interquartile distance (RPIQ), were utilized in this paper.
The RPD is calculated as the ratio of the standard deviation of the desired variable to the
RMSE. Higher values for the RPD suggest increasingly accurate models and a model with
RPD value above three is generally considered as an excellent model in terms of reliabil-
ity [42]. The RPD value although is considered as an important criterion, it assumes a
normal distribution of the desired/observed values since it includes the standard deviation.
An alternative metric is the Ratio of Performance to InterQuartile distance (RPIQ), which is
defined as interquartile range of the observed values divided by the RMSE. RPIQ is based
on quartiles, which better represent the spread of the dataset. The quartiles are milestones
in the dataset range: Q1 is the value below which we can find 25% of the samples while
Q3 is the value below which we find 75% of the samples. The RPIQ formula is shown
as follows:

RPIQ =
IQ

RMSE
=

Q3 −Q1√
1
n ∑(yi − ŷi)

2
(12)

The RPIQ takes both the prediction error and the variation of observed values into
account, providing thus a metric of model validity that is more objective than the RMSE. A
larger RPIQ value indicates improved model performance. Finally, the range error ratio
(RER) is equal to the range in the observed/desired values (i.e., the maximum value minus
the minimum value) divided by the RMSE. A value of RER above 10 is roughly an indicator
of a model with good predictive ability [43].

5.1. “Mean” Feature Case Study

All regression models, including CAGFINN, have been implemented utilizing the
same input vector that includes eight input nodes (i.e., the selected eight “mean” features
from the proposed fusion scheme). In the proposed neurofuzzy (NF) scheme, 12 clusters
have been created, using the clustering preprocessing stage for the LOOCV case, while
10 clusters for the 2nd experiment with the reduced training dataset case.

The number of fuzzy rules is the same as the number of MIs and is independent
from the number of input variables, creating thus a novel “multidimensional inspired”
rule layer, in contrast to in contrast to traditional ANFIS architecture [44]. The hybrid
learning algorithm, resulted in a fast-training process, which was concluded in less than
500 epochs, much faster from the equivalent time used to train the MLP neural network.
The scatter plot of predicted (via CAGFINN) versus observed total viable counts for the
LOOCV case is illustrated in Figure 10, and shows a very good distribution around the line
of equity (y = x), with the vast majority of the data included within the ±0.5 log area. A
few samples, however, are located in the borders of the designated ±0.5 log area, while five
samples, namely “49A1”, “51A1”, “55A1”, “50A3” and “19A7” are clearly located outside
that zone. It is interesting to investigate the characteristics of these five “outliers” samples.
The “49A1”, “51A1” and “55A1”samples were stored at 0 ◦C and collected after 239 h, 263 h
and 383 h time of storage, respectively. The “50A3” sample was stored at 4 ◦C and collected
after 263 h time of storage and finally the “19A7” corresponds to a beef sample stored at
12 ◦C and collected after 54 h time of storage. Although this “outliers” set includes samples
from different storage temperatures, the performance of NF model from this plot reveals a
rather “nonlinear” trend as many samples are distributed above and below from the line of
equity. Practically, this plot illustrates the nonlinear characteristics of the TVC prediction
for the “mean” case.
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The performance of NF model, using the chosen wavelengths as input variables, is
revealed with more details though the application of the evaluation statistical metrics,
presented in Table 5. The bias and accuracy factors revealed a rather perfect fit, with
values 1.003 and 1.035, respectively. Bf is used to determine whether the model over or
under predicts the level of bacterial growth. A Bf greater than 1.0 indicates that a model is
overestimated. Equally, a Bf less than 1.0 generally indicates that a model is underestimated
(i.e., observed responses are larger than predicted values) [44]. Perfect agreement between
predictions and observations would lead to Bf of 1. Regarding the appropriate values of
the Af, a value of one indicates that there is perfect agreement between all the predicted
and measured values. All remaining evaluation results reveal a rather excellent regression
performance for the proposed NF model for the LOOCV case. The R-squared result has
been calculated as 0.982, which is considered as an accepted value to evaluate the goodness-
of-fit for this particular model. Cohen’s d test is almost zero, which reveals a strong
overlapping between predicted and observed responses. The obtained high RPD shows
that this model can definitely be used for such prediction tasks. In parallel, an additional
CAGFINN model has been implemented using, however, as input variables the PCs from
the PCA scheme. The aim was to compare the concept of the proposed fusion FS vs. the
traditional PCA approach. In this PCA/NF version, 8 clusters have been created, using the
clustering preprocessing stage for both the LOOCV case as well as the second experiment
with the reduced training dataset case. Although, this PCA/NF-based model contains
fewer input variables than the equivalent FS-based model, results were slightly inferior.
This comparison proved the validity of the hypothesis to utilize selected wavelengths as
input variables in order to have a greater level of understanding of the model.

In addition to CAGFINN model, WNN, MLP, SVM and PLSR models have been also
developed to predict TVC. The concept of using wavelets in neural networks is well known
and is summarized by the replacement of the Gaussian function, normally found in RBF
networks, with an orthonormal scaling functions; however, in the proposed advanced
WNN-LCW architecture, the connection weights between the hidden layer neurons and
output neurons are replaced by a local linear model, similar to the output TSK-layer
appeared in ANFIS neuro-fuzzy system [38]. From this point of view, there is a level
of similarity between CAGFINN and WNN-LCW models, and results also reveal the
importance of utilizing such a “defuzzification” layer in learning-based models. In the
proposed WNN-LCW, 20 wavelet Morlet functions have been used and the evaluation
performance of the developed WNN was comparable with the PCA/NF model. For the
case of SVM, the criterion for building the optimal model was defined by the evaluation
of SEP index. The C ranges were chosen in between [1 and 1000] and γ value ranged
from [0.05 to 1] for training the ε− SVR. The epsilon tolerance value was set to be 0.001.
Penalty coefficient C was set at 120, while γ parameter at 0.25. An MLP network has also
been implemented, utilizing two hidden layers (with 16 and 8 nodes, respectively). Both
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performances from MLP and SVM models, although inferior compared to previous models,
reveal nevertheless a robust performance, taking into consideration that such models
have been already used in the area of food microbiology. Finally, a partial least squares
regression (PLSR) scheme has been applied to the same dataset. Although SVM and MLP
performances could be characterized as comparable, obtained PLSR results are worse than
those obtained by other machine learning schemes. It is well known that in modelling of
real processes, linear PLSR has some difficulties in its practical applications since most real
problems are inherently nonlinear and dynamic [45]. In fact, a close inspection at results
in Table 5, reveals that RPD index is less than 3, revealing that such a model cannot be
considered as acceptable.

Table 5. Performance of developed models for TVC (mean—LOOCV case).

Statistical Index “Mean” (LOOCV) PCA/NF FS/NF WNN MLP SVM PLSR

Root mean squared error (RMSE) 0.3492 0.2863 0.3477 0.3898 0.4038 0.7541

Mean absolute percentage error (MAPE %) 3.8738 3.4972 4.2597 4.9223 4.8697 9.3105

Standard error of prediction (SEP %) 4.9821 4.0857 4.9619 5.5627 5.7624 10.759

APE 325.4 293.76 357.81 413.47 409.05 782.08

MAE 0.2608 0.2255 0.2593 0.2979 0.2894 0.5597

Residual Prediction Deviation (RPD) 6.2213 7.5862 6.2466 5.5719 5.3788 2.8806

Range Error Ratio (RER) 19.55 23.84 19.63 17.511 16.904 9.053

Ratio of Performance to Inter-Quartile distance (RPIQ) 11.735 14.309 11.782 10.51 10.145 5.433

Bias factor (Bf) 0.998 1.003 1.0077 1.009 1.0068 1.01

Accuracy factor (Af) 1.039 1.035 1.043 1.05 1.049 1.094

Cohen’s d effect size 0.007 −0.007 −0.016 −0.02 −0.013 0.0001

Standardized means difference (theta) 0.007 −0.007 −0.016 −0.02 −0.135 0.0001

R-squared (R2) index 0.974 0.982 0.974 0.967 0.965 0.878

Similarly, all developed models have been also utilized in a second simulation study,
in order to assess their competence to be trained with a dataset with a reduced number
of samples. In this scenario, 76 samples were used for training purposes, while the re-
maining 8 samples were reserved for the evaluation. The plot of predicted (via CAGFINN)
versus observed total viable counts for this second case is illustrated in Figure 10, while
the performance of the all developed models to predict TVCs in beef samples in terms
of statistical indices is presented in Table 6. Results from this table indicate again the
superiority of implemented regression models over PLSR, even though they are inferior
to those illustrated in Table 5. In this case, all Bf indices are less than 1, indicating the
underestimation nature of all models. However, a closer comparison of performances in
these two tables, reveals a problem with the limited number of samples for training. All
evaluation metrics are much worse in this second case, and this reflects an open problem in
learning-based systems, i.e., the need to have as large as possible training datasets.

5.2. “SD” Feature Case Study

For this case, the input vector for all models consisted of the chosen six “sd” features
from the proposed fusion scheme. In the proposed NF model, 14 clusters were created,
using the clustering preprocessing stage for the LOOCV case, while 12 clusters were created
for the second experiment. The increased number of clusters/rules indicates indirectly
the different and rather more complex characteristics of the “sd” feature compared to the
“mean” case. In this case, the structure for WNN-LCW consisted of 16 wavelet Morlet func-
tions, while the MLP retained the same internal structure as in the previous “mean” case.
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Table 6. Performance of developed models for TVC (mean—reduced dataset case).

Statistical Index “Mean” (76/8) PCA/NF FS/NF WNN MLP SVM PLSR

Root mean squared error (RMSE) 0.5077 0.3851 0.4603 0.5261 0.5169 0.7782

Mean absolute percentage error (MAPE %) 6.3304 5.1049 5.6459 6.2491 6.3402 8.9732

Standard error of prediction (SEP %) 6.7112 5.0907 6.0844 6.9542 6.8331 10.286

APE 50.643 40.839 45.167 49.993 50.721 71.785

MAE 0.4716 0.3425 0.3789 0.4480 0.4429 0.6830

Residual Prediction Deviation (RPD) 3.6044 4.752 3.976 3.478 3.540 2.351

Range Error Ratio (RER) 10.775 14.205 11.885 10.399 10.583 7.03

Ratio of Performance to Inter-Quartile distance (RPIQ) 4.4231 5.831 4.878 4.268 4.344 2.885

Bias factor (Bf) 0.984 0.967 0.969 0.956 0.944 0.962

Accuracy factor (Af) 1.066 1.054 1.06 1.066 1.068 1.096

Cohen’s d effect size 0.05 0.107 0.095 0.17 0.216 0.22

Standardized means difference (theta) 0.047 0.103 0.091 0.16 0.203 0.189

R-squared (R2) index 0.912 0.949 0.927 0.905 0.908 0.793

The plots of predicted (via CAGFINN) versus observed total viable counts for both
simulation studies are illustrated in Figure 11, and show a good distribution around the
line of equity (y = x), with the vast majority of the data included within the ±0.5 log area.
A few samples, however, are located in the borders of the designated ±0.5 log area, while
four samples, namely “36A3”, “4A9”, “54A1” and “26A9”, are clearly located outside that
zone. The “54A1” sample was stored at 0 ◦C and collected after 359 h time of storage, while
“36A3” to a sample stored at 4 ◦C and collected after 120 h time of storage. Finally, “4A9”
and “26A9” samples were stored at 16 ◦C and collected after 12 h and 73 h time of storage,
respectively. This plot, however, in contrast to the previous “mean” case, reveals a rather
“linear” trend as many samples are located on the line of equity. Such difference in the
trends shown at Figures 10 and 11, illustrate the different characteristics embedded in both
“mean” and “sd” cases. The performances of all the developed models to predict TVCs in
terms of statistical indices for the LOOCV case are presented in Table 7.
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Looking at these results, shown in Table 7, a difference in modelling the TVC using the
“sd” feature is more than evident. Although NF model achieved a superior performance
in all metrics, it is interesting to explore the performance of the WNN model. Both NF
and WNN models share a common defuzzification component, which is responsible for
obtaining superior performance in single output nonlinear regression problems. The R-
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squared in this case is 0.981 for the NF scheme compared 0.654 for the PLSR, revealing the
deficiency of this particular model in modelling nonlinear problems.

Table 7. Performance of developed models for TVC (sd—LOOCV case).

Statistical Index sd (LOOCV) FS/NF WNN MLP SVM PLSR

Root mean squared error (RMSE) 0.2941 0.3525 0.3898 0.4171 1.2696

Mean absolute percentage error (MAPE %) 3.2242 3.6716 4.1344 5.3414 17.103

Standard error of prediction (SEP %) 4.1969 5.0294 5.5624 5.9519 18.115

APE 270.83 308.41 347.29 448.67 1436.7

MAE 0.1904 0.2322 0.2536 0.2969 0.9901

Residual Prediction Deviation (RPD) 7.3852 6.1628 5.5723 5.2076 1.7109

Range Error Ratio (RER) 23.209 19.368 17.512 16.366 5.3771

Ratio of Performance to Inter-Quartile
distance (RPIQ) 13.93 11.624 10.51 9.8228 3.2273

Bias factor (Bf) 1.0073 1.0115 1.0121 1.007 1.0226

Accuracy factor (Af) 1.0321 1.0365 1.0404 1.0548 1.1734

Cohen’s d effect size −0.016 −0.028 −0.032 −0.013 0.0001

Standardized means difference (theta) −0.016 −0.028 −0.032 −0.013 0.0001

R-squared (R2) index 0.981 0.9734 0.9674 0.9627 0.6543

Similarly, all developed models have been also utilized in a second simulation study,
in order to assess their competence to be trained with a dataset with a reduced number of
samples. The plot of predicted (via CAGFINN) versus observed total viable counts for this
second case is illustrated in Figure 11, while the performance of the all developed models
to predict TVCs in beef samples in terms of statistical indices is presented in Table 8.

Table 8. Performance of developed models for TVC (sd—reduced dataset case).

Statistical Index sd (76/8) FS/NF WNN MLP SVM PLSR

Root mean squared error (RMSE) 0.3876 0.4907 0.5349 0.5481 1.3425

Mean absolute percentage error (MAPE %) 4.0154 5.4016 5.5192 7.1125 16.227

Standard error of prediction (SEP %) 5.1237 6.4868 7.0708 7.2453 17.746

APE 32.123 43.213 44.153 56.899 129.81

MAE 0.3096 0.4087 0.4335 0.4614 1.1043

Residual Prediction Deviation (RPD) 4.7211 3.7290 3.4210 3.3387 1.3631

Range Error Ratio (RER) 14.114 11.148 10.227 9.9813 4.075

Ratio of Performance to Inter-Quartile
distance (RPIQ) 5.7935 4.576 4.198 4.097 1.6727

Bias factor (Bf) 0.9973 1.0005 1.0015 0.9605 0.9349

Accuracy factor (Af) 1.041 1.055 1.056 1.0775 1.1843

Cohen’s d effect size −0.002 −0.003 −0.008 0.1026 0.3869

Standardized means difference (theta) −0.002 −0.003 −0.008 0.1032 0.3211

R-squared (R2) index 0.948 0.9178 0.9024 0.897 0.385

Results in this case, verify again the superiority of the proposed models over PLSR
scheme. The obtained RPD and R-squared results for the PLSR model shows how inferior
is such a model which currently is used extensively in the area of food microbiology. On
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the other hand, the proposed CAGFINN clearly outperforms both MLP and SVM schemes,
which are very popular in the regression analysis, although their overall performance can
be considered as acceptable for modelling a nonlinear process. In fact, RPD values for MLP
and SVM in this second experiment were above 3, while also the equivalent R-squared
metric is acceptable for both models.

5.3. Ensemble System

In general, ensembling is a technique of combining two or more algorithms/models
of similar or dissimilar types, called base learners. The main idea is to make a more
robust system which incorporates the predictions from all the base learners [46]. A single
algorithm/model may not be able to provide the perfect prediction for a given dataset.
Each machine learning algorithm has its own limitations and thus producing a model with
high accuracy is challenging. However, a simple way to implement such combination of
models is by aggregating their outputs. Such aggregation can be realized by using different
techniques, sometimes referred to as meta-algorithms.

Although the “mean” feature had been considered as the main information provider
for the case of multispectral imaging analysis [21], in our specific research case study, both
“mean” and “sd” individual FOS features have been analyzed separately. For each case, an
advanced NF model has been employed to predict the required TVC in beef samples.

Even though a satisfactory TVC prediction was achieved for each case, the question
is how we can combine these individual TVC predictions to obtain an even better result,
if possible. The first “combination” approach is the well-known averaging scheme. It is
defined by taking the average of predictions from models in case of regression problem.
This approach was applied to CAGFINN’s predictions for both “mean” and “sd” cases
and results are summarized at Tables 9 and 10. Obviously, an improvement in overall TVC
prediction has been achieved, compared to the individual “mean” TVC prediction. For
example, the RPD, SEP or the R-squared values reveal a clear robustness of the averaging
final model for TVC prediction, while Bf is almost perfect.

Table 9. Performance of various ensemble schemes for TVC (LOOCV case).

Statistical Index Ensemble (LOOCV) Aver PLSR Non-Reg

Root mean squared error (RMSE) 0.2220 0.1980 0.1770

Mean absolute percentage error (MAPE %) 2.8322 2.3802 2.2914

Standard error of prediction (SEP %) 3.1682 2.8246 2.5250

APE 237.90 199.93 192.48

MAE 0.1704 0.1541 0.1423

Residual Prediction Deviation (RPD) 9.7833 10.973 12.275

Range Error Ratio (RER) 30.746 34.485 38.577

Ratio of Performance to Inter-Quartile distance (RPIQ) 18.453 20.698 23.153

Bias factor (Bf) 1.0061 1.0001 1.0005

Accuracy factor (Af) 1.0284 1.0241 1.0231

Cohen’s d effect size −0.012 0.0001 −0.0001

Standardized means difference (theta) −0.012 0.0001 −0.0001

R-squared (R2) index 0.9894 0.9916 0.9966
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Table 10. Performance of various ensemble schemes for TVC (reduced dataset case).

Statistical Index Ensemble (76/8) Aver PLSR Non-Reg

Root mean squared error (RMSE) 0.3048 0.2828 0.2552

Mean absolute percentage error (MAPE %) 3.7952 3.8070 3.6817

Standard error of prediction (SEP %) 4.0290 3.7381 3.3729

APE 30.361 30.455 29.453

MAE 0.2700 0.2556 0.2431

Residual Prediction Deviation (RPD) 6.0038 6.4710 7.1718

Range Error Ratio (RER) 17.948 19.3457 21.4407

Ratio of Performance to Inter-Quartile distance (RPIQ) 7.3675 7.9409 8.8008

Bias factor (Bf) 0.9859 0.9819 0.9739

Accuracy factor (Af) 1.0391 1.0394 1.0384

Cohen’s d effect size 0.0425 0.0519 0.0888

Standardized means difference (theta) 0.0405 0.0498 0.0847

R-squared (R2) index 0.9683 0.9727 0.9778

However, the main aim in this section is the application of a stacking ensemble scheme
to this specific problem. Stacking is another ensemble scheme which involves training
of a new learning algorithm/model to combine the predictions of several base learners.
First, the base learners are trained using the available training data and then a combiner
or meta-algorithm/model, called the super learner, is trained to make a final prediction
based on the predictions of the base learners [47]. In contrast to bagging and boosting
ensemble schemes, stacking is designed to “combine” a diverse group of strong learners. In
our case, the two CAGFINN models (“mean” and “sd” case) were used for TVC prediction
were used as base learners. This metamodel has been trained using the TVC (training)
predictions made by base models, rather than the data used to train the base models. These
predictions along with the desired TVC outputs, provide the input and output pairs of the
training dataset used to train the metamodel.

In this paper, two algorithms were used as potential “metamodels”, the PLSR and a
nonlinear regression using the nonlinear iterative partial least squares (NIPALS) algorithm.
All ensemble schemes were developed using XLSTAT v.2019.2 software. For the case of
nonlinear “metamodel”, the following fourth order model being constructed.

Y = 1.37− 51.38 ∗ Xmean + 50.65 ∗ Xsd + 17.71 ∗ (Xmean)
2 − 16.98 ∗ (Xsd)

2

−2.87 ∗ (Xmean)
3 + 2.73 ∗ (Xsd)

3 + 0.22 ∗ (Xmean)
4 − 0.21 ∗ (Xsd)

4

Related results are shown in Tables 9 and 10. The scatter plot for all ensemble schemes
in the LOOCV case is illustrated in Figure 12, and shows a very good distribution around
the line of equity (y = x), with the vast majority of the data included within the±0.5 log area.
The performance of the proposed nonlinear metamodel is superior compared to the one
obtained via the PLSR metamodel. Evaluation metrics for both PLSR and nonregression
models, shown at Tables 9 and 10, reveal a clear advantage over the standard averaging
combination. Looking at Figure 12, the majority of cases in nonlinear scheme are closer to
the line of equity, while a few cases from averaging and RLSR schemes are close to border
lines or even outside. Similarly, for the reduced dataset simulation case, the equivalent
scatter plot is shown at Figure 13. Results also in this case verify the validity of the
hypothesis of using a metamodel scheme to predict TVC in beef samples.
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Although, in this specific case study, only two base models have been used and thus
the associated complexity is not considered as too high, it was interesting to investigate the
performance of a metamodel that develops a nonlinear mapping from the predictions of
bottom layer models to the outcome.

6. Conclusions

In conclusion, this simulation study demonstrated the effectiveness of the proposed
machine learning based framework that could be considered as an alternative technique
for accurate prediction of TVC of microorganisms in meat samples. The first part of
this framework includes the application of a number of FS methods which select specific
wavelengths and a simple fusion scheme that eventually choose the most important of
them. As two different sources of information (“mean” and “sd”) are extracted from
multispectral images, the second part included the concept of an ensemble stacking scheme,
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which utilized two advanced neurofuzzy (CAGFINN) regression models acting as base
models and one nonlinear regression algorithm acting as a metamodel. The performance of
CAGFINN models was evaluated successfully through a number of established metrics and
compared against algorithms which are currently utilized in the area of food microbiology,
like MLP, SVM and PLSR as well as an advanced wavelet neural network model. The
nonlinear metamodel in the proposed ensemble scheme provided a robust regression
performance, which eventually verified the effectiveness of the proposed framework.
Future work will concentrate in modifying CAGFINN’s architecture from a classic MISO
to MIMO configuration. Obviously, that also requires a related reform of the learning
algorithm to address such changes, especially to the issue of current TSK defuzzification
scheme. Such modification will be very useful in this specific application, as in addition
to TVC prediction, a MIMO model could also predict the status/class of the meat sample,
providing thus a more complete analysis towards the detection of meat spoilage.
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