
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Configuration Management of Distributed Systems over

Unreliable and Hostile Networks

Karvinen, Tero

This is a PhD thesis awarded by the University of Westminster.

© Mr Tero Karvinen, 2024.

https://doi.org/10.34737/w7vvz

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

https://doi.org/10.34737/w7vvz

Configuration Management of Distributed Systems over
Unreliable and Hostile Networks

Tero Karvinen

A thesis submitted in partial fulfilment of the requirements of the University of
Westminster for the degree of Doctor of Philosophy

November 2023

Abstract

Economic incentives of large criminal profits and the threat of legal consequences
have pushed criminals to continuously improve their malware, especially com-
mand and control channels. This thesis applied concepts from successful
malware command and control to explore the survivability and resilience of
benign configuration management systems.

This work expands on existing stage models of malware life cycle to contribute a
new model for identifying malware concepts applicable to benign configuration
management. The Hidden Master architecture is a contribution to master-agent
network communication. In the Hidden Master architecture, communication
between master and agent is asynchronous and can operate trough intermediate
nodes. This protects the master secret key, which gives full control of all
computers participating in configuration management. Multiple improvements
to idempotent configuration were proposed, including the definition of the
minimal base resource dependency model, simplified resource revalidation
and the use of imperative general purpose language for defining idempotent
configuration.

Following the constructive research approach, the improvements to configura-
tion management were designed into two prototypes. This allowed validation
in laboratory testing, in two case studies and in expert interviews. In labo-
ratory testing, the Hidden Master prototype was more resilient than leading
configuration management tools in high load and low memory conditions, and
against packet loss and corruption. Only the research prototype was adaptable
to a network without stable topology due to the asynchronous nature of the
Hidden Master architecture.

The main case study used the research prototype in a complex environment
to deploy a multi-room, authenticated audiovisual system for a client of an
organization deploying the configuration. The case studies indicated that
imperative general purpose language can be used for idempotent configuration
in real life, for defining new configurations in unexpected situations using the
base resources, and abstracting those using standard language features; and
that such a system seems easy to learn.

Potential business benefits were identified and evaluated using individual
semistructured expert interviews. Respondents agreed that the models and the
Hidden Master architecture could reduce costs and risks, improve developer
productivity and allow faster time-to-market. Protection of master secret keys
and the reduced need for incident response were seen as key drivers for improved
security. Low-cost geographic scaling and leveraging file serving capabilities of
commodity servers were seen to improve scaling and resiliency. Respondents
identified jurisdictional legal limitations to encryption and requirements for
cloud operator auditing as factors potentially limiting the full use of some
concepts.

Keywords: configuration management, malware, resilience, command and
control, asynchronous

ii

Contents

Abstract . ii
Contents . vii
List of Tables . ix
List of Figures . x
Accompanying Material . xi
Acknowledgments . xii
Declaration . xiii
List of Publications . xiv
Abbreviations . xv

1 Introduction 1
1.1 Aim and Objectives . 5
1.2 Research Questions . 7

2 Literature Review and Related Work 9
2.1 Configuration Management . 9

2.1.1 Definition and Qualities of Configuration Management
Systems . 9

2.1.2 Evolution of Software Configuration Management 10
2.1.3 Existing Literature Reviews 15
2.1.4 Related Work on Protecting and Scaling the Master . . . 18
2.1.5 Network Architectures of Configuration Management Tools 35
2.1.6 Configuration Management System as a Target 39
2.1.7 Leading Configuration Management Tools 41

2.2 Malware . 48
2.2.1 Malware Command and Control Networks 48
2.2.2 Evolution of Malware Command and Control 49

2.3 Conceptualizing Attacks . 51
2.3.1 Survivability . 51
2.3.2 Attack Tree . 52
2.3.3 Stage Models for Attacking Computer Systems 53
2.3.4 MITRE ATT&CK . 54
2.3.5 Comparing Cyber Kill Chain Model with MITRE ATT&CK 56

2.4 Conclusion . 57

3 Methodology 60
3.1 Research Philosophy . 60
3.2 Rationale . 61
3.3 Research Design . 63

iii

3.4 Design and Construction of the Prototype 63
3.5 Technical Evaluation with Simulation and Emulation 64

3.5.1 Tests Performed in Emulated and Simulated Environments 65
3.5.2 Requirements for the Simulation Environment 66

3.6 Field Evaluation in Case Studies 68
3.6.1 Smaller Case Study . 69
3.6.2 Deployed to Production System by Company X 70

3.7 Expert Interviews . 72
3.7.1 Ethics in the Interviews 75

3.8 Conclusion . 76

4 Designing Hidden Master Architecture 77
4.1 A Novel Phase Based Model for Comparing Malware and CM . 77
4.2 Design Goals . 84
4.3 Protecting the Master’s Private Key in the Hidden Master Ar-

chitecture . 85
4.4 Compromizing Configuration Management Attack Tree 88
4.5 Concept of Use . 91
4.6 Tradeoff analysis . 92

4.6.1 Timely vs Timeless . 92
4.6.2 Encryption Method . 93
4.6.3 Back Channel . 94
4.6.4 Back Channel in the Hidden Master Architecture 95

4.7 Layer Model of the Hidden Master Architecture 96
4.7.1 Components . 98
4.7.2 Interfaces . 99

4.8 Key Management . 101
4.9 Initial installation . 102

4.9.1 Campaign keys . 104
4.10 Pseudo Code of Master and Agent Operation 108
4.11 Sequence of Messages in Transfer Layer 109
4.12 Defining Configuration . 109

4.12.1 Size and Complexity of Some DSLs 112
4.12.2 Use of DSL Functions in Case Configuration 112
4.12.3 Conftero Definition Language 115

4.13 Implementing the Main Prototype Conftero 122
4.14 Novel Concepts in the Design 123
4.15 Conclusion . 124

5 Findings and Analysis 126
5.1 Empirical Validation in Emulated and Simulated Environment . 126

iv

5.1.1 Proof of Concept . 127
5.1.2 Functional Prototype . 129
5.1.3 Golden Path . 129
5.1.4 Load Test . 136

5.2 Effect of Network Faults . 142
5.2.1 Virtual environment with fault injection 142
5.2.2 Effects of Adverse Network Conditions to Salt 146
5.2.3 Effects of Adverse Network Conditions to wget (HTTP) . 148
5.2.4 Effects of Adverse Network Conditions to SSH 150
5.2.5 Comparing the Results of Adverse Network Conditions . 152
5.2.6 Comparing Memory Consumption and Resiliency Under

Load . 158
5.2.7 P2P Operation in Shattered Network 164
5.2.8 Air Gapped Operation 169

5.3 Case Studies . 171
5.3.1 Conftero in Computer Exercise Evaluation 171
5.3.2 Conftero Deployed to Company X Production Environment174

5.4 Expert Interviews . 183
5.4.1 Thematic Analysis of the Interviews 185
5.4.2 Theme one: Administrative 187
5.4.3 Theme two: External factors 191
5.4.4 Theme three: Technology 192
5.4.5 Likert Scale Questions 196

6 Conclusion 201
6.1 Hidden Master Architecture . 201
6.2 Improvements for Idempotent IaC 203
6.3 Design and Prototype . 206
6.4 Laboratory Testing . 209
6.5 Case Studies . 212
6.6 Expert Interviews . 214
6.7 Future Research . 216

Appendices 218
Appendix: Hidden Master Architecture Encryption Demonstration . 218

README . 218
Agent Catalog . 218
Makefile . 218
genkey.sh . 220

Appendix: Estimating the Size of Some Domain Specific Languages . 221
Appendix: Questionnaire for Semi-Structured Interview 222

v

Demonstration . 222
Hidden Master Architecture - The hidden master keeps the

master private keys out of Internet visible servers 223
Idempotent use of imperative general purpose language and

improved resource models 223
Summary . 224
Misc . 224

Appendix: Correlation Matrix for Likert Scale Interview Questions . 224

References 226

vi

List of Tables

1 Objectives and research questions 6
2 Components of Steiner and Geer Jr (1988) configuration man-

agement system . 12
3 Unique features of CFEngine according to Burgess (1998) . . . 15
4 Search used by Hintsch, Görling and Turowski (2016) in their

literature review. 17
5 Inclusion (I) and exclusion (E) criteria. 19
6 Search results from literature databases. 20
7 Included publications . 21
8 Research gaps in configuration management systems relevant to

this work . 33
9 References to configuration management tools in new peer re-

viewed texts . 44
10 CM tools with at least 10 references according to literature

review by Hintsch, Görling and Turowski (2016) 45
11 Search volumes of configuration management systems 45
12 Network architectures in leading CMS 46
13 Protection against compromised agent in leading configuration

management systems . 48
14 Cyber Kill Chain (Hutchins, Cloppert and Amin, 2011) 53
15 ATT&CK tactics and examples (Strom et al., 2017) 55
16 Mapping Cyber Kill Chain to MITRE ATT&CK (MA) & PRE-

ATT&CK (MPA) model tactics 57
17 Research questions of interest in “Methodology” chapter. . . . 60
18 Mapping empirical research questions to methods 63
19 Requirements for Simulation Environment 66
20 Tools for different experiments 68
21 Research questions answered in the Design chapter 77
22 Examples of attack stage model techniques with configuration

management counterpart. 79
23 Stage model for configuration management operation 81
24 Design goals . 84
25 Challenges of different use cases and example networks. 92
26 Back channel security requirements. 95
27 Responsibilities of layers . 97
28 Qualities of layers . 97
29 Subsystems . 98
30 Matrix of subsystems and components 99

vii

31 Flow from master to slave. 99
32 Component data and library requirements 100
33 Use of keys in the Hidden Master Architecture downstream flow 101
34 Key management plan for downstream flow 102
35 Qualities of some domain specific languages 112
36 Most used functions (F) and control structures (C) and internally

defined (I) in Mozilla Release Engineering Puppet manifests. . 113
37 USGCB use of commands separated to functions (F), internal

(I), unrelated (U) and control structures (C). 114
38 Possible benefits and challenges of embedding existing language 115
39 Key functions for configuration management 116
40 Comparing source line count when defining resource relationships

for package-file-service . 120
41 Comparing Conftero configuration definition to those common

in industry and research . 121
42 Research answered in “Findings and Analysis” chapter. 126
43 Pseudocode of PoC. M master, S slave, C courier. 127
44 Host attributes. 130
45 Testing environment . 131
46 Commands to enumerate testing environment 131
47 Results of the Golden Path test 135
48 Courier setup for load test . 137
49 Network faults . 145
50 Effects of packet loss to Salt . 147
51 Effects of packet loss to Wget 149
52 Worst packet loss conditions tolerated by each tool 154
53 Salt memory consumption and resiliency under load 161
54 Salt load and memory testing environment 161
55 Conftero courier/drop memory consumption and resiliency under

load. Worst momentary values in parenthesis. 163
56 Qualities of master and agents 172
57 Distribution of agent operating systems 172
58 Requirements for Deployment 177
59 Findings in Company X case 183
60 Initial theme map . 185
61 Final theme map . 186
62 Recognized business benefits of the Hidden Master architecture 197
63 Recognized business benefits of idempotent general purpose

language and simplified resource models 198
64 Matrix of subsystems and components 207

viii

List of Figures

1 Pull architecture . 35
2 Push architecture . 36
3 Hidden master architecture network structure 86
4 Initial key exchange sequence diagram 103
5 Key exchange for campaign keys 105
6 Encrypted message transfer in the Hidden Master Transfer layer 110
7 Dependencies in configuration management functions 117
8 Golden path network structure 130
9 Multi-courier architecture makes downstream transfer embar-

rassingly parallel . 141
10 Emulation environment with fault injection 143
11 Effects of packet loss to Salt . 148
12 Effects of packet loss to wget . 150
13 Effects of packet loss to short SSH commands 151
14 Effects of Packet Loss to Multiple Tools 152
15 Maximum loss tolerated by each tool for 1 MB transfer 154
16 Effects of packet corruption to multiple tools 156
17 Effects of packet duplication to multiple tools 157
18 Effect of latency to multiple tools 157
19 Amount of available RAM memory in sample output of ‘free -h’ 160
20 P2P transfer with moving agent 166
21 Downstream data flow in a simple Hidden Master architecture

network . 202
22 Dependencies in configuration management functions 205

ix

Accompanying Material

The source code is included for transparency and repeatability. Reading or
viewing the source code is not required for understanding this thesis.

The advanced prototype implements the contributed improvements to configu-
ration management. They include the Hidden Master architecture, simplified
resource revalidation, the use of imperative general purpose language for idem-
potent configuration and base resource dependency model. The prototype was
used in laboratory testing, both case studies and in the demonstration in expert
interviews. Source code is over four thousand lines of Go language and requires
practical programming skills to understand.

Advanced prototype source code https://TeroKarvinen.com/conftero

The source code will be published under Free license when this thesis is published.
Before that, the code is available on request for internal use.

x

Acknowledgments

I would like to thank the people who helped me on my PhD journey.

• Shuliang Li, University of Westminster

• Fefie Dotsika, University of Westminster

• Farjam Eshraghian, University of Westminster

• Nathan Clarke, University of Plymouth

• Kimmo Karvinen, Core Factory

• Ville Valtokari, Core Factory

• Ilari Ali-Vehmas, Core Factory

• Lasse West, Aalto University

• Minna Kivihalme, Haaga-Helia UAS

• Taina Lintilä, Haaga-Helia UAS

• Antonius Camara, Haaga-Helia UAS

• Salla Huttunen, Haaga-Helia UAS

• Mikko Vainio, Elisa

• Mika Rautio, Poplatek

• Juuso Heljaste, CGI

• Samuli Vaittinen, NordCloud

• Arttu Uskali, Upcloud

• Niklas Särökaari, KONE

• Will Sillitoe, University of Essex

• My family

xi

Declaration

I declare that all material contained in this thesis is my own work.

Tero Karvinen

xii

List of Publications

This dissertation contains material from one paper. The rights have been
granted by the publisher to use the work as a part of this thesis.

Karvinen, T. and Li, S., 2017, April. Investigating survivability of configu-
ration management tools in unreliable and hostile networks. In Information
Management (ICIM), 2017 3rd International Conference on (pp. 327-331).
IEEE.

xiii

Abbreviations

AI: artificial intelligence

AP: access point

API: application programming interface

APT: advanced persistent threat

apt: advanced packaging tool

AV: antivirus; audio visual

AWS: Amazon Web Services

bit: a zero or one.

B: byte, eight bits.

BSD: Berkeley Software Distribution

CA: certificate authority

CAPEC: Common Attack Pattern Enumeration and Classification

CC: command and control

CD: continuous delivery

CDN: content delivery network

CI: continous integration

CM: configuration management

CMS: Configuration management system

DDOS: distributed denial of service

DGA: domain generation algorithm

DevOps: developer operations

DNS: domain name system

DOS: denial of service

DSC: PowerShell Desired State Configuration

DSL: domain specific language

EDR: endpoint detection and response

FSF: Free Software Foundation

FTP: file transfer protocol

xiv

GB: gigabyte, 1e9 bytes

GDPR: general data protection regulation (of the European Union)

gcc: GNU Compiler Collection

GNU: "GNU is not UNIX!" (a recursive acronym)

GPL: General Purpose Language, GNU General Purpose License

HM: hidden master

HSM: hardware security module

HTTP: http: hypertext transfer protocol

HTTPS: https: hypertext transfer protocol secure

IaC: infrastructure as code

ICMP: Internet Control Message Protocol

IDE: integrated development environment

IDS: intrusion detection system

IETF: Internet Engineering Task Force

IO: Input-Output

IoT: Internet of things

IP: Internet protocol

IPS: intrusion prevention system

ISP: Internet service provider

JSON: JavaScript object notation

kB: kilobyte, 1 000 bytes

LAN: local area network

LISA: Large Installation System Administration Conference

MA: MITRE ATT&CK

MAC: Mandatory Access Control

MB: megabyte, 1e6 bytes

ML: Machine learning

MPA: MITRE PRE-ATT&CK

ms: millisecond

xv

NAT: Network address translation

NDA: Non-disclosure agreement

OBJ: objective

OODA: Observe, orient, decide, act

OOM: out of memory

OS: operating system

P2P: peer to peer

PHP: " PHP: Hypertext Preprocessor" (a recursive acronym)

PII: personally identifiable information

PoC: proof of concept

PR: public relations

RAM: random access memory

RFC: Request for Comments

RQ: research question

RTT: round trip time

SCADA: supervisory control and data acquisition

SDN: software defined networking

SOC: security operations center

SSH: secure shell

TCP/IP: Transmission Control Protocol / Internet Protocol

TOFU: trust on first use

UPS: uninterruptible power supply

URL: universal resource locator

USGCB: United States Government Configuration Baseline

VCS: version control system

VM: virtual machine

VPN: virtual private network

WLAN: wireless local area network

YAML: yet another markup language

xvi

XML: Extensible Markup Language

xvii

1 Introduction

Configuration management (CM) is an approach to automate the control of
numerous computers. CM can extend life, reduce cost, reduce risk and even
correct defects (Perera, 2016). Configuration management is used by many
well known organizations, and both academic and industry intrest in it has
grown (Rahman, Mahdavi-Hezaveh and Williams, 2019). Because configuration
management system has full access to all controlled computers, an error can
compromize the entire system (Hastings and Kazanciyan, 2016). This makes
configuration management system a valuable target for attackers.

During the writing of this work, attacks on Solarwinds (Marelli, 2022) and Salt
Stack (F-Secure, 2020) compromised thousands of computers in different orga-
nizations. Despite its value as a target, there is little research on the security of
configuration management systems (Rahman, Mahdavi-Hezaveh and Williams,
2019; Xu and Russello, 2022), encryption and network performance (Xu and
Russello, 2022). On the other hand, criminal malware has to solve similar
security and reliability problems in even more hostile conditions. Malware is
evolving fast (Silva et al., 2013; Lemay et al., 2018) and there is a growing
number of publications available on malware. Malware command and control
techniques to improve resiliency in unreliable and hostile networks could be
identified and applied to benign enterprise configuration management.

Research firm Gartner predicts that 70% of companies will use continuous
infrastructure automation by 2025 - a significant increase from less than 20%
in 2021 (Bhat et al., 2022). Configuration management is used by well known
organizations such as LinkedIn (CFEngine, 2016), Github, Netflix (Rahman,
Mahdavi-Hezaveh and Williams, 2019), Facebook (Tang et al., 2015), CERN
(Andrade et al., 2012) and parts of the US government (NIST, 2016).

Researchers have identified some areas of configuration management as can-
didates for future research, challenging or lacking in some aspect of research.
Considering this work, security and networking are the main areas of intrest.
Many authors encouraged more research on the security of configuration man-
agement systems (Marsa-Maestre et al., 2019; Rahman, Mahdavi-Hezaveh and
Williams, 2019; Kumara et al., 2021; Rajapakse et al., 2022; Rong et al., 2022;
Xu and Russello, 2022; Ullah et al., 2023). In configuration management of
IoT (Internet of Things), Silva et al. (2019) found security, scalability and
reliability to be an open challenges. Kumara et al. (2021) specifically point out
secrets management and Xu and Russello (2022) call for research on integrating
encryption mechanisms. Network performance has been pointed out by Xu and
Russello (2022) for generic CM and by Silva et al. (2019) for IoT. Different

1

aspects of domain specific languages (DSL) are seen as requiring more research
by Xu and Russello (2022) (policy languages, intent translation) and Delaet,
Joosen and Van Brabant (2010) (better abstractions, becoming more declar-
ative). In their work to improve Puppet DSL, Fu et al. (2017) critize that
DLSs have “evolved in an ad hoc fashion, resulting in a design with numerous
features, some of which are complex, hard to understand, and difficult to use
correctly”. This work will propose improvements in multiple areas pointed out
as gaps by other authors in these areas.

Based on published systematic literature reviews, the field of configuration
management research is not yet very large. In their gray literature review,
Kumara et al. (2021) claim that little academic literature on infrastructure as
code (IaC) exists. In their systematic mapping study, Rahman (et al. 2019)
identified just 31 IaC publications matching their criteria, and most of them
focused on tools and frameworks. Hintsch (et al. 2016) found 159 publications
in their systematic literature review, of which only 36 were journal articles.
Both reviews found the number of IaC publications growing.

Malware offers practical examples of solving challenges related to security,
networking and scale. Criminal malware evolves quickly due to incentives and
pressures related to cyber criminal business. Already in 2007 criminals using
Zeus botnet took control of 3.6 million computers to steal money from an
e-bank, and in 2008 Conficker reached the size of 10.5 million nodes (Silva et al.,
2013). Nation state actors turn to cyber espionage, operating in environments
defended by equally powerful defenders (Lemay et al., 2018). Criminal and
other offensive actors continuously improve their methods. The fast evolution
of command and control channels is pushed by an arms race with defenders
(Anderson et al., 2021). Criminals need the ability to control their botnets
while hiding their identity, avoiding detection and being able to recover from
serious damage done to their infrastructure (Huang, Siegel and Madnick, 2018).

Normal, legal enterprises need to control their own computers. Configuration
management systems have risen as an answer to the challenges of growing
sizes of computer networks, heterogeneous networks and stricter requirements
for auditability, controllability and risk management (Hintsch, Görling and
Turowski, 2016). Heterogenity and multivendor environments are common in
all parts of networks. Heterogenity is common in networking hardware (Xu
and Russello, 2022), Internet of Things (IoT) devices (Silva et al., 2019) and
common computers, such as laptops, servers and computers virtualized to cloud
(Delaet, Joosen and Van Brabant, 2010).

Configuration management systems allow operators to control large number of
computers over the network. One computer, the master, delivers instructions

2

to controlled nodes called slaves, agents or minions. Agent nodes blindly apply
these instructions. A large system can have thousands of nodes configured by a
single master (Fu et al., 2017). This makes the master node a highly valuable
target for criminals and other threat actors.

When deciding on security investment, managers should evaluate vulnerabilities
and potential losses (Huang, Hu and Behara, 2008). Compromising the master
would compromise all of the agent computers and all data stored in those
computers. This makes the master one of the most valuable computers among
those managed by the configuration management system, and the secret key of
the master is one of the most valuable files in this network. Lateral movement
- access to new parts of network - is a key part of successful targeted attack
(Noureddine et al., 2016). Security of configuration management has been
identified as an open challenge and top priority in IoT (Silva et al., 2019).

Direct connection between master and agent is implied or stated by multiple
authors. In their survey on system configuration tools Delaet, Joosen and Van
Brabant (2010) categorize all configuration management tools as either agents
phoning home to master (pull) or master contacting the agents (push).

Choosing between push and pull architectures is a trade off that must consider
security, tool support and the type of nodes to be configured. When using push
architecture, the master node is the server, so it must reside in a known address
and open a listening port visible to agents. For configuring moving nodes, such
as laptops and IoT devices, it would often have to be visible to the Internet to
achieve this. In pull architecture, the server is placed on agents. While allowing
better protection for master, this makes it impossible to control agents that
are in unknown addresses or unreachable parts of networks. Having a highly
valuable computer constantly visible to attackers introduces a dangerous time
gap to incident response. A gap in incident response potentially increases the
costs and damage caused by an attacker (Noureddine et al., 2016).

Modern configuration management defines the desired state as plain text.
Defining the desired state of the system allows configuration management
system to control computers from an arbitrary start state (Hummer et al., 2013;
Fu et al., 2017). Thus, applying the configuration multiple times results in the
same result, or a result nearer to the desired state. This quality is known as
idempotence. Writing the code as plain text is termed infrastructure as code
(IaC). IaC allows the use of many of the same techniques used by programmers,
such as version control systems (Rahman, Mahdavi-Hezaveh and Williams,
2019).

Domain specific languages are widely used in configuration management. Config-

3

uration languages are significantly different from general purpose programming
languages (Anderson and Cheney, 2012).

A more competitive environment for software and process development requires
a shorter time span of features from the accepted idea to the production
code delivered to customers - without sacrificing quality. This has led to
DevOps movement, a trend to tightly integrate software development (Dev) and
operations (Ops, keeping the systems running in production). DevOps practices
combine configuration management systems, automated testing, continuous
integration and even the continuous delivery of automatically compiled software
to production systems and end users. (Brunnert et al., 2015)

Criminals and spies attempt to maintain operational security, and keep their
methods secret. Nevertheless, information about tactics, tools and procedures
of botnet operators is widely available from industry sources and academic
literature (Lemay et al., 2018).

Configuration management systems are a key component to keep develop-
ment, testing and production environments highly similar in relevant aspects
while allowing for obvious differences between development workstations and
production servers.

The proliferation of cloud systems has made it possible to build systems of
multiple servers quickly and with agility. Scaling to demand makes it possible
to only buy capacity that is needed to serve paying customers. To leverage
this agility, automatic systems are needed to provision new systems, install
necessary software and configure it to meet the specific business need of each
case. (Hintsch, Görling and Turowski, 2016) Effective orchestration of resources
is needed to meet acceptable quality levels (Tomarchio, Calcaterra and Di
Modica, 2020).

For example, a company might have Windows workstations, Linux VPS and
Android cell phones. Each operating system could be present in multiple
versions. These heterogeneous systems have raised the need to abstract away
the differences between operating systems, versions and platforms. Popular
CMS:es have their own resource abstraction layers to deal with this challenge.

As computer systems store private data, business information and automate
real life processes, the information stored in the systems must be protected.
For organizations with a more serious threat environment, protecting against
advanced persistent threats (APT) eavesdropping on communications with the
help of computers is a risk. Configuration management systems protect against
configuration mistakes that would be inevitable if humans were to manually
configure large networks. Configuration management tools can automatically

4

check for conformance and automatically fix and report anomalies. For example,
the US Government publishes its own security baseline for Linux and Windows
systems (NIST, 2016).

1.1 Aim and Objectives

The aim of this thesis is to explore the survivability of configuration management
systems.

This is done by identifying and adapting methods successfully used by the
command and control (CC) systems of criminal malware.

In order to achieve the main aim, the literature for the communication architec-
tures used in both criminal malware and benign enterprise CMS will be reviewed.
As malware works in more heterogeneous and hostile environments than regular
system administration, it could provide some ideas and architectures to be
applied in configuration management systems. I will build a conceptual model
for comparing and analyzing these tools. In the empirical part, I will construct
a software prototype to experiment some of these technologies. I will evaluate
the construct both theoretically and in an unreliable, hostile simulated envi-
ronment. Finally, I will propose ways to improve configuration management
systems. The objectives of this thesis and their linking to research questions
are in table 1.

This work analyses and improves upon modern configuration management
systems that are idempotent and versionable (text based, infrastructure as
code). To be able to effectively find out how existing configuration management
systems work, the work concentrates on free software, i.e. open source CMS.

5

Table 1: Objectives and research questions

OBJ Objective Research question

OBJ1 Review the literature to identify
key malware techniques and key
configuration management tools
and techniques

Which malware resiliency
techniques are applicable to
benign configuration
management systems? (RQ2)

OJB2 Develop a stage model for
comparing malware and
configuration management
systems

How can existing stage models be
adapted for comparing malware
and configuration management
systems? (RQ1)

OJB3 Develop key concepts for novel
configuration management
system

How can defining idempotent
agent configuration be simplified?
(RQ3)

OJB4 Design an advanced research
prototype implementing the novel
concepts

How can these techniques and
concepts be implemented in a
functional prototype? (RQ4)

OJB5 Validate the concepts by testing
the prototype in laboratory
environment

Based on load simulation, faulty
network emulation and attack
tree analysis, how does the
resiliency of the configuration
management software prototype -
implementing some techniques
adapted from malware - compare
to a leading industry solution?
(RQ5)

OJB6 Validate the technical benefits
and potential business benefits in
two case studies

What utility do the models and
the research prototype provide
when run in a field environment
with business requirements?
(RQ6)

OJB7 Identify and validate the
potential business benefits in
expert interviews

What potential do business
benefits experts see for the
models and the research
prototype? (RQ7)

6

1.2 Research Questions

To answer RQ1, malware and penetration testing stage models were reviewed in
the literature. An adapted model for comparing malware CC to configuration
management was then built. Armed with this model, a review of successful mal-
ware campaigns and techniques and evolution was analyzed to select promising
resiliency techniques for adapting to CM, thus answering RQ2. As the purpose
of CM agents is to configure the agent system, idempotent agent configuration
definitions were considered to answer RQ3.

In chapter “Designing Hidden Master Architecture”, a research prototype
implementing the features found in answers to RQ1, RQ2 and RQ3 was designed
and built. First, a trivial prototype implementing the hidden master architecture
for network communication was built and briefly tested. Next, a full and useful
prototype implementing multiple resiliency techniques and a simplified system
idempotent configuration definition was created. This system had multiple
additional features to facilitate field testing in realistic environments, such as
dependency free static compilation, full command line interface, the capability
to upgrade agents over the wire, and single binary installation with built in
key installation. This provided the answer to RQ4.

Finally, in chapter “Evaluating and Validating the Hidden Master Architecture”,
the research prototype was validated using multiple methods. To see the
impact of the reduced attack surface, attack tree analysis was performed. Basic
functionality was tested using fully emulated computers and load testing was
done using simulated loads.

To compare and contrast research prototype to existing solutions, a network
emulating real world problems was created. This network allowed error condi-
tions to be generated, such as packet loss, jitter, latency and data corruption.
Multiple scenarios were used to test and evaluate the two research prototypes.
Further scenarios compared the main research prototype to a leading solution
in the industry. These tests provided answer to RQ5.

Case studies in realistic field contexts were used to validate the utility of the
solution and its ability to meet real life business requirements. First, a smaller
case was performed using a heterogeneous network of computers (n=23) running
multiple different (but similar) distributions, with each computer installed and
managed by a different administrator.

The main case study was being performed in the systems of a company that
controls and monitors Internet of Things (IoT) devices in its customers’ premises.
This case validated the utility of the concepts found in the literature research,
model development and implementation. These case studies provided the

7

answer to RQ6.

Expert interviews were conducted to identify the potential business benefits of
the proposed models and the research prototype. This was done to allow for
broader perspectives than would be possible in case studies. Expert interviews
provided an answer to RQ7.

Experts could consider possibilities that would be prohibitively expensive or
risky to perform as case studies. Deploying a configuration management tool
and possibly replacing an existing tool would be a large project for a company.
Considering that a configuration management tool harbors the most valuable
piece of data in the network that it controls, namely the secret keys of the
master, a tool widely deployed in production would have to be mature, of high
code quality and audited. This is further discussed in [chapter “Configuration
management system as a target”]. It is self evident that the first deployments of
a tool coded by a single person and never audited does not meet these criteria.
This challenge was overcome by limiting the risk, scope and cost case studies,
and answering the broader questions with expert interviews.

8

2 Literature Review and Related Work

2.1 Configuration Management

This chapter provides a review of configuration management systems, malware
and relevant models for conceptualizing cyber attacks. The emphasis with
configuration management systems and malware is on the network operation
of these technologies, but the activities of the payloads are also examined. The
literature review consists of three parts: configuration management, malware
and conceptualizing attacks.

Malware is evolving fast (Silva et al., 2013; Lemay et al., 2018). This could
be due to economic pressures in the criminal market. To understand the
evolutionary development of the tools, tactics and procedures in malware
versus configuration management systems, the literature review is ordered
chronologically.

This literature review completes objective 1 “Review the literature to identify
key malware techniques and key configuration management tools and tech-
niques” to answer research question 2 “Which malware resiliency techniques are
applicable to benign configuration management systems?”. The look on stage
models of cyber attacks forms the basis for developing a novel stage model
for comparing malware and configuration management systems in chapter 4
“Designing Hidden Master Architecture Prototype”.

2.1.1 Definition and Qualities of Configuration Management Sys-
tems

Configuration management systems (CMS) automate the definition and the
deployment of configurations to computer systems. This approach is usually
implied when talking about actual software configuration management tools.
Poat, Lauret and Betts (2015) compare “three configuration management tools,
Chef, Puppet, and CFEngine”. I will use this narrow definition when talking
about CMS. The CERN toolchain model (based on Google toolchain model),
defines multiple activities based on DevOps principles (Andrade et al., 2012).
In this model, my working definition best fits inside control and provisioning
activities.

Layman texts and CMS documentation sometimes use the concepts of CMS and
software configuration management interchangeably. Standards and academic
texts, such as Scott and Nisse (2001) and Tripp et al. (1998), use the concept
of software configuration management in a broader meaning that, on one hand,
it includes project organizations and management practices, but on the other

9

hand does not require the use of CM tools to deploy changes on the target
computers. Inside this broader definition, software configuration management
tools could be seen as an automated subcomponent of configuration control.
Perera (2016) takes this approach and uses the term “configuration deployment”
similarly to my working definition of CM tools.

CMS are a critical part of large computer installations. According to Perera
(2016), they can “extend life, reduce cost, reduce risk, and even correct defects”.

Modern configuration tools are versionable and idempotent. In practice, the
configuration manifests describing the target state of the network must be plain
text to take advantage of version control systems. This “Infrastructure as Code”
approach allows administrators to use software engineering methodology to
control their network (Sharma, Fragkoulis and Spinellis, 2016).

Idempotence means that an operation can be applied multiple times without
changing the result beyond the initial application. The concept of idempotence
originates from algebra. Some consider idempotency to be one of the defin-
ing qualities of modern configuration management systems (the other being
infrastructure as code). In practical CMS, idempotence is often achieved by
describing the target state of the system and letting a CMS tool make changes
only in case there are deviations from the target state.

Convergence is a concept similar to idempotence. Burgess, the author of
CFEngine, uses the concept of convergence in his “Computer Immunology”
paper (Burgess, 1998) to refer to a concept similar to idempotence.

To support a clear view of the network of computers, help operators manage
large networks and allow consistent orchestration between hosts, CMS should
be able to provide a single source of truth.

2.1.2 Evolution of Software Configuration Management

As pointed out in “Definition and Qualities of Configuration Management
Systems”, we examined configuration management systems using the definition
of controlling and configuring a whole network of computers. As more modern
technologies have been built on the ideas suggested earlier, I will review litera-
ture using a chronological approach, but sometimes point out the modern use
of some early ideas.

Some problems of modern configuration management have been known from the
early stages of computer science. As early as in the 1940s, von Neumann pointed
out challenges of increasing systemic complexity of large systems. His lectures
were later compiled as a book (Von Neumann and Burks, 1966) describing self
replicating machines, von Neumann universal constructors. He designed this

10

system and pointed out the challenges without the use of a computer. In this
work, he already describes concepts of survivability and systemic complexity:

“[Computing] machines are designed to stop when a single error
occurs. The fault must be located and corrected by the engineer,
and it is very difficult for him to localize a fault if there are several
of them. [. . .] The ability of a natural organism to survive in
spite of a high incidence of error (which our artificial automata are
incapable of) probably requires a very high flexibility and ability
of the automaton to watch itself and reorganize itself. And this
probably requires a very considerable autonomy of parts.”

The same concepts and even the same biology metaphor have been used in later
research. Burgess (1998) wrote about computer immunology, and later, in 1993,
wrote a popular configuration management tool, CFEngine, that implemented
some of these ideas. Burgess has since written many other widely cited papers
improving on these ideas.

In 1983, project Athena was started at the Massachusetts Institute of Tech-
nology (MIT) (Treese, 1988). Project Athena was a key step in configuration
management and created one of the biggest educational centrally managed
computer networks in 1990, serving more than 10 000 customers (Champine,
Geer and Ruh, 1990). In addition to more general learning from the project,
researchers also developed some very successful software: the Kerberos authen-
tication system and the X Window System (Arfman and Roden, 1992). Both
are still widely deployed solutions, with the X Window System being a part of
most Linux desktop distributions and Kerberos being a key part of Microsoft
Windows Active Directory authentication. In addition to project Athena’s
results, its approach of running systems with actual clients while developing
the systems and researching them is noteworthy.

Steiner and Geer Jr (1988) published the results of using their own configuration
management system in production. Even though they don not use the terms
and language of modern configuration management systems, it is evident from
their descriptions that the concepts are the same. This might also be the
reason why their work is sometimes missed or omitted. In their systematic
literature review, Hintsch, Görling and Turowski (2016) used names and terms
from modern configuration management, so the earliest publications they found
were conference papers from the 12th Large Installation System Administration
Conference (LISA) in 1998. Steiner (et al) published their work ten years
earlier.

The system described by Steiner and Geer Jr (1988) consists of a master

11

configuration database (SCM), a push based networking layer with a master
(DCM) and slave (Update Server) daemons, and finally a slave daemon for
applying the configuration (Update Server). In their work, some words, such
as “server”, hold multiple meanings, including master (master-slave), host
(including slaves) and daemon. An explanation of the terms they used are listed
in table 2. The structure of the network is similar to modern configuration
management systems used in the industry.

Their system shows many qualities of modern configuration management. They
describe the target state of computers, striving to be idempotent. Despite the
heterogeneity in their network, they control the system mostly from a single
database (SCM), following the concept of single source of truth. Surprisingly,
they do not write infrastructure as code, and it can be assumed that their
system is not versionable. Instead, the data was stored in a relational database
- RTI Ingres. The data took 13 megabytes of storage, which seems quite large.
In comparison, the US Government Security Baseline Puppet configuration for
Linux is about 0.7 MB (NIST, 2016). It is possible that the data in the database
contains some other information in addition to the idempotent configuration.
The reason for a lack of interest in plain text, infrastructure as code and
versionability could simply be the state of version control systems in the 1980s.

Table 2: Components of Steiner and Geer Jr (1988) con-
figuration management system

Component Abbr. Purpose

Service Management
System

SCM database of slave configuration

Data Control
Manager

DCM master daemon for distributing slave
configuration over network

Update Server - slave daemon, applies configuration on slave

Steiner and Geer Jr (1988) list challenges not yet addressed by their system:
providing TCP/IP network configuration for slaves and updating their software.
It is somewhat surprising that these challenges are easily solved by today’s
tools. Dynamic Host Configuration Protocol (DHCP) automatically configures
a computer that is connected to the network, providing the network specific
information such as IP address, network mask, default gateway and domain
name server address. Updating software in Athena 1988 required physical
staff to visit the computer. Nowadays typical Linux distributions (similar to
the Unix systems used in Athena) include advanced package managers that
largely automate software updates and can run completely unattended. Popular

12

distributions include these tools by default: Red Hat and CentOS use YUM
package manager (yum);and Debian and Ubuntu use Advanced Packaging Tool
(apt). On the other hand, user and site specific configuration is still today an
area of manual work and competing tools and paradigms.

In the same year, Harrison, Schaefer and Yoo (1988) described their solution
to the problem of compiling and deploying software for multiple platforms
with rtools. Even though their work contains many parts that are similar to a
configuration management system, the goal is fundamentally different. Rtools
is used for compiling and distributing application binaries, but does not really
tackle their configuration. Even though their system could have been a solution
filling the gap pointed out by Steiner and Geer Jr (1988), in hindsight it feels
complex for stock software. In the 2010s, binary software was compiled by
operating system distributors (in Linux) or by software vendors (Windows, OS
X). The end user organization was left the smaller responsibility of choosing
software to install and configuring it. However, the approach taken by rtools
(Harrison, Schaefer and Yoo, 1988) is an area of interest for software developed
internally.

DevOps is the idea of integrating software development (Dev) and operations
(Ops). The term DevOps was only coined in 2008 and has gained popularity in
recent years. On one hand, there are pressing business needs to keep adapting
to the market, which in practice means developing new features and deploying
them to production. On the other hand, operations need to keep the software
stable and running. Practical methods of DevOps are automating builds and
deployment (continuous integration, continuous deployment) supported by
infrastructure as code, automation through deep modeling of systems and
monitoring. (Brunnert et al., 2015)

Rtool provides automatic build and deployment (Harrison, Schaefer and Yoo,
1988), so it could be seen to include features of an early DevOps tool. However,
it does not provide many important support functions, such as automated
testing of the artifacts to be deployed or the features of modern configuration
management. Also, rtools is not integrated to a version control system, so it
provides no clear path to integrate the work of multiple programmers.

In -Hagemark (1990), Hagemark proposed a plain text language for configuring
“many computers as one computing site”. Even though Hagemark emphasizes
other aspects, it is noteworthy as the first article I found to propose plain
text language, which some modern articles consider a key aspect of modern
configuration management, “infrastructure as code”. This is also the first article
found using the concepts of push and pull architectures in the context of CM.
The plain text language has qualities of modern CM domain specific languages

13

(DSL). Hagemark’s language is declarative (idempotent) and abstracts lower
levels, similar to resource abstraction layers provided by modern CM tools.
He also puts the responsibility on computer vendors to provide hooks to their
systems. In 2012, Microsoft introduced PowerShell Desired State Configuration
(DSC) to provide idempotent hooks for CM (Coulter et al., 2017). To improve
scalability, the system should do “as much processing as possible on the client
side”. The same principle is used in some leading CM tools in 2018. SaltStack
calls this the “no freeloaders” principle. Hagemark touches the concept of
orchestration by providing examples where single change affects multiple hosts
on a network. Similar to a lot of research coming later, Hagemark’s interest
is concentrated on what happens in slaves, and he did not address network
security or authentication at all.

The developer of CFEngine, one of the first widely used configuration manage-
ment tools, published his “Computer Immunology” in 1998. Burgess (1998)
calls for more fault tolerant computer systems. He emphasized features common
to modern CM tools, especially idempotency. Concepts of single source of truth
and resource abstraction are mentioned briefly. The use of infrastructure as
code approach is evident from the fact that configuration is plain text. The
list of features he considered unique in CFEngine is in table 3. His concept of
fault tolerance is practically the same as survivability used in this thesis: the
ability to “cope with and recover from errors automatically”. He emphasizes
feedback mechanisms, and proposes CFEngine for this purpose. According
to Burgess (1998), one of the key difficulties for the “immune system” (CM
tool) is to know the history and current state of the system due to a lack of
existing software to do this. This idea is somewhat similar to the concept of
continuous monitoring in DevOps. Nowadays, there is a lot of software for
collecting detailed information about system state and operations, such as
auditd and host based intrusion detection software, but it remains to be seen if
such tools will be integrated with CM tools.

Burgess (1998) names convergence as key point of CFEngine and computer
immunology: “i.e., one describes what a system should look like, and when
the system has been brought to that state, CFEngine becomes inert.” His
definition of convergence is the same as idempotency in this thesis and many
modern CM tools. Even though Burgess has been an influential, cited author,
and his tool CFEngine has been a leading tool for some time, the features have
been mentioned in earlier papers. It seems that more unique was the bringing
together of these features to create a practical, general purpose tool that is in
use in multiple, unrelated organizations. It is worth noting that even though
modern tools use different names for the concepts, they are very similar to
those described by Burges and used in his CFEngine.

14

Table 3: Unique features of CFEngine according to
Burgess (1998)

Feature (Burges) Modern description

Non-procedural programming, descriptive language Declarative DSL
Convergence Idempotency
Abstract classes Resource abstraction
Help administrators communicate, prevent conflicting
work

Single source of truth

2.1.3 Existing Literature Reviews

Multiple literature reviews have been written on configuration management
systems. This look on existing literature reviews looks both the results and
their methods. In the results, especially key themes and identified gaps and
areas for future research are interesting. Methods of conducting the research
help guide the systematic search and review performed in this work.

Rajapakse et al. (2022) conducted a systematic literature review on 54 peer-
reviewed studies, then used thematic analysis on the extracted data. The focus
of the work was DevSecOps, so only parts of the review are of interest here.

They searched IEEE Xplore and ACM Digital Library for terms related to
DevSecOps, finding 283 non-duplicate papers. Their inclusion criteria was
being on topic, having English full text available, peer reviewed, not a review
and longer than five pages. Quality assessment was limited to a meeting two of
the three items on a yes-no scale: context and solution described; and design
or method suits the aims. Forward and backward snowballing found six more
papers.

Thematic analysis by Rajapakse et al. (2022) identified main themes of people,
practices, tools and infrastructure. Only some of the 21 challenges identified in
these categories are within the scope of this work.

Rajapakse et al. (2022) had multiple conclusions relevant to this thesis. New
technologies are needed to support rapid development cycles. Developers should
minimize tool-related security issues. More solutions should be empirically
validated. (Rajapakse et al., 2022)

Rahman, Mahdavi-Hezaveh and Williams (2019) performed a systematic map-
ping study to find gaps in IaC research. Inclusion criteria was peer-reviewed
IaC publications since 2000 in English, with full text available for download.
Quality of each article was evaluated using nine point quality questionnaire by

15

Kitchenham et al. (2012). Rahman, Mahdavi-Hezaveh and Williams (2019)
found 31 publications related to IaC. Most of the publications (52%) were
related to tools. As their conclusion, they “observe the need for research studies
that will study defects and security flaws for IaC”.

The search approach taken by Rahman, Mahdavi-Hezaveh and Williams (2019)
seemed laboursome. Their search criteria matched nearly ten thousand titles,
which they manually filtered to 31 IaC-related publications. This meant
manually discarding 1-31/9840 = 99.7 % of matches. Most articles were
manually discarded based on title only. For the systematic search performed in
this thesis, some of this work could be avoided by carefully developed search
criteria and by using automation.

Kumara et al. (2021) reviewed gray literature on infrastructure as code (IaC).
Gray literature review meant that they used Google to search for reports,
blog posts, white papers and official documentation of IaC languages (domain
specific languages). Their research questions were definition and classification of
IaC; and good and bad IaC practices. Their inclusion criteria included English
full text articles without paywall matching the focus of the study, published
within the last three years. Quality assessment included reputation of author
and organization.

Kumara et al. (2021) found 67 suitable sources. Writers found multiple areas
for more attention and further research. They found that “IaC patterns and
anti-patterns/smells” need further research; “software maintenance, evolution,
and security of IaC is in its infancy and deserves further attention”; and that
“several best practices exist, but they mostly concern the complexities inherent
within IaC”.

Wurster et al. (2020) compared DSLs of 56 configuration management tools.
They searched for open source IaC deployment technologies using ACM Digital
Library, IEEE Xplore and Google. Techniques were ranked using Google
search volumes, top rankings going to Puppet, Chef, Ansible and Kubernetes.
These techniques were categorized to general purpose, provider specific and
platform specific. Wurster et al. (2020) suggest their own model, “The essential
deployment metamodel”, for comparing DSLs. Wurster et al. (2020) don’t
identify gaps in research, but they suggest future research could use their model.

The work of Wurster et al. (2020) is part of the tool centric tradition in IaC
research. The scope of the problem and related tools is partially different from
this thesis. Both are looking at open source, general purpose IaC tools that
directly configure hosts. Wurster et al. (2020) also consider provider- and
platform specific tools; containerization and virtualization tools that only have

16

IaC as a minor part; and tools that only rent or provision machines but don’t
configure them. The need to use a model to map different concepts and words
to be able to compare DSLs seems to emphasize the extra conceptual burden
caused by these single purpose languages, a challenge tackled by this thesis in
chapter “Defining Configuration”.

Kosar, Bohra and Mernik (2016) conducted a systematic mapping study of
domain specific languages (DSL). They concluded that research on this area
has multiple gaps. Considering this dissertation, interesting gaps in DSL
research included lack of evaluation research; DSL integration with other
software engineering practices; DSL phases of domain analysis, validation and
maintenance; and lack of formal methods.

A systematic literature review on practical configuration management systems
has been conducted by Hintsch, Görling and Turowski (2016). They state
that their work is the first literature survey on CMS tools. They searched
twelve online databases with a list of tool names and the string “configuration
management”, a search similar to “puppet AND configuration management”.
The details of their search is in table 4. After filtering, they identified 159
relevant articles. Only 36 of those were journal articles. The conference with
most papers was LISA.

Table 4: Search used by Hintsch, Görling and Turowski
(2016) in their literature review.

Search Time frame Publication type

(BCFG2 OR Cfengine
OR Chef OR Puppet OR
LCFG OR “Bladelogic
Server Automation” OR
NSM OR “Tivoli System
Automation for
Multiplatforms” OR
SCCM OR “HP Server
Automation” OR
“Netomata Config
Generator”) AND
“configuration
management”

Before or on Feb
2015

journal OR conference paper
OR transactions

The earliest publications Hintsch, Görling and Turowski (2016) have found
are either from 1998 or 1994 (they present both years as the first in different

17

parts of the review). As we have seen, this is approximately ten years after
many key concepts of configuration management have been proposed and even
used in production by Steiner and Geer Jr (1988), Harrison, Schaefer and Yoo
(1988) and Hagemark (1990). Their review has also missed Burgess (1998),
even though they have included two of his newer publications. As early writers
have used different names for the concepts or simply have not given them
specific names, any approach relying only on searching a list of words is likely
similarly limited.

Hintsch, Görling and Turowski (2016) have inductively sorted these articles
into 17 categories. Security, the most interesting category for my research,
contains only 13 publications. Some of those publications look at various
aspects of security not related to protecting the network part of the system.
For example, Adesemowo and Thompson (2013) considers problems of IT asset
disposal; Anderson and Cheney (2012) examines lack of access control and the
semantics of configuration languages. The small number of relevant articles
in the literature review by Hintsch, Görling and Turowski (2016) show that
there could be a research gap in the survivable networking of configuration
management systems.

The references of the found articles (backward search) or articles referencing
them (forward search) were not considered by Hintsch, Görling and Turowski
(2016). Only articles mentioning one of the 11 CMS tools were considered,
which has left out articles not mentioning any tools by name. Also the list of
tools is taken from Delaet, Joosen and Van Brabant (2010), which only includes
tools that existed in 2010, and leaves out newer tools such as Salt. However,
one would assume that works on newer tools would at least mention older ones
in the full text.

2.1.4 Related Work on Protecting and Scaling the Master

Research builds on existing work, and tries to add to existing gaps. To this
end, both identified gaps and earlier research on the key areas of this work
was looked at. Identified gaps were collected from areas recognized for future
research or gaps by key articles based on manual literature review. To make
sure that manual search did not miss key articles, searches on key areas were
performed on four literature databases.

The questions for searches were created from key areas of this work, related to
the contributions built in the rest of this work. The focus was on protecting
master secrets and using asynchronous networking in configuration management.
Key contributions of this work, including the Hidden Master architecture, are
on these areas.

18

In their article on designing literature studies in software engineering,
Kuhrmann, Fernández and Daneva (2017) list library databases they consider
standard for systematic literature reviews and systematic mapping studies.
They recommend choosing those six databases or a subset of those for search.
For this review, four of those databases were chosen:

• IEEE Digital Library (Xplore)
• ACM Digital Library
• ScienceDirect (Elsevier)
• SpringerLink

For choosing publications for further review, exclusion and inclusion criteria
was created, using Kuhrmann, Fernández and Daneva (2017) as an inspiration.
Inclusion and exclusion criteria is in table 5. Articles were considered to be
on the main topic when the focus was on configuration management systems
as defined by this work. Articles based on alternate definitions such as release
engineering or very broad meanings including software project organizations and
management practices. Articles discussing only automated system provisioning
without configuring software inside them, just containerization or software
defined networking were excluded. Articles concentrated on non-configuration
management aspects of DevOps, such as continuous integration and continuous
delivery pipelines were excluded. To answer each specific question, inclusion
criteria 8 required that article relates to the specific topic of the question, such
as “protecting master secret keys”. When an article was ambigous on criteria 8,
the full text was consulted to make a decission.

Table 5: Inclusion (I) and exclusion (E) criteria.

No. Criterion

1 I: Title, keywords and abstract make explicit that paper is on the main
topic, configuration management

2 I: Presents contributions related to the main topic
3 I: in English
4 I: Peer reviewed (journal article or conference paper)
5 I: Full text available for download
7 E: Main topic of the article is release engineering, different and conflicting

definition of CM, software defined networks or non-CM aspect of DevOps.
7 E: Paper is already in result set
8 I: Title, keyword and abstract make it clear that the article is on the

specific question topic to question

Literature databases were searched for research articles on protecting master

19

secrets or using asynchronous networking in configuration management (the
hidden master architecture). The initial versions of the query were created
in parts, for example to include articles mentioning “infrastructure as code”
and “asynchronous”. These queries were quite broad. These initial queries were
combined to a single query using boolean logic.

Search query: (“infrastructure as code” OR “configuration management sys-
tem”) AND (“resilient” OR “resiliency” OR “public key” OR “hidden master”
OR “intermediate node” OR “async” OR asynchronous)

Search was adapted to each literature database to make use of special features
of each tool. For example, inclusion criteria (table 5) required that articles
are in English and full text is available for download, and these requirements
could be checked as search filters in most databases. The extra filters for each
database were

• IEEE Explore: “Subscribed Content”
• ScienceDirect: “Subscribed Journals”; Article type: “Review article” or

“Research article” (this limitation only excluded 2 articles); Subject areas:
“Computer Science” or “Engineering”.

• ACM Digital Library: Search was limited to words in abstract to make it
similar to search in other literacy databases. As ACM would search full
text by default, a search query optimized for metadata would produce
large number of false positives.

• SpringerLink: “English”. “Include Preview-Only content”: no. Discipline:
“Computer Science”. Discipline “Engineering” had three results, all of
which were irrelevant. To limit to peer reviewd publications (an inclusion
criteria), separate searches for “Article” (33 hits) and “Conference Paper”
(11 hits) were performed and the results combined.

Table 6: Search results from literature databases.

Database Hits

IEEE Explore 7
ScienceDirect 69
ACM Digital library 3
SpringerLink 44
— —
Total 123

table 6 shows the result of search in the database.

Search results from each literature database were evaluated against inclusion

20

and exclusion criteria (table 5). After this, 48 articles were identified for further
processing and their full text was downloaded. These articles covered a large
time span, from 1988 to 2023. Even though the number of articles could have
been reduced with a recency filter (e.g. last 5 years), this could have missed
important content. As discussed earlier in this literature review in “Evolution
of Software Configuration Management”, multiple inventions in this field are
both invented and deployed to field much earlier than often thought.

Second round of filtering concentrated on criteria 8, applicability of the item to
the specific topic, “protecting master secrets or using asynchronous networking
in configuration management”. For the second filtering round, full text was
available. Reasons for filtering out articles at this point were that they were not
concentrated on configuration management or agent-master communication.
Filtering for being on topic identified 17 items.

The items are listed in table 7. Most of the identified items, 12, were journal
articles. The rest 5 were conference papers. The metadata provided by library
databases misidentified some conference papers as book sections. One of the
conference papers was authored Tero Karvinen, the author of this thesis, with
professor Shuliang Li as the second author. The oldest item was published in
2004 and the newest in 2023.

Table 7: Included publications

Publication

Balis et al. (2018)
Caballer et al. (2023)
Colarik, Thomborson and Janczewski (2004)
Karvinen and Li (2017)
Kinkelin et al. (2019)
Kos, Milutinović and Čehovin (2015)
Mansouri, Prokhorenko and Babar (2020)
Marsa-Maestre et al. (2019)
Pasquale et al. (2009)
Rahman, Mahdavi-Hezaveh and Williams (2019)
Rong et al. (2022)
Sherman et al. (2005)
Siqueira et al. (2006)
Stocker et al. (2022)
Toffetti et al. (2017)
Ullah et al. (2023)

21

Publication

Zhao and Guo (2018)

Ullah et al. (2023) gathered research on IoT configuration management, pro-
posed a taxonomy of those systems and reviewed both concept-only and pro-
duction configuration management systems on this area. Their definition of
“orchestration” is similar to the definition of configuration management as used
in this thesis, and the definition of Cloud-to-Things Orchastration Solution
(CoTOS) is similar to configuration management system (CMS). Similarly, they
define cloud-to-edge computing continuum (also cloud-to-things continuum) as
extension of cloud with “energy-efficient and low-latency devices closer to the
data sources located at the network edge”. This is quite similar to common
definition of IoT, the Internet of Things.

Ullah et al. (2023) identify multiple challenges relevant to this thesis. The
devices is are heterogeneous, having different operating systems, architectures
and computational capabilities. Network is volatile, as the nodes can go down,
lose connectivity and their locations may change. End nodes need to be
monitored. Software needs to be deployed and reconfigured based on a policy.
Massive scale of networks require scaling. System must guarantee security of
the whole system against different attack scenarios.

To compare different Cloud-to-Things Orchastration Solutions, Ullah et al.
(2023) create a taxonomy. They consider such facets as design of the network,
supported application types and providers and security; all of which have
multiple subcategories. Some areas in this taxonomy are of specific interest in
this thesis.

In environment category, where Ullah et al. (2023) contrast single cloud opera-
tion to multi- or cross cloud operation, which allow avoidance of vendor lock-in.
In connectivity, their taxonomy notes that [slave] nodes can automatically
register and reconnect. It seems that automatic reconnectivity would be a hard
requirement for any IoT system, so it’s surprising that it is part of taxonomy.
As automatic registration requires establishing trust between nodes, it seems
more challenging. They define a similar concept, “edge resource authentication”,
in their security handling category. This work proposes a novel solution to
some of these challenges, the Hidden Master architecture.

In their review of 10 concept-only orchestration systems and 9 research project
based orchestration systems, Ullah et al. (2023) found only one multi- or cross
cloud tool supporting both automatic registration and automatic reconnectivity,
PrEstoCloud. According to whitepapers provided by the PrEstoCloud project,

22

their security over untrusted network is based synchronous VPN network.
Different PrEstoCloud papers consider different VPN solutions, including IpSec
and OpenVPN (Jacquemart and Urvoy-Keller, 2018); and fully meshed peer-
to-peer cjdns (Ledakis et al., 2018).

Considering the actual configuration of software on the slave node, Ullah et
al. (2023) define multiple criteria for comparison. Software can static or user
defined way of reacting or procatively making changes. Security handling is
identified as challenge due to heterogeneity and low powered devices. They
identify security areas such as configuring application security settings and
inter-component communication. Finally, they call for higher level of abstrac-
tion in defining configuration. It should be noted that the use general purpose
programming language for configuration management proposed chapter “Defin-
ing Configuration” provides a novel and open ended answer to some of these
challenge.

The six key areas for lacking current solutions identified by Ullah et al. (2023)
include proactive run-time reconfiguration, decentralized architectures and
security management.

Caballer et al. (2023) have developed their own Infrastructure Manager appli-
cation. The application takes instructions in TOSCA, and configure computers
using Ansible. OASIS TOSCA (Topology and Orchestration Specification for
Cloud Applications) is a YAML based domain specific language for defining and
managing computers, services and their relationships. (Lipton and Lauwers,
2019). Ansible is one of the leading configuration management tools, further
discussed in Leading Configuration Management Tools.

As Ansible requires the slave nodes to be in known addresses and running a
server visible to master, it is most suited for configuring servers and less useful
for moving nodes such as laptops and IoT devices. To bypass this challenge,
Caballer et al. (2023) use reverse SSH tunnels and SSH bastion hosts. They
don’t give very detailed explanations how this is done.

Based on common knowledge on using reverse tunnels in SSH, it could be
assumed that the master is running an SSH server and is in a known address.
Then slaves could connect server using SSH and form a reverse tunnel. As
Ansible uses SSH, another SSH connection trough this tunnel could then be
established. Based on my experiments on this approach in different context,
the solution requires manual setup and care. Some issues are re-establishing
lost connection, keeping client (in this case, slave node) address stable and
managing which ports are used on the server side. Some tools such as ‘autossh’
help automate some parts of this setup, but without further clarification and

23

tests shown by Caballer et al. (2023), it’s not easy to see how this solution
could be robusts, resilient or scalable. The use of SSH proxy / bastion host in
this setup is not obvious as the authors don’t clarify it further.

For deploying the nodes (e.g. renting a new host from a cloud provider) Ca-
baller et al. (2023) have developed their own tool. Abstraction of different
cloud providers seems convenient, but multiple existing tools could reduce the
workload of creating these connectors, such as ‘salt-cloud’ or Terraform, which
is also mentioned by the authors. Similar to this thesis, Caballer et al. (2023)
performed both laboratory testing and validated in their work in a real use
case.

In their article on smart grids, Stocker et al. (2022) used WireGuard VPN
to secure their configuration management system over untrusted network.
They note that in this overlay VPN network, “only the coordinating host be
visible externally”. For scaling purposes, they mention the possibility to enable
peer-to-peer communication with WireGuard. This synchronous setup seems
to leave the machine with master private key always visible to network, a
challenge tackled by the Hidden Master architecture in this thesis. For the
actual configuration management, they used Ansible, which uses it’s own DSL
and push architecture, connecting to slave nodes using SSH. Stocker et al.
(2022) developed an inexpensive laboratory test bed. It consisted of three
Raspberry Pi (inexpensive small Linux computers) with both real (physical)
and emulated energy related hardware.

Rong et al. (2022) suggest that different organizations could securely provide
services to each other using federated identities. Decentralized identities would
be provided by blockchain and smart contracts. They call their architecture
OpenIaC with a catchy phrase “network is my computer”. Even though some
standards are mentioned and the work has some diagrams, the details of the
model are left as an exercise for the reader. Rong et al. (2022) identify multiple
challenges of interest. Service orchestration (provisioning and configuration
management) should be highly reliable and scalable. Infrastructure as code
(used as a near synonym for configuration management) has multiple challenges
that should be solved. Languages should find a balance between declarative and
imperative expressions - a challenge tackled in chapter “Defining Configuration”.
Rong et al. (2022) highlight the challenge of integrating different systems on
multiple levels. The complexity of infrastructure, provisioning and configuration
management tools is emphasized when production infrastructure is scaled out
geographically and in load. Vertical integration from network to applications
and services forms another layer. Finally, managing the organizations and
people who manage these systems is equally complex.

24

Rong et al. (2022) call for redesigning secure networking. Network protocols
such as Ethernet are old and built on assumptions that no longer hold. New
networking solutions should be built for pervasively hostile network environment,
and be based on zero trust networking architecture. Open challenges include
performance, resilience, adaptability to application requirements and supporting
open and decentralized services. It should be possible to scale and move
processing geographically, across organization and jurisdictions and trough the
continuum from edge to cloud. (Rong et al., 2022)

Even though many of the challenges noted by Rong et al. (2022) are similar
to those identified by other works, some of their solutions are not as easy to
agree with. They suggest replacing Ethernet with some other, yet undefined
protocol, and list the lack of internet protocol kind of ports as a downside.
The TCP/IP stack is a layer model, where different features are provided by
a different layer. For example, ports are provided by TCP in the transport
layer. Verifying endpoints is usually done in the application layer. Considering
the amount of networking hardware existing, their call to redesign “the layer
2 network architecture (hardware, software and protocols) seems like a major
and thankless task.

Mansouri, Prokhorenko and Babar (2020) scaled databases by automatically
extending private cloud to public cloud. Their focus was on testing if the
scaling works, considering the latency and bandwidth limitations caused by the
network distance and similar factors. The configuration management system
to provision, configure and control nodes was based on WireGuard VPN and
Terraform (predecessor of OpenTofu) provisioning tool. The approach to protect
master-slave network traffic using VPN is similar to that used by Stocker et al.
(2022) discussed earlier. Even the choice of VPN tool, WireGuard, was the same.
In their search for related studies, all studies listed by Mansouri, Prokhorenko
and Babar (2020) using a network connection use VPN: public VPN, IPsec
tunnel or WireGuard. Their results regargind cloud bursting highlight that
performance is dependent on the design and implementation of the actual
tools and procols. They found that cloud bursting is efficient with MongoDB
and MySQL; but not efficient with Cassandra, Riak, Redis and Couchdb.
Mansouri, Prokhorenko and Babar (2020) list multiple challenges with hybrid
cloud: security, resilience, scalability and reliability. Resilience depends on
cloud infrastructure (guaranteed by providers) and network connection between
clouds. Scalability and reliability could be enhanced by having data in multiple
clouds. Connections can be costly, so secure, resilient and cost-free solution
such as WireGuard could provide required features in cost-effective manner.
(Mansouri, Prokhorenko and Babar, 2020)

25

Rahman, Mahdavi-Hezaveh and Williams (2019) performed a systematic map-
ping study on infrastructure as code. They found that the field of IaC research
is small, but the interest in the area is growing fast. They found only 32
publications matching their criteria, including one where the author of this
thesis is the first author. There are multiple gaps and potential research av-
enues: anti-patterns, defect analysis, security, knowledge and training; and
industry best practices. There is little research on the security of configuration
management systems. For the IaC scripts, they highlight the high risk of defects
as these script change the configuration of production systems in large scale,
with the risk of causing large outages. They find that IaC scripts themselves
should be studied for defects and anti-patterns. IaC scripts should be analyzed
using common weakness enumeration (CWE), a method usually used with
regular computer programs. (Rahman, Mahdavi-Hezaveh and Williams, 2019).

Marsa-Maestre et al. (2019) propose REACT model, where a network of
computers is reconfigured in reaction to anomalous behavior indicating potential
compromise. Zero day attacks are new attacks that are not detected by signature
based antivirus and similar technologies, and the related vulnerabilities are not
yet patched in software. REACT detects potential compromises based on zero
day attacks by using existing intrusion detection system’s (IDS) anomalous
behavior detection. Based on a multilayer graph of the network, REACT
finds high risk nodes and reconfigures them. Reconfiguration means both
removing and provisioning containers and machines, and changing network
connections between them. High risk nodes are those that are network reachable
by compromised hosts (even trough multiple hops) and those that have similar
configuration. They ran a Python simulation on these reconfigurations. For
future research, they suggest network resilience under multiple simultaneous
attacks. (Marsa-Maestre et al., 2019)

The approach taken by Marsa-Maestre et al. (2019) is interesting, but they don’t
provide implemention of their system, so they have not performed emulated
testing. As IDS anomaly detection systems produce many false positives, many
network reconfigurations could pose a challenge to continuous operation of
production systems. As Marsa-Maestre et al. (2019) consider nodes to be
connected if there is a network path between them or similarity in configuration,
alerts could affect large parts of the network. Configuring services and deciding
network connectivity between them is often a decision mandated by multiple
factors. Changing a working configuration and running installations without
human intervention sounds risky. The connected operation of many systems
require establishing trust between systems, usually implemented by accepting
cryptographic keys. If the same keys are redeployed to keep existing trust,
these keys could already be compromised. If new keys are generated, there is a

26

challenge of securely re-establishing trust.

The REACT system proposed by Marsa-Maestre et al. (2019) is a configuration
management system, using master-slave architecture where master has full
control over all slave nodes - all computers in the network. This makes the
REACT system itself the most valuable target in the network. Due to reactive
nature of this system, the master (with the cryptographic keys to control slaves)
must always be online. Compromising those keys would allow attacker to gain
full control of all layers of the system. Also, there must be a network path that
connects this master node to all other nodes.

Kinkelin et al. (2019) find the centralized power worn by a single administrator
and his machine key security risk. They propose distribution the process of
creating and approving configuration, both to multiple persons and to multiple
devices. They note that such requirement for multiple reviews has already
been in production in major source code repositories GitHub and GitLab, at
least from 2019. In addition to just requiring multiple approvals, Kinkelin
et al. (2019) discuss possible methods of conflict resolution in case multiple
admins create conflicting configuration. They have developed their own solution,
TANCS, based on blockchain and smart contracts.

The actual solution, TANCS, is described in a conference paper by Kinkelin et
al. (2018). The approval operations happen in Hyperledger Fabric, a private
blockchain. Popular configuration management tool Ansible is run locally by
each slave node. It seems slave nodes run a client that retrieves approved
configuration from the blockchain. The focus of the work is how configuration
are approved. The requirements they set for the system are multi-party
authorization, accountability and tractability and tamper resistance.

The idea of applying multi-party authorization to configuration management
system by Kinkelin et al. (2018) seems useful, as configuration management
system is such a critical part of system security. Similar to the blockchain
approach proposed by Rong et al. (2022), one could ask if blockchain is needed
here, or if simple signatures with public keys would be sufficient. Configurations
are themselves information to be protected, and can often contain secrets. For
master-slave network communication, Kinkelin et al. (2018) simply state that
slaves retrieve configuration from the blockchain. Their requirements, and the
guarantees they identify in their technology, concentrate on tamper-resistance.
Compared to the well known CIA triad, the system accounts for integrity, but
little attention is paid for confidentiality and availability. As the system is
decentralized, the direct connections between peers should be looked at from
the point of view of revealing structure of the network, especially the computers
allowed to approve new configuration.

27

Zhao and Guo (2018) propose a simple server-side web application to manage
network infrastructure. A single master server, the “Network Configuration
Management Server” provides a web interface for administrators. The same
server holds the secrets to control and monitor network devices trough telnet,
SSH, SNMP and similar protocols, and keeps a database of current state of
slave nodes. Web server administrator interface provides authentication and
authorization. (Zhao and Guo, 2018)

The solution proposed by Zhao and Guo (2018) is simple and thus easy to
understand. However, the single server with all the secrets creates a single point
of failure to the network, and highly tempting target for attackers. Having a
large amount of different services and protocols in the same system creates a
large attack surface to protect. The unencrypted and unauthenticated master-
slave network connections allow eavesdropping and tampering of configurations
from master to slave, and monitoring data from slaves to master. It should
be noted that the use of old and unprotected protocols might be in some
cases mandated by the limits of old networking equipment. For monitoring
purposes, the connections are likely to happen automatically. In addition to
just tampering downstream instruction to slaves, an adversary on the same
network could use a man-in-the-middle attack by pretending to be a slave node
and attacking the master. If data from slaves is presented in web interface,
typical web attacks such as cross site scripting or cross site request forgery
could be one approach. The requirement to use a web interface to upload and
download configuration seems to be against principles of IaC, even though this
could be mitigated by creating APIs and related clients.

Balis et al. (2018) propose a system to optimize performance of environmental
sensors. During normal operation, features such as cost of operation and energy
consumption (expected system lifetime) should be preferred. During a disaster,
preference should be given to quality of service, including data measurement,
processing and transmit interval. Balis et al. (2018) have created a model to
optimize operation to these conflicting requirements. In their call for optimizing
the whole system and not just individual nodes, the approve the need for higher
levels of abstraction. Their work is focused on environmental threats (as
opposed to human adversaries), such as flooding. They leave encryption of
master-slave network communication for future research, with a plan to use
symmetric AES encryption.

The holistic approach taken by Balis et al. (2018) is useful from business
perspective. If there are no human decission makers available, why spend
limited resources to collect data that’s not used? The optimization and the
use of different operating modes provided could be useful part of configuration

28

management and monitoring systems. However, more attention could be paid
to protecting the master-slave network communication. Without encryption, it
suffers from similar threats as the solution created by Zhao and Guo (2018).
Even their future plan to protect master-slave network communication with
symmetric encryption has limited use against human adversary. If the physical
sensors deployed on the field have the same key, adversary can obtain any
sensor, extract the key and then eavesdrop and tamper communication with all
sensors, falsifying both downstream and upstream communication and cause
incorrect decisions to be made. If each node has different key, key management
will be a major challenge as each key must be copied to both master and slave
using a secure channel.

Toffetti et al. (2017) developed a system where slave nodes automatically elect
a leader to control the network in case one machine goes down. Key-value
store Etcd holds both the instructions to slaves and current known states of
slaves. If current leader etcd node goes down, an automatic vote for new leader
is done using Raft protocol. Configuration is defined using a custom Etcd
directory structure as custom DSL. This hierarchical graph can be represented
as an indented text file. The actual configuration on slaves is done with
CoreOS Fleet. The system includes multiple additional components, such as
ElasticSearch-Logstash-Kibana monitoring and log consolidation stack.

In the system proposed by Toffetti et al. (2017), automatic change of master
node could be expected to improve availability. As Etcd directory server
compares known actual state of slaves to the target given by administrators,
it’s implied that each of these servers have the secret keys to control the whole
network. Instead of single tempting target for attackers, this seems to risk
compromising the whole system in case one participating node is compromised.
By moving the work done in the directory servers to slave nodes, directory
servers could simply serve copies of the instructions from the administrators,
thus avoiding not only the vote but the storing of secret keys to machines in
such vulnerable positions. This is indeed what is done in the Hidden Master
architecture proposed by this thesis.

Kos, Milutinović and Čehovin (2015) propose nodewatcher, a server to generate
configured firmware images for Open Wireless Network of Slovenia and monitor
them. Wlan slovenija is a 400 node open community wireless network. Node-
watcher provides a web server for image generation and monitoring, written
in Python Django framework. Node (wireless access point) owners log into
it to generate firmware images to their access point, bundled with related
configuration. Schema registration uses DSL based on Django object-relational
mapper. Node owners are responsible for flashing firmware images and their

29

configuration. Node details are saved to central server for automatic monitor-
ing. Generated images contain an agent that collects metrics and sends them
to central server using JSON files served over HTTPS connection, either by
publishing them on a local web server (pull) or making periodic HTTPS POST
requests to central server. Monitoring data is consolidated and visualized on
the central server. Nodewatcher is made more interesting by the fact that
it’s actually deployed in production network, and successfully used by node
administrators not employed by a single organization.

Considering security, Kos, Milutinović and Čehovin (2015) especially consider
challenges in availability and integrity. It’s implied that confidentiality is
handled using TLS with HTTP. They state that redundancy might be a future
solution to availability, but that is not important because operation of nodes
and routing protocols does not rely on nodewatcher. After initial, partially
manual provisioning, nodewatcher performs only monitoring function. For
security, they agree that centralized network management installation might
be a key target for an attack, and note that configurations in nodewatcher
might contain secrets such as passwords. So, they suggest the use of public
key authentication [in node configurations] where possible. Communication
between the central server and nodes can be protected by mutual authentication
with TLS. (Kos, Milutinović and Čehovin, 2015)

What comes to encryption and network communication, Nodewatcher proposed
by Kos, Milutinović and Čehovin (2015) has similar architecture to “Network
Configuration Management Server” by Zhao and Guo (2018). On the one
hand, having a single web server manage everything provides for an easy to
understand architecture and all the convenience of server side web programming.
On the other hand, web server holds the keys to the kingdom, is always on and
reachable from the Internet.

Nodewatcher server is more valuable as a target than implied by the Kos,
Milutinović and Čehovin (2015). Compromizing the nodewatcher server even-
tually provides access to all nodes, as malware or extra keys can be installed
to updated firmware images. The use of regular TLS communication depends
on trusting all certificate authorities accepted by the browser, which brings
in many trusted parties from multiple jurisdictions. This is in contrast with
self-generated certificates (key pairs) used by many other provisioning and
configuration management systems. The article does not detail how the keys are
managed. It would be interesting to know how TLS keys related to master-slave
communication are generated and updated.

Pasquale et al. (2009) propose publishing configuration changes across orga-
nization boundaries. Local changes are discovered by an agent installed on

30

all systems, consolidated on a web server inside organization and published
as an Atom feed of XML documents. Configuration management systems can
react to these changes, even across organizational borders. To facilitate this,
an aggregation server can collect data from multiple organizations.

As Pasquale et al. (2009) don’t consider security implications, it’s not easy to
see how this model could be applied to production networks. The article does
not discuss encryption, and it does not define a threat model. The actual work
of making changes (versus just detecting the need for them) is not discussed.
It could be expected that making changes to configuration management of
production systems based on automatically detected changes on systems of
another organization would be a risky undertaking. As this article is from 2009,
it could reflect more idealistic and less adversarial view of networks connected
to the Internet.

Siqueira et al. (2006) considers automatically managing networks. The goal is
for agents to automatically discover master in local network, and retrieve policy
from them using web technology. Masters in different networks communicate
with each other. (Siqueira et al., 2006). The paper does not go to details
how the communication could happen, does not define threat model or discuss
encryption. From the architecture it seems that masters in each network
(“Autonomic Policy Server”) is highly valuable target for attack, having full
control of each network (“Ambient network”) and information about other
nearby networks.

Sherman et al. (2005) have developed a configuration management system
ACMS for controlling over 15 thousand servers in Akamai Network. ACMS uses
web servers to asynchronously to deliver configuration over Akamai’s proprietary
content delivery network (CDN). The system includes acceptance algorithm,
but unlike some other systems, it’s not about the content of configuration
but instead to more reliably store a copy of the file in storage storage points.
The system has multiple layers: publishers, any of which can create new
configuration, storage points and Akamai CDN as a scaling mechanism; and
receivers on slave nodes. (Sherman et al., 2005)

According to Sherman et al. (2005), the ACMS system is in production on
“over 15 000 servers deployed in 1200+ different ISP networks in 60+ countries”.
This is both a considerable proof of the system working, an indication that
their approach scales well and an indication that HTTP protocol can be used
in highly scaling configuration management. The scaling is achieved in part
using their proprietary CDN and proprietary error reporting infrastructure,
so further research would be needed to see if the approach works with other
systems.

31

Sherman et al. (2005) make no claims of the security of their system. They
don’t define threat model, key management plan or discuss encryption in any
way. In fact, they state that “The techniques that we use to accomplish [security
of configuration updates] are standard, and we do not discuss them further in
this document.

Colarik, Thomborson and Janczewski (2004) searched patent literature for
interesting update and patch management systems and created a taxonomy
of the findings. The taxonomy they created could inspire other taxonomies
and chain models, but some concepts would need to be clarified. For example,
the authors assume that master is always placed on server. As we can see in
chapters “pull architecture” and “push architecture” in this thesis, master (of
master-slave architecture) can be placed on server or client (in client-server
architecture).

Key research gaps relevant to this work are summarized in table 8.

32

Table 8: Research gaps in configuration management
systems relevant to this work

Gap More research is needed on

Security Developers should minimize tool-related
security issues (Rajapakse et al., 2022). We
“observe the need for research studies that will
study defects and security flaws for IaC”
(Rahman, Mahdavi-Hezaveh and Williams,
2019). “[Software] maintenance, evolution, and
security of IaC is in its infancy and deserves
further attention” (Kumara et al., 2021).
System must guarantee security of the whole
system against different attack scenarios (Ullah
et al., 2023). Decentralized architectures and
security managment are among the six key
areas lacking current solutions (Ullah et al.,
2023). Secure networking should be redesigned,
based on zero trust networking architecture, for
pervasively hostile network (Rong et al., 2022).
Security is a challenge in hybrid cloud
(Mansouri, Prokhorenko and Babar, 2020).
There is little research on the security of
configuration management systems (Rahman,
Mahdavi-Hezaveh and Williams, 2019). Future
research on network resilience under multiple
simultaneous attacks is needed (Marsa-Maestre
et al., 2019).

33

Gap More research is needed on

Scaling Massive scale of networks require scaling (Ullah
et al., 2023). Service orhestration (provisioning
and configuration management) should be
highly reliable and scalable (Rong et al., 2022).
The complexity of infrastructure, provisioning
and configuration management tools is
emphasized when production infrastructure is
scaled out geographically and in load (Rong et
al., 2022). It should be possible to scale and
move processing geographically, across
organization and juristictions and trough the
continuum from edge to cloud (Rong et al.,
2022). Scalability and reliability could be
enhanced by having data in multiple clouds
(Mansouri, Prokhorenko and Babar, 2020).

Defining configuration “IaC patterns and anti-patterns/smells” need
further research (Kumara et al., 2021).
“[Several] best practices exist, but they mostly
concern the complexities inherent within IaC”
(Kumara et al., 2021). DSL phases of domain
analysis is an area for future research (Kosar,
Bohra and Mernik, 2016). Configuration should
aim for higher level of abstraction (Ullah et al.,
2023). Languages should find a balance
between declarative and imperative expressions
(Rong et al., 2022). The whole system should
be optimized instead of just individual nodes
(Balis et al., 2018).

Empirical Validation More solutions should be empirically validated
(Rajapakse et al., 2022). DSL research included
lack of evaluation research (Kosar, Bohra and
Mernik, 2016). There is a clear “lack of
evaluation research, in particular controlled
experiments” (Kosar, Bohra and Mernik, 2016).

34

Gap More research is needed on

Integration DSL integration with other software
engineering practices Kosar, Bohra and Mernik
(2016). Challenge of integrating different
systems on multiple levels, adaptability to
application requirements and supporting open
and decentralized services (Rong et al., 2022).

2.1.5 Network Architectures of Configuration Management Tools

Configuration management systems follow master-slave architecture. The
master computer will issue configurations, and the slave computers apply these
configurations.

Even though master-slave is the correct term for this architecture, some other
word is sometimes used in place of the slave to avoid confusing non-technical
audiences. Such alternative terms include agent and minion. This thesis uses
the words agent and slave interchangeably when referring to a slave node in a
configuration management system.

Internet communication uses client-server architecture. The server is constantly
waiting in a known address. At the time of it’s choosing, client initiates a
connection.

As the client can keep the connection open permanently, additional layers can
be built on top the connection opened. In master-slave architecture, master
can be placed either on client or server, leading to push and pull architectures.

a1

m

a2 an

Figure 1: Pull architecture

2.1.5.1 Pull architecture In the most common configuration, master
is the server, and slave nodes connect to this server. This pull architecture
is shown in fig. 1. In the client-server model on the Internet protocol suite
(TCP/IP), the server opens a listening port and waits indefinitely. The client
connects to the server at a suitable moment.

35

Making the master the server in typical configuration management systems
solves many practical problems. As typical workstations cannot publish a
server, the master cannot connect to them as a client. Also many slaves, such
as laptops and mobile devices, are not constantly powered on, so they cannot
always be reached when the master attempts to contact them.

However, having the master as a server creates new risks and problems. The
visibility of the master on the public Internet makes it vulnerable to most
common attack methods. At the same time, the master server is a very
valuable target on the network. This is due to combining two tasks, which I
will later claim to be unrelated: having the signing keys for slave catalogs; and
distributing those catalogs.

The Internet and modern local area networks are based on TCP/IP. Because
the IPv4 address space of 254**4 addresses is running out, many networks use
network address translation (NAT) to allow many workstations to browse the
Internet from the same public IP address. NAT makes it impractical to have
servers on the workstations behind NAT.

2.1.5.2 Push architecture In push architecture, slaves run servers and
the master connects to these servers. Push architecture requires slaves to be
able to publish a server that is visible on the internet, which is not possible in
many NAT:ted, firewalled and mobile networks. This makes push architecture
more suitable for managing servers than laptops. Push architecture is shown
in fig. 2.

The slave server does not need to be an agent specific to the configuration
management tool, but instead a general purpose remote control system such as
SSH can be used. This reduces the amount of software that needs to be updated
and avoids agent-master versioning problems. Agent and master software
versions are often linked to each other, but different OS and distributions
update their packaged software at a different pace.

m

a1 a2 an

Figure 2: Push architecture

36

2.1.5.3 Implying Direct Master-Slave Connection Many articles on
configuration management systems assume that slaves must at some point
directly contact the master. This assumption can be either explicit or, more
often, implicit. As we will later see when examining successful botnets, such
contact is not required.

In their comparison of open source CMS, Delaet, Joosen and Van Brabant
(2010) considers only two possible network architectures: push and pull. They
explicitly state: “In all approaches, each managed device contains a deployment
agent that can be push or pull based”.

Vanbrabant (2014) categorizes “deployment architectures” of configuration
management tools to pull or push, implying a direct network connection
between master and slave computers. This is further emphasized by examples.
Poat, Lauret and Betts (2015) have selected popular configuration management
tools (Chef, Puppet, CFEngine) for comparison, all of which require direct
connection between master and slaves to configure multiple computers. In their
paper on orchestration (“model driven Cloud-management”) Wettinger et al.
(2013) imply the direct connection between master and server in their choice of
tools and in the options they use for the orchestration system to deploy the
catalogs. Even though there are multiple peer-reviewed works on applying the
configuration, less interest is paid to the secure transport of these configuration
instructions. Święcicki (2016) describes a novel tool “Overlord”, but bypasses
the transfer by stating that the “program then could be transported to the
target machine”.

2.1.5.4 Proposed Improvements to Push and Pull Architectures
The secret key of the master allows full control of all slave nodes. This makes
master’s secret key the most valuable file in the network, as it grants access
to all other information in all nodes. When considering improvements to the
security of master-slave network architecture, it should take into account how
well this architecture protects master’s secret keys.

Virtual private networks (VPN) have been proposed and used in research
prototypes for ensuring the security of master-slave network communication
Mansouri, Prokhorenko and Babar (2020). A VPN establishes another, encryp-
tion protected network over an untrusted network such as the Internet. This is
often shown as a virtual network interface inside the nodes participating the
network.

As long as all nodes remain intact, a VPN can protect their network communi-
cations. Adversaries often can’t immediately compromise high value targets
such as Active Directory domain controller or configuration management master

37

node. They resort to compromising less protected nodes on the network and
laterally moving towards more valuable nodes.

When master and slave node are connected with a VPN, an attacker controlling
a slave can immediately proceed attacking the master. A constant VPN
connection means that these attacks can be performed when timely expert
human response is unlikely, such as at night or during holidays. Thus, even
though a VPN protects can protect against network eavesdropping or man-
in-the-middle attack, it does little to protect master against compromized
slave nodes. Protection against man-in-the-middle attack is dependent on key
management and the bootstrapping process used for initially establishing trust.

As Internet protocols, including VPN solutions, use the client-server architec-
ture, a VPN based solution can lead to master being visible to the Internet. If
the server is on the slave nodes, configuration management can’t work with
moving nodes such as laptops, as being a server requires opening a listening
port in a known Internet address. That’s why the VPN server can be on the
master, requiring this valuable machine to be visible on the network. In their
solution using WireGuard VPN, Stocker et al. (2022) note that “only the
coordinating host be visible externally”.

The use of secure shell (SSH) reverse tunnels has been proposed as an alternative
to VPNs (Caballer et al., 2023). The challenges are similar to those of VPN,
but it’s not clear how a solution based on SSH reverse tunnels could scale
or be reliable. The possibility of using pseudonymous peer-to-peer networks
- such as i2p, Tor and Freenet - is considered in “Designing Hidden Master
Architecture” section “Protecting the Master’s Private Key in the Hidden
Master Architecture”.

Blockchains and smart contracts have been proposed for use in configuration
management systems Rong et al. (2022). The power of single administrator
could be limited by requiring multiple persons to authorize changes (Kinkelin
et al., 2019). The solution by Kinkelin et al. (2018) uses Hyperledger Fabric, a
private blockchain. However, multiple authorization could be implemented by
requiring multiple signatures with keys from a pre-approved set, and Kinkelin
et al. (2019) themselves note that the requirement of multiple approvals is
already used without blockchains. Instead of smart contracts, the approval
logic could be distributed to slave nodes. After all, it’s the software running
as root on slave nodes that must actually run the configuration, either by
validating the signatures - or by reading blockchain and accepting the result
of the smart contract. The distribution of large configuration catalogs must
also be solved, as blockchains can usually only store limited amounts of data.
The confidentiality of the catalogs and related key management must also be

38

solved, as the concept of blockchain concentrates on integrity of the data in the
chain. For blockchains to be useful in configuration management, it would be
interesting to see them compared to simple commonplace solutions providing
the same features.

2.1.6 Configuration Management System as a Target

A successful attack on configuration management system results in the full
compromise of every controlled computer. This makes it a very tempting target
for attack.

In many attacks, the attacker must gradually increase his foothold on the target
system. For example, an attacker might take over a poorly protected, old,
low value computer to bypass a firewall on the edge of an enterprise network.
This foothold is then used for launching an attack from the internal network.
When regular user accounts are compromised, the same credentials are used
for lateral movement. A privilege escalation is needed to get administrative
rights on systems. This way, the attacker must own the network step by step.

In contrast, a compromise of a configuration management system means a single
step can compromise every computer and system in the network. This can make
CMS the most critical system. After a compromise, nothing else is required of
the attacker. The attacker can disable or misconfigure the intrusion detection,
antivirus systems and audit logging. All files can be read and altered, and the
fact that these changes happened can be hidden. Cameras and microphones
can be used for eavesdropping on communications. To extend the attack to
external systems, user passwords can be collected with key logging.

If the attacker succeeds in compromising CMS, he can then install hostile
remote administration tools (e.g. meterpreter) or simply use the existing CMS
to carry out criminal activities. Using the existing CMS for attack could make
the attack more reliable (less likely to crash target systems) and harder to
detect by external network intrusion detection systems (IDS) (Hastings and
Kazanciyan, 2016).

Because CMS is such a critical part of system management and security, it
should be able to withstand internal and external faults, challenges caused both
by environment and human malice. Existing off the shelf CMS have insufficient
fault tolerance features (Duplyakin, Haney and Tufo, 2015).

2.1.6.1 On Attacks Against Configuration Management In their
article on analyzing attacks against large networks, Hariri et al. (2003, pp
1) emphasize two common types of attacks: DOS attacks against servers and

39

routers. It should be noted that the architecture proposed in this paper can
reduce the effect of both types of attack.

In practice, the master has full permissions on all slave computers, and slaves
blindly follow instructions from the master. In Linux, BSD and Unix, the
master has the equal status of root or sudo on slaves. In Windows, master has
the equal status of Administrator or SYSTEM access. This makes the master
computer a very valuable target for attacks. Compromise of the master results
in the almost immediate compromise of all computers on the target network.
As an added benefit, there is already a working configuration management
system in place, so the attacker does not need to deploy his own remote control
tools to all nodes.

In both legal penetration testing and hostile network attacks, attacks against
servers are a common approach. When starting the active reconnaissance phase,
the attacker will perform a network ping sweep, DNS zone transfer or a DNS
scan, enumerate services using tools such as Metasploit db_nmap and perform
vulnerability scanning with tools such as Nessus or OpenVAS. Popular books
on penetration testing devote most of their pages to attacks against servers.
By definition, public servers are visible to the public, and thus create an easily
reachable attack surface.

Many CM systems provide their own transport system for catalogs. Compared
to some popular public facing servers, such as OpenSSH and Apache web
server, these CM master servers are relatively young. CM master servers are
also developed with limited resources (compared to the popular public facing
servers), as they are developed by the same teams that create the CM systems.

If the server is only visible in the company local area network, it cannot configure
laptops and mobile devices being used outside that LAN. For example, internal
security updates and mitigations could not be provided in a timely manner.
Even if the access to the master server was through a virtual private network
(VPN), all clients must have automated access to the master. This means that
the compromise of any client allows direct connection to the master server. If
multiple masters are created for different security levels, there is no longer a
single source of truth for the network, leading to complicated configuration and
the slowing down of the pace of updates.

Web servers are commonly used with a vast number of users, and they have a
long track record of surviving these loads. For example, the Apache web server
has existed since 1995 and has been the most popular web server since 1996.
No configuration management system known to the writer has been tested
anywhere near this scale.

40

In this work, I will research an approach that completely removes the attack
surface of the public facing server and thus all attacks upon it. I will argue
that using a regular web server as one of the platforms to deploy the catalogs
to slaves, CM systems can capitalize on their well known scalability.

This approach could completely prevent attacks against public servers (as there
would be none), leaving only client side attacks. Many approaches to client
side attack have a social engineering component in them, allowing the operator
to greatly reduce the attack surface by limiting his/her use of the master
computer.

2.1.7 Leading Configuration Management Tools

Many well known organizations behind large computer systems have publicly
named the CM tools they are using, or published the fact that they are using
modern, infrastructure as code (IaC) configuration management tools and
techniques.

Rahman, Mahdavi-Hezaveh and Williams (2019) list Ambit Energy, GitHub,
Mozilla and Netflix as examples of users of IaC based techniques to manage
their systems. Puppet configuration management tool users include the US
Government, Wikimedia, CERN and Google. The US Government uses Pup-
pet for security baseline for Windows and Linux (NIST, 2016). Wikimedia
configures its servers with Puppet. CERN configures user managed images
with Puppet. Google uses Puppet for managing laptops and desktops.

Business social media site LinkedIn configures its 40 000 servers with CFEngine
(CFEngine, 2016). CFEngine is one the earlier modern configuration man-
agement tools. Mark Burgess, the author of CFEngine, has written many
influential papers on configuration management, and consequently, CFEngine
was the first tool to implement some of these ideas in production.

Social media giant Facebook uses well known open source tool Chef to manage
OS settings and software deployment. To configure the applications developed
by the company, a homegrown solution is used. (Tang et al., 2015)

In the context of this work, the interest is on modern, free software configuration
management systems. To consider software modern, it should allow idempotent
configuration. To allow versioning, auditability and efficient group work, the
configurations should be described as text, following the infrastructure as code
approach. For ease of integrating the hidden master architecture and to be
easily analyzed, the software should be Free software as defined by Free Software
Foundation (2015). Tools should be actively developed, e.g. have an active bug
list, fresh commits from multiple users, packages in some distributions default

41

repositories and not have very old unfixed serious security vulnerabilities. To
see if a tool is actually used in the field, we can consider such proxy indicators
as use cases of large scale deployments, news articles and activity in popular
forums.

The amount of practical, well known and production ready tools is limited.
For example, Delaet, Joosen and Van Brabant (2010), name 11 tools for
comparison, six of which are open source and thus in the focus of this thesis:
BCFG2, Cfengine3, Chef, Netomata, Puppet and LCFG. Because this work is
from 2010, it does not include some well known tools that are published later
than that. For example, the initial release of Salt configuration management
system is from 2011, and it usually takes some time after release before a tool
is considered production ready. Ansible was published even later in 2012.

Popular, modern, free CMS tools - inclusion criteria

• Modern (idempotent, infrastructure as code)
• Free (FSF definition)
• Actively developed (fresh commits, multiple developers, packaged, no old

unfixed vulnerabilities, stable release in the last two years)
• Popular (news, forums)
• Large deployments

To avoid missing the latest tools, numerous candidate tools were collected from
various academic and non-academic sources. This list was then filtered using the
inclusion criteria. Collecting the candidates was done using articles referenced
by this thesis. For example, Delaet, Joosen and Van Brabant (2010) lists 11
tools, six of which are free software; Fox et al. (2015) lists 21 tools; Wikipedia
article “Comparison of open-source configuration management software” lists
23 tools.

To filter the results, dead projects were excluded. This step was based on
information from their homepages, and in some cases installation packages,
Twitter channels, GitHub and SourceForge pages. Dead projects were those
which had no stable releases across two years (2015-2017) or their homepages
were down or not updated for a long period of time. Excluded dead projects
were SmartFrog, ISconf, Netomata, PIKT, Radmind and STAF. One project,
LCFG, did not support any of the commonly used operating systems and
was excluded. LCFG does not have production quality (in vendors’ opinions)
agents for Linux, Windows or Macintosh OS X. Even though Fox et al. (2015)
mentions many DevOps tools, many of them are not free software (e.g. AWS
OpsWorks, Cisco Intelligent Automation for Cloud among others) or work
on other parts of DevOps than general purpose configuration management

42

(e.g. including Cobbler, Kubernetes, Docker CloudMesh).

Some software was mentioned in peer-reviewed articles (as referenced earlier
in this article) and was included: Ansible, Puppet, Salt, Chef, BCFG2 and
CFEngine. For example, Fox et al. (2015) calls Puppet, Chef, Ansible and
SaltStack the “leading configuration managers” - a claim that was found to be
supported by both academic references and regular search volumes. BCFG2 is
mentioned in multiple peer-reviewed articles published in the last two years
(2015-2017). CFEngine has by far the best coverage in the academic world,
with about a hundred articles published in the last two years.

Compared to Delaet, Joosen and Van Brabant (2010), two tools are not
interesting to this project: Netomata is now a dead project and LCFG was
excluded for its lack of OS support. Two new popular tools have emerged after
Delaet et al.’s paper: Salt and Ansible.

This has left some lesser known tools: Rex, Rudder, Juju, cdist and Capistrano,
OCS Inventory NG with GLPI, synctool, NOC, Spacewalk and Quattor. These
tools were not mentioned in peer reviewed articles used for collecting candidate
applications.

The Linux distributions package is popular and well-established software so
that it can be installed easily. Being packaged in the main repository of some
popular distribution is then a positive signal for a program. The most popular
server, desktop and laptop distribution families are Debian (apt, dpkg, deb)
and Red Hat (yum, rpm).

To evaluate the packaging status of the best known tools, their packaging
versions were sampled for one distribution from each family: Ubuntu 16.04
(Debian family) and CentOS 7 (Red Hat family) (CentOS project, 2016). The
tools evaluated were Ansible, Puppet, Salt, Chef, BCFG2 and CFEngine.
Ubuntu 16.04, the current long term support release, packages all the main
tools. Puppet was packaged in the “main” component, so it will receive more
attention from the distribution core maintainers. Others were packaged in
“universe”, a component for third party maintainers. CentOS 7 did not package
any of these tools.

Metrics can be used to estimate interest in a tool or a topic, even without
analyzing each mention for tone and content. In the context of configura-
tion management, a similar calculation of metrics has been used by Rahman,
Mahdavi-Hezaveh and Williams (2019) as a small part of their systematic
mapping study of IaC research. Hintsch, Görling and Turowski (2016) list
counts of papers naming a tool and those focusing on it before diving into the
articles, the content of which they analyze. Metrics cannot replace a regular

43

literature review, and thus they are used here only to support a more detailed
analysis of the literature.

To estimate academic interest to main CMS, Google Scholar search was
performed with the tool name and the string “configuration management”,
e.g. ‘ “puppet” “configuration management” ’. The search was limited by ex-
cluding patents and citations and showing only articles from the start of 2015
to November 2016. This is similar to the search performed in the literature
review for CMS articles published before February 2015 by Hintsch, Görling
and Turowski (2016), but targets fresher articles.

Table 9: References to configuration management tools
in new peer reviewed texts

CMS Hits

Puppet 381
Chef 362

Fabric 224
Ansible 173

Salt 167
CFEngine 77

Juju 45
Rex 40

Rudder 29
Capistrano 16

BCFG2 9
Quattor 5

Spacewalk 4
OCS Inventory 4

Cdist 1
synctool 0

NOC na

As shown in table 9, Puppet and Chef got most academic hits, with Ansible
and Salt the second most. CFEngine, the oldest of these systems, got slightly
less new hits. BCFG2 got very few hits, only nine, and this might make it less
interesting for further study. Compared to the literature review by Hintsch,
Görling and Turowski (2016), I found more mentions of tools and some tools
that were missed by Hintsch et al. The list of most mentioned tools is in table 10.
The larger number of mentions could only be partially explained by filtering
done by Hintsch et al, as they only discarded 167 publications and included 159.

44

More tools were probably found because I used a broader method for collecting
candidate tool names and Hintsch et al. used a list of tools from 2010.

Table 10: CM tools with at least 10 references according
to literature review by Hintsch, Görling and Turowski
(2016)

CMS Named In focus

CFEngine 89 15
Puppet 82 11
LCFG 50 7

Chef 46 9
BCFG2 17 3

For lesser known CMS, Rudder hits include many unrelated hits using the word
“rudder” in its everyday meaning. Cdist did not match any academic articles,
the only hit being from a non-academic book. NOC is a common abbreviation
for network operations center, which makes it more difficult when undertaking
a search; of the 72 results, the first page did not contain any references to NOC,
the configuration management system. Spacewalk had 4 hits, two of which
were on subject. Even though some of Fabric’s 224 hits were false positives,
adding “python” as a keyword still brings 57 hits. However, the commands
Fabric uses are not idempotent, and thus Fabric does not qualify as a modern
configuration management system.

Google generic search data, the searches from Google.com front page, was
queried using the Google Trends interface for the CMS systems with most aca-
demic hits. The search was the tool and the string “configuration management”
without quotes, e.g. “puppet configuration management”. Fabric, CFEngine,
Juju, Rudder, Rex and BCFG2 had zero average searches per day. The search
volumes of CM tools are in table 11.

Table 11: Search volumes of configuration management
systems

CMS Searches per day

Puppet 28
Chef 23

Ansible 13
Salt 12

45

Many articles compare these four configuration management systems. Kostro-
min (2020) names Puppet, Chef, Ansible and SaltStack (Salt) as the most
popular software configuration management tools. A Google Scholar search for
articles mentioning all four brings 75 hits in the two-year period from 2015 to
2017. A regular Google search with all these words brings 125 000 hits, which
is quite a number considering the level of technical skill required to work with
these tools.

As all proxy metrics used give the same kind of result, it can be concluded
that the leading configuration management tools are Puppet, Chef, Ansible
and Salt.

2.1.7.1 Applying and Transferring Catalogs Slaves can receive their
catalogs in multiple ways. Slaves can act as clients and pull the catalogs from
the master server. The master can contact slaves as a client and push the
catalogs, with either SSH daemon on the slaves or with a custom slave server
on each slave. Or the catalogs (or their source code) can be transferred by a
method unrelated to the CMS, then applied locally on the slave.

In any network containing moving slaves such as laptops, pull architecture is an
obvious choice. Most networks use NAT or firewall that prevents slaves from
publishing a server on the Internet, making pull the only feasible architecture.

If the requirement of NAT bypass is dropped, architecture can be simplified by
using an existing tool, such as SSH, to push configuration.

Table 12: Network architectures in leading CMS

CMS Pull Local Push

Puppet yes yes difficult
Chef yes yes possible?
Salt yes yes yes
Ansible possible yes yes

All four popular tools support all of pull, push and local architectures, but
strongly recommend either pull or push. The supported network architectures
are listed in table 12.

Puppet, Salt and Chef are originally meant to be used with pull architecture,
requiring extra components and setup for pull operation: mcollective for Puppet,
Chef push job for Chef and Salt-SSH for Salt.

Ansible is meant for push over ssh, but can use ansible-pull to retrieve configu-
ration from a Git version control repository. By using ssh client and a server

46

for transfer, Ansible does not need its own agent. Ansible marketing material
calls this “agentless” operation, but obviously some software is needed on the
slave (agent) side to receive and apply configuration, namely, the SSH daemon.

2.1.7.2 Protection of Transfer Ansible uses SSH (usually OpenSSH) and
public keys. If normal SSH security routines are followed, this is very secure.
As slaves cannot be reached when they are not in their home network, they
could go a long time without updates, including critical security mitigations.

Puppet uses https transport without any external certificate authorities. TLS
used with web servers is quite complicated which makes it less transparent for
administrators.

Salt uses ZeroMQ, which is much less used protocol than ssh or https. It could
be assumed that ZeroMQ and its implementation in Salt has received less
scrutiny than more established https and SSH. On the other hand, there might
be less interest and attack tools for a smaller target.

The principles of information security are the CIA’s triad of confidentiality,
integrity and availability. All of the default implementations of these popular
tools aim to provide confidentiality and integrity by encrypting traffic and
performing two-way authentication. However, they do little for availability,
as the master server is a single point of failure in the network. Even if the
master server is coupled, the requirement to trust the master server means
that these machines must be physically protected, and this greatly reduces the
possibilities to distribute them to different networks and geographical locations.

2.1.7.3 Protection Against Compromised Slave Agent systems should
not know everything about other systems. Models of attacker tactics show
that attackers have to spend considerable time performing active network
reconnaissance to discover the configuration of hosts Mitre (2019), and do more
active reconnaissance when performing lateral movement (Pols, 2017).

If all agents know all the secrets of the network then all the different security
domains require separate systems. But if systems are separated, there is no
longer a single source of truth. In addition to practical hurdles, this means
that orchestration (making different computers act together) becomes tedious.

Puppet compiles instructions for the slave as a slave specific catalog only
containing instructions for that specific slave, with the minor exception being
non-template files. Puppet advertises and clearly documents this feature. For
the purpose of this thesis, this was briefly tested by extracting a compiled,
slave specific catalog. It did not seem to contain information other than that
which was made available to the target slave.

47

Salt emphases “no freeloaders” in its documentation and advertising. In practice,
this means Salt attempts to improve scalability by delegating as much work
to slaves as possible. By default, all configuration (contents of /srv/salt/) is
available to all slaves. Only specific secrets such as passwords and secret keys
are stored separately using the “pillars” mechanism (/srv/pillar/). Pillars are
only available to named slave computers. For this thesis, it was briefly tested
if configuration could be compartmentalized by placing all configuration into
a pillar. In a very brief test, only the target slave could receive this state.
Other slaves only received a default dummy value. Using pillars in this way is
undocumented and thus its usability in production is questionable.

The capability of different systems to limit agent visibility is in table 13.

Table 13: Protection against compromised agent in lead-
ing configuration management systems

CMS Limit Agent Visibility

Puppet yes
Chef not tested
Salt undocumented for normal configuration
Ansible not tested

2.2 Malware

2.2.1 Malware Command and Control Networks

Command and control channels have seen significant improvements over time.
I will first briefly overview some key concepts, then look at malware evolution
with emphasis on command and control.

Botnet is a network of compromised machines under the control of an attacker
(Binsalleeh et al. 2010). The largest botnets have had millions of slave computers
in hostile, heterogeneous environments. As these botnets are extensively
documented, they can provide insight into the possibilities of novel network
architectures for CM tools.

Technically, any tool could be used for any purpose. For example, a legal
penetration tester could use botnet non-maliciously to test an intrusion detection
system. And this work will use botnet software to develop benign configuration
management tools. However, as a working definition I will categorize botnet
tools as malicious according to their original, intended purpose.

Malicious botnets have both similarities and differences to benign configuration
management tools. Both aim to provide scalable, resilient and timely updates

48

to slave configuration. But only botnets require secrecy at each point: slave,
network and possible CC server. Botnets might also require the capability of
a reduced forensic footprint. Botnets are sometimes used for extracting data
from victim systems, and this puts additional strain on secrecy requirements.

Additional challenges to botnets are created by varying operating systems on
victim computers, changing network conditions, virus scanners and intrusion
detection systems and legal attacks against their command and control channels.
Once the CC analysis has been published, interested parties can create new
IDS rules and antivirus detection routines (Binsalleeh et al., 2010).

2.2.2 Evolution of Malware Command and Control

Malware employs wide variety of command and control channels. Many develop-
ments in malware command and control predate development of configuration
management systems.

The first malware command and control (CC) channel was introduced by Shoch
and Hupp in their worm titled “worm”. “Worm” also contained a kill switch, a
feature allowing its controllers to disable and delete all running versions of the
worm. (Chen and Robert, 2004) The existence of a kill switch has later become
an important feature of malware to prevent collateral damage, prevent capture
of malware samples by the defenders and for avoiding unwanted attention
related to excessive propagation.

Some early botnets used Internet relay chat (IRC) as a control channel. Eggdrop
was one of the first to use IRC based command and control in 1993 (Barford
and Yegneswaran, 2007). Binsalleeh mentions Agabot, SDBot and SpyBot
as examples of malware using IRC CC. Network operators can attempt to
automatically detect botnet activity, making uncommon protocols hard to hide.
This has made HTTP a tempting choice for bots such as BlackEnergy, Rustock
and clickbot (Binsalleeh et al., 2010).

Gu, Zhang and Lee (2008) consider IRC a push architecture, because commands
are immediately sent to slaves as the botmaster sends them. It should be noted
that in the client-server architecture, the slaves (bots) are still clients when
they connect to the IRC server. This way, they can access the master through
NAT and firewall. Gu, like the author, considers HTTP a pull architecture, as
slaves periodically download a set of instructions from the server.

For a truly distributed operation, some bots have adopted peer-to-peer (P2P)
architecture. In P2P, slaves connect to each other without a central server. In
the TCP/IP sense, each node can act as either server or client, as dictated by
network conditions. Dittrich and Dietrich (2008) name Peacomm and Nugache

49

as examples of P2P botnets. In addition to the lack of server as a single point
of failure, he mentions the small network footprint and unpredictable traffic
patterns as additional benefits.

Naz was the first bot using social network as a CC channel. It uses steganogra-
phy to hide control messages on Twitter, pretending to be a human user. Other
social networks and third party services could be used as a CC channel by new
botnets. (Kartaltepe et al., 2010)

CryptoLocker and similar software encrypt user files and extort for money. The
ransom must be paid in Bitcoin to receive the key to decrypt the files. Modern
encryption extortion can even work without a traditional CC network, as the
password is passed across for the human victim to type in after the criminals
have received payment.

The arms race between criminal botnet operators and their human adversaries
is driving botnet architectures forward. The heterogeneity of victim computers
and target networks puts additional demands on botnet CC development. The
sheer size of most successful botnets (including millions of slaves) dwarfs the
most benign configuration management systems.

Compared to benign configuration management, many developments in mal-
ware CC have happened much earlier. The first known worm existed before
the Internet, when the Creeper system spread through Arpanet in 1971, the
predecessor of the Internet (Chen and Robert, 2004). The first configuration
management systems were in production in the 1980s, almost a decade later.

Fast development of malware CC can also be seen in modularized toolkit
approach. Modularization was introduced to malware in the second wave
during 1990’s (Chen and Robert, 2004). Toolkits, such as Virus Creation Lab,
allowed individuals with low technical skills to create tailored malware (Chen
and Robert, 2004). Toolkit based offensive approaches are sold and used both in
the criminal underground (Alkhateeb, 2016), law enforcement and intelligence
operatives (Lemay et al., 2018) and penetration testers.

Modularization is a continuing theme in malware. It allows the separation of
concerns, reduces footprint and loss of tools on capture. The cycle from new
vulnerability to abuse and patching is becoming shorter. Modularisation helps
to adapt to this cycle, as payload (including command and control channel)
can be combined with new infection vector as soon as old ones are patched
against.

As many advanced botnets have been reverse engineered and described in
publicly available articles, it will be interesting to try applying this information
to normal enterprise configuration management tools.

50

2.3 Conceptualizing Attacks

2.3.1 Survivability

Survivability is the capability of a system to fulfill its mission - in short, its
business purpose - in the face of challenges. These challenges or faults include
attacks by human adversaries, system failures, accidents and failures of large
parts of the network infrastructure (Mead et al., 2000, p4; Fung et al., 2005, p1;
Sterbenz et al., 2010, p1247–1248). These challenges or faults are often meant
to cover all possible damaging events to the system (Mead et al., 2000, p4).

The business purpose of the system is essential when evaluating survivability.
Even if individual components stay functional, the system has failed if it fails
to provide the service it was designed for (Ellison et al., 1999, p55). Sometimes
the concept of survivability can be used in a narrower sense. For example,
according to Sterbenz et al. (2010, p1247) survivability can be classed under
the umbrella terms robustness and challenge tolerance. In this work, I use the
term survivability according to its wider definition of surviving any external or
internal faults to fulfill the mission of the system.

The identification of essential services is the key concept of survivability (Ellison
et al., 1999, p58). According to Ellison et al. (1999), essential systems are those
that either are required for meeting the mission requirements or those whose
failures threaten the system. A configuration management system obviously
meets these criteria: the compromise of the configuration management system
results in the full compromise of all controlled systems. Also, without the
configuration management system it becomes difficult or impossible to react to
a changing environment and threats in a timely manner.

A configuration management system could be further divided into essential
and non-essential parts. To fulfill its mission, a configuration management
system must be able to define configuration, transfer it to agents and apply
configuration there. It could be argued that some features are useful but non-
essential. Help screens, testing and debugging capabilities might be considered
such non-essential functionality.

Survivability analysis is the process of identifying components susceptible to
attacks, then quantifying the capability for surviving these attacks (Fung et al.,
2005, p1). One method of identifying suitable targets for attack is the attack
tree method.

51

2.3.2 Attack Tree

The attack tree is a method of systematically categorizing all methods by which
the system can be attacked (Schneier, 1999; Mauw and Oostdijk, 2005). Attack
trees were originally introduced in an article by Schneier (1999; Mauw and
Oostdijk, 2005).

Attack tree takes the view of an attacker, and starts with the goal of com-
promising the target system. This is the root node of the tree. This node is
then divided into subnodes by splitting the problem area. Each subnode is
further split until all attacks have been enumerated. Each branch can consist
of parts of an attack, all parts of which must be achieved (AND), or consist of
alternative avenues of attacks (OR). (Moore, Ellison and Linger, 2001, p4–6)

For example, consider an attacker with the goal of penetrating a web server.
The attacker could attempt to attack the server directly or perform a client
side attack by targeting the administrator’s workstation. A direct server side
assault could attack the logic web application or the underlying software stack.
To compromise the web application, one of the OWASP 10 (Phil et al., 2014)
attacks could be used. Splitting these attacks into finer detail, all avenues of
attack against the server can be listed.

Even though attack tree is a useful tool for enumerating possible avenues of
attack, it does have some limitations. Attack trees do not necessarily directly
lead to an enumerated set of hardening options (Dewri et al., 2012, p1). Dewri
et al. (2012, pp 2) suggests adding security controls to protect against these
attacks, but points out that this does not usually protect against unknown
vulnerabilities. According to Hariri et al. (2003), using attack trees can miss or
mark impossible some vulnerabilities that are yet to be discovered. However,
even though a practical implementation of a vulnerability has yet to be found,
the user of an attack tree could still identify a component as a target of attack
or even the general category of attack.

In this work the preference is to re-evaluate and improve configuration manage-
ment system network architecture to reduce the attack surface, thus removing a
whole category of attacks instead of introducing a new layer of security controls.
In case this is not possible, new security controls are a second choice.

A configuration management system is a highly valuable target. Compromising
the master would grant full, unlimited control of all agents. In organizations
that have fully adopted configuration management systems, this would mean
full control of all computers and all the data held by them. In addition to
providing this access, a configuration management tool by its nature provides
an efficient tool to perform a wide range of activities on those systems without

52

installing additional tools.

2.3.3 Stage Models for Attacking Computer Systems

2.3.3.1 Cyber Kill Chain Cyber kill chain lists the main phases of a
cyber attack, from reconnaissance to reaching the objectives. The phases are
shown in table 14. As the attack is a chain, disrupting any phase will stop the
attack. Because even advanced attackers must work economically, they are
pushed to re-using parts of previous attacks, creating indicators defenders can
use. By taking a threat focused approach and intercepting attackers at the
earliest possible state of the cyber kill chain, defenders can regain advantage in
this adversarial game. (Hutchins, Cloppert and Amin, 2011)

An original paper by Hutchins, Cloppert and Amin (2011) calls this phase
based model “intrusion kill chain”, but their employer, Lockheed Martin, later
trademarked the same model as cyber kill chain. For each step, Hutchins et
al. also take the defender view, pointing out steps to detect, deny, disrupt,
degrade, deceive and destroy intrusion attempts. They heavily critique what
they saw as conventional wisdom at the time: “The conventional incident
response process initiates after our exploit phase, illustrating the self-fulfilling
prophecy that defenders are inherently disadvantaged and inevitably too late.”

Table 14: Cyber Kill Chain (Hutchins, Cloppert and
Amin, 2011)

Phase Explanation

Reconnaissance Target selection, passive
reconnaissance, active reconnaissance

Weaponization Combine exploit with backdoor
(payload) to create weapon

Delivery Send the weapon (exploit+backdoor)
to target

Exploitation Exploit a vulnerability
Installation Install backdoor
C2 Typically compromised host connects

to controller over the Internet, “hands
on keyboard” access to attackers

Actions on Objectives The raison d’etre for the whole
operation: violate confidentiality,
integrity or availability of breached
system; or move laterally

53

2.3.3.2 Critique and Expansion of Cyber Kill Chain In my view,
Hutchins’ (Hutchins, Cloppert and Amin (2011)) cyber kill chain seems to be
heavily influenced by spear phishing as an attack vector. In spear phishing,
attackers send carefully written malware emails to small group of targets. All
of the three examples in the paper use spear phishing, and journal editor also
introduces the article as being about “malicious emails”. Even though the
model is useful for any common computer intrusion, some common attacks do
not quite fit into the steps.

Consider an attack against server software using Metasploit, a popular cyber
weaponization and penetration testing tool. Typically, an attacker selects
an attack (“use exploit/windows/smb/psexec”), target host (“set RHOST
10.0.0.1”), and a backdoor (“set payload windows/shell/reverse_tcp”). This
concludes the “weaponization” phase. When the attacker commands (“exploit”),
Metasploit connects to the target, exploits and installs the backdoor - all in
a single step. Thus, a single command would contain phases the “Delivery”,
“Exploitation” and “Installation”.

The active, intelligence driven security model is suitable for organizations
large enough to justify the effort, but its usefulness for individuals and small
organizations seems limited by the amount of work it requires. To collect and
compare indicators and catch attackers in an early phase, continuous monitoring
and analysis effort is required. As the threat model, APT, is described as a
manual attack by a proficient and well funded adversary, a small organization
might avoid being targeted when attackers focus on more valuable victims.

2.3.4 MITRE ATT&CK

MITRE ATT&CK (MA) is a post-exploit model for cyber attacker tactics,
techniques and procedures (TTP). MA defines 11 tactics as the interim goals
attackers must reach, such as persistence or lateral movement. The tactics are
listed in table 15. A large number of techniques represent how attackers reach
these goals, e.g. creating a scheduled task or using Windows Administrative
shares. Use of these techniques are linked to groups and the malware they use.
Strom et al. (2017) Widely used techniques are listed under each tactic to
create an ATT&CK Matrix (Mitre, 2019).

MA is based on the real life use of these techniques, and multiple examples
of real life attack campaigns are listed for each technique (Mitre, 2019). The
content of MA keeps changing based on public threat intelligence. After
the initial release, there have been modifications to all major aspects of MA,
including tactics, techniques, platforms and technology domains. MA does
not attempt to enumerate all attack vectors, but MITRE recommends their

54

CAPEC and CWE for that. (Strom et al., 2018) The 2019 version of the matrix
starts from the exploit phase (“Initial access”), and the earlier phases have
been published as MITRE PRE-ATT&CK.

Table 15: ATT&CK tactics and examples (Strom et al.,
2017)

Tactic Examples

Initial Access Drive by compromise, spear phishing
Execution Malicious files (pdf, doc vulnerabilities), trojan
Persistence Scheduled task, browser extensions, startup items
Privilege escalation File systems permissions, UAC, setuid and sudo

bypasses
Defense Evasion Disable antivirus and firewall, deceptive filenames
Credential Access Keyboard logging, brute forcing
Discovery Network sniffing, enumerating local accounts
Lateral movement Windows Administrative shares, pass the hash
Collection Video capture, collect documents from file system
Command and Control Custom encryption inside https, domain

generation algorithm
Exfiltration Encrypt exfiltrated files, schedule to business

hours
Impact Overwrite hard drive, DOS attack over network

Even though ATT&CK and its updated versions have been published in non-
peer reviewed technical reports and white papers by MITRE, a non-profit
corporation, it has been used as the basis of peer-reviewed conference papers.
Maymi et al. (2017) developed a semantic adversary model for machine learning,
but found it easy to map their operational graph to ATT&CK. Al-Shaer, Ahmed
and Al-Shaer (2019) performed statistical analysis using ATT&CK database
and taxonomy. Farooq and Otaibi (2018) propose using machine learning to
reduce false positives. They have chosen MA and Common Attack Pattern
Enumeration and Classification (CAPEC) as their main taxonomies. Farooq and
Otaibi (2018) see cyber kill chain as too generic for actual attack classification,
a view shared by the authors of ATT&CK. The industry has exclusive access to
most primary sources of information such as incident response data and large
databases of historic samples, and they often have capabilities not available to
even academic research groups (Lemay et al., 2018). In his survey of advanced
persistent threats, Lemay states that “there is no alternative to using industry
sources”, even though he points out the obvious downsides of using sources not

55

validated by the peer review process.

2.3.5 Comparing Cyber Kill Chain Model with MITRE ATT&CK

The cyber kill chain model in its many layman adaptations is established by
analyzing cyber attacks and penetration tests. Even though this provides a
simple model that helps to understand the general stages of an attack, it does
not provide enough detail to categorize attacks or plan penetration tests or
attacks. The steps listed in cyber kill chain (CKC) should be present in most
attacks. For example, leaving out reconnaissance or exploitation would not be
likely to result in a successful and stealthy attack.

MITRE ATT&CK is post-exploitation, based on an “assume breach” mentality.
It originally expanded the last three stages of the cyber kill chain (installation,
command and control; and actions on objective) to ten tactics. (Strom et
al., 2017). The latest MITRE ATT&CK framework (MA) contains the last
four stages of the cyber kill chain, as the exploit phase is expanded “initial
access” and “execution”. (Mitre, 2019) MITRE has also published MITRE
PRE-ATT&CK (MPA) that covers the pre-exploitation part. In the cyber
kill chain, the pre-exploitation consists of reconnaissance, weaponization and
delivery. MITRE PRE-ATT&CK also covers areas that are not in scope of
the cyber kill chain, such as continuous development of the adversarial groups’
capabilities and infrastructure. Similarly to the cyber kill chain, MITRE PRE-
ATT&CK also provides detection and mitigation steps for each adversarial
tactic. The weaponization phase of the cyber kill chain seems difficult to detect,
even though authors state that each stage can be defended against. One take on
combining these popular stage models is Pols (2017) 18 step Unified Kill Chain.
Even though its detailed steps could help to analyze attacks, many of those
would not map well for searching for similarities in malware and configuration
management systems.

In table 16, I propose one way of mapping the seven phases of the cyber kill chain
to MITRE ATT&CK and PRE-ATT&CK stages. Some MITRE ATT&CK
stages could apply to multiple cyber kill chain stages, such as defense evasion.
This table is based on a version of ATT&CK framework before “Reconnaissance”
and “Resource Development” were moved to MITRE Enterprise ATT&CK
Matrix and PRE-ATT&CK was deprecated in October 2020.

56

Table 16: Mapping Cyber Kill Chain to MITRE ATT&CK
(MA) & PRE-ATT&CK (MPA) model tactics

Cyber Kill Chain MITRE

vn/a MPA: Adversary OPSEC, establish & maintain
infrastructure, persona development

1. Reconnaissance MPA: Priority definition planning & direction; target
selection; technical, people and organizational -
information gathering and weakness identification

2. Weaponization MPA: Build capabilities
3. Delivery MPA: Stage capabilities
4. Exploitation MA: Initial access, execution
5. Installation MA: Persistence, privilege escalation, defense evasion
6. C2 MA: Command and Control
7. Actions on
Objectives

MA: Collection, exfiltration, impact, credential access,
discovery, lateral movement

This thesis utilizes methods used by criminals and applies them to benign
enterprise configuration management tools. Earlier in “Evolution of Malware”,
I examined the methods used by specific popular malware and the generic
categories made by employment of these methods. In this chapter, I will
integrate the established cyber kill chain model with the MITRE ATT&CK
model. Even though both of these models are created with hostile activity in
mind, I will take my comparison of malware and CM goals and apply it to
both cyber kill chain and ATT&CK. As ATT&CK details specific methods, the
results of these steps could be implemented in test programs. The existence
of analyzed malware case examples allows us to evaluate the likelihood of
the success of these techniques without costly implementation, testing and
simulation. Thus, only the best candidate techniques will be chosen for further
implementation and testing.

2.4 Conclusion

With modern configuration management tools, administrator can define infras-
tructure as code. The target state is defined, and the configuration management
tool only makes changes if needed. This quality is called idempotency. Config-
uration management system can provide single source of truth of the state of
all controlled computers.

The key concepts of configuration management have been developed earlier
than commonly thought. The challenges of increasing systemic complexity in

57

networked computing systems have been identified already in 1940s. In 1980s,
some concepts of modern configuration management systems were already
present in project Athena in 1980s, and papers identifying the concepts of
modern configuration management were published. The earlier works use
their own names for the key concepts, which might be a reason why these
are sometimes omitted in literature reviews. As a research field, configuration
management is still small.

Literature identifies multiple gaps and areas for future research that are of
interest to this work: security, scaling, defining configuration, empirical val-
idation and integration. Configuration management system allows full and
unlimited control of the slave nodes. Thus, administrator access to configura-
tion management system grants full access to anything else of value among all
nodes participating the system. It’s surprising that there is so little research on
security of configuration management systems. Lot of research has concentrated
on tools and using a domain specific language for configuring the slave node.
Some of the complications of DSL seem to rise from challenges inherent to the
DSLs themselves. Solutions should be empirically validated, and many authors
call for more empirically validated research.

Real life configuration management tools must usually communicate over hostile
and untrusted network, the Internet. It’s surprising that this area has not been
the focus of more studies. A direct connection between master and slave is
proposed or implied in many publications. This leads to identifying exactly
two architectures - push and pull - depending on which side, master or slave,
is running the server. The same approach is taken by industry leading and
most cited configuration management tools Puppet, Chef, Fabric, Ansible, Salt
and CFEngine. To further protect this network communication, the use of
virtual private networks (VPN) and blockchains have been proposed. As soon
as attacker compromises one slave node, he can use VPN connections to identify
and directly attack master. Compromise of master leads to compromise of
all nodes in the system. These attacks can be timed so that a timely expert
human response is unlikely, such as nights and holidays. Blockchain based
solutions considered here did not have the focus of protecting master secret key,
did not detail all relevant aspects of key management, and did not extensively
show the benefit of using blockchains and smart contracts compared to simpler
approaches.

Criminal malware command and control (C2) has evolved very fast due to
pressures in the field. Continuous arms race between defenders and attackers has
resulted in focus on security and many improvements and alternative solutions
for secure network communications. Improvements in malware command and

58

control predate similar improvements in configuration management systems.
The lack of empirical research has been identifed as a gap in configuration
management systems research. But for malware, there are many examples of
huge networks controlling millions of heterogeneous nodes. This provides field
tested examples that could be applied to configuration management systems.
Concepts used in the field for malware C2 include internet relay chat (IRC),
direct socket connections, HTTP, HTTPS, use of innocent third party and
peer-to-peer communications.

Cyber attacks are well conceptualized. The cyber kill chain and ATT&CK
framework are established stage models. They can be used for both planning
attacks and defences. Stage models identify the steps any attacker must take
to successfully reach business goals of the operation. For example, attacker
must survey the target to find a working method to exploit the system. These
models have similar stages, allowing linking between the models.

59

3 Methodology

The aim of this thesis is to explore survivability of configuration management
systems. This is done by identifying and adapting methods successfully used
by malware. Based on design science and a constructive research approach, two
research prototypes were developed. These artifacts were then validated using
multiple methods in two case studies and testing in emulated and simulated
environments. These technical tests in simulated and emulated environments
shed light on the research prototypes themselves, but also compared and
contrasted them to a leading solution in the industry. Case studies validated
the research prototype in the field. Business benefits stemming from technical
advances were evaluated with semistructured expert interviews.

This chapter presents a constructive methodology that will be used to answer the
research question RQ4 in chapter “Designing Hidden Master Architecture”; and
RQ5 and RQ6 in “Evaluating and Validating the Hidden Master Architecture”.
These research questions of interest are listed in table 17. The theoretical
foundations for creating the research prototypes were laid in the literature
review by creating a new stage model (RQ1), choosing promising resiliency
techniques (RQ2) and examining the possibilities of simplifying idempotent
configuration (RQ3).

Table 17: Research questions of interest in “Methodology”
chapter.

RQ Explanation

RQ4 How can these techniques and concepts be implemented in a functional
prototype?

RQ5 Based on load simulation, faulty network emulation and attack tree
analysis, how does the resiliency of the configuration management
software prototype - implementing some of the techniques adapted from
malware - compare to a leading industry solution?

RQ6 What utility do the models and the research prototype provide when
run in field environment with business requirements?

3.1 Research Philosophy

Constructive research means building an artifact (construct) to solve a domain
specific problem to create knowledge of how this problem can be solved in
principle. The results can have both practical and theoretical relevance. Con-
structive research methods are fundamental to engineering and the sciences

60

when working with formation, modeling and using artifacts. (Crnkovic, 2010)

A design science paradigm is compatible with a constructive approach in
its main features. Both approaches seek to create and evaluate constructs.
Constructive research could even be seen as a subset of design science with a
clear requirement for instantiations, such as computer programs. (Piirainen
and Gonzalez, 2013)

Design science is a problem solving process. It consists of building an artifact
and evaluating it. Design science is, by its nature, iterative. The two processes
of building and evaluating artifacts can be seen as a cycle. Both process and
artifact are part of the design. The artifacts are constructs, models, methods
and instantiations (working prototypes). Constructing a working instantiation,
such as a software prototype, proves that such instantiation can be built. This
“proof by construction” demonstrates the feasibility of both process and the
product. (Hevner et al., 2004)

Epistemology is the study of knowledge, determining what is true and how the
truth can be acquired. Use of design theory and a constructive approach do
not strictly dictate epistemology. Piirainen and Gonzalez (2013) note the use
of design theory does not have to depend on any particular epistemology, and
could even be based just on the utility of the construct. They state that in
their view research can contribute to theory while providing utility. According
to Hevner et al. (2004), truth and utility are “two sides of the same coin”.
They consider practical implications to be an important criterion for validating
science.

In constructive epistemology, researchers construct new scientific knowledge.
This is different from the positivist idea of finding out existing truth from the
world. (Crnkovic, 2010) Design science can be seen as proactively creating
new technology, in contrast to behavioral science paradigm’s reactive approach
(Hevner et al., 2004). Design science literature has a pragmatist leaning
(Piirainen and Gonzalez, 2013).

3.2 Rationale

In design science, a constructive approach is suitable both for acquiring knowl-
edge of the complex challenge of resiliency, and also to tie the technical results
to their business utility. Resiliency in the face of both human hostility and
environmental unreliability is a complicated matter. Design choices carry
trade-offs, and might close out other options. Some design choices might work
better together than others. Even though theoretical thinking has its value,
validation of an actual instantiation (artifact, construct) can provide insight

61

not reachable with just models. Case study in a realistic field context will also
validate the utility against real life business requirements. This makes design
science or constructive research approach suitable here.

Design science applies existing knowledge when solving problems by designing
artifacts (Peffers et al., 2007; Hevner and Chatterjee, 2010; Piirainen and Gon-
zalez, 2013). The theoretical basis for the work was built in chapter “Literature
Review and Related Work”, where a model for comparing malware and config-
uration management was proposed (RQ1), potential resiliency techniques were
listed (RQ2) and some background on idempotent configuration was sought
(RQ3).

The design science approach advances knowledge by creating and validating
artifacts Crnkovic (2010). Following design science, using a constructive ap-
proach, a research prototype was developed. In the context of the approach,
this could be called a construct, artifact, or more specifically, instantiation. As
both the process of design and the artifact are part of the design (Hevner et
al., 2004), they can both contribute to new knowledge. In chapter “Designing
Hidden Master Architecture”, the two prototypes were designed. That design
considered the tradeoffs of different architectural decisions, the subsystems and
components of the program, and protocols and interfaces between the parts.
Simplified idempotent configuration (RQ3), initially considered in literature
review, was fully developed there. The implementation chapter answered RQ3
and RQ4, and provided the construct that was validated using mixed methods.

When design science is applied to information systems, evaluation can consider
either the technical performance of the system, the overall usefulness to the end
user, or both (Hevner and Chatterjee, 2010). In this thesis, I evaluated both
technical qualities (RQ5) and end user utility in a business context (RQ6). The
evaluation of technical aspects requires different tools and methods compared
to evaluation of business utility. Due to this, the study used mixed methods.

Technical aspects of the two research prototypes were evaluated using simulated
and emulated networks, with scenarios emulating different use cases and error
conditions. Business utility was evaluated in a case study in a company
managing and monitoring IoT devices in remote locations controlled by its
customers. A smaller case study was created to support and prepare for the
main case study.

Technical evaluation uses simulation and emulation, with qualitative analysis
of the metrics collected. Case studies combine quantitative analysis of the
technical environment and qualitative study of expert interviews.

62

3.3 Research Design

Utilising the pragmatism of design science, constructive research used multiple
methods to evaluate the construct in order to find out how configuration
management system resiliency and survivability can be improved. Table 18
shows the activities which were undertaken to answer the relevant research
questions. RQ1, RQ2 and RQ3 have been answered in literature review.

Table 18: Mapping empirical research questions to meth-
ods

RQ Explanation Method

RQ4 How can these techniques and
concepts be implemented in a
functional prototype?

Constructing two research
prototypes

RQ5 Based on load simulation, faulty
network emulation and attack
tree analysis, how does the
resiliency of the configuration
management software prototype -
implementing some of the
techniques adapted from malware
- compare to a leading industry
solution?

Simulation and emulation
testing in virtualized
environments, quantitative
analysis. Multiple tests in
different environments.

RQ6 What utility do the models and
the research prototype provide
when run in field environment
with business requirements?

Two case studies, qualitative
and quantitative analysis

RQ7 What potential business benefits
experts see for the models and the
research prototype?

Semistructured expert
interviews

3.4 Design and Construction of the Prototype

Constructing the two research prototypes provides the constructs for validation
in the next phases, but it also describes the process and reasoning for design
choices. The first simple prototype was a set of scripts under 100 lines of
code. It used an existing, leading CM tool Puppet, but replaced the transport
mechanism with an implementation of the Hidden Master.

An advanced prototype was also developed. It was a fully self-contained,
dependency free tool that can be distributed as a single binary. This prototype

63

is over 4000 source lines of Go. As it is pure Go, it can be statically linked for
multiple operating systems and CPU architectures, even though it is currently
only for Linux amd64. The binary contains builtin support for Python-based
configuration language, cryptographic functions and networking. This advanced
prototype was used in the two case studies.

Prototype design and implementation is in chapter “Designing Hidden Master
Architecture”.

3.5 Technical Evaluation with Simulation and Emulation

Technical evaluation was used for measuring the capabilities of the software
prototypes, and to compare and contrast them against a leading configuration
management tool.

Software developers use different types of testing throughout the development
process, and developing the advanced prototype was no different. Unit testing
is used by programmers to test the correct operation of functions and classes
of software, and these tests are usually written in the course of programming.
For the advanced prototype, over 700 lines of code were unit tests. In this
work, unit testing is considered part of the implementation and not part of the
evaluation.

The software prototypes implementing the Hidden Master architecture were
tested in both single machine tests and in an emulated network. For key tests,
comparison was performed against one of the leading configuration management
tools. Because my threat model for configuration management involves an
unreliable and untrusted network, many tests were network based.

The difference between simulation and emulation is not always completely clear.
Keti and Askar (2015) call Mininet both emulator and simulator in the same
paper. When computers are pretending to be other computers, it is difficult
to draw the line between which models are different enough from real life to
be called simulation. With more hands on physical phenomena, the difference
is easier to define. In his paper on material handling, Brooks, Davidson and
Gregor (2014) defines simulation tools as those that merely approximate the
real world, trying to make savings in computations and time; and emulation is
that which just runs the real logic without real equipment.

The gradient nature of emulation versus simulation can be shown with examples
from tests taken in this work. To measure the capability to withstand load,
the agents were simulated by a single load-testing application that generated
many network requests, which could be called simulation. Another test ran full
operating systems with emulated hardware using VirtualBox - an emulated test.

64

Tests running on containers, such as Docker, could be considered emulation as
they ran the real software, even if the software had to sometimes use uncommon
settings to adapt to a lighter environment.

The specific tests started from evaluating the feasibility of the HM concept,
to undertaking simple research and finally arriving at the advanced research
prototype. The advanced research prototype and some industry leading software
were then tested individually in various adverse conditions. The software chosen
for comparison were researched in chapter “Leading Configuration Management
Tools”.

Industry leading tools require direct connection between master and agents,
and thus require master secret keys to be constantly on network connected
machines. As the master secret key allows immediate and complete access
to all agents, this is highly valuable. HM breaks the assumption of direct
master-agent connection, providing much better protection for CMS and the
controlled machines. This aspect was analysed using attack tree analysis.

3.5.1 Tests Performed in Emulated and Simulated Environments

• Proof of Concept (PoC)
• Golden Path
• Load Test

Effect of Network Faults

• Virtual environment with fault injection
• Effects of Adverse Network Conditions to Salt
• Effects of Adverse Network Conditions to wget (HTTP)
• Effects of Adverse Network Conditions to SSH
• Comparing the Results of Adverse Network Conditions
• Comparing Memory Consumption and Resiliency Under Load

The Hidden Master architecture allows us to discard the requirement of direct,
near real time two-way connection between master and agent. The asynchronous
and file based nature make it possible to swap the transport layer. It was
tested if the advanced research prototype could survive when the upstream
internet was disabled, the network was partitioned and did not have a clear,
pre-planned topology. For this, the transfer layer was changed to Syncthing
peer-to-peer (P2P) communication. Another experiment tested swapping the
transport layer from physical medium transferring encrypted catalogs to an air
gapped network.

• P2P Operation in Shattered Network
• Air Gapped Operation

65

3.5.2 Requirements for the Simulation Environment

To give useful and realistic evaluation, the simulation environment should be
able to run actual code in each node, generate regular network traffic and
route it between nodes. Multiple experiments include problems in the network.
The simulation environment must be able to simulate packet loss and varying
latency (jitter) in a controlled way.

Scaling to larger environments brings with it new problems that do not exist in
smaller, simpler networks (Gyarmati et al., 2013). The simulation environment
should be able to simulate at least tens of machines on regular commodity
hardware. If a test with hundreds of machines were possible, it would be
beneficial. As some leading CM tools implement their own transfer protocols,
creating a test load of multiple agents might require the actual running of these
agents. This is in contrast with the use of plain HTTP file transfers in the
research prototype, where standard web load testing tools could be used.

Even if the simulation of very large number of machines was made feasible by
using very light containers, RAM requirements of the configuration management
tool being tested might still limit the maximum number of test nodes. To
achieve greater efficiency, for example lower use of memory, light containers
make optimizations which make the containers less like real computers. As the
leading configuration management tools have a large number of dependencies,
this could make it difficult to install them when containers are very light.

For questions requiring a numerical answer, tools for gathering and processing
the measurements had to be created. As far as possible, this was done by
combining and applying existing tools and libraries. Such questions included
the level of adverse conditions tolerated, such as maximum level of tolerated
jitter or packet loss. Also the scalability of the systems was measured, such as
the number of agents served by a single master under limited memory.

The requirements for the simulation and emulation environments are in table 19.

Table 19: Requirements for Simulation Environment

Requirement Scenarios

Network All but PoC
Fault injection (packet corruption, loss. . .) Adverse network conditions

tests
Command time measurement Adverse network conditions

tests
Traffic generation Load test (for the research

prototype)

66

Requirement Scenarios

Light containers Load test (for industry leading
CM tools)

Proof of concept testing was performed using a single Linux computer, using
local directories to simulate different computers. Planned testing environments
for different scenarios are listed in table 20.

Small networks with only a couple of nodes and simple topology are easy
to create with full virtual hosts. Common choices for testing are VMware,
QEMU and VirtualBox. Virtualization solutions for production, such as Xen
and KVM, were not considered. Both QEMU and VirtualBox have Free (by
FSF definition) licenses. VirtualBox was chosen because it performed well on
target OSes and was easy to automate with IaC tool Vagrant. Automating the
creation of a virtual environment made the tests repeatable. As each operating
system runs its own kernel, has its own RAM and emulated hardware, only a
limited amount of hosts can run on a single physical computer. In our tests,
the performance with full emulation depends on the required RAM memory,
but seriously degrades after 5-10 nodes.

Larger number of nodes can be simulated using containers. Containers, such
as Docker, are similar to full virtual machines in that they create the illusion
of a separate computer. However, many resources, such as kernel, are shared
between different containers. This makes containers much lighter, thus allowing
a larger network and more nodes on the same computers. Popular container
technologies include Docker, VServer, OpenVZ and LXC.

Mininet was considered and initially tested as it provides software defined
network (SDN) capabilities with Python API, making it easy to create different
network topologies, and add packet loss and jitter. In the initial tests, without
any CM agents, Mininet (mn) was able to run 500 nodes on a commodity
Linux desktop computer when no software was constantly running on the
nodes. The initial tests ignored many practical considerations, which were
left to the evaluation phase. Such considerations included separation of the
container process space, separation of the container file systems and the RAM
requirements of the actual software being run. Even though most of the
challenges with MiniNet light containers could be solved, ultimately the industry
leading tools did not run reliably enough in MiniNet containers. To create a
fair test without undue influence from the testing environment, Mininet was
not used for the tests.

Docker (also known as Moby) is a popular container technology. Containers

67

are defined as Dockerfiles, using Docker’s own DSL. Thanks to pre-built initial
images and caching, containers are faster to build and start than full VMs.
Docker DSL is built around the idea of running one main application, which
requires some changes to how the tested applications are run. However, these
minor challenges were solved, and Docker proved capable of running the tested
applications reliably for load testing. Docker was chosen as the container
platform for load testing.

Table 20: Tools for different experiments

Tools Scenarios

Vagrant, VirtualBox PoC, Golden Path, Load Test, Fault
Injection, P2P

Docker Load test
Apache Bench (ab) Load test
Netem Adverse network effect tests
SSH, bash All tests
Bash scripts Adverse network effects tests, load

test
Python and libraries matplotlib,
pyplot json, pandas, logging, argparse

Adverse network effects tests, load
test

Debian 11 Bullseye Linux All tests
Fedora IoT 33 Linux, Ubuntu 18.04
LTS Linux

Preparation for case studies

3.6 Field Evaluation in Case Studies

Field validation connects the ideas and their instantiations to business utility.
The advanced research prototype was tested in two case studies. In a smaller
case study, the prototype was used to monitor and evaluate 23 manual system
installations. In a larger case study, the prototype was tested in a realistic
company environment to evaluate its business utility.

Validation of the construct is an essential part of the constructive method
(Hevner et al., 2004; Crnkovic, 2010; Piirainen and Gonzalez, 2013). In both
design science research and the constructive research approach, a construct
(often called “artifact” in design science) is created based on real life problems
and then evaluated. Theoretical contributions are identified and communicated.
(Piirainen and Gonzalez, 2013)

The Hidden Master architecture and other novel ideas were implemented in a
research prototype. Field validation aimed to answer RQ6: “What utility do the

68

models and the research prototype provide when run in field environment with
business requirements?”. Case studies were also expected to provide additional
or supporting information for other areas. Indeed, case studies were expected
to show if the design and implementation studied in the laboratory testing as
part of RQ5 also adapt to complex and unexpected environments dictated by
business requirements. Together with laboratory testing, case studies tested
the features - the potential business benefits of which were later identified and
evaluated in expert interviews.

3.6.1 Smaller Case Study

When the advanced prototype had only been tested in the laboratory, an
intermediate step was needed before the main case study. Deploying the
software in a production network, asking third parties to develop an advanced
configuration and to operate it would not only be laborious, but might also
pose unexpected risks. Thus, a smaller case study was performed in a smaller
environment.

As a laboratory testing was by its nature is limited, it would also need to
be tested if the system could adapt to varying real life conditions. Different
operating system installations run by different operators could be faulty or
in unexpected states. Network conditions could differ, and it was later found
that networks in this smaller case study had multiple complications, such as
multiple network address translations.

A course on Linux and Free software was partly evaluated by a multi-hour
hands-on exercise. Due to the corona pandemic, this exercise could not be done
in computer laboratories, which created a challenge for monitoring progress
and evaluating the final result. The participants gave their informed consent
to join the study. The results are presented so that the details of individuals
are not visible. Remote monitoring and evaluation was done using Conftero,
the advanced research prototype.

Based on a hypothetical business case, the candidates installed Linux in a
virtualized environment, then proceeded to create users, install server and
client software and write simple applications to demonstrate that components
interoperated correctly. Participation in the research was voluntary. A fallback
system for collecting partial system information was created to make sure that
possible software bugs in Conftero would not risk evaluation.

Procedure for the case study

• Researcher sets up an intermediate courier/drop server in a rented cloud
VPS (virtual private server). This server does not need to be trusted, so

69

inexpensive cloud services can be used.
• Researcher generates a single binary installer that includes the campaign

key to join as an agent. This is a standard feature of the advanced
research prototype.

• Candidates download and run the installer. The authenticity of the
installer is verified by using a previously known address with a valid
HTTPS certificate. Certificate validity is verified by the lock icon on
browser address bar.

• Agents start automatically and periodically synchronizing with the
courier/drop.

• Researcher sends new tasks using the advanced research prototype. As
part of master syncs, reports from agents are automatically collected.

• Researcher sends a configuration that collects additional data from agents.
• Candidates are instructed to remove their exercise operating systems

when they are ready. Due to the Hidden Master architecture, the last
state of agents is already stored in courier and receivable by the master
later.

• Research synchronizes master with the courier/drop. Courier/drop in-
frastructure is destroyed when the exercise ends.

• Researcher analyses the data offline, on the master node. Agents and
agent node operating systems and the intermediate server and all data
they contain is deleted as they are no longer needed.

The information for this test was collected using the builtin facilities of Con-
ftero. This was possible because backchannel (agent to master) and reporting
capabilities were built earlier for the company X case study.

3.6.2 Deployed to Production System by Company X

The advanced prototype Conftero was tested in Company X. The company
develops embedded systems for audiovisual applications and cold chains, with
pre-emptive tuning using artificial intelligence. The goal of the study was to
see how Conftero adapts to real life applications in their test network. This
larger case study was part of answering RQ6: “What utility do the models and
the research prototype provide when run in field environment with business
requirements?”.

Earlier parts of this study were essential to perform this case study. The
concepts to be tested, such as the Hidden Master architecture, were developed
by using the stage model to compare malware and configuration management.
These were designed and implemented into two prototypes. The advanced
prototype was tested in a smaller case study. This larger case study took the

70

advanced prototype and applied it to the business requirements of a larger
case. The environment in this case was more complex both technically and
businesswise. The final step of this process, the identification and evaluation of
business benefits, used the previous phases to present the qualities and features
of which the business possibilities were then analyzed by experts.

The details of this case study was planned together with Company X manage-
ment. The case study happened in multiple phases:

• Scoping and planning
• (Feature implementation)
• Requirements gathering
• Deployment
• Wrap up

The main participants for the phases varied. All phases also had minor involve-
ment from other parties, such as programmers commenting on the work or
an individual providing some technical details of a system. The scoping and
planning phase in September 2020 was done with Company X management.
The scoping and planning phase also identified some features that were part of
the design but not as yet implemented, such as the backchannel from agents to
the master. Where a suitable case was provided to gain real life experience on
those features, they were implemented. Feature implementation was done by
the researcher during autumn 2020. Requirements gathering for the specific
case was done with the CTO. The CTO provided the major requirements and
explained the customer’s view. A junior administrator helped with the com-
pany’s standard requirements and systems. Deployment was performed with
the junior administrator during July 2021 using the advanced prototype, with
the research observing and participating undertaken by answering questions on
the prototype. This consisted of over 20 hours of observation and collection
of technical data with the prototype. CTO provided some higher level input
for the deployment phase. The wrap up meeting was in August 2021 with the
CTO and junior administrator.

Scoping and planning was performed to find a suitable business case for testing,
as well as to establish ground rules and a legal framework for testing and finding
agreement on project goals. Multiple business cases were considered before
choosing the multiroom AV system and related services. The business case
needed to be complicated enough to provide a chance to validate in a complex
environment, but simple enough to be limited in scale. As testing involved
running a very new code, the system needed to be such that they did not
cause risk to human health (such as cold chains) or large financial risk (sales
logistics). The case needed to be mature enough to allow for the possibility to

71

move from test to production environment. Because translating configuration
from one language to another is a simpler and a different task for developing
configuration, a case where new configuration was required was chosen.

Company X had strict requirements for security, reliability for client facing
services and confidentiality. This required agreements, and sometimes imposed
limits to the technical tests that were performed. After the research prototype
worked well in simulated environments and a detailed contingency plan was
created, Company X and their client allowed deployment of the advanced
prototype in their production systems.

Requirements gathering collected both low and high level requirements. Clients
(of Company X) views were relayed by the technology lead, and he also explained
the high level requirements. Junior system operator provided the details of
standard systems and their integrations.

The deployment phase involved participant observation of a junior system
operator developing, deploying and operating the code. This involved over
20 hours of participant observation. In wrap up, experiences and views were
collected.

It was originally expected that some of Company X’s embedded Linux systems
would be too light to run one of the leading configuration management tools,
but they had recently upgraded to more powerful IoT hardware.

Based on discussion on the requirements and the business case, multiple possible
test environments were recognized. One option was that the key exchange for
an IoT VPN system could be done with Conftero in order to remove a tedious
manual step for key verification. Another option was replacing and automating
remote management of a new brand of IoT devices in the customer’s premises,
to both make control and monitoring more reliable as well as reducing manual
work and errors.

A major feature, the back channel for reports from agents to the master, was
developed on the request of the case company.

The results of this case study are reported in Findings and Analysis.

3.7 Expert Interviews

Expert interviews were conducted to link technical contributions to their poten-
tial business impacts, and to gain a view on linking the technological aspects
configuration management to issues faced by practitioners in the industry.

Thematic analysis with live coding was used for identifying key concepts from
interviews. The main steps of the analyses were similar to those suggested by

72

Braun and Clarke (2006) in their highly cited article on thematic analysis: fa-
miliarization with data, generating initial codes, searching for themes, reviewing
themes, naming themes and producing the report. Even though transcription
is often considered a standard practice, it may be unnecessary or unwanted in
some cases (McMullin, 2023). Live coding, marking codes directly on video
or audio recording, may eliminate the need for transcription (Parameswaran,
Ozawa-Kirk and Latendresse, 2020). Live coding was used in this work.

Initial codes were generated from interview notes, and initial theme map was
created. Based on the initial codes and initial theme maps, the actual coding
was performed by tagging interview videos. For video tagging, VideoLAN Client
was chosen because it was able to play audio at various speeds without stutter,
and had filters to fix and normalize low quality or quiet audio. Interview videos
were coded using VLC video player and permanent bookmarks plugin, except
for where usable audio track was not available and coding was done on interview
notes. Coding was done using the codes improved from the initial coding, with
new codes identified on the second coding round added as they emerged. Based
on the main coding phase, the main theme map emerged. Finally, a report
was written with quotes to support the themes identified. The quotes were
translated from Finnish by the author of this thesis.

The contributions improving idempotent configuration and network architecture
can be readily implemented in software, and it is possible to make assumptions
about the expected business benefits of these contributions. These contributions
are the Hidden Master architecture, the use of imperative general purpose
language for idempotent IaC configuration, the resource revalidation model
and the simplified resource dependency models.

The technical validity of these concepts (OBJ3) was validated by designing and
constructing two prototypes (RQ4, OBJ4) and evaluating them in emulated
and simulated environments (RQ5, OBJ5). Applicability for realistic field use
was validated in a field test in a production environment in two case studies
(RQ6, OBJ6). In the main case study, interviews and observation also gave
indications of possible business benefits. The research questions and objectives
are listed in table 1.

Potential business benefits were evaluated in semistructured practitioner inter-
views. This provided the answer to RQ7: “What potential business benefits
experts see for the models and the research prototype?”(#researchQuestions)
(OBJ7). The technical qualities had been verified in earlier phases of the
research. As the research prototype was new code, it is not yet suitable for
large scale use in production environments where mistakes or programming
errors could cause huge losses or danger to human health. Thus, for some

73

benefits, the business impact had to be evaluated using interviews.

Interview questions and prompts were based on the expected benefits of the
key contributions, implemented in the two software prototypes. In addition to
interviews and observation performed in the course of the main case study, the
interview phase targeted 4-8 interviewees.

Selection of the interviewees was a challenge due to the requirements for their
background, stemming from the research question. The interviewees were
recruited using networks of the researcher. All interviewees were required to
have multi-year experience in at least two of the following areas:

• Configuration Management Systems
• Management (in the organizational sense)
• Cyber security

As the main case study already provided a focused view on Company X and
their client, the interviewees were chosen outside organizations involved in the
main case study. To gain a broad view, each interviewee was from a different
organization.

The interviews were individual interviews, performed over video conference
connection. First, a brief background discussion and questions were handled.
Then the interviewee was shown the operation of the main software prototype,
offered a short description of the already completed main case study, and
provided a chance to ask clarifying questions. Interviewees could also ask
demonstration of specific capabilities. Then the interviewee was prompted to
evaluate claims on the business impact of the concepts and demonstration.
Even though specific questions were offered, the emphasis was on open ended,
free form commentary. Interviewee was also given a change to freely comment
on the area outside questions and prompts.

The prompts, questionnaire for the semi-structured expert interviews, is in-
cluded as Appendix: Questionaire for Semi-Structured Interview. The questions
are formed based on the expected business benefits arising from the qualities
of the concepts themselves. It should be noted that these claims were used
as prompts to open ended evaluation, to encourage participants to consider
multiple areas of and aspects in the limited time given.

Generalizing the interviews is limited by the small number of participants (six)
and the fact that they all are working in a single country, Finland. While
larger interviews can of course be performed in future studies, the possibility
to perform larger case studies in production networks should be considered as
the software matures.

74

The interviews were performed over a video conference in Finland between
May and August 2022. The interviews were conducted as individual interviews
to allow for questions and open-ended answers. Six experts were interviewed
and, as seen in the findings, a saturation point seems to have been reached.
The background of the experts and their companies is discussed with the
results. The results of the interviews are in Findings and Analysis: Interviews
to Evaluate Business Benefits.

3.7.1 Ethics in the Interviews

Multiple ethical considerations had to be taken into account in the interviews,
even when the experts were speaking in their professional capacity and the
issues were not highly personal.

A key reason for identifying and evaluating potential business benefits using
expert interviews - instead of simply running production on a large scale and
measuring the business benefits - is partly dictated by ethics. Even if the
prototype includes novel contributions improving security, it is at a prototype
level and has not had third party security auditing. Considering that a CM
tool has full access (root / Administrator / SYSTEM) to all systems, it is
clear that a research prototype implementation cannot meet the maturity level
required. Despite the quality of the concepts, security would be limited by the
quality and testing of the implementation of the prototype. Thus, the choice
of the interviews themselves as a method was dictated by ethics in addition to
practical concerns.

CM systems are critical to security, and - as discussed earlier - the secret key
of the master is the most valuable file in the whole network controlled by the
CM tool. Security tools related to CM - such as EDR, IPS and IDS - often
require some secrecy to provide maximum benefits. The interview questions
also ask about pain points in current systems, often an area that cannot be
publicly discussed so as not to present companies in a poor light.

To protect the interviewees and their current and former employers, multiple
steps were taken. The issues required that the individual comments should
not be easily traceable to the interviewee, or at least this connection should be
plausibly deniable. Also it was offered to the experts that if they mistakenly
revealed some confidential fact about their employer’s systems, it would be
taken out of the material at their request. The experts could choose if they
wanted their name and company to be included in the acknowledgments.

One of the experts asked minor technical facts to be removed from the interview.
These facts were irrelevant to the research, and they were removed. One
expert provided background information that was omitted as irrelevant to the

75

research and potentially sensitive. Multiple respondents indicated that they
had preconditions to participating, but found that the protections planned
for the interviews already met their demands, and no single person special
arrangements were needed.

3.8 Conclusion

Constructive research means building an artifact (construct) to solve a domain
specific problem to create knowledge of how this problem can be solved in
principle. This artifact is validated. The results can have both practical
and theoretical relevance. In literature review, we saw the lack of empirical
validation as one of the gaps in configuration management research. The use
of constructive research approach fits this gap well.

The stages started from theory and finished in business aspects. This work
created a theoretical model to compare malware command and control to
configuration management systems. The model helped to bring these widely
field tested concepts from malware to configuration mangement systems. Im-
provements to configuration management systems were combined into coherent
design.

To create the artifact to be validated, two software prototypes were created.
The simple one helped to better understand the problem, and to provides a
toy system that can be quickly understood also on the source code level. The
advanced prototype, a four thousand line Go program, can be used in the field
for configuring production networks.

The advanced prototype was first validated in laboratory environment and
compared to industry leading configuration management systems. To test
applicability in the field, multiple case studies were performed in progressively
more challenging environments. Field tests also validated the approach in face
of business requirements and human aspects, such as learning and usability. The
main case study involved observing the use of the system in a production network
of a client of the studied organization. During this test, the protype was operated
by a junior system operator in the organization studied. Obviously, extra
precautions were observed when validating immature software on production
systems.

Finally, expert interviews were performed to identify potential effects to business.
These interviews were informed by demonstration of the prototype and the
results of previous validation phases. Interviews were thematically analyzed.

76

4 Designing Hidden Master Architecture

Expanding on foundation created in literature review, in this chapter I will build
a novel stage model for comparing malware and configuration management
systems (RQ1), identify suitable resiliency techniques (RQ2) and simplify
idempotent configuration on agents (RQ3).

Following the constructive research approach introduced in chapter 3 “Method-
ology”, this chapter describes the design of the configuration management
system. Both the process and the product (the prototype) are part of the
design and can help to build knowledge (Hevner et al., 2004). The system
utilizes the answers to research questions 1-3 mentioned above. Instead of
just looking at individual improvements, this chapter takes on the challenge of
building a complete and coherent configuration management system. Different
choices and tradeoffs are analyzed, and two functional prototypes are designed
and implemented. This answers RQ4 “How can these techniques and concepts
be implemented in a functional prototype?”.

The research questions answered in this chapter are listed in table 21.

Table 21: Research questions answered in the Design
chapter

RQ Explanation

RQ1 How can existing stage models be adapted for comparing malware
and configuration management systems?

RQ2 Which malware resiliency techniques are applicable to benign
configuration management systems?

RQ3 How can defining idempotent agent configuration be simplified?
RQ4 How can these techniques and concepts be implemented in a

functional prototype?

4.1 A Novel Phase Based Model for Comparing Malware
and CM

The main aim of this thesis is to explore survivability and resiliency of configu-
ration management systems based on concepts used successfully by malware.
To focus search and categorize the results, a model was needed for mapping
areas of similarities and differences between the systems. Developing this model
was a contribution of this work, and the answer to RQ1. The leading attack
and malware related phase models were examined and their phases mapped

77

to each other, and then to stages of configuration management systems. Ana-
lyzing and categorizing steps from malware is a huge undertaking, but using
MITRE ATT&CK as one model provided a large number of successful attack
and malware campaigns already categorized to this model. Using the model
combining malware and configuration management stages, it was then possible
to map those attack techniques to CM related categories. This allowed malware
resiliency techniques be considered for use in improving the resiliency of CM,
the aim of this thesis.

Malware has to survive in an environment that is more hostile and less reliable
than a common enterprise network. When successful, the criminal activities can
bring great economic rewards. This combination has led to the fast evolution of
malware and the development of interesting command and control architectures.
Real world production malware uses push, pull, IRC, social media, P2P, HTTP
and HTTPS transports, with and without intermediate hosts. They provide
an interesting menu of battle proven techniques to test on benign enterprise
configuration management.

To compare these tactics, techniques, procedures (TTP) both in this work and
continuously in the future, a model for mapping malware TTP to those suitable
for benign enterprise CM could be useful.

Phase-based models have been used for mapping hostile activity. As discussed in
“Models for Attacking Computer Systems”, cyber kill chain (Hutchins, Cloppert
and Amin, 2011) and MITRE ATT&CK (Strom et al., 2018) are phase-based
models for understanding and mitigating computer intrusions. These models
themselves leverage existing phase based models in multiple fields. In the paper
introducing cyber kill chain Hutchins, Cloppert and Amin (2011) recognize
multiple such models, mostly from the US military, but also from the areas of
computer security and insider threat prevention.

In table 16, I proposed one way of combining the cyber kill chain into two
MITRE ATT&CK and MITRE PRE-ATT&CK (MPA) frameworks. By com-
bining cyber kill chain and the latest MITRE Enterprise ATT&CK matrix, a
framework for searching useful features tested in malware could be developed.
As the key steps of MPA have been moved to Enterprise ATT&CK matrix and
the old MPA deprecated in October 2020, this model will use the newer matrix.

When considering these stage models as a tool for finding useful examples
to be applied to managing our own computers and networks, the wording of
roles of different actors and systems should not be taken literally. To take
the first technique of the first tactic of 2021 ATT&CK matrix as an example,
Reconnaissance: Active Scanning, here the description talks about adversaries,

78

victims and detection. When managing our own computers, the target machines
are not victims, and we are obviously not our own adversary. Scanning your
own networks is a sensible security practice, which can be used for both asset
discovery and verifying that there is no ‘shadow IT’ or other unexpected
servers. Thus, this tactic can be applied to configuration systems. As there is
ready-made ATT&CK based analysis provided for existing attacks, and it is a
detailed framework, it provides a good starting point for analysis. table 22 maps
Cyber Kill Chain phases and MITRE ATT&CK tactics to their configuration
management counterparts. The seven Cyber Kill Chain phases were numbered
from CKC1 to CKC7 in order to refer to them in this study. MITRE ATT&CK
tactics use the IDs given to them by MITRE.

Differences in the approaches of malware and configuration management should
also be considered. Even though there do not seem to be popular models
of configuration management tool qualities, there is some agreement on the
key features of modern configuration management: idempotent, infrastructure
as code configuration and single source of truth. The offensive stage models
considered here do not list any of these features or qualities. As seen in the
chapter on malware evolution, a single source of truth is a common feature
in botnets. Malware configuration is often text based, but the author is not
aware of research that would indicate if malware authors use version control
or idempotent configuration. These features should be included in a model on
configuration management systems. The potential benefit of these features to
malware is left for future research.

Table 22: Examples of attack stage model techniques with
configuration management counterpart.

Cyber Kill Chain and ATT&CK
ATT&CK Techniques applicable to
CM

n/a, TA0042 Resource development Acquire infrastructure
CKC1 Reconnaissance, TA0043
Reconnaissance

Active scanning. . .

CKC2 Weaponization n/a
CKC3 Delivery, TA0001 Initial access Replication through removable. . .
CKC4 Exploitation, TA0002
Execution

Trusted relationship, valid
accounts. . .

CKC5 Installation, TA0003
Persistence, TA0004 privilege
escalation, TA0005 defense evasion

Scheduled task. . .

CKC6 C2, TA0011 Command and
Control

Application layer protocol. . .

79

Cyber Kill Chain and ATT&CK
ATT&CK Techniques applicable to
CM

CKC7 Actions on Objectives, TA0009
Collection, TA0010 exfiltration,
TA0040 impact, credential access,
TA0007 discovery, TA0008 lateral
movement

Data transfer file size limits

To map the steps in these attack models to configuration management, the
stages of configuration management should be considered. Modern configu-
ration management tools use infrastructure as code (IaC) approach to create
idempotent configuration Hummer et al. (2013).

They use master-slave architecture, so that the master sends configuration to
slaves (sometimes called agents), which they always and automatically apply.
As decisions are made by the master, it can be seen as the single source of
truth in the system.

These instructions are created by the administrator of the systems, then passed
from master to agents over an untrusted and unreliable network, namely, the
Internet. For visibility of the network, the agents report their state back
to the master. Because the network is untrusted, the instructions must be
cryptographically protected. The cryptographic protection for instructions
includes encryption, signing and versioning. For constantly held connections,
two-way authentication can be used in place of signing.

The stages of defining, transferring and applying configuration relates to the
continued operation of a CM system. Even though this is the main part of the
CM life cycle, the system must first be installed and trust established between
participants before the operation can start. When this stage is added, we can
start modeling the configuration management tool life cycle.

Some common corrective steps are required to keep the system operating safely,
but they are not needed continuously. When the master or agents change their
network configuration, such as the IP address, network communication must be
re-established. It depends on the configuration management system’s network
architecture how this is done. When there are updates to the configuration
management tool itself, master and agents must be updated. This step can be
mandatory if the updates are related to security. These steps are collected as
their own stages under the heading “Special actions”.

Before initial installation of master and agents can begin, the administrator
should have suitable infrastructure in place. Demands for the infrastructure are

80

dependent on architecture and business requirements. In many cases, server
management can use push architecture and thus requires less CM infrastructure
than managing desktops, laptops and IoT devices. To install agent daemon to
controlled assets, the assets must first be identified. Leading CM tools leave
this as the responsibility of the administrator.

Based on the mapping of malware stage models table 22 and the stages of
configuration management discussed above, it is possible to look at which
malware stage model stages can provide suitable techniques. This comparison
is in the configuration management stage model summarized in table 23. As
explained earlier, in ATT&CK the “tactic” is the goal the attacker is trying to
reach, such as “persistence” or “initial access”. What attacker does to reach
the goal is called “technique” in ATT&CK. For example, techniques to achive
persistence include T1098 “account manipulation”. Multiple projects (including
MITRE ATT&CK itself) provide techniques extracted from successful malware
campaigns (called “procedures” in ATT&CK lingo).

It should be noted that the mapping of these stages is based on the contents of
ATT&CK stages and the techniques they contain, instead of the names of the
tactics. The names used in offensive phase models don’t always map well to
the configuration management world. For example, an administrator managing
his own servers does not need to evade his own defenses, but TA0005 “Defense
evasion” contains techniques such as T1542 “Pre-OS Boot”. Pre-OS boot could
be useful in the main case organization to protect remote IoT devices from
becoming unresponsive after applying invalid configuration.

When considering a case of a partially compromised agent system, techniques
that allow a configuration management system to control a system on a lower
level (lower protection ring) could allow faster recovery and forensic collection
of data, such as remotely dumping memory. Similarly, TA0004 “Privilege
Escalation” contains multiple techniques that are useful in a configuration
management context, such as T1547.006 “Boot or Logon Autostart Execution:
Kernel Modules and Extensions”.

Table 23: Stage model for configuration management
operation

Stage Explanation

T0 Prerequisites (TA0042 Resource development, TA0043 Recon,
TA0006 Credential access, TA0007 Discovery)

T0.1 Set up infrastructure
T0.2 Discover assets to be controlled

81

Stage Explanation

T1 Initial installation and establishing trust (TA0001 Initial access,
TA0002 Execution, TA0003 Persistence, TA0011 CC, TA0004 Privilege
Escalation, TA0005 Defense evasion)

T1.1 Master and agent: Obtain trusted copy of CM tool
T1.2 Master and agent: Key exchange
T1.3 Master and agent: Persistence
T2 Continued operation (TA0002 Execution, TA0009 Collection,

TA0010 Exfiltration, TA0011 Command and Control, TA0040 Impact)
T2.1 Administrator: Define idempotent configuration
T2.2 Master or agent: Securely transfer configuration to agents
T2.3 Agent: Apply configuration on agent, generate report
T2.4 Agent: Securely report results from agent to master
T2.5 Administrator: View summary of system state
T3 Special actions (TA0011 Command and Control, TA0008 Lateral

movement)
T3.1 Master or agent: Re-establish master-agent networking
T3.2 Master and agents: Update master and agent software

The 215 techniques in MITRE ATT&CK Enterprise Matrix (Mitre, 2019) were
read and those most promising to applied for configuration management were
picked for further categorization and study. This initial filtering found suitable
techniques in all tactics (categories) and resulted in 89 techniques.

The most interesting techniques were chosen. As criteria, those techniques
chosen were to be new in the context of enterprise configuration management
systems, not causing excessive risk and possible to implement in the research
prototype. They should also concentrate on the areas in the focus of this work,
secure network communication and idempotent agent configuration.

Multiple techniques of interest were recognized. T1059.006 “Command and
Scripting Interpreter: Python” is used by 28 case examples listed. Malware
of particular interest include tools that allow the attacker to execute Python
scripts on targets such as Dragonfly 2.0, Cobalt Strike (adversary simulation),
CoinTicker, and Keydnap. Many of these tools have to install Python inter-
preter, either as a separate installation (DragonFly 2.0), or one packaged with
Python packager (Machette, DropBook). (Mitre, 2019) This technique could be
further improved if we could run a limited subset of Python without packaging
the whole installer. It was later found in this thesis that it’s indeed possible to
create such a limited subset, and even embed it into a single, statically linked
binary.

82

It was surprising that using dependency-free, static binary was not a technique
found in MITRE ATT&CK, even though it is used by malware. As malware
has to survive in a heterogeneous environment, one could expect not depending
on software and libraries on target would make it more resilient. The opposite
of static linking is dynamic linking. In dynamic linking, software depends
on libraries either provided by the operating system or shipped with the
software. ATT&CK lists dynamic linking, scripting language and depending
on a scripting language not provided with an OS under “TA0002 Execution”.
Despite ATT&CK, dependency-free, statically linked single binary is a technique
planned for the main research prototype.

Hidden master architecture, a key feature already in the initial plan, could
be seen an example of TA0011 Command And Control: T1102 Web Service.
According to Mitre (2019), this technique has been successfully used by multiple
malware campaigns.

Threat groups successfully using web servers as part of their command and
control network include Carbon, DropBook, Fox Kitten, Inception, Ngrok,
Rocke, SharpStage and Turla. Other threat actors have used web service to
infect targets in water holing attacks or to host malware stages, but that use
is quite different from the hidden master architecture. For a lot of malware,
the web server has been a well known third party web service. Carbon used
Pastebin; Dropbook has used SimpleNote, DropBox and Facebook; Fox Kitten
has used Amazon Web Services. (Mitre, 2019)

From the point of view of threat actor, the third party services they use can be
considered untrusted, even hostile. It is likely that the owner of a service such
as Facebook is taking active steps to prevent malware from being hosted on its
servers. Thus, these malware campaigns can provide examples of techniques
used to communicate over untrusted web servers, and real life case examples of
how those techniques and procedures have succeeded.

T1092 Communication Through Removable Media allow communication or
data exfiltration through removable media, such as USB mass storage devices.
T1091 Replication Through Removable Media is mostly used by malware that
leverages Windows autorun to infect machines. For T1091, malware DustySky
scans removable media. (Mitre, 2019)

As the Hidden Master Architecture dictates asynchronous operation, it raises
the question of whether an Internet connection - or any network connection -
is really required. As the Hidden Master architecture does not depend on an
authenticated connection, but instead individually authenticates the encrypted
catalogs, removable media could be used. This would allow secure updates of

83

devices that are distant, beyond network or lack networking capability. An
example of distant device would be a device deployed outside cell phone coverage.
Some embedded devices can access USB mass storage, but lack networking
capabilities. USB mass storage devices should be considered untrusted for the
purpose of running privileged commands, but so is the main communication
channel - third party web servers. HM agents could scan removable media
to see if they contain encrypted catalogs that have the correct cryptographic
signatures.

Persistence (TA0003) is the ability keep running or run again after initial
installation. Many persistence mechanisms are listed, including T1547 Boot
or Logon Autostart Execution (14 sub-techniques) and T1037 Boot or Logon
Initialization Scripts (5 sub-techniques). (Mitre, 2019)

The agent systems controlled might be in hard to reach places, such as remote
locations behind NAT, firewall and dynamic address. As the main mechanism
to control and gain visibility to these systems, it’s critical that CM tool can
keep running or gets woken up periodically. If target systems are heterogeneous,
multiple persistence techniques might be needed so that at least one matches
those available. For example, Fedora IoT Linux only provides scheduled tasks
through systemd, unlike many other distributions that have cron pre-installed.

4.2 Design Goals

The aim of this work is to explore survivability of configuration management
systems. The resiliency of CM can be divided into resiliency against natural
unreliability and resiliency against active hostility in the network. Based on
my earlier examination of how malware CC achieves these goals and the attack
tree analyses used to point out categories of vulnerabilities in CM tools, I can
elaborate this broad aim into specific design goals. Design goals for the research
prototype are listed in table 24.

Table 24: Design goals

Design goal Benefit

Protect master secret key Prevent full system
compromise

Improve network and geographical dispersion Radically reduce costs and
security implications of
dispersion

84

Design goal Benefit

Decouple subsystems Change transfer method
according to network
conditions. Allow statically
linked slave daemon.

The master secret key is the single most important file in the whole network
of controlled computers because it allows unlimited access to all data and
resources on slaves. Compromise of the master secret key would thus result in
the full compromise of the whole network.

The computer containing the master secret key should be highly secured. In
systems common in the industry, the key is stored in the computer serving
catalogs to slaves, thus being continuously connected to the Internet. Securing
the computer could require keeping the computer within the organization’s
own premises and having a 24/7 security response team ready to react to
attacks. These stringent security requirements for the master in traditional
CM solutions make it very expensive or cost prohibitive to create additional
master computers around the globe in different networks.

Improving network and geographic distribution requires reduces the security
requirement from hosts directly serving the catalogs to slaves.

The decoupling of subsystems is a common design goal. In HM, decoupling
could allow the changing transfer method to match different requirements.
HTTPS could be used in favorable network conditions, and P2P techniques
and pseudonymous networks employed when conditions deteriorate.

CM should be able to repair systems (Burgess, 1998). Due to dynamic linking
(relying on installed libraries), the very same damage causing the need for
repair might make CM inoperable. As popular CM solutions are implemented
in high level languages (e.g. Python and Ruby) and rely on a lot of libraries,
they could be especially vulnerable to this kind of problem. Using a statically
linked daemon to apply catalogs on the slave, the surface for this problem
would be greatly reduced.

4.3 Protecting the Master’s Private Key in the Hidden
Master Architecture

As I have noted, combining catalog signing keys (root access to slaves) with
catalog distribution causes security risks and other problems. Hidden master
architecture avoids this problem by keeping the signing keys in a computer

85

that only connects to the Internet update catalogs on an intermediate server
(fig. 3).

These intermediate catalog distribution servers do not need to be secure.
Thus, they can be commodity web servers in networks not controlled by the
organization using them as intermediate nodes in configuration management.

Security of the system is dependent on encryption and key management, which
is detailed later in this chapter. Even though the first transport protocol
implemented is HTTP, the separation of encryption from transport allows
other transport schemes to be used. The hidden master was also used with
peer-to-peer communications in this work.

m

c

a1 a2 an

Figure 3: Hidden master architecture network structure

The purpose of the hidden master architecture is securely delivering files
to slaves. The key difference to other configuration management system
architectures is hiding the master, so that the master does not need to be
available to the Internet during the slave configuration.

Using untrusted intermediate hosts such as commodity web servers improves
survivability, as the instructions can be provided with a large number of hosts.
To further slow down adversaries, all slaves do not have to know all the possible
locations of encrypted catalogs.

Many networks limit access to http port 80/tcp and https port 443/tcp. As
normal web browsing uses these ports, they also provide a large amount of
normal traffic to cover the control management system.

Some networks use deep package inspection in addition to filtering ports. In
deep package inspection, the firewall examines the contents of the traffic to
decide what goes through. One way communication by downloading encrypted
files provides very good protection against deep package inspection, as it would

86

be difficult to measure the difference of downloading an encrypted catalog file
inside encrypted TLS tunnel (https) versus downloading another file.

In the rare case of needing to pass unencrypted communication with deep
package inspection, such as a network firewall performing a man-in-the-middle
attack against TLS as a requirement for network access, the files could be
obfuscated. Security through obscurity is obviously not useful if the obfuscation
technique is known to an adversary. Thus, the obfuscation layer should be
implemented on a case by case basis. Obvious methods include obfuscating
the encryption headers with symmetric encryption (same key for all slaves)
and impersonating some other file format by changing the file suffix and magic
sequence at the beginning of the file.

As the instructions are simply encrypted files and the intermediate hosts need
not be trusted, other transports could be easily implemented. Some interesting
choices would be regular peer-to-peer networking or some anonymised network.

Anonymous and pseudonymous peer-to-peer networks include TOR, i2p and
Freenet. The main benefit of using an anonymous network is the ability to
hide the structure of the network and provide a host that is survivable against
censorship. The anonymized nature of these networks can be both a curse and
a blessing. For the defender, they could hide the structure of the configuration
management network, for example from the owners of third party networks
visited by mobile agent nodes. For the attackers they could provide an obvious
and already configured way to hide and bypass network perimeter defenses.
Due to the security concerns related to pseudonymous networks, it could be
expected that they are blocked by many firewalls and identified by network
monitoring and intrusion detection tools.

When choosing an anonymous network for transport, it should be noted that
the hidden server architecture can ignore one of the main balancing acts of
these networks: exchanging anonymity for latency. As a typical CMS only
applies the catalogs every 15-30 minutes, the latency of the transport can be
large ignored.

87

4.4 Compromizing Configuration Management Attack
Tree

For this attack tree, the goal is to fully compromise the configuration manage-
ment system, and thus all computers participating in it. This is the root node
of the attack tree. This attack tree considers technical attack, and excludes at-
tacks on human elements, such as coercion, bribery and infiltration. Categories
of attack removed by the Hidden Master architecture are marked with “(HM)”.

• Attack Master
– through hosting (HM)

∗ Attack cloud operator (HM)
∗ Compromize physical premises of the machine serving agents

(HM)
– Over public network (HM)

∗ Attack master daemon (HM)
∗ Attack other software on master (HM)

– Compromize agent
∗ Attack master through CM control channel (HM)
∗ Inject mallicious code to report

• Attack operator workstation
– Lateral movement

∗ File shares
∗ Authentication

· Centralized authentication attacks
· Password reuse
· Other accounts (local administrator, backup. . .)

• Poison supply chain
– Infect any software, library or recursively included dependency

∗ Master
∗ Operator workstation

– Infect CM tool supply chain
– Infect hardware supply chain, e.g. add bugged keyboard

• Attack CM control channel in transit
– Mathematically break encryption
– Use flaws in CM tool cryptographic implementation
– Use operator errors

To better understand different tradeoffs when protecting against the risk shown
in the attack tree, we could examine the configuration management system
architectures described in the literature and used by industry leading config-
uration management systems. They are divided into pull and push, both of

88

which have different risks and benefits.

It should be noted that these attack tree analyses consider architectures and
other abstract concepts. In actual cases of real life security, many practical
issues have a large impact. Software has to be reviewed, tested and audited.
Software can only really mature when it is in large scale production use. Thus,
it should be understood that the software prototypes related to this work are
not mature enough to be suitable for large scale production. And, despite
noting any possible architectural and other improvements, industry leading
configuration management tools, such as Puppet or Salt, are mature products
used by huge production installations every day.

In this analysis, two different types of network architectures are talked about:
client-server and master-agent. Client-server is the architecture used in typical
network communication. The server is on, the listening port open, waiting is
in a known address, and it is visible to the network. The client connects at the
time of its choosing. Master-agent (master-slave) architecture means that the
master sends instructions to agents at a time it chooses, and the agent applies
these instructions. Typically, configuration management systems use both of
these architectures, forming a master-agent on top of a client-server.

In push architecture, the master connects agents at a time chosen by the master.
Seen through the lens of client-server architecture, the master is the client,
and the agent is the server. The server must be in a known location, have
a port open and be visible to network. This requirement rules out moving
agent nodes, such as laptops and many categories of IoT devices, as they
move to unpredictable network locations, which are often behind firewalls and
non-routable IP addresses due to NAT (network address translation). Push
architecture does mitigate risk to master. However, it requires every agent
node to expose a port to network. Due to these requirements, push architecture
is best suited for controlling servers, and thus it still requires a solution for
non-server nodes. Ansible is one of the industry leading tools that specializes
in push architecture.

In pull architecture, agents phone home. Here, the master is the server, and it
must be in a known, network visible location. Pull architecture has multiple
benefits, the most obvious being the ability to control moving agents, such
as laptops and IoT devices. It also allows for agents that are only on at
unpredictable times to report and receive the latest instructions. A major
downside is the master being visible to the network and thus vulnerable to
attack.

The risk of exposing the master as a server to the Internet became evident during

89

the writing of this thesis when one of the leading configuration management
systems, Salt, had critical vulnerabilities (CVE-2020-11652, 2020, 2020). They
allowed attackers to remotely take over the Salt master (and thus all agents)
over the Internet. These attacks would have been eliminated by the use of the
Hidden Master architecture I published with Li three years earlier (Karvinen
and Li, 2017). Salt now recommends limiting access to ports required by agents,
not exposing Salt master to the Internet and using a VPN (SaltStack Inc., 2022).
These steps seem to be a sensible mitigation to the serious risk posed (and
realized) by exposing a machine with the master’s secret keys to the Internet,
but limit the usefulness of the system in case of moving agents. The remaining
fundamental problem still remains that compromising any agent allows direct
attacks to the master through the VPN. The attacker would be wise to choose
a time when active monitoring and swift response are not available.

One mitigation for the many challenges of push architecture could be using
a virtual private network, such as Wireguard or OpenVPN. In addition to
making the system more complicated to manage and analyze, it does not solve
all challenges of push architecture. Many non-server nodes are not on all the
time. When the lid of a laptop is closed, it cannot receive instructions from
the master, and nor can it send its report back. This would require a human
operator to run pushes at various times, hoping to catch all nodes. In some
cases, reports from nodes could end up being very old. For push architecture,
running inside a VPN does not remove the need for round the day, round the
year incident response capability. Once an attacker has compromised any agent,
he can use the VPN to attack the master. A smart attacker can make the
attack at an inconvenient time, such as 4 am on Christmas Eve.

The Hidden Master architecture removes categories of attacks by reducing
the attack surface. A key feature is protecting the master secret key by
keeping it in a computer that is never contacted by agents. The intermediate
machines contacted by agents are untrusted. This allows the use of regular web
servers. Because the Hidden Master architecture is asynchronous, other network
protocols can be used too. This work has experimented with air gapped file
transfers and peer-to-peer operations without stable network infrastructure.
Essentially, any untrusted method of transferring files could be used as a
network backend.

The attack tree above shows how the Hidden Master architecture completely
removes the possibility to directly attack the master. Unlike the use of industry
leading solutions, the master cannot be attacked through the configuration
management system control channel either. If we start with a sensible expecta-
tion that an attacker can compromise a single agent node, the attack that is

90

left is injecting malicious code into the report. Even if reports are not supposed
to run code, an attacker could try to find a vulnerability in libraries using
the reports. If such extreme security would be needed, the Hidden Master
architecture allows for the use of two different computers to send instructions
and receive reports, and some limited testing for this has been performed with
the prototype.

Hidden Master architecture makes it impossible to attack the master when a
response is not available. This is in stark contrast with those architectures
described in the literature reviewed in this work and in industry leading
solutions. When the master computer is closed and shut down, it cannot be
attacked over the network. This means that all attacks against the master must
happen when the operator is present and actively engaged with the system. As
the encryption layer is based on OpenPGP standard, it is possible to further
secure the system by storing the secret keys in a hardware security module
carried by the operator. This was not implemented in the prototype.

Even when the Hidden Master is turned off, the network can keep operating.
The agents will receive the latest instructions the next time they synchronize
against a courier/drop node, and at the same time they provide their report.
Due to campaign keys, even new nodes can be securely added while master is
away. For example, IoT device initial image can contain an agent campaign
key that allows agents to receive the latest campaign instructions. The design
of the Hidden Master architecture is in “Designing and Implementing Hidden
Master Architecture Prototype”.

Potential business benefits of the Hidden Master architecture are identified
and evaluated in “Interviews to Evaluate Business Benefits”. Reduced attack
surface might lead to reduced risk, simpler and lower cost operation, low cost
geographic and inter-operator scaling.

4.5 Concept of Use

Use cases for HM are similar to use cases of CM in general. An attempt is
made to allow scaling from beginner to a very large scale. Use cases and their
challenges are listed in table 25.

This example workflow omits many details and alternatives to provide an
overview of the concept of use.

1. Administrator writes configuration in established CM tool (e.g. Salt).
2. Administrator executes command to roll out instructions to slaves. The

catalog of instructions is automatically encrypted, signed, and uploaded to
untrusted web servers. Only this step requires connection to the Internet,

91

and the administrator can immediately disconnect if he wants.
3. Slaves periodically connect to mules. They download, decrypt, verify and

apply catalogs.

Table 25: Challenges of different use cases and example
networks.

Use case Network Challenges

Hobbyist server, laptop,
desktop

Securing master can be cost
prohibitive. Double NAT bypass

Data center 1000 servers
Enterprise 500 laptops, 500

desktops, 50 servers
Lot of computers. NAT bypass.

Huge 40k servers

4.6 Tradeoff analysis

4.6.1 Timely vs Timeless

Timely communication between master and slaves is common, but produces
multiple problems regarding the resiliency of CM. Most leading CM systems
and scholarly articles imply a requirement for slaves to connect directly to the
master. This is discussed in “Implying Direct Master-Slave Connection”. This
requirement obviously means that master and slave must be on the network at
the same time, making the master vulnerable to attacks over the internet. If
the master is running continuously, these attacks can be performed at a time
when a human the response is less likely, such as during the night or holidays.
The master also creates a single point of failure to the network. Some systems
collect data with a high rate and minimal latency, but averaging data on display
and human initiated queries forfeits this advantage. Dropping timeliness could
reduce these problems, making CM more resilient. Such a system could be
called timeless.

The OODA loop (observe-orient-decide-act), originally developed by Boyd of
the US Air Force, is a model to gain situational awareness, take initiative and
ultimately achieve victory in adversarial situations (Lenders, Tanner and Blarer,
2015). Situational awareness is not simply speed of observation and acting. In
his seminal paper, Endsley (1988) categorizes situational awareness into three
levels, where the highest level allows projections into the future. Similarly in
the cyber domain, situational awareness is not simply about individual cyber
events but how they improve overall understanding of the situation (Franke
and Brynielsson, 2014; Lenders, Tanner and Blarer, 2015).

92

Timely communication reduces the reaction time to both natural and human
made disruptions. To gain this benefit, there should be a human to perform
these activities. Small and medium organizations might find it hard to justify
the cost of having a professional security response team available for 24/7
response. This also gives economic incentives to concentrate on the higher level
situational awareness instead of simply attempting to speed up the OODA
loop.

To improve the resilience of these systems, the hidden master architecture
chooses timelessness over timeliness. The master does not need to be available
on the network at all times, and the instructions are carried to slaves on a best
effort basis. When no new instructions can be received, slaves should keep
operating indefinitely following the last instructions received.

Future versions of hidden master architecture could combine traditional direct,
timely communication with more resilient timeless, indirect communication. In
future development, a Conftero native back channel could provide feedback
at the same rate as agents poll instructions in approximate intervals of 15
to 30 minutes. Direct communication could be used in situations where it
provides the highest benefits: development and when a timely human response
is available. Some practical computer systems already provide the ability for
consolidated logging. Conftero events could thus be placed into regular logs
(e.g. syslog, Event log) and shipped with other logs. In this way, any events
produced by Conftero would be available in the same enrichment, search and
summarization platform with other logs.

4.6.2 Encryption Method

Computationally secure, strong algorithms are widely available and included in
the libraries of common programming languages. Unfortunately, many practical
cryptographic systems are broken by attacking the implementation instead of
mathematically breaking the encryption method. In a study on Middle East
malware phylogeny, Moubarak, Chamoun and Filiol (2017) found that even
malware attributed to nation states had made serious security mistakes when
implementing command and control for their malware. When designing secure
communication for a configuration management system, the encryption should
withstand attacks for a very long time. This is in contrast with cyber attackers,
who could instead reach their goals in a short time frame and then remove
their malware. In some cases, attackers could allow the attack to be discovered
in order to gain publicity.

93

4.6.3 Back Channel

Slaves might need to send information back to the master. In this work, the
system for sending this information from slaves to the master is called the back
channel.

Efficient control of slaves requires the information of slave states. In practice,
this task is often done with multiple systems simultaneously. Multiple categories
of software products make a principle task of gathering information about slaves
and consolidating this for use by the system operators.

Monitoring and alerting systems watch the state of each slave node, combining
external and internal checks. Examples of such systems are Nagios, Cacti
and Zabbix. The simplest case of monitoring is external monitoring, such as
simulating a client browsing the web by sending an HTTP request from a single
vantage point. Other functionality requires implementing a secure channel
between the slaves and the master. Watching the internal state of slaves, such as
the load level, disk usage or use of swap space obviously requires secure access
to slaves. But external monitoring also requires secured connections when
requests need to be undertaken from multiple vantage points. For example,
sending an HTTP request from one slave to another requires secure access to
the slave sending the request.

Log consolidation systems, such as Elasticsearch-Logstash-Kibana (ELK), rsys-
logd or Graylog, retrieve log events from multiple slaves and put them into
a single database. Administrators can then perform queries or visualize this
data to gain situational awareness of their network. System logs typically
contain confidential data. Protecting personally identifiable information (PII)
is not only ethical, but also often required by regulations, such as the European
Union’s general data protection regulation (GDPR). Log events can contain
data that make it easier for attackers to compromise the system, such as errors,
misconfigurations and specific software versions. Even though it is undesirable,
system logs might contain plain text passwords, as users sometimes type their
password in place of the user name; or a failed database connection includes a
password in the quoted source code line. For these reasons, log consolidation
systems require secure communication channels.

When monitoring and alerting solutions and when log consolidation systems
implement their own channel to slaves over network, they need to address
most of the same challenges that are met when implementing a CMS: strong
encryption, two-way authentication and key management.

When simply reading the system state, the requirement is not as high as with
CM. As CM has the highest privileges (root, Administrator, SYSTEM) on

94

the machine, a compromise of the CM control channel results in a complete
system compromise. In contrast, a compromised monitoring or log consolidation
channel does not need to result in a completely compromised system, as the
monitoring agent could be given read only permissions on slave. As shown above,
it is still high enough to mandate strong security measures. Implementing
multiple channels makes the system architecture more complicated and adds
new possible points of failure. Security requirements for back channels are
collected to table 26.

Table 26: Back channel security requirements.

Goal Examples Security required

External check Nagios HTTP request Low
Alternative point HTTP request from slave Medium
Internal check Zabbix CPU utilization Medium
Log consolidation rsyslogd syslog collection High
CM collect results Salt collects grains High
CM modify slave Puppet installs Apache Highest for slave

Any practical system could easily end up with multiple control channels, each
of which implements encryption, two-way authentication and key management.
Initially, this might provide redundancy in case of a failed control channel.
An operator could use SSH to fix the broken CM slave. But redundant
systems create an additional attack surface, complicate the system and create
a management burden.

4.6.4 Back Channel in the Hidden Master Architecture

A back channel would create some unique challenges in the hidden master. On
one hand, a back channel would be useful to maintain situational awareness and
see how far the actual system state is from the idempotent goal administrators
have set with configuration management. On the other hand, slaves cannot
simply send their results directly to the master, as a hidden master is not
required to be present on the network at any specific time.

As the Hidden Master architecture already implements secure, asynchronous
channel from the master to slaves, similar techniques can be used for imple-
menting the back channel. To make the back channel mirror the architecture
of a regular forward channel, slaves should send their reports to mules.

An alternative to a Hidden Master specific back channel would be picking and
using an existing log monitoring or log consolidation system, writing slave

95

daemon events to local logs. The master could then read these logs from
wherever they are consolidated. This would allow use of an existing tested
solution for the back channel. But this would likely create a single point
of failure in relation to the back channel, the very thing the Hidden Master
architecture tries to avoid on the forward channel from master to slaves.

When the master is communicating to slaves using web servers, it uses web
servers in the simplest and the most obvious way: one authenticated computer
uploads files, and multiple unauthenticated computers download files. A back
channel places an additional requirement on mules: they should accept file
uploads from web clients. Even though this requirement is not uncommon for
web services, it requires dynamic capabilities from the web server. A simple
file upload form handler could be written in PHP or Python Flask.

One of the key features of the Hidden Master architecture is geographical,
organizational and network dispersion of the critical control infrastructure with
low costs. To keep this feature, only some intermediate nodes are required to
implement the file upload required for the back channel. This way, static-only file
sharing hosts can still be kept for downstream, master to agents communication.
Downstream-only hosts have less functionality, and thus smaller attack surface.
Using third party cloud services for distributing configuration is much easier
when these hosts are used for downstream-only file sharing.

4.7 Layer Model of the Hidden Master Architecture

A layer model of HM architecture allows the separation of concerns, the pointing
out of components and their responsibilities, and the defining of interfaces in
the system. The interfaces enable components to be swapped without affecting
other components or the overall structure of the system. Different testing
scenarios might require the transfer layer to be swapped from HTTP to P2P
while maintaining the same method for idemponently defining the target state
of the system. Clearly defined architecture makes it possible to augment the
system with additional components. For example, a physically secure key
storage could be added to the master without any modifications to slaves or
mules. Or slaves and mules could implement domain generation algorithms
with minimal changes outside the transfer layer.

The key feature of the hidden master architecture is protection of the master
secret key. Thus, all versions of this architecture must be able to configure
slaves and keep distributing encrypted catalogs without the presence of the
hidden master.

The architecture is divided into three layers: transfer, encryption and configu-

96

ration. Each layer provides the same function across all nodes in the network.
Each layer can only communicate with layers directly above or below it. Only
the transfer layer can communicate across nodes. Layer responsibilities are
collected to table 27.

Table 27: Responsibilities of layers

Layer Responsibility

Configuration Defines and applies slave configuration.
Encryption Encrypts, signs and verifies catalogs.
Transfer Copies encrypted catalogs across nodes

Based on these responsibilities, the properties or qualities of each layer emerges.
Layer properties can be found in table 28. In the configuration layer, instructions
to slaves are defined (in master) and applied (in slaves). The configuration
layer could either work standalone, or be integrated with an existing tool such
as Salt, Puppet, Chef, Ansible or CFengine. The way for defining a slave
configuration does not affect any other layer. As a trip to each slave can
be prohibitively expensive, multiple methods could be implemented, with a
modern and convenient idempotent system as the default system with a trivial
command based system used as a fallback.

THe encryption layer is responsible for protecting the instructions (the encrypted
catalog) while in transit. Using the principle of end-to-end encryption, the
catalog is encrypted on the hidden master and only decrypted on the target slave.
Thus, the encryption must protect against network eavesdropping (compromised
mules) as the whole network path between master and slave becomes viewed
as untrusted. Depending on the threat model, the mules could be partially
compromised to begin with. To allow low cost network and geographical
decentralization, the hidden master architecture uses low cost virtual private
servers and even cheap web hosting. Not only are the operators of these systems
not trusted, but also other clients on the same physical hardware could be
able to break out of virtualization and read the memory of other users using
published attacks against hardware vulnerabilities such as Rowhammer.

Table 28: Qualities of layers

Layer Network Trusted Outside CM

Configuration no yes yes
Encryption no yes no

97

Layer Network Trusted Outside CM

Transfer yes no no

4.7.0.1 Subsystems A subsystem is a self-contained part of the system,
serving an outside purpose. Other subsystems could consider it a black box that
just implements the required interfaces. Each subsystem could be implemented
with different programming language or technology. A high level language such
as Python makes it easy to integrate the existing CM when it is written in the
same language. A low level language, such as C or Go would make it possible
to compile slave daemons with low resource consumption and - with static
linking - minimal dependencies.

HM subsystems are the hidden master, mule and slave. Subsystems and their
responsibilities are listed in table 29. The master subsystem creates and uploads
encrypted catalogs to slaves. In the initial implementation, there is a single
master. In the future, there could be multiple masters, either providing separate
sets of instructions or coordinating with other masters, e.g. using a version
control system. The mule subsystem consists of untrusted computers, e.g. cheap
virtual private servers, hosted file services or static web hosting. The mule
subsystem is responsible for passively receiving the encrypted catalogs from
the hidden master, and keeping them available to slaves. Implicitly, mules
allow slaves to be controlled when the master is disconnected, and provide
geographic and network diversity for resilience. Because mules are not trusted,
it is important that they do not contain any keys. The slave subsystem consists
of all the slaves. The slave subsystem is responsible for downloading, decrypting,
verifying and applying the encrypted catalogs.

Table 29: Subsystems

Subsystem Responsibilities

Master Create catalog; Encrypt and sign; Upload to mules
Mule Receive encrypted catalogs; Serve encrypted catalogs
Slave Download, decrypt, verify and apply encrypted catalog

4.7.1 Components

Components are tightly coupled parts of the system, that have limited use of
their own. A matrix in table 30 of subsystems and layers shows the initial
components.

98

Table 30: Matrix of subsystems and components

Layers/SubsystemsMaster Mule Slave

Configuration Define
configuration

n/a Apply
configuration

Encryption Encrypt & sign n/a Decrypt & verify
Transfer Upload to mule Serve enc. catalog Download

The main components of HM are in the intersections of layers and subsystems.
As the initial HM implementation is only concerned with configuration and not
monitoring or log consolidation, the traffic only moves one way. Thus, there are
seven components that are executed in the same order, as shown in table 31.

Table 31: Flow from master to slave.

Step Subsystem Action

1. Master Define configuration
2. Master Encrypt & sign
3. Master Upload to mule
4. Mule Serve encrypted catalog
5. Slave Download catalog
6. Slave Decrypt & verify encrypted catalog
7. Slave Apply configuration

4.7.2 Interfaces

“Beginners look at the boxes, professionals look at lines.”

The main interfaces are formed between the interacting subsystems. They are

• Master-Mule interface
• Mule-Slave interface

Data transferred in both of these interfaces is the encrypted catalog. The whole
Transfer layer can consider the encrypted catalog as a black box file. The
encrypted catalog is a single PGP encrypted file whose name is derived from
slave public key ID. Each set of instructions to each slave creates a separate
encrypted catalog.

The minor interfaces are formed between each of the components. As the data
flows one way from master to slave, we can examine these interfaces as the
outputs of each component. This output is the input of the next component.

99

1. Master: Define configuration: Single compressed file with configuration.
E.g. File overlay, Shell script, Puppet catalog or Salt-SSH tarball.

2. Master: Encrypt & sign: Single encrypted and signed file whose name
is derived from slave public key ID. The file is encrypted according to
PGP standard using, for example, gnupg or libraries for the chosen
programming language. E.g. A9F4DEADBEEF.pgp

3. Master: Upload to mule. File transfer suitable for the mule. E.g. scp,
rsync or ftp upload. FTP upload is possible, because the confidentiality
and integrity of data is protected by the encryption layer.

4. Mule: Serve encrypted catalog. Mules should be chosen by price, avail-
ability and distribution. The simplest way of serving will work, such as
static files on a web server or an FTP server.

5. Slave: Download catalog. Using a method suitable for chosen mule. E.g.
regular HTTP or FTP download, using wget or Python requests.

6. Slave: Decrypt & verify encrypted catalog. Decryption is done with slave
secret key, verification is done with master public key. As the encryption
scheme uses PGP standard, it can be decrypted with different software
than that which encrypted it. Verification is done using the master public
key. If verification fails, the catalog is discarded and the failure recovery
process started.

7. Slave: Apply configuration. A method suitable for the configuration
format is applied. Both the master and slave use the same system for
configuration, and HM does not implement every possible configuration
method.

Now that each step of the flow from master to slave is detailed, it is evident
what data is being transferred. The actions taken and the data being passed
indicate suitable programming libraries in each state. These are detailed in
table 32.

Table 32: Component data and library requirements

Component
Library feature
examples

Data (in addition to output
from previous component)

Master:
Configuration

Salt, zip List of slaves. User supplied
configuration.

Master: Encrypt &
Sign

pgp Master secret key, slave public
key

Master: Upload scp Mule addresses
Mule: Serve Apache -
Slave: Download wget Mule addresses

100

Component
Library feature
examples

Data (in addition to output
from previous component)

Slave: Decrypt &
Verify

pgp Slave secret key, master public
key

Slave: Apply
configuration

Salt, unzip -

4.8 Key Management

Trust between nodes in configuration management system is established and
maintained using asymmetric, public key cryptography. Thus, managing
and verifying encryption keys is central to secure operation of configuration
management system. Establishing trust between nodes without leaving a gap
where keys are accepted without verification is a challenge also tackled in this
chapter.

In configuration management system, acceptance of master public key signifies
full control of slave node. This is in contrast with communication systems,
where trust in key usually means trusting that the key refers to correct identity.
Due to the different meanings of trust, the keys must be kept in a separate key
ring from email and general purpose keys, or the trusted master key ID should
be saved separately. To prevent unnecessary coupling of software components,
the implementation of the Hidden Master architecture will use a separate key
ring.

In master-slave architecture, the master sends commands to slave computers.
Thus, the master needs a public key for each slave. Slaves must verify that the
instructions really come from their master. Thus, all slaves need the master’s
public key. Mules, the intermediate hosts, are untrusted, so they must not have
any keys. Key requirements in each operation in downstream flow (master to
agent) is detailed in table 33.

Table 33: Use of keys in the Hidden Master Architecture
downstream flow

Operation Keys required

Slave: decrypt encrypted catalog Slave’s secret key
Slave: verify encrypted catalog Master’s public key
Mule: not allowed to read catalogs No keys
Master: encrypt catalogs to slaves Each slaves public key
Master: sign catalog Master’s secret key

101

If implementations to HM want to monitor slaves, collect or exfiltrate data,
a back channel should be implemented. With a back channel, slaves use the
master’s public key to encrypt messages that the master decrypts with its secret
key. Thus, the back channel does not require any new keys. The master is
ultimately trusted in the HM architecture. Because the master can eventually
obtain all data on all slaves, it does not matter if the master has keys it does
not need, such as slave private keys. At the start of the project, implementation
of the backchannel was not planned. When two case studies were found to
benefit from a backchannel, it was implemented and successfully tested.

There might be a requirement to configure large and an initially undefined
number of new slaves while the master is away from the network. For this
purpose, campaign key pairs could be generated. With campaign keys, multiple
slaves retrieve and apply catalogs encrypted with a single public key. When
communication with these slaves continues, each slave could later have its own
key in addition to a campaign key. Originally, it was planned to leave the
campaign keys for future research. However, this feature emerged as beneficial
and even required for case organizations, so it was designed and implemented.

Having the correct keys in correct parts of the system is required for secure op-
eration. Key management is a key part of initial installation. Key management
plan for downstream flow (master to agent) is in table 34.

Table 34: Key management plan for downstream flow

Node Public keys Secret keys

Master Each slaves’ Master’s
Mule None None
Slave Master Slave

4.9 Initial installation

The HM initial installation consists of steps after which it is no longer necessary
to access slaves outside the HM to make them retrieve instructions. After the
initial installation, the first encrypted catalog processing is the same as the
continuous operation.

The initial installation is complete when the slave nodes periodically attempt
to check one or more addresses for encrypted catalogs and possess the keys
to decrypt those catalogs. Periodically checking the addresses requires a list
of these addresses and a process with persistence. In the advanced prototype,
persistence was achieved by scheduling the task with cron or systemd.

102

Initially installing the the system components can provide a dilemma: it would
be easy to install HM using HM, which is, by definition, not yet installed.
It is assumed that HM is installed in the same way as other configuration
management tools, either as the last step of the operating system installation,
using a previous configuration managment tool or manually.

Initial installation completion requirements:

• Slave periodically attempts to download instructions
– Persistence
– List of mule addresses

• Slave can decrypt and verify the catalogs
– Master public key
– Slave secret key

The sequence of initial installation is presented in fig. 4. The master is repre-
sented by m, courier and drop are on the same computer and are presented
by c, and the single agent is presented by a. Depending on the threat model,
there are multiple ways to deploy the master public key K(m,pub) with agents.
Here, it is deployed through an alternative secure channel outside the hidden
master architecture. Such a channel should be chosen according to environment
and requirements. The deployment could be done during system provisioning,
through ssh, by using an existing configuration management tool or by copying
the file from a USB flash drive. Agent key K(a1,pub) is generated by the agent,
and delivered back to the master with a regular Conftero backchannel report.

Figure 4: Initial key exchange sequence diagram

Persistence means that the slave daemon keeps running and is automatically
started after reboots and other interruptions. Typically, leading CM tools regis-
ter service manager scripts to get automatically started and then continuously
keep running the slave daemon process. For example, Puppet and Salt on

103

Ubuntu Linux use Systemd to start a continuously running process. CFEngine
sometimes uses a combination of continuously running process, service manager
and a cron job (scheduled task) with each of those automatically repairing other
methods if they fail. To periodically run a program, cron job would appear the
obvious choice for this purpose. However, on large networks masters’ resources
could be overwhelmed if all slaves contacted them at the same time.

In malware, persistence is very common goal. MITRE ATT&CK lists multiple
methods attackers use for obtaining persistence.

An initial list of mule addresses can be provided with the HM slave daemon
binary. It can be either a separate file or bundled in the binary, depending on
the implementation language. The first HM prototype implementation uses
regular, static web servers as mules. Thus, these addresses are simply a list of
http and https URLs.

Code: Mule addresses

http://example.com/somemanifests
https://lasermonkey234.info/lightningbanana/

Encrypted catalogs are designed to be useless without keys to decrypt them. To
decrypt the catalog, a slave secret key is required on the slave; and a matching
slave public key is required on the master. These keys can be generated on
either the master or slave. If these keys are generated on the slave, the slave
public key could be transferred over an untrusted network such as the Internet
if the master could verify it. If keys are generated on the master, the slave
secret key must be delivered to the slave through a protected channel.

As CM has unlimited privileges on slaves, it is also critical to verify catalog
signatures before applying them.

4.9.1 Campaign keys

Campaign keys can solve the challenge of installing and configuring an un-
planned number of future agent nodes. Such a requirement can arise when
multiple devices (workstations, servers, laptops, IoT devices) must be delivered
to internal or external customers; or when a cloud system rents and initializes
multiple virtual servers in response to a rising load. Provisioning can be per-
formed by using an initial hard disk image or running a scripted installation.
Provisioning can make the agents phone home on first boot, but then the
authenticity of the agent must still be verified - a tedious and error prone job
for a human. This was the situation in the case organization studied here.

The campaign key is the initial public key K(cam, pub) installed during provi-

104

sioning. It allows agent a1 to decrypt, verify and apply instructions meant for
the group of agents it belongs to. To report back to the master m (through
courier / drop intermediate nodes c), it uses the public key of the master K(m,
pub) also installed during provisioning. As the HM agent first boots up, it
generates agent keypair K(a1,sec) and K(a1,pub) and includes it in the first
report to the master, thus allowing the master to send instructions to individual
hosts.

Figure 5: Key exchange for campaign keys

The full key exchange including the campaign key is shown in fig. 5. The initial
key exchange is shown as two dashed rectangles. As the Hidden Master archi-
tecture is asynchronous, these initial steps might be spread over considerable

105

time or occur within a minute.

For the initial installation, master m generates an agent binary for this campaign
camp. This step is shown as the first dashed rectangle - “Initial keys deployed
during provisioning” - in fig. 5. This binary contains the master public key
K(m,pub) and campaign key K(cam, sec). This binary and keys are deployed
to an agent using a secure secondary channel, such as during the operating
system installation using a provisioning script or initial image. If agents are
already provisioned but not yet controlled by this system, SSH can be used as
the secondary channel if agents are reachable over the network.

It should be noted that even if master m or any of the courier/drop nodes c
never connect to the network at this point, agent a1 will still apply the version
of configuration that was available at the time of building the agent binary.

The individual public key for agent a1 is generated and reported on the first
boot. This is shown in the second dashed rectangle - “Agent public key included
in first report” - in fig. 5. As the agent a1 first boots, it generates its own
keypair K(a1,sec) and K(a1,pub). As with every run of the agent, it applies
configuration and generates a report. If configuration for camp is available at
the time of generating an agent binary used here, this configuration is applied.
To allow master m to securely control individual agents, the agent’s public key
K(a1,pub) is encrypted to the master public key K(m,pub).

Public key of the agent and the whole report is signed with campaign’s secret key
K(cam,sec). This frees operators from manually checking key fingerprints when
accepting new agents, and the agents’ reports can be accepted automatically.
Future versions of the advanced prototype could sign the catalogs with all
available keys, including the agent secret key K(a1,sec) and all campaign secret
keys.

Normal operation starts after the initial key exchange is finished. In fig. 5,
the normal operation is shown below the two dashed boxes. As all network
operation (i.e. all operations in the Transfer layer) in HM is asynchronous,
these steps can happen very quickly (within a minute) or take considerable
time (e.g. a week). As implied by the name of the Hidden Master architecture,
the master is not expected to be constantly present in the network.

Usually, the master is expected to perform sync operation which executes
catalog encryption, signing, uploading; and report download, decryption and
verification in seemingly one step for the user. This single sync command uses
different keys for each distribution, that is, a separate key for each campaign
and each agent. This prevents an adversary able to compromise a single agent
from gaining access to the configuration of other campaigns and agents. Use

106

of the single sync command also minimizes exposure if security requirements
demand the highest protection for the master. Here, each step of operation is
examined separately. As the HM is an asynchronous architecture, these steps
can happen at vastly different times for the agents and master; or during a
short time frame.

At a whim, the operator can define configuration on the master. As all
configuration management systems considered in this work define infrastructure
as code (IaC), configuration is defined by typing code in the text files. If
some nodes are already synced (sent a report through the Transport layer),
configuration can be guided by the data in the reports. By using campaign keys,
it is also possible to define configuration for hosts that do not yet exist. The
master does not need to be connected to the Internet for defining a configuration
or for analyzing the reports.

Master m1 encrypts the catalog to each campaign’s public key K(camp,pub)
and signs it with its own secret key K(m,sec). It then uploads this catalog to
the intermediate server c. The server does not contain any encryption keys and
does not participate in the encryption layer. It is expected that the adversary is
able to compromise some of these intermediary hosts, as they must be accessible
to the Internet or at least a large part of it. In case of rented cloud space, the
owner of the cloud has access to all data in that cloud even without an attack.
Making the Internet accessible hosts untrusted and especially moving master
secret keys away from them offers a major security benefit over systems that
do not make this separation.

File based PGP encryption protects the information both in transit and at rest
on the intermediate hosts c. The transport layer can implement additional
encryption and obfuscation methods to create costs to adversaries, to frustrate
traffic analysis and to avoid over eager network filtering. In this example, the
master-courier (m-c) traffic is protected by SSH Secure Shell. The courier-agent
(a-c) does not use the additional protection of transfer, but transport layer
security (TLS) could be easily added here by using HTTPS transport.

If the threat model includes nation states or other well funded adversaries, it
should be noted that the HTTPS transport with system built-in certificate
authority (CA) list cannot be trusted. As any CA can sign any certificate, a
well funded adversary can simply buy a CA, or a state can order a CA to sign
a certificate for it. The Hidden Master architecture relies on the OpenPGP
cryptosystem, and uses other cryptography only as a non-essential addition as
needed.

At predefined intervals, e.g. every 15 minutes, an agent a1 fetches a new

107

configuration, decrypts it using its own private key or any of its campaign
keys. Here, the campaign key K(camp,sec) is used for decrypting the catalog of
encrypted configuration. Catalogs are always verified with the master’s public
key K(m,pub). Additionally, catalogs contain a monotonously growing counter.
Verification step checks that the catalog version is newer than the one installed.
Catalogs failing verification are discarded.

A verified catalog is then applied on the agent a1. Novel contributions, design
and implementation to defining and applying configuration are described in
detail in chapter “Defining Configuration”. The report of the result and the
system state is generated. Agent a1 encrypts this report for the master.
Encryption is always performed using the master’s public key K(m,pub). The
catalog is signed using the agent a1 secret key K(a1,sec). Catalogs could also
be encrypted with secret keys of the campaigns a1 participates in, such as
K(camp,sec) here, and then verified on the master m. This additional campaign
key signing is not implemented in the current prototypes.

The encrypted report is uploaded to the intermediate node c. The current
main implementation uses PHP script with HTTP POST request. This im-
plementation is expected to be deployable in many simple and cheap hosts
and hosting services. As described in chapter “P2P Operation in Shattered
Network”, transports can be swapped without modifications to other HM layers.
Again, as c does not possess any keys, it cannot decrypt or modify the messages,
and does not need to be trusted.

Finally, the master downloads the encrypted reports using SSH. As the HM is
asynchronous, this can happen at the whim of the operator. As the encrypted
reports are already stored on the intermediate host c, the master m does not
need to be on the network at the time that the agent node a1 is connected
or even running. This feature was used in the smaller case study where the
reports analyzed for agents (and the OSes running them) were already deleted.

The master decrypts and verifies the reports. All reports are decrypted using
the master secret key K(m,sec). Signatures are verified using the agent key
K(a1,pub). Decrypted reports are stored on the master m, and can be analyzed
without connection to the Internet or the intermediate host c.

4.10 Pseudo Code of Master and Agent Operation

Agent (slave)

• Download: Download any new files on the intermediate hosts
• Verify: Files whose cryptographic signatures verify against a set of trusted

keys are processed further, while others are quarantined or ignored

108

• Apply: Verified files are extracted, and another CMS is used for applying
the catalogs

Master

• Compile: target state of slaves is described using another CMS, and
catalogs are compiled to each category of slave.

• Encrypt: each slave catalog is encrypted using the trusted private key of
each slave.

• Publish: The encrypted catalogs are uploaded to the untrusted interme-
diate hosts.

During the master compilation stage, depending on the other CMS, it might
require some setup if identical slave catalogs are to be combined.

To provide large files for slave nodes, the system could also add the dropping
of external files to a category of slaves.

4.11 Sequence of Messages in Transfer Layer

The exchange of encrypted messages in the Hidden Master Transfer layer is
presented in fig. 6. HM architecture uses end-to-end encryption of both catalogs
(instructions to agents) and reports (from agents to master). Encryption is the
responsibility of the Encryption layer, and the implementation in the research
prototype uses PGP. Thus, the messages are encrypted both in transit and at
rest in the intermediate courier / drop. The transfer layer may provide its own
encryption, which is not depended upon. Here, master-courier communication
uses SSH encryption, and courier-agent communication does not use additional
encryption. Obviously, such encryption would be simple to add by using
HTTPS (HTTP over TLS).

It should be noted that courier / drop (c) only exists in the Transfer layer. It
does not possess any keys, and even a compromised courier has no access to
the content of catalogs or reports. It also cannot impersonate other parties:
neither master to agents nor agents to master.

fig. 6 shows a key difference to a leading CM, such as Salt or Puppet. The
hidden master model (and the research prototype) operate without direct
connection between master and agents. In fact, agents and master do not have
to be connected to the network at the same time.

4.12 Defining Configuration

Modern configuration management is idempotent. This means that the target
state of the system is described, and a CM tool only makes changes if the

109

Figure 6: Encrypted message transfer in the Hidden Master Transfer layer

current, actual state differs from the target. If the CM tool is run periodically,
it is expected that controlled systems end up in a stable state where changes
are no longer needed.

In contrast to regular imperative programming, declarative programs are not
run in a specific order. Instead, the order of actions to take is defined arbitrarily,
unless dependencies between items require otherwise. Most general purpose
programming languages are imperative, such as Python, Go, C and Java. Many
document definition languages are declarative, such as HTML or Markdown.

Some researchers, such as Wurster et al. (2020), consider the concepts of
declarative and idempotent to be equal. According to Wurster et al. (2020),
the declarative approach is widely accepted in both industry and research, and
used by many tools such as Chef, Puppet, AWS CloudFormation, Terraform
and Kubernetes.

Leading configuration management tools expose their resources to users as
domain specific language, DSL. Puppet uses its own declarative, non-imperative
language in text files called manifests. Depending on settings, Puppet manifests
are not necessarily evaluated top-down. Salt uses its own YAML (yet another
markup language) based DSL in combination with code generation using the
Jinja2 template engine. In addition to this main language, Salt provides
multiple alternative languages for defining configuration. Even though some of
these extra languages are Python, they use less than obvious control structures
to define dependencies in the same way as the main DSL. Ansible provides yet
another DSL of its own. As these DSL are not used anywhere else, it could be

110

assumed that there is little transfer effect even for experienced programmers.

In practice, many declarative configuration DSL:s (e.g. Salt, Puppet) implement
idempotency as a simple if-then. When considering the state of a resource,
they first compare it to the current state (if), then run a command to modify
the state if it differs from the target state. Eventually, both Salt and Puppet
have added features to control the run order of declarative configuration. One
of these new run orders is top-down.

When declarative configuration is run top-down, it is not far from a similar
imperative program consisting of if-then statements to modify the state. These
if-else checks can be further abstracted as functions, creating concise imperative
programs that are still idempotent. This approach is taken by Conftero
configuration language.

In their systematic mapping study of infrastructure as code (IaC) Rahman,
Mahdavi-Hezaveh and Williams (2019) categorically conclude that “IaC scripts
use specific language (DSL)”. Shambaugh, Weiss and Guha (2016) who they
cite does not express this view as categorically, but they do mention numerous
configuration management tools that use a DSL. Shambaugh, Weiss and Guha
(2016) do not include any examples of idempotent CM that do not have a DSL.

Shambaugh, Weiss and Guha (2016) point out three main benefits of a DSL.
Administrators are already familiar with the OS, the tools, and the techniques
that these DSLs control. Many types of resources can be managed, such
as packages, configuration files and users. He also points out that a DSL
“provide[s] relatively low-level abstractions”. (Shambaugh, Weiss and Guha,
2016). As a counterpoint, one could ask if “low-level abstraction” is useful at
all, as the administrator would have to learn a DSL, but still gain very little
reduction in complexity. As these DSLs simply run OS tools underneath, the
administrator might end up writing as complex (and long) code in an unfamiliar
DSL that simply ends up running the commands he would have already known.

Kosar, Bohra and Mernik (2016) performed a systematic mapping study on 390
publications about DSLs. They concluded that measuring the effectiveness of
DSL approaches is lacking, and there is little evaluation research, particularly
controlled experiments (Kosar, Bohra and Mernik, 2016). This is in stark
contrast to the view taken by some proponents of DSL. Mernik, Heering and
Sloane (2005) claim that “[Domain specific languages] offer substantial gains in
expressiveness and ease of use compared with general-purpose programming
languages in their domain of application”.

111

4.12.1 Size and Complexity of Some DSLs

DSLs can become highly complicated and large. I analyzed the DSL of Salt,
one of the leading configuration management tools. To estimate the complexity
of the language, I collected statistics from its manual. As Salt generates this
manual from its source code at runtime, it can be expected to give a good view
of the actual language in use. To perform these tests, I used Salt version 2017.7.4
“Nitrogen”, as it was packaged and supported on the test distribution Ubuntu
Linux 18.04 LTS “bionic”. Details of this test are explained in Estimating
the Size of Some Domain Specific Languages and the results are collected in
table 35.

Salt DSL has 510 state functions allowing the administrator to control the state
of agent computers. The documentation for these states is more than 20 000
lines, over 75 000 words - longer than a typical doctoral dissertation. This does
not yet include control structures, such as branching (if-else) and loops (for).
This functionality is provided by using Jinja2 templates to generate YAML
code, which is then converted to internal Python structures and run. Using
templates to generate code creates another level of low-level abstraction for the
administrator to fathom.

Puppet, another leading CM tool, provides 113 functions out of the box. This
does not include control structures. Puppet control structures are very different
from those used in common programming languages such as C, Go or Python.
Puppet relies on defining new resources and their relationships. For example,
consider a case where the administrator would like to create users so that they
all get similar settings. In a common programming language, a task often
repeated could be represented as a function. Instead, Puppet defines its own
concept for this purpose - virtual resources.

Table 35: Qualities of some domain specific languages

Tool Functions Control structures

Salt 510 Generate code with Jinja2 templates
Puppet 113 Own concepts, e.g. virtual resources

4.12.2 Use of DSL Functions in Case Configuration

Considering that leading CM tools have DSL with a large number of functions
and detailed rules for defining relationships between these resources, it could
be assumed that building one’s own resource abstraction is a large undertaking.
However, some program patterns are very common when defining configuration,
such as the package-file-service pattern for setting up daemons. To evaluate the

112

scope of this task, I had a look at some publicly available third-party production
configuration using Puppet DSL. I selected the United States Government
Configuration Baseline (NIST, 2016) and Mozilla Release Engineering Puppet
Manifests (Mitchell et al., 2020).

For Mozilla Engineering manifests, functions and control structures were gath-
ered by searching manifests for the left curly bracket, duplicates were removed
using Linux command line tools and finally percentages (of use count) were
calculated with Python. One non-command right curly bracket was removed
manually.

Table 36: Most used functions (F) and control struc-
tures (C) and internally defined (I) in Mozilla Release
Engineering Puppet manifests.

Share n Type Commands

20% 475 C case
19% 429 F file
10% 234 F package
6% 136 F exec
3% 75 F service
3% 71 I fw::rules
3% 67 I registry_value
3% 66 C if
3% 63 I registry::value
3% 62 C class
2% 52 C anchor
2% 41 I packages::pkgdmg

table 36 contains all commands where the usage of which comprises more than
1% of uses. They cover 87% of all commands and control structures, including
the ones that are defined in these manifests. By categorizing these as functions
(F), control structures (C) and calls to functions defined internally (I), we can
see that very few functions are actually required.

The most used functions are those one could expect based on common program
patterns used by the leading CM tools. Daemons are set up with package-
file-service, and client applications simply use package-file. Many functions
perform a simple system call in the background, and where this does not work,
the user can call exec himself. When using exec, the user is responsible for
making the state idempotent. Some common functions that did not reach over
1% of those used are user (0.8%) and group (0.1%).

113

Control structures used include “if” and its special case “case”. The challenges
of DSL development are reflected by wide use of “class”, which Puppet uses
in a meaning that is not related to its regular use in programming languages.
Use of “anchor” could be described as a way of handling resource (function)
dependencies inherent in Puppet DSL.

Similar analysis was performed on the United States Government Configuration
Baseline (USGCB). One irrelevant hit was removed where a variable value
contained the search string.

Table 37: USGCB use of commands separated to functions
(F), internal (I), unrelated (U) and control structures (C).

Share n Type Commands

22.5% 23 F augeas
16.7% 17 F file
14.7% 15 F service
14.7% 15 F exec
12.7% 13 F package
8.8% 9 I pam::changeparm
2.9% 3 U node
1.0% 1 I umask-replace
1.0% 1 I set-mount-options
1.0% 1 C if
1.0% 1 F group
1.0% 1 U filebucket
1.0% 1 F cron

The results in table 37 show that the most common functions included package-
file-service, exec and group. File manipulation can also be performed by
modifying existing files instead of replacing them, and augeas was used for this.
In fact, file manipulation using augeas was the most common function. User
function was not used at all, which could indicate that users are controlled by
some other centralized system outside CM. Timed tasks were created with cron
state. As this configuration was created for Red Hat Enterprise Linux 5 only,
cron state could easily be replaced by simply creating a file in /etc/cron.d/.

This analysis shows that even though leading CM provides a respectable number
of functions to manipulate the system, a small number of functions seem to
cover a large number of use cases in the example production configuration
researched. This result is in line with the experiences gained by the author

114

from multiple years of Puppet and Salt configuration management courses in
Haaga-Helia UAS.

4.12.3 Conftero Definition Language

Conftero could either provide its own method for defining configuration on
thle agent, or integrate with an existing solution. Benefits and challenges of
each approach are in table 38. This could remove the problem of integrating
against the moving target of an external configuration management system.
But it could also provide new benefits. As seen in the previous chapter, a
small number of configuration functions are responsible for a large share of
configuration. It could be expected that a smaller language is easier to master
and could even reduce cognitive load while programming. While leading CM
tools define their own DSL, using a dialect of a widely known language could
make it simpler to use existing knowledge of programming with CM. A full
featured programming language could also provide simpler and better defined
control structures, avoiding kludges like Puppets anchor or Salt’s use of code
generation using the Jinja2 template engine.

The downsides of implementing one’s own configuration system are the required
efforts and the need for users to rewrite the possible existing configuration. It
also remains to be seen if the required qualities such as idempotency can be
reached with a full, general purpose language.

Table 38: Possible benefits and challenges of embedding
existing language

Benefits Challenges

Reduced integration effort Effort for creating the system
Dialect of existing language faster to
learn

Existing configuration must be
rewritten

Well defined semantics and control
flow

Control flow not tailored for CM

4.12.3.1 Dependencies Between Main Functions This chapter analyses
the dependencies of functions (resources) from the point of the developer of the
configuration management system. In Conftero, deep understanding of these
concepts is not required for the user. In fact, Conftero aims to use a single
changes flag to free the user from managing the dependencies, and this user
perspective is handled in the next chapter.

The most common functions include package-file-service, user, group and exec.

115

Common use cases include daemon and app configuration. In some cases, users
and groups need to be created for technical reasons, even if human users are
managed outside CM. Key functions are listed in table 39.

Table 39: Key functions for configuration management

Category Functions

Daemon setup package, file, service
App setup package, file
User management user, group
File manipulation file, directory, symlink

The system should be idempotent. This means that changes are made only
if the system is not already in the correct state. As a result, a correctly
configured, periodically running system does not make any changes in a typical
run. Idempotency can be achieved simply by a simple list of “if”-structures.
For example, existence of the file is checked, and a file is created only if it
does not exist. Contents of the file are checked and if they differ from the
target, they are corrected. Differences from the target are logged, which tells
the administrator if the system has reached a stable state.

Most system configuration functions end up running a native command on
the agent. For example, package function runs ‘apt-get’ on Debian Linux. If
resource abstraction is implemented, the same package resource can run ‘yum’
package manager on Red Hat Linux. In current leading CM tools, choosing the
name of the package is still left as an exercise for the administrator, usually
adding an “if” or “case” at the top of the code.

File is a very common thing to manage. In Linux, almost all configuration
is stored in plain text files. In Windows, many programs (but not all) store
their configuration in text files too. As files have many attributes (content,
mode, owner. . .) to manage, it makes sense to implement the file function from
scratch instead of executing an external program.

Many functions end up calling a program in the agent system. Many features of
the system require that only one component handles this area, such as package
manager or service (daemon) management. It would not result in a stable
system if daemons were restarted by killing their processes, or if files controlled
by package manager were overwritten by an outside application.

The next abstraction level can be built on service, package and file. For example,
managing scheduled jobs with cron can simply use file resources. This means
that a large number of functions could be implemented out of a small number

116

of base functions, or that the user could simply use the core functionality to
make programs whose function is obvious and self contained.

if hasChanges()

service

file, dir, symlinkexec

package user, group

if not exists

Figure 7: Dependencies in configuration management functions

A dependency graph of these features is shown in 7. The key functions are
“exec” for calling other programs and “file” for creating files in the system. It is
easy to make the file function idempotent with built in checks. For exec, making
it idempotent is different depending on the program being called. Idempotency
could check if a file created by the program exists. Some programs (e.g. ‘apt-get
install’) are already idempotent, and any changes made could be detected
from the output for logging purposes. Knowing whether changes happened is
important to recognize if the system has reached a stable state.

Other important functions are created by calling file and exec. These are
package-file-service, user and group. These functions can have built in checks,
so the administrator does not need to write control logic himself.

From the internal dependency graph we can see that the system has very
few top level functions. Only exec and file functions (file, directory, symlink)
directly affect the agent system. Other resource functions can be built from
those two basic facilities: package, file, service, user and group. Even higher
level functions, such as cron management, could be further built using these
facilities. As we can see from the actual production examples above, most
configuration is built using basic facilities. As the typical workflow is to first
perform an operation manually and then automate it, the administrator is likely
to already know how to combine these basic facilities when the automation
starts. It is also open to question if the added complexity and cognitive load
negate the benefit of creating additional layers of abstraction.

4.12.3.2 Flow Control and Resource Dependencies This chapter
looks at the dependencies from the point of the user of the system, i.e. the
administrator who uses CM to configure agents. Conftero aims to free the
user from thinking about resource (function) dependencies at all by using a
single per-module changes flag instead of individual dependencies. The previous
chapter handled the CM system developer’s view of the dependencies inside
the Conftero code.

117

Most daemons only load new configuration when the daemon is restarted.
Thus, a restart must be performed when the configuration files change. On the
other hand, services should not be restarted without a reason, as this would
interfere with the proper operation of the system. If the web server is restarted,
clients could be logged out and their shopping carts emptied. If SSH daemon
is restarted, remote users could be logged out.

Control flow can easily become confusing when it is defined with CM DSL. This
can result in the need for code generation (Salt), a need for kludgy program
patterns (Puppet) or in code where it is difficult to predict the execution order.
In Conftero, I attempt to create the control flow using the simple tools provided
by a general purpose programming language.

Instead of a dependency graph between the resources managed, Conftero will
use a top down flow with regular programming language constructs. I propose
the use of a general changes flag to replace the resource dependency graph. If
any of the functions end up modifying the agent system, the current code has
changes and the function hasChanges() returns true. The following Python
code for installing a web server and enabling user homepages is a very common
example of a package-file-service pattern.

package("apache2")
symlink("/etc/apache2/mods-enabled/userdir.load",

"../mods-available/userdir.load")
symlink("/etc/apache2/mods-enabled/userdir.conf",

"../mods-available/userdir.conf")
if hasChanges():

restartNow("apache2")

This code has an obvious control flow. Starting from the top, web server apache2
is installed or upgraded if needed. Configuration is modified by changing two
files in /etc/. If any of these functions made any changes, hasChanges() is true,
and the service is restarted, thus taking the new configuration into use.

In leading CM tools, a similar state would require creating multiple dependencies.
As a single file often considers only a limited number of services, most functions
end up on the dependency graph.

Let’s consider a Salt state making the same web server setup as above.

apache2:
pkg.installed

/etc/apache2/mods-enabled/userdir.conf:
file.symlink:

- target: ../mods-available/userdir.conf

118

/etc/apache2/mods-enabled/userdir.load:
file.symlink:

- target: ../mods-available/userdir.load
apache2service:
service.running:

- name: apache2
- watch:

- file: /etc/apache2/mods-enabled/userdir.conf
- file: /etc/apache2/mods-enabled/userdir.load
- pkg: apache2

Salt states (code files) are written in Salt DSL. Similar to other leading CM
tools, the user must manage the dependency graph himself. As many changes
require restarting the service, “watch” expressions are used for creating a
dependency from service to all other functions in the state.

Salt configuration is expressed in YAML, a structured language similar to JSON
and XML. YAML was originally created for storing configuration. Following
about a hundred students who configure machines with YAML, common chal-
lenges seem to be both syntactical (two space indentation, colons) and semantic
(which parts are lists and which parts are associative arrays). Examining the
common challenges in reading and writing configuration could be an area for
more detailed research.

Because user is made to manage the dependency graph, each thing must have a
name for reference. Here, names include “apache2” and “apache2service”. For
most functions, the code is made shorter by implicitly using the name as the
main parameter for the function. This feature, namevar, makes code shorter but
also adds another layer of abstraction. Because each thing must have a different
name, it is not possible to have service “apache2” and package “apache2”. This
is unfortunate, as a large portion of software packages are named after the
daemon contained in them, resulting in names like “apache2service” and thus
preventing the use of the namevar feature.

Another leading CM tool, Puppet, uses a different DSL. Consider this Puppet
manifest implementing the same package-file-service pattern as above.

class apache {
package {"apache2":

ensure => "installed",
}

file {"/etc/apache2/mods-enabled/userdir.conf":

119

content=>template("../mods-available/userdir.conf"),
notify=>Service["apache2"],

}
file {"/etc/apache2/mods-enabled/userdir.load":

ensure=>"symlink",
target=>"../mods-available/userdir.load",
notify=>Service["apache2"],

}
service {"apache2":

ensure=>"running",
enable=>"true",
require=>Package["apache2"],

}
}

Like Salt, Puppet makes user manage the dependency graph between functions,
and here 15% of rows end up being dependencies. Puppet has multiple ways
of creating dependencies that have different effects, and user must be able to
choose the correct one and also know if a (daemon restarting) dependency is a
side effect (e.g. “require”).

Puppet uses terms known to all programmers, such as “class”. Unfortunately,
their definition in Puppet is completely different from the well known definition
in programming. When combining functions (“resources”) together, user learns
concepts such as “defined resource types”. While teaching Puppet techniques,
these seem to create a lot of confusion, and this could be another area for
further research.

Table 40: Comparing source line count when defining
resource relationships for package-file-service

Tool Lines Dependency l. Dependency %

Puppet 14 3 21%
Salt 16 4 25%
Conftero 5 1 20%

Source lines of code were calculated to compare the amount of dependency
related code, and the results are listed in table 40. Empty lines and single
character lines (e.g. ‘}’) were ignored and line counts calculated with ‘nl’
and ‘wc -l’. The leading CM tool DSL configuration examined was found to
be approximately three times as long as the Conftero Python configuration.
However, the portion of dependency related code stayed approximately the

120

same due to the denominator, the total line count, differing considerably. While
this result points to interesting possibilities in developing a new configuration
language, these comparisons should be considered only with other measures
of code complexity and the effect on actual development. Source line count is
merely a proxy indicator of code complexity and the number is dependent on
the definition of source line.

The example of installing, configuring and keeping a daemon running is a simple
task. Even though there are dependencies between the resources (package-file-
service), it does not yet need actual control structures. Cases where multiple
system users require similar configuration or cases where some configuration
is repeated could make possible the comparison of more demanding control
structures. Here, Salt uses code generation with templates, and Puppet uses
its own concepts such as virtual resources. Even though one could expect
traditional programming language to succeed well in this area, this comparison
is left for future research.

Defining configuration in Conftero differs from typical solutions within research
and industry. It uses general purpose language instead of a domain specific
one. Due to this, Conftero uses common control structures, and competing
solutions define their own unique methods for flow control. Conftero’s resource
model is simple, with less than ten state functions. Leading solutions have
more than a hundred state functions. However, all CM tools use infrastructure
as code methods and aim for idempotent configuration. These similarities and
differences are listed in table 41.

Table 41: Comparing Conftero configuration definition to
those common in industry and research

Aspect Conftero Typical tools

Language
type

General
Purpose
Language

Domain Specific Language

Flow control GPL: for,
while, if-else

Templated code generation (salt), virtual
resources and others (Puppet)

Run order Imperative Declarative (Puppet, Salt, Chef, Terraform. . .)
Idempotency Idempotent Idempotent
Pre-defined
resources

Less than 10 Hundreds (Puppet 100+, Salt 500+)

User
interface

Infrastructure
as Code

Infrastructure as Code

121

4.13 Implementing the Main Prototype Conftero

The main research prototype was implemented in Go. Go is a statically typed
systems programming language. It was chosen for its capability to cross compile
multiplatform static binaries, a good standard library and strict error handling.

When Conftero was feature complete, it had approximately 4000 source lines of
code, 700 of which were unit tests. During the work, the scope was extended
to add a back channel from agents to the master. The Conftero configuration
language was implemented using a Python dialect that is built into Conftero.

Some aspects of the implementation are interesting, but their novelty was not
verified with literature review or they were more practical aspects:

• Statical linking (linking only against glibc) could make configuration
management system more resistant to heterogenous environments and
problems related to library updates on slave nodes.

• Including a complete Python dialect into the static binary further reduces
dependency on software and libraries on slave node.

• Reduction of unnecessary abstraction seems to make some common
operations faster, but this aspect was not investigated further. The
speed of operations is only interesting when developing new configuration,
but usually irrelevant when actually deploying configuration on slaves.
For example, an industry leading tool Salt makes administrator define
configuration in YAML-based DSL, then compiles this internally to
Python-based structures, then calls idempotent state functions, which
call imperative functions, which in turn often simply run a command in
shell.

• Running Conftero slave software (‘ccta’) can be updated without reliance
on outside tools such as package manager. This feature can be useful
because configuration management system should be resilient to problems
in package manager, and because slave and master software versions must
match the whole lifetime of the system.

• The use of Go programming language allows cross-compilation to multiple
processor architectures and environments. Some other programming
languages of the same generation, such as Rust, could provide similar
benefit.

• Multiple design and implementation decisions combined resulted in low
resource use. Scheduled operation means that no resources are consumed
when Conftero is not operating on slave. The choice of compiling to binary
(and not bytecode or script) seemed to reduce resource consumption in
practice. Low resource consumption is important when running on IoT
devices or cloud servers, which are often priced according to RAM.

122

4.14 Novel Concepts in the Design

Multiple novel concepts were introduced in this chapter.

Security in configuration management is an area where many authors call for
more research (Marsa-Maestre et al., 2019; Rahman, Mahdavi-Hezaveh and
Williams, 2019; Kumara et al., 2021; Rajapakse et al., 2022; Rong et al., 2022;
Xu and Russello, 2022; Ullah et al., 2023). In their systematic mapping study,
Rahman, Mahdavi-Hezaveh and Williams (2019) did not find “any publication
that focus on security issues”, even though an error that violates security
objectives “can compromise the entire system”.

The Hidden Master architecture is a novel concept that radically increases
security of configuration management system. It stems from the realization
that master secret key is the most valuable file in the whole network. Not only
does it provide full and unlimited access to all other files, it’s a key to a system
that makes this access fast and convenient. The Hidden Master architecture
makes the master literally unreachable on the network when it’s not issuing
new configuration or receiving latest reports. This makes the window of attack
very small, attack surface small and forces attackers to operate at a time when
a human is actively observing the system. Literature review did not find any
other solution that offers similar protection for master secret key, and in fact
the value of this key does not seem to be highlighted in other publications.

Key management is critical for the security of Hidden Master. Hidden Master
architecture also defines bootstrapping trust on an arbitrary number of new
nodes. This is done with campaign keys for transmission of slave public key
to master, removing the need for tedious and error prone verification of key
fingerprints when accepting new slave nodes.

In the Hidden Master architecture, the combination of key management and
asynchronous operation offers multiple benefits in addition to protecting the
secret key of the master. The transfer layer becomes truly decoupled, and
multiple examples of this were provided, including air-gapped and peer-to-peer
operation. Many authors agree that configuration management systems should
be scalable [Ullah et al. (2023); Rong et al. (2022); Rong et al. (2022);
(Mansouri, Prokhorenko and Babar, 2020; Rong et al., 2022), a requirement
helped by the Hidden Master architecture.

General purpose programming languages have been used to configure malware
payloads, and this aspect is also identified as it’s own ATT&CK framework
technique. This work introduces general purpose language use to configuration
management systems. Domain specific languages are widely used for config-
uration management systems. They introduce their own concepts for flow

123

control and abstraction. This work introduces two models for constructing a
language for configuration management, base resource model and hasChanges
revalidation model. Base resource model proposes the use five base resources,
leaving higher level abstractions to the language. HasChages revalidation model
removes the need for administrator to defined dependencies between resources
in typical multi resource definitions.

A novel model for comparing concepts used in criminal malware and benign
configuration management systems was created. As the new model includes
mapping to MITRE ATT&CK, this readily allowed identifying existing concepts.
This model could be used in future research to identify both existing and any
emerging concepts for use in configuration management.

4.15 Conclusion

Security is critical in configuration management systems. When obvious steps
are taken to protect network communications, the security lies in secret key
of the master, and key management to correctly establish and maintain trust.
The secret key of the master is the most valuable file in the whole network of
computers controlled by the master. Compromise of master secret key allows
attacker full and convenient access to all other data in all nodes. The Hidden
Master architecture protects this key.

The Hidden Master architecture protects master’s secret key. Due to asyn-
chronous operation and key management, the master can be offline and even
shut down when it’s not sending slaves new configuration or receiving reports.
Creation of the configuration and analysis of reports can be done offline. If
the security situation is extremely difficult, it’s possible for master to operate
completely air-gapped and use another computer to analyse the reports from
the slaves.

In the Hidden Master architecture, master signs and encrypts instructions to
slaves. These encrypted catalogs can be stored into any untrusted transfer
layer, for example untrusted web servers. The transfer layer is decoupled from
other layers, allowing the use of peer-to-peer or air-gapped transfer layer if
needed.

Improvements to configuration on the slave were proposed. The need to raise
abstraction level and the challenges of domain specific languages can be helped
by the use of general purpose language, such as Python, for configuration. The
proposed base resource model simplifies the design of such definitions, both
for creators of tools and to the users. General purpose language allows the use
of regular flow control and abstraction methods, already familiar to anyone

124

knowing the basics of programming. The resource revalidation model proposed
in this work further reduces typical configurations, making it often unnecesary
to define dependencies between base resources.

To follow constructive approach, and to answer the call for more empirical
research, two prototypes were implemented. In constructive research approach,
theory guides building artifacts, which are then evaluated (Piirainen and
Gonzalez, 2013). Here, the artifacts are the two software prototypes. These
prototypes allow laboratory tests to compare the design to industry leading
tools; and case studies to see if the design can conform to real life business
requirements.

125

5 Findings and Analysis

The main aim of this thesis was to investigate the survivability of configuration
management systems based on using and adapting concepts used successfully
by malware. Using constructive approach, the theoretical basis was formed
in the literature review (RQ1, RQ2, RQ3). This theoretical basis guided the
designing and building of the two research prototypes (RQ3, RQ4). Concepts
developed in the theoretical work and implemented in the prototypes needed
to be validated. Validation is a key part of the constructive approach.

This chapter presents the results of the validation of the research prototype.
Validation is done in simulated and emulated laboratory settings, case studies in
realistic environments in the field and finally with expert interviews to evaluate
potential business benefits. Research philosophy, rationale and research design
were presented in chapter “Methodology”. This chapter answers research
questions RQ5, RQ6 and RQ7, which are shown in table 42.

Table 42: Research answered in “Findings and Analysis”
chapter.

RQ Explanation

RQ5 Based on load simulation, faulty network emulation and attack tree
analysis, how does the resiliency of the configuration management
software prototype - implementing some of the techniques adapted from
malware - compare to a leading industry solution?

RQ6 Based on a case study in a realistic field context in a company, what
utility does the research prototype provide in meeting the business
requirements of the case?

RQ7 What potential do business benefits experts see for the models and the
research prototype?

5.1 Empirical Validation in Emulated and Simulated
Environment

Hidden master implementation was tested in an emulated environment. Emu-
lation testing is part of the overall evaluation strategy laid out in Methodology
chapter. This chapter both integrates and compares Conftero with leading
configuration management tools, which were discussed in Literature review:
Leading Configuration Management Tools.

126

5.1.1 Proof of Concept

Two functioning software prototypes were developed to test this project. A
trivial proof of concept (PoC) prototype was developed using GNU Make, Bash
shell script Puppet configuration management and the GnuPG encryption tool.
Complete source code of proof of concept prototype is included in “Appendix:
Hidden Server Architecture Encryption Demonstration”. Operation of PoC is
briefly explained as pseudocode in table 43.

This PoC took multiple shortcuts to test the feasibility of these ideas in the
early stages of research. The goal of the PoC stage is to try the new and
possibly difficult aspects, and leave obvious (but possibly laborious) aspects
for later stages. All nodes were simulated with a single host, with directories
representing nodes. Only one of each type of node was included: master,
courier and slave. No consideration was given to the early stages, such as
exchanging keys, establishing identities or installing software. Even though
PoC was simple, it already showed the subsystems, components and interfaces
that were discussed in “Layer Model of the Hidden Master Architecture”.

Table 43: Pseudocode of PoC. M master, S slave, C
courier.

Host Action

S Slave key pair is generated,and slave public key is delivered to the
master

M Master key pair is generated,and master public key is delivered to the
slave

M Administrator defines configuration in Puppet DSL (catalog)
M Catalog is encrypted with the slave public key and signed with the

master’s public key
M-C Master uploads encrypted catalog to the untrusted courier
C-S Slave downloads encrypted catalog from the courier
S Slave decrypts the encrypted catalog with the slave private key
S Slave verifies the catalog integrity with the master public key
S If decryption and verification is successful, the slave applies catalog

using Puppet
S A sample file is created, demonstrating a successful configuration cycle

5.1.1.1 PoC Execution A heavily abbreviated PoC execution output
shows each stage. This is the result of executing the Makefile in appendix.

$ cat hello-slave.pp

127

file { "/tmp/helloTero.txt":
ensure => "present",
content=> "See you at TeroKarvinen.com!\n",

}
$ make
Cleaning up...
Generating key pairs...
Key exchange...
Publish encrypted catalog to untrusted server...
Download and decrypt catalog to slave...
gpg: Good signature ...
puppet apply stage/slave/hello-slave.pp
$ cat /tmp/helloTero.txt
See you at TeroKarvinen.com!

I performed a similar test with Salt, another leading CM tool. Results showed
that an included tool for host configuration over ssh, salt-ssh, could be modified
to output simple files from Salt. Those files could be used by Conftero encryption
and the file transfer layer. Unfortunately, any solution without source code
modifications accepted upstream (in the official Salt project) would be tightly
coupled with the salt version being used.

Leading CM tools (Puppet, Salt, Chef, Ansible) use resource abstraction. For
example, “package” resource will use ‘apt-get’ on Debian, ‘yum’ on Red Hat
and (depending on the configuration) Choco on Windows. If this resource
abstraction is applied on the Master, it must have knowledge of the slave
environment. The problem with resource abstraction was bypassed by sending
slaves plain text, source code scripts instead of using external master daemon
for compiling encrypted catalogs.

5.1.1.2 PoC Results The Proof of Concept test shows that generic en-
cryption tools can be combined with at least one popular CM tool to the
extent tested without modifying the source code of the CM tool. This is not an
obvious result and not guaranteed for other tools or complex edge cases. Some
tools use uncommon network transports, such as ZeroMQ in Salt. Others, such
as Puppet which I used in PoC, applies resource abstraction on the master,
and thus might need to know the details of the configured slave beforehand.

As the encrypted catalog can be dumped into a single, static file, it should be
obvious that the network transport between subsystems can be easily changed
while keeping other components the same. It seems that any method of
transferring files could be used. Evaluation of the networking (file transfer)

128

layer is made much simpler as the security of transfer is not a responsibility
of this layer. Using an established encryption standard (OpenPGP) and tool
(GnuPG) instead of implementing a new system using low level encryption
libraries, we can delegate many security challenges to this secure communication
tool.

External configuration management tools, such as Puppet or Salt, were used in
the PoC prototype and the early versions of the main prototype Conftero. As
chosen development environment allowed creating static binaries without any
dependencies, the downsides of using external CM tool were emphasized.

While the resource abstraction problem was bypassed, it was shown that all
leading CM tools do not reveal a clear, file based interface that could be used.
As such an interface is not clearly revealed or documented, relying on it would
risk creating a tight coupling with a specific version of a CM tool.

5.1.2 Functional Prototype

To test the full design described in chapter “Designing Hidden Master Archi-
tecture”, a functional prototype was developed. Go language was used to allow
static linking, resulting in a single binary with no external dependencies. This
makes it much more resilient against problems with runtime environment. Also,
the pilot organization was expected to deploy to limited embedded hardware,
where it was not expected to be difficult or inconvenient to install full Python
or a Ruby environment required by some other CM tools.

5.1.3 Golden Path

Golden path scenarios test the main functionality of the application in typical
or optimal working conditions. The purpose of Conftero is to deliver encrypted
instructions to slave computers using untrusted intermediary hosts (Couriers).

Chapter “Methodology: Simulated scenarios” described the golden path test as
follows : “HM transfers catalogs to two slaves over a network. No interference
is generated”. This experiment is part of answering RQ5: “Based on load
simulation, faulty network emulation and attack tree analysis, how does the
resiliency of the configuration management software prototype - implementing
some of the techniques adapted from malware - compare to a leading industry
solution?”.

Network architecture consists of the hidden master (m), untrusted courier (c)
and two agents (slaves) a1 and a2. The data flow is shown in fig. 8, and the
details of the hosts are listed in table 44. After the initial installation, agents
will only contact the untrusted courier host c to receive instructions.

129

m

c

a1 a2

Figure 8: Golden path network structure

Table 44: Host attributes.

Host Role Address Software

m Master 192.168.12.1 cct, sshd
c Courier 192.168.12.10 Apache2, sshd
a1 Agent 192.168.12.100 ccta, sshd
a2 Agent 192.168.12.101 ccta, sshd

This scenario considers the continued use of Conftero after installation. It is
assumed that keys are generated on the master and Conftero is installed with
OS provisioning.

Testing was done with Conftero (cct and ccta) 0.1.5-alpha and 0.1.15-alpha.
The initial testing with 0.1.5-alpha pointed a need for minor user interface
improvements not caught by the automated testing environment, which were
fixed and the results of the test with the fixed version are shown below. The
environment consisted of Ubuntu Linux physical and virtualized hosts running.
All nodes were full operating systems with their own kernel and RAM memory.
Software versions are described in table 45 and commands used to enumerate
the testing environment are listed in table 46. The testing environment is
interesting, because most leading CM tools aspire to be the single source of
truth for their computing environment. This has led to the development of
resource abstraction layers, but it might also show the challenges created by
the limitations of the programming languages and their runtime environment.

130

Table 45: Testing environment

Purpose Software Version

OS Ubuntu Linux 18.04.04
CPU architecture amd64
Virtualization Virtualbox 5.2.34-dfsg-0~ubuntu18.04.1
Virtualization Vagrant 1:2.2.1
CM Conftero 0.1.5-alpha & 0.1.5-alpha

Table 46: Commands to enumerate testing environment

Purpose Command

OS grep DESC /etc/lsb-release
CPU architecture uname -m
Virtualization dpkg –list virtualbox vagrant
CM cct version

At the starting point, all four machines were up. An SSH connection from
the master to each of the hosts (c, a1 and a2) was set up with public key
authentication. In a production version, encrypted catalogs would be uploaded
(m->c) using SSH. Even though SSH connection to agents (a1 and a2) would
not be needed in continuous use, it could be used for initial installation if the
installation was not already performed during the operating system installation
(provisioning phase). The homepage was available on untrusted courier c. This
simulated a low cost untrusted web hosting, and would be used for publishing
the encrypted catalogs.

The whole Conftero fits into a single binary file ‘cct’. It was copied to the target
system as /usr/local/bin/cct.

$ cct version
0.1.15-alpha, running on x86_64 linux ubuntu 18.04 virtual

Conftero has no dependencies, i.e. it is completely statically linked. This allows
it to operate in limited environments such as embedded systems, and survive
partial capabilities in situations where the runtime environment is damaged.
The version tested is less than 20 MB, including the master’s (cct) capability to
generate all other required files such as the agent binary (ccta). To further verify
that no special runtime environment is required, all tests were performed on
freshly installed vagrant machines separate from the development environment.

131

$ ldd /usr/local/bin/cct
not a dynamic executable

$ ls -sh cct
18M cct

A new hidden master repository was created. I chose “base” as the name. An
unlimited number of repositories are allowed, with each in its own folder.

$ cct init base
Creating master directories...
Bundle files extacted.
Creating master OpenPGP keypair to 'base/keys'...
Creating settings file 'base/cctmaster.toml'...
Could not read counter file 'base/crypts/counter'. A new one will be created.
Tip: 'cd base' then run 'cct newagent foo' to create your first agent.
Success: Master initialized.
$ cd base/

The existing web space was added as a new courier. The upload SSH2 SFTP
address and the download HTTP address were previously known to us as they
are the addresses used for publishing homepages on untrusted courier c.

$ cct newcourier "sftp://192.168.12.10/~/public_html" \
"http://192.168.12.10/~vagrant/"

Connecting as user '' SSH server '192.168.12.10' with timeout 5s...
Uploading file 'crypts/counter' to 'public_html/counter'...
SSH upload succesful. 'sftp://192.168.12.10/~/public_html/'

is a valid SSH SFTP upload address.
Download - Downloading 'http://192.168.12.10/~vagrant/counter'...
Download succesful. 'http://192.168.12.10/~vagrant'

is a valid download address.
Saving tested courier to settings file 'cctmaster.toml'
Tip: 'cct upload' makes your encrypted instructions available to agents.
Success: courier added.

Courier was automatically tested by generating counter file, uploading it to the
server using SFTP and downloading it using HTTP. The counter file contains
a monotonously growing number. Its main use is for agents to decide if they
should download a new encrypted catalog.

A new agent was added on master.

$ cct newagent a1
Updating files for agent 'a1'...
Generating agent OpenPGP keypair...

132

Updating files for agent 'a1'...
Tip: Encrypt new instructions to agents 'cct crypt'
Success: Added new agent 'a1'.

This generated agent configuration on the master. To make these instructions
available to the new agent, they were encrypted with agent a1 private PGP
key and uploaded to untrusted courier c.

$ cct crypt
Encrypting catalogs for 1 agents...
Encrypting "agents/a1" to "crypts/8E4DF55002281230"...
Tip: Add some couriers to cctmaster.toml, then 'cct upload'
Success. Catalogs encrypted.
$ cct upload
Connecting as user '' SSH server '192.168.12.10' with timeout 5s...
Uploading plaintext counter to 'public_html/counter'...
Uploading 'crypts/8E4DF55002281230' to: '192.168.12.10',

'public_html/8E4DF55002281230'...
Uploading 'crypts/counter' to: '192.168.12.10',

'public_html/counter'...
Success: encrypted files uploaded.

The agent a1 must have agent software running to periodically retrieve new
encrypted catalogs from courier c. Conftero agent application ‘ccta’ can be
installed either on OS provisioning or later using SSH while the system is still
directly accessible. I installed it using ssh. Privileged access required the use
of ‘sudo’ with a password, which was queried interactively. Exit status 2 shows
the result of idempotent configuration: the system was not in the requested
configuration, thus changes were made, and no errors were met. Exit status
would be named if –debug flag was used.

$ cct sshapply a1 sftp://192.168.12.100
Creating installer 'installers/ccta-a1-private'...
Connecting as user '' SSH server '192.168.12.100' with timeout 5s...
Uploading unencrypted agent (installer) to remote '/tmp/ccta'...
Attempting to run remote agent with sudo...
Remote sudo password:
Attempting remote sudo with password...
Tip: use --debug for more detailed output.
remote agent "a1": "Extracting embedded files...
a1: Copying ccta binary to '/opt/cctslave/ccta'... (will contain agent secret key)
a1: Catalog succesfully downloaded, decrypted and verified from

'http://192.168.12.10/~vagrant//'.

133

a1: 1 catalogs downloaded, decrypted and verified.
a1: [warning] Missing core.py, falling back to builtin.
a1: [warning] Missing core.py, falling back to builtin.
a1: 2
a1: "
Success: Installed ccta to ssh target and applied configuration.

With the agent installation now complete, direct connection between the hidden
master m and the agent a1 is no longer needed. Agent systems can move behind
ingress firewalls and reside in unknown and ever changing IP addresses. As
long as they can access the web, they can receive the latest encrypted catalogs
from the hidden master m.

For testing purposes, we examined the changes made by Conftero agent. On
the master, a default module “managed” adds a file to the agent. Modules are
defined using a built-in dialect of Python with idempotent functions. Here,
file() declares that a file should exist in the given path, with given contents.
As main Conftero functions are idempotent, action is only taken (and logged)
if our declarations are not met. Thus, in most runs the agent system is in a
correct state and no action needs to be taken by the file().

$ cat agents/a1/modules/managed/main.py
file("/etc/conftero-managed",

"This system is managed by Conftero.\n")

This module has already run (“been applied”) on the agent, first on the initial
installation and later when the agent has run periodically. We can see this by
running a command on the agent over SSH.

$ ssh 192.168.12.100 'cat /etc/conftero-managed'
This system is managed by Conftero.

The agent periodically pulls encrypted catalog from courier c. In my golden
path test, this period is one minute. In a similar production system, a period
of 15 to 30 minutes with splay time (randomization) should be used. To test
this, I modified the module on the master.

$ cat agents/a1/modules/managed/main.py
file("/etc/conftero-managed",

"Master did not need to contact agent for this change.\n")

And uploaded the encrypted catalog:

$ cct crypt
[...]
$ cct upload

134

[...]

After waiting for one minute, I used SSH to see the changes on the agent’s file
system.

$ ssh 192.168.12.100 'cat /etc/conftero-managed'
Master did not need to contact agent for this change.

We can see that agent a1 was successfully configured without a connection
between master m and agent a1. The encrypted catalog was transferred using
untrusted courier c.

A second agent was added using the same steps as the first agent. The output
is similar to the commands above, so it is omitted here.

$ cct newagent a2
$ cct sshapply a2 sftp://192.168.12.101
$ cct crypt
$ cct upload

We used SSH to see from the agent a2 file system that it was successfully
configured.

$ ssh 192.168.12.101 'cat /etc/conftero-managed'
This system is managed by Conftero.

5.1.3.1 Results of Golden Path Test Golden path test showed that
Conftero main functionality works in a simple use case and optimal conditions.
Minor user interface bugs not found by automatic testing were found and
fixed in the golden path test. Agent installation was not originally planned as
part of this experiment, but as it was already implemented it was used as the
easiest way to set up the system. It was noted that agent installation using
‘cct sshapply’ prefers encrypted catalogs loaded over the network instead of
checking the counter. In typical usage scenarios, it has little effect on use, and
it was not fixed at this time. These results are summarized in 47.

Table 47: Results of the Golden Path test

Aspect Result

Work from single, statically linked binary OK
Define and test courier OK
Encrypt, sign and upload catalogs OK
Download, decrypt and verify catalogs OK
Published changes automatically applied by agents OK
Install agent over SSH OK (not in test plan)

135

Aspect Result

Other: User interface minor improvements made
Other: sshapply configuration priority minor bug, not fixed

5.1.4 Load Test

Chapter “Methodology: Simulated scenarios” described “Load”: “a load of 10
000 slaves is estimated, then simulated with stress testing tools such as ab.”

To perform load testing, the load level must first be estimated. I start by
assuming that encrypted catalogs are downloaded every 15 minutes with splay
time (randomization) that statistically distributes the load evenly over time.
Even though Conftero architecture allows inexpensive, geographically and
network distributed parallel couriers to distribute traffic, I commence with the
most load-wise difficult scenario of having just a single courier. If we have 10
000 hosts each loading an encrypted catalog once, rounded to full download
there will be

10 000 / 15 min = 667 / min = 11 / second.

For a web server, this is very low load.

The use of a public counter file is a key optimization. Agents check the
version of the catalog by comparing the downloaded counter to the version
they already have. If no new catalogs are available, the agent skips download,
decryption, verification and extraction steps. This saves considerable work on
both the intermediary server and on each client. It could be expected that
most downloads will only download the counter. An agent only downloads the
encrypted catalog if counter indicates it has new instructions. The counter is
implemented as a plain text file with a single, monotonously growing integer,
encoded as ASCII text.

More generically, we can calculate the load level per courier, the courier
download frequency (fc) from agent update interval (tu) and the agent count
(n).

fc = tu/n

It can be seen that the ability to distribute requests over time and the agent
update interval (tu) have a great effect on the server load. It should be noted
that 0.1.15-alpha does not yet implement splay (distributing agent updates
over time).

The size of the encrypted catalog has an effect on the courier load level. Large
catalogs obviously transfer more data, but a high number of hosts combined with

136

a large catalog could result in a situation where previous catalogs are still loading
while new ones are requested. However, the most obvious implementation of
agents, also used in the research prototype, is blocking, and thus the same client
will not start another download while the previous download is in progress.

Using multiple large catalogs on a server with very limited RAM memory
may mean that some catalogs do not end up in disk cache (RAM). Thus, the
disk bus (IO) load could be higher. If this becomes problematic, it could be
mitigated by use of campaign key pairs.

Even though 10 000 agents is quite a large network, it might be interesting to
design a scenario where the load level mandates the use of multiple couriers.
In any case, multiple couriers are beneficial for the resiliency of the network.

5.1.4.1 10 000 Hosts with 15-Minute Update Interval The starting
situation was a courier with a single encrypted catalog. The courier was a
Linux virtual machine with 1 GB RAM. The test was performed over a local,
virtualized network which has very low latency. The test setup is detailed in
48. The commands to gather this information are mentioned in the beginning
of this chapter.

Table 48: Courier setup for load test

Software or feature Comment

Apache 2.4.29-1ubuntu4.13 userdir enabled
Ubuntu Linux 18.04.1 LTS
Virtualbox 5.2.34-dfsg-0~ubuntu18.04.1
Vagrant 1:2.2.1 bento/ubuntu-18.04
RAM 1 GB
Architecture x86_64

Before starting the stress test, I tested that courier was working and examined
the sample encrypted catalog. This is the same catalog that was created earlier
in the Golden Path test. Even though the catalog could also be downloaded
with any web browser such as Firefox, I used the command line browser ‘curl’
to get more exact and repeatable results.

$ curl -s http://192.168.12.10/~vagrant/1DC69D5A1873014D|head -4
-----BEGIN PGP MESSAGE-----

wcBMA6uQfcxjjLbKAQgAUPTWbqyeaVCv6K/1NupRniVgZBJFki8ltdlNe9lOOMF+
N2xh+cUyuWwbhacUNlBvpQ2TTf9eP86lnCCfrAp6uC+dCtLURn8XKT3VMuEyeOhW

137

Download worked as expected. The start of the catalog shows its PGP encrypted
message in ASCII armor. The encryption is obviously required, but to save
space, it could be stored in binary form. ASCII armor wastes space and thus
increases the network load.

$ wget http://192.168.12.10/~vagrant/1DC69D5A1873014D
$ ls -sh 1DC69D5A1873014D
12K 1DC69D5A1873014D

The size of the catalog was 12 kilobytes.

I used Apache benchmarking tool ‘ab’ from apache2-utils against the URL
verified in previous steps. It should be noted that while load testing tools such
as ab are useful inside our own network against our own machines, using them
in other networks or against hosts one does not own could result in a denial of
the service attack (DOS).

Using the planned 10 000 agents with 100 concurrent requests, a load test was
performed.

$ ab -n 10000 -c 100 http://192.168.12.10/~vagrant/1DC69D5A1873014D \
|grep -P 'Failed| 100%|per second|#/sec|Time taken'

Time taken for tests: 2.013 seconds
Failed requests: 0
Requests per second: 4966.82 [#/sec] (mean)
100% 1037 (longest request)

The whole network of 10 000 agents could retrieve their encrypted catalogs in
two seconds. In the plan, a time of 15 minutes would have been acceptable. As
the margin is about 45 000%, I conclude that for small catalogs, the courier
load for even a large network with just a single courier is insignificant. On the
one hand, web servers are usually highly optimized for efficiently serving static
content. But on the other, the efficiency of configuration management was even
higher than expected.

To get an idea how large the margin is, I performed another test with 10 times
more agents: 100 000 agents with 500 agents performing the download at the
same time.

$ ab -n 100000 -c 500 http://192.168.12.10/~vagrant/1DC69D5A1873014D \
|grep -P 'Failed| 100%|per second|#/sec|Time taken'

Time taken for tests: 22.630 seconds
Failed requests: 0
Requests per second: 4418.84 [#/sec] (mean)
100% 14176 (longest request)

138

As 100 000 agents could be served in 23 seconds, the courier web server is not a
bottleneck. The rate of requests served, about 4500/s, is similar to the earlier
test. The longest request took over 14 seconds. Even though this would be
unacceptable for a human looking at a web page, it is insignificant compared
to a 15-minute update interval. However, for very large networks seeing slow
downloads it is possible that there are nodes that always time out. This could
be mitigated by always randomizing the time waited, so that a different host
goes last on each update round.

The test differs from the real life production environment in some aspects. In a
real network, there is a latency, typically from a 20 ms wired network to even
a 500 ms cell phone network. In the test setup, the latency was less than 1 ms.
When Conftero is used, the agent uses built-in HTTP client to download the
encrypted catalog. It will also perform two HTTP requests when the catalog
has changed, even though the first download (counter) is very small. Here,
‘ab’ and its built in HTTP client was used. Despite these differences, the huge
margin indicates that the hit frequency on courier is unlikely to become a
bottleneck.

5.1.4.2 10 000 Hosts with Big Encrypted Catalog To test the effect
of the catalog size on the courier load, a real life sample configuration was
downloaded and processed with Conftero. RHEL 5 Puppet Modules from
the United States Government Configuration Baseline (USGCB) (NIST, 2016)
was compressed for size example only, and no effort was made to port it from
Puppet to Conftero Python.

After downloading and uncompressing, the sample from USGCB was copied as
a new module to agent a1 configuration on the master. This USGCB module
did not have a main.py entry point, so it would simply be copied to the agent
without any other action. As a result, the size of uncompressed, clear text
configuration for agent a1 was approximately 750 kB.

$ du -hs agents/a1/
736K agents/a1/

The catalog was compressed, signed and encrypted, then uploaded to an
untrusted courier. Most of the output of these commands is omitted for brevity.

$ cct crypt
$ cct upload

Before starting load testing, I verified that download worked.

$ wget http://192.168.12.10/~vagrant/1DC69D5A1873014D
$ ls -sh 1DC69D5A1873014D

139

204K 1DC69D5A1873014D

Despite the fact that cct unnecessarily uses ASCII armor, the size is only
approximately 200 kB. This is likely due to zip compression before encryption.
After waiting for a minute, I could see that this catalog is indeed automatically
downloaded to the agent.

$ ssh 192.168.12.100 'sudo du -hs /opt/cctslave/modules/usgcb'
692K /opt/cctslave/modules/usgcb

A load test of 10 000 simulated agents with 100 concurrent connections was
performed.

$ ab -n 10000 -c 100 http://192.168.12.10/~vagrant/1DC69D5A1873014D \
|grep -P 'Failed| 100%|per second|#/sec|Time taken'

Time taken for tests: 10.931 seconds
Failed requests: 0
Requests per second: 914.81 [#/sec] (mean)
100% 2673 (longest request)

As all 10 000 agents were served in under 11 seconds, it seems that plain text
configuration can be served by even a single web server, even if there is a huge
number of agents.

5.1.4.3 Courier Load when Distributing Large Binaries One possible
use case for Conftero could be distributing large binaries. For example, a
company could distribute proprietary software to its laptops and consider
Conftero as a secure channel for this. Firefox 75 Linux amd64 installer was
used as a size sample. In real life, Conftero can install Firefox using package
manager, and the size of the encrypted catalog would be less than 10 kB.

$ ls -sh firefox-75.0.tar.bz2
65M firefox-75.0.tar.bz2
$ cct crypt
$ cct upload

Adding 65 MB Firefox to an existing configuration resulted in a catalog of
about 90 MB.

$ wget http://192.168.12.10/~vagrant/1DC69D5A1873014D
$ ls -sh 1DC69D5A1873014D
87M 1DC69D5A1873014D

We simulated a case where master has published a new version of the encrypted
catalog, and thus all agents must download a new version. Performing the test
with the parameters we used earlier is quite fruitless:

140

$ ab -n 10000 -c 100 http://192.168.12.10/~vagrant/1DC69D5A1873014D \
|grep -P 'Failed| 100%|per second|#/sec|Time taken'

The first set of concurrent downloads will download 90 MB * 100 = 9 GB of
data, which would take considerable time. Testing with 1000 simulated agents:

$ ab -n 1000 -c 10 http://192.168.12.10/~vagrant/1DC69D5A1873014D \
|grep -P 'Failed| 100%|per second|#/sec|Time taken'

Time taken for tests: 118.950 seconds
Failed requests: 0
Requests per second: 8.41 [#/sec] (mean)
100% 2727 (longest request)

Serving 1000 agents took 2 minutes. Extrapolating from this, serving 10 000
agents would take 20 minutes. This is one third higher than the 15 minutes
used in the earlier example, but lower than the budgeted upper limit of 30
minutes.

We can conclude that when serving large encrypted catalogs, such as those
containing large binary files, a single small (1 GB RAM) courier cannot serve
10 000 agents with 15-minute update intervals. Many networks do not have
such a large number of agents, and the problem is mitigated. But this raises
the question of how one would handle a huge network.

For large networks with large files, the Hidden Master architecture in Conftero
provides a solution. By using multiple couriers and allowing agents to randomly
select between those, this problem is mitigated. This multi-courier architecture
is presented in fig. 9. All couriers can serve the catalogs in high demand, and
the load is evenly distributed between those couriers. As this load balancing is
random and statistical in nature, no extra coordination is required from either
the agents or couriers. Thus, this problem becomes embarrassingly parallel,
and we can expect the capacity to scale linearly as couriers are added to the
network.

Figure 9: Multi-courier architecture makes downstream transfer embarrassingly
parallel

This test was performed using small virtual machines in a virtual network.

141

This presents multiple sources of errors. The virtual network has insignificant
latency and considerable speed, both of which could make the results look
better than in real life. On the other hand, the single machine initiating the
load test could be itself saturated. Due to large margins of error in the results,
it seems that any common latency (20 ms - 500 ms) would not affect the results.
The machine initiating the tests was not saturated in these tests, which could
be seen from the lack of error messages and the speed of test runs. Network
speed (transfer rate) could affect these numbers, and this was further evaluated
in network tests simulating faulty and limited networks - something presented
later in this work.

5.2 Effect of Network Faults

Network faults, such as lost packets, are common in real life networking
environments. Common network protocols, such as TCP (transmission control
protocol), already has built-in mitigations for network faults. Obviously, it is
possible to only correct some network faults but not others. For example, it is
possible to correct single bit error with a checksum but not 100% packet loss.

This experiment is part of answering RQ5: “Based on load simulation, faulty
network emulation and attack tree analysis, how does the resiliency of the
configuration management software prototype - implementing some of the
techniques adapted from malware - compare to a leading industry solution?”

An emulated environment was created for this test. Fully virtualized computers
were created as platforms for master and agent (slave) computers, and in the
case of the research prototype, a third computer was employed to operate as a
courier. As all network paths traveled through one computer in this simplified
configuration, fault injection was performed on this computer’s virtualized
network interface.

5.2.1 Virtual environment with fault injection

Configuration management system is expected to configure computers over
a network, usually the Internet. This means that the network is unreliable,
and can be hostile. The test environment must thus include the ability to
create multiple nodes (computers) and a network between them. To simulate
unreliability, there should be an ability to simulate errors, such as packet
loss, latency and jitter. Requirements for simulation environment are listed in
Methodology: Requirements for Simulation Environment

To keep the environment as realistic as possible, fully virtualized computers
were used for this experiment. Originally the idea was to use very light

142

containerization such as Docker or MiniNet, but in the initial feasibility testing
of the environment, this seemed to create multiple problems only related to
the test environment, thus obscuring the problems of interest.

The virtual machines are controlled over SSH, which establishes an interactive
encrypted connection to shell over network. Adverse network conditions would
quickly make interactive use of SSH highly inconvenient. To sidestep this
problem, the virtual machines each had an additional network interface for
control over SSH.

Emulation environment with fault injection is shown in fig. 10. The target
computers, master m and agent (slave) s1 communicate through their own
network. This network is connected to its own network interface (a virtual
network card) eth1 in each m and s1. Faults are injected in master’s (m)
network interface eth1. As all test traffic passes through this interface, errors
for the whole network can be emulated in a single interface, and no SDN is
needed. Even if more agents are created in future tests, all network traffic
passes through a single interface in many scenarios.

Monitoring computer (mon) controls and monitors the experiment. Control
and monitoring of the test uses its own virtual network and separate network
interfaces on m and s1. This way, error emulation does not affect control and
monitoring.

Figure 10: Emulation environment with fault injection

Fault injection was simplified by the fact that all traffic traveled through a
single node in the experiment’s simple architecture. For traditional configura-
tion management systems, this was the master node. Conftero, the research
prototype, uses the Hidden Master architecture, and slaves do not need to ever
contact the master. By using a single courier node in this experiment, all traffic
passed through that node. This allowed fault injection in the network stack of
a single node, instead of adding complex software defined networking or virtual
routers.

VirtualBox was used for emulating full machines. To keep experiments repeat-

143

able, VirtualBox was controlled by Vagrant, an IaC tool for controlling test
VMs.

Fault injection was performed using the Netem kernel module. Netem uses
pre-existing Quality of Service and Differentiated Services facilities in Linux
kernel to emulate unwanted qualities of a wide area network in laboratory
settings (Hemminger, 2005). Netem was controlled with the ‘tc’ user space
program and qdisc queueing discipline. By default, netem only affects egress
(outgoing) traffic. Ingress (incoming) fault injection was achieved by using
Intermediate Functional Block pseudo device ifb. Packet loss as sampled by
the ‘ping’ command was similar to the packet loss applied by this setup. One
could expect the round trip packet loss to double when error is applied to both
ingress (incoming) and egress (outgoing) traffic, but this was not the case. To
facilitate testing, a simple shell script ‘tem’ was created to quickly enable and
disable error injection with different settings.

Faults provided by the test environment were packet loss, latency, jitter, cor-
ruption and rate limiting. These network faults are listed in table 49. Typical
example values are similar to those of a consumer grade broadband line in good
conditions. The example values are listed as a convenience only, and are not
based on extensive research or experimentation.

In the internet protocol suite, data is split into packets for transit. Packet loss
is the portion of these packets that is not acknowledged as having been received
at the other end.

Latency is the time it takes for even the smallest piece of data to travel through
a network link. Latency can be present even on a high speed link, as it can
take time to transfer the first byte even if the throughput was high. Latency
is often measured with the ‘ping’ command round trip time (RTT), meaning
the time it takes for a small piece of data to travel to the target computer and
back. Jitter is the variation of latency and it means that some packets take a
shorter time to arrive than others.

Corruption is the unwanted and unexpected change of data in transit. Here,
the corruption percentage is the portion of packets that have any corruption.
Duplication is the action of sending the same packet more than once.

Rate limiting is a limitation of throughput in the system, of how many bits can
be transferred in a unit of time. For this system, throughput was measured in
link layer, the lowest layer of the TCP/IP stack. The unit is in bits per second,
which is often used to imply a measurement in link layer. As each layer in
a stack model adds head or tail data to the packet, the payload transferred
is often smaller. The transfer rate in the application layer (the top layer of

144

TCP/IP model) is usually in bytes per second. The number of bytes per second
can be expected to be approximately 1/8 to 1/10 of the value in the link layer,
as a byte has eight bits and each layer adds non-payload data to the packets.
For example, the link layer transfer rate of 10 kbit/s (ten kilobits per second)
would result in an application level transfer rate of little less than 1 kB/s (one
kilobyte per second).

Table 49: Network faults

Fault Unit Example Explanation

Packet loss % 0 % Portion of
packets that do
not reach their
destination

Latency ms 15 ms Time for a
packet to travel
to the target
and back

Jitter ms 1 ms Variation of
latency

Corruption % 0 % Portion of
packets that
have changed
bits

Rate limit bit/s 100 Mbit/s Maximum
throughput

Duplication % 0% Portion of
packets that
were sent
multiple times

For the test, a simple configuration to copy a 74 MB file to agent systems was
created. The file contained installer for Firefox ESR 102 and instructions to
copy the file to the agent system. No attempt to actually install the program
was made, as this test was only interested in transferring the file. This was
similar in size to the sample payload used in courier load testing with simulated
load.

145

5.2.2 Effects of Adverse Network Conditions to Salt

Salt, one of leading IaC configuration management systems, was tested in
adverse network conditions.

Virtual machine s1 was running salt-minion (the slave daemon), and m was
running salt-master. As with most CM tools, both agent and master must
run the same version, so both salt-master and salt-minion were 3002.6. Both
machines s1 and m were running Debian Linux 11.4 Bullseye amd64 on Vir-
tualBox controlled by Vagrant. Before the test, master-slave architecture was
enabled and tested and keys exchanged. The agent (slave, minion) contacted
master using the IP address 192.168.80.100. Using the pull architecture, the
IP address of the agent was not relevant as the master was running the server
(in the sense of client-server architecture).

The cache was cleared between tests using ‘sudo salt “*” saltutil.clear_cache’.
Configuration was applied and timed using ‘time sudo salt “*” state.apply -l
debug’. This used the ‘time’ command outside the measured tool for precise
timing, but this depended on the tested tool’s promise that configuration was
delivered. To rule out the possibility of mistaken confirmation for delivery, the
sample configuration instructed the payload to be copied to /tmp/ directory
on agent, where it could be verified with ‘sha256sum’ cryptographic checksum.
This verification was on some occations.

The results of the packet loss test are listed in table 50. Packet loss is round trip
packet loss, e.g. what ‘ping’ could be expected to display. After a certain level of
packet loss, applying consistently failed. Failure to apply or send configuration
to the agent was interpreted from the repeated debug log message “Trying to
connect . . . retcode missing from client return”.

Master failure was interpreted from the error message “The salt master could
not be contacted. Is master running?” and from the fact that the master
daemon had to be restarted after that to continue. Systemd status command
‘sudo systemctl status salt-master’ showed that the reason was the reservation of
too much RAM: “failed (Result: oom-kill)”. OOM killer is a Linux feature that
shuts down and removes some software from memory when RAM is running
out. The VM in question had 512 MB RAM. Apache2 web server running on
the same machine was shut down to free more memory for tests, and the tests
affected were repeated with the contaminated results discarded.

Where multiple attempts failed, the results show the failure rate (x % fail) and
the mean time of successful attempts (with failed attempts removed from the
mean). As Salt seemed to keep trying forever in face of failures, each test was
terminated and ruled a failure after fifteen minutes. Based on the debug log, it

146

seemed that transfer did not start, so additional time would not have helped.
Alternatively, a shorter cutoff time could be chosen for further tests in cases
where it is clear that the program is making no progress. As CMS are often
working non-interactively, a wait time of a couple of minutes at a time nobody
is watching is not problematic, and thus it makes sense to set the cutoff value
relatively high. Compared to an operation in optimal conditions, the time of
the cutoff value is already large. The cutoff value is 900 s / 5 s = 180 = 1800
% of the time for a normal operation. As time measurements meeting a cutoff
value are never finished, no mean time was calculated.

Table 50: Effects of packet loss to Salt

Packet loss Failures Mean time
Time
measuremens

0 % 0% 4.7 s 4.0 s, 7.59 s, 3.54
s, 5.11 s, 3.39 s

3 % 0% 52.7 s 108.57 s, 77.56 s,
27.3 s, 30.85 s,
19.33 s

5 % 0% 65.2 s 39.55 s, 67.27 s,
46.49 s, 120.42 s,
52.18 s

10 % 0% 340.5 s 450.4 s, 249.65 s,
247.63 s, 383.43 s,
371.47 s

15 % 0% 761.9 s 719.35 s, 753.77 s,
719.15 s, 840.82 s,
776.46 s

18 % 100% fail 900.01 s, 900.0 s,
900.01 s, 900.01 s,
900.01 s

20 % 100% fail 900.0 s, 900.01 s,
900.0 s, 900.01 s,
900.01 s

The effects of packet loss to Salt is graphed as a scatter diagram in fig. 11.
Each measurement is shown as a blue dot. Mean values of measurements are
shown as a blue line. Because the vertical time axis is linear, the measurements
at low packet loss are overlapping. In optimal network conditions and no
packet loss, the transfer of the 74 MB catalog takes only a few seconds. As the
packet loss increases, the time increases to minutes, ending in complete and

147

consistent failure at 18% packet loss. The detrimental effect of packet loss to
Salt communications seems exponential.

0% 2% 5% 8% 10% 12% 15% 18% 20%
packet loss [%]

0

200

400

600

800

tra
ns

fe
r t

im
e

[s
]

fail
15 min

10 min

5 min

1 min
10 s

Figure 11: Effects of packet loss to Salt

5.2.3 Effects of Adverse Network Conditions to wget (HTTP)

To get a baseline of a well implemented traditional HTTP file transfer, I used
wget to download the 74 MB sample file from an Apache 2 web server. Both
Apache 2 and wget are established and mature tools packaged by multiple Linux
distributions. Apache is the same web server used for load tests, advanced
research prototype Conftero and the case study in Company X.

Using common tools for HTTP transfer was shown to be highly resilient to
packet loss. Compared to Salt, it was necessary to test at much higher levels
of packet loss to generate errors. As wget is usually used for downloading from
web servers hosted by other organizations, it does not keep indefinitely retrying
when meeting error conditions. Instead, it terminates after a few tries. It could
be expected that increasing retries would make wget even more resilient in
the face of network problems. Here, all tools compared were used with default
settings.

148

Table 51: Effects of packet loss to Wget

Packet loss Failure rate Mean time
Time
measuremens

0.0 % 0 % 33.6 s 22.57 s, 27.36 s,
34.36 s, 35.83 s,
47.65 s

3.0 % 0 % 55.6 s 14.93 s, 166.87 s,
26.97 s, 30.08 s,
39.23 s

5.0 % 0 % 26.7 s 14.82 s, 17.03 s,
29.52 s, 33.32 s,
38.85 s

15.0 % 0 % 39.3 s 21.16 s, 24.16 s,
45.59 s, 50.48 s,
55.3 s

18.0 % 0 % 74.3 s 118.0 s, 146.41 s,
16.22 s, 26.38 s,
64.46 s

25.0 % 0 % 29.3 s 21.41 s, 23.12 s,
23.12 s, 38.56 s,
40.18 s

30.0 % 0 % 47.4 s 29.78 s, 41.53 s,
42.84 s, 50.08 s,
72.62 s

35.0 % 0 % 53.6 s 38.76 s, 51.4 s,
57.96 s, 58.57 s,
61.22 s

40.0 % 0 % 48.2 s 33.33 s, 37.58 s,
45.53 s, 57.71 s,
66.98 s

50.0 % 0 % 121.6 s 125.69 s, 294.63 s,
41.47 s, 70.85 s,
75.23 s

55.0 % 0 % 122.5 s 123.54 s, 126.66 s,
217.32 s, 65.29 s,
79.85 s

60.0 % 0 % 212.6 s 119.76 s, 199.23 s,
318.38 s, 360.48 s,
65.25 s

149

Packet loss Failure rate Mean time
Time
measuremens

65.0 % 20 % 126.4 s 141.4 s, 184.43 s,
85.22 s, 94.55 s,
900.0 s

70.0 % 20 % 424.0 s 213.52 s, 217.6 s,
374.83 s, 890.1 s,
900.0 s

80.0 % 100 % fail 3.02 s, 3.04 s,
3.04 s, 3.05 s

90.0 % 100 % fail 134.66 s, 2.94 s,
3.04 s, 3.04 s,
3.04 s

100.0 % 100 % fail 3.01 s, 3.04 s, 3.04
s, 3.04 s, 3.06 s

The effects of packet loss are graphed in fig. 12.

0% 20% 40% 60% 80% 100%
packet loss [%]

0

200

400

600

800

tra
ns

fe
r t

im
e

[s
]

fail
15 min

10 min

5 min

1 min
10 s

Figure 12: Effects of packet loss to wget

5.2.4 Effects of Adverse Network Conditions to SSH

SSH is a common way to remotely and interactively control servers. It estab-
lishes an encrypted, two-way authenticated connection to the server, allowing

150

the administrator to give shell commands on the command line. SSH also has
a lot of other features, such as file transfer, secure tunnels and even VPN. SSH
is used for some leading configuration management systems when using push-
architecture, such as Ansible by default and Salt when using the ‘salt-ssh’ tool.
Here, popular OpenSSH client and server packaged with Linux distribution
(Debian 11 Bullseye) were used. Advanced research prototype Conftero uses
SSH as a channel between the Hidden Master and Courier, but it implements
its own SSH client instead of using OpenSSH.

Measuring the effect to SSH was required because one of the tested industry
leading configuration management systems, Puppet, does not include tools for
remote commands in the main application. For these tests, SSH was used for
initiating pull on agents and verifying the result afterwards. To remove and
estimate the effect of SSH on the measurements for Puppet, a separate test for
SSH was performed.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
packet loss [%]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tra
ns

fe
r t

im
e

[s
]

Figure 13: Effects of packet loss to short SSH commands

Because the traffic required for testing consists of short shell commands and
their answers, the same type of test was performed here. This makes the SSH
test performed here different from the large (74 MB) file transfer tested with
Salt and wget, and those tests are not comparable. When preparing the test
environment, it was noted that for some tools, transferring larger files is much
more sensitive to packet loss than sending short commands. The command ran
on master for this test was

151

$ ssh vagrant@192.168.80.101 "hostname --fqdn"|grep s1

The effects of packet loss to short SSH commands are very small and the effects
of packet loss are graphed in fig. 13. The results show that even with 95% packet
loss, the transfer time is less than one second. All of these communications
were successful. In addition to checking the return value of the command, the
actual results of the command were verified. There is no clear trend visible in
the scatter plot. One possible reason is that the effect of packet loss is so small
that other incidental factors affect the results more. The range, the difference
between the largest and smallest observation, was only 700 ms.

Thus, SSH can be used for controlling Puppet and other tools in packet loss
tests, as the time added by SSH is less than a second even on high packet loss.

5.2.5 Comparing the Results of Adverse Network Conditions

5.2.5.1 Packet Loss To compare the tools in adverse network conditions,
each tool was used to download one megabyte file over an unreliable network.
The file was filled with random contents, using cryptographic quality random
data from Linux /dev/urandom. Random contents were required to prevent
the automatic, unrealistic use of compression. An SHA256 cryptographic hash
was used to verify the correctness of the transfer, using the ‘sha256sum’ tool.

0 10 20 30 40 50 60 70 80
packet loss [%]

0

100

200

300

400

500

600

tra
ns

fe
r t

im
e

[s
]

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

ping
cct
ssh
puppet
salt
wget

Figure 14: Effects of Packet Loss to Multiple Tools

Network errors were simulated with the Linux kernel module netem, and

152

controlled with ‘tc’ command and qdisc discipline. Machines were emulated
with VirtualBox, controlled with Vagrant IaC tool. The test was run with GNU
‘make’. To facilitate running the test, some custom Python scripts were used:
‘tem’ to generate errors; ‘testero.py’ to run the tests; and ‘multigraphtero.py’
to combine test data and draw a graph using the Matplotlib Python library.

Tools were tested first in a fully working network (packet loss 0%), and then
progressively worse conditions. For each level of packet loss, three tests were
performed. When all three tests failed on a level of packet loss, no further tests
were performed. Compared to some earlier tests, this saved a lot of time. After
a failed level of packet loss, all the tests at a higher level can be expected to
fail. Due to retrying, they would have only failed after timeout, resulting in
most test time being spent on tests that produced no useful data. Thus, the
unnecessary tests were skipped.

It could be argued that setting a higher timeout would eventually result in
a successful file transfer, especially with tools that have unlimited retries. In
real life, no human is likely to actively wait for configuration management
to happen, except when developing the configuration on a test machine, so
a long transfer time could be acceptable. In an earlier test, some tools were
tested with a higher timeout. Examination of the transfer time median plot
appears to show that the time could grow exponentially. The timeout used in
this experiment is 600 seconds (10 min). The fastest transfer in the reference
condition of 0% packet loss was 29 milliseconds. The timeout is over twenty
thousand times the value at reference condition (600 s / 0.029 s = 20 689.7).

Industry leading CM tools Puppet and Salt were compared to the research
prototype, Conftero. For comparison, an HTTP download tool ‘wget’ and
remote control tool ‘ssh’ were used for downloading the same file as CM tools.
Wget is a common tool for downloading files over HTTP and HTTPS, and
it is included in multiple popular Linux distributions. Command ‘ssh’ from
OpenSSH is a popular tool for remote shells, and it is included with many
Linux and BSD distributions, and even ported to Windows by Microsoft. Ping
was used for comparison only; it did not have a payload or retries similar to
other tools. Instead, ping sent a single ICMP ECHO_REQUEST packet, and
was considered success if ICMP ECHO_REPLY was received back.

The comparison of effects of packet loss is graphed in fig. 14. Each successful
test is graphed as a symbol. The median of the results is graphed with a line.
To make the plot more readable, failed transfers are not included.

153

Table 52: Worst packet loss conditions tolerated by each
tool

Tool Worst packet loss tolerated

Puppet 35 %
Salt 40 %
Conftero (cct) 45 %
SSH 50 %
(Ping) 65 %
Wget 80 %

The research prototype, Conftero, was more resilient to packet loss in this test
than the leading industry tools Puppet and Salt. SSH survived better than
Conftero. As seen in fig. 14, the reaction of the tools to packet loss is similar
for every level for Conftero, Salt, Puppet and SSH. Even if the order stays the
same on each level, the differences are small. Ping is listed only for reference, as
it did not transfer a similar payload. The worst packet loss conditions tolerated
are listed in table 52 and graphed as a bar plot in fig. 15.

Puppet Salt Conftero SSH Wget
Tool

0

10

20

30

40

50

60

70

80

M
ax

im
um

 to
le

ra
te

d
pa

ck
et

 lo
ss

 [%
]

Figure 15: Maximum loss tolerated by each tool for 1 MB transfer

Wget, a popular HTTP download tool, was surprisingly resilient to packet loss.
In the test, it succeeded even at 80% packet loss. Wget was better than the

154

other tools at all levels of packet loss. Compared to the CM tool Puppet, wget
survived a 120% worse packet loss (80%/35%-100% = 120%). Figure 14 shows
a major difference in transfer times between wget and other tools at all levels
of packet loss (except 0% loss). For example, at 45% packet loss, Conftero took
528 s and wget took less than five seconds - a thousand percent difference. As
Conftero was the most resilient CM tool in this test, the contrast with Puppet
and Salt is larger. At 55%, wget’s median transfer time was still under 5 s,
while all other tools failed.

The results with wget seemed surprising, so they were manually verified. Mul-
tiple manual tests confirmed that wget is highly resistant to packet loss, even
though it seemed to be reliable only at 70% packet loss in manual testing.
Based on manual testing, the most common transfer failure occurred when
opening the connection (“Connecting to. . . ”). It is likely this could be changed
by merely modifying the retry parameters.

Resilience of wget shows that HTTP can be highly resilient to network errors.
Even though wget was much more resilient to packet loss than Conftero, the
research prototype, this is most likely an implementation detail. As wget is a
free, open source program, it is possible to simply replicate what it does.

The resilience of wget shows that the non-interactive transfer of files over HTTP
is highly resilient against packet loss.

5.2.5.2 Packet Corruption Corruption is an adverse network condition
where data is randomly changed before reaching its recipient. For the purposes
of this experiment, the definition used by Netem kernel module was chosen.
According to ‘man netem’, corruption is “the emulation of random noise
introducing an error in a random position for a chosen percent of packets”.
The experiment was performed using the same environment and tooling as
described above in “Packet Loss”. For each level of corruption, the same 1 MB
file was transferred.

The results of the packet corruption experiment are graphed in fig. 16. Maximum
corruption tolerated by SSH, Conftero (cct) and Salt was 40%. Puppet tolerated
30% corruption. Similar to the packet loss experiment, wget could transfer the
file at 80% corruption. Ping did not carry a similar payload, and it is only
included as background information.

At all corruption levels (except 0%), wget was faster than CM tools or SSH.
The speed advantage of wget was higher at worse network conditions.

Again, ‘wget’ was the most resilient against adverse network conditions by
a significant margin. This indicates that HTTP transfer can be resilient in

155

0 10 20 30 40 50 60 70 80
corruption [%]

0

100

200

300

400

500

600

tra
ns

fe
r t

im
e

[s
]

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

ping
ssh
wget
cct
salt
puppet

Figure 16: Effects of packet corruption to multiple tools

unreliable network conditions, and also that these gains could be brought to
CM tools by watching what wget does.

5.2.5.3 Packet Duplication Packet duplication is an adverse network
condition where some packets are sent twice. For this experiment, duplication
percentage was the number of packets that are duplicated out of sent packets.
The definition that came from netem module that was used for injecting the
faults at the virtual network interface.

Many protocols number packets and automatically ignore duplicate packets.
For example, TCP does this, and thus HTTP gains this feature as it works
over TCP in the Internet protocol suite. Thus, it was expected that package
duplication would have little effect on the tools.

The results were quite clear: package duplication had no effect on their operation.
Even when all packets were sent twice (100% duplication level), all tools
operated normally. The result is graphed in fig. 17.

5.2.5.4 Latency Latency is the delay before the first bit is transmitted
to a recipient. Common wired Internet connections operating properly have
low latency, for example around 20 ms RTT. In cell phone communications,
latency of up to 500 ms is not uncommon.

156

0 20 40 60 80 100
duplication [%]

0

100

200

300

400

500

600
tra

ns
fe

r t
im

e
[s

]
10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

wget
salt
puppet
cct
ssh
ping

Figure 17: Effects of packet duplication to multiple tools

0 100 200 300 400 500
latency [ms] [%]

0

100

200

300

400

500

600

tra
ns

fe
r t

im
e

[s
]

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

10 min

5 min

1 min

cct
puppet
ping
wget
ssh
salt

Figure 18: Effect of latency to multiple tools

157

Using a setup similar to previous experiments with packet loss, corruption
and duplication, a progressively worse latency was created using Netem kernel
module.

Latency does not need to correlate with throughput. It is possible to have
a connection where it takes two seconds for the first bit to arrive, but the
throughput is 10 MB/s. As CM usually operates non-interactively in production,
it was expected that latency would not have a meaningful effect on the operation
of these tools.

The effect of latency is presented in fig. 18. It shows that latency affects
communications more than expected, but the effect is likely irrelevant for the
non-interactive configuration of these systems. At all levels, Conftero (cct)
and Salt performed the worst and - as with other tests - wget performed the
best. As the worst transfer time was little over a minute, the only tools that
would be affected would be those that are used interactively, namely Salt and
SSH. Manual testing has revealed that these tools are more resilient to network
errors when smaller payloads are used. Sending a single command (but not
starting a remote session) results in smaller payloads.

Transfer of the file at reference condition (0 ms additional latency) took about
60 ms for wget and less than 3 seconds for other tools. An optimal tool might
be expected to transfer the file below 600 ms even with 500 ms latency. The
experiment shows that all tools performed worse. At 500 ms delay, transfer
time was 7.6 s for wget (the best) and 71 s for Conftero (the worst). Thus,
latency had a disproportionate effect on all the tools tested, even though this
effect was insignificant for the purpose of these applications.

5.2.6 Comparing Memory Consumption and Resiliency Under Load

To compare and contrast capabilities of the Hidden Master and the research
prototype to industry leading solutions, a new test was developed. Earlier in
“Load test” chapter, the research prototype was tested by itself. This subchapter
performs a comparison test between Conftero, the research prototype, and two
industry leading tools - Salt and Puppet.

Load test indicated that the main research prototype is highly resilient to a
high load. Even with a meager 1 GB of RAM on the intermediate courier /
drop host, it could serve thousands of agents with a large (90 MB) encrypted
catalog. These promising results could be achieved with just a single host, even
though the hidden master architecture could be expected to scale near linearly
by adding couriers and drops.

The use of standard HTTP as the transfer protocol in the last hop to agents

158

and the possibility to drop the requirement for near real time interactive
communication between master and agent meant that standard web load
testing tools, such as Apache Bench ‘ab’, could be used for load testing the
Hidden Master architecture and the research prototype. In contrast, Salt uses
ZeroMQ, a networking library that implements an asynchronous concurrency
framework, and it is not obvious if a load of multiple nodes could be simulated
with a single application.

To create a comparison, a combination of a full virtual machine (VM) and
multiple light containers were used. The VM was a VirtualBox machine
controlled by Vagrant IaC tool, similar to that used in earlier tests. It was
expected that CM servers would be able to serve a large number of agents, and
the RAM memory requirement of a full VM would pose too low a limit on the
simulated load. For this purpose, light containers were required.

Initially, Mininet (‘mn’) was tested for this purpose. Mininet provides a
combination of software defined networking, light virtualized hosts and a
Python programming interface. Despite my efforts, I was not able to get
industry leading agents to reliably run on Mininet containers, and it was not
possible to separate real limitations of these tools from challenges caused by
the testing environment.

Docker, a popular container environment, was used for containerization. A
simple container based on (Debian 11) bullseye-slim was created with the
required agent. To generate multiple similar agent environments, Docker
images were spun with Bash. Compared to VMs, containers use much less
RAM. They achieve this by sharing more with the host OS at the cost of
creating a less separated environment. This approach made it easy to generate
a large number (e.g. a hundred) containers on a regular off-the-shelf desktop
computer.

The server machine was fully virtualized. Here, the server was the machine
directly contacted by agents. In the case of Salt and Puppet, this was the
master. In the case of HM, it was the courier/drop. To prevent running out
of test load generation capacity and limit time required for testing, the RAM
memory was limited to 512 MB. This was similar to a typical low end VPS in
2022.

The sample load test was the same as the one used with the research prototype
earlier. It was a simple configuration with Firefox installer, a 65 MB binary.
The use of an actual file instead of a dummy file consisting of zeroes or other
repeatable content was to prevent unrealistic compression, as at least Conftero
automatically compresses the payload before encryption.

159

Measuring RAM consumption is not as simple as it initially seems. Due to
shared libraries, it is especially difficult to measure RAM taken by a specific
application. Instead, a new server virtual machine was used for each test. To
evaluate RAM usage, the amount of available RAM was measured with free
--mega.

Figure 19: Amount of available RAM memory in sample output of ‘free -h’

Modern Linuxes attempt to make use of all available memory by using idle
memory as disk cache to provide a possibility for large speed advantage if the
same information is requested again. As this RAM disk cache is immediately
discarded when memory is requested by programs, the amount of disk cache
in use is irrelevant for RAM usage. Thus, free memory was estimated from
“Available” memory reported by ‘free’. Sample output of ‘free -h’ is presented
in fig. 19.

The units reported by ‘free -h’ are 2-based units instead of 10-based units,
e.g. mebibytes (10242) instead of megabytes (10002). Even though the difference
between the units is just a few percent here and thus irrelevant in the context
of these tests, the output was changed to 10-based system with ‘--mega’ to
make comparisons between tests easier.

During the tests, the amount of free RAM on the host OS was followed to
avoid any unwanted effects on the tests. The host OS had available memory
during all tests.

5.2.6.1 Salt Load and Memory Test The results on Salt test are in
table 53. The test environment is summarized in table 54. For each level of
agents, the number is the total, cumulative number of agents. For the test, the
new agents were created on the host OS using Docker, accepted on Salt master,
and sample payload was sent to them using ’sudo salt “*” state.apply’. The
previously deployed payload was removed and agent caches cleared.

160

Table 53: Salt memory consumption and resiliency under
load

Agents Available RAM CM RAM use Comment

0 419 MB 0 MB Initial state
before installing
CM tool

0 221 MB 198 MB After installing
salt-master

25 163 MB 256 MB
50 139 MB 280 MB Salt reported run

time 83 s.
75 OOM-killed OOM-killed Failed,

salt-master down.

The salt-master could handle 50 agents. At 75 agents, salt-master failed to
apply changes. Salt command exited after 41 seconds displaying failures on
multiple agents. After that, ‘salt’ commands could not reach the master. A
examination of the logs showed that salt-master had consumed all available
RAM and had requested more. Consequently, it was reaped by OOM-killer,
the Linux out-of-memory killer.

$ sudo systemctl status salt-master|grep Active
Active: failed (Result: oom-kill) since Sun 2022-09-11 [..]

We can conclude that on a machine with 512 MB RAM, the tested version of
salt-master could serve 50 agents, but not 75 agents.

Use of swap would prevent immediate reaping by OOM-killer, but could be
expected to make the system very slow. If working on a realistic time budget
such as the 15 min budget used in load tests of the research prototype, swapping
would not be likely to provide much improvement. In the case of trashing
(continuous swapping and de-swapping processes), slowness could also make
the system very hard to control without using external tools to reboot the
whole server machine.

Table 54: Salt load and memory testing environment

Purpose Software Version

OS Debian 11 Bullseye
CPU architecture amd64
Virtualization Virtualbox 5.2.34-dfsg-0~ubuntu18.04.1

161

Purpose Software Version

Virtualization Vagrant 1:2.2.1
CM Salt-master 3002.6+dfsg1-4+deb11u1

5.2.6.2 Puppet Load and Memory Test Puppet is one of the industry
leading CM tools.

Puppetserver (master daemon) failed to install in low-memory conditions. Pup-
pet did not work in a low memory machine even when installing a newer version
outside official Debian repositories and following advice from the installation
guide. This was the case even though the low memory VM met the required
minimum requirements of having 512 MB of memory. When performing the
earlier tests on adverse network conditions, changing to a VM with 4 GB of
RAM resolved the issue and started Puppetserver.

It is not impossible that Puppet could have a threshold memory requirement
and it could serve many agents after that. But within the limits of this test,
Puppet did not succeed.

5.2.6.3 Conftero Load and Memory Test The advanced research pro-
totype Conftero was tested using the same setup as the Salt test above. The
master and the courier/drop were on a virtual machine. The agents (slaves) were
on Docker containers to be able to create more agents with limited resources.

First, a clean VM was set up. Then, Conftero master binary ‘cct’ version
0.1.47-alpha-20220807-1045 was copied, and a new Conftero repository was
set up with ‘./cct init .’. A new campaign for courier/drop called “cudo” was
created and deployed to the server VM using ‘./cct sshapply’. This installed
Apache2 web server and PHP support to the server. Courier and drop were set
up to this host and simultaneously verified using ‘./cct newcourier’ and ‘./cct
newdrop’. To simplify configuration, the master was also running on the server
machine. Due to the HM architecture, this did not consume any memory (0
MB) when the administrator was not using Conftero to change or view the
agent (slave) configuration.

The results are listed in table 55. Compared to Salt, memory usage of the idle
server was very low. With no agent, Salt used 198 MB, and Conftero courier
/ drop used 13 MB. This is a low value in the absolute sense and represents
only 7% of Salt memory usage. Because the value was so low, it was manually
verified that the web server was indeed running and serving pages over HTTP.

Memory taken by serving Conftero agents was quickly reclaimed. This is
in contrast with Salt, where memory used by serving agents seemed to be

162

permanently in use. This could be due to the different CM architectures of
these tools. To find out the worst memory usage, Conftero courier/drop was
monitored by running ‘free’ every 5 seconds in a loop.

To keep the load up, previous agents were deleted and all agents regenerated
at each level. This made it simpler to make all agents contant courier/drop in
a short time frame.

Table 55: Conftero courier/drop memory consumption
and resiliency under load. Worst momentary values in
parenthesis.

Agents Available RAM CM RAM Use Comment

0 419 MB 0 MB Initial state
before installing
CM tool

0 406 MB 13 MB After installing
courier/drop

25 403 MB (361
MB)

16 MB (58 MB)

50 390 MB (396
MB)

18 MB (23 MB)

75 402 MB (383
MB)

17 MB (36 MB) Starting all agent
containers took 6
min

100 399 MB (340
MB)

20 MB (79 MB) From 100 agents,
tests done with
‘ab’ and download
only

500 403 MB (273
MB)

16 MB (146 MB)

1000 404 MB (287
MB)

15 MB (132 MB) Took 74 seconds

2000 395 MB (284
MB)

24 MB (135 MB) Failed:
connection reset
by peer

Starting the Docker containers in a loop took some seconds per container. As
the RAM usage of Conftero seemed low, it made sense to remove any sources
of errors. Also, for high loads the capacity to create and simultaneously run
Docker containers would run out.

163

HM architecture allows the use of standard file transfer protocols. Here, the
use of HTTP allowed the use of standard HTTP load testing tools. To simulate
higher loads, Apache Bench ‘ab’ was employed. Conftero was tested earlier
with this tool using a larger VM in chapter “Load test”. From 100 agents
on, all tests were performed with ab. In ab tests, only a downstream (agent
download) test was performed. For all ab tests, concurrency level (-c) was set
to the same as the number of requests.

At 2000 simultaneous requests, the test failed: “[ab:] apr_socket_recv: Con-
nection reset by peer (104)”. However, Apache could serve requests immediately
after that.

Conftero could serve 1000 simultaneous requests, over 10 times the amount of
requests served by Salt. Tests over 100 simultaneous clients were performed
with ‘ab’. This only tests downstream (agent download), which could make
Conftero appear better. Downstream has almost all data transferred (90 MB
vs 2 kB), but agent uploads use dynamic script on the server. Ab is designed
to send requests exactly at the same moment, creating higher momentary loads
than other tools, and making Conftero look worse. Higher results could likely
be achieved by using a high number of requests (-n) with lower concurrency
(-c).

5.2.7 P2P Operation in Shattered Network

When a connection to the Internet is not available, individual hosts could still
reach each other. This is easy if the hosts are in the same LAN. This becomes
more difficult if the hosts are moving, and wirelessly connecting to different
access points (AP) or ad hoc WLAN networks. An additional management
challenge is created if this would require multiple separate backup servers to
be configured in each additional network. In this work, I will call a network
shattered when the nodes are not interconnected, but can only intermittently
reach other nodes, possibly in an unpredictable manner with some nodes never
able to reach some other nodes.

The Hidden Master architecture removes the requirement for near real-time
interactive master-agent communication. This allows the master-agent transfer
layer to be swapped cheaply. Layers and responsibilities of the HM architecture
are listed in table 27 and further described in the chapter “Layer Model of the
Hidden Master Architecture”.

The use of peer to peer (P2P) architecture allows all nodes to distribute files.
In typical implementations, the direction of file transfer is not mandated by
the hosts working as the server in the client-server model (opening a listening
port). This is mandated by widespread use of firewalls and NAT in typical

164

networks, which prevent many nodes from publishing a listening port, and thus
from acting as the server in the client-server relationship. In P2P architectures,
nodes can connect to each other in an opportunistic manner, transferring data
when connection arises, and can avoid dependency from any one connection
between nodes.

Leading configuration management tools, such as Puppet, Salt and Ansible,
assume direct, two-way master-agent connection. They do not provide support
for P2P architecture. Due to the connection requirement, swapping transfer
protocols could be complicated. Leading configuration management tools are
discussed in Literature review: Leading Configuration Management Tools.

5.2.7.1 Moving P2P Nodes without the Internet, Couriers or Drops
The scennario for the experiment is presented in fig. 20. Nodes are represented
by circled letters: m for master, s1 and s2 for two agent nodes. The larger colored
dashed circle around a node represents the range of node radio transmission.
This P2P configuration does not need or have any intermediate courier or
drop nodes. Instead, all nodes opportunistically transfer data when network
situations permit this.

The scenario displays a simple shattered network. At time t1, represented by
the box numbered 1. in fig. 20, master m and agent s1 are within radio range
and can exchange data. Another agent, s2, is out of range of both m and s1,
and cannot exchange information with any other node. Agent s2 could also be
powered off.

At time t2, represented by box 2 in the diagram, agent s1 has physically moved.
Now master m is out of range of both nodes. Agents s1 and s2 are within range
of each other and can exchange information. It should be noted that master m
and agent s2 are never in the range of each other in this scenario, and cannot
directly exchange any information. The situation is the same even if m and s2
are never on at the same time.

The experiment will test if s2 can receive and apply configuration from the
master m, without direct connection, without intermediate hosts (couriers,
drops) and without a pre-planned network structure.

In addition to radio based scenarios presented above, multiple other example
situations could require similar a network architecture. During power outage,
many computers keep running on their own batteries, such as UPS, laptop
batteries or backup power available in the local building. Wired upstream
network connections and their active devices are obviously not powered by
these local backup power solutions. Using the same P2P backend Syncthing,
the hosts will automatically exchange information when there is an Internet

165

Figure 20: P2P transfer with moving agent

166

Protocol (IP) connection established between them.

Such a connection can be created by LAN switches, WiFi networks, and in many
cases also by directly connecting the computers using a standard Ethernet cable
without any active devices in between. Depending on the operating system,
locally connected computers could automatically negotiate the linking of local
addresses and establish a network between the computers (Cheshire, Aboba
and Guttman, 2005). Such a local connection could be a regular Ethernet
cable connecting the computers. Practical implementations are available for
all major OSes: Avahi for BSD and Linux, systemd-resolvd for Linux, Bonjour
and bootp for Apple and Winsock in Windows.

This scenario was only tested with Conftero, as the leading CM tools do not
provide the required features for this.

5.2.7.1.1 Limitations The range of radio transmission between nodes is
considered exact in this experiment. Nodes in range can transfer information,
whereas nodes out of range cannot. In real life, the range of radio transmission
is affected by multiple factors, such as terrain, multipath propagation, radio
environment and in longer transmissions, radio weather. Also real radio trans-
missions degrade before disappearing to noise floor. These effects were not
simulated in this experiment as the effects of adverse network conditions were
tested and compared earlier.

Only downstream transfer of encrypted catalogs from the master to the agent
was tested. Considering that both catalogs (master to agent) and reports (agent
to master) are simply encrypted files, testing communication two ways would
likely not bring much additional information.

The applications in the test environment were configured mostly manually.
This was done both to simplify the experiment and to concentrate the test
solely on swapping the transfer layer. Syncthing, the P2P backend, was allowed
to exchange its own keys while all nodes were interconnected. For large real
life networks, these steps, including the back end key exchange, should be
automated using a CM tool such as Conftero.

5.2.7.2 Initial Configuration Three VirtualBox VM nodes (m, s1, s2)
were defined using Vagrant IaC tool. Each node had only 512 MB of RAM,
and ran Debian 11 Bullseye Linux.

Syncthing was manually installed with package manager (apt) and started
(‘nohup syncthing –gui-address=0.0.0.0:8384 &’). As the test nodes did not run
a GUI, the web interface was used from the host OS using port forwarding, which
made it necessary to bind Syncthing web GUI to serve all IP addresses (0.0.0.0).

167

Syncthing was configured manually, allowing all nodes to exchange Syncthing
keys while they were still interconnected. Some Syncthing configuration was
done to reduce the waiting for timers, and to prevent P2P backend from
“cheating” by connecting to upstream Internet servers. To reduce waiting, folder
rescan interval was set to 30 s (from one hour) and the reconnection interval was
set to 10 s (from one minute). To prevent support from servers on the Internet,
the following were disabled: relaying, global discovery and NAT traversal. All
three nodes were paired through the Syncthing web interface (port forwarded
to host OS), and the default folder was shared among them.

Conftero ‘cct’ was copied to master node m. This single binary can build
all other components and generate all files required. It has no dependencies
(apart from glibc), so no other software or libraries were installed. A new
project was created using ‘./cct init .’. Couriers were defined in master “cct.json”
configuration. Usually couriers in HM are untrusted intermediate hosts running
a web server. Instead, I defined couriers with file:// protocol. A new campaign
“peered” was generated for s1 and s2 (‘./cct newcampaign peered’). Agent
installer binaries with campaign keys were generated (‘./cct update -a’), copied
to agent nodes s1 and s2 and installed on each agent node (‘./ccta install’).
During the install, Conftero automatically applied the configuration that was
the most recent when installers were created. Conftero gained persistence using
a cron job. Installation was verified by looking at the files created by the initial
configuration (‘/etc/conftero-managed’). To speed up future configuration, the
installer was removed from the catalogs with ‘./cct clean’.

5.2.7.3 t1 - Only Master m and Agent s1 Available At time t1, only
master m and agent s1 were interconnected (fig. 20). Agent s2 was shut down
(“vagrant halt s2”), so it was of course also not connected to any other node.

A new configuration on the master was created. This was done by modifying
the target contents of /etc/conftero-managed, defined in module “agent” in
campaign “peered”. Both agents s1 and s2 are members of “peered” campaign.
The modified campaign was uploaded to couriers with ‘./cct sync’. This experi-
ment used file:// protocol (instead of SSH and HTTP), so the encrypted catalog
and counter file were simply copied (by the cct command) to the Syncthing
default folder /home/vagrant/Sync/.

When taking a remote control connection to agent s1 (‘vagrant ssh s1’), it
could be seen that the contents of the test file /etc/conftero-managed were
automatically modified as expected. This also showed that the transfer of
the encrypted catalog using the swapped Syncthing P2P backend worked as
expected in the easy case where both nodes could see each other on the network.

168

5.2.7.4 t2 - Only Agents s1 and s2 Available At time t2, only agents s1
and s2 were on the network (fig. 20). Master m was no longer on the network.
During this stage, we could see if the network was able to transfer instructions
to agents during unpredictable changes in a shattered network.

To move to t2, master node m was shut down (‘vagrant halt m’). After m was
verified to be halted, the earlier powered off agent node s2 was started (‘vagrant
up s2’). As planned, Syncthing was started manually (‘nohup syncthing –gui-
address=0.0.0.0:8384 &’).

Even with master m both unconnectable and powered off, agent s2 downloaded
the encrypted catalog from another agent s1. The Conftero agent ‘ccta’ au-
tomatically read the instructions using the courier file protocol, reading the
file directly from a directory on the local file system. The configuration was
applied automatically. The result was verified by checking the contents of the
test file /etc/conftero-managed. It contained the updated test string defined
on the master at time t1: “This update was done on m when s2 was down”.

In this experiment, Conftero successfully used a swapped P2P transfer and
configured nodes in a shattered network.

5.2.7.5 Conclusions of Shattered Network Experiment Unlike indus-
try leading CM tools, Conftero and the HM architecture is resilient against
network partitions. Conftero can be made to find a route around network
problems and operate in unprepared and unpredictable network topologies.

The use of P2P backend is just one option to improve Conftero resiliency. The
Hidden Master architecture gives up on the requirement of near real time direct
two way connection between master and agents. This makes it possible to swap
the HM transport layer, treating the transport tool as an untrusted black box.
Basically, any method that can transfer files can be used. Purpose made tools,
such as Syncthing for P2P communications, might be expected to solve their
specific problem domain better than an addition coded as a side feature to a
CM tool.

5.2.8 Air Gapped Operation

An air gapped network is not connected to other networks. At some point in
time, some information must be brought to the air gapped network for the
computers to have any OS and software to run. When software updates or
new configuration is brought to these computers, it requires someone to be
physically present. If trusted experts travel to each of the target computers, this
can be expected to be more expensive than using less trusted and uneducated
workers.

169

The Hidden Master architecture used in Conftero, the advanced research
prototype, allows easy swapping of transport. As the transfer layer consists of
encrypted files to be delivered over untrusted transport, any untrusted method
of transferring files could be used as a black box.

The setup used was the same as in the P2P Operation in Shattered Network
experiment. USB drive mounting was simulated by copying the files on the
expected mount point location on agent node s2. The Syncthing daemon,
required for the network transfer of Conftero catalogs, was stopped so that s2
could not communicate Conftero catalogs or reports with any other node.

5.2.8.1 Limitations Only downstream, master to agent, courier communi-
cation was tested. The transfer of encrypted reports upstream, from agent to
master, could be expected to work in a similar fashion.

Automatic unmounting of the USB drive was not tested. Depending on the
automounter used in the target system, the drive should be logically unmounted
(‘umount /media/usbDrive/’) before physically disconnecting the drive.

Physical access to USB ports is lower privilege than having a user on the system.
However, default settings in typical OSes are not enough to protect it. At
least USB Human Interface Devices (USB HID) such as keyboards and mouses
should be limited if the employee connecting the USB drive is not trusted to
have an account. For advanced attackers gaining physical access to USB, a risk
of performing memory reading attacks might need to be considered.

5.2.8.2 The steps of the experiment

• A new file:// protocol courier for a local USB flash drive was added on
master m to cct.json.

• The operator of the system produced an encrypted catalog on the master
node. A new configuration was created by modifying the target contents of
sample file “/etc/conftero-managed”. This created two files, the counter
file (“counter”) and the encrypted catalog (“55BD1DD5520BAE27”).
With ‘./cct sync’, the files were copied to a USB flash drive.

• The drive could be given to an untrained employee. This was simulated
by transferring the files to a target node s2 using a shared folder in the
emulation environment.

• The untrained employee would travel to the air gapped computer (agent
s2), connect the USB drive for two minutes, and then disconnect it. This
was simulated by copying the files to the location where an automatic
mounting system shows the contents of the USB drive, /media/usbDrive/.

• After less than a minute, Conftero agent ccta had read, verified, decrypted

170

and applied the instructions. This was verified by reading the sample file.
Reading the file ‘cat /etc/conftero-managed’ revealed the test message
“This update was brought to air-gapped m2 with a USB flash drive.”

5.2.8.3 Conclusion of the Air Gapped Experiment This experiment
showed that Conftero can deliver instructions to air gapped computers using
movable media and minimal user interaction with the agent machine.

Together with P2P Operation in Shattered Network experiment, this also shows
that as the Hidden Master architecture does not have the requirement of direct,
synchronous agent-master connection, transfers can be easily swapped. The
swapped transport can be considered simply as an untrusted black box.

5.3 Case Studies

These case studies were done to validate the model by testing the research
prototype in the field against business requirements. In contrast to Empir-
ical Validation in Emulated and Simulated Environment, these studies use
the research prototype to reach some external goal. Instead of a laboratory
environment, these case studies were run in real environments being used in
production.

These case studies were done to complete objective 6: “Validate technical
benefits and potential business benefits in two case studies”. Completing
the objective provided an answer to RQ6: “What utility do the models and
the research prototype provide when run in field environment with business
requirements?”.

5.3.1 Conftero in Computer Exercise Evaluation

A final computer exercise was evaluated using conftero, the research prototype.

The master and agent version was detected with the Conftero builtin capabilities.
This information was available in machine readable format, because Conftero
performs resource abstraction similarly to other modern CM tools. A summary
of the runtime environment on both master and agents is collected in table 56.

Conftero implements the Hidden Master architecture. This includes the capa-
bility to connect to the network only briefly, and then spend unlimited time
offline to analyze the state of the agents and develop a new configuration. The
new configuration can be uploaded to the courier at any time, including time
when agents are offline. A more detailed explanation of the hidden master
architecture is in Designing Hidden Master Architecture.

171

This allowed results to be analyzed afterwards, even after most of the agents
(including their whole operating systems) had been removed. Both exercise
scoring (for course evaluation) and analysis for this study were done afterwards,
based on the reports stored by Conftero.

Stored results were analyzed using command line. Initial results were collected
using Conftero cct master command for the master, and stored JSON reports
for agents. To obtain the data summarized here, the results were cleaned
using CLI pipelines using standard Linux commands including Python and
grep. Conftero contains rudimentary CLI functions to display agent statistics,
but they are more suitable for a dashboard-like overview than the exploratory
analysis of agents.

Table 56: Qualities of master and agents

Quality Value

Masters 1
Agents (n) 23
Master version (cct) 0.1.47-alpha-20210316-2009
Master runtime environment Go 1.15.2 x86_64, Ubuntu Linux 18.04
Agent version (all agents) 0.1.47-alpha-20210316-1732
Agent Linux Distributions Multiple Ubuntu and Debian versions
Agent OS and CPU Architecture Linux amd64 (x86_64)

There were 23 agents, of which about 80% ran versions of Debian Linux and
the rest ran Ubuntu. All hosts used amd64 processor architecture, which was
expected as only amd64 binaries of Conftero were provided. Qualities of the
master and agents are listed in table 56 and OS distribution is listed in table 57.

ls reports/|nl
./cct --versio
grep -ir CctVersionInfo reports/

Listing: Commands to evaluate test environment on agents and master

Table 57: Distribution of agent operating systems

Count Percent OS version

13 57 % Debian Linux 10.8
6 26 % Debian Linux 10.7
3 13 % Ubuntu Linux 20.04
1 4 % Ubuntu Linux 18.04

172

Count Percent OS version

—— —— ——
23 100% Total

Computer exercise evaluation emphasizes some challenges to the configuration
management software. When exercises are scored, agents cannot be trusted.
When reports are fetched from agents, their identity should be verified so that a
dishonest system operator cannot overwrite reports from other agent machines.
Due to the instability caused by novice system administrators working under
pressure, it is not uncommon that machines crash or become unusable. In this
regard, one machine became unusable near the end of the test.

Due to sudden changes caused by the corona pandemic, trusted Internet
visible server infrastructure was not easily available for use in the test. The
environment had multiple NAT in the path between most master-agent pairs.
Both the master and agents were behind NAT, and the agent in the virtual
machine was in some cases NAT:ed again by the host OS. The untrusted courier
(master to agent) and drop (agent to master) were on the same computer, cheap
commodity virtual private server. The virtual server was rented for 5 USD per
month with no other costs and a possibility to cancel after the first month, and
this was a typical price and agreement at the time of the test.

It was found that all but one candidate (22/23) could successfully install
Conftero. One virtual machine was running 32 bit (x86) guest OS, for which
Conftero did not have binaries available. Even though it is not difficult to
compile 32 bit binaries, they would likely have very little use as 32 bit non-
virtualized computers are uncommon. The situation was fixed by installing a
64 bit (amd64) guest OS.

One of the contributions of this work was the use of general purpose language
and imperative instructions to perform idempotent infrastructure as code (IaC)
configuration. Conftero had a builtin Python dialect in the static binary, which
implemented the IaC using the novel resource dependency model presented in
this work. In the exercise evaluation, it was found that this language could
be adapted to opportunistically use software and tools already existing in the
agent OS to collect data about the agent environment.

Conftero has an advanced key exchange, including campaign keys for pre-
emptively distributing keys to an unknown number of machines provisioned in
the future. However, when the agent binary installer was downloaded by the
candidates, it was not protected by cryptography apart from the web server
TLS and certificates. This might warrant further consideration for similar use

173

cases, even though reliable first key exchange probably requires active human
participation at some point. This problem does not exist when the installer is
included in OS provisioning, which is a more suitable method for enterprise
environments.

Summary of findings

• Using the hidden master architecture, Conftero could operate in double
NAT (master and agent) environment without trusted infrastructure.
Multiple different networks and setups did not cause any problems.

• Conftero worked reliably in different versions of Debian and Ubuntu
Linux

• Conftero did not work in 32 bit x86 architecture, because such binaries
were not compiled

• Installing Conftero worked by downloading the binary and following three-
step instructions. The authenticity of the binary had to trust limited
external mechanisms.

• Report collection through the back channel worked
• The Python based imperative, idempotent configuration language could

be used to define report collection.
• The language embedded in static Conftero binary could be adapted to

opportunistically use the tools already installed on agent machines to
collect data about the environment

• Reports could be analyzed without Internet connection, and when agents
no longer existed.

5.3.2 Conftero Deployed to Company X Production Environment

To evaluate the business value in a challenging real-life environment, Conftero
was used by Company X in the production environment of its client. This case
study was undertaken to validate the model by testing the research prototype
in the field against business requirements (RQ6).

As described in Methodology, the original goal was to perform limited testing
in the Company X test network, separate from the production environment.
After an initial evaluation of the test network, Conftero was seen as safe enough
to run on production systems provided that a suitable client could be found and
precautions to mitigate risks were developed. The nature of Conftero requires
full (root) access to all aspects of the system, and it is designed to make
major changes to multiple machines without human intervention. Multiple
administrative and technical precautions were taken to control the risks, making
all parties confident that the testing could be safely performed in the production
systems. Thus, the goal of this case study was upgraded to perform testing in

174

client production systems.

Company X is a small smart building vendor established in its single country
market. It has its own IoT architecture platform with AI prediction. Two of
the largest grocery store chains (~80% of the market) in Finland use their cold
chain or delivery solutions, and their AV solution is used in over 1500 rooms
across multiple organizations.

A suitable client was found. Client Y is one of the largest universities in its
country, employing thousands of personnel, teaching over 15 000 students and
ranking under 200 in both the QS World University Rankings and Times Higher
Education World University Rankings. They kindly allowed the test to run in
a single location multiroom AV system.

Limitations of the case study include the number of organizations studied and
the scale or configuration management deployed. Case studies were limited
to two organizations. Ethics and business continuity considerations prevented
running the research prototype on large scale production deployments, critical
infrastructure or in systems responsible for human health. The first small case
study was performed internally in the organization employing the researcher.
The second main case study did not have this limitation.

5.3.2.1 How the Study was Conducted This case study used expert
interviews, technical tests and observations of the deployment of the system in
the environment of the two organizations. The main deployment phase with
Client Y was performed in June 2021, with interviews, scoping and development
performed earlier and a followup check done later.

Expert interviews were conducted with the leadership of Company X together
with scoping the project. Interviews also included a senior technical expert, head
of department and a junior system operator. Opportunistically, comments and
questions were noted when programmers outside the target group interjected
into the discussion when working physically in the client’s premises.

Observation of system deployment was undertaken with a junior system admin-
istrator during the deployment phase, using video conference and ssh remote
connection while developing the configuration for Client Y AV deployment.

Technical tests and analysis of the systems were performed by the author using
a remote shell connection to the target system.

5.3.2.2 Description of the Environment Company X has developed its
own IoT and AI platform. The parts used in this study were similar to typical
modern server environments in most aspects. They ran amd64 Linux with

175

fast, continuous network connections with ample RAM. Compared to some
other server deployments, the rate of software updates was high. The ability to
install additional administrative software was limited both technically and due
to security policies. The main technical limitation for software installation to
host OS was heavy use of containerization for software deployment. Continuous
security updates also affected initial deployment of the research prototype, but
made it possible to see how assumptions of the research prototype were held in
unseen environments. Company X’s platform already had tools to administer,
monitor and update their systems. To test the research prototype in this case
study, some of these tools were not used, and Conftero was tested instead.

Heavy use of containerization was a surprise, and it made possible to test the
non-DSL approach to develop infrastructure as code for systems that were not
available when Conftero was designed. Stringent security requirements created
additional integration points. On one hand this limited testing of some network
transports, but on the other it showed that the hidden master architecture’s
freedom from real-time two-way connection makes it malleable to surprising
network structures.

The level of detail in describing company X systems is limited by business
secrets and the security requirements of the company and its clients.

Client Y ran a typical large, partitioned network with their own monitoring.
They also set limits to what can be done in the network, mostly following
regular security policies of Company X. Configured systems were in sole control
of Company X. Apart from networking to target systems and policy decisions,
Client Y computer architecture had little effect on the performance of the
research prototype.

5.3.2.3 Scoping and Planning Phase Initial scoping meetings were held
with C-level management, and they involved both the business and technical
leadership of the company. Another technical meeting was held with just
technical leadership.

During scoping, management pointed out the limits to this test. Tests should
advance step by step, starting from nearly risk-free test environments and
advancing towards greater risk. Plans to mitigate any risk to client systems
should be done and accepted beforehand. Protection of client production
systems was the main consideration. Company X was eager to test the research
prototype and provide resources for testing. These resources included computers,
access to the internal network, use of IoT devices and time from their personnel.

The legal framework for the testing was agreed upon. In addition to NDA and
other typical project agreements, licensing was discussed. The current plan is

176

to release Conftero under a license meeting both the FSF Foundation’s Free
Software definition and Open Source Initiative’s definition for open source, such
as the GNU General Public License (GPL), but this was not decided on at the
time. As the author of Conftero I confirmed that using it to configure, monitor
or administer systems in a regular manner places no requirements on the
licensing of these systems and no requirements on licensing the infrastructure
as code configuration files. In the licensing phase, this could be done using a
special exception with the GPL.

As software is a system product, all of its components must have compatible
licenses if a derivative software product is created. Free licenses requiring strong
reciprocity, such as the GPL, require derivative and combined work to retain
the same license. This creates a challenge to programs whose main purpose
is to create outputs that include parts of the original program. The GNU
Compiler Collection (gcc) is one such example. As gcc compiles source code to
executable binaries, such binaries can include code from the compiler. This is
solved by a copyright holder giving a special exception to the GPL license of
the program. (Välimäki, 2005) A similar approach could be taken to keep the
licensing of Conftero clear.

5.3.2.4 Requirements for the Project Client Y’s business requirement
was the deployment of a multiroom AV system. User visible part contained
multiple computers, audio and video outputs and inputs. The system required
mobile or web authentication to use. For administration and security purposes,
the system had remote control, monitoring, automatic updating and recovery
features. These systems were provided by Company X’s IoT platform. Thus,
the requirements for the research prototype were to deploy, configure and
control these systems securely and follow the policies of both Company X and
Client Y.

Table 58: Requirements for Deployment

Req Description

req0 Deploy multiroom AV system with authentication, monitoring,
administration and remote control

req1 Control host Linux system to deploy containers
req2 Configure systems inside containers
req3 Orchestrate information between containers
req4 Set up and initialize the relational database
req5 Generate and manage multiple asymmetric keys
req6 Manage access control techniques, including the MAC security context

177

Req Description

req7 Automatically deploy updated software versions
req8 Follow Company X’s security policies (keys, networking. . .)

The requirements for this project are listed in table 58. The end product
required by Client Y is listed as a single point req0, as many of these complex
features are delivered by existing software. Other requirements req1-req8 deal
with support functionality provided by Conftero, the research prototype. Many
of these requirements were unexpected such that Conftero had never been
tested with similar requirements.

Containers, such as Docker, Podman, LXC or Mininet, create a separate
environment for a program. For example, a web server running in a container
cannot usually access the host OS file system. For efficiency, containers share
many resources with the host OS. The main shared resource is usually running
the same kernel as the host OS. In this way, containers usually offer more
efficiency but less isolation than full virtualization. Popular administration
tools exists that are solely limited to containers (e.g. Kubernetes). Managing
containers was not a requirement prior to this case study, and thus was not
tried with Conftero before this. Requirements req1, req2 and req3 are related
to containers.

Setting up a database (req4) is a common task in an system administration,
and well supported by both Conftero and popular solutions in the industry. It
usually follows a package-file-service pattern, with additional command run for
loading the initial database from a text file containing SQL commands.

Generating and managing keys (req5) often differs depending on the tools to
be used. Searches in popular search engines showed that it is easy to find
incorrect and dangerous instructions for generating keys for use with CMS.
For example, some instructions for creating Linux users result in md5crypt
keys (“1”) vulnerable to dictionary attack. In Conftero, generating keys was
usually done running the same commands that the administrator would run
when working manually, and then making these commands idempotent. This
approach sidestepped the requirement to understand and research the details
of cryptographic hashing techniques used by each targeted tool.

Modern Linux systems have added isolation techniques to adapt to the devel-
oping threat environment. A class of those tools provides mandatory access
controls (MAC) and other access control related security policies. SELinux
and AppArmor are the two leading tools in this area. SELinux is typically
used with Red Hat family distributions (e.g. Red Hat, Rocky, Fedora), and

178

AppArmor in the Debian family (e.g. Debian, Ubuntu, Kali). These policies
can limit access to directories, files and the network. They do not replace
exiting isolation techniques such as users or capabilities, but instead further
restrict access. Conftero had not been tested for controlling those access control
systems before this case study. Controlling access control techniques is req6.

Company X kept its systems up to date, and had a high rate of updates. When
they made updated versions of their software available, it was automatically
deployed while minimizing negative effects on the continuous availability of
the system. Some of these updates included container images. Automatically
deploying detected updates for in-house custom software is listed as req7.

The IoT platform of company X is used in places where human health must
be protected, such as cold chains for the two largest grocery chains in the
country. Thus, they had multiple stringent security policies. Unfortunately,
but for a good reason, some of these policies require network facing systems
to minimize the attack surface and use mature software that is employed in
production by thousands of companies. Obviously, a research prototype cannot
meet these criteria. This requirement req8 was handled by using additional
technical protection from the Company X platform, and adapting the network
transfer of encrypted catalogs to this requirement. Additionally, the research
prototype was not run in machines responsible for human health.

5.3.2.5 Precautions Even though I consider the security principles and
standards of Conftero to be sound, the implementation is just a research
prototype and cannot be on par with highly secure tools established in the
industry. Mature tools, such as OpenSSH, OpenVPN and WireGuard have
faced years of public scrutiny and penetration attempts in tens of thousands of
production installations, and it is obvious that a new tool cannot meet that
level of security. Thus, multiple precautions were taken to keep production
networks safe and all parties informed.

Security precautions can be divided into scope, administrative and technical.
The scope of the study was limited to production systems that could not
cause risk for life or health, and did not contain classified or other high-risk
information. Thus, control of cold chains for food was ruled out. As described
in the technical precautions, the target systems did not have access to high
risk information, such as large databases of PII or classified information. As
with most projects with actual companies, systems did contain regular business
information of a confidential nature.

Administrative approaches involved keeping all parties informed, making sure
a skilled response was available and limiting the immediate effect of possible

179

incidents. All parties were informed, also in writing, and accepted the research.
During the study, Company X personnel and the researcher (the dissertation
author) were available to respond to any problems. The study was timed so
that any downtime would happen when demand for these systems was low and
alternative premises were likely to be available.

Technical precautions included using additional encryption and authentication
systems, additional monitoring systems and containing systems in the network
to limit possible lateral movement. Alternative transport for encrypted catalogs
was used to benefit from the security of existing systems in the company. Initial
feasibility tests were performed in a completely unrelated environment. Then
key tests and practice was then performed on a separate but nearly identical
test system. Finally, the study was undertaken in the production network.

The research prototype worked, and the study was completed without incident.
At the end of the study, configuration was done with Conftero (the research
prototype) and was left to run in the production network. The Conftero agent
was removed from the target system, and keys with administrative access were
invalidated.

5.3.2.6 Observation of Deployment Deployment was performed with a
junior system administrator with some programming experience. Observation
was performed over video conference during June 2021. This consisted of over
20 hours of participant observation, spanning 12 days. Participant observation
allowed for the understanding of the thought process, goal setting and challenges
related to installation, and made it possible to ask for clarification. When
needed, the researcher provided additional information on any questions, noting
the area of interest. Answering questions was also necessary in practice, as it
was not possible to develop extended documentation or training material for
the prototypes.

5.3.2.7 Results of Company X Field Study Based on observation,
technical tests and expert interviews, the concepts underlying the research
prototype could be validated. The research prototype Conftero performed
well in this field study and was able to meet the requirements posed by the
stakeholders.

The real life production environment provided an unexpected environment with
multiple limitations. This is in stark contrast to the emulated test environments
and field tests where the research prototype was the only application defining
security policy and administrative practices. This had the greatest effect on
network architecture, but also some challenges on integration points, namely
initial deployment using SSH.

180

Working with system administration with no prior experience of either Conftero
or other idempotent, infrastructure as code CMS put the non-DSL approach
to the test. Conftero uses concepts that are novel in the context of CMS. The
approach taken by Conftero is described in chapter Defining Configuration,
and compared to a typical CMS approach in table 41.

As hoped for, the use of Python dialect made the system approachable and
tempting. The system administrator could extrapolate from his prior Python
experience. Especially notable was the lack of questions regarding flow control
in CMS code. Some leading solutions, such as Puppet and Salt, require the
system administrator to learn and adopt a completely new approach to flow
control in the software. The non-DSL approach used in Conftero uses the same
flow control structures as all common programming languages, such as Python,
C or Java. The lack of questions on this area and the observed ease of use
indicate that leveraging existing experience and conceptual knowledge might
lower the bar for IaC configuration. It is possible that this simplicity would also
reduce programming errors, but this was not tested in this case study and could
be an area for further research. Interviews and the collection of opportunistic
comments and questions showed that the use of Python dialect seemed quite
obvious to the developers and system operators in this case study. It could be
assumed that many fundamental structure questions were skipped because they
were considered obvious in any Python dialect. This assumption is somewhat
supported by observation of the use and implied understanding in more detailed
questions. For example, all those interviewed seemed to (correctly) assume
that the user of the system could employ conditionals and functions. Detailed
questions included: “Can you use f-strings?”; “Can you import libraries?”;
and “Can you read files?”. Some considered the lack of Python requirement
surprising. Conftero achieved this by using Starlark library statically compiled
into a Go binary.

Static linking showed both benefits and downsides in this case study. Static
linking means that all dependencies of a program are bundled into it. This
affected the choice of programming language, and thus was a major decision
in the design and implementation of the system. Technically, the agent and
master binaries had minimal dependencies to target stable OS APIs, as literal
fully static linking (to unstable APIs) was expected to paradoxically result in
less compatibility between systems. Static linking in Conftero followed this
more practical and broad definition of static linking.

The freedom from dependencies turned out to be beneficial, as the system
developed on Debian family Linux distributions (Ubuntu, Debian) worked out
of the box on Red Hat family distributions. Due to the high rate of updates

181

and use of new versions of software, a large number of dependencies on libraries
in target systems would most likely have reduced compatibility. By definition,
a configuration management system is managing the configuration of slave
machines. As this includes the versions of libraries included, it would make
it difficult to use a CMS to recover from problems with libraries it itself is
dependent on. There were no problems with installed libraries in the case
study; this feature was not tested.

To consider the benefit gained from static linking, it could be compared and con-
trasted to a popular approach using dynamic linking. Conftero was developed
in Go language, which can intrinsically create static binaries. Industry leading
CMS software is coded in languages that - in practice - require dynamic linking.
Puppet and Chef are coded in Ruby, and Ansible and Salt are coded in Python.
Both Ruby and Python are evaluated at runtime, and could be considered
scripting languages. They cannot produce real static binaries. This means that
the CMS becomes tightly coupled and highly dependent on the environment
it should be managing. The libraries included in Linux distributions change
with time and also between distributions. During the work on this thesis it
was observed that due to a lack of required libraries, one of the tools ceased to
function. Some Python projects also get tightly coupled with specific minor
versions of the programming language. An example (outside CMS) is the
popular Python web framework Django, that requires Python 3.8 while some
long term support distributions ship older versions of Python (e.g. Ubuntu
18.04 LTS ships Python 3.6.9).

A problem with a one of the libraries included in the research prototype was
discovered. To make initial deployment easier, there is an optional feature
to deploy the agent daemon directly to the slave machine through SSH. The
included SSH library, golang.org/x/crypto/ssh, did not support the latest
authentication algorithms, mandated by the latest OpenSSH server. This
challenge was not shown in a slower moving environment based on the Debian
stable. This challenge was independent of static or dynamic linking, as the bug
was not fixed in the upstream library. A possible mitigation would be using
the external ‘ssh’ command (OpenSSH client) for this. This would create a soft
dependency for the command, as the lack of this command would not prevent
use of any other features. Executing external commands is sometimes considered
a less controlled and less stable approach than using an actual programming
API. In this case, many features of any modern CMS are implemented by
running system commands, so little additional risk would be created in this
optional feature. As cryptography is an evolving field, this would make Conftero
more future proof in case of any similar change. OpenSSH binary is available
by default in popular Linux distributions in both Red Hat and Debian families,

182

and even in new versions of Windows.

Table 59: Findings in Company X case

Req Benefits (+) and downsides (-)

Static linking + Support for different family distribution with much newer libraries.
+ Works in environments with limited library availability
- Requires working in more difficult language with worse libraries
+ Easy to master different version campaigns from one master

Small non-DSL + Easy to start, Python experience applies
language + Flow control is familiar from other languages

+ Easy to adapt to unexpected requirements
Non-realtime + Adapts to unexpected network architectures and security policies
communication + Easy to deploy Couriers (for downstream, master to agents)

- Drops require a specific server environment (for upstream)

5.4 Expert Interviews

Business impacts of the key concepts were validated with a prototype demon-
stration and a related practitioner evaluation with six companies. After viewing
a demonstration of the software and a presentation of the concepts behind it,
practitioners answered a semi-structured questionnaire with both closed and
open-ended questions. The questions can be found in Appendix: Questionaire
for Semi-Structured Interview.

Expert interviews were undertaken to complete objective 7 “Identify and
validate potential business benefits in expert interviews”. This provided an
answer to RQ7 “What potential business benefits do experts see for the models
and the research prototype?”. Other validation questions, RQ5 and RQ6, were
answered earlier in this chapter “Findings and Analysis”.

Potential business benefits had to be analyzed indirectly using expert interviews
to make the research possible. The wide deployment of a research prototype
to real life production environments would be risky. Creating a production
quality tool with high production requirements, then using it in a business
environment and generating profit in excess of what established and mature
tools could offer would also be unfeasible and out of scope of this study.

Interviews and related demonstrations were performed in Finland, in Finnish,
using video conference and screen sharing. The interviews took place between
May 2022 and August 2022. Six experts were interviewed, and it seems that a
saturation point was reached.

183

To allow time for comments and questions, all expert interviews were performed
individually. Each interview took a little over an hour. Interview methodology
was described in the Methodology chapter. Methodology also includes formula-
tion of the expected business benefits, that were used to create the questions
for the semistructured interview (included as an appendix). Together with
longer deployment case study, this evaluation helps understand the potential
business impact in RQ6.

Configuration management systems, as discussed earlier, are a very high value
asset to protect among the machines participating in configuration management.
Questions about current challenges might also present employers in something
other than the best light. For these reasons, the experts participated on the
condition that individual answers could not be reliably linked back to each
interviewee. To follow on this request, both the answers and the backgrounds
of respondents are grouped by theme.

Companies where the interviewees worked included a large multinational IT
consulting and software company; a market leading mobile operator in Finland;
a cloud consultant owned by one of the world’s largest IT companies; and
payment a terminal operator owned by one of the largest digital payment
operators in Europe. Current positions varied from the more technical (cloud
security engineer, architect) to the more business orientated (security manage-
ment consultant, cyber security operations expert, head of corporate services
development, head of support). All but one had over 10 years of professional
experience in IT.

Interviewees were chosen based on having a background suitable for this study,
and recruited using the networks of the researcher. One of the interviewees was
previously the team lead of a red team in Finland with a major security company.
Red teaming meant simulating advanced adversaries against well secured and
monitored networks in persistent campaigns spanning multiple months. Targets
included critical infrastructure and financial companies. Another interviewee
had protracted experience in protected and operated payment systems. One
interviewee was lead support for a cloud provider, allowing unique visibility into
the problems hundreds of clients meet when attempting to control and operate
their systems. The cloud provider also offered API endpoints to make it easier
for its clients to use CM on their cloud. All positions included the need to fit
technology and development to business requirements. Multiple interviewees
mentioned a lifetime computer hobby in addition to using computers at work.

Generalizing the results of the expert interviews is limited by the number and
selection of the interviewees. The interviewees were all based in Finland and
working in Finnish companies or in Finnish departments or subsidiaries of

184

multinational companies. To find experts with the required combination of
experience (business, security, IaC CM), they were recruited using the networks
of the researcher. There were just six interviewees, but smaller numbers are
common in qualitative work. In this study, experts were allowed to express
their views in free form during individual interviews which lasted over one hour
each. This approach sought to obtain more in-depth and thought out expert
views compared to group interviewing a large number of experts or performing
a large number of short interviews. Where the experts’ views seemed to be
similar, it appears that a saturation point was reached.

Closed questions related to claims about the expected business benefits of the
technical or architectural qualities of the same concepts that were tested in
the research prototype. Closed questions took answers on a five point Likert
scale: 1 “Strongly disagree”; 3 “Neither agree or disagree”; and 5 “Strongly
agree”. Despite this closed numeric answer format, interviewees commented
on most questions, asked questions of their own and in some cases requested
additional technical demonstrations of the software. The interviewees were
allowed to provide as many additional comments as they wished, their questions
were answered briefly and technical demonstrations were provided (within the
limitations of the demonstration environment). These additional comments
were recorded, and key comments are paraphrased below. One respondent
would have liked to answer some questions with fractional or range answers
(4-5 in three questions). Here the respondent was pushed to choose a single
answer and provide possible additional free form commentary.

5.4.1 Thematic Analysis of the Interviews

To identify new and unexpected themes, a thematic analysis of the inter-
views was performed. This was done following the methodology described in
“Methodology: Expert Interviews”.

Initial codes were created based on interview notes. Based on these codes,
initial theme maps were created. This resulted in two initial theme maps. The
main initial theme map is shown in table 60. An alternative initial theme
map was later discarded. It was based around main themes of “Higher level of
abstraction”, “Multiorganizational”, “Change” and “Productivity”.

Table 60: Initial theme map

Theme Subthemes

Administrative and
Organizational

Skill gap, complexity, managing risk, workforce,
profit and loss

185

Theme Subthemes

Legal and Contractual Contracts and Laws limiting CM, Juristictions,
Standards and certifications, Cross
organizational work limited by policy

Technical Challenge and potential future direction,
Current advantange of CM. . .

Productivity
Risk

The main coding was performed using interview notes and inteview videos
when available. After main coding and reviewing the interviews, final themes
started to emerge. These themes were further improved to arrive on three main
themes and their subthemes. The final theme map was based on three themes
of the main initial theme map. The final theme map is shown in table 61.

Table 61: Final theme map

Theme Subthemes

Adminstrative Skill gap, effect on employees, emergent
challenges, skill gap, risk, complexity

External factors Contracts and Laws limiting CM, Juristictions,
Standards and certifications, Cross
organizational work limited by policy

Technology Challenge and potential future direction,
Current advantange of CM. . .

Below, each subtheme is illustrated with quotes from the experts interviewed.
Quotes are shown as bullet points, with literally translated quotes in quotation
marks, and paraphrased quotations without quotation marks. For literally
translated quotes, changed and added words (such as expanded abbreviations)
are marked with brackets “[]” and removed material is marked with ellipses in
brackets “[. . .]” Translations from Finnish and paraphrasing was done by the
author.

Some subthemes only apply to the Hidden Master architecture. On the one
hand, the Hidden Master architecture, the prototype and its applications were
the focus here. On the other hand, other products mentioned are mostly
established, mature products, often in production use by the respondents’
employees.

186

5.4.2 Theme one: Administrative

The “Administrative” theme included organizational, administrative and per-
sonnel matters. It did not include technical administration of computer systems,
which is part of theme three, “Technology”.

5.4.2.1 Raise in Productivity There was wide agreement that the use of
configuration management tools and DevOps practices increased productivity,
which was to be expected. The raise in productivity was mentioned by all
interviews.

• “The advantage of current tools is - perhaps - we can - in practice -
optimize our productivity. A single team can control [our] infrastructure,
the software on top of it.”

• “Compare this to history - if we remember - projects where [we] had
to wait three months to get a rack. So we’re living a different era now.
We can move on our projects, do an MVP [minimum viable product].
Instantly. Because server capacity is available for us.”

• “The speed of deployment - it’s of direct magnitude [with configuration
management]. Sounds like sales slides but it’s true.”

All respondents found that the Hidden Master and the models could further
reduce costs. In addition to closed questions, cost reductions got many mentions
in the free commentary.

• The security of Hidden Master architecture could reduce manual checking
and layering, thus reducing cost. Reduction of manual steps and checking
is likely to improve morale by allowing developers to concentration on
more interesting tasks.

• We already have decentralization and redundancy built into our supply
chain, but at relatively high cost. We connect to different operators
internationally, run multiple server facilities in different geographical
locations and have redundant providers, so this redundancy would not
be new to us. HM could reduce these costs.

• The majority of costs come from operating the system, and provisioning
costs are usually a minor part of life cycle expenses.

• Some of our CM networks are really small scale, so the scaling of a single
network is not really a pain point for us. Of course, we like any savings.

• Scalability is useful on high demand spikes. In our networks, average
loads can be very low compared to spikes. We prefer our private cloud,
but find it economical to rent cloud capacity for high load situations.

187

5.4.2.2 Effect on Employees Employee happiness and retention was seen
to improve. Provisioning, managing and monitoring computer systems could
include a lot of tedious, repetitive work. The use of configuration management
systems not only reduced the amount of work, but also turned it into more
abstract and advanced. Skillful employees liked this work more.

• “Developers don’t get their kicks from repeating the details manually.
Employee satisfaction . . . You don’t have to market this much.”

• Configuration management improves morale by reducing tedious parts of
the work.

5.4.2.3 Skill Gap However, the use of more efficient, powerful, advanced
and abstract tool brought new challenges that did not exist in previous ap-
proaches to operate these systems.

Skill gap and the need for suitable employees was seen as a challenge.

• “When you go to OPS organization [the operations department], you
have a challenge to find the coding infra guy. The old school infra guy
could want the DLS [domain specific language] configuration. But on the
other hand [the general purpose language based configuration] seemed so
simple that it could be a non-problem.”

• You might need less employees, but now they have to be more skillful.

This work introduced a new way of defining configuration on slave, idempo-
tent configuration using imperative general purpose language; base resource
dependency model; and resource revalidation model. It was implemented in
the prototype as a Python dialect and a library. “Easy to code” was mentioned
by all interviewees. Inertia, a preference for current tools and models, was
mentioned as a challenge for starting use of Conftero.

• Employees with operations background but no development or coding
skill could find DSL more approachable as an idea.

• Only fundamental programming and logic skills are enough to write
simple code.

• New employees should already know Python, which makes it easy to learn
Conftero.

• Language seems simple. It will take a while to learn without a Python
background.

• Python (dialect) will be major benefit to developers.
• This looks simple and fast to learn.
• If Kubernetes and related container technologies proliferate, will this

change education to reduce the programming skills of operators (thus
reducing the benefit of familiar language)?

188

• If you already use Puppet, changing to anything requires learning. It is a
challenge to replace existing tools.

• Orientation is a minor part compared to other life cycle costs. The main
costs are likely to be operational costs while the product is in use.

• Ease of starting a new tool and resistance to change depends on the
background. Developers can be suspicious of security of any new tool or
concept. Especially one that is not widely deployed.

5.4.2.4 Risk Configuration management can reduce risks, but also bring
with them new risk and accelerate the speed in which they could materialize.
Powerful tools require the ability to work on higher level of abstraction, and
also makes it easier to make large scale errors.

• “You reduce the risk of errors that are common when doing configuration
manually.”

• It is very easy (and fast) to make errors that affect production. Code
review could help here.

For hidden master, it was pointed out that technical security will not remove
all risk

• There is clear security benefit [in the Hidden Master architecture], but
one can never remove all risk. For example, human factors (infiltration,
social engineering, coercion) is a possible avenue of attack here.

5.4.2.5 Complexity and Integration All respondents identified complex-
ity as a challenge. It manifested in multiple levels, and this section concentrates
on complexity on organizational and management level in an organization.
Other sections discuss complexity inter-organizationally and on the technical
level.

• Architectural challenges can expand to use all the available benefit pro-
vided by configuration management systems.

• CM allows control at scale where it is not possible to remember everything
that is running. E.g. it is possible to remember what 10 computers are
running, but very difficult for 1000-2000 computers.

Configuration management must work in practical enterprise networks. These
networks can’t be designed or changed in one day, but they evolve as the
business evolves. This creates the challenge of integrating the systems. The
lack of integration is often seen in losing an overview understanding of the
whole system, and lack of visibility.

• Integration between CM and identity management tools is a challenge.

189

In particular, big organizations can end up with large number of separate
CM tools, losing visibility and the big picture.

• Using multiple CM tools together might require a a defensive analyst to
look at multiple screens.

Many tools have been created to reduce workload and complexity, but paradox-
ically can require even more tools to operate safely and efficiently. Especially
container technologies were mentioned in this regard.

• Containers, such as Docker, are convenient but require a lot of tooling:
e.g. CI/CD pipelines for security updates, vulnerability scanning. Many
tools and providers help with CI/CD, such as GitHub (Actions), Travis,
Jenkins. Docker containers use a DSL that’s cumbersome.

• Our current tools do not allow continuous deployment, and it does not
work with containers.

Having a clear, limited and well defined scope for a tool could simplify it’s
design, but naturally raises integration challenges and the problem of “looking
at multiple screens”, dispersion of key information and loss of big picture view.

• Some tools have a limited scope. E.g. Terraform makes it easy to provision
hosts, but requires another tool to configure the applications the host
was deployed for.

• Monitoring is hard, and there is no visibility to servers.
• Lack of visibility and a large scale can result in the appearance of an

unknown attack surface.

5.4.2.6 Potential Markets for the Hidden Master Multiple potential
markets for the Hidden Master were identified. IoT, rugged and embedded
environments were mentioned in many comments. One respondent found the
architecture to have potential in the Third World. One respondent pointed
out that this could be adapted to offensive operations, providing some security
benefits not available in the tools he had worked with.

• Conftero could have an interesting use case in IoT, edge computing and
small devices.

• This could work in a rugged environment and with distributed data.
• IoT would be a good use case for this.
• This has huge potential in the Third World and developing markets. In my

experience, poor network connections and underdeveloped infrastructure
are very common in third world. When I briefly worked in an educational
setting in a third world country, IT was used, but underdeveloped network
infrastructure and poor networks were a challenge.

190

• From an offensive point of view, this could be a good redundant channel,
if the more real time C2 channel (e.g. Cobalt) is caught and disabled by
defenders.

• This model (HM architecture) will likely be copied to other established
CMs (e.g. Ansible, Puppet, Salt). I hope it will.

• This tool would have offensive use. It could work as a redundant channel
for hosts that are controlled by Cobalt strike by default.

5.4.3 Theme two: External factors

Like all tools, configuration management systems must work in the reality of
legal and contractual frameworks of the business. Laws and contracts might
make it difficult to reap all benefits that would be technically possible with
configuration management systems. Organizations take there place in supply
chains, renting services such as cloud, and providing services to their own
clients. Especially for IT-services, configuration management must integrate
into systems across organizational borders.

Many possibilities are provided by configuration management systems.

• Global geographical distribution becomes much easier.

5.4.3.1 Supply Chain and Cross-Organizational Challenges The
question of outsourcing, or what to outsource, was mentioned many times.
Outsourcing allows company to focus on its core business, but also means giving
away control and the risk of lock-in. In lock-in, it becomes difficult to change
a provider even if it no longer serves its purpose, or better options become
available. Lock-in usually benefits the service provider, but is detrimental to
buyer.

• “The thought that you take it from different operators, it brings manage-
ment costs.”

• “But it’s not so easy to move - say - a group of machines from one
AWS [Amazon Web Services] region to another - that it would succeed
like [snaps fingers]. Even if you have the IaCs [infrastructure as code
definitions of your systems]. It would mean some work: open the IPs,
move IPs manually, maybe the region does not provide all the services.
And the like [laughs].”

• Operations (the provisioning and administration of OS and the platform
below applications) can sometimes be outsourced to cloud providers

• Configuration management should be more platform agnostic. Terraform
(a popular CM tool) advertises this, but is it practical to move between
two major cloud providers (e.g.from Google Cloud to AWS)?

191

• “I sometimes wish the tools were more system and platform agnostic. [..]
Terraform - for example - keeps advertising it as a product like this. But
when you try to move - say - an AWS [Amazon web services] Terraform
to GPC [Google Cloud Platform] - it just doesn’t happen.”

One respondent noted that static compilation used in the prototype does not
remove risk from supply chain.

• The whole software is part of the supply chain, even if it is statically com-
piled. This could include Go compiler and all statically linked libraries.

5.4.3.2 Laws and Contracts Contractual and policy issues may limit how
much technical benefits materialize as benefits to business.

• “If we think what kind of an organization requires inter-operator and
geographic spread, [..] we’re talking medium to large organization. At
this size, you have to look at juridical issues. [..] If you have some admin
data, does it go outside the EU. Do we have DPA agreements [data
processing agreements] in order. What SLA [service level agreement] do
they offer. Because our own firm’s security police mandates that we need
a certain level SLA. [. . .] For a big [enterprise] it could be easiest to say
that let’s pick this large operator with activities on multiple geographic
areas.”

• We’re bound by the certificates required to operate in our line of business.

The use of Hidden Master architecture could be affected by legal considerations.
Two respondents noted that this level of security might raise political issues
depending on the market and jurisdiction.

• “[Using the Hidden Master security model] you can take [slave nodes
and courier nodes] to Russia and China, without having to worry about
serious trouble. But in China, you could have some regulatory problems.
China has its own laws on crypto. [..] So certain kind of data must use
mandated crypto algorithms. So if you take the Hidden Master to a
market like China, you might need to be able to change what crypto is
provided.”

• Local regulation (e.g. China) might forbid the use of the level of security
provided by HM implementation.

5.4.4 Theme three: Technology

Using configuration management in support of business must also happen on
practical level. Thus, it is not surprising that there were many comments on
tools. As respondents were asked beforehand not to divulge information that

192

would undermine their security monitoring or incident response capabilities, it
is likely that some tools or configurations are not mentioned here.

5.4.4.1 Challenges of Current Tools Tools made for specific platform
or ecosystem were found to be convenient, as long as you worked within the
confinement on that platform. As noted in the discussion on supply chain,
lock-in is often a price paid for building operations around these tools. Regular
configuration management tools can support offensive cyber operations.

• Using Microsoft tools simplifies the integration and user experience in
Microsoft environment

• Terraform is high level and simple to start
• For offensive scenarios, popular tools such as Cobalt Strike and Empire

greatly enhance attacker capabilities. Traditional tools, such as Terraform
and Ansible, can be used for building redundant infrastructure for attacks.

Lack of features in current tool used by the companies of the interviewees
could be seen as a practical matter. However, one could raise the question if
these gaps are indicative of some larger challenge faced by the current level of
configuration management tools. One respondent included offensive C2 tools as
part of configuration management, and interestingly found a common challenge:
skill gap.

• Verifying provisioning: should one trust it when CM tool claims configu-
ration is done?

• It is very easy (and fast) to make errors that affect production. Code
review could help here.

• For offensive operations, Cobalt and Empire are both fingerprinted in AV
and EDR. Obfuscating them requires expertise from the attacking team.
Some expensive products provide better evasion.

• Identifying manual (non-IaC) configuration on managed hosts is currently
difficult.

5.4.4.2 Hidden Master Key Management and Cryptography Re-
spondents found the Hidden Master architecture scalable, resilient and secure.
Key management was found to be a crucial factor in the security of the model.
One interviewee also verified that multiple couriers and drops can be used, and
this was indeed the case.

• This will improve availability and resiliency.
• Only the master needs to be trusted here.
• This obviously scales really well.
• HM has minimal dependency on network connections.

193

• Security (of the architecture) is really impressive.
• Key management and key life cycle are very important in the security of

this model.
• The choice of PGP could allow for dual control, requirement of crypto-

graphic signature from two persons. Also, PGP keys could be placed in
the HSM (hardware security module).

• When deploying IoT devices to clients, the devices must be identified
and recorded, and keys exchanged. [Interviewee requested and got a
recap of HM key management.] Key management used here reduces and
automates this work, but some parts will require a decision from a human.

Security was found to be a key benefit of HM. One respondent emphasized
the novelty of this model and found it a definitive security improvement. It
could be assumed that when the respondent says an attack is “impossible”, he
implies that it is not feasible to attack the master using an approach similar to
that used for attacking traditional configuration management infrastructure, as
obviously no real life system is completely invulnerable. Based on respondents’
comments on key management, it could be thought that the high level of
protection for the master’s secret key moved the main attack surface to other
areas of the organization, such as personnel and key management.

• I’ve never considered HM architecture before, but it makes sense. It’s
practically impossible to attack the master.

• Key management, key life cycle, policies and training of personnel will
affect the security on this system.

• Security of HM is really impressive.
• For small organizations without 24/7 monitoring and incident response

capabilities, HM can create major benefits.

5.4.4.3 Comparisons and Analogies of the Hidden Master Conftero
(the research prototype) and the Hidden Master architecture was compared to
some other systems.

• There some similar challenges in payment terminal key management.
• Kubernetes and related container technologies could bring in a higher

level of abstraction.
• This has similar structure to a C2 attack infrastructure, which is used in

offensive operations for protecting the master. Owned machines beacon
to the master through intermediate hosts. For active hosts, it might be
5-10 seconds. For backups, it might be one DNS query per month.

• This (HM) architecture differs from popular C2 tools in that there is no
requirement for the master to stay online. Popular offensive C2 tools

194

(e.g. Cobal Strike, Empire) still require the master to stay online. There
have been cases published in the media where real, criminal attackers
have taken over the network using the tools deployed by pentesters or a
red team.

• Predefined keys and phone-home addresses are used in Tinker Canary
which is a honeypot that phones home through DNS.

5.4.4.4 Maturity of the Hidden Master prototype For wide produc-
tion use in real life organizations, a mature product is needed. Even though it
is obvious (and explicitly mentioned in the interview preamble) that a software
prototype cannot meet this bar, some ideas for developing Conftero towards
maturity were given.

• For real-life production, more documentation is needed.
• Integration and standardization of the demonstrated software is necessary

for wide adoption.
• I hope this considers all other applications requiring Apache web server.
• Could hasChanges() be used by an attacker to create an unwanted opera-

tion? I cannot come up with a concrete idea right away.
• We use cloud provider specific tools a lot.
• This would not work if the slave was read-only.
• How to productize this, how to make this tool interesting for marketing?
• Will this be released as open source / Free software? Please inform me

when you publish it.
• Areas I’d consider if auditing the security: code quality; key management;

scenarios when master or an agent is taken over by the adversary.
• It might be difficult to replace existing, already deployed CM products.
• The code of the research prototype is not likely to meet the quality of

established products.

5.4.4.5 Defining Configuration Most comments on defining configuration
concentrated on the ease of learning, and are discussed under “Administration”
theme. Technical comments on the syntax were

• Conftero syntax is so simple that Notepad (a simple plain text editor)
would be enough. IDE features would not be needed.

• GPL is used for a limited scope configuration in AWS Cloud Development
Kit.

• If hasChanges() really works, it is a big improvement compared to previous
dependency models.

195

5.4.5 Likert Scale Questions

The semi-structured interviews were mostly qualitative in nature, and claims in
the questionnaire worked mostly as prompts for free form answers. However, as
also Likert scale answers were collected, some statistics can be calculated. The
main emphasis should be given to thematic analyses above. The questionnaire
included 14 questions using Likert scale, from 1 (“Not at all”) to 5 (“Extremely
well”).

All interviewees found HM could reduce costs, improve security and improve
resiliency in multiple ways. This is in line with comments respondents gave
during and immediately after the demonstration - before seeing the closed
questions.

Interviewees found multiple business benefits for HM. Interviewees agreed or
strongly agreed on all eight claims on the HM business benefits, with a single
exception of inter-operator scaling in one answer. Three respondents pointed
out that they already use inter-operator or geographical redundancy or scaling
to some extent. Two respondents said redundancy of networks and providers
is an important part of their operations. All three found HM architecture
to provide possible cost and security benefits for this redundancy. Summary
numerical Likert scale answers to HM questions is table 62.

Inter-operator scaling means renting server capacity from multiple cloud
providers, thus reducing supply chain risk from a single operator. A sin-
gle cloud provider carries with it risks that do not need to affect the whole
market, such as financial difficulties or suspending a customer for political or
PR reasons. While other interviewees found that HM can improve resiliency
and reduce cost with inter-operator scaling, one respondent found it dependent
on the specifics of the company. In his case, company policy requires thorough
evaluation, service level agreement, compatible security policies and other
agreements to accept a new cloud provider for production systems.

Obviously one could claim that this level of scrutiny for the untrusted inter-
mediate hosts is made redundant by the security model of HM. After all, the
intermediate courier/drop servers are not trusted, do not have the keys read or
modify messages on the HM network and do not even form a single point of
failure as there can be redundant drops and couriers. Nevertheless, as these
policies are partly the result of certificates mandated for those wishing to
operate in the payment card industry, it is not necessarily trivial to change
the resulting policies. Another respondent considered the use of redundant
providers an essential part of ensuring availability of IT systems, and thus had
it implemented on multiple levels. However, he found it likely that HM would

196

provide cost reductions.

Table 62: Recognized business benefits of the Hidden
Master architecture

Benefit 1 2 3 4 5

- Reduce cost of protecting
configuration management system

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Improve security by better
protecting master secret keys

⬩ ⬩ ⬩ ⬩ ⬩

⬩

- Reduce cost of scaling by leveraging
file serving capabilities of commodity
web servers

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Improve resiliency against network
problems with efficient geographic
scaling

⬩ ⬩ ⬩ ⬩ ⬩

⬩

- Improve resiliency and reduce costs
with inter-operator scaling

⬩ ⬩ ⬩ ⬩ ⬩

⬩

- Reduce cost to both sending and
receiving organization when
deploying new machines and IoT
devices

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Reduce cost and risk when
preparing to deploy unknown number
of machines or IoT devices

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Reduce relative cost and risk of
running configuration management
system in small networks

⬩ ⬩ ⬩ ⬩ ⬩

⬩

All respondents found that the language and the models could improve time-to-
market and increase developer productivity. Respondents mostly agreed that
this could also save costs in multiple areas and reduce supply chain dependency.
Respondents disagreed on whether these improvements could reduce resistance
to DevOps.

Language and the dependency models were considered very simple and easy to
understand. This was a design goal for using idempotent - imperative general
purpose language. It was also a goal for a simplified dependency model between
user defined dependencies. To make it feasible to implement the prototype
and perform limited testing in production environments, another dependency
model was created for implementing the language. It is possible that this has

197

contributed to the easiness of the language.

Conftero allows the operator to use a general purpose programming language
to define configuration on agents. In the research prototype, configuration
language is a dialect of Python. Idempotency is achieved by defining idempotent
functions for essential configuration features, such as files, packages and users.
This is in contrast with industry leading solutions, such as Puppet, Salt and
Ansible, that require the user to learn and implement configuration in their
own language that is not used anywhere else.

To further simplify the language, Conftero allows dependencies to be defined
using a single dependency type, hasChanges(). To make the implementation of
the language and the tool possible, key idempotent functions were identified
and implemented. This is in contrast to industry leading tools, that provide
their own DSL with multiple dependency models and sometimes even rede-
fine programming concepts to have an unexpected meaning (e.g. a “class” in
Puppet).

These improvements were expected to make the system easier to learn, use and
debug. Further, it was expected that this would reduce risk, allow faster time
to market and reduce costs.

All interviewees found these features likely to provide these benefits, and they
agreed with all claims in this section. The recognized business benefits of
idempotent general purpose language and simplified resource models are in
table 63.

Table 63: Recognized business benefits of idempotent
general purpose language and simplified resource models

Benefit 1 2 3 4 5

- Save costs in new employee orientation to
systems.

⬩ ⬩ ⬩ ⬩

⬩

⬩

- Faster time to market by leveraging
existing skills

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Reduce resistance to DevOps change by
allowing programmers to use familiar
languages and patterns

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Save cost of errors when debugging
dependencies

⬩ ⬩ ⬩ ⬩ ⬩ ⬩

- Increase developer productivity by
leveraging existing tool support, such as
syntax highlighting

⬩ ⬩ ⬩ ⬩ ⬩

⬩

198

Benefit 1 2 3 4 5

- Reduce risk from supply chain dependency ⬩ ⬩ ⬩ ⬩ ⬩ ⬩

To compare similarity of answers to each questions, correlation was calculated.
For the purposes of correlation, Likert scale data was considered ordinal, as
the responses have a clear rank order, but distance between different options is
not necessarily the same. Thus, Spearman rank correlation was chosen as the
correlation measure. The significance level was chosen to be p < 0.05.

The data was converted to numeric format, and Spearman correlations and p
values were calculated for each question against all other questions. This was
done using spearmanr function from scipy.stats Python library.

Correlation analyses indicated that many questions were correlated at chosen
significance level. Total 91 pairs were compared. Out of those, 34 pairs were
correlated at the chosen significance level. Correlations are listed in Appendix:
Correlation Matrix for Likert Scale Interview Questions.

Questions with answers were clustered using hierarchical clustering. Clusters
were built bottom-up, using agglomerative clustering based on distance map
created using Spearman correlation. The number of clusters, three, was chosen
by experimenting with small number of clusters and excluding one single item
cluster. Clustering was done using from Scikit-learn library in Python, using
AgglomerativeClustering function. Spearman correlation and distance matrix
were calculated with functions from Python Pandas library.

Clustering ended up with the following three clusters. Names for the clusters
were chosen by the author based on repeating themes in the questions. For
cluster 3, there was no obvious connecting factor despite statistical similarity.

Cluster 1 - Personnel

• i Save costs in new employee orientation to systems.
• k Reduce resistance to DevOps change by allowing programmers to use

familiar languages and patterns

Cluster 2 - Risk and cost

• a Reduce cost of protecting configuration management system
• c Reduce cost of scaling by leveraging file serving capabilities of commodity

web servers
• e Improve resiliency and reduce costs with inter-operator scaling
• f Reduce cost to both sending and receiving organization when deploying

new machines and IoT devices

199

• g Reduce cost and risk when preparing to deploy unknown number of
machines or IoT devices

• l Save cost of errors when debugging dependencies
• n Reduce risk from supply chain dependency

Cluster 3

• b Improve security by better protecting master secret keys
• d Improve resiliency against network problems with efficient geographic

scaling
• h Reduce relative cost and risk of running configuration management

system in small networks
• j Faster time to market by leveraging existing skills

200

6 Conclusion

Tempted by illegal financial gains, criminals can operate large malware networks
in hostile conditions. Despite the efforts of incident responders, security re-
searchers, system operators and their tools, illegal profits from cybercrime offer
incentives for criminals. When caught, criminals could face serious challenges.
On one hand, the progress of malware and its command and control channels
have improved in the face of adversity. On the other hand, the incentive
of financial criminal profits has motivated criminals to continuously improve
their methods. This research looked at taking and implementing some of their
methods for the benign and legitimate control of companies’ own computers.

This work contributed multiple improvements to configuration management
systems. These contributions were based on the work done developing the
stage model for comparing malware and configuration management systems.
The improvements were designed and developed into two functional prototypes
that were validated using multiple methods. Laboratory testing was used to
evaluate their technical qualities and compare them to chosen leading tools in
the industry. Case studies validated the applicability of these techniques in a
realistic field environment.

Potential business benefits were identified and evaluated using individual
semistructured expert interviews. Respondents agreed that the models and the
Hidden Master architecture could reduce costs and risks, improve developer
productivity and allow faster time-to-market. Protection of master secret keys
and the reduced need for incident response were seen as key drivers for improved
security. Low-cost geographic scaling and leveraging file serving capabilities of
commodity servers were seen to improve scaling and resiliency. Respondents
identified jurisdictional legal limitations to encryption and requirements for
cloud operator auditing as factors potentially limiting full use of some concepts.

6.1 Hidden Master Architecture

The Hidden Master architecture is a key contribution of this work. Contrary
to how leading configuration management tools were implemented and what
was implied in configuration management research, it is possible to design a
topology where master and agent (slave) never form a direct connection. Leading
configuration management tools prefer a continuous or constantly repeating two-
way connection. In the Hidden Master architecture, both catalogs (downstream
from master to agents) and reports (upstream from agents to master) are
transfered as encrypted and signed files through untrusted intermediaries called
couriers and drops.

201

m

c

a1 a2

Figure 21: Downstream data flow in a simple Hidden Master architecture
network

Downstream data flow in the Hidden Master architecture is shown in fig. 21.
Master m only connects the network to upload encrypted and signed catalogs
to an untrusted intermediary host. This data is periodically pulled by agents
(slaves) a1 and a2.

The master private key is the most valuable piece of information among all
computers controlled by it. In a mature environment applying configuration
management and DevOps principles might include all computers and IoT
devices of an enterprise. The Hidden Master architecture protects the master
secret key better than industry leading solutions. Attack tree analysis shows
that this eliminates whole categories of vulnerabilities, namely those applying
common attack methods performed against servers.

The Hidden Master architecture protects the master’s secret keys by allowing
the system to operate while the master is not connected to the network. By
the use of campaign keys, it is also possible to provision new agent nodes to the
system without connecting the master to the network. Also the backchannel
(from agent to master) is asynchronous, allowing the master to collect status
information from agents for later analyses offline.

The Hidden Master architecture improves scalability even with single hosts
by utilizing the capabilities of exising, purpose built servers for distributing
static files. In a laboratory test, a limited RAM host with Conftero (advanced
prototype) could deliver instructions to 20 times more agents than Salt, while
Puppet failed to start in these conditions. Puppet and Salt are among the
leading tools in the industry. For the advanced prototype, the agents pull
configuration from a regular web server Apache, which is very good for serving
static files. The load in other parts, master and slave, is not affected by the

202

size of the network.

In the Hidden Master architecture, the intermediate hosts (couriers and drops)
do not have any encryption keys, so they do not need to be trusted. This allows
for cheap geographic and inter-operator scaling. Even though the use of a web
server makes single Conftero drop and courier highly scalable, they can scale
further by adding these intermediate nodes and allowing agents to connect to
them randomly.

The Hidden Master architecture was used in two case studies. In both cases,
the the architecture showed promise in simplifying the network architecture
and making it safer.

In the first smaller study involving a computer exercise evaluation, 23 students
worked on their own VMs running on their own computer systems, running
various versions of Ubuntu and Debian Linux. This resulted in multiple NAT
situations, where none of the master or agent (slave) nodes on the network had
public IP addresses, and most of the VMs were behind two NATs. The ability
to deploy the intermediate host (courier/drop) into an untrusted cloud made it
much simpler to protect the keys. The exercise was delivered through Conftero,
and the information to evaluate the work was collected through Conftero too.
Due to the asynchronous nature of Conftero, it was possible to evaluate the
work even after the machines themselves were deleted.

The larger main case study involved a small Finnish company providing smart
building technology. The company provided their own IoT platform with AI
prediction. At the time of the study, Company X was well established in
Finland and at the time of finishing this work, it had already expanded to
foreign markets. The case study was performed by configuring and deploying a
complex AV system to Client Y, a large university and a client of Company
X. Deployment was performed by a junior operator of Company X who was
observed and advised by the researcher.

It was found that the Hidden Master architecture could make it much faster to
initially deploy devices to clients, as network and firewall configuration would
not be needed. However, as Conftero was still a prototype, this was seen as
too risky. It could also be expected that gaining the benefit of fast deployment
might only be possible once the client security policy allows these type of
deployments.

6.2 Improvements for Idempotent IaC

Key features of modern configuration management are idempotency and in-
frastructure as code. Idempotency means that only the target end state of the

203

system is defined. The configuration management tool only performs changes
when they are needed. Eventually, the system should end up in a harmonious
state where no changes are made. At this point, applying the same configura-
tion again results in no changes. Infrastructure as code (IaC) simply means
that the target state is written as plain text.

Leading tools in the industry use languages only used in each specific tool,
invented only for this particular purpose. These are domain specific languages
(DSL). In particular, they invent their own unique methods of dependencies
and flow control. Sometimes industry leading solutions redefine common
programming words (e.g. “class” in Puppet) or use highly unorthodox methods
for flow control, such as Salt using Jinja templates to generate code for “for”
loops. These tools also provide a large number (from one hundred to over 500)
of predefined functions.

The improvements to agent configuration are:

• The use of imperative general purpose programming language for defining
idempotent infrastructure-as-code configuration

• A base resource model to simplify building infrastructure as code defini-
tions and languages

• A simplified hasChanges model for resource revalidation when applying
configuration on agent.

Normal programming languages, such as Python or C, are imperative. They
perform commands in top-down order, unless flow is diverted with flow control
structures such as “if-else” or “for”. This type of flow control is similar between
different programming languages. These languages are general purpose lan-
guages (GPL), as they can be used for a wide variety of tasks and in ways not
yet invented by the developers and inventors of these languages.

The large amount of code in and the number of functions provided by the
industry leading systems might make it seem that developing a language
for configuration management is an expensive endeavor. The requirement of
idempotency might make it seem like a regular imperative GPL could not be
idempotent.

This work contributes a base resource model. Based on analyzing real life
configuration, it was seen that a small number of functions and control struc-
tures cover most of the code. For both Mozilla Engineering and the United
States Government Configuration Baseline, the top five cover nearly 60% of
all commands and flow control structures. Further analysis showed that rarely
used commands or resources could be defined from a limited number of base
resources.

204

if hasChanges()

service

file, dir, symlinkexec

package user, group

if not exists

Figure 22: Dependencies in configuration management functions

This led to the base resource model (fig. 22). Idempotent configuration requires
defining the base resources in a way that is idempotent. The base resource
model shows how an idempotent IaC can be created by defining four lower
level base resources and two control structures. Four more resources are then
created based on these lower level resources. The higher layer of resources
can be defined in a higher level language, as was later shown in the advanced
prototype language design and implementation.

In the base resource model, the configuration management system provides
idempotent definitions for file system related resources (file, directory, symbolic
link, exists()) and resource revalidation with hasChanges(). In the prototype,
these were implemented in a lower level Go language, and compiled statically
into Conftero binaries. Higher level concepts of service, package and user
management were then implemented using these lower level resources. In
the prototype, these higher level concepts were implemented with the same
Python-dialect high level language used by the operator of this system.

When a part of a configuration changes, other resources often need to be
revalidated. For example, a very simple configuration for a web server might
need a package (the software installed), a configuration file and to keep the
daemon (the server application) running. When the package is updated or a
configuration file changes, the daemon needs to be restarted for these changes to
take effect properly. Industry leading tools provide multiple, unique and some-
times complex methods for defining inter-resource dependencies for different
situations.

This work contributes a simplified hasChanges() resource revalidation model.
If any earlier part of the configuration in a module has changes, function
hasChanges returns True. This information is then used to revalidate resources.
The use of hasChanges() makes IaC code shorter compared to the industry
leading tools. By solving the specific dependency challenge of IaC, hasChanges()
then allows familiar flow control from regular programming languages to be
used in other situations.

The ideas identified and proven in malware led to the Hidden Master architecture

205

and multiple improvements in designing configuration.

The contributions relating to improvements in the idempotent IaC configura-
tion emerged as part of answering multiple research questions and completing
multiple objectives. Similar to the approach for the Hidden Master architecture,
a stage model (RQ1, OBJ2) was used for identifying adaptable techniques
(RQ2, OBJ1) and developed into key concepts for the configuration manage-
ment tool (OBJ3) and into two functional prototypes (RQ4, OBJ4). Some
of the improvements to IaC could be seen as emerging from the design. In
addition to inspiration from malware, the improvements to idempotent agent
configuration (RQ3) have partly emerged in the design and literature review
phases. The prototypes and the concepts implemented in them were validated
using laboratory testing (OBJ5), attack tree analysis (RQ5), case studies (RQ6,
OBJ6) and semi-structured expert interviews to identify potential business
benefits (RQ7, OBJ6). The research questions and objectives are listed in
table 1.

6.3 Design and Prototype

Following a constructive approach - also known as design science - two proto-
types were designed and implemented. These prototypes allowed the validation
of the models and the new Hidden Master architecture. The validation included
laboratory testing in simulated and emulated environments, two case studies
and six individual semistructured expert interviews.

The design and implementation of a functional prototype is a contribution
of this work. Both the process and the products (the prototypes) are part
of the design and can help build knowledge. Two prototypes were built: a
trivial prototype to test the feasibility of the Hidden Master architecture, and
an advanced prototype that was used as the basis of the case studies and
demonstrations for the expert interviews. The advanced prototype, Conftero,
is a five thousand line program written in Go. Conftero implements the key
contributions described earlier: the Hidden Master architecture, the imperative
GPL for idempotent IaC, the hasChanges() resource revalidation model, and
the base resource dependency model.

Design goals of the advanced prototype Conftero were, in addition to imple-
menting the mentioned contributions:

• Protecting the master secret key
• Improving the network and geographical dispersion
• Decoupling subsystems.

The use of the Hidden Master architecture gave up on the requirement of

206

a direct two-way master-agent connection. By treating both upstream and
downstream communication as individual encrypted files, it was possible form
a clear and simple layer architecture as shown in table 64. Each layer can only
communicate to the layer directly above or below it. Only the transfer layer
can communicate between computers. This layer architecture made it possible
to use an existing cryptosystem and to swap the transfer layer, both of which
were done during this work.

The intermediate node plays an important role in the Hidden Master archi-
tecture. Other nodes are expected to be down for extended periods of time.
For high security, the master could be shut down or disconnected from the
Internet when not uploading new instructions or collecting agent reports. This
makes it impossible to obtain master secret keys using traditional network based
attacks at the tempting moment when the master is not being used and incident
response might be unavailable or seriously delayed. It is expected that one of
the courier/drop nodes is available most of the time in the network. Compared
to industry leading solutions, renting cloud capacity for the intermediate nodes
(instead of master nodes) is cheap and safe, as these nodes do not participate
in the encryption layer and have no keys required to decrypt or modify the
encrypted catalogs.

Table 64: Matrix of subsystems and components

Layers/SubsystemsMaster Courier/Drop Slave

Configuration Define
configuration

n/a Apply
configuration

Encryption Encrypt & sign n/a Decrypt & verify
Transfer Upload to mule Serve enc. catalog Download

Even though the use of layer architectures is common in design, the actual
decoupling of layers is not always easy to achieve. In laboratory testing,
it was shown that the transport layer of Conftero could be easily changed.
The SSH and HTTP based transport was changed to peer-to-peer (P2P)
transport, making it possible to operate in conditions without upstream Internet
connectivity and no preplanned network topology. As the transfer layer does
not contain any encryption keys and is completely untrusted, it was possible to
use the existing P2P application Syncthing without modifications.

Even though many programmers know not to “roll their own crypto”, imple-
mentation mistakes still make many cryptosystems vulnerable, as was shown
with examples from malware CC. To combat these challenges, Conftero used
a whole existing crypto system in addition to proven encryption algorithms.

207

OpenPGP standard offered an efficient public key crypto system with widely
used processes for key management and verification. It was chosen as the basis
of Conftero encryption layer. Expert interviews indicated that in addition to
security, this could provide functional benefits. For example, PGP might make
it possible and cryptographically secure to require signatures from two persons
to allow changes to high value systems.

Backchannel from agents to master is part of the Hidden Master architecture.
It was included in the implementation due to requirements and feedback from
the case studies performed. Backchannel allows agents to send reports of
configuration success and their state to the master, using the same security
mechanisms that Conftero uses for downstream transfer.

Campaign keys allow secure configuration of an unspecified number of future
agents. A company might need to configure a lot of similar computers continu-
ously, but at unpredictable times and in unpredictable numbers. For example,
new IoT devices are provisioned and deployed when a customer makes a re-
quest; or when automation provisions new virtual hosts as the load increases.
Agent software can be installed during provisioning (operating system install
or imaging), but it might require a human to validate the correctness of the
keys - a tedious and error-prone operation. In Conftero, pre-generated agent
binaries contain the campaign public key and initial configuration. To later
address individual agents, an agent key pair is generated on the first launch and
communicated to the master using the encrypted backchannel. This transfer is
encrypted using the public key of the master.

The advanced prototype, Conftero, was developed in Go. The application
itself can be delivered as a single, statically linked (linked against glib) binary.
A single ‘cct’ binary can generate all other parts without any dependencies.
The core code is approximately 4000 lines of pure Go, excluding third-party
libraries. The imperative general purpose language for idempotent configuration
is Starlark, a Python dialect. It is built into Conftero and does not depend
on any external software. Following the base dependency model, the base
resources are implemented at a lower level in Go. The higher level resources
are implemented in the Python dialect. The simplified model for defining
inter-resource dependencies, hasChanges, is also implemented in the higher
level Python dialect. The transport layer is implemented using built in support
for HTTP and SSH. Encryption uses OpenPGP, with built in support from
standard libraries.

The advanced prototype implemented the novel concepts contributed by this
work: the Hidden Master architecture, the hasChanges revalidation model and
the base dependency model. Some additional features implemented in Conftero

208

include:

• Cross compilation for Linux, Windows and OSX using Go builtin cross
compilation for pure Go programs. Only Linux support is currently
implemented in the base resources.

• Static compilation which made it very easy to work in varying Linux
distributions and environments. For maximum compatibility, the latest
versions are linked against the four libraries that provide maximum
compatibility.

• Live update of agent binary.

The prototype is the artifact, the construct created in the constructive research
approach. In constructive research and design science, all of the design process,
the construct and the validation can contribute to knowledge. The design of
the prototype showed that the novel concepts work together and can be put
into practice. Development of the advanced prototype included validation in a
laboratory testing, in the field in two case studies and in its demonstration to
expert interviewees.

6.4 Laboratory Testing

The Hidden Master architecture was validated using attack tree analysis,
laboratory testing, two case studies in the field and semistructured expert
interviews.

Laboratory testing used simulated and emulated environments to test the
configuration management tools in various network topologies, load levels
and adverse conditions. Most tests used fully virtualized computers in their
own virtual IP network. Tested applications were the two prototypes, chosen
industry leading tools and in some cases standard tools for the same protocols.
These tools were tested both individually and in comparison.

A simple prototype, using a short script and an existing configuration man-
agement tool, was tested in optimal conditions. It showed that the approach
is feasible in practice. A ready-made configuration was encrypted using PGP,
then moved downstream to the agent, decrypted and applied.

The advanced prototype, Conftero, was tested in optimal conditions. As
Conftero is a stand-alone tool implementing all features necessary for IaC
configuration management, the test involved setting up the Hidden Master
infrastructure, generating and handling the keys, synchronizing catalogs, au-
tomatically applying changes and reporting back. This test showed that the
advanced prototype works in regular conditions. The prototype itself showed
that it is possible to implement the novel contributions of this work, and to

209

indeed build such an application with the limited resources available.

Load testing indicated that the Hidden Master approach is highly scalable. The
use of commodity web servers as the standard transport made even a single node
highly scalable. In load testing, the Conftero based system was able to serve 10
000 agents with small configuration-only catalogs, and more than 1000 agents
when delivering large binaries through the Conftero transport layer (both tests
with a host limited to 1 GB RAM). As the Hidden Master architecture removes
the requirement for two-way interactive and direct master-agent connection,
it allows one to easily swap the transport layer. The default transport uses
commodity web servers, which are highly optimized for serving static files, so
the high scalability of a single courier/drop could be expected.

Scaling with a single node is only one way to scale in the Hidden Master
architecture. By using multiple intermediate nodes (couriers/drops), and
allowing agents to choose randomly between them, the problem becomes
embarrassingly parallel. As the intermediate nodes are not trusted in the
Hidden Master architecture, there is no need to vet, audit or make those nodes
in-prem. Instead, cheap virtual services can be rented from multiple cloud
operators, networks and different geographical areas, further reducing the risk
related to each of these.

In low memory conditions (512 MB RAM), the Conftero based system fared
much better than the alternatives. Compared to industry leading tools, Conftero
could serve downstream 20 times more clients than Salt. Despite trying different
versions and configurations, starting Puppet was not successful in low memory
conditions. Similar to load testing, the significant benefits seem to come from
delegating the bottleneck to a tool optimized for this purpose, a commodity web
server. This is made possible by not delegating trust (or keys) to the courier or
drop, and the asynchronous nature of the Hidden Master architecture. As the
intermediate nodes (couriers/drops) are the only nodes that contact multiple
nodes, the load is not expected to affect the agent or master nodes.

Adverse network conditions can disrupt communications, and some network
problems can cause interference larger than the original problem. In this work,
adverse network conditions were simulated using Linux kernel module netem,
controlled by custom programs written by the researcher. The adverse network
conditions tested were packet drop, corruption, duplication and latency.

Confero was the most resilient of the tested configuration management tools
against packet loss and packet corruption. Latency, the time it takes for the
first bit to arrive, had a measurable but insignificant effect on the tested
configuration management tools in terms of their intended purpose. Packet

210

duplication had a negligible effect on the tools. Common networking tools
not designed for configuration management were highly resilient to all adverse
network conditions, and could outperform all configuration management tools
tested. This indicates there are probably well tested and easily available
methods for improving resiliency against adverse network conditions.

Peer to peer (P2P) operation allows each node to opportunistically exchange
data with any other node on the network. Use of P2P architectures could
allow operation when more common centralized, top-down network topology
is not available. Such a scenario might rise from the disruption of a local ISP
or cell phone network, or simply a blackout. Even though these events are
often outside the control of organization requiring configuration management,
their own computers might still be running using UPS, laptop batteries or the
backup power of a local building.

Industry leading configuration management tools require direct two-way master-
agent connection. Thus, they cannot work in P2P fashion. The Hidden Master
architecture in Conftero removes this limitation and allows for better decoupling
between layers. Thus, it was simple to swap the transport layer to use an
external P2P tool.

Implementing a P2P application is not a trivial matter. In the Hidden Master
architecture, the transport layer is not trusted. The transport layer does not
handle any keys, and thus cannot manipulate or read manifests. Replay attack
is prevented by versioning the catalogs with a monotonously growing counter
inside the encrypted catalog. The transport layer can only see the metadata of
traffic, such as the size and host identifiers. The P2P transport was created by
outputting encrypted files downstream from Conftero, then transferring them
using Syncthing P2P application. Only downstream transfer from the master
to the agent was implemented and tested in this experiment.

Unlike industry leading configuration management tools, Conftero could operate
in a shattered network where centralized and permanent topology was not
available. In the simple scenario, agent nodes could transfer encrypted catalogs
to each other even when the master was not available.

Air gapped networks are not connected to the Internet at all. However, some
way for transferring software to those networks was required so that they
could operate at all. As an implementation of the Hidden Master architecture,
Conftero can communicate by asynchronously transferring files. In this scenario,
files were successfully transferred using a simulated USB storage. The results
indicated that the transfer could also be operated by a partially trusted person
without access to the user interface of neither the master nor the agent.

211

6.5 Case Studies

Two case studies validated the benefits of the Hidden Master architecture,
dependency model, resource re-evaluation model, idempotent imperative general
purpose language and the related prototype in a realistic field environment.
Case studies answered research question six: “What utility do the models and
the research prototype provide when run in a field environment with business
requirements?”

The first smaller case study used the advanced prototype Conftero for a
computer exercise evaluation. All computers were behind NAT (network
address translation), and used an untrusted cloud host to communicate. Some
hosts were NAT’ted multiple times. The evaluation had to be performed after
the computers (agents) were deleted with their contents. All tested computers
were run by different operators, and they ran various Linux distributions.

Conftero could bypass multiple NAT using the the Hidden Master architecture.
It operated in various distributions chosen by the candidates, except on 32-bit
computer as such binaries had not been compiled. Due to its idempotent,
imperative general purpose language, it was easy to adapt it to the requirement
of monitoring and collecting data from agents, including opportunistic and
automatic use of tools some candidates had installed. Installation of the agent
appeared to be easy with tree point instructions. The first case study indicated
that the prototype and the related features are easily adaptable to changing
conditions and require minimal infrastructure to run without exposing master
private keys to cloud operators.

The larger case study tested the prototype and related contributions in a
complex environment. It involved two external organizations with their own
requirements and policies. As the case involved working with established organi-
zations, many existing tools, solutions and security policies created interesting
demands and requirements for the deployment of new configuration manage-
ment tool. In this study, an advanced multiroom AV solution was deployed in
the premises of a large university, a client of Company X. The complex AV so-
lution involved time limited mobile authentication, monitoring and automation.
The implementation used interdependent containerized images.

The idempotent, imperative general purpose language showed promise for
configuration management. Despite the very limited number of base resources
as dictated by the base resource dependency model, a contribution of this work,
the language proved powerful and adaptable. In the case study, a junior system
operator with limited programming experience could quickly learn and use the
language. It was possible to solve challenges that were completely unexpected

212

when the language and prototype were designed, namely that of controlling
interdependent containers using a tool never seen by the author before. The
use of regular flow control and structuring features of a regular programming
language, such as functions, showed initial promise of simplifying abstraction
in configuration management.

The Hidden Master architecture could solve multiple challenges faced by the
case organization. An interesting area would be the automatic provisioning of
IoT system images so that error prone and tedious manual key verification would
not be needed. This could be an area of future research. When deploying new
systems to external organizations, the Hidden Master architecture would allow
remote access even without configuring networks and VPNs in both sending
and receiving organizations. As the research prototype was not yet mature or
security audited, additional security measures were used in production networks
and such deployment was not tested in the larger case study.

In the spirit of constructive research / a design science approach, the case
studies showed that a prototype implementing the contributions can indeed
be created. In addition to providing end user benefits of their own, some
contributions greatly reduced the burden of creating the prototype. The use
of idempotent, imperative general purpose language could simplify and speed
up learning and operating the system. But it also allowed the prototype to
implement most of the language using an existing dialect of Python, and
embedded Starlark interpreter. The base dependency model makes the basic
configuration management system simpler to understand. But it also meant that
only approximately ten base resources were needed. The hasChanges resource
re-evaluation model meant that, unlike with industry leading configuration
management systems, there was just a single type of dependency to implement.
The use of standard programming language concepts (functions, if-else, for)
greatly simplified both the implementation and explanation of the system. This
is also an area that has shown itself as challenging to implement to DSLs
(domain specific languages) as an afterthought, as shown by the use of Jinja
templated code generation to implement loops in the industry leading tool Salt.

Some technical decisions in the prototype proved useful. Distributing the
whole system as a single static (libc-linked) binary and allowing the master to
work in any directory made multiple security realms and version control easy.
Static linking made it simple to adapt to unexpected and changing execution
environments. The bigger case organization turned out to have an environment
where both policies and technical solutions made it complicated to install
additional packages. A minor downside of static linking was the use of Python
dialect instead of full actual Python, and the use of built-in SSH for initial

213

deployment.

The two case studies answered RQ6 and completed OBJ6. The case studies
validated the concepts from RQ1-RQ4 (OBJ1-OBJ4). They helped guide the
questions in the semi-structured expert interviews (RQ7, OBJ7). The research
questions and objectives are listed in table 1.

6.6 Expert Interviews

The effect of organizational, contractual and legal factors was an interesting
finding in the interviews. These non-technical matters limit the benefits
provided by technology, both for existing solutions and the Hidden Master
architecture. Some of these challenges might only be visible once the problems
of manual work have been solved with configuration management systems.

Three themes raised from expert interviews:

• Administrative (non-technical)
• External factors (law, contracts, inter-organizational)
• Technology

Thematic analysis showed that non-technological aspects are interlinked with
technology, and affect the benefit available from technology. In this regard, these
themes bear some similarity to thematic analysis on DevSecOps publications
by Rajapakse et al. (2022). Their four categories (people, practices, tools and
infrastructure) also link technology with people and organizations.

Many administrative and external factors limit the benefit of configuration
management systems. The systems are getting more complex. Advanced tooling
requires more tooling. Integration challenges are created not only trough legacy
systems but also due to limited scope of some systems. Combined with the
temptation to scale systems to full potential of these tools and the resulting
need for higher levels of abstraction, there is a risk of skill gap.

You might need less employees, but they need to be more skillful. Configuration
management tools could help to retain these skilful workes, as the reduction of
repetitive and tedious tasks makes the work more interesting.

The challenges faced by organizations embracing configuration management
seem to only emerge after the previous level of challenges have been solved.
Experts pointing out the adminstrative and external challenges are generally
happy with the speed and productivity provided by CM, but seem to be looking
for the next level of benefit from these tools.

The Hidden Master architecture and the prototype have to operate in this
environment. Contracts, certificates and policies might limit or slow down

214

extracting the benefit provided by technology. For example, a policy requiring
throughout, expensive audit or a new cloud provider could limit the use of
inter-operator scaling provided by the Hidden Master. The advanced key
management and encryption of HM could be limited by law in some markets,
such as Russia or China.

Configuration management systems were found to speed up operations, in good
and bad. Mistakes in repeating manual work were reduced, but any mistake
happening with configuration management would be quickly deployed to large
number of machines. The Hidden Master architecture was found to be very
secure, but the model itself cannot remove all risk. Human factors would still
provide an avenue of attack. The use of PGP keys would make it possible to
reduce physical and human risk by using hardware security modules and by
requiring two signatures.

All respondents agreed that the presented models and architecture could be
expected to reduce costs and risks, improve developer productivity and allow
faster time-to-market.

Interviewees found that the Hidden Master architecture and related contri-
butions could improve security, scalability and resiliency. As potential target
markets, most respondents identified embedded, rugged and IoT systems. Some
also mentioned offensive work, developing markets and small businesses. Key
management was found to be a crucial factor in the security of this architecture.

Technical immaturity of the prototype compared to existing, mature solutions
in the market and inertia in organzations were found to be the main challenges
for adoption of the software prototype.

Multiple respondents requested to be notified when the prototype and its source
code would be publicly released. They also requested it to be released under a
Free (FSF definition) license. Some expected that the HM architecture will be
copied by other CM tools once public. Respondents offered multiple ideas to
mature the work, such as the adding of integration points, documentation and
productization.

Interviewees agreed on the multiple potential business benefits of the HM
architecture. All respondents found that it could reduce costs and risks in
protecting the system, better protecting the master secret key, scaling by
leveraging the commodity web server file serving capabilities when running
in small networks, and deploying IoT devices across organizations, scaling
geographically.

All respondents found that the improvements to IaC could allow faster time-
to-market and increase developer productivity, thus providing direct business

215

benefits. All respondents found the language and resource models very simple,
easy to learn and understand which was one of the design goals of these systems.

6.7 Future Research

The Hidden Master architecture makes new transports both possible and cheap
to implement. More transports could be researched and made the subject
of experiment. Currently, many European countries are expecting electricity
blackouts. This emphasizes the need for resiliency and security for configuration
management systems, and could create demand for more research on peer-to-
peer transports.

Configuration management aims for stability and a steady pace. As the typical
use of configuration management tools does not require the speed of real time
two-way connection between a master and agent, it could make sense for mature
configuration management tools to implement the Hidden Master architecture.
Based on some initial experiments, this might require large changes in some
cases.

Configuration management should be simplified further. Complexity and
the need for highly skillful workers was mentioned in multiple interviews.
Complexity affects both the use and development of configuration management
tools. As seen with the base resource model, the hasChanges revalidation
model and the idempotent imperative general purpose language presented in
this work, simplification can achieve multiple seemingly conflicting goals of
simplifying development, improving ease of use and likely time-to-market - and
even make the tool more adaptable. It is possible that further simplification -
both in terms of concept and implementation - is possible. For example, maybe
the single resource revalidation with hasChanges could become fully automatic
in typical and uncomplicated cases.

The proliferation of Go-based malware was seen towards the end of this thesis.
The builtin cross platform compilation could make it easy to support different
platforms. The use of newer programming languages in malware can provide
new inspiration for configuration management.

The secret key of the master is the single most valuable file in the whole
network controlled by the configuration management. The use of PGP for
the cryptosystem would allow bringing advanced features of key management
to configuration management. Keys can be saved on hardware tokens, and
multiple signatures from different persons could be required for changes on key
infrastructure. Old catalogs are not needed, and in the advanced prototype
they are automatically discarded. Maybe forward security could be used to

216

deny their use from the adversary in case of any major advancement in breaking
cryptography.

Case studies and expert interviews in this study gave indications that imperative,
general purpose language for idempotent configuration is easy to learn and
debug. This could be studied further with multiple groups of configuration
management students, such as those the researcher is teaching.

As the prototype matures, it could be security audited and deployed to pro-
duction networks with less precautions, thus providing further validation and
feedback from the field. Maturing to real life use would shed more light on the
business benefits, which could then be more directly observed.

The approach taken by this thesis could be used for finding new concepts from
malware, even those that are developed in the future. Suitable concepts could
be identified using the stage model proposed in this work. These concepts could
be developed into a coherent tool using a design approach inspired by the one
described in this thesis. The design could be developed into a prototype and
validated using laboratory testing, case studies and expert interviews. Based
on the history of malware evolution, we can expect criminals to improve their
malware in the future and provide new ideas to apply to benign configuration
management.

217

Appendices

Appendix: Hidden Master Architecture Encryption
Demonstration

This is the simple proof of the concept prototype. The advanced prototype is
over 4000 source code lines of Go, and does not fit as an appendix.

README

Demonstrate *hidden master architecture* encryption operations
Copyright 2016 Tero Karvinen http://TeroKarvinen.com

'make' to run full demo.

stage/
master/ # the computer with trusted keys,

only temporarily on the internet
public/ # untrusted public web server
slave/ # slave to be configured

The end result is the configuration management system
creating /tmp/helloTero.txt.

Agent Catalog

#!/usr/bin/env pup

hello-slave.pp - These are the secret instructions to slave

file { "/tmp/helloTero.txt":
ensure => "present",
content=> "See you at TeroKarvinen.com!\n",

}

Makefile

Demonstrate *hidden master architecture* encryption operations

Copyright 2016 Tero Karvinen http://TeroKarvinen.com

all: clean build

clean:

218

@echo "## Cleaning up... ##"
new

rm -rf stage/ /tmp/helloTero.txt

build:
@echo "## Generating keypairs... ##"
./genkey.sh slave
./genkey.sh master

@echo "## Key exchange... ##"
gpg2 --homedir stage/slave/ --export --armor \

|gpg2 --homedir stage/master/ --import
gpg2 --homedir stage/master/ --export --armor \

|gpg2 --homedir stage/slave/ --import

@echo "## Publish encrypted catalog to untrusted server... ##"
mkdir -p stage/public/
cp -v hello-slave.pp stage/master/
gpg2 --homedir stage/master/ \

--sign --encrypt \
--recipient=slave@cct \
--trust-model always \
--armor \
--batch \
--output=stage/public/encrypted.asc \
stage/master/hello-slave.pp

@echo "## Download and decrypt catalog to slave... ##"
mkdir -p stage/slave/
gpg2 --homedir stage/slave/ \

--trust-model always \
--output stage/slave/hello-slave.pp \
--decrypt stage/public/encrypted.asc

puppet apply stage/slave/hello-slave.pp

@echo "## This file is the result of configuration management on slave: ##"
cat /tmp/helloTero.txt # make will fail if file does not exist

219

genkey.sh

#!/bin/bash

Generate GPG keypair

Copyright 2016 Tero Karvinen http://TeroKarvinen.com

sudo apt-get -y install rng-tools

if [-z $1]; then
echo "usage: genkey.sh NAME"
exit

fi

set -o verbose

NAME=$1
GPGHOME="stage/$NAME/"

mkdir -p $GPGHOME
chmod og-rwx $GPGHOME

gpg2 --homedir $GPGHOME --batch --gen-key << ENDINST
%echo Generating key for slave...
Key-Type: default
Key-Length: default
Subkey is required, or sign+encrypt fails with
"sign+encrypt failed: Unusable public key"
Subkey-Type: default
Subkey-Length: default
Name-Real: $NAME INSECURE test key
Name-Email: $NAME@cct
Expire-Date: 0
%no-protection # no passphrase
#%pubring slave.pub
#%secring slave.sec
%commit
%echo Done key generation.

ENDINST
gpg2 --homedir $GPGHOME --list-keys

echo "See you at TeroKarvinen.com"\

220

|gpg2 --homedir $GPGHOME --sign --encrypt \
--recipient $NAME@cct --armor

Appendix: Estimating the Size of Some Domain Specific
Languages

Testing environment

$ salt --version; grep DESC /etc/lsb-release; uname -m
salt 2017.7.4 (Nitrogen)
DISTRIB_DESCRIPTION="Ubuntu 18.04.5 LTS"
x86_64

Classes controlling the agent state in Salt DSL

$ sudo salt-call --local sys.state_doc|grep -P '^ \w+:'|head -3
acl:
alias:
alternatives:

$ sudo salt-call --local sys.state_doc|grep -P '^ \w+:'|wc -l
153

Functions controlling agent state the in Salt DSL

$ sudo salt-call --local sys.state_doc|grep -P '^ \S+:'|grep '\.'|head -3
acl.absent:
acl.present:
alias.absent:

$ sudo salt-call --local sys.state_doc|grep -P '^ \S+:'|grep '\.'|wc -l
510

Length of Salt documentation (without control structures such as loop and
if-else)

$ sudo salt-call --local sys.state_doc|wc -l
21962

Estimating the Size of Puppet DSL

$ puppet --version
5.4.0
$ dpkg --listfiles puppet|grep functions/|head -3
/usr/lib/ruby/vendor_ruby/puppet/functions/alert.rb
/usr/lib/ruby/vendor_ruby/puppet/functions/all.rb
/usr/lib/ruby/vendor_ruby/puppet/functions/annotate.rb
$ dpkg --listfiles puppet|grep functions/|wc -l

221

113

Appendix: Questionnaire for Semi-Structured Interview

This is the questionnaire for the semistructured expert interviews, conducted
to complete objective 7 “Identify and validate potential business benefits in
expert interviews”, and to provide an answer to RQ7 “What potential business
benefits do experts see for the models and the research prototype?”.

The questions here worked as prompt for open-ended commentary. Participants
were encouraged to give their free form feedback based on (or inspired by) any
of the prompts and questions here. All participants commented and discussed
the areas mentioned here.

Your answers to these questions will be included as part of the doctoral thesis
and other research by Tero Karvinen. These answers are pseudonymous, and
your name or your company name will not be published without your permission.
If you want, you will be mentioned in the thank you list (Acknowledgments).
The current prototype has had limited testing in a production environment, but
it is not suitable for large scale distribution or environments with high security
requirements. We can skip the technical details of your current company
systems that are sensitive, such as details concerning the EDR (Endpoint
detection and response) configuration.

• What is your current position?
• How long have you worked with the company?
• How long have you worked in management?
• What is your background with configuration management systems (cen-

trally controlling a lot of computers)?
• What configuration management or DevOps tools does your company

use?
• What do you consider the weak and strong points of these tools?
• What do you consider the main weaknesses of all tools in modern DevOps

and configuration management systems?

Demonstration

A brief demonstration of the main research prototype is performed by the
researcher. The main contributions implemented in the prototype are listed
(Hidden master architecture, idempotency with imperative general purpose
language, simplified IaC resource dependency handling, simplified model for
resource functions). Network structure is shown. The main case study is
described. If time permits, requested features are demonstrated.

222

Please evaluate how well the system provides these business benefits. The scale
is from 1 (not at all) to 5 (extremely well). Feel free to ask for more details on
any question.

Hidden Master Architecture - The hidden master keeps the master
private keys out of Internet visible servers

• Reduces the cost of protecting the configuration management system
• Improves security by better protecting master secret keys
• Reduces the cost of scaling by leveraging the file serving capabilities of

commodity web servers
• Improves resiliency against network problems with efficient geographic

scaling (by adding untrusted intermediate servers in the cloud in different
countries)

• Improves resiliency and reduces costs with inter-operator scaling (by
renting untrusted intermediate servers from multiple different cloud oper-
ators)

• Reduces the cost to both the sending and receiving organization when
deploying new machines and IoT devices (by bypassing NAT without
exposing master, as only the intermediate servers need to be in public
known addresses)

• Reduces the cost and risk when preparing to deploy an unknown number
of machines or IoT devices (by leveraging campaign keys, back channeling
individual agent key negotiations and predeploying campaign keys on
provisioning)

• Reduces the relative cost and risk of running a configuration management
system in small networks (where 24 hour incident response is not available
and monitoring is limited).

Idempotent use of imperative general purpose language and improved
resource models

• Saves costs in new employee orientations to systems (uses familiar lan-
guage such as a Python dialect; and uses familiar control structures such
as if-else for functions (<20 functions vs 500).

• Quickens the time to market by leveraging existing skills
• Reduces resistance to DevOps changes by allowing programmers to use

familiar languages and patterns
• Saves cost on errors when debugging dependencies (hasChanges() versus

complicated IaC resource models)
• Increases developer productivity by leveraging existing tool support, such

as syntax highlighting

223

• Reduces the risk from supply chain dependency (Conftero’s simplified
resources model uses just ~5 base resources).

Summary

What additional benefits or downsides do you see here?

Do you have additional comments?

What future advice would you give for developing this system?

Misc

Do you wish to be mentioned in Aknowledgements?

Appendix: Correlation Matrix for Likert Scale Interview
Questions

Spearman correlation of questions using Likert scale. Duplicate pairs are
excluded. Upper line shows Spearman correlation of the pair, lower line shows
p value. Statistically significant correlations (p < 0.05) are marked with an
asterisk “*“. Correlation of item with itself is 1.00 at p=0.00, and it’s excluded.

-	b	c	d	e	f	g	h	i	j	k	l	m	n
a	0.71	1.00*	0.69	1.00*	1.00*	0.95*	0.71	0.58	0.71	0.74	0.95*	0.45	0.95*
0.12	0.00	0.13	0.00	0.00	0.00	0.12	0.23	0.12	0.09	0.00	0.37	0.00	

b|- |0.71 |0.98*|0.71 |0.71 |0.78 |1.00*|0.61|1.00*|0.67 |0.78 |0.63|0.78
|- |0.12 |0.00 |0.12 |0.12 |0.07 |0.00 |0.20|0.00 |0.14 |0.07 |0.18|0.07

c|. |- |0.69 |1.00*|1.00*|0.95*|0.71 |0.58|0.71 |0.74 |0.95*|0.45|0.95*
|. |- |0.13 |0.00 |0.00 |0.00 |0.12 |0.23|0.12 |0.09 |0.00 |0.37|0.00

d|. |. |- |0.69 |0.69 |0.82*|0.98*|0.70|0.98*|0.73 |0.82*|0.77|0.82*
|. |. |- |0.13 |0.13 |0.04 |0.00 |0.12|0.00 |0.10 |0.04 |0.07|0.04

e|. |. |. |- |1.00*|0.95*|0.71 |0.58|0.71 |0.74 |0.95*|0.45|0.95*
|. |. |. |- |0.00 |0.00 |0.12 |0.23|0.12 |0.09 |0.00 |0.37|0.00

f|. |. |. |. |- |0.95*|0.71 |0.58|0.71 |0.74 |0.95*|0.45|0.95*
|. |. |. |. |- |0.00 |0.12 |0.23|0.12 |0.09 |0.00 |0.37|0.00

g|. |. |. |. |. |- |0.78 |0.73|0.78 |0.83*|1.00*|0.71|1.00*
|. |. |. |. |. |- |0.07 |0.10|0.07 |0.04 |0.00 |0.12|0.00

h|. |. |. |. |. |. |- |0.61|1.00*|0.67 |0.78 |0.63|0.78
|. |. |. |. |. |. |- |0.20|0.00 |0.14 |0.07 |0.18|0.07

i|. |. |. |. |. |. |. |- |0.61 |0.82*|0.73 |0.77|0.73
|. |. |. |. |. |. |. |- |0.20 |0.04 |0.10 |0.07|0.10

j|. |. |. |. |. |. |. |. |- |0.67 |0.78 |0.63|0.78

224

|. |. |. |. |. |. |. |. |- |0.14 |0.07 |0.18|0.07
k|. |. |. |. |. |. |. |. |. |- |0.83*|0.71|0.83*
|. |. |. |. |. |. |. |. |. |- |0.04 |0.12|0.04

l|. |. |. |. |. |. |. |. |. |. |- |0.71|1.00*
|. |. |. |. |. |. |. |. |. |. |- |0.12|0.00

m|. |. |. |. |. |. |. |. |. |. |. |- |0.71
|. |. |. |. |. |. |. |. |. |. |. |- |0.12

• a Reduce cost of protecting configuration management system
• b Improve security by better protecting master secret keys
• c Reduce cost of scaling by leveraging file serving capabilities of commodity

web servers
• d Improve resiliency against network problems with efficient geographic

scaling
• e Improve resiliency and reduce costs with inter-operator scaling
• f Reduce cost to both sending and receiving organization when deploying

new machines and IoT devices
• g Reduce cost and risk when preparing to deploy unknown number of

machines or IoT devices
• h Reduce relative cost and risk of running configuration management

system in small networks
• i Save costs in new employee orientation to systems.
• j Faster time to market by leveraging existing skills
• k Reduce resistance to DevOps change by allowing programmers to use

familiar languages and patterns
• l Save cost of errors when debugging dependencies
• m Increase developer productivity by leveraging existing tool support,

such as syntax highlighting
• n Reduce risk from supply chain dependency

225

References
Adesemowo, A.K. and Thompson, K.-L. (2013). Service desk link into IT asset

disposal: A case of a discarded IT asset. 2013 international conference
on adaptive science and technology. ICAST. November 2013. IEEE, 1–4.
Available from https://doi.org/10.1109/ICASTech.2013.6707517.

Alkhateeb, S. (2016). Cyber crimes. International Journal of Scientific &
Engineering Research, 7 (4), 918.

Al-Shaer, R., Ahmed, M. and Al-Shaer, E. (2019). Statistical learning of APT
TTP chains from MITRE ATT&CK. 2019.

Anderson, P. and Cheney, J. (2012). Toward Provenance-based Security for
Configuration Languages. Proceedings of the 4th USENIX Conference on
Theory and Practice of Provenance. TaPP’12. 2012. Berkeley, CA, USA:
USENIX Association, 2–2. Available from http://dl.acm.org/citation.cfm?
id=2342875.2342877.

Anderson, R. et al. (2021). Silicon den: Cybercrime is entrepreneurship.
Workshop on the economics of information security. 2021. Available from
https://weis2021.econinfosec.org/wp-content/uploads/sites/9/2021/06/
weis21-anderson.pdf.

Andrade, P. et al. (2012). Review of CERN Data Centre Infrastructure.
Journal of Physics: Conference Series, 396 (4), 042002. Available from
https://doi.org/10.1088/1742-6596/396/4/042002 [Accessed 3 June 2016].

Arfman, J.M. and Roden, P. (1992). Project athena: Supporting distributed
computing at MIT. IBM Systems Journal, 31 (3), 550–563.

Balis, B. et al. (2018). Holistic approach to management of IT infrastructure
for environmental monitoring and decision support systems with urgent
computing capabilities. Future Generation Computer Systems, 79, 128–143.
Available from https://doi.org/10.1016/j.future.2016.08.007.

Barford, P. and Yegneswaran, V. (2007). An inside look at botnets. Malware
detection. Springer, 171–191.

Bhat, M. et al. (2022). Innovation insight for continuous infrastructure
automation. Gartner.

Binsalleeh, H. et al. (2010). On the analysis of the Zeus botnet crimeware
toolkit. 2010 Eighth Annual International Conference on Privacy Security
and Trust (PST). August 2010. 31–38. Available from https://doi.org/10.1
109/PST.2010.5593240.

Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology.
Qualitative Research in Psychology, 3 (2), 77–101. Available from https:
//doi.org/10.1191/1478088706qp063oa.

Brooks, B., Davidson, A. and Gregor, I. (2014). The evolving relationship
between simulation and emulation: Faster than real-time controls testing.

226

https://doi.org/10.1109/ICASTech.2013.6707517
http://dl.acm.org/citation.cfm?id=2342875.2342877
http://dl.acm.org/citation.cfm?id=2342875.2342877
https://weis2021.econinfosec.org/wp-content/uploads/sites/9/2021/06/weis21-anderson.pdf
https://weis2021.econinfosec.org/wp-content/uploads/sites/9/2021/06/weis21-anderson.pdf
https://doi.org/10.1088/1742-6596/396/4/042002
https://doi.org/10.1016/j.future.2016.08.007
https://doi.org/10.1109/PST.2010.5593240
https://doi.org/10.1109/PST.2010.5593240
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa

Proceedings of the 2014 winter simulation conference, edited by tolk a, et al.
2014.

Brunnert, A. et al. (2015). Performance-oriented DevOps: A research agenda.
arXiv preprint arXiv:1508.04752.

Burgess, M. (1998). Computer Immunology. LISA. 1998. 283–298.
Caballer, M. et al. (2023). Infrastructure manager: A TOSCA-based orches-

trator for the computing continuum. Journal of Grid Computing, 21 (3),
51. Available from https://doi.org/10.1007/s10723-023-09686-7.

CentOS project. (2016). Index of /centos/7/os/X86_64/Packages. Available
from http://mirror.centos.org/centos/7/os/x86_64/Packages/ [Accessed
22 November 2016].

CFEngine. (2016). LinkedIn infrastructure and operations. Available from
https://cfengine.com/wp-content/uploads/2014/11/LinkedIn_CFEngin
e_Case_Study.pdf.

Champine, G.A., Geer, D.E. and Ruh, W.N. (1990). Project athena as a
distributed computer system. Computer, 23 (9), 40–51.

Chen, T.M. and Robert, J.-M. (2004). The evolution of viruses and worms.
Statistical methods in computer security, 1.

Cheshire, S., Aboba, B. and Guttman, E. (2005). RFC 3927 - dynamic
configuration of IPv4 link-local addresses.

Colarik, A., Thomborson, C. and Janczewski, L. (2004). Update/patch man-
agement systems: A protocol taxonomy with security implications. In:
Deswarte, Y. Cuppens, F. Jajodia, S. et al. (eds.). Information security
management, education and privacy. IFIP international federation for infor-
mation processing. 2004. Boston, MA: Springer US, 67–80. Available from
https://doi.org/10.1007/1-4020-8145-6_5.

Coulter et al. (2017). Desired state configuration overview for decision makers.
Available from https://docs.microsoft.com/en-us/powershell/dsc/decision
maker.

Crnkovic, G.D. (2010). Constructive research and info-computational knowledge
generation. Model-Based Reasoning in Science and Technology. Springer,
359–380. Available from http://link.springer.com/chapter/10.1007/978-3-
642-15223-8_20 [Accessed 4 March 2017].

CVE-2020-11652. (2020). Available from http://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CVE-2020-11652 [Accessed 11 December 2022].

Delaet, T., Joosen, W. and Van Brabant, B. (2010). A Survey of System
Configuration Tools. LISA. 2010. 1–8. Available from https://www.usen
ix.org/event/lisa10/tech/full_papers/Delaet.pdf [Accessed 22 November
2016].

Dewri, R. et al. (2012). Optimal security hardening on attack tree models of

227

https://doi.org/10.1007/s10723-023-09686-7
http://mirror.centos.org/centos/7/os/x86_64/Packages/
https://cfengine.com/wp-content/uploads/2014/11/LinkedIn_CFEngine_Case_Study.pdf
https://cfengine.com/wp-content/uploads/2014/11/LinkedIn_CFEngine_Case_Study.pdf
https://doi.org/10.1007/1-4020-8145-6_5
https://docs.microsoft.com/en-us/powershell/dsc/decisionmaker
https://docs.microsoft.com/en-us/powershell/dsc/decisionmaker
http://link.springer.com/chapter/10.1007/978-3-642-15223-8_20
http://link.springer.com/chapter/10.1007/978-3-642-15223-8_20
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11652
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11652
https://www.usenix.org/event/lisa10/tech/full_papers/Delaet.pdf
https://www.usenix.org/event/lisa10/tech/full_papers/Delaet.pdf

networks: A cost-benefit analysis. International Journal of Information
Security, 11 (3), 167–188. Available from https://doi.org/10.1007/s10207-
012-0160-y [Accessed 30 September 2016].

Dittrich, D. and Dietrich, S. (2008). P2P as botnet command and control:
A deeper insight. Malicious and Unwanted Software, 2008. MALWARE
2008. 3rd International Conference on. 2008. IEEE, 41–48. Available from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4690856 [Accessed 3
June 2016].

Duplyakin, D., Haney, M. and Tufo, H. (2015). Highly Available Cloud-Based
Cluster Management. 2015 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). May 2015. 1201–1204.
Available from https://doi.org/10.1109/CCGrid.2015.125.

Ellison, R.J. et al. (1999). Survivability: Protecting your critical systems.
IEEE Internet Computing, 3 (6), 55–63. Available from https://doi.org/10
.1109/4236.807008.

Endsley, M.R. (1988). Design and evaluation for situation awareness enhance-
ment. Proceedings of the human factors society annual meeting. 1988.
SAGE Publications Sage CA: Los Angeles, CA, 97–101.

Farooq, H.M. and Otaibi, N.M. (2018). Optimal machine learning algorithms for
cyber threat detection. 2018 UKSim-AMSS 20th international conference
on computer modelling and simulation (UKSim). 2018. IEEE, 32–37.

Fox, G.C. et al. (2015). Hpc-abds high performance computing enhanced
apache big data stack. Cluster, Cloud and Grid Computing (CCGrid), 2015
15th IEEE/ACM International Symposium on. 2015. IEEE, 1057–1066.

Franke, U. and Brynielsson, J. (2014). Cyber situational awareness–a systematic
review of the literature. Computers & security, 46, 18–31.

Free Software Foundation. (2015). The Free Software Definition. Available
from https://www.gnu.org/philosophy/free-sw.html [Accessed 22 November
2016].

F-Secure. (2020). SaltStack authorization bypass.
Fu, W. et al. (2017). 31st european conference on object-oriented programming

(ECOOP 2017). 2017.
Fung, C. et al. (2005). Survivability analysis of distributed systems using attack

tree methodology. MILCOM 2005 - 2005 IEEE Military Communications
Conference. October 2005. 583–589. Available from https://doi.org/10.110
9/MILCOM.2005.1605745.

Gu, G., Zhang, J. and Lee, W. (2008). BotSniffer: Detecting botnet command
and control channels in network traffic.

Gyarmati, L. et al. (2013). Free-scaling your data center. Computer Networks,
57 (8), 1758–1773.

228

https://doi.org/10.1007/s10207-012-0160-y
https://doi.org/10.1007/s10207-012-0160-y
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4690856
https://doi.org/10.1109/CCGrid.2015.125
https://doi.org/10.1109/4236.807008
https://doi.org/10.1109/4236.807008
https://www.gnu.org/philosophy/free-sw.html
https://doi.org/10.1109/MILCOM.2005.1605745
https://doi.org/10.1109/MILCOM.2005.1605745

Hagemark, B. (1990). A Language and System for Configuring Many Computers
as One Computing Site. Proceedings of the Workshop on Large Installation
System Administration III (USENIX Association). Available from https:
//cs.brown.edu/research/pubs/theses/masters/1990/hagemark.pdf
[Accessed 10 February 2017].

Hariri, S. et al. (2003). Impact Analysis of Faults and Attacks in Large-Scale
Networks. IEEE Security & Privacy, 1 (5), 49–54.

Harrison, H.E., Schaefer, S.P. and Yoo, T.S. (1988). Rtools: Tools for software
management in a distributed computing environment. Proceedings of the
summer USENIX conference. 1988. 85–93.

Hastings and Kazanciyan. (2016). Black Hat Asia 2016 17 DSCOMPROMISED
A Windows DSC Attack Framework. Available from https://www.youtube.
com/watch?v=WWJnMxv8P0g [Accessed 10 October 2016].

Hemminger, S. (2005). Network emulation with NetEm. Linux conf au. 2005.
Citeseer, 2005.

Hevner, A. and Chatterjee, S. (2010). Design science research in information
systems. Design research in information systems. Springer, 9–22.

Hevner, A.R. et al. (2004). Design science in information systems research.
MIS quarterly, 75–105.

Hintsch, J., Görling, C. and Turowski, K. (2016). A Review of the Literature
on Configuration Management Tools. Available from http://aisel.aisnet.o
rg/cgi/viewcontent.cgi?article=1005/&context=confirm2016 [Accessed 22
November 2016].

Huang, C.D., Hu, Q. and Behara, R.S. (2008). An economic analysis of the
optimal information security investment in the case of a risk-averse firm.
International journal of production economics, 114 (2), 793–804. Available
from https://doi.org/10.1016/j.ijpe.2008.04.002.

Huang, K., Siegel, M. and Madnick, S. (2018). Systematically understanding
the cyber attack business: A survey. ACM Computing Surveys (CSUR), 51
(4), 1–36.

Hummer, W. et al. (2013). Testing idempotence for infrastructure as code.
ACM/IFIP/USENIX international conference on distributed systems plat-
forms and open distributed processing. 2013. Springer, 368–388.

Hutchins, E.M., Cloppert, M.J. and Amin, R.M. (2011). Intelligence-driven
computer network defense informed by analysis of adversary campaigns and
intrusion kill chains. Leading Issues in Information Warfare & Security
Research, 1 (1), 80.

Jacquemart, Q. and Urvoy-Keller, G. (2018). D3. 3–inter-site network virtual-
ization orchestrator. Available from https://prestocloud-project.eu/docum
ents/deliverables/PrEstoCloud-D3.3.pdf.

229

https://cs.brown.edu/research/pubs/theses/masters/1990/hagemark.pdf
https://cs.brown.edu/research/pubs/theses/masters/1990/hagemark.pdf
https://www.youtube.com/watch?v=WWJnMxv8P0g
https://www.youtube.com/watch?v=WWJnMxv8P0g
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1005/&context=confirm2016
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1005/&context=confirm2016
https://doi.org/10.1016/j.ijpe.2008.04.002
https://prestocloud-project.eu/documents/deliverables/PrEstoCloud-D3.3.pdf
https://prestocloud-project.eu/documents/deliverables/PrEstoCloud-D3.3.pdf

Kartaltepe, E.J. et al. (2010). Social network-based botnet command-and-
control: Emerging threats and countermeasures. Applied Cryptography
and Network Security. 2010. Springer, 511–528. Available from http:
//link.springer.com/chapter/10.1007/978-3-642-13708-2_30 [Accessed 3
June 2016].

Karvinen, T. and Li, S. (2017). Investigating survivability of configuration
management tools in unreliable and hostile networks. 2017 3rd international
conference on information management (ICIM). April 2017. Chengdu,
China: IEEE, 327–331. Available from https://doi.org/10.1109/INFOMAN.
2017.7950402.

Keti, F. and Askar, S. (2015). Emulation of software defined networks us-
ing mininet in different simulation environments. 2015 6th international
conference on intelligent systems, modelling and simulation. 2015. IEEE,
205–210.

Kinkelin, H. et al. (2018). Trustworthy configuration management for net-
worked devices using distributed ledgers. NOMS 2018-2018 IEEE/IFIP
network operations and management symposium. 2018. IEEE, 1–5. Avail-
able from https://ieeexplore.ieee.org/abstract/document/8406324/.

Kinkelin, H. et al. (2019). Multi-party authorization and conflict mediation for
decentralized configuration management processes.

Kitchenham, B. et al. (2012). Trends in the quality of human-centric software
engineering experiments–A quasi-experiment. IEEE Transactions on Soft-
ware Engineering, 39 (7), 1002–1017. Available from https://ieeexplore.ieee.
org/abstract/document/6374196/.

Kos, J., Milutinović, M. and Čehovin, L. (2015). Nodewatcher: A substrate for
growing your own community network. Computer Networks, 93, 279–296.
Available from https://doi.org/10.1016/j.comnet.2015.09.021.

Kosar, T., Bohra, S. and Mernik, M. (2016). Domain-specific languages: A
systematic mapping study. Information and Software Technology, 71, 77–91.

Kostromin, R. (2020). Survey of software configuration management tools
of nodes in heterogeneous distributed computing environment. ICCS-DE.
2020. 156–165.

Kuhrmann, M., Fernández, D.M. and Daneva, M. (2017). On the pragmatic
design of literature studies in software engineering: An experience-based
guideline. Empirical Software Engineering, 22 (6), 2852–2891. Available
from https://doi.org/10.1007/s10664-016-9492-y.

Kumara, I. et al. (2021). The do’s and don’ts of infrastructure code: A
systematic gray literature review. Information and Software Technology,
137, 106593.

Ledakis, G. et al. (2018). D5. 7 PrEstoCloud security enforcement mechanism-

230

http://link.springer.com/chapter/10.1007/978-3-642-13708-2_30
http://link.springer.com/chapter/10.1007/978-3-642-13708-2_30
https://doi.org/10.1109/INFOMAN.2017.7950402
https://doi.org/10.1109/INFOMAN.2017.7950402
https://ieeexplore.ieee.org/abstract/document/8406324/
https://ieeexplore.ieee.org/abstract/document/6374196/
https://ieeexplore.ieee.org/abstract/document/6374196/
https://doi.org/10.1016/j.comnet.2015.09.021
https://doi.org/10.1007/s10664-016-9492-y

iteration. Available from https://prestocloud-project.eu/documents/deliver
ables/PrEstoCloud-D5.7.pdf.

Lemay, A. et al. (2018). Survey of publicly available reports on advanced
persistent threat actors. Computers & Security, 72, 26–59.

Lenders, V., Tanner, A. and Blarer, A. (2015). Gaining an edge in cyberspace
with advanced situational awareness. IEEE Security & Privacy, 13 (2),
65–74.

Lipton, P. and Lauwers, C. (2019). TOSCA simple profile in YAML version 1.3.
Available from https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html.

Mansouri, Y., Prokhorenko, V. and Babar, M.A. (2020). An automated
implementation of hybrid cloud for performance evaluation of distributed
databases. Journal of Network and Computer Applications, 167, 102740.
Available from https://doi.org/10.1016/j.jnca.2020.102740.

Marelli, M. (2022). The SolarWinds hack: Lessons for international human-
itarian organizations. International Review of the Red Cross, 104 (919),
1267–1284.

Marsa-Maestre, I. et al. (2019). REACT: Reactive resilience for critical
infrastructures using graph-coloring techniques. Journal of Network and
Computer Applications, 145, 102402. Available from https://doi.org/10.101
6/j.jnca.2019.07.003.

Mauw, S. and Oostdijk, M. (2005). Foundations of attack trees. International
Conference on Information Security and Cryptology. 2005. Springer, 186–
198. Available from http://link.springer.com/chapter/10.1007/11734727_17
[Accessed 28 September 2016].

Maymi, F. et al. (2017). Towards a definition of cyberspace tactics, techniques
and procedures. 2017 IEEE international conference on big data (big data).
2017. IEEE, 4674–4679.

McMullin, C. (2023). Transcription and qualitative methods: Implications for
third sector research. VOLUNTAS: International Journal of Voluntary and
Nonprofit Organizations, 34 (1), 140–153. Available from https://doi.org/10
.1007/s11266-021-00400-3.

Mead, N.R. et al. (2000). Survivable network analysis method. DTIC Document.
Available from http://oai.dtic.mil/oai/oai?verb=getRecord/&metadataPre
fix=html/&identifier=ADA383771 [Accessed 10 October 2016].

Mernik, M., Heering, J. and Sloane, A.M. (2005). When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37 (4), 316–
344.

Mitchell, D. et al. (2020). Mozilla-releng / build-puppet. Available from
https://github.com/mozilla-releng/build-puppet.

231

https://prestocloud-project.eu/documents/deliverables/PrEstoCloud-D5.7.pdf
https://prestocloud-project.eu/documents/deliverables/PrEstoCloud-D5.7.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html
https://doi.org/10.1016/j.jnca.2020.102740
https://doi.org/10.1016/j.jnca.2019.07.003
https://doi.org/10.1016/j.jnca.2019.07.003
http://link.springer.com/chapter/10.1007/11734727_17
https://doi.org/10.1007/s11266-021-00400-3
https://doi.org/10.1007/s11266-021-00400-3
http://oai.dtic.mil/oai/oai?verb=getRecord/&metadataPrefix=html/&identifier=ADA383771
http://oai.dtic.mil/oai/oai?verb=getRecord/&metadataPrefix=html/&identifier=ADA383771
https://github.com/mozilla-releng/build-puppet

Mitre. (2019). ATT&CK matrix for enterprise. Available from https://attack
.mitre.org/.

Moore, A.P., Ellison, R.J. and Linger, R.C. (2001). Attack modeling for
information security and survivability. DTIC Document.

Moubarak, J., Chamoun, M. and Filiol, E. (2017). Comparative study of recent
MEA malware phylogeny. Computer and communication systems (ICCCS),
2017 2nd international conference on. 2017. IEEE, 16–20.

NIST. (2016). The United States Government Configuration Baseline (USGCB)
- NIST. Available from https://usgcb.nist.gov/index.html [Accessed 3 June
2016].

Noureddine, M.A. et al. (2016). A game-theoretic approach to respond to
attacker lateral movement. International conference on decision and game
theory for security. 2016. Springer, 294–313.

Parameswaran, U.D., Ozawa-Kirk, J.L. and Latendresse, G. (2020). To live
(code) or to not: A new method for coding in qualitative research. Qualita-
tive Social Work, 19 (4), 630–644. Available from https://doi.org/10.1177/
1473325019840394.

Pasquale, L. et al. (2009). Distributed cross-domain configuration management.
In: Krämer, B.J. Lin, K.-J. and Narasimhan, P. (eds.). Service-oriented
computing – ICSOC 2007. Lecture notes in computer science. 2009. Berlin,
Heidelberg: Springer Berlin Heidelberg, 622–636. Available from https:
//doi.org/10.1007/978-3-642-10383-4_45.

Peffers, K. et al. (2007). A design science research methodology for information
systems research. Journal of management information systems, 24 (3),
45–77.

Perera, N. (2016). Automatic Configuration Management - Autodiscovery
of Configuration Items and Automatic Configuration Verification. May
2016. American Institute of Aeronautics and Astronautics. Available from
https://doi.org/10.2514/6.2016-2610 [Accessed 2 June 2016].

Phil, P.R. et al. (2014). OWASP Top 10: The Top 10 Most Critical Web
Application Security Threats Enhanced with Text Analytics and Content
by PageKicker Robot Phil 73. Available from http://dl.acm.org/citation.cf
m?id=2788303 [Accessed 10 October 2016].

Piirainen, K.A. and Gonzalez, R.A. (2013). Seeking constructive synergy:
Design science and the constructive research approach. International con-
ference on design science research in information systems. 2013. Springer,
59–72.

Poat, M.D., Lauret, J. and Betts, W. (2015). Configuration Management
and Infrastructure Monitoring Using CFEngine and Icinga for Real-time
Heterogeneous Data Taking Environment. Journal of Physics: Conference

232

https://attack.mitre.org/
https://attack.mitre.org/
https://usgcb.nist.gov/index.html
https://doi.org/10.1177/1473325019840394
https://doi.org/10.1177/1473325019840394
https://doi.org/10.1007/978-3-642-10383-4_45
https://doi.org/10.1007/978-3-642-10383-4_45
https://doi.org/10.2514/6.2016-2610
http://dl.acm.org/citation.cfm?id=2788303
http://dl.acm.org/citation.cfm?id=2788303

Series, 664 (5), 052020. Available from https://doi.org/10.1088/1742-
6596/664/5/052020 [Accessed 2 June 2016].

Pols, P. (2017). The unified kill chain: Designing a unified kill chain for
analyzing, comparing and defending against cyber attacks [Master’s thesis].
Cyber Security Academy (CSA).

Rahman, A., Mahdavi-Hezaveh, R. and Williams, L. (2019). A systematic
mapping study of infrastructure as code research. Information and Software
Technology, 108, 65–77. Available from https://doi.org/10.1016/j.infsof.201
8.12.004.

Rajapakse, R.N. et al. (2022). Challenges and solutions when adopting
DevSecOps: A systematic review. Information and Software Technology,
141, 106700. Available from https://doi.org/10.1016/j.infsof.2021.106700.

Rong, C. et al. (2022). OpenIaC: Open infrastructure as code - the network
is my computer. Journal of Cloud Computing, 11 (1), 12. Available from
https://doi.org/10.1186/s13677-022-00285-7.

SaltStack Inc. (2022). Hardening salt.
Schneier, B. (1999). Attack trees. Dr. Dobb’s journal, 24 (12), 21–29.
Scott, J.A. and Nisse, D. (2001). Software configuration management. SWE-

BOK, 103.
Shambaugh, R., Weiss, A. and Guha, A. (2016). Rehearsal: A configuration

verification tool for puppet. Proceedings of the 37th ACM SIGPLAN
conference on programming language design and implementation. 2016.
416–430.

Sharma, T., Fragkoulis, M. and Spinellis, D. (2016). Does your configuration
code smell? 2016. ACM Press, 189–200. Available from https://doi.org/10
.1145/2901739.2901761 [Accessed 22 November 2016].

Sherman, A. et al. (2005). ACMS: The akamai configuration management
system.

Silva, J. de C. et al. (2019). Management platforms and protocols for internet
of things: A survey. Sensors, 19 (3), 676. Available from https://doi.org/10
.3390/s19030676.

Silva, S.S.C. et al. (2013). Botnets: A survey. Computer Networks, 57 (2),
378–403. Available from https://doi.org/10.1016/j.comnet.2012.07.021
[Accessed 26 January 2017].

Siqueira, M.A. et al. (2006). An architecture for autonomic management of
ambient networks. In: Gaïti, D. Pujolle, G. Al-Shaer, E. et al. (eds.).
Autonomic networking. Lecture notes in computer science. 2006. Berlin,
Heidelberg: Springer Berlin Heidelberg, 255–267. Available from https:
//doi.org/10.1007/11880905_21.

Steiner, J.G. and Geer Jr, D.E. (1988). Network services in the Athena environ-

233

https://doi.org/10.1088/1742-6596/664/5/052020
https://doi.org/10.1088/1742-6596/664/5/052020
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2021.106700
https://doi.org/10.1186/s13677-022-00285-7
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.3390/s19030676
https://doi.org/10.3390/s19030676
https://doi.org/10.1016/j.comnet.2012.07.021
https://doi.org/10.1007/11880905_21
https://doi.org/10.1007/11880905_21

ment. Project Athena, Massachusetts Institute of Technology, Cambridge,
MA, 2139. Available from https://doi.org/10.1.1.31.8727 [Accessed 10
February 2017].

Sterbenz, J.P.G. et al. (2010). Resilience and survivability in communication
networks: Strategies, principles, and survey of disciplines. Computer Net-
works, 54 (8), 1245–1265. Available from https://doi.org/10.1016/j.comnet
.2010.03.005 [Accessed 10 October 2016].

Stocker, A. et al. (2022). An ICT architecture for enabling ancillary services
in distributed renewable energy sources based on the SGAM framework.
Energy Informatics, 5 (1), 5. Available from https://doi.org/10.1186/s42162-
022-00189-5.

Strom, B.E. et al. (2017). Finding cyber threats with ATT&CK-based analytics.
Mitre.

Strom, B.E. et al. (2018). MITRE ATT&CK: Design and philosophy. Mitre.
Święcicki, B. (2016). A Novel Approach to Automating Operating System

Configuration Management. In: Grzech, A. Borzemski, L. Świątek, J. et
al. (eds.). Information Systems Architecture and Technology: Proceedings
of 36th International Conference on Information Systems Architecture and
Technology – ISAT 2015 – Part II. Advances in intelligent systems and
computing. Springer International Publishing, 131–142. Available from
https://doi.org/10.1007/978-3-319-28561-0_10 [Accessed 22 November
2016].

Tang, C. et al. (2015). Holistic configuration management at Facebook. 2015.
ACM Press, 328–343. Available from https://doi.org/10.1145/2815400.2815
401 [Accessed 30 September 2016].

Toffetti, G. et al. (2017). Self-managing cloud-native applications: Design,
implementation, and experience. Future Generation Computer Systems, 72,
165–179. Available from https://doi.org/10.1016/j.future.2016.09.002.

Tomarchio, O., Calcaterra, D. and Di Modica, G. (2020). Cloud resource
orchestration in the multi-cloud landscape: A systematic review of existing
frameworks. Journal of Cloud Computing, 9 (1), 1–24.

Treese, G.W. (1988). Berkeley UNIX on 1000 workstations: Athena changes to
4.3 BSD. USENIX winter. 1988. 175–182.

Tripp et al. (1998). Supplement to IEEEi Guide for Synthetic Fault Testing
of AC High-Voltage Circuit Breakers Rated on a Symmetrical Current
Basis 8-32 Recovery Voltage for Terminal Faults. Available from http:
//ieeexplore.ieee.org/iel4/5748/15360/x0117410.pdf [Accessed 3 June 2016].

Ullah, A. et al. (2023). Orchestration in the cloud-to-things compute continuum:
Taxonomy, survey and future directions. Journal of Cloud Computing, 12
(1), 135. Available from https://doi.org/10.1186/s13677-023-00516-5.

234

https://doi.org/10.1.1.31.8727
https://doi.org/10.1016/j.comnet.2010.03.005
https://doi.org/10.1016/j.comnet.2010.03.005
https://doi.org/10.1186/s42162-022-00189-5
https://doi.org/10.1186/s42162-022-00189-5
https://doi.org/10.1007/978-3-319-28561-0_10
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1016/j.future.2016.09.002
http://ieeexplore.ieee.org/iel4/5748/15360/x0117410.pdf
http://ieeexplore.ieee.org/iel4/5748/15360/x0117410.pdf
https://doi.org/10.1186/s13677-023-00516-5

Välimäki, M. (2005). The rise of open source licensing : a challenge to the use
of intellectual property in the software industry [Doctoral thesis]. Helsinki
University of Technology.

Vanbrabant, B. (2014). A Framework for Integrated Configuration Management
of Distributed Systems. Available from https://lirias.kuleuven.be/handle/
123456789/453199 [Accessed 2 June 2016].

Von Neumann, J. and Burks, A.W.(Arthur.W. (1966). Theory of self-
reproducing automata. Urbana, University of Illinois Press. Available from
http://archive.org/details/theoryofselfrepr00vonn_0.

Wettinger, J. et al. (2013). Integrating Configuration Management with Model-
driven Cloud Management based on TOSCA. CLOSER. 2013. 437–446.

Wurster, M. et al. (2020). The essential deployment metamodel: A systematic
review of deployment automation technologies. SICS Software-Intensive
Cyber-Physical Systems, 35 (1), 63–75.

Xu, J. and Russello, G. (2022). Automated security-focused network configura-
tion management: State of the art, challenges, and future directions. 2022
9th international conference on dependable systems and their applications
(DSA). 2022. IEEE, 409–420. Available from https://doi.org/10.1109/DS
A56465.2022.00061.

Zhao, Z. and Guo, H. (2018). Method for enforcing access control policies
on NCMS. 2018 IEEE international conference on service operations and
logistics, and informatics (SOLI). July 2018. Singapore: IEEE, 226–231.
Available from https://doi.org/10.1109/SOLI.2018.8476718.

235

https://lirias.kuleuven.be/handle/123456789/453199
https://lirias.kuleuven.be/handle/123456789/453199
http://archive.org/details/theoryofselfrepr00vonn_0
https://doi.org/10.1109/DSA56465.2022.00061
https://doi.org/10.1109/DSA56465.2022.00061
https://doi.org/10.1109/SOLI.2018.8476718

