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ABSTRACT Enteroinvasive Escherichia coli (EIEC) and Shigella are closely related agents
of bacillary dysentery. It is widely viewed that EIEC and Shigella species evolved from
E. coli via independent acquisitions of a large virulence plasmid (pINV) encoding a type
3 secretion system (T3SS). Sequence Type (ST)99 O96:H19 E. coli is a novel clone of EIEC
responsible for recent outbreaks in Europe and South America. Here, we use 92 whole
genome sequences to reconstruct a dated phylogeny of ST99 E. coli, revealing distinct
phylogenomic clusters of pINV-positive and -negative isolates. To study the impact of
pINV acquisition on the virulence of this clone, we developed an EIEC-zebrafish infection
model showing that virulence of ST99 EIEC is thermoregulated. Strikingly, zebrafish
infection using a T3SS-deficient ST99 EIEC strain and the oldest available pINV-negative
isolate reveals a separate, temperature-independent mechanism of virulence, indicating
that ST99 non-EIEC strains were virulent before pINV acquisition. Taken together, these
results suggest that an already pathogenic E. coli acquired pINV and that virulence of
ST99 isolates became thermoregulated once pINV was acquired.

IMPORTANCE Enteroinvasive Escherichia coli (EIEC) and Shigella are etiological agents
of bacillary dysentery. Sequence Type (ST)99 is a clone of EIEC hypothesized to cause
human disease by the recent acquisition of pINV, a large plasmid encoding a type
3 secretion system (T3SS) that confers the ability to invade human cells. Using Bayesian
analysis and zebrafish larvae infection, we show that the virulence of ST99 EIEC isolates
is highly dependent on temperature, while T3SS-deficient isolates encode a separate
temperature-independent mechanism of virulence. These results indicate that ST99
non-EIEC isolates may have been virulent before pINV acquisition and highlight an
important role of pINV acquisition in the dispersal of ST99 EIEC in humans, allowing
wider dissemination across Europe and South America.

KEYWORDS EIEC, zebrafish, host-pathogen interactions, evolution, Shigella, Enterobac-
teriaceae, virulence determinants

E nteroinvasive E. coli (EIEC) and Shigella species are Gram-negative, human-adapted
pathogens that cause bacillary dysentery. The greatest burden of bacillary dysen-

tery is in low- and middle-income countries (LMICs) (1), although the true burden of
EIEC infection is likely underestimated since it is difficult to distinguish from Shigella.
Historically, Shigella was classified as its own genus, with four distinct species, but
Multi-Locus Sequence Typing (MLST) and whole-genome sequencing data clearly show
Shigella spp. are lineages of E. coli, as are EIEC (2, 3). Each Shigella and EIEC lineage
evolved independently within the E. coli population, following the horizontal acquisition
of a ~220 kbp virulence plasmid (also known as plasmid of invasion or pINV) from a
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currently unknown source (2). pINV encodes a type three secretion system (T3SS) that
facilitates the invasion of human epithelial cells and is thermoregulated in both EIEC
and Shigella (4).

A novel clone of EIEC, of serotype O96:H19 and Multi-Locus Sequence Type (ST) 99,
was first described in 2012 in Italy and has since caused several foodborne outbreaks
of moderate to severe diarrheal disease across Europe and South America (5–7). Before
2012, ST99 E. coli had not been reported in the literature as causing human disease
but had been sporadically isolated from cattle and environmental sources (8). ST99
EIEC isolates have been characterized as possessing the virulence hallmarks of EIEC
and Shigella (pINV and T3SS) (9), but its metabolic capacity closely resembles that of
commensal E. coli and it has more recently been associated with pga-mediated biofilm
formation (6, 9). It has therefore been proposed that ST99 EIEC diverged recently from
ST99 E. coli due to the acquisition of pINV.

The zebrafish (Danio rerio) larvae model is widely used to study infection biology
in vivo because of its rapid development and innate immune system that is highly
homologous to that of humans (10, 11). Zebrafish have emerged as a valuable vertebrate
model to study human enteropathogens like Shigella (12), highlighting the key roles
of bacterial virulence factors (e.g., T3SS and O-antigen) (13, 14) and cell-autonomous
immunity (e.g., autophagy and septin-mediated immunity) (12, 15) in host-pathogen
interactions.

In this observation, we reconstruct a dated phylogeny of ST99 E. coli using publicly
available whole genome sequences, to understand the role of pINV in its global dispersal.
We develop a temperature-dependent zebrafish infection model to assess the virulence
of EIEC and non-EIEC ST99 isolates, highlighting the power of zebrafish infection in
studying the evolution of novel enteropathogens causing disease in humans.

ST99 EIEC diverged ~40 years ago

To dissect the evolution of the ST99 clone and its transition to EIEC, we analyzed all
publicly available ST99 genomes (n = 92), using the EnteroBase integrated software
environment (16). EnteroBase routinely scans short-read archives and retrieves E. coli
and Shigella sequences from the public domain or uses user-uploaded short reads. We
used Gubbins v.3.2.1 (17) to filter recombinant sites, RaxML v.8.10 to infer a Maximum
Likelihood phylogenetic tree and BactDating v.1.2 (18) to date the phylogeny (Fig. 1),
as previously described by Didelot and Parkhill (19). Root-to-tip genetic distances were
positively associated with the year of isolation (R2 = 0.19, P = 6 × 10-3), and the date-
randomization test showed no overlap between results of observed and date-random-
ized analyses (Fig. S1), indicating a moderate molecular clock signal to support dating
analysis. From this analysis, we estimate that the most recent common ancestor (MRCA)
of the whole ST99 group (pINV+ and pINV–) existed circa 1776 [95% highest posterior
density (HPD), 1360–1927]. To test for the presence of pINV, we used ShigEiFinder, which
scans the genomes for pINV-encoded genes and deems an isolate positive for pINV when
26 of 38 genes are present (20). The pINV+ isolates form a distinct cluster, with their
MRCA existing circa 1982 (95% HPD, 1965–2011) (Fig. 1). This suggests that the ST99 EIEC
may have been circulating undetected for ~30 years before being detected in the 2012
outbreak.

To test the role of pINV in the dispersal of ST99 EIEC, we selected: (i) four recent pINV+
isolates from moderate-to-severe diarrheal outbreaks in the United Kingdom in 2014 and
2015 (21, 22) to represent contemporary ST99 EIEC, (ii) a Congo red-negative colony to
represent a T3SS-deficient strain isogenic strain, and (iii) the oldest available ST99 isolate
(~1945, NCTC 9096, pINV−) to represent ancestral pINV− ST99 (see Fig. 1).

ST99 EIEC virulence is temperature-dependent in zebrafish

The zebrafish infection model has generated fundamental advances in our understand-
ing of Shigella and its ability to infect humans (23). To test the virulence of pINV+ ST99
EIEC strains, ~5,000 CFU was injected into the hindbrain ventricle (HBV) of zebrafish
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FIG 1 Time-calibrated phylogeny of 92 Sequence Type (ST)99 genomes. BactDating was used to infer a time-calibrated phylogeny, incorporating the output

from the recombination detection software, Gubbins. Blue diamonds indicate the internal nodes representing the most recent common ancestors (MRCA) of

interest. Tip labels represent assembly barcodes correlating to the isolate accession in Enterobase. Tip labels in bold represent isolates that we tested in vivo. As

determined using ShigEiFinder (20), the presence of the invasion plasmid (pINV) is indicated by a red box in the pINV column. We estimate the MRCA of the

whole group to be ~1776 and the MRCA for the pINV+ cluster to be ~1982.
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larvae at 3 d post-fertilization (dpf ) (Fig. S1A). Infected zebrafish larvae are typically
incubated at 28.5°C for optimal development but we have shown they can also be
maintained at 32.5°C (13), allowing the study of temperature-dependent virulence. For
the pINV+ strains, we observed ~75% survival when larvae were incubated at 28.5°C but
only ~30% survival when incubated at 32.5°C (Fig. 2A; Fig. S2B and C). In agreement with
survival results, CFUs recovered at 6 h post-infection (hpi) were significantly lower at
28.5°C than CFUs recovered at 32.5°C (Fig. 2B; Fig. S2D and E), suggesting that larvae
were more able to control infection at 28.5°C.

To test if  the T3SS in ST99 EIEC is functional and thermoregulated, we compared
the secretion of virulence factors by ST99 EIEC and Shigella flexneri  in vitro  (Fig. S3).
The overall  abundance of secreted proteins is lower for ST99 EIEC as compared to S.
flexneri,  but the relative abundance of major secreted effectors  appears similar.  One
exception is SepA, a protein secreted independently of the T3SS, whose presence is
known to be variable in other EIEC lineages (24). Although we do not observe
significant  differences  in secretion between 28.5°C and 32.5°C under these in vitro
conditions tested, the T3SS in ST99 EIEC is clearly thermoregulated (with optimal
secretion in vitro  at 37°C).

Having established a temperature-dependent EIEC-zebrafish infection model, it was
next of great interest to test the virulence of an isogenic, T3SS-deficient ST99 EIEC strain
and an ancestral pINV− ST99 isolate. Since we observed no significant differences in
zebrafish survival or bacterial burden between the four pINV+ strains at either 28.5°C or
32.5°C (Fig. S2B to E), we chose one isolate (pINV+1) as a representative pINV+ isolate to
compare with the T3SS-deficient and pINV− isolate (NCTC 9096).

ST99 E. coli comprises temperature-dependent and -independent mecha‐
nisms of virulence

To test if the virulence of ST99 E. coli in zebrafish is dependent on the acquisition of pINV
and the T3SS, we selected a naturally T3SS-deficient colony (Congo red negative) to
compare against pINV+1. Colonies were screened for several pINV-encoded genes by
colony PCR and found to be deficient in genes located in the T3SS-encoding region of
pINV (mxiG, mxiD, and icsB), but positive for genes located outside (ospF and ipaH) (Fig.
S4). In addition, we verified dysfunction of the T3SS, showing that T3SS effector proteins
are not secreted by T3SS-deficient colonies at 37°C but are by the wild-type EIEC isolate
(Fig. S3). These results suggest that the T3SS-encoding region has been lost in Congo red
negative colonies, consistent with what has previously been reported for S. flexneri (25).
Infection of zebrafish with these isolates shows that the thermoregulated virulence is lost
in the T3SS-deficient strain, with no significant difference in zebrafish survival observed
between 28.5°C and 32.5°C, whilst thermoregulated virulence is maintained in the wild-
type strain (Fig. 2C and D; Fig. S5A and B). These result implicate acquisition of the T3SS
(and pINV) in the temperature-dependent virulence of pINV+1.

Next, we compared the virulence of a non-EIEC (pINV−) ST99 isolate (NCTC 9096) and
a pINV+ EIEC isolate (pINV+1) strains using our EIEC-zebrafish infection model. Strikingly,
NCTC 9096 was significantly more virulent than pINV+1 at 28.5°C, with only ~35% of
infected larvae surviving at 48 hpi (Fig. 2E). Although no change in survival of larvae
infected with NCTC 9096 is observed at 32.5°C (as compared to that of 28.5°C), survival of
pINV+1 infected larvae significantly decrease at 32.5°C, consistent with a role for
temperature-dependent virulence. At 32.5°C, we found that both pINV+1 and NCTC 9096
isolates were equally virulent (Fig. 2F).

The trend in virulence was also reflected in the quantification of bacterial burden (Fig.
S5C and D). When incubated at 32.5°C, we observed a ~2 log increase in pINV+1 CFUs
enumerated from larvae at 6 hpi but not when incubated at 28.5°C. We observe a similar
increase in NCTC 9096 CFUs quantified, irrespective of temperature. These results show
temperature-dependent virulence of the pINV+1 strain and non-temperature-depend-
ent virulence of the pINV− strain, consistent with our observations for the T3SS-deficient
EIEC isolate.
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FIG 2 Temperature-dependent and -independent mechanisms of virulence in the ST99 group. Zebrafish larvae at 3 d

post-fertilization were injected with 5,000 CFU of a representative pINV+ ST99 strain, a T3SS-deficient strain and an ancestral

pINV− ST99 strain, before being separated for incubation at 28.5°C or 32.5°C. (A, B) pINV+1 strain exhibits a temperature-

dependent virulence with significantly more killing observed at 32.5°C. Enumeration of bacterial burden is also temperature

dependent, with greater CFUs quantified at 6 h post-infection from larvae incubated at 32.5°C. Black circles indicate pINV+1

CFUs at 0 hpi, blue filled circles indicate pINV+1 CFUs at 6 hpi incubated at 28.5°C, and blue outlined circles indicate

pINV+1 CFUs at 6 hpi incubated at 32.5°C. (C, D) Thermoregulated virulence is lost in a T3SS-deficient (Congo red negative)

pINV+1 strain (gray dashed line). (E, F) pINV− strain NCTC 9096 (black dashed line) is virulent in the zebrafish model in a

non-temperature-dependent manner. Significance was tested using Log-rank (Mantel-Cox) test for survival curves. For CFUs

(panel B), significance was tested using a one-way ANOVA with Sidak’s correction. *P < 0.0332; **P < 0.0021; ***P < 0.0002; and

****P < 0.0001.
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DISCUSSION

It is widely recognized that the acquisition of pINV is a defining feature in the evolution
of EIEC and Shigella (26). Here, we analyze the evolution of ST99 EIEC and propose that
an MRCA for the pINV+ group existed in the early 1980s. This suggests that ST99 EIEC
may have been circulating undetected for ~30 years until it was implicated in the 2012
outbreak in Italy, perhaps because EIEC infections are typically endemic in regions where
surveillance and sequencing of enteropathogens are limited.

We prove that the virulence of ST99 EIEC strains is thermoregulated in vitro and in
vivo (with zebrafish larvae less able to control infection), leading to increased killing and
greater bacterial replication at 32.5°C. Some killing is still observed at 28.5°C, suggesting
a low-level activation of the T3SS and/or non-T3SS mechanisms of virulence in vivo,
which would be of interest to test in future studies. These data are consistent with
previous reports for pINV-mediated virulence in both S. flexneri and Shigella sonnei (4,
13). Our zebrafish infection model highlights the importance of temperature in EIEC
virulence and supports the hypothesis that pINV acquisition is the first key step in the
evolutionary pathway toward becoming a human-adapted pathogen. Our data using
zebrafish infection further show that non-EIEC ST99 isolates can also cause disease and
that the ability of the ST99 clone to cause disease does not strictly rely on the acquisition
of pINV and the transition to EIEC. Considering that pINV− ST99 strain NCTC 9096 is
highly virulent in vivo, we conclude that it must encode separate, non-thermoregulated
mechanism(s) of virulence that becomes less important for human infection once pINV is
acquired.

Collectively, our findings illuminate the short history of ST99 EIEC and implicate pINV
acquisition as a key factor in its epidemiological success. Our approach also reveals a
separate, non-thermoregulated virulence mechanism in a pINV− ST99 isolate, suggesting
that an already pathogenic E. coli may have acquired pINV. Further studies, including
identifying the source of pINV and those isolates likely to acquire it, are important to fully
understand and prevent the dispersal of novel EIEC and Shigella clones infecting humans.

METHODS

Bacterial strains

Four pINV+ EIEC strains isolated in diarrhoeal outbreaks from the United Kingdom
in 2014/2015 were included in this study (Table 1), and strains were identified and
sequenced through routine surveillance and kindly shared with us by the UK Health
and Security Agency (UKHSA). A pINV− ST99 strain (Table 1) included in this study was
obtained from the National Culture Type Collection (NCTC). S. flexneri M90T was used as a
positive control for the in vitro secretion assay (27).

TABLE 1 Bacterial strains used in experimental work/as a reference genomea

Strain Source Serotype pINV Origin Sequence accession no. Enterobase assembly
barcode

NCTC 9096 NCTC O96:H19 − Denmark, 1945 UGEL01000000 ESC_CC4859AA_AS
pINV+1 UKHSA O96:H19 + United Kingdom (Travel to

Turkey), 2014
SRR3578973 ESC_GA9395AA_AS

pINV+2 UKHSA O96:H19 + Kingdom (Travel to Turkey),
2014

SRR3578582 ESC_GA9149AA_AS

pINV+3 UKHSA O96:H19 + Kingdom (Travel to Turkey),
2014

SRR3578593 ESC_GA9160AA_AS

pINV+4 UKHSA O96:H19 + United Kingdom, 2015 SRR3578770 ESC_GA9239AA_AS
CFSAN029787 NA O96:H19 + Italy, 2012 Chromosome: CP011416.1,

pINV: CP011417.1
ESC_GA4743AA_AS

S. flexneri M90T Institut Pasteur 5 a + Mexico, 1955 NAb NAb

aStrains NCTC 9096 and the four pINV+ ST99 strains obtained from the UKHSA were used for the in vivo work. CFSAN029787 was used as a reference strain for the
phylogenomic analyses. Enterobase assembly accessions correlate to tip labels in the dated phylogeny (Fig. 1).
bNA, not applicable.
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To obtain a T3SS-deficient ST99 isolate, bacteria (pINV+1) were grown on trypticase
soy agar (TSA) plates supplemented with 0.01% Congo red (Sigma-Aldrich) dye. A white
colony was selected as a natural isogenic mutant, unable to secrete T3SS effector
proteins, as previously described (28). We tested this isolate for the presence of five
pINV-encoded genes (mxiG, mxiD, icsB, ipaH, and ospF) by colony PCR, using primers
described in Table 2.

Genomic analysis

Enterobase was used to identify publicly available ST99 genomes, using the filter by ST
function (16); all ST99 genomes with an associated assembly and isolation date were
included in our study, sequence accessions and metadata can be found in Table S1.
Complete genome sequences of strains NCTC 9096 and CFSAN029787 were downloaded
from GenBank (accessions UGEL01000000 and CP011416.1, respectively). All genomic
analyses were performed using the Cloud Infrastructure for Microbial Bioinformatics
(CLIMB) (29). Snippy v.4.6 (https://github.com/tseemann/snippy) was used to generate
a core genome alignment, using CFSAN029787 as the reference. Gubbins v.3.2.1 (17)
was used to identify recombinant regions of the alignment, and RaxML v.8.10 (30)
was used to build a maximum likelihood phylogenetic tree, using the General Time
Reversible (GTR) GAMMA nucleotide substitution model. BactDating v.1.2 (31) was used
to infer the dated phylogeny, using the “relaxedgamma” model, the option to incorpo-
rate Gubbins detected recombination was selected and 105 Markov chain Monte Carlo
(MCMC) chain iterations were run. To confirm the temporal signal (association between
genetic divergence and time) within our dataset, tip nodes were assigned random dates
and the analysis was rerun (this was completed n = 10 times). We saw no overlap
between the substitution rates of our real data and the randomized datasets (Fig. S3)
that shows that the data pass the stringent test CR2 for the presence of a temporal
signal according to Duchene et al. (32). To screen assemblies for the presence of pINV,
ShigEiFinder was used, which screens for 38 pINV-encoded genes and deems an isolate
positive when at least 26 genes are present (20).

Inoculate preparation

Single red colonies (pINV+ EIEC) or white colonies (pINV− NCTC 9096 and T3SS-deficient
EIEC) were selected and inoculated into 5 mL trypticase soy broth (TSB) and incubated
overnight at 37°C, shaking at 400 rpm. 400 µL of overnight culture was subsequently
diluted in 20 mL TSB and grown until an optical density of ~0.6 (measured at 600 nm)
was reached. For zebrafish larvae infections, inoculate preparation was carried out by
resuspension of the bacteria at the desired concentration in phosphate buffer saline
(PBS, Sigma-Aldrich) pH 7.4 containing 2% polyvinylpyrrolidone (Sigma-Aldrich) and
0.5% phenol red (Sigma-Aldrich) as previously described (13).

TABLE 2 Primers used to detect for the presence of pINV-encoded genes

Primer name Primer sequence (5'-3')

mxiD_Fwd CAGAATGTAAGTAATGCACTGGCTATGATAC
mxiD_Rev CTGTCTATAAAATCCTGATCTAGAGGAAGGTTATC
mxiG_Fwd CTGATTGTTGGGATAAGGCTGG
mxiG_Rev CCGAGATCCCCTGTTTACCTC
ospF_Fwd AAAAGATGAAGGCCTGATGGGAGCATTAAC
ospF_Rev TGGTGGATAAAACCCGCCAGAATGAACA
icsB_Fwd GGTTCCAAGATCTGGCGATTTAAGAGAATTGTAATAATC
icsB_Rev GGGCCTATACGCGTTGAAGATACAGAG
ipaH1.4_Fwd GGGCATGAAAAAAGCTACATCC
ipaH1.4_Rev CACCATTATTCGAGTATAGGGAGAG
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Zebrafish larvae infection

Wild-type-AB zebrafish embryos were used for in vivo studies. Embryos were kept in
0.5 × E2 medium supplemented with 0.3 µg/mL methylene blue and incubated at
28.5°C unless otherwise stated. Using a microinjector, ~1 nL of bacterial suspension was
injected into the HBV of 3 d post-fertilization (dpf ) zebrafish larvae, following previously
described procedures (13). The precise inoculum was determined retrospectively by
homogenization of larvae at 0 h post-infection and plating on TSA plates supplemented
with 0.01% Congo red.

For survival assays, zebrafish larvae were visualized using a light stereomicroscope at
24 and 48 hpi; the presence of a heartbeat was used to determine viability. For colony
forming unit (CFU) counts, larvae were disrupted in PBS using a pestle pellet blender at
0 and 6 hpi. Serial dilutions in PBS and plating on TSA plates supplemented with 0.01%
Congo red were then performed to estimate the bacterial load in each larva. Statistical
analysis was performed in GraphPad Prism 9.

In vitro secretion assay

Secretion of T3SS effectors was tested as previously described (33). Briefly, bacteria were
grown overnight, subcultured and grown until exponential phase (OD = 0.4–0.5) at either
28.5°C, 32.5°C, or 37°C. Cultures were then incubated for 3 h in the presence or absence
of Congo red to induce type 3 secretion. Secreted proteins were collected from culture
supernatants, precipitated using trichloroacetic acid (Sigma-Aldrich), and then analyzed
using SDS-PAGE and Coomassie Brilliant Blue R-250 (Bio-Rad) staining.
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