Managing dwell times – a key challenge for the D2D target
Cook, A.J. and Tanner, G.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Managing dwell times
– a key challenge for the D2D target

Andrew Cook, Graham Tanner
Overview

Challenge in context
- Definition, data, issue

Exploring dwell times
- Behaviours, trends, relationships

Future solutions
- Airport business model
- Airline business model

Issues for debate
Challenge in context
Challenge in context

Dwell time definition

Dwell time = K2G
- some variation in metrics used by different airports

Different components
- complex definitions, overlaps, mutual dependencies

Earlier than planned arrival

Earlier than desired arrival

Check-in closure

Estimated process times

Elective activities (high U)

Generic buffer (low U)

- typical minima across AOs, LHR–EU: kerb: -2H00 (rec.), check-in: -0H45, gate: -0H20

- several analogies with airline buffer and turnaround times
Challenge in context

Data sources and wider model

>>> **Dwell time data source (for following example slides)**

- *large European hub*
- *appx. 200k dwell time records in survey*
- *mid-2012 to mid-2017*
- *cleaned: outliers etc.*
- *filtered: non-connecting, intra-European*

>>> **Data (limited) from other large hubs to support validation**

>>> **Wider model results and context in final presentation**
Challenge in context
The issue

Average dwell time: 2H15
Average access time: 1H20
Simplistic sum for non-G2G: 1H20 + 2H15 + (0H40) + (1H20) = 5H35
several caveats

Connecting c.f. NC pax: +20%
Extra- c.f. intra-European: +40%
Exploring dwell times
Exploring dwell times

Behaviours

Generic no-show rates: 3-6%

Rebooking straw-polls:

Traditional carrier, return fares €170-210
Missed flight, rebook next up to €100
LCC ‘rescue’ fees est. €100

GatwickConnects ‘protected connection’

Exit expected utility theory ... enter prospect theory

Average: 2H15
Median: 2H00
Lower 4.5 percentile: 1H10
Exploring dwell times

Trends

Mean dwell time (mins)

Quarter
Exploring dwell times

Trends

Dwell time variance (mins)
Exploring dwell times
Trends

Mean access time (mins)

Extra- c.f. intra-European:
+30%

Year

2013 2014 2015 2016

DATASET2050 Final Dissemination Event, Belgrade
Exploring dwell times
Trends

Options used (multiple)

Year
Exploring dwell times

Relationships

Mean dwell time (mins)

Spend rate (€/H)

2H15, 15 €/H

DATASET2050 Final Dissemination Event, Belgrade
Exploring dwell times
Relationships

Mean dwell time (mins)

Age

Mean dwell time (mins)
Exploring dwell times
Relationships

Mean dwell time (mins)

Trips/year
Exploring dwell times
Relationships

>> The story so far

> loss aversion

> no downward dwell trend

> access times not rescuing D2D target ...

> ... but (K2G) technologies are poised

>> Airport business model: effects on spend

> ageing population: compensating / mixed effect

> decreased frequencies: complex / mixed

> decreased dwell times: downward pressure
Future solutions
Future solutions
Airport business model

Airport preparedness and development

Example: e-commerce implementation, Frapport

‘Omni-channel’ functionalities

- order gifts, e.g. en-route to airport: many concessions, any terminal
 - ‘Reserve & Collect’, or delivered to gate (real-time info); also currency
- delayed flight, directed beacon technology
 - invitation to restaurant with reserved table
- buy from concessions, delivered to home
 - order groceries from in-bound flight, collect after reclaim

Largest shopping complex in Germany

Concessions pay revenue-based rents

Aligned with general on-line retail fulfilment trends
Future solutions
Airline business model

Airline business model
> maximise yields, maximise profits
> increasing load factors (c. 85%), decreasing flexibility (resilience)
> economic incentive?

Integrated / regulatory solutions
> ‘Rail&Fly’ such as AccessRail (AMS to QYG in GDS)
> CIV guarantees (Convention Internationale pour le transport des Voyageurs)
> Nederlandse Spoorwegen – commercial insurance (free market)
> ‘Social capacity’ reserves (controlled market, with echoes of rescue fees)
> c.360-day inventory cycle – cost implications, yield management
Issues for debate
Issues for debate

>>> No silver bullet
 > cost of reducing dwell times?
 > cost of doing nothing?

>>> Airport model
 > how close to turn-up-and-go could work?

>>> Airline model
 > economic incentive for increased flexibility?
 > sustainable capacity–cost equilibrium under regulatory approach?

>>> Alternative dwell time solutions
 > full intermodal mobility management – (cost of) delay trade-offs?
 > [insert your idea here this afternoon!]
Thank you