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Abstract—This paper gives an insight into interdisciplinary 

research examining the use of Machine Learning techniques to 

monitor the vocal health of professional singers. The work 

reported establishes the viability of using a dataset of audio 

samples of the human voice to train a convolutional neural 

network to assess fluctuations in vocal performance of 

professional singers. Variations in the ease and quality of vocal 

production are a common experience among those who rely on 

their voice for a living, and vocal health issues can often prove 

traumatic and debilitating. Yet the use of data gathering and 

analysis among professional singers remains rare. The work 

reported in this study provides a novel basis for a method via 

which singers, and others who use their voice professionally, 

can make informed investigations into the potential causes of 

those fluctuations, and facilitate preventative medical 

intervention where appropriate. 

Keywords—supervised Machine Learning, convolutional 

neural networks, image classification, vocal health, digital audio 

analysis and signal processing, Western classical singing 

I. INTRODUCTION 

The use of biometric data in professional sports has 
become common practice in recent years. Analysis of these 
data is used to assess and identify the causes of variations in 
athletes’ performance, and to enable early medical 
intervention to prevent injury [1]. By contrast, professional 
singers are reliant on less technologically advanced methods 
of monitoring and analysing their vocal performance, 
conditioning, and health. In a survey conducted amongst 28 
vocal professionals for this study [2], all respondents 
reported experiencing variations in the quality or ease of 
production of their voice, but only one reported having used 
a software tool or application as an approach to identifying 
the possible causes of those variations. The scarcity of 
objective data-driven approaches to vocal performance 
monitoring can result in a reluctance to discuss vocal health 
amongst singers and other vocal professionals, and even 
more harmfully, a disinclination to seek professional medical 
help [3]. 

Existing approaches to Machine Learning (ML) research 
in this area have examined the possibility of using voice data 
gathered from users to quantify various metrics of vocal 
performance, and make assessments of vocal health based on 
monitoring of those metrics [4] - [7]. This study takes an 
alternative approach, ultimately empowering voice users to 
rate and classify their own vocal performance in any given 
recording sample. In this aspect, the task is fundamentally 
different from clinical diagnosis of pathological conditions, 
where the clinician is the ultimate arbiter of vocal health; in 
the context of this study, where a vocal issue may fall short 
of the threshold of a pathological dysfunction, the true 
authority on the condition of the voice must ultimately be the 
singer themselves. This avoids the issue of intra-rater 
variability identified by Gupta et al. [8].  

Taking this approach entails using a single metric 
assessed from each voice sample, rather than extracting 
multiple features, and as a result necessarily requires a larger 
number of files in the training dataset than is typical of 
existing clinical studies in this area. By definition, the 
process will involve supervised ML, ultimately with the 
singers themselves defining the quality of the sound files 
they generate. Care should be taken that only the quality of 
vocal performance is assessed, and not the quality of the 
sound file dependent on other factors such as recording 
equipment and environment. 

This study examines the viability of this task using two 
datasets of audio samples from two sources. The first dataset 
was from the open-access Saarbrücker Stimmdatenbank 
(Saarbrücken Voice Database) [9]. The second dataset was 
generated by a professional opera singer during recording 
sessions for the specific purposes of this study. The use of 
ML in this way to assess the quality of a singer’s voice at a 
given moment is a novel aspect of this study. The study 
limits itself to a binary classification of voice samples as 
being characteristic of healthy or unhealthy vocal production 
(see Fig. 1), in order to establish initially the validity of the 
concept, specifically in the context of orthodox Western 
classical singing technique. A trained model achieving high 
levels of accuracy in this task would suggest that the 
underlying concept is sound and could provide a basis for 
more sophisticated future iterations of the software. 

Four further sections of this paper follow. The second 
section describes the methodology, data and pre-processing 
used in the study. The third section reports the results of the 
tests carried out, the fourth section discusses those results, 
and the fifth section presents a conclusion to this study. 

II. METHOD 

A. Dataset 1 

The first dataset was taken from the Saarbrücken Voice 
Database (SVD), an open-access database created and 
maintained by the Universität des Saarlandes (UdS) [9]. The 
SVD contains audio samples from male and female subjects 
across a range of ages, some in good vocal health, and others 
with a variety of vocal pathologies. A total of 12314 audio 
samples were downloaded, of which 6131 (3000 male, 3131 
female) were pathological samples, and 6183 (2331 male, 
3852 female) were healthy samples. Pathological conditions 
included and their descriptions are given in [2].  

Audio files were downloaded as mono .wav files at a bit 
rate of 800kbps (i.e. around CD-quality). Samples contained 
recordings of the subject phonating on three vowels (in the 
International Phonetic Alphabet (IPA) [ɑ: i: u:]) at a constant 
low, medium or high pitch (presumably relative to each 
subject’s own typical day-to-day speaking pitch). 

 



 

Fig. 1. Process from audio data to classification 

 
Data Pre-processing:  

The data acquired needed to be pre-processed into a 
format suitable for training a convolutional neural network 
(CNN). The SVD documentation provided by UdS states that 
any audio files below a minimum quality level have already 
been removed from the database [10]; for example, all 
samples included in the database contain distinguishable 
phonated sound from the outset. 

The raw audio files were renamed with a prefix denoting 
their classification as healthy or pathological, and saved to 
appropriately labelled folders. Further cleaning and merging 
was then carried out. Duplicate files as a result of subjects 
with multiple pathologies were removed, retaining only one 
copy of the sample file in each case. Files shorter in duration 
than a threshold value of 500ms were discarded. Human 
voices can phonate in the Western classical style to 
frequencies as low as around 60Hz [11], and the consistency 
of vocal vibrations was assumed to be one factor in vocal 
quality. Hence a duration threshold of 500ms was set, 
resulting in a minimum of 30 cycles for this consistency to 
be present to an assessable degree in the samples. All 
remaining audio files in the dataset were trimmed to a 
duration of 500ms. Where the duration was longer than 
500ms, the first 500ms of the file was selected, since the 
clarity of onset of sound is a distinguishing factor of healthy 
vocal production in classical singing.  Finally, a mel-scale 
spectrogram was generated for each file.  

The mel spectrogram has the advantage of separating the 
resonant frequencies of an audio sample in a manner which 
reflects the sensitivity of the human ear more closely than a 
linear scale, allowing for a more well-adjusted visual 
analysis of the resultant image by the CNN’s filters [12]. Via 
the above steps, 11552 audio files were pre-processed and 
used to generate 11552 mel spectrograms, 6183 from healthy 
voice samples and 5369 from pathological voice samples. 
These formed the dataset which would be used to train, 
validate and test the CNN. This full dataset was then 
shuffled. 1600 files (800 healthy and 800 pathological) were 
first randomly selected and removed from the dataset, to be 
kept entirely unseen and reserved for further testing. From 
the remaining files 5600 files (2800 healthy + 2800 
pathological) were selected for training, 2400 files (1200 + 
1200) for validation, and 1000 (500 + 500) for initial testing. 

B. Dataset 2 

Whereas datasets taken from the SVD have been used in 
previous studies of ML, the use of a dataset generated by an 
individual singer to train a bespoke CNN to classify further 
voice samples from that singer is a novel area of study. The 
second dataset was generated during two recording sessions 
capturing voice samples from a professional classical singer, 
a 49-year-old male operatic bass-baritone. Over the course of 

two days, six vowels (IPA [ɑ: ɛ: i: ɔ: u: y: ɜ:]) were recorded 
under home studio conditions with some noise isolation, 
using a Røde NT-USB external microphone, situated facing 
the singer at a distance of approximately 50cm, and 
connected to a 2020 Apple MacBook Air running Audacity 
for macOS version 2.4.2. Audio files were recorded via a 
mono channel using Audacity’s default settings of a sample 
rate of 44.1kHz at a depth of 32-bit float, and saved and 
exported in .wav format with signed 16-bit Pulse Code 
Modulation (PCM) encoding. Each vowel was recorded at 
semitone intervals across a full pitch range of two octaves – 
slightly more on some vowels than others, according to the 
singer’s physical comfort, giving between 72 and 90 samples 
for each vowel. This range was covered twice for each 
vowel: in the first instance, the singer generated the sound 
with a healthy vocal production; the singer then repeated the 
recordings, this time emulating the effect of vocal fatigue or 
other vocal pathologies (which by and large cause 
inflammation of the vocal folds, and consequently a lack of 
consistent contact between the folds) by use of laryngeal 
constriction, providing a rough, “unhealthy” sound. 

Data pre-processing and augmentation then followed. 
Each sample was edited so that it contained distinguishable 
phonated sound from the outset, and was a minimum of 
500ms in duration. In total, 573 healthy and 552 (human-
emulated) unhealthy samples were generated during these 
sessions. This dataset of audio files was then augmented via 
six processes. Firstly, the volume of each file was adjusted. 
Four sets of adjustments were made: increases of 25% and 
50%, and decreases of 25% and 50% of the original volume 
level, providing some basic simulation of variations in 
recording conditions. A fifth augmented set of files was 
produced by adding white noise at 0.5% of the maximum 
noise level to the background of each audio file. Finally, a 
sixth augmented set was produced with a 125ms echo effect 
being added to each audio file. These six augmentations 
produced an augmented dataset of 3438 healthy and 3312 
emulated unhealthy samples. When added to the original 
dataset, this produced a full dataset of 4011 healthy and 3864 
emulated unhealthy samples, giving 7875 files in all. As with 
Dataset 1, this full dataset was shuffled, and a selection made 
of 5000 files for training (2500 healthy + 2500 emulated 
unhealthy), 1000 for validation (500 + 500), 800 for initial 
testing (400 + 400), with 800 files (400 + 400) being set 
aside for the purposes of further unseen testing. 

C. Neural Network (NN) Training 

Image analysis of mel spectrograms by means of a 
trained CNN was selected as a suitable method of classifying 
the audio samples. Western classical singers’ distinctive 
voices are understood to be characterised by the presence of 
a “singer’s formant” – an unusually resonant frequency in the 
voice which enables the singer to be heard unamplified in 
large spaces [13]. The presence and strength of this formant 
in the frequency spectrum is likely to be a significant factor 
in how a “healthy” sound is identified (contrast Fig. 2 and 
Fig. 3, for example), and so analysis of distinct frequencies 
in each sample is necessary. In essence, the task being 
demanded of the CNN is to analyse audio samples in a 
manner as similar as possible to a human listener. Thus, the 
separation of frequencies in mel spectrograms in a manner 
which models the response of the human ear to audio signals 
[12] makes them a very strong contender for analysis of 
audio samples in this context. 



 

 
Fig. 2. Mel spectrogram from healthy voice sample 

 

 
Fig. 3. Mel spectrogram from unhealthy voice sample 

 
 

Fig. 4. Architecture of Convolutional Neural Network 

Fig. 4 presents the CNN architecture. Note that since this 
is a binary classification task, the output layer is a fully 
connected single output dense layer. The process of selecting 
the most appropriate architecture involved a trade-off 
between keeping the system as computationally efficient as 
possible, while still enabling the trained model to achieve 
high levels of accuracy when classifying unseen data, 
particularly data from sources beyond that from which the 
training data was taken.  

III. RESULTS 

All processes were carried out on an MSI Summit E14 

laptop using an 11th generation Intel Core i7-1185G7 

processor running at 3GHz and 15.7GB of usable RAM. 

The Python libraries and versions used for various functions 

can be seen in Table 1.   

 
TABLE 1. Implementation Platform -Versions and Libraries 

 

A. Speed of Computation 

Using the hardware and software as described, typical 
execution times were 22.3s per 100 files for pre-processing 
operations, and 0.5s per 100 files for classification. Given 
that each file was 500ms in duration, this would suggest a 
typical execution time of 22.8s for full processing and 
analysis of 50s of audio data. Consequently, real-time 
analysis of a continuous audio signal would appear to be a 
realistic prospect if required. 

B. NN Model Trained on Dataset 1 Tested on Dataset 

1 files 

Using the files from Dataset 1 to train the CNN over 10 
epochs, a training accuracy of 0.9927 was reached, with a 
training loss of 0.0245, alongside a flawless validation 
accuracy of 1.000 and a validation loss of 0.0003 (see Fig. 
5). This trained model was then tested on selections of the 
800 files reserved for unseen testing. 100 of these files were 
randomly selected, and this was repeated over 100 cycles, 
giving 10000 tests in all. The accuracy achieved in this 
unseen test was 100%, with the results containing 4913 true 
positives and 5087 true negatives. These levels of accuracy 
were typical of those achieved in many previous training 
runs using various other combinations of files from the 
dataset. The highest levels of accuracy and lowest levels of 
loss were reached within 6-8 epochs (Fig. 5), and so a lesser 
number of epochs may well be a more computationally 
efficient choice.  

C. NN Model Trained on Dataset 2 Tested on Dataset 

2 Files 

Using the files from Dataset 2 to train the CNN over 10 
epochs, a training accuracy of 0.9920 was reached, with a 
training loss of 0.0234, alongside a validation accuracy of 
0.9990 and a validation loss of 0.0035 (see Fig. 6). This 
trained model was then tested on selections of the 800 files 
reserved for unseen testing. 100 of these files were randomly 
selected, and this was repeated over 10 cycles, giving 1000 
tests in all. The accuracy achieved in this unseen test was 
100%, with the results containing 494 true positives and 506 
true negatives. Maximum accuracy and minimum loss were 
achieved within 4 epochs (Fig. 6), and so again a lesser 
number of epochs may well be a more computationally 
efficient choice, as well as helping to avoid potentially 
overfitting the model to the training data [14]. 

 

Fig. 5. Training and validation results for Dataset 1 

 

Python Library Version Function 

librosa 0.10.0.post2 Audio manipulation 

matplotlib 3.7.2 Results visualisation 

numpy 1.23.5 Mathematical functions 

scikit-learn 1.3.0 Results analysis 

tensorflow 2.13.0 NN architecture 



 

Fig. 6. Training and validation results for Dataset 2 

 

D. NN Model Trained on Dataset 1 Tested on Dataset 

2 Files 

This experiment involved the NN model that was trained 
on files from Dataset 1 being tested on audio files from 
Dataset 2. The objective was to expose the model to a 
completely new set of files from an entirely different source. 
In the first set of tests, the testing files were selected only 
from the original unaugmented audio files gathered for 
Dataset 2, thus carrying out an assessment of a set of files 
from a single source. A set of 100 cycles of 100 tests was 
carried out, giving 10000 tests in all. An overall accuracy of 
96.90% was returned, with 4884 true positives, 4806 true 
negatives, and 310 false positives. Another set of tests was 
carried out, this time using the full Dataset 2 including the 
augmented audio files, in order to simulate a set of files 
taken from multiple sources. 10000 tests returned an 
accuracy of 99.58%, with 4950 true positives, 5008 true 
negatives, and 42 false positives. 

IV. DISCUSSION 

A. Legitimacy and Scope 

Given that assessment of vocal quality in singing or 
speaking is usually considered a highly subjective matter, it 
might reasonably be asked whether objective, binary 
categorisations can be applied to audio samples of the human 
voice. In a short preliminary survey, a small group of 
professionals with extensive experience of working in 
classical and operatic vocal music was asked to apply just 
such a categorisation to a set of six audio recordings of a 
variety of vowels being sung at a variety of constant pitches, 
played in a randomised order. These recordings were 
generated by a professional classical singer: in three of the 
recordings, the singer used an orthodox, “healthy” classical 
technique; in the other three, the singer emulated the effect of 
an “unhealthy” vocal condition in a similar manner to that 
used in the generation of Dataset 2. The results of the 
assessment were near-unanimous, with three of the samples 
being identified by all six participants as “healthy”, two 
being identified by five of the participants as “unhealthy”, 
with one responding “don’t know”. Within its limited scope, 
the results of this survey suggest that in the context of 
classical operatic singing, there is a clear consensus as to 
what constitutes “healthy” or “unhealthy” vocal production. 

It can therefore reasonably be expected that the 
fundamental concept of classifying vocal production on a 
binary basis is valid, at least within the context of orthodox 
Western classical operatic vocal technique. This study 
limited itself to examination of this area of professional vocal 
production; the question of whether the conclusions are 

transferable to other styles and conventions of music and 
speech remains open for further investigation. Future 
research might explore the applicability of this approach to 
other musical genres or even everyday speech patterns, 
where the line between “healthy” and “unhealthy” vocal 
production may be less distinct. 

B. Critical Evaluation 

The high levels of accuracy achieved in many of these 
tests should be considered in the context of the 
straightforward nature of the procedure being carried out by 
the neural network. A binary healthy/unhealthy classification 
is as simple a task as can be imagined, and accuracies in 
excess of 99% are not atypical in studies of this kind (see for 
example Al-Nasheri et al. [7]). These high accuracy levels 
provide a potential starting point for more sophisticated 
classification regimes. With a large training dataset, there is a 
constant danger of producing an overfitted trained model, 
which will tend to produce lower accuracies when tested on 
unseen data from different sources. Hence it is notable that 
the model trained on Dataset 1 was capable of classifying to 
such a high degree of accuracy sets of unseen files taken 
from Dataset 2 - an entirely different source and produced 
under different conditions from the training dataset. This 
bodes well for the future prospects of designing, building, 
and training neural networks to classify a diversity of real 
voices in a range of real-world situations. 

From an ethical and artistic standpoint, it should also be 
emphasised persistently that the singer providing the data for 
the training of the model should be in control of that data, the 
prime beneficiary of the model and its application, and most 
importantly, the sole arbiter of what constitutes ideal and 
below-ideal quality when it comes to assessing and 
classifying the performance of their own voice. 

V. CONCLUSION 

This paper describes the feasibility of developing an 
audio signal classification tool that distinguishes a healthy 
vocal sample from an unhealthy one. The model developed 
was subjected to training using large datasets from two 
different sources, containing healthy voice signals and 
signals of different vocal pathologies, with promising results. 
As a preliminary study, this interdisciplinary research has the 
potential to have a significant impact on the field of audio 
signal processing, facilitating healthy and unhealthy voice 
classification for early identification and diagnosis of voice 
problems, and thereby opening new possibilities in vocal 
healthcare, rehabilitation, and care of the professional voice. 
Some further investigation would be desirable as to the 
reproducibility of the results returned by this study, 
particularly looking at the range of files included in the 
testing datasets, and also the inclusion of files with a greater 
diversity, for example in types of voice, augmentation, and 
methods of collection. Audio samples collected under 
circumstances which more closely model real-world 
performance situations might also present insightful 
challenges to the trained models, leading to further more 
robust and versatile implementations of this initial concept. 
The high levels of accuracy achieved in the binary 
classification suggests that the underlying novel concept of 
the study, using Machine Learning to assess the quality of a 
singer’s voice at a given moment, is valid, and could form 
the basis for further development of the concept. 
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