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CHARACTER EXPANSION OF KAC–MOODY CORRECTION FACTORS

KYU-HWAN LEE?, DONGWEN LIU, AND THOMAS OLIVER†

Abstract. A correction factor naturally arises in the theory of p-adic Kac–Moody groups. In
this paper, we expand the correction factor into a sum of irreducible characters of the underlying
Kac–Moody algebra. We derive a formula for the coefficients which lie in the ring of power series
with integral coefficients. In the case that the Weyl group is a universal Coxeter group, we show
that the coefficients are actually polynomials.

1. Introduction

Let W be a Coxeter group, and consider its Poincaré series

χ(q) :=
∑
w∈W

q`(w),

where q is an indeterminate and `(w) is the length of w. R. Steinberg showed in [St68] that the
series χ(q) represents a rational function in q. When W is the Weyl group of an irreducible, reduced,
finite root system Φ, I.G. Macdonald [M72] found the following identity:

(1.1)
∑
w∈W

∏
α∈Φ+

(
1− qe−wα

1− e−wα

)
= χ(q),

where Φ+ is the set of positive roots and eβ is a formal exponential associated to β in the root
lattice Q. Macdonald’s identity reflects the geometry of the flag manifold.

A generalization of the left-hand side of (1.1) to a Kac–Moody root system Φ would be

M(q) :=
∑
w∈W

∏
α∈Φ+

(
1− qe−wα

1− e−wα

)m(α)

,

where m(α) is the multiplicity of α. The identity (1.1) is no longer true for M(q), and so it is
interesting to compute the correction factor 1M(q)/χ(q). Macdonald [M03] computed this quotient
for the affine Kac–Moody case. The computation turns out to be equivalent to the Macdonald
constant term conjecture [M82], which was proven by I. Cherednik in [Ch95].

The correction factor appears in the study of p-adic affine Kac–Moody groups, namely in the
formal computation of Fourier coefficients of Eisenstein series and in the study of corresponding
Hecke algebras. For example, it was shown by Braverman–Finkelberg–Kazhdan that this correction
factor appears in the Gindikin–Karplevich formula for affine Kac–Moody groups [BFK] (see also

Date: June 14, 2021.
2010 Mathematics Subject Classification. Primary 17B22, 17B67; Secondary 05E10.
?This work was partially supported by a grant from the Simons Foundation (#318706).
†This article arises from research funded by the John Fell Oxford University Press Research Fund.
1A slight modification of this quotient, denoted by m, is what Macdonald called the constant term in the affine

case and is also called the “correction factor” in the literature (see (2.10) for a precise definition).
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[BGKP, BKP, GR14, BPGR16]). The correction factor in the general case was studied by Muthiah–
Puskas–Whitehead [MPW]. They encoded the data of the correction factor into a collection of
polynomials indexed by positive imaginary roots and derived formulas for these polynomials.

In this paper, we study the correction factorM(q)/χ(q) for arbitrary Kac–Moody root systems,
which we write as a sum of characters ch (L(λ)) of integrable irreducible representations L(λ) of
the Kac–Moody algebra g with root system Φ. As the first main result of this paper, we prove that
the sum is supported on λ ∈ P+ ∩Q−im, where P+ is the set of dominant integral weights and Q−im
is the cone generated by negative imaginary roots. More precisely, we obtain

Theorem 1.1. Given a Kac–Moody algebra g, let P+ denote its set of dominant integral weights
and Q−im its negative imaginary root cone. Then there are dλ ∈ Z[[q]], λ ∈ P+ ∩Q−im, such that

(1.2) M(q)/χ(q) =
∑

λ∈P+∩Q−im

dλ ch (L(λ)) .

Actually, we prove this result for any W -invariant functions with support in the negative root
cone Q− (see Theorem 2.13). We recover (1.1) as an immediate consequence, since P+∩Q−im = {0}
for finite root systems. This result also explains why the known formulas in the affine case only
involve imaginary roots.

The coefficients dλ are related to the function H(µ; q), µ ∈ Q, which was introduced by Kim and
Lee [KL11, KL12] in a study of p-adic integrals using canonical/crystal bases from the context of
Weyl group multiple Dirichlet series ([Bu12] for a survey). See Definition 3.1 for the definition of
H(µ; q). We prove the following formula (Theorem 3.5):

(1.3) χ(q) dλ =
∑
w∈W

(−1)`(w)H(−w ◦ λ; q),

where w ◦ λ := w(λ+ ρ)− ρ with a Weyl vector ρ.

Using (1.3), one can compute dλ explicitly. In particular, in the rank 2 hyperbolic case, we
observe that they are actually polynomials in q. Generalizing this observation, we prove that dλ
are always polynomials when W is a universal Coxeter group, or equivalently, when aijaji ≥ 4 for
all i, j ∈ I with the generalized Cartan matrix A = (aij)i,j∈I of g. Formally, we obtain

Theorem 1.2. Assume that the Weyl group W of g is a universal Coxeter group. Then we have
dλ ∈ Z[q] for all λ ∈ P+ ∩Q−im.

It would be very interesting to see if dλ are polynomials for arbitrary Kac–Moody root sys-
tems. We expect that these coefficients carry important combinatorial, representation-theoretic
information, which is yet to be revealed. We hope that we can investigate these issues in the near
future.

The main text proceeds as follows. In Section 2 we review standard background material and
construct a large ring containingM(q) equipped with a W -action. We conclude with the statement
that W -invariant elements admit a character expansion, which applies in particular to M(q). In
Section 3 we compute the character coefficients in terms of the function H. Though the formula
deduced involves an infinite sum, it exhibits a large amount of cancellation and in Section 4 we
show that it is in fact a polynomial when W is a universal Coxeter group. In the Appendix, we
give compute the coefficients for certain small imaginary roots of a rank 2 hyperbolic Kac–Moody
algebra.
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2. Existence of character coefficients

We will use the conventions and terminology of [Ka90]. Let I = {1, · · · , n} and let A be
a generalized Cartan matrix with realisation (h,Π,Π∨). In particular, the elements of the set
Π = {α1, . . . , αn} ⊂ h∗ (resp. Π∨ = {α∨1 , . . . , α∨n} ⊂ h) are the simple roots (resp. simple coroots).
The root lattice Q (resp. positive root cone Q+) is the Z-span (resp. Z≥0-span) of Π. We set
Q− = −Q+. A partial order ≥ on h∗ is defined by µ ≥ ν if µ− ν ∈ Q+. We say α ∈ h∗ is positive
(resp. negative) if α > 0 (resp. α < 0).

Let g be the Kac–Moody algebra associated to A, which admits the root space decomposition
g = ⊕α∈Qgα, with g0 = h. Given α ∈ Q, its multiplicity m(α) is the dimension of the vector space
gα. A non-zero α ∈ Q is a root if m(α) 6= 0. We will denote the set of roots by Φ, and the set of
positive (resp. negative) roots by Φ+ (resp. Φ−).

Let W denote the Weyl group of g, which is the subgroup of Aut (h∗) generated by the simple
reflections si, i ∈ I. A root α ∈ Φ is called real if there is w ∈ W such that wα is a simple
root. A root that is not real is called imaginary. If α is real, then m(α) = 1. The set of real
(resp. imaginary) roots is denoted by Φre (resp. Φim), and the set of positive real (resp. positive
imaginary) roots is denoted by Φ+

re (resp. Φ+
im).

Let q denote a formal variable, and let Z[[q]] be the ring of power series in q with integer
coefficients. Recall that f(q) ∈ Z[[q]] is invertible if and only if the constant term f(0) of f is equal
to ±1. The inverse of a unit in Z[[q]] will be written as a fraction whenever it is convenient. For
example, we write

1

1− q
= 1 + q + q2 + · · · .

Example 2.1. The Poincaré series of the Weyl group W is defined as follows:

(2.1) χ(q) =
∑
w∈W

q`(w) ∈ Z[[q]],

where the length `(w) of w ∈ W is the minimal ` such that w = si1 · · · si` is a product of simple
reflections. As the only word of length 0 is the identity element, the constant term of χ(q) is 1.
Thus, χ(q) ∈ Z[[q]]×.

Notation. To each λ ∈ h∗, we associate a formal exponential denoted by eλ, and define eλeµ =
eλ+µ for λ, µ ∈ h∗. Let Z((q)) denote the ring of Laurent series with integral coefficients, and let
R be a subring of Z((q)). We denote by S(R) the additive group of formal sums

∑
λ∈h∗ aλe

λ with
aλ ∈ R for all λ ∈ h∗.

Definition 2.2. The support of a formal sum
∑

λ∈h∗ aλe
λ ∈ S(R) is the set of λ ∈ h∗ such that

aλ 6= 0.

If f =
∑

λ∈Q aλe
λ is a unit of S(R) and has support in a translate of Q−, then f has a unique

product expansion as in [MPW, Proposition 2.2]:

(2.2)
∑
λ∈Q

aλe
λ = ueλ0

∏
λ∈Q−\{0}

∏
n∈Z

(1− qneλ)m(λ,n),

for some u ∈ R×, λ0 ∈ Q and m(λ, n) ∈ Z such that, for every λ, the set {n ∈ Z : m(λ, n) 6= 0} is
bounded below.
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Definition 2.3 (Section 2.3 in [MPW]). A product of the form (2.2) is called a good product with
coefficients in R if all λ appearing in its factors are multiples of roots α ∈ Φ, and the set of factors
corresponding to any real root α ∈ Φre is finite. We will denote by G(R) the multiplicative group
of good products with coefficients in R.

An element of G(R) expands to a formal sum in S(R) by definition. The notion of a good product
is introduced, in part, to define the action of W as below.

Definition 2.4. We define an action of W on G(R) by extending the following action on the factors
of (2.2) multiplicatively:

(2.3) w(1− qneλ) =

{
1− qnew(λ), w(λ) < 0,

(−qnew(λ))(1− q−ne−w(λ)), w(λ) > 0,

for w ∈ W . Given f ∈ G(R), we will sometimes write fw = w(f). We will denote by GW (R) the
ring of W -invariant elements of G(R).

Define the negative imaginary cone Q−im to be the cone generated by negative imaginary roots.

Then we have Q−im =
⋂
w∈W w(Q−). Thus if f ∈ GW (R) is supported on Q−, then it is in fact

supported on Q−im. It was noted in [MPW] that, for w ∈W and f =
∑

λ∈h∗ aλe
λ ∈ G(R), we have

(2.4) w(f) =
∑
λ∈h∗

aλe
wλ.

Remark 2.5. The set of f ∈ S(R) supported on Q− is not closed under the action of W defined
by (2.4), but G(R) is.

The basic good product in this paper is

(2.5) ∆ :=
∏
α∈Φ+

(
1− qe−α

1− e−α

)m(α)

.

Here 1−qe−α
1−e−α = 1 +

∑
n≥1(1− q)e−nα, and it is clear that ∆ ∈ G (Z[q]).

Since m(α) = 1 for α ∈ Φ+
re, we set

(2.6) ∆re :=
∏
α∈Φ+

re

(
1− qe−α

1− e−α

)
, ∆im :=

∏
α∈Φ+

im

(
1− qe−α

1− e−α

)m(α)

so that we have

∆ = ∆re∆im.

Finally, define

(2.7) M(q) :=
∑
w∈W

∆w.

Clearly, M(q) is W -invariant since it is the sum of W -action on ∆.

Lemma 2.6. The formal sum M(q) is a W -invariant good product with coefficients in Z[[q]], i.e.
M(q) ∈ GW (Z[[q]]). Moreover, M(q) is supported on Q−im and has the constant term equal to χ(q).
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Proof. Since the set Φ+
im is W -invariant, and m(wα) = m(α) for w ∈ W and α ∈ Φ, we have

∆w
im = ∆im. It follows that ∆w = (∆re∆im)w = ∆w

re∆im. By Definition 2.4, we have

w

(
1− qe−α

1− e−α

)
=


1− qe−w(α)

1− e−w(α)
if w(α) > 0,

qe−w(α)(1− q−1ew(α))

e−w(α)(1− ew(α))
=
q(1− q−1ew(α))

1− ew(α)
if w(α) < 0,

for w ∈W and α ∈ Φ+
re. One can immediately see that the sum M(q) is supported on Q−. Since

(2.8)
1− qe−α

1− e−α
= 1 +

∑
n≥1

(1− q)e−nα and
q(1− q−1e−α)

1− e−α
=
q − e−α

1− e−α
= q −

∑
n≥1

(1− q)e−nα,

we see that ∆w is a good product with coefficients in Z[q], i.e. ∆w ∈ G(Z[q]).

Now we check that the coefficient of e−β inM(q) =
∑

w∈W ∆w is an element of Z[[q]] for β ∈ Q+.
For w ∈W , define

Φ(w) := {α ∈ Φ+
re | w(α) < 0} = Φ+ ∩ w−1Φ−.

It is well-known that |Φ(w)| = `(w). Thus we have

∆w
re =

∏
α∈Φ(w−1)

(
q − e−α

1− e−α

) ∏
α∈Φ+

re\Φ(w−1)

(
1− qe−α

1− e−α

)

= q`(w)
∏

α∈Φ(w−1)

(
1− q−1e−α

1− e−α

) ∏
α∈Φ+

re\Φ(w−1)

(
1− qe−α

1− e−α

)
.(2.9)

For β ∈ Q+, the coefficient of e−β in ∆w = ∆w
re∆im, a priori an element in Z[[q]], is of the form

q`(w)pβ,w

for some pβ,w ∈ Z((q)). Recall the height of β =
∑n

i=1miαi ∈ Q+, mi ≥ 0, is defined to be

ht(β) :=

n∑
i=1

mi.

It is easy to observe from (2.8) and (2.9) the crude estimate that the degrees of pβ,w in q−1 and q

are both bounded by ht(β). Thus we have pβ,w ∈ Z[q, q−1]. Moreover qm appears in q`(w)pβ,w only
if `(w) ≤ m+ ht(β). Since there are only finitely many w ∈W of a given length, we see that

M(q) =
∑
w∈W

∆w =
∑
β∈Q+

(∑
w∈W

q`(w)pβ,w

)
e−β

with the coefficient of e−β given by a well-defined sum∑
w∈W

q`(w)pβ,w ∈ Z[[q]].

In particular, when β = 0, we have p0,w = 1 for all w ∈W and the constant term of M(q) is equal

to
∑

w∈W q`(w) = χ(q).

We have already seen that M(q) is supported on Q− at the beginning of the proof. Since M(q)
is also W -invariant, it is supported on Q−im. (See the paragraph after Definition 2.4.)
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Using [MPW, Proposition 2.2], we may write M(q) as a product of the form (2.2) with λ0 = 0.
Since M(q) is supported on Q−im, no factor corresponding to a real root arises in the product and
hence M(q) is a good product. �

Remark 2.7. (1) We have the following identity in GW (Z[[q]]):

(2.10) mM(q) = ∆imχ(q),

where m is as defined in [MPW, equation (3.5)]. Each of m−1, ∆im and M(q) expands to a formal
sum supported on Q−im.

(2) In the paper [BPGR19], it was pointed out that M(q) is not an element of GW (Z[q, q−1])
but an element of GW (Z((q))). As a refinement, Lemma 2.6 shows that M(q) ∈ GW (Z[[q]]).

Now we move on to study a character expansion of an element in GW (Z[[q]]).

Definition 2.8. Fix a Weyl vector ρ ∈ h∗, i.e. a vector satisfying ρ(α∨i ) = 1, for all i ∈ I. The
circle action2 of W on h∗ is defined by

(2.11) w ◦ λ = w(λ+ ρ)− ρ.

Example 2.9. We have

(2.12) w ◦ 0 = wρ− ρ,

which can be written as a sum of negative roots. Indeed, one has

(2.13) ρ− wρ =
∑

α∈Φ(w−1)

α,

where, for w ∈W ,

(2.14) Φ(w) := Φ+ ∩ w−1Φ−.

Denote by P the weight lattice of g, and by P+ ⊂ P the subset of dominant integral weights.
For λ ∈ P , define

πλ :=

∑
w∈W (−1)`(w)ew(λ+ρ)∑
w∈W (−1)`(w)ewρ

.

Recall the denominator identity

(2.15)
∑
w∈W

(−1)`(w)ewρ−ρ =
∏
α∈Φ+

(1− e−α)m(α).

For λ ∈ P , define

(2.16) ξλ :=
∑
w∈W

(−1)`(w)ew◦λ.

Lemma 2.10.

(1) For w ∈W , we have

w

 ∏
α∈Φ+

(1− e−α)m(α)

 = (−1)`(w)eρ−wρ
∏
α∈Φ+

(1− e−α)m(α).

2This action is slightly different to the action with the same notation in [KL12].
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(2) For λ ∈ P and w ∈W , we have

ξλ = (−1)`(w)ξw◦λ,

πλ = (−1)`(w)πw◦λ.

Proof. (1) From the denominator identity (2.15), we have

w

 ∏
α∈Φ+

(1− e−α)m(α)

 =
∑
w1∈W

(−1)`(w1)eww1ρ−wρ

=
∑
w1∈W

(−1)`(w)+`(ww1)eww1ρ−ρeρ−wρ

= (−1)`(w)eρ−wρ
∑
w1∈W

(−1)`(ww1)eww1ρ−ρ

= (−1)`(w)eρ−wρ
∏
α∈Φ+

(1− e−α)m(α).

(2) Let w ◦ λ = µ. Then w(λ+ ρ) = µ+ ρ. Now we have∑
w1∈W

(−1)`(w1)ew1(λ+ρ) =
∑
w1∈W

(−1)`(w)+`(w1w−1)ew1w−1w(λ+ρ)

= (−1)`(w)
∑
w1∈W

(−1)`(w1w−1)ew1w−1(µ+ρ).

Multiplying both sides by e−ρ, we get ξλ = (−1)`(w)ξµ = (−1)`(w)ξw◦λ. Dividing both sides by∑
w1∈W (−1)`(w1)ew1ρ−ρ, we obtain πλ = (−1)`(w)πw◦λ. �

Consider the following subset of Q−:

(2.17) Q′ :=
⋂
w∈W

w ◦Q−.

The Weyl group W acts on Q′ by the circle action, and so Q−im ⊂ Q′.

Lemma 2.11. Assume that λ ∈ Q′. Then the following hold.

(1) There exists a unique µ ∈ Q− and v ∈W such that µ+ ρ ∈ P+ and v ◦ λ = µ.
(2) The stabilizer subgroup

W ◦λ := {w ∈W : w ◦ λ = λ}

is generated by reflections in W .
(3) If λ ∈ P+ ∩Q−, then W ◦λ = {1}.

Proof. Write λ =
∑

imiαi with mi ≤ 0 for all i. If λ + ρ ∈ P+, there is nothing to prove. If not,
there exists j such that λ(α∨j ) ≤ −2. We have

sj ◦ λ = sj(λ+ ρ)− ρ = λ− (λ(α∨j ) + 1)αj ∈ Q−.

Since λ(α∨j ) + 1 < 0, we have mj < mj − (λ(α∨j ) + 1) ≤ 0. If (sj ◦ λ) + ρ is in P+, we are done.
Otherwise, repeat the process with replacing λ with sj ◦λ. Since the coefficients are increasing and
bounded above by 0, this process must end.
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Assume that λ + ρ ∈ P+. Suppose that w ◦ λ = µ and µ + ρ ∈ P+ for w = si1si2 · · · si` 6= 1, a
reduced expression. Then we have w(λ+ρ) = µ+ρ. Since (λ+ρ)(α∨i`) ≥ 0, we have (µ+ρ)(w(α∨i`)) ≥
0. Since w = si1si2 · · · si` is a reduced expression, we get w(α∨i`) < 0, and (µ+ρ)(w(α∨i`)) ≤ 0. Thus

(µ+ ρ)(w(α∨i`)) = 0 and (λ+ ρ)(α∨i`) = 0. Hence si`(λ+ ρ) = λ+ ρ and si` ◦ λ = λ. By induction,

we obtain µ = λ, which completes a proof of (1). We have also shown that the subgroup W ◦λ is
generated by simple reflections for λ+ ρ ∈ P+.

Assume that λ ∈ P+ ∩ Q−, and suppose that w ◦ λ = λ for w = si1si2 · · · si` 6= 1, a reduced
expression. Then (λ+ ρ)(α∨i`) > 0 and the above argument leads to a contradiction. Thus we must

have w = 1. This proves (3).

Now assume that λ ∈ Q′. By Lemma 2.11(1), there exists v ∈ W such that v ◦ λ + ρ ∈ P+.
Then W ◦v◦λ is generated by simple reflections si. Hence W ◦λ is generated by v−1siv, which are
reflections. This completes a proof of (2). �

Lemma 2.12. Assume that λ ∈ Q′. The series ξλ ∈ G(Z) defined in (2.16) is non-zero if and only
if the stabilizer subgroup W ◦λ of λ under the circle action is trivial.

Proof. Suppose that ξλ = 0. Then the term eλ cancels with (−1)`(w)ew◦λ for some w 6= 1. In
particular, λ = w ◦ λ, and the stabilizer subgroup W ◦λ is not trivial.

Conversely, assume that the stabilizer subgroup W ◦λ is not trivial. By Lemma 2.11 there exists

a reflection s ∈W ◦λ such that s ◦ λ = λ. It follows from Lemma 2.10 that ξλ = (−1)`(s)ξs◦λ = −ξλ.
Hence ξλ = 0. �

Given λ ∈ P+, let L(λ) denote the irreducible highest weight module of g with highest weight λ.
The module L(λ) admits a weight space decomposition L(λ) = ⊕µ∈h∗Lµ. The character ch(L(λ))
of L(λ) is defined by

(2.18) ch(L(λ)) =
∑
µ∈h∗

(dimLµ) eµ.

If λ ∈ P+, then by [Ka90] we have

(2.19) πλ = ch (L(λ)) .

Theorem 1.1 is a consequence of the following result.

Theorem 2.13. Given a Kac–Moody algebra g, let P+ denote its set of dominant integral weights
and Q−im its negative imaginary root cone. If f ∈ GW (Z[[q]]) is such that supp(f) ⊂ Q−, then there

are cλ ∈ Z[[q]], λ ∈ P+ ∩Q−im, such that

(2.20) f =
∑

λ∈P+∩Q−im

cλ ch (L(λ)) .

Proof. Since f is supported on Q−, we may write the following product as a sum supported on Q−:

(2.21) Ξ = f ·
∏
α∈Φ+

(1− e−α)m(α) =
∑
β∈Q−

cβe
β.
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As f is invariant under W , it follows from Lemma 2.10(1) that

(2.22) w

f · ∏
α∈Φ+

(1− e−α)m(α)

 =
∑
β∈Q−

cβe
wβ

= (−1)`(w)eρ−wρf ·
∏
α∈Φ+

(1− e−α)m(α) =
∑
γ∈Q−

(−1)`(w)cγe
ρ−wρ+γ .

Comparing coefficients, we see that for β ∈ Q−,

cβ = (−1)`(w)cw◦β.

Moreover, cβ = 0 unless β ∈ Q′, i.e. Ξ is supported on Q′. If λ + ρ ∈ P+ and λ 6∈ P+ ∩Q− for

λ ∈ Q−, then there exists α∨i such that (λ+ρ)(α∨i ) = 0 and si◦λ = λ. Thus ξλ = 0 by Lemma 2.12.

By Lemma 2.11(1) and the above argument, we group the terms of equation (2.21) to get a sum
over P+∩Q−, which is the subset of representatives λ of the ◦-action of W on Q′ such that ξλ 6= 0:

(2.23) Ξ =
∑
β∈Q′

cβe
β =

∑
λ∈P+∩Q−

cλξ
λ.

On the other hand, for λ ∈ P+, Weyl’s character formula implies

(2.24) ξλ = ch (L(λ))
∏
α∈Φ+

(1− e−α)m(α).

The result follows from combining (2.23) with (2.24), noting that f is in fact supported on Q−im. �

Remark 2.14. As mentioned in the introduction, we recover (1.1) as an immediate consequence
of Theorem 2.13, since P+ ∩ Q−im = {0} for finite root systems. In the affine case, we have

P+ ∩ Q−im = Z≤0 · δ with the minimal positive imaginary root δ, and the theorem shows that the
right-hand side of (2.20) only involves imaginary roots.

3. A formula for the character coefficients

In this section, we derive a formula for the coefficients in the expansion of M(q) into a sum of
characters. We begin with the definition of a function which will play an important role in what
follows.

Definition 3.1 ([KL11, KL12]). The function H : Q+ → Z[q] is defined by the generating series
in G(Z[q]):

(3.1)
∑
µ∈Q+

H(µ; q)e−µ =
∏
α∈Φ+

(1− qe−α)m(α),

where m(α) is the multiplicity of α. When we do not need to specify q, we will frequently write
H(µ) = H(µ; q) .

Remark 3.2. In [KL11, KL12], the function H was denoted by Hρ. See (2-13) in [KL12].

Definition 3.3. Let µ ∈ Q+, and P := {(α; i) : α ∈ Φ+, i = 1, 2, . . . ,m(α)}. An admissible
partition of µ is a finite set p ⊂ P such that

∑
(α,i)∈p α = µ. Let P(µ) be the set of admissible

partitions of µ. Given p ∈ P(µ), we will refer to an element (α, i) ∈ p as part of p, and denote the
number of parts in p by |p|.

Examples of admissible partitions are given in Appendix A.
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Lemma 3.4. We have

(3.2) H(µ) =
∑

p∈P(µ)

(−q)|p|.

Proof. Equation (3.2) follows from expanding the product in equation (3.1) and computing the
coefficient of e−µ. �

We now prove equation (1.3), which we state below as a theorem for ease of reference.

Theorem 3.5. For λ ∈ P+ ∩Q−im, define dλ by equation (1.2). Then we have

(3.3) χ(q) dλ =
∑
w∈W

(−1)`(w)H(−w ◦ λ).

Proof. By definition, we have

M(q) =
∑
w∈W

∆w =
∑
w∈W

∏
α∈Φ+

(1− qe−wα)m(α)

(1− e−wα)m(α)

=
∑
w∈W

∑
µ∈Q+ H(µ)e−wµ∏

α∈Φ+(1− e−wα)m(α)

=
∑
µ∈Q−

H(−µ)
∑
w∈W

ewµ∏
α∈Φ+(1− e−wα)m(α)

.

Using Lemma 2.10 (1), we deduce that

M(q) =
1∏

α∈Φ+(1− e−α)m(α)

∑
µ∈Q−

∑
w∈W

(−1)`(w)H(−µ)ew◦µ.

As in the proof of Theorem 2.13, put

Ξ :=M(q)
∏
α∈Φ+

(1− e−α)m(α) =
∑
µ∈Q−

∑
w∈W

(−1)`(w)H(−µ)ew◦µ.

Since Ξ is supported on Q′, we may rewrite the above double sum as

Ξ =
∑
β∈Q′

∑
w∈W

(−1)`(w)H(−w ◦ β)eβ.

The theorem then follows from (2.23). �

Example 3.6. Given w ∈W , write w = si1 · · · si` as a reduced expression. If Φ(w−1) is as defined
in equation (2.14), then

(3.4) Φ(w−1) =
{
αi1 , si1(αi2), . . . , si1 · · · si`−1

(αi`)
}
,

and

(3.5) w ◦ 0 = ρ− wρ =
∑

α∈Φ(w−1)

α = αi1 + si1(αi2) + · · ·+ si1 · · · si`−1
(αi`).

Suppose that

ρ− wρ = β1 + β2 + · · ·+ βk

for some positive roots β1, . . . , βk ∈ Φ+. Note that we have

si1(ρ− wρ) 6∈ Q+.
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Since si1 keeps Φ+ except αi1 , one of the βi’s must be equal to αi1 . Then si1(ρ−wρ−αi1) is equal
to ρ−w′ρ where w′ = si2 · · · si` . Arguing by induction on `(w), we deduce that (3.5) is the unique
decomposition of w ◦ 0 into a sum of positive roots. Now it follows from (3.2) that

(3.6) H(−w ◦ 0) = H(ρ− wρ) = (−q)`(w),

and so the formula (3.3) yields

d0 = 1.

Lemma 3.7. For all nonzero λ ∈ P+ ∩Q− and w ∈W , the coefficients of H(−w ◦λ) sum to zero.

Proof. From [KL12, Lemma 3.18], we have

(3.7) H(µ; 1) =

{
(−1)`(w), if ρ− wρ = µ for some w ∈W,
0, otherwise.

Therefore, it suffices to show that

(3.8) − w ◦ λ = −(w(λ+ ρ)− ρ) = ρ− w(λ+ ρ) 6= ρ− vρ

for any v ∈W . Equation (3.8) is equivalent to λ+ ρ 6= w−1vρ, and so it is enough to show, for any
v ∈W ,

λ 6= vρ− ρ.
If v = 1 there is nothing to prove. Consider an arbitrary v 6= 1, and write v−1 as a reduced word
si1 · · · sik . Then we have

ρ(v−1α∨ik) < 0,

and

(vρ− ρ)(α∨ik) = vρ(α∨ik)− ρ(α∨ik) = ρ(v−1α∨ik)− 1 ≤ −2.

Thus vρ− ρ /∈ P+. Since λ ∈ P+, we have λ 6= vρ− ρ. �

Definition 3.8. Let λ ∈ Q− and

(3.9) p = {(β1;m1), (β2;m2), . . . , (βt;mt)} ∈ P(−λ).

Given w ∈W , we define

(3.10) m(p, w) = t− 2×#{(βi; j) ∈ p : wβi < 0}.

With p as in equation (3.9), we define

φi(p) :=

{
{(siβ1;m1), . . . , (siβt;mt), (αi; 1)}, if βj 6= αi for any j,

{(siβ1;m1), . . . , (siβj−1;mj−1), (siβj+1;mj+1), . . . , (siβt;mt)}, if βj = αi for some j.

Since

−si ◦ λ = −si(λ+ ρ) + ρ = −si(λ) + αi,

we see that φi(p) ∈ P(−si ◦ λ). In other words, φi defines a map P(−λ)→ P(−si ◦ λ). Replacing
λ with si ◦λ, we obtain similarly a map from P(−si ◦λ) to P(−λ). One can check that these maps
are inverses to each other, and so the map φi is a bijection from P(−λ) to P(−si ◦ λ).

Lemma 3.9. If `(wsi) = `(w) + 1, then

m(φi(p), w) = m(p, wsi) + 1.
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Proof. Consider φi(p) = {(β1;m1), . . . , (βt;mt)} ∈ P(−λ). First assume that

p = {(siβ1;m1), . . . , (siβt;mt), (αi; 1)}.

By applying wsi to the first components, we get wβ1, . . . , wβt,−wαi. Since −wαi < 0 from the
condition `(wsi) = `(w) + 1, we obtain m(p, wsi) = m(φi(p), w) + 1 − 2 = m(φi(p), w) − 1. Next
assume that

p = {(siβ1;m1), . . . , (siβj−1;mj−1), (siβj+1;mj+1), . . . , (siβt;mt)}.

In this case, we have βj = αi, and obtain m(p, wsi) = m(φi(p), w)− 1. �

Proposition 3.10. If λ ∈ Q− and w ∈W , then

(3.11) (−1)`(w)H(−w ◦ λ) = q`(w)
∑

p∈P(−λ)

(−q)m(p,w).

Proof. Write w = si1si2 · · · si` as a reduced expression. By Lemma 3.9, we have

H(−si1si2 · · · si` ◦ λ) =
∑

p∈P(−si1si2 ···si`◦λ)

(−q)m(p,id)

=
∑

p∈P(−si2 ···si`◦λ)

(−q)m(φsi1
(p),id)

=
∑

p∈P(−si2 ···si`◦λ)

(−q)m(p,si1 )+1

=
∑

p∈P(−si3 ···si`◦λ)

(−q)m(φsi2
(p),si1 )

=
∑

p∈P(−si3 ···si`◦λ)

(−q)m(p,si1si2 )+2

= · · · =
∑

p∈P(−λ)

(−q)m(p,si1 ···si` )+`,

which amounts to the identity (3.11). �

4. Polynomiality

In this section we prove Theorem 1.2. That is, we show that dλ is a polynomial when the Weyl
group W of g is a universal Coxeter group.

Assume that W be a universal Coxeter group of rank n ∈ Z>0. By definition, the group W is
isomorphic to the free product of n-copies of Z/2Z. Denote its generators by si, i = 1, . . . , n. The
identity element is the only word of length 0, and for any ` ≥ 1 there are n(n − 1)`−1 words of
length `. We thus compute the Poincaré series of W to be:

χ(q) =
∑
w∈W

q`(w) = 1 + nq
∞∑
k=0

((n− 1)q)k = 1 +
nq

1− (n− 1)q
=

1 + q

1− (n− 1)q
∈ Z[[q]].

Given λ ∈ P+∩Q−im, our aim is to establish the polynomiality of

(4.1) dλ =

∑
w∈W (−1)`(w)H(w ◦ λ)

χ(q)
=

(1− (n− 1)q)
∑

w∈W (−1)`(w)H(w ◦ λ)

1 + q
∈ Z[[q]].

Fix λ ∈ P+∩Q−im, and define

(4.2) N = max{`(w) + 1 : (wαi; j) is a part of any p ∈ P(−λ) for 1 ≤ i ≤ n, j ∈ Z and w ∈W}.
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Since W is a universal Coxeter group, the number N is well-defined. For the time being, fix an
arbitrary element v ∈W of length N . Let Wv be the set of elements in W whose reduced word has
v as its rightmost factor. For p ∈ P(−λ), define

(4.3) m(p,Wv) = |p| − 2×# {(βi; j) ∈ p : wβi < 0 for some w ∈Wv} .

Write

(4.4)
∑

p∈P(−λ)

(−q)m(p,Wv) =

r∑
k=0

akq
k

for some ak ∈ Z and r ≥ 0, and define

Qv :=
r−1∑
k=0

(
(n− 1)ka0 + (n− 1)k−1a1 + (n− 1)k−2a2 + · · ·+ ak

)
qk,(4.5)

Av := (n− 1)ra0 + (n− 1)r−1a1 + (n− 1)r−2a2 + · · ·+ ar.(4.6)

It follows from (3.11) that∑
w∈Wv

(−1)`(w)H(−w ◦ λ) =
∑
w∈Wv

q`(w)
∑

p∈P(−λ)

(−q)m(p,w)

= qN
(
Qv +Av q

r
(
1 + (n− 1)q + (n− 1)2q2 + · · ·

))
= qN

(
Qv +Av

qr

1− (n− 1)q

)
,

and so

(4.7)
∑
w∈W

(−1)`(w)H(−w ◦ λ)

=
∑

w∈W,`(w)<N

q`(w)
∑

p∈P(−λ)

(−q)m(p,w) + qN
∑

v∈W,`(v)=N

(
Qv +Av

qr

1− (n− 1)q

)
.

Proposition 4.1. For any w ∈W , the sum∑
w∈W

(−1)`(w)H(−w ◦ λ)

is divisible by 1 + q.

Proof. Let N be defined as in (4.2), and v ∈ W be an arbitrary element of length N . For any
w ∈W , we have ∑

p∈P(−λ)

1m(p,w) = |P(−λ)|.

Therefore ∑
w∈W
`(w)<N

(−1)`(w)
∑

p∈P(−λ)

1m(p,w) = |P(−λ)|
∑
w∈W
`(w)<N

(−1)`(w).

Since ∑
w∈W
`(w)<N

(−1)`(w) =

N−1∑
k=0

(−1)k#{w ∈W : `(w) = k},
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and

#{w ∈W : `(w) = k} =

{
1, k = 0

n(n− 1)k−1, k > 0,

we deduce∑
w∈W
`(w)<N

(−1)`(w) = 1− n+ n(n− 1)− n(n− 1)2 + · · ·+ (−1)N−1n(n− 1)N−2

= 1− n
[
1 + (−1)(n− 1) + (−1)2(n− 1)2 + · · ·+ (−1)N−2(n− 1)N−2

]
= 1− n

[
1 + (1− n) + (1− n)2 + · · ·+ (1− n)N−2

]
= 1− n

(
1− (1− n)N−1

1− (1− n)

)
= (1− n)N−1.

Combining the above, we see that∑
w∈W
`(w)<N

(−1)`(w)
∑

p∈P(−λ)

1m(p,w) = (1− n)N−1|P(−λ)|.

Let Av and Qv be defined as in (4.6) and (4.5), respectively. Then we have

(−1)r

n
Av =

(−1)r

n

(
(n− 1)ra0 + (n− 1)r−1a1 + · · ·+ ar

)
,

and

Qv = a0

(
1− (n− 1) + (n− 1)2 + · · ·+ (−1)r−1(n− 1)r−1

)
− a1

(
1− (n− 1) + (n− 1)2 + · · ·+ (−1)r−2(n− 1)r−2

)
+ · · ·+ (−1)r−1ar−1

= 1−(1−n)r

n a0 − 1−(1−n)r−1

n a1 + · · ·+ (−1)r−2 1−(1−n)2

n ar−2 + (−1)r−1ar−1,

so that

Qv +Av
(−1)r

n
=

1

n
(a0 − a1 + a2 − a3 + · · ·+ (−1)rar) =

1

n
|P(−λ)|.

Evaluating (4.7) at q = −1, we get

(1− n)N−1|P(−λ)|+ (−1)Nn(n− 1)N−1 1

n
|P(−λ)| = 0.

�

Proof of Theorem 1.2. It follows from (4.7) that

(1− (n− 1)q)
∑
w∈W

(−1)`(w)H(−w ◦ λ)

is a polynomial. By Proposition 4.1, the sum
∑

w∈W (−1)`(w)H(−w ◦ λ) is divisible by 1 + q. Thus
we see from (4.1) that dλ is a polynomial. �

Remark 4.2. From [KL12, (3-21)], we know that

(4.8) H(−w ◦ λ;−1) = H(ρ− w(λ+ ρ);−1) = dimV (ρ)w(λ+ρ) = dimV (ρ)λ+ρ.

Taking the alternating sum, we get∑
w∈W

(−1)`(w)H(−w ◦ λ;−1) = dimV (ρ)λ+ρ

∑
w∈W

(−1)`(w),
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which does not converge. In Proposition 4.1, the sum
∑

w∈W (−1)`(w)H(−w ◦ λ; q) is to be inter-
preted via its analytic continuation given by the rational function in equation (4.7).

Appendix A.

In this appendix, we consider the explicit example of the Kac–Moody algebra g = H(3) associated
to the generalized Cartan matrix

(A.1) A =

(
2 −3
−3 2

)
.

The Weyl group W is the universal Coxeter group of rank 2, that is, W is isomorphic to the free
product (Z/2Z) ∗ (Z/2Z). As there are two elements for a given length ≥ 1, the Poincaré series has
the following closed form:

χ(q) = 1 + 2q
∞∑
`=0

q` = 1 + 2q

(
1

1− q

)
=

1 + q

1− q
∈ Z[[q]].

We denote the simple roots by α1, α2 and the simple reflections by s1, s2 as before. When p =
{(β1;m1), (β2;m2), . . . , (βt;mt)} is an admissible partition, we will sometimes write

p = (β1;m1) + (β2;m2) + · · ·+ (βt;mt).

For the root multiplicities of H(3), we refer the reader to [KaMe].

Example A.1. Consider λ = −2α1 − 2α2 ∈ Q−. Then there are 4 admissible partitions of −λ:

(1) (2α1 + 2α2; 1),
(2) (α1; 1) + (α1 + 2α2; 1),
(3) (α2; 1) + (2α1 + α2; 1),
(4) (α1; 1) + (α2; 1) + (α1 + α2; 1).

All the roots appearing in the list above have multiplicity 1, and so

H(−λ) = H(2α1 + 2α2) = −q + 2q2 − q3 = −q(q − 1)2.

We calculate
−s1 ◦ λ = −s1(λ+ ρ) + ρ = 5α1 + 2α2,

and see that −s1 ◦ λ has 4 admissible partitions:

(1) (5α1 + 2α2; 1),
(2) (α1; 1) + (4α1 + 2α2; 1),
(3) (2α1 + α2; 1) + (3α1 + α2; 1),
(4) (α1; 1) + (α1 + α2; 1) + (3α1 + α2; 1).

Again, all the roots appearing have multiplicity 1. We therefore deduce that

H(−s1 ◦ λ) = −q(q − 1)2 = H(−λ).

Similarly, we compute
H(−s2 ◦ λ) = −q(q − 1)2 = H(−λ).

The circle action of s1s2 on λ yields

−s1s2 ◦ λ = 14α1 + 5α2,

which is not a root. Yet again we have 4 admissible partitions, but the lengths are different:

(1) (α1; 1) + (13α1 + 5α2; 1),
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(2) (α1; 1) + (3α1 + α2; 1) + (10α1 + 4α2; 1),
(3) (α1; 1) + (5α1 + 2α2; 1) + (8α1 + 3α2; 1),
(4) (α1; 1) + (2α1 + α2; 1) + (3α1 + α2; 1) + (8α1 + 3α2; 1),

in which all the roots still have multiplicity 1. It follows that

H(−s1s2 ◦ λ) = q2(q − 1)2 = −qH(−s1 ◦ λ) = −qH(−λ).

One can see that this pattern continues as proved in the previous section to yield

(A.2) H(−w ◦ λ) = (−q)`(w)−1H(−λ), w ∈W, w 6= id.

It follows from equations (3.3) and (A.2) that∑
w∈W

(−1)`(w)H(−w ◦ λ) = H(−λ) +
∑

w∈W, w 6=id

(−1)`(w)(−q)`(w)−1H(−λ)

= (1 + q−1)H(−λ)− q−1χ(q)H(−λ),

and so

d−2α1−2α2 =

[
(1 + q−1)

1− q
1 + q

− q−1

]
H(−λ) = −H(−λ) = q(q − 1)2.

Example A.2. Let λ = −2α1−3α2 ∈ Q−, which is a root with multiplicity 2. We have admissible
partitions:

(1) (2α1 + 3α2, n), n ∈ {1, 2},
(2) (2α1 + 2α2, 1) + (α2, 1),
(3) (α1 + 3α2, 1) + (α1, 1),
(4) (α1 + 2α2, 1) + (α1 + α2, 1),
(5) (α1 + 2α2, 1) + (α1, 1) + (α2, 1).

Therefore
H(−λ) = −2q + 3q2 − q3 = −q(q − 1)(q − 2).

We have
−s1 ◦ λ = 8α1 + 3α2,

which is a root with multiplicity 1, and admissible partitions:

(1) (8α1 + 3α2, 1),
(2) (7α1 + 3α2, n) + (α1, 1), n ∈ {1, 2},
(3) (5α1 + 2α2, 1) + (3α1 + α2, 1),
(4) (5α1 + 2α2, 1) + (2α1 + α2, 1) + (α1, 1),
(5) (4α1 + 2α2, 1) + (3α1 + α2, 1) + (α1, 1).

Therefore
H(−s1 ◦ λ) = −q + 3q2 − 2q3 = −q(q − 1)(2q − 1).

On the other hand
−s2 ◦ λ = 2α1 + 4α2,

which is a root of multiplicity 1, and admissible partitions:

(1) (2α1 + 4α2, 1),
(2) (2α1 + 3α2, n) + (α2, 1), n ∈ {1, 2},
(3) (α1 + 3α2, 1) + (α1 + α2, 1),
(4) (α1 + 3α2, 1) + (α1, 1) + (α2, 1),
(5) (α1 + 2α2, 1) + (α1 + α2, 1) + (α2, 1).
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Therefore:

H(−s2 ◦ λ) = −q + 3q2 − 2q3.

Now

−s2s1 ◦ λ = 8α1 + 22α2,

which is not a root. We make a list of all admissible partitions:

(1) (8α1 + 21α2, 1) + (α2, 1),
(2) (7α1 + 18α2, n1) + (α1 + 3α2, 1) + (α2, 1), n1 ∈ {1, 2},
(3) (5α1 + 13α2, 1) + (3α1 + 8α2, 1) + (α2, 1),
(4) (5α1 + 13α2, 1) + (2α1 + 5α2, 1) + (α1 + 3α2, 1) + (α2, 1),
(5) (4α1 + 10α2, 1) + (3α1 + 8α2, 1) + (α1 + 3α2, 1) + (α2, 1).

It follows that

H(−s2s1 ◦ λ) = q2 − 3q2 + 2q4 = q2(2q2 − 3q + 2).

On the other hand,

−s1s2 ◦ λ = 11α1 + 4α2,

which is not a root, and its admissible partitions are:

(1) (10α1 + 4α2, 1) + (α1, 1),
(2) (8α1 + 3α2, 1) + (3α1 + α2, 1),
(3) (8α1 + 3α2, 1) + (2α1 + α2, 1) + (α1, 1),
(4) (7α1 + 3α2, n) + (3α1 + α2) + (α1, 1), n ∈ {1, 2},
(5) (5α1 + 2α2, 1) + (3α1 + 2α2, 1) + (2α1 + α2, 1) + (α1, 1).

Therefore:

H(−s1s2 ◦ λ) = 2q2 − 3q3 + q4 = q2(q − 1)(q − 2).

Next

−s1s2s1 ◦ λ = 59α1 + 22α2,

which is not a root. We have

H(−s1s2s1 ◦ λ) = −q3 + 3q4 − 2q5.

Also

−s2s1s2 ◦ λ = 11α1 + 30α2,

and

H(−s2s1s2 ◦ λ) = −2q3 + 3q4 − q5.

We arrange the information above into a table, in which the columns are indexed by n ∈ N and
the rows are indexed by w ∈ W (written as reduced words, ordered lexicographically). The entry
corresponding to row w and column n is the coefficient of qn in H(−w ◦ λ). An empty space
indicates that the coefficient is zero. There is one additional column, which lists the image w ◦λ of
λ under the circle action by w, written in coordinates with respect to the basis {−α1,−α2}.
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w w ◦ λ 1 2 3 4 5 · · ·
id (2, 3) −2 3 −1
s1 (8, 3) −1 3 −2
s2 (2, 4) −1 3 −2
s2s1 (8, 22) 1 −3 2
s1s2 (11, 4) 2 −3 1
s1s2s1 (59, 22) −1 3 −2
s2s1s2 (11, 30) −2 3 −1

...
...

...
...

. . .

Observe that the strings (−2, 3,−1) and (−1, 3,−2) repeat with each iteration, shifting 1 space and
switching signs as the word length increases. The coefficient of qn in χ(q) dλ can be calculated by

taking the sum of the entries in a column multiplied by (−1)`(w). We see that

d−2α1−3α2 = 0.

Example A.3. Consider λ = −3α1 − 3α2 ∈ Q−. There are 12 admissible partitions of −λ:

(1) (3α1 + 3α2; 1),
(2) (3α1 + 3α2; 2),
(3) (3α1 + 3α2; 3),
(4) (3α1 + 2α2; 1) + (α2; 1),
(5) (3α1 + 2α2; 2) + (α2; 1),
(6) (2α1 + 3α2; 1) + (α1; 1),
(7) (2α1 + 3α2; 2) + (α1; 1),
(8) (2α1 + 2α2; 1) + (α1 + α2; 1),
(9) (2α1 + α2; 1) + (α1 + 2α2; 1),

(10) (α1; 1) + (α1 + α2; 1) + (α1 + 2α2; 1),
(11) (α2; 1) + (α1 + α2; 1) + (2α1 + α2; 1),
(12) (α1; 1) + (α2; 1) + (2α1 + 2α2; 1).

Note that m(3α1 + 3α2) = 3, m(2α1 + 3α2) = m(3α1 + 2α2) = 2, and the other roots each have
multiplicity 1. We conclude

H(−λ) = H(3α1 + 3α2) = −3q + 6q2 − 3q3 = −3q(q − 1)2.

We continue to obtain the following table.

w w ◦ λ 1 2 3 4 5 6 · · ·
id (3,3) −3 6 −3
s1 (7,3) −2 5 −4 1
s2 (3,7) −2 5 −4 1
s1s2 (19,7) 2 −5 4 −1
s2s1 (7,19) 2 −5 4 −1
s1s2s1 (19,51) −2 5 −4 1
s2s1s2 (51,19) −2 5 −4 1

...
...

...
...

...
. . .

Observe that the string (−2, 5,−4, 1) repeats with each iteration, shifting 1 space and switching
signs as the word length increases. Since −2 + 5− 4 + 1 = 0, the coefficient of qn is 0 for n ≥ 4. As
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it happens, the coefficient of q2 is 0 too. We conclude

d−3α1−3α2 =
−q3 + q

χ(q)
= q(q − 1)2.

Example A.4. Let λ = −3α1 − 4α2 ∈ Q−. We produce a table similar to that in Example A.3

w w ◦ λ 1 2 3 4 5 6 7 · · ·
id (3, 4) −4 8 −5 1
s1 (10, 4) −1 7 −8 2
s2 (3, 6) −3 8 −6 1
s2s1 (10,27) 1 −7 8 −2
s1s2 (16,6) 4 −9 5
s1s2s1 (72,27) −1 7 −8 2
s2s1s2 (16,43) −4 9 −5
s1s2s1s2 (72,190) 1 −7 8 −2
s2s1s2s1 (114,43) 4 −9 5

...
...

...
...

...
. . .

This time, the strings (1,−7, 8,−2) and (4,−9, 5) alternate. Note that both strings sum to zero.
We see that for n ≥ 5, the coefficient of qn in dλ is 0. The coefficients of q and q4 are also 0.
Altogether we obtain

d−3α1−4α2 =
−2q2(1 + q)

χ(q)
= 2q2(q − 1).

Example A.5. We may compute other dλ’s in a similar way. In the following table, the entry in
the space (m,n) is the polynomial dλ for λ = −mα1 − (m+ n)α2 ∈ P+. From symmetry in H(3),
we have d−mα1−(m+n)α2

= d−(m+n)α1−mα2
.

0 1 2 3 4

0 1 −q(q − 1) q(q − 1)2 q(q − 1)2 2q(q − 1)2

1 0 2q2(q − 1) −q2(q − 1)(q − 4)
2 −q(q − 1)2(q2 + q − 1)

We also have

d−5α1−5α2 = −q(q − 1)(q3 + 3q2 − 7q + 2).
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