

University of Westminster Eprints
http://eprints.wmin.ac.uk

High-level grid application environment to use legacy
codes as OGSA grid services.

Peter Kacsuk1,2

Ariel Goyeneche1
Thierry Delaitre1
Tamas Kiss1
Zoltan Farkas2

T. Boczko2

1Cavendish School of Computer Science, University of Westminster
2MTA SZTAKI Lab. Of Parallel & Distributed Systems, Budapest, Hungary

Copyright © [2001] IEEE. Reprinted from DOA'01: 3rd International Symposium on
Distributed Objects and Applications.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

High-level Grid Application Environment to Use Legacy Codes
as OGSA Grid Services�

P. Kacsuk���, A. Goyeneche�, T. Delaitre�, T. Kiss�, Z. Farkas�, T. Boczko�
�Centre for Parallel Computing, Cavendish School of Computer Science,

University of Westminster,115 New Cavendish Street, London, W1W 6UW.
�MTA SZTAKI Lab. of Parallel and Distributed Systems,

H-1518 Budapest, P.O. Box 63, Hungary
Web sites: http://www.cpc.wmin.ac.uk/gemlca & http://www.lpds.sztaki.hu/pgportal

Email: gemlca-discuss@cpc.wmin.ac.uk

Abstract

One of the biggest obstacles in the wide-spread indus-
trial take-up of Grid technology is the existence of a large
amount of legacy code that is not accessible as Grid ser-
vices. The paper describes a new approach (GEMLCA:
Grid Execution Management for Legacy Code Architecture)
to deploy legacy codes as Grid services without modifying
the original code. Moreover, we show a workflow execu-
tion oriented Grid portal technology (P-GRADE portal) by
which such legacy code based Grid services can be applied
in complex business processes. GEMLCA has been imple-
mented as GT-3 services but can be easily ported into the
new WSRF Grid standards.

1. Introduction

There are many efforts all over the world to provide new
Grid middleware concepts for constructing large production
Grids. As a result the Grid community is in the phase of pro-
ducing third generation Grid systems that are represented
by the OGSA [1] and WSRF [2] standards. On the other
hand relatively little attention has been paid to how the end-
users can survive in the rapidly changing world of Grid gen-
erations. The primary goal of our research is to construct
a high-level Grid application environment where the end-
users can:

� Easily and conveniently create complex Grid applica-
tions.

� The work presented in this paper is supported by a UK EPSRC funded
project (Grant No.: GR/S77509/01) and by two Hungarian projects
(Grant No.: IHM 40.0346/2/2004 and OTKA T042459).

� Apply any legacy code as OGSA compliant Grid ser-
vice when they create Grid applications.

� Migrate from GT2 Grids to OGSA-based Grids with
minimal efforts.

In an ideal OGSA-based Grid environment users are able
to access predefined Grid services through a high-level user-
friendly Grid portal. More than that, users are not only ca-
pable of using such services but they can dynamically cre-
ate and deploy new services in a convenient and efficient
way. All these mentioned Grid services can be either specif-
ically designed Grid services or legacy programs that auto-
matically deployed as Grid services when desired. In order
to achieve this ideal scenario and to provide the high-level
Grid application environment mentioned above the follow-
ing tasks should be solved:

� A method is necessary by which legacy code can auto-
matically be deployed as a Grid service.

� Such Grid services should be accessible and usable in
workflows supported by Grid portals.

� Such Grid portals should be derived from existing
Globus Toolkit version 2 [3] (GT2) portals in order to
minimize the users’ learning curve when moving from
GT2 Grids to OGSA Grids.

In the current paper, we show how these tasks were
solved in the framework of the UK OGSA testbed project.
First, we introduce the GEMLCA (Grid Execution Man-
agement for Legacy Code Architecture) concept by which
legacy code written in any language (Fortran, C, Java, etc.)
can easily be deployed as an OGSA Grid service without
any user effort. Second, we show that the integration of
GEMLCA with the P-GRADE Grid portal (a GT2 portal)
results in an OGSA-based Grid portal that requires minor
changes at the graphical user interface. In order to achieve

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

this, GEMLCA should be installed, configured, and pub-
lished on the Grid middleware server and the GEMLCA
clients on the Grid portal servers. After that, any legacy
code deployed in GEMLCA can be accessed by authorized
users as OGSA Grid service through the Grid portal. As
a consequence, legacy codes (either sequential or parallel
ones) can be used as workflow components to build com-
plex Grid applications.

Currently, one of the main obstacles of the industrial
take-up of Grid technology is the existence of a large
amount of legacy code that is not accessible as Grid ser-
vices. The GEMLCA concept and its integration with the
Grid portal technology eliminates this problem and can lead
to a breakthrough in the establishment of business Grids. Of
course, this approach will stretch even the usability of sci-
entific Grids where most of the codes are written in Fortran
and now all these applications will be accessible as Grid ser-
vices.

Section 2 overviews previous efforts to use legacy code
in Grid environments and make clear the innovation of our
approach. Section 3 describes the GEMLCA concept and
its implementation in a GT3 Grid environment. Section 4
introduces a workflow-oriented Grid portal, called the P-
GRADE Grid portal and Section 5 shows how these two
systems, GEMLCA and P-GRADE portal were integrated
in order to create a convenient, user-friendly, high-level
Grid application environment in which end-users can eas-
ily access any legacy code as Grid service and can include
it into complex workflow applications. Finally, section 6 de-
scribes how existing legacy codes, the Manhattan Road Map
Generator and the MadCity Urban Traffic Simulator, ex-
posed as Grid services by GEMLCA, were used in order
to create a complex workflow.

2. Related works to use legacy code in Grid
systems

Many large industrial and scientific applications are
available today that were written well before Grid comput-
ing or service-oriented architectures appeared. To integrate
these legacy code programs into service-oriented Grid ar-
chitectures with the smallest possible effort and best
performance, is a crucial point in more widespread indus-
trial take-up of Grid technology.

There are several research efforts aiming at automating
the transformation of legacy code into a Grid service. Most
of these solutions are based on the general framework to
transform legacy applications into Web services outlined in
[4], and use Java wrapping in order to generate stubs auto-
matically. One example for this is presented in [5], where
the authors describe a semi-automatic conversion of legacy
C code into Java using JNI (Java Native Interface). After
wrapping the native C application with the JACAW (Java-C

Automatic Wrapper) tool MEDLI (MEdiation of Data and
Legacy Code Interface) is used for data mapping in order to
make the code available as part of a Grid workflow.

Different approaches from wrapping are presented in [6]
and [7] but unfortunately these solutions only describe the
principles and do not give a generic tool to do the automatic
conversion.

Compared to Java wrapping GEMLCA is based on a
different principle. It offers a front-end Grid service layer
that communicates with the client in order to pass input
and output parameters, and contacts a local job manager
through Globus MMJFS [3] (Master Managed Job Factory
Service) to submit the legacy computational job. To deploy
a legacy application as a Grid service there is no need for
the source code and not even for the C header files as in
case of JACAW. The user only has to describe the legacy
parameters in a pre-defined XML format that in the cur-
rent GEMLCA version has to be done manually. However,
the next release of the architecture will automate this pro-
cess. The legacy code can be written in any programming
languages and can be not only a sequential but also a paral-
lel PVM or MPI code that uses a job manager like Condor
[8] and where wrapping can be difficult. The current imple-
mentation of GEMLCA is based on GT3 but the architec-
ture itself is more generic and can be easily adapted to other
service-oriented approaches like WSRF or a pure Web ser-
vices based solution.

Besides substantial advantages offered by GEMLCA it
is also important to note that, as most of the other so-
lutions, it supports decomposable or semi-decomposable
software systems where the business logic and data model
components can be separated from the user interface. The
former can then be transformed into a Grid service using
GEMLCA, and the latter have to be re-implemented, for
example as part of a Grid portal. An approach to deal with
non-decomposable legacy programs is described in [6] us-
ing screen proxies and redirecting input/output calls. How-
ever, this solution is language dependant and requires mod-
ification of the original code.

3. GEMLCA

GEMLCA is a Grid architecture with the main aim of
exposing legacy code programs as Grid services without re-
engineering the original code and offering a user-friendly
interface.

GEMLCA conceptual architecture is shown in Figure 1.
In order to access a legacy code program, the user ex-

ecutes the GEMLCA Grid Service client which creates a
legacy code instance with the help of the legacy code fac-
tory. Following this, the GEMLCA resource submits the job
to the compute server through GT3 MMJFS using a partic-
ular job manager.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

Client GEMLCA Resource
Compute
Servers

OGSA Container

Job Manager
(Condor/Fork)

Legacy Code
Factory

Legacy Code
Process

Legacy
Code Job

MMJFS

Grid Host
Environment (GT3)

Grid Service
Client

Figure 1. GEMLCA conceptual architecture.

A GEMLCA resource is composed of a set of Grid ser-
vices that provides a number of Grid interfaces in order
to control the life-cycle of the legacy code execution. This
architecture can be deployed in several user containers or
Tomcat application contexts.

GEMLCA has been designed [9] as a three layer archi-
tecture: the first, front-end layer offers a set of Grid Service
interfaces that any authorized Grid client can use in order to
contact, run, and get the status and any result back from the
legacy code. This layer hides the second, core layer section
of the architecture that deals with each legacy code environ-
ment and their instances as Grid legacy code processes and
jobs. The final layer, backend is related to the Grid mid-
dleware where the architecture is being deployed. Current
implementation is based on GT3 [3] but this layer can be
quickly updated to any new standard, such as WSRF [2].
Detailed explanation of the architecture can be found in [9].

3.1. Legacy Code deployment

As it was described in Section 2, most of the current so-
lutions to expose legacy code programs as Grid services re-
quire access to the source code.

On the other hand in GEMLCA, the only extra effort to
be done is to create a Legacy Code Interface Description
File (LCID) in XML. This LCID file shown in Figure 2 con-
sists of three sections. The GLCenvironment section con-
tains the name of the legacy code and its main binary file,
job manager (Condor [8] and Fork are supported in the cur-
rent version of GEMLCA), maximum number of jobs al-
lowed to be submitted from a single Legacy Code process,
and minimum and maximum number of processors to be
used. The next section describes the legacy code in simple
text format, and finally the parameter section exposes the
list of parameters, each one describing its name, friendly
name, input or output, order, mandatory, file or command
line, fixed, and regular expression to be used as input val-
idation. Work is currently undergoing to automate the pro-
cess of creating the LCID file and this way making it even
easier for the end user to deploy legacy applications as Grid
services.

Mkdir Legacy Code exposed as a Grid Service
Folder : /../.gemlca/legacycodes/mkdir
Content : i) mkdir binary or link ii) config.xml

<?xml version="1.0"?>
<!DOCTYPE GLCEnvironment "gemlcaconfig.dtd">

<GLCEnvironment
 id="mkdir" executable="LINUX/mkdir" jobManager="Fork"

 maximumJob="11" minimumProcessors="1"
 maximumProcessors="1" universe="PVM"

>
<D escription >Unix mkdir program</ D escription >

 < GLCParameters >
 <Parameter name="-p" friendlyName="Folder to be created"

 fixed="No" inputOutput="Input" order="0"
 mandatory="No" fileCommandline="Commandline">

 <initialValue> </initialValue>
 </Parameter>

 </ GLCParameters >
</ GLCEnvironment >

Legacy Code Interface Description Fil e: config.xml

Figure 2. Legacy Code Interface Description
File.

3.2. GEMLCA security and multi-user environ-
ment

GEMLCA uses the Grid Security Infrastructure (GSI)
[10] to enable user authentication and to support secure
communication over a Grid network. A GEMLCA client
needs to sign its credential and also to work in full delega-
tion mode in order to allow the architecture to work on its
behalf. GEMLCA has two levels of authorisation: the first
level is given by the grid-map file mechanism [11]. If the
user is correctly mapped, the second level comes into play
which is given by a set of legacy codes that a Grid Client is
allowed to use. This set is composed of a combination of a
general list of legacy codes, available to anyone using a spe-
cific GEMLCA resource, and a user mapped list of legacy
codes, only available to Grid clients mapped to a local user
by the grid-map file mechanism.

GEMLCA administers the internal behaviour of legacy
codes taking into account the requirements of input files and
output files in a multi-user environment, and also complies
with the security restrictions of the operating systems where
the architecture is running. In order to do that, GEMLCA is
using GEMLCA itself in a protected mode composed of a
set of system legacy codes in order to create and destroy
a unique process and job stateful environment only reach-
able by the local user mapped by the grid-map file mecha-
nism.

3.3. Grid Client interaction with GEMLCA inter-
faces

Figure 3 shows the interaction between a Grid client and
a GEMLCA recourse exposing Legacy code programs.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

Grid Service Client GEMLCA Resource A

1) Selects GEMLCA
Resource and gets general
or user Legacy Code list.

2)Returns list of general or
user Legacy code.

3) Selects Legacy Code and
asks for its interfaces.

4) Checks Legacy Code,
creates a LCProcess and

returns interfaces.

5) Changes/Sets input
parameter and uploads

input files.

6) Creates a LCProcess
Environment with a set of

input data.

7) Submits Job1.

8) Creates a LCJob1
Environment within

LCProcess Environment and
submits LC to Job Manager.

9) Submits Job2.

10) Creates a LCJob2
Environment within

LCProcess Environment and
submit LC to Job Manager.

11) Gets status Job 1. 12) Returns status LCjob1.

13) Downloads outputs
Job1.

14) Returns output LCjob1.

15) Kills Job 1. 16) kills LCjob1 and
destroys LCJob1

Environment.

17) Destroys Process. 18) Kills LCjob2 and
destroys LCJob2 and

LCProcess environment.

Figure 3. Grid Client and GEMLCA resource
interaction.

In this communication, a unique set of stubs is used by
the Grid client in order to interact with any exposed legacy
code. When a client selects a legacy code, GEMLCA cre-
ates a LCProcess and its stateful environment using the
default values, if any, for each input and output parame-
ter. Each LCProcess can be customized to accept a max-
imum number of LCJobs to be submitted from its inter-
faces. GEMLCA also provides a set of interfaces for the
Grid client in order to query and retrieve the LCProcess sta-
tus, the list and number of LCJobs in each LCProcess, and
the output results of each job. Finally, a particular LCJob
can be killed or a LCProcess destroyed.

4. P-GRADE Portal

One of the most important applications of Grid systems
is the solution of complex problems based on the workflow
concept where the user can connect existing program com-
ponents in a workflow graph. Nodes of the graph are typi-
cally executed in GT2 Grids as jobs and the arcs of the graph
represent the necessary file transfer operations among the
component jobs. Such workflow systems should be embed-
ded into Grid portals in order to hide from the end-user the
low level details of job execution and file transfers in Grid
systems. Moreover such a Grid portal should be portable

to various Grid systems in order to make the workflows
portable. The ten years of Grid systems resulted in three
generations of Grid architectures making it extremely dif-
ficult for the end-user to adapt applications to the rapidly
changing Grid environments.

The P-GRADE portal was designed to fulfil all these
requirements. It is a workflow-oriented Grid portal where
the main goal is to enable users to manage the whole life-
cycle of creating and executing a complex application in
the Grid: graphically editing workflows from various types
of existing components (sequential, MPI, etc.), submitting
jobs relying on Grid-credentials and analysing the moni-
tored trace-data by visualisation facilities. The P-GRADE
portal currently supports the following functionalities (Fig-
ure 4):

� Grid certificate management,

� Setting the Grid environment

� Creation, modification and execution of workflow ap-
plications on grid resources

� Visualisation of workflow progress as well as each
component job.

All these functionalities are highly portable among vari-
ous Grid systems. Portability and fast development was also
supported by the application of the GridSphere [12] Grid
portal development framework as an implementation envi-
ronment.

Certificate
Server

Portal
Server

Remote
Clusters

to be
controlled

Certificate
(Download)

Workflow

manager
(Submit)

Certificate
(Upload)

Editor

(Save/Upload)

Editor
(Open)

Workflow

manager
(Output)

Workflow

(Result)

Figure 4. The P-GRADE portal functionalities.

Grid certificate management. The Credential Man-
ager portlet allows the portal user to download Grid cer-
tificates (proxy credentials) from a MyProxy server [13]
(MPS) as shown in Figure 4. A user may have more
than one proxy from different MPSs and any proxy
can be selected for usage. The user can view the de-
tails of a proxy, including its lifetime. This credential will

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

be passed to other portlets of the portal. The proxies, that
are no longer needed, can be deleted. Renewing an ex-
pired proxy requires connecting the MPS again. If there is
no MPS holding appropriate credential, the user may up-
load his private key and certificate to an MPS, and later
this MPS can create a proxy by means of the portal set-
ting the Grid environment. The other prerequisite to use the
portal is the setting of the Grid resources the user has ac-
cess and would like to use by the portal. At this stage the
URL of the Grid resources and the applicable job man-
agers should be given by the user. If Grid broker is avail-
able, like in the LCG-2 Grid, the identification of the Grid
broker is enough at this point.

Figure 5. Workflow of a meteorology applica-
tion.

Workflow editing. The workflows can be graphically cre-
ated at the client machine by the Workflow Editor written
as a Java Web-Start application. A simple workflow used
in a real-life meteorology application [14] is shown in Fig-
ure 5. Large squares represent jobs and small squares repre-
sent the input and output files. Definition of a job requires
the identification of the job (e.g. delta), the location of the
executable code and its type (SEQ, MPI, etc.). If there is
no broker in the connected Grid system, the user should ex-
plicitly define the Grid resource where the job is to be ex-
ecuted. Files are identified by their logical name and loca-
tion. It should be also defined if the file is a permanent one
or used only temporarily. In the latter case when the job us-
ing the temporary file has been finished, the file is automat-
ically removed from the Grid. After creating the workflow

on the client machine it should be uploaded to the portal
server machine.

Workflow management. The uploaded workflows are
managed by the Workflow Manager portlet that pro-
vides the following functionalities:

a. Storing, updating and visualizing the status of the
workflows and their component jobs

b. Submitting workflows when the user requests it.

c. Taking care of the necessary file transfers among the
workflow jobs (executed on different Grid resources).

d. Detach and attach running workflows.

e. Delivering and storing the result files of the workflow
execution.

f. Showing workflow execution visualization and indi-
vidual job execution visualization if the job is a par-
allel program.

The Workflow Manager portlet collaborates with the
Condor DAGMan [15] system that is responsible for select-
ing the next executable job of the workflow. Condor DAG-
Man provides a PRE-script facility to do job management
before a job is actually started as a Condor-G [16] job. This
PRE-script can be written according to the actual needs in
different Grid environments. If there is no Grid broker in the
connected Grid, the user specifies at workflow edit time the
Grid site where the job should be run. If there is a Grid bro-
ker, the Workflow Manager portlet uses the PRE-script fa-
cility to contact the Grid broker and asks the selection of
an appropriate Grid site. Once the Grid site is selected (in
either way) the Workflow Manager portlet uses again the
PRE-script facility to transfer the necessary input files by
GridFTP into the selected Grid resource. Then the job is
submitted as a Condor-G job to the Globus-2 gatekeeper of
the selected Grid site. This is the way how the portal Work-
flow Manager portlet collaborates with a GT2 Grid environ-
ment. The P-GRADE portal was actually connected so far
to three different GT2 based Grid systems: Hungarian Su-
percomputing Grid, LCG-2, and the EU GridLab testbed.

5. The Integrated GEMLCA/P-GRADE Por-
tal

In Section 3 and 4 we have described two powerful tools
by which the Grid can be made conveniently accessible by
end-users. GEMLCA gives the possibility to apply any ex-
isting legacy code as a Grid service. The workflow editor of
P-GRADE portal enables the connection of component jobs
into complex workflows by an easy-to-use graphical envi-
ronment. The Workflow Manager of P-GRADE portal takes
care of executing such workflows on various GT2 Grid sys-
tems in a user-transparent way. As written in the Introduc-
tion, our goal was to enable end-users to apply legacy code

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

GEMLCA Resource C

P-GRADE Portal

1) Selects GEMLCA
Resource and gets general
or user Legacy Code list.

3) Selects Legacy Code and
asks for its interfaces.

8) Sets input parameter
and uploads input files.

10) Submits Job.

12) Gets status Job.

14) Downloads outputs Job.

16) Kills Job and Process.

5) Saves locally changes in
input parameter.

Web Interface

Workflow Execution
Manager

6) Creates Process.

Web Interface

18) Shows Status and
Results.

GEMLCA Resource B
GEMLCA Resource A

2)Returns list of general or
user Legacy code.

4) Checks Legacy Code,
creates a LCProcess and

returns interfaces.

9) Creates a LCProcess
Environment with new input

data.

11) Creates a LCJob
Environment within

LCProcess Environment and
submits LC to Job Manager.

13) Returns status LCjob.

15) Returns output LCjob.

17) Kills Lcjob and
LCProcess and destroys

Environments.

7) Checks Legacy Code,
and creates a LCProcess.

Figure 6. P-GRADE Portal and GEMLCA re-
source interaction.

as OGSA Grid services in workflows and to move from GT2
Grids to OGSA Grids with the least possible effort. In or-
der to achieve this, we integrated the P-GRADE portal with
GEMLCA where the user can construct workflows from
legacy codes deployed as OGSA Grid services. The user in-
terface as well as the internal structure of the P-GRADE
portal required only minor changes that are subjects of this
section.

The P-GRADE portal integration with GEMLCA has
been done through the creation and use of a number of
Grid clients. The integration was divided into three parts,
as shown in Figure 6:

1. In order to allow the portal user to create a workflow
composed of GEMLCA Grid services, a new type of
node, called GEMLCA, was added to the selection of
available components. In order to create one of these
nodes the Grid GEMLCA client, embedded in the por-

tal, allows the selection of a GEMLCA resource and a
legacy code from the list returned. A popup window is
displayed in order to change or set any input parame-
ter and upload any input file to the portal server. This
information is temporally saved in the portal server un-
til the workflow manager uses it.

2. Once the workflow is completed and saved, the work-
flow manager, Condor DAGman, is called in order to
submit GEMLCA jobs. In GT2 Grids Condor DAG-
Man generates Condor-G job submissions. In case of
GEMLCA, the DAGMan’s PRE, POST and job sub-
mission scripts were modified in order to generate
GEMLCA job submission. The PRE-script has been
changed in order to call a GEMLCA client that con-
tacts the GEMLCA resource. It creates an instance of
the legacy code process returning a Grid service Han-
dle (GSH). Such GSH is used by another GEMLCA
client for setting any new parameters and also upload-
ing input files using GridFtp. Finally, the GEMLCA
client can submit the job.

3. The GEMLCA client is also used for checking the
status of the legacy code process and jobs. The out-
put files of legacy codes are downloaded by the por-
tal server and made available to the user. Alternatively,
the output file will be transfered into the next legacy
code environment of the workflow if it is needed.

6. Applications of the GEMLCA technology

Many legacy code programs are available exposing sci-
entific, business and industry applications that need to be
integrated into new service oriented Grid architectures. As
GEMLCA offers this integration without any modification
in the original code, it has huge potential in several applica-
tion areas.

A new, Grid service based electronic marketplace ar-
chitecture has already been introduced in [17] that uses
GEMLCA in order to transform an existing marketplace and
utilise the advantages offered by the Grid solution.

Also in [18] the concept of transforming a legacy traf-
fic simulator into a Grid service and to visualise the results
in the P-GRADE portal was described. Work is currently
undergoing in both areas to fully implement the concepts.
In this paper we explain how a complex workflow was cre-
ated using existing legacy programs in order to demonstrate
the capabilities of GEMLCA and its integration with the P-
GRADE portal and workflow solutions.

6.1. Urban car traffic simulation

GEMLCA gives the possibility to deploy existing legacy
code as a Grid service. The workflow editor of P-GRADE

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

portal enables the connection of components into com-
plex workflows by an easy-to-use Web-based graphical en-
vironment and the workflow manager takes care of exe-
cuting such workflows on various Grid systems in a user-
transparent way.

A complex workflow has been created as a case study in
order to test this High-level Grid Toolkit Environment.

6.2. Workflow description

The workflow consists of three types of legacy code
components:

1. The Manhattan legacy code, is an application to gener-
ate MadCity compatible network and turn input-files.
The MadCity network file is a sequence of numbers,
representing a road topology, of a real road network.
The number of columns, rows, unit width and unit
height can be set as input parameters. The MadCity
turn file, is a sequence of numbers representing the
junction manouveres available in a given road network.
Traffic light details are included in this input file.

2. MadCity [19] is a discrete time-based traffic simulator
that was developed by the research team of the Centre
for Parallel Computing at the University of Westmin-
ster. It simulates traffic on a road network and shows
how individual vehicles behave on roads and at junc-
tions. The simulator of MadCity models the move-
ment of vehicles using the input road network file. Af-
ter completing the simulation, the simulator creates a
macroscopic trace file.

3. And a traffic density analyzer which compares the traf-
fic congestion of several simulations of a given city and
presents a graphical analysis.

In order to meet our test objective, the workflow shown
in Figure 7 is configured to use five GEMLCA resources
each one deployed on the UK OGSA testbed sites and one
server where the P-GRADE portal is deployed. The first
GEMLCA resource is installed at the University of West-
minster (UK) and runs the Manhattan road network genera-
tor (Job0), one traffic simulator instance (Job3) and the final
traffic density analyzer (Job6). Four additional GEMLCA
resources are installed at the following sites: SZTAKI (Hun-
gary), University of Portsmouth (UK), The CCLRC Dares-
bury Laboratory (UK), and University of Reading (UK)
where the traffic simulator is deployed. One instance of the
simulator is executed on each of these sites, respectively
Job1, Job2, Job5 and Job4.

The MadCity network file and the turn file are used as in-
put to each traffic simulator instance. In order to have a dif-
ferent behaviour in each of these instances, each one was
set with different initial number of cars per street junction,
one of the input parameter of the program. The output file

Figure 7. Complex workflow for analysing
road traffic.

of each traffic simulation is used as input file to the Traf-
fic density analyzer. The described workflow was success-
fully created and executed by the P-GRADE portal installed
at the university of Westminster. The execution of the work-
flow can be shown in Figure 8.

Figure 8. Visualisation of the workflow execu-
tion.

7. Conclusion

The more widespread take-up of Grid technology re-
quires high-level Grid application environments where
users can easily create complex Grid workflows includ-
ing different Grid enabled applications and also legacy code
programs. This paper described how the P-GRADE por-

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

tal and workflow solutions were integrated with GEMLCA
in order to fulfil these requirements. GEMLCA repre-
sents a new approach to deploy legacy code applica-
tions as Grid services without modifying the source code.
The user only has to create an XML-based Legacy Code In-
terface Description File and GEMLCA enables the
legacy code application to be run from a Grid ser-
vice client. The enhanced P-GRADE Portal is now capable
not only to connecting to GT2 resources but also en-
ables to include legacy codes deployed as Grid services
conforming to OGSA as part of complex Grid work-
flows.

The P-GRADE/GEMLCA integrated portal solution was
demonstrated by deploying a Manhattan road traffic gener-
ator, several instances of the legacy traffic simulator and a
traffic density analyzer into Grid services. All these legacy
codes were executed from a single workflow and the execu-
tion was visualised by the portal.

Future work includes the support of other service-
oriented Grid architectures like WSRF and pure Web
services. It is also envisaged to develop plugins for applica-
tion specific visualisers to the P-GRADE portal.

For more information, please visit the following web
sites: http://www.cpc.wmin.ac.uk/gemlca and
http://www.lpds.sztaki.hu/pgportal

8. Acknowledgements

The authors wish to acknowledge the support and contri-
butions of Damian Igbe, Agathocles Gourgoulis and Noam
Weingarten in the traffic simulation aspects.

References

[1] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke. The Phys-
iology of the Grid An Open Grid Services Architecture
for Distributed Systems Integration. 2002. http://www.
globus.org/research/papers/ogsa.pdf

[2] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Gra-
ham, T. Maguire, D. Snelling, S. Tuecke. From Open
Grid Services Infrastructure to WS-Resource Frame-
work: Refactoring and Evolution Version 1.1 May, 2004,
http://www-106.ibm.com/developerworks/
library/ws-resource/ogsi_to_wsrf_1.0.pdf

[3] Globus Team, Globus Toolkit, http://www.globus.
org

[4] D. Kuebler, and W. Eibach, ”Adapting legacy ap-
plications as Web services”, IBM DeveloperWorks,
http://www-106.ibm.com/developerworks/
webservices/library/ws-legacy/

[5] Y. Huang, I. Taylor, D. Walker, and R. Davies, ”Wrapping
Legacy Codes for Grid-Based Applications”, in Proceedings
of the 17th International Parallel and Distributed Processing
Symposium (Workshop on Java for HPC), 22-26 April 2003,
Nice, France. ISBN 0-7695-1926-1

[6] T. Bodhuin, and M. Tortorella, ”Using Grid Technolo-
gies for Web-enabling Legacy Systems”, in Proceedings
of the Software Technology and Engineering Practice
(STEP), The workshop Software Analysis and Mainte-
nance: Practices, Tools, Interoperability, September 19-
21, 2003, Amsterdam, The Netherlands, http://www.
bauhaus-stuttgart.de/sam/bodhuin.pdf

[7] B. Balis, M. Bubak, and M. Wegiel, ”A Framework
for Migration from Legacy Software to Grid Ser-
vices”, In Cracow Grid Workshop ’03, Cracow, Poland,
December 2003, http://www.icsr.agh.edu.pl/
˜balis/bib/legacy-cgw03.pdf

[8] D. Thain, T. Tannenbaum, and M. Livny, ”Condor and the
Grid”, in Fran Berman, Anthony J.G. Hey, Geoffrey Fox, ed-
itors, Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, 2003

[9] T. Delaitre, A. Goyeneche, P. Kacsuk, T. Kiss,
G.Z.Terstyanszky and S.C. Winter. GEMLCA: Grid Exe-
cution Management for Legacy Code Architecture Design.
To appear in Conf. Proc. of the 30th EUROMICRO con-
ference, Special Session on Advances in Web Computing,
August, 2004, Rennes, France.

[10] J. Gawor, S. Meder, F. Siebenlist, V. Welch, GT3
Grid Security Infrastructure Overview, February 2004.
http://www-unix.globus.org/security/
gt3-security-overview.doc

[11] L. Ramakrishnan. Writing secure grid services us-
ing Globus Toolkit 3.0. September 2003, http:
//www-106.ibm.com/developerworks/grid/
library/gr-secserv.html

[12] GridSphere homepage. http://www.gridsphere.org/
[13] J. Novotny, S. Tuecke, V. Welch: An Online Credential

Repository for the Grid: MyProxy. Proceedings of the 10th
IEEE Intl. Symp. on High Performance Distributed Comput-
ing, 2001.

[14] R. Lovas, et al.: Application of P-GRADE Development En-
vironment in Meteorology. Proc. of DAPSYS’2002, Linz,
pp. 30-37, 2002.

[15] Condor DAGman, http://www.cs.wisc.edu/
condor/dagman/

[16] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny,
and Steven Tuecke, Condor-G: A Computation Management
Agent for Multi-Institutional Grids, Journal of Cluster Com-
puting volume 5, pages 237-246, 2002

[17] L. Kacsukne Bruckner, T.Kiss. Grid Solution for e-
Marketplaces Integrated with Logistics , To Appear in Conf.
Proc. of the DAPSYS 2004 Conference, September 19-22,
2004, Budapest, Hungary.

[18] T. Delaitre, A.Goyeneche, T.Kiss, G.Z. Terstyanszky, N.
Weingarten, P. Maselino, A. Gourgoulis, S.C. Winter, Traf-
fic Simulation in P-GRADE as a Grid Service , To Appear
in Conf. Proc. of the DAPSYS 2004 Conference, Septem-
ber 19-22, 2004, Budapest, Hungary.

[19] A. Gourgoulis, G. Terstyansky, P. Kacsuk, S.C. Winter, Cre-
ating Scalable Traffic Simulation on Clusters. PDP2004.
Conference Proceedings of the 12th Euromicro Conference
on Parallel, Distributed and Network based Processing, La
Coruna, Spain, 11-13th February, 2004.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

