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Abstract
Copy number variations (CNVs) are genomic structural variations (deletions, duplications, or translocations) that represent
the 4.8–9.5% of human genome variation in healthy individuals. In some cases, CNVs can also lead to disease, being the
etiology of many known rare genetic/genomic disorders. Despite the last advances in genomic sequencing and diagnosis, the
pathological effects of many rare genetic variations remain unresolved, largely due to the low number of patients available
for these cases, making it difficult to identify consistent patterns of genotype–phenotype relationships. We aimed to improve
the identification of statistically consistent genotype–phenotype relationships by integrating all the genetic and clinical
data of thousands of patients with rare genomic disorders (obtained from the DECIPHER database) into a
phenotype–patient–genotype tripartite network. Then we assessed how our network approach could help in the
characterization and diagnosis of novel cases in clinical genetics. The systematic approach implemented in this work is
able to better define the relationships between phenotypes and specific loci, by exploiting large-scale association networks of
phenotypes and genotypes in thousands of rare disease patients. The application of the described methodology facilitated the
diagnosis of novel clinical cases, ranking phenotypes by locus specificity and reporting putative new clinical features that
may suggest additional clinical follow-ups. In this work, the proof of concept developed over a set of novel clinical cases
demonstrates that this network-based methodology might help improve the precision of patient clinical records and the
characterization of rare syndromes.

Introduction

Decades of advances in genomic technologies are increas-
ing the accuracy in the field of genetic diagnosis. It is now
widely accepted that deep phenotyping [1] and genotypic
characterization of patients accelerates the identification of
new genetic diseases and/or different disease subtypes with
prognostic or therapeutic implications, as well as improves
our understanding of human genetic diseases [2–4].
However, the accurate diagnosis of many genetic disorders
becomes more complicated when patients show complex
phenotypic profiles [5], when several genomic syndromes
share clinical features among them, or when rare genetic
aberrations affect an extremely low number of patients, as
in rare diseases. Hence, key challenges for clinicians
include the interpretation or classification of novel/extre-
mely rare variants and the understanding of the phenotypic
consequences of these genetic variations. A “genotype first”
approach, in which patients are classified by a similar
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genomic rearrangement before a common clinical pre-
sentation is observed, has proven to be successful in
characterizing the growing list of microdeletion/micro-
duplication syndromes [6, 7].

The array-comparative genomic hybridization (aCGH)
and single-nucleotide polymorphisms arrays (SNParrays),
along with next-generation sequencing (NGS), are now the
primary approaches used for copy number variation (CNV)
detection [8]. CNVs are genomic structural variations that
range from small variants (1 Kb) to larger structural changes
(millions of nucleotides). These variations may correspond
to deletions, duplications, or translocations found in genetic
regions of individuals either inherited or by spontaneous
occurrence (de novo), leading in some cases to disease [9].
CNVs are also present in healthy individuals, representing
around the 4.8–9.5% of human genome variation in healthy
individuals [8] of natural variation between genomes in the
population. However, novel or inherited CNVs may be the
cause of many disorders (as schizophrenia, Cron’s disease,
or autism) and their identification and analysis are used for
the diagnosis and characterization of many chromosomal
syndromes [10–12]. In some laboratories, microarrays are a
legacy technology that will be replaced by NGS. However,
the still growing number of patients genotyped with aCGH/
SNParrays platforms suggests a widespread usage of this
technology. Indeed, public databases such as DECIPHER
[4, 9, 13] show a significant amount of data originating from
aCGH and SNParray technologies in recent years.

Nowadays, the complete identification of the phenotypic
consequences of a given CNV remains challenging. Thus, it
is imperative that new significant advances are achieved in
the characterization of the genetic regions and molecular
mechanisms controlling phenotypic expression.

To help with the characterization of molecular relation-
ships between different phenotypes and microvariants, we
aimed to apply principles of network medicine [14–18] to
find the consequences of variants and their association with
diseases. To this end, we focused on the development of a
computational approach via tripartite networks made of
three types of nodes: variants (CNVs), patients, and phe-
notypes. We used the DECIPHER database, a global
repository of clinical patient data, as a resource for a sys-
tematic analysis and characterization of CNVs that are
likely to affect function [4]. DECIPHER is a valuable
resource that offers the phenotype and genotype records of a
sizable number of patients with low prevalent genomic
disorders, collected from more than 200 institutions from
around the world [4, 9, 13]. Most patients with de novo
CNVs in the DECIPHER database correspond to pediatric
disorders related to developmental delay, mental retarda-
tion, or congenital structural anomalies [5, 19]. Along with
CNVs, DECIPHER provides the pathological phenotypic
profiles of the patients. This information is stored using a

normalized vocabulary of phenotypes: the human
phenotype ontology (HPO) [20], that facilitates the analysis
and comparison between patient symptomatologies. In
order to study the genotype–phenotype relationships in this
dataset, we exploited the associations in our purposely
built tripartite networks using the subset of patients
presenting de novo CNVs in DECIPHER, identifying
significant associations between mutated regions and
pathological phenotypes. These phenotype-locus
associations have been used to assess the potential of our
network approach for assisting in the diagnosis of novel
uncharacterized rare cases in clinical routine. This
approach shows the potential of integrating information
from thousands of characterized cases to identify novel
genotype–phenotype patterns in rare and isolated cases with
very scarce information to compare with.

Materials and methods

Source of datasets for building the networks

We used the de novo CNVs from DECIPHER patients with
rare genomic disorders annotated and with available HPO
terms (version 2014-05-08, mapped to the hg19 genome
reference) through a Data Access Agreement with the
database consortium. All phenotype and genotype data
belong to patients that have provided informed consent to
share their data in an anonymized way. These include the
set of HPO terms annotated for each patient and their
respective associated CNVs. The deletions subnetwork
includes 2436 de novo CNVs from 2301 patients and 1795
HPO phenotypes. Duplications subnetwork is formed by
1114 de novo CNVs from 1013 patients, including 1160
HPO terms. DECIPHER selects the potential pathological
CNVs, removing those observed in control populations. The
DECIPHER 2014 dataset version was used to validate our
hypothesis, because this version did not include data from
the patients used here as novel clinical cases, as they were
included in later versions (see next section), allowing us to
test the feasibility of the network approach presented in this
work. In our approach, we analyzed two types of relation-
ships: (1) patients and genotypes (by CNVs) and (2)
patients and phenotypes (by HPO terms). We subdivided
CNVs into deletions and duplications, as we have
previously observed that they may have different effects
when affecting the same region (for example, in 19p13.3
and 19p13.13 microdeletion/microduplication syndromes
[6, 21], microdeletions lead to macrocephaly while micro-
duplications to microcephaly). In addition, we focused only
on de novo variants, as they are the ones more likely to be
associated with pathological phenotypes and the largest
genomic rearrangements [22].
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Clinical case datasets used for testing our network
approach

In order to test the feasibility of our network-based
approach (for assisting in clinical diagnosis of patients
with gains and deletions), two cohorts of patients provided
by the INGEMM (Institute of Medical and Molecular
Genetics, Hospital La Paz, Madrid, Spain) were used. The
data obtained were in the same format as DECIPHER data:
an anonymised set of CNVs and their correspondingly
annotated HPO terms per patient. Clinical investigations
were performed according to the guidelines of the
Declaration of Helsinki [23], and patient’s data followed a
strict ethical review process consisting of the signing of
consent forms by patients (or their parents). We performed a
proof of concept experiment of our technology in order to
test if the associations found in the DECIPHER networks
would help in the identification of the phenotypes asso-
ciated to new pathological CNV cases from the INGEMM's
sets of patients: (1) Single clinical cases: The first set of
cases corresponds to a cohort of 293 patients (unpublished
data) showing 519 genetic aberrations (312 deletions, 155
duplications, and 52 complex rearrangements), which were
identified using oligonucleotide array CGH or SNParrays
within 2010–2014 at the INGEMM. These patients were
mainly referred to our clinics due to: intellectual disability,
congenital malformations, and autistic spectrum disorder.
(2) A group of patients sharing phenotype and genotype,
describing a new microdeletion/microduplication syn-
drome: The second group of cases used was based on a
specific syndrome characterization study, carried out by
Nevado et al. [6], including 13 unrelated patients (with a
total of 15 genomic rearrangements, distributed into 13
deletions and 2 duplications). Eleven of these patients had

deletions and the remaining two duplications. The aCGH
analysis together with clinical records showed that these
patients shared phenotypic and genotypic features
representing a novel interstitial microdeletion/micro-
duplication syndrome [6]. Common features consist of:
abnormal head circumference (macrocephaly for the
deletions and microcephaly for the duplications), intellec-
tual disability, developmental delay, hypotonia, speech
delay, and some dysmorphic features.

Microarrays analyses

Array-CGH was performed using a custom oligonucleotide
array (KaryoArray® v3.0, 8 × 60K, Agilent-Based
Technologies, Santa Clara, CA) [24]. Briefly, this array
has an average density of one probe per 9 Kb in clinically
relevant regions (microdeletion/microduplication syn-
dromes, subtelomeric, and pericentromeric regions) and one
probe per 175 Kb in other genomic regions. In some cases, a
genome-wide scan of high density 850,000 tag SNParrays
was conducted on probands, using the commercial design
Illumina CytoSNP-850k BeadChip according to the manu-
facturer’s specifications (Illumina, San Diego, CA).

Generating the network model

Patient’s HPO terms and de novo CNVs associations data
files were downloaded from the DECIPHER ftp server. As
HPO is organized as a hierarchical tree (Fig. 1, panel 1),
each patient was associated, in the network model, to his/
her specific HPO terms (children) and all the parental terms
above them in the HPO tree (Fig. 1, panel 3). A locus was
defined as a SOR (small overlapping region) between
patient CNVs used to build the network (Fig. 1, panel 2). A

Fig. 1 Generation of a tripartite network using DECIPHER patient
data. Circles represent phenotypes and rectangles loci. (1) Patients are
phenotypically annotated using HPO terms; (2) a locus is defined as

the chromosomal region where a set of patient CNVs overlap; (3) the
HPOs-patients layers; (4) the patients-loci layers; (5) the final tripartite
network

Phenotype-loci associations in networks of patients with rare disorders: application to assist in the. . . 1453



patient-loci network model (Fig. 1, panel 4) was generated
connecting specific patients to loci. Panel 5 (Fig. 1) shows
the integration of HPO phenotypes (red), loci (green), and
patients. Thus, the layers of HPO terms and CNVs were
connected by a middle layer of patients, forming a tripartite
network, which was split in two halves; one for
deletions and one for duplications. The deletions and
duplications subnetworks generated 45,361 unique HPO
term-patient/30,038 loci-patient associations and 17,010
unique HPO term-patient/10,888 loci-patient associations,
respectively.

Phenotype–genotype association measure
calculation

We used the Hypergeometric Index (HyI) to measure the
degree of association between HPO terms and loci through
patient nodes in the tripartite networks (Fig. 2). The HyI
yields the minus log-transformed probability of having an
equal or greater level of interaction between a given phe-
notype-locus pair than the one expected by chance [25].
This index is frequently used to measure associations in
different areas: e.g., microarray functional analysis, image
pairwise comparison, data vectors, and spatial analysis in
mass spectrometry [26–28]. We explained in detail the
mathematical method, how it behaves and how to access the
source code and instructions in Supplementary Material,
Section 1. We also made a cross-validation of the method
(Supplementary Material, Section 2), tested its possible
dependencies (Supplementary Material, Section 3) and
found (a) a negative relationship between HyI values and
HPO frequency, (b) a positive correlation between HPO
prevalence and the number of associated loci, and (c) a lack
of correlation between HyI values and patients/CNVs per
locus. And finally we show an example, analyzing a pre-
valent phenotype (Supplementary Material, Section 4). The
significance of the association increases with the HyI value,
since the lower the probability of the observed phenotype-
locus association to be due to random the higher the HyI
score value. This metric also dampens the effects of large
CNVs overlapping with many different small CNVs, in two
ways: (1) a widely spread phenotype usually leads to low
HyI scores and (2) the phenotype will be highly rated only if
it is shared by a big number of patients in the same locus

(SOR). Both facts, related to specificity, are discussed in
Supplementary Material. An example of how HyI works is
shown in Fig. 3, with two putative scenarios. Scenario 1 in
Fig. 3 shows a phenotype connected to a locus via three
different patients, but this phenotype has four more con-
nections to other patients with genomic disorders located in
different loci (high prevalent HPO phenotype). The HyI
association value obtained in this case is low (HyI= 0.001;
p-value= 0.99). In Scenario 2, a phenotype is also con-
nected to a locus by three patients, but in this case the
amount of connections to other patients and loci for that
phenotype is low; this latter case represents a more specific
phenotype-locus association, and therefore the significance
is higher (HyI= 0.942; p-value= 0.11). In order to estab-
lish a significance threshold, for this study, we considered
HyI value ≥2.0 as significant HPO phenotype-loci associa-
tions (a p-value ≤ 0.01 due to random).

Measuring the association index between HPO
phenotypes and loci in the whole DECIPHER
network

To calculate the significance of associations between HPO
phenotypes and loci, we applied the hypergeometric asso-
ciation index (HyI) to the de novo deletions and de novo
duplications tripartite subnetworks (see section above). We
calculated the HyI association score for 600,234 different
HPO term-locus pairs using the deletions subnetwork, and
175,956 using the duplications subnetwork. Some examples
of HPO term-locus associations are shown in Table 1 and
the rest of them are included in the Supplementary Material
that accompanies this work.

Fig. 2 Hypergeometric Index (HyI) equation. 'A' represents a pheno-
type node and ‘B' a locus node within the tripartite network

Fig. 3 Calculation of the Hypergeometric Index (HyI) in two scenarios
within a tripartite network. Scenarios 1 and 2 show the HyI values for
high and low prevalent phenotypes, respectively, connected to a locus
via three patients

1454 A. Bueno et al.



Ranking putative phenotype/CNV associations in
novel uncharacterized clinical cases

We calculated HyI values for the de novo deletions and de
novo duplications subnetworks. A dataset was set up to
include all the HyI scores for all HPO phenotypes against
all loci. We also used this dataset to identify
phenotype–genotype associations, ranked by their HyI
value, for new patients with CNVs that were not included in
the DECIPHER dataset (Fig. 4).

Other parameters used

In addition to HyI association value, we also defined and
calculated some additional parameters in order to estimate
more accurately the significance of our results: Penetrance:
We defined penetrance as the percentage of patients in the
DECIPHER database with the same affected locus sharing
the same HPO term. A penetrance of 100% means
that all patients having affected the locus express the
phenotype. Penetrance is a useful parameter for
measuring the effects of combined genetic aberrations
and the probability of showing the associated phenotype if a
patient harbors a variant in that specific region. % max:
The ratio between the HyI value obtained for an
HPO term associated to a locus and the maximum HyI
value in the network for that phenotype. A % max
of 100% means that the HPO phenotype-locus HyI
value is the maximum found for that HPO phenotype in the

whole genome. Locus overlap: The percentage of
overlap (in base pairs) a CNV from a novel clinical
case has with a locus present in our reference network. If
this parameter is 100%, that means that the “case”
CNV is contained in the locus region. Locus overlap has to
be taken into account in the interpretation of the data, since
if the query patient just shared a tiny percentage with the
studied locus, it may not affect the specific region
responsible for a particular phenotype associated to that
locus (even if the HyI value between the locus and the
phenotype is high).

Table 1 Examples of HPO-phenotypes vs. locus associations identified in the system

HPO code Phenotype Max HyI
(del.)

Max HyI
(dup.)

Locus coordinates (del.) Locus coordinates (dup.)

HP:0002813 Abnormality of limb bone
morphology

4.93 3.10 Ch 7: 41613503–42807486 Ch 9: 11818351–12709928

HP:0000284 Abnormality of ocular region 3.39 1.65 Ch 7: 41518389–41613502 Ch Y: 945080–2654860

HP:0000153 Abnormality of the mouth 3.50 1.94 Ch 2: 200208169–200246437 Ch 22: 40849826–41082043

HP:0001315 Reduced tendon reflexes 3.16 3.54 Ch 3: 6036656–6045520 Ch 20: 29462074–29833608

HP:0010477 Aplasia of the bladder – 3.36 – Ch 17: 34817222–34817420

HP:0001933 Subcutaneous hemorrhage 3.38 – Ch 21: 15398168–15412670 –

HP:0200008 Intestinal polyposis 3.56 – Ch 10: 89717525–93614902 –

HP:0001789 Hydrops fetalis 3.56 – Ch 13: 80378611–80386671 –

HP:0003186 Inverted nipples 2.90 3.54 Ch X: 455566–544731 Ch 16: 75683739–78186860

HP:0000699 Diastema 3.08 3.36 Ch 5: 13750113–14064732 Ch 7: 2290686–2996437

HP:0010761 Broad columella 3.56 – Ch 19: 48066340–48270667 –

HP:0008110 Equinovarus deformity 3.26 3.36 Ch 16: 2038810–2124458 Ch 16: 90148342–90148393

HP:0002323 Anencephaly – 3.36 – Ch 17: 34817222–34817420

Columns: (1) HPO code; (2) Phenotype description; (3) Maximun HyI obtained for the phenotype associated to a locus in the de novo deletions
subnetwork; (4) Maximun HyI obtained for the phenotype associated to a locus in the de novo duplications subnetwork; (5) Chromosome id: the
start and end coordinates (in bps in the hg19 genome reference) of the locus associated with the phenotype with the Max HyI value in the de novo
deletions subnetwork; and (6) in the de novo duplications subnetwork

Fig. 4 Identification of phenotype-locus associations for new
clinical cases. A CNV from a new patient (Query) is assigned to a
locus (CNV 1) in the tripartite network by genomic overlap compar-
ison (left side of the figure). All the phenotypes associated to patients
are ranked based on their HyI association value to the query locus
(right side)

Phenotype-loci associations in networks of patients with rare disorders: application to assist in. . . 1455



Results

Application of the networks analyses to novel
clinical cases

We used herein 293 clinical cases (patients), associated with
519 CNVs, diagnosed at the INGEMM (Institute of Medical
and Molecular Genetics, Hospital La Paz, Madrid, Spain)
during the period 2010–2014. For 258 out of the 293
clinical cases (88%) our approach found at least an over-
lapping CNV with a pathological locus, and for each
pathological locus a list of HPO phenotypes sorted by their
HyI value was provided (as described in Methods, section
“Ranking putative phenotype/CNV associations in novel
uncharacterized clinical cases”, Fig. 4). The resulting
ranked list for each pathological locus only included HPO
terms with a HyI value ≥2.0 (p-value ≤ 0.01). 17,096 sig-
nificant (HyI ≥ 2.0) associations were found involving 856
different phenotypes. A total of 381 out of the 1489 HPO
terms (26%) diagnosed by clinicians were also identified by
our system associated to a patient’s CNV in the de novo
deletions subnetwork, and 252 out of 609 (41%) in the de
novo duplications subnetwork (Table 2). On the other hand,
a total of 521 and 376 non-diagnosed HPO phenotypes, for
deletion and duplication respectively, were identified by our
method to be associated with disorders in the clinical cases
(Table 2). These results indicate that this novel approach
could be extensively used for differential diagnosis of novel
clinical cases in order to find those phenotypes associated
with single CNVs through comparison to the entire patient
information integrated in the network generated from
DECIPHER.

In order to illustrate the potential utility of this metho-
dology for assisting in a genetic diagnosis, we select and
discuss in detail three clinical cases (two deletions and one
duplication) from our cohort (Table 3). Interestingly,
patients presented as examples in Table 3 show a high level
of similarity matching between phenotypes diagnosed by
clinicians and those identified by our network association
system. However, in the first case the system finds a couple

of phenotypes: “Macrocephaly” and “Abnormality of joint
mobility” (highlighted in dark in Table 3), which were not
reported originally by the clinicians. Although, penetrance
and % max parameters are relatively low for both
phenotypes, our results suggest the need for carrying out
some additional clinical tests to confirm or discard these
phenotypes in the patient.

The CNV of patient 2 has a region of about 100 Kb that
does not match any locus (non-matching region coordinates
-hg19-: 36 410 558–36 510 799 bps in chr17). In this case,
patient 2 was diagnosed with “Fetal choroid plexus cysts”,
an anomaly consisting of small fluid-filled structures within
the choroid of the lateral ventricles of the fetal brain. These
results suggest that the non-matching CNV region from the
clinical case could harbor the genetic cause of the “Fetal
choroid plexus cysts” diagnosed in this patient. This shows
a potential use for the network approach in discriminating
the particular regions associated with different phenotypes.

Finally, we show an example of a patient with a dupli-
cation (patient 3 in Table 3) where the clinicians observed
two phenotypes: “Abnormal facial shape” and “Global
developmental delay”. The second phenotype was not
detected by our system, but for the first one we detected up
to eight ontologically related phenotypes with a significant
HyI association value. The most specific phenotypes were
the following: “Depressed nasal bridge”, “Deviated nasal
septum”, “Malar flattening”, and “Brittle hair”. Just to note
that, although “Brittle hair” has a significant HyI (2.82) it
shows low values for penetrance and node overlap, so this
should be carefully considered. Taking into account this
information, we can infer that the “Abnormal facial shape”
observed in this patient may be related to nose malforma-
tions and the structure of the zygomatic arch.

Application of the methodology to a set of patients
who share a novel non-recurrent microdeletion/
microduplication syndrome

The same approach, described in the section above for
single clinical cases, was also applied to a set of 13 patients

Table 2 Statistics of the comparison between the clinical records of the 293 patients with rare CNV genomic disorders and the HPO phenotypes-
loci associations identified by the system

# HPO phenotypes diagnosed by the INGEMM clinicians for all the patients 1694

# Diagnosed HPOs for all the patients presenting a deletion 1489

# Diagnosed HPOs for all the patients presenting a duplication 609

# Diagnosed HPOs also identified by the system using the de novo deletions network 381

# Diagnosed HPOs also identified by the system using the de novo duplication network 252

# HPOs identified by the system and not diagnosed (with HyI > 2, penetrance 100%, and loci
overlap 100%) using the de novo deletions network

521

# HPOs identified by the system and not diagnosed (with HyI > 2, penetrance 100%, and loci
overlap 100%) using the de novo duplications network

376

1456 A. Bueno et al.
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Table 4 Patients with the syndrome associated with CNVs in the 19p13.3 region

The table shows the patient ids; Type of CNV: “−” for deletions and “+” for duplications. First column: phenotype descriptions and HPO codes.
Boxes with X indicate that the phenotype has been previously diagnosed in the corresponding patient by the clinician examination. Phenotypes
found by the systemic approach with significant HyI values (HyI value ≥ 2.0; p-value ≤ 0.01) are represented by dark gray boxes, and those
detected with lower HyI values by light gray boxes. Phenotypes are grouped in four general categories: Growth and development, neurology,
others, and an extra category for those found by the system but not previously diagnosed
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with 15 CNVs (13 deletions and 2 duplications), previously
classified by reverse genetics in the INGEMM clinical unit
into a new microdeletion/microduplication syndrome loca-
ted at the 19p13.3 genomic region [6]. All these patients
share a number of phenotypes related to a similar CNV
rearrangement (deletions and duplications). The summary
of the comparison between phenotypes established by
Nevado et al. [6] and the results of our analysis are shown in
Table 4. These results show that our systematic approach
was able to identify 37 out of the 178 diagnosed phenotype-
patient associations for this syndrome (21%) with sig-
nificant HyI values (HyI ≥ 2.0; p-value ≤ 0.01). Although we
recommend the use of HyI values above 2.0 to obtain highly
reliable results, our system also provides, as additional
information, results with lower values, which must be taken
with caution and be evaluated for each particular case,
considering additional information in order to make any
inference. In this sense, 91 out of the 178 diagnosed
phenotype-patient associations for this syndrome (51%)
were also detected by our system but with HyI < 2.0. Some
of these cases correspond to prevalent phenotypes, such as
“psychomotor development delay” or “intellectual dis-
ability”. We differentiate both types of results by using
different colors in the grids of Table 4. There is a set of
phenotypes diagnosed in most patients with this syndrome
that were also recurrently found by our systematic
approach, with significant HyI values. For example: “Wide
nasal bridge” (9 associations found by the system out of 10
patients diagnosed), “Gastro-esophageal reflux” (4 out of 4
diagnosed), “Umbilical hernias” (4 out of 4), “Heart dis-
ease” (5 out of 7), and “Feeding problems” (5 out of 6). As
we showed previously, our system also found phenotypes
associated with these CNVs in 46% of the patients with this
syndrome that have not been reported in the patients’
clinical records, such as: “abnormality of the kidney”,
“abnormality of the penis”, and “abnormality of connective
tissue”. In a retrospective review (carried out after the
application of our method to check our predictions directly
in patients) of 38 of these patients with 19p13.3 micro-
deletions, renal anomalies were found in 26.31% of them,
anomalies of the sexual organs in 21.05%, and there were
no known cases of abnormality of the connective tissue.
These results support the potential of the system to assist
clinical diagnosis (see Section 5, Supplementary Material).

Discussion

We developed and showed herein a new approach to assess
relationships between genotypes (using CNVs) and phe-
notypes (using HPO terms) in order to help in the diagnosis
of rare genomic syndromes. We used the HPO [2], which
provides a structured, comprehensive, and well-defined set

of over 11,000 terms that characterize phenotypic abnorm-
alities seen in human disease [20]. Many algorithms and
computational tools use the HPO extensively. In fact, it is
useful for clinical differential diagnostics, as well as for the
prioritization of candidate disease-associated genes in
exome sequencing studies [29]. As an example, the web
application Phenomizer [30], which analyzes relationships
between human phenotypic abnormalities and diseases,
makes use of HPO database.

The systematic mathematical approach implemented in
this work is able to establish a fine-tuning of the relation-
ships between phenotypes and specific loci by exploiting
large-scale association networks of phenotypes and
genotypes in thousands of patients with rare disorders and
complex pathologies. Clinicians can directly associate the
variants of the patients and their phenotypes when they co-
occur in the same locus, but they cannot easily differentiate
the specificity degree and the association statistical sig-
nificance of each phenotype associated to each particular
locus, as the system implemented in this work does. Our
results clearly support the use of this tool to identify
potential loci involved in genetic diseases within a database
such as DECIPHER, whose approximately half of its
patients are currently not associated to genetic syndromic
entities. The application of the described methodology in a
set of novel clinical cases, used as proof of concept, has
shown a high potential to facilitate the diagnosis of these
novel unsolved clinical cases, ranking phenotypes by locus
specificity and reporting putative new phenotypes. Indeed,
these phenotypes may suggest additional clinical explora-
tions that could help improve the precision of patient
diagnosis and the characterization of new rare syndromes,
as evidenced. The results obtained here indicate that the
comparative analysis of new clinical cases with variant-
phenotype associations identified in the network of formerly
diagnosed patients could have important applications in the
design of customized arrays and NGS approaches for
genetic-variant diagnosis, as well as in the search of can-
didate genes associated to the different mutated genomic
regions observed in patients.

Currently available methodology for genetic diagnosis
include PhenIX [31], Phenomantics [32], eXtasy [33],
PHIVE, hiPHIVE [34, 35], Phevor [36], Phen-Gen [37],
and OMIM-Explorer [29]. These tools provide phenotypi-
cally supported annotations to particular variants detected in
patients, yielding rankings for pathological variants or
genes. Some of these methods (PhenIX, PHIVE, hiPHIVE,
or OMIM-Explorer) may provide, directly or indirectly, a
guide for disease diagnosis. Particularly useful is Pheno-
mizer, which compares diseases and patient phenotypes
using the Online Mendelian Inheritance in Man (OMIM)
disease catalog [30]. However, OMIM-Explorer is the only
tool that provides phenotype suggestion for differential
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presumptive diagnosis, as the system presented in this work
also does. The main difference between OMIM-Explorer
and our network-approach is that the former uses available
annotations of: genes, variants, diseases, and phenotypes in
OMIM and other similar databases, while in this work the
variants-phenotypes associations are directly inferred from a
network of individual patients. In addition, another impor-
tant difference in our tool is that it manages a tripartite
(variants–patients–phenotypes) network made of patholo-
gical de novo CNVs present in patients with rare genomic
disorders from the DECIPHER database. This characteristic
makes the DECIPHER patients network approach presented
here especially suitable for the comparative diagnosis of
rare and orphan diseases with a genetic origin (80% of all
rare diseases), a clinical field that is specially challenging
due to the low number of patients and the lack of compu-
tational methods for helping diagnosis [38–40].
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