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Abstract  

Device-dependent metrics attempt to predict image quality from an ‘average signal’, usually 

embodied on test targets. Consequently, the metrics perform well on individual ‘average looking’ 

scenes and test targets, but provide lower correlation with subjective assessments when working 

with a variety of scenes with different than ‘average signal’ characteristics. This study considers 

the issues of scene dependency on image quality. This study aims to quantify the change in 

quality with scene contents, to research the problem of scene dependency in relation to device-

dependent image quality metrics and to provide a solution to it.  

A novel subjective scaling method was developed in order to derive individual attribute scales, 

using the results from the overall image quality assessments. This was an analytical top-down 

approach, which does not require separate scaling of individual attributes and does not assume 

that the attribute is not independent from other attributes. From the measurements, interval scales 

were created and the effective scene dependency factor was calculated, for each attribute.  

Two device-dependent image quality metrics, the Effective Pictorial Information Capacity (EPIC) 

and the Perceived Information Capacity (PIC), were used to predict subjective image quality for a 

test set that varied in sharpness and noisiness. These metrics were found to be reliable predictors 

of image quality. However, they were not equally successful in predicting quality for different 

images with varying scene content.  

Objective scene classification was thus considered and employed in order to deal with the 

problem of scene dependency in device-dependent metrics. It used objective scene descriptors, 

which correlated with subjective criteria on scene susceptibility. This process resulted in the 

development of a fully automatic classification of scenes into ‘standard’ and ‘non-standard’ 

groups, and the result allows the calculation of calibrated metric values for each group. The 

classification and metric calibration performance was quite encouraging, not only because it 

improved mean image quality predictions from all scenes, but also because it catered for non-

standard scenes, which originally produced low correlations. The findings indicate that the 

proposed automatic scene classification method has great potential for tackling the problem of 

scene dependency, when modelling device-dependent image quality. In addition, possible further 

studies of objective scene classification are discussed.  
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Chapter 1  

Introduction 

Image quality evaluation is a key part in designing better imaging systems and deciding 

on the quality standards in image processing, e.g. the ratio of image compression. In 

general, the quality of an image is assessed using subjective (psychophysical) or objective 

(physical) scaling [1] (pp. 371-373).  

The two scaling methods have their own benefits and drawbacks. Subjective scaling 

directly correlates to perceived image quality but is time-consuming, costly and 

complicated to implement. On the other hand, objective scaling is quick and less complex 

to implement but does not always provide reliable scales [2] (pp. 564). For example, the 

objective scales have been proven to successfully predict image quality in the laboratory, 

yet they have been poor predictors of quality when applied to digital systems in the field 

for some images, away from the laboratory.   

Yendrikhovskij [3] (pp. 363) has noted that the current image technology does everything 

except one final and very crucial step, image quality appraisal. Many image quality 

models, mathematical formulas that are capable of predicting human perceptions of 

quality, have been proposed over the last fifty years [1] (pp. 371). However, as of yet, no 

definitive objective (physical) scaling method has been put forward [1] (pp. 390), [4] (pp. 

3315).  

Currently, the objective (physical) scaling methods can be classified into two groups [5] 

(pp. 12): i) the image-dependent (device-independent) models, and ii) the device-

dependent (image-independent) models.  
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Image-dependent models attempt to predict the human perception of the image itself 

without knowledge of the imaging system’s characteristics. These models are based on 

the difference between pairs of images, which involve a comparison of an image with 

either an ideal image or a non-ideal image.  

If the reference image is the ideal image, then the compared image will have a lower 

quality scale. This is called the impairment approach [6] (pp. 251). An example is Daly’s 

Visible Differences Predictor (VDP) [7] at image compression investigation. The ideal 

image is the original version, and the compared images are the compressed versions.  

In the image-dependent models that use a comparison of an image with a non-ideal image, 

the quality result of the compared image changes as an increase or a decrease [8] (pp. 16). 

An example is image Color Appearance Model (iCAM) [9]. The non-ideal image is the 

original version, and the compared images are the image versions that vary in sharpness, 

resolution, noise or contrast. Johnson [8] (pp. 138) notes “what is interesting is this type 

of modelling can start to predict both magnitude and direction of the experimental 

sharpness scale.” 

These image-dependent models have an actual benefit in dealing with the problem of 

scene dependency. However, they are often unable to measure quality based on the 

imaging system variables. 

The image-dependent modelling can be thought of as travelling throughout the left-hand 

side of the Image Quality Circle, as shown in Figure 1-1. 
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Figure 1-1.Image-dependent paths in the Image Quality Circle appear on the left-hand side  
  (adapted from Fairchild [5] (pp. 16)) and (Image Quality Circle adapted from 

Engeldrum [6] (pp. 251)). 

 

The second group models focus on an element of device-dependent image quality. This is 

applied in a straightforward fashion for the measurement of image quality of various 

system variables, such as the modulation transfer function (MTF), the noise power 

spectrum (NPS) and the gamma (γ).  

These models are extremely powerful tools for measuring and predicting quality 

according to system variables, when knowledge of the images used is available. However, 

if knowledge of the image used is not available, these models have a well-known 

drawback, the scene dependency of image quality [10] (pp. 259), [11] (pp. 25). This is the 

reason that the models perform well on individual scenes and test targets, but provide 

lower correlation with subjective assessments when working with a variety of scenes.  

The device-dependent image quality modelling falls into the right-hand side of the Image 

Quality Circle, illustrated in Figure 1-2. 
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Figure 1-2. Device-dependent paths in the Image Quality Circle appear on the right-hand side  
(adapted from Fairchild [5] (pp. 13)) and (Image Quality Circle adapted from Engeldrum 

[6] (pp. 251)). 

 

This study is concerned with device-dependent image quality models. It investigates the 

problem of scene dependency in device-dependent image quality models. In addition, it 

examines a solution with respect to scene dependency in device-dependent image quality 

models.   

 

1.1 The impact of scenes on the perception of image 

quality   

Image quality researches have confirmed that the scene content of the test images affects 

the observer’s judgement [12] (pp. 9). For example, observers judged differently the 

sharpness of portraits and landscapes [13] (pp. 28). Portraits with low sharpness are 

usually preferred over over-sharpened portraits, while the opposite applies to landscapes.  
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Keelan [14] (pp. 131-135) has shown that the digital artefact of streaking is more evident 

in clear-sky image areas (i.e. relatively uniform, light areas) than in image areas of high-

frequency signals and in extensive dark areas, which visually mask that streaking. 

Similarly, for a given print granularity, it has been shown that graininess (i.e. a subjective 

measure of photographic granularity) usually decreases with print density [15] (pp. 310), 

and hence dark areas in prints are less visually susceptible to the artefact. Also, scene 

characteristics, such as the spatial distribution of subjects [16] (pp. 663) and camera to 

subject distance [12] (pp. 13), have been shown to be important in the observer’s 

preferences. 

Scene dependency makes it difficult to design device-dependent image quality models, as 

well as to validate the models.  

There are several ways of overcoming the problems caused by scene dependency [10] (pp. 

262). One commonly employed method is to exclude subjective results obtained from 

non-standard scenes, when objective quality modelling. The validation of the models then 

uses the different set of standard scenes.    

Another common technique is to employ a representative set (e.g. International Standards 

Organisation (ISO) 20462-3: 2005 set of test scenes [17] and ‘Lena’), when objective 

quality modelling and validating. Nowadays many experimenters employ this technique 

[10] (pp. 262).   

These, however, do not effectively represent the range and variety of different scenes that 

photographers, artists and consumers may wish to record and reproduce faithfully [10] 

(pp. 262-264).  

 

1.2 Scene classification with respect to image quality   

One possible way of overcoming the problem of scene dependency is a scene 

classification with respect to image quality. Keelan [14] (pp. 147) notes that “one way to 

characterize the variability associated with …scene susceptibility is to classify scenes … 

into small number of groups.” The classification he proposed is as follows: 1) most 
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susceptible scenes 25%, 2) least susceptible scenes 25% and 3) intermediately susceptible 

scenes 50%. 

In addition, Triantaphillidou et al [10] (pp. 269) proposed a method for test scene 

classification, which uses objective scene descriptors that correlate with subjective 

criteria on scene susceptibility to image quality attributes. Scene descriptors are derived 

to describe inherent scene properties that human observers refer to when they judge the 

quality of images.  

Some studies consider scene classification either inspection of similarity [18, 19, 20] or 

clustering for image indexing [21, 22, 23, 24]. For example, Allen et al [18] (pp. 253-257) 

classified scenes into relatively identical groups at image quality, which was decreased by 

image compression. Their work was an effort to classify scenes into five groups by 

inspection. Teeselink et al [19] (pp. 553) also classified scenes by inspection. The study 

found that observers classify images into categories that reflect scene content. Mojsilovic 

and Rogowitz [20] (pp. 18-19) similarly classified scenes using inspection. The study 

demonstrated that image semantics play a large role in determining image similarity. 

Yendrikhovskij [21] (pp. 406-408) sought to classify colour images by a k-means 

clustering algorithm. The effort was based on the colour coordinates, such as CIELAB in 

statistics of natural images. Szummer and Picard [22] (pp. 44) proposed a method for 

distinguishing between indoor and outdoor scenes, using colour histograms, 

autoregressive texture models and discrete cosine transform information. Vailaya et al 

[23] (pp. 1924-1930), [24] (pp. 421) described a method to classify vacation images into 

landscape/city, indoors/outdoors and sunset/mountain/forest, using colour histograms, 

colour coherence vectors (CCV), edge direction histograms and edge direction coherence 

vectors.  

This study seeks to group scenes used in image quality investigation, based on scene 

descriptors that correlated with scene susceptibility in sharpness and noisiness. This will 

provide a fundamental basis for the selection of test-scenes and will allow meaningful 

grouping based on scene content in image quality measurement.   
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1.3 Aims and overview of the project 

This research addresses the issue of scene dependency, which is a crucial factor in image 

quality. The main focus of this research is the impact of scene content on image quality.  

This study of scene dependency in image quality has several goals. The first goal is to 

quantify the change of quality according to scene content. The second goal is to identify 

the problem of scene dependency in device-dependent image quality models. The final 

goal is to develop a solution for tackling the problem of scene dependency in device-

dependent image quality models.  

These aims will be addressed by considering the issues as set out in the following 

chapters: 

Chapter 2 defines image quality and describes the differences between image fidelity and 

image quality. In addition, this chapter includes a detailed review of the image quality 

assessment, by subjective scaling and by objective scaling. In the subjective scaling 

section, the explanation of the nature of scene dependency and the perceived image 

quality that are effected by the blur and noise is included. The objective scaling section 

introduces image quality metrics and individual quality attribute assessments in terms of 

tone reproduction, colour reproduction, image resolution, sharpness and noise. This 

section also includes details on objective scene classification, based on scene descriptors 

to quantify various scene properties.  

Experiments were conducted to characterise the imaging devices (i.e. a camera and a 

liquid crystal display (LCD)) used in the studies. The aim is to provide a means for 

producing accurate and reproducible results for image quality assessments. The tone and 

colour characterisation of the camera and the LCD devices are described in chapter 3 and 

chapter 4, respectively. Furthermore, the modulation transfer function (MTF) and noise 

characterisation of both devices are investigated in chapter 5. This chapter provides an 

account of the measurements of the soft display with the aid of a digital camera. The 

results of these measurements are presented in the chapter 5.  

Chapter 6 deals with a series of subjective (psychophysical) experiments that investigate 

the effect of scene content on the perceived image quality. A novel approach is devised 
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for this investigation. The overall image quality is rated directly by the observer, and the 

result is then analysed to get the perceptual constraints that determine image quality. This 

chapter provides a detailed description of the experimental method used, followed by the 

results from the subjective experiments.  

Chapter 7 describes an investigation of scene classification with respect to image quality. 

It involves 1) the investigation of various scene descriptors, derived to describe scene 

properties that influence image quality, 2) the correlation between scene descriptors and 

scene susceptibility parameters (from the results of chapter 6), and 3) the application of k-

means clustering, using the selected scene descriptors for test-scene grouping. This 

chapter provides a detailed k-means clustering method with respect to image quality, 

followed by the results. The results from this chapter are employed to improve objective 

(physical) image quality scaling in chapter 8.   

Chapter 8 sets out the details of an Effective Pictorial Information Capacity (EPIC) 

metric [74] and a Perceived Information Capacity (PIC) metric [71]. In addition, the 

various comparisons between EPIC and PIC results and perceived quality scales from 

chapter 6 are described. The comparisons are used to assess the success of objective 

device-dependent quality predictions. In addition, this chapter describes the method of 

improvement of the EPIC and PIC metrics, using the scene classification from chapter 7. 

Finally, the validity of the implementation is described. 

Chapter 9 gives a discussion based on the results of the work as the system performance, 

subjective and objective image quality assessments. The conclusions and the 

recommendations for further work are presented in chapter 10. 
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Chapter 2  

Image quality  

This chapter describes the concept of image quality. A detailed account of image quality 

measurements via subjective (psychophysical) and objective (physical) evaluations is also 

presented. Some of these measurements have been applied in the experimental part of this 

research.   

 

2.1 Image quality concept 

According to ISO 12231: 2005 [25] (pp. 30), image quality is “an impression of the 

overall merit or excellence of an image, as perceived by an observer neither associated 

with the act of photography, nor closely involved with the subject matter depicted.” 

Although the definition is approved by ISO 12231: 2005, it cannot comprehensively 

explain the broader concept of image quality. This definition is slightly restricted. Keelan 

[26] (pp. 9) has pointed out “this narrow definition of image quality, which is based on 

third-party assessment, captures the artifactual, preferential and aesthetic attributes, but 

excludes personal attributes.” Jacobson [27] (pp. 7) has noted that “image quality has no 

single, unique definition yet.”  

Furthermore, the concept of image quality is often confused with image fidelity. 

Therefore, it is necessary to distinguish between them. Silverstain and Farrell [28] (pp. 

881) have stated that image fidelity is the ability to discriminate between two images, 

while image quality is the preference for one image over another. Klein [29] (pp. 75-76) 
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has distinguished between image fidelity and image quality, as the difference between the 

visibility of a factor and the degree to which that factor is bothersome. Berns [30] (pp. 

107-108) has described the difference between image fidelity and image quality in the 

colour reproduction, as explaining that the fidelity of colour reproduction is concerned 

only with the least noticeable visible change, while quality of colour reproduction is far 

more than the least noticeable visible change.  

 

2.2 Image quality assessment  

Jacobson [27] (pp. 7) has noted that observers “are able to decide almost instantly 

whether a particular image is of good or poor quality, but for us to quantify how good an 

image is, and the scale of quality is far more difficult.” Yendrikhovskij [3] (pp. 363) has 

mentioned that the “current image technology does everything except one final and very 

important step-image quality appraisal.” Thus, quantifying our own preferences yields a 

fascinating scientific challenge.  

Engeldrum [31] (pp. 312) has explained image quality evaluations in the form of an 

Image Quality Circle (Figure 2-1). It describes subjective (psychophysical) and objective 

(physical) image quality assessments. The Image Quality Circle involves four basic 

elements: ‘customer image quality rating’, ‘customer perceptions’, ‘physical image 

parameters’ and ‘technology variables’.  
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Figure 2-1. Image Quality Circle and approaches to quantifying image quality  
(adapted from Engeldrum [31] (pp. 312)). 

 
 
The ‘customer image quality rating’ represents the customer’s opinion of image quality. 

It consists of ‘customer perceptions’, such as graininess, sharpness and brightness. These 

perceptual attributes (Table 2-1) are related to the ‘physical image parameters’ which are 

evaluated by physical measurements (Table 2-2). The ‘technology variables’ cover an 

extensive number of variables. They are either fixed by the system being used or can be 

changed as part of the control of the system being optimised [31] (pp. 313).    

  

Attributes Perceptual description 

Tone The macroscopic contrast in an image. 

Colour The visual sensation in lightness, chrominance and saturation in an image. 

Sharpness The microscopic contrast in an image. 

Resolution The ability to depict spatial picture detail in an image. 

Noise The random and non-random spurious information in an image. 

Table 2-1. Image attributes and their perceptual descriptions  
(adapted from Ford [32] (pp. 32) and Triantaphillidou [33] (pp. 38)). 

Subjective (psychophysical) measurement Objective (Physical) measurement 

Top-down 

Bottom-up 
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Attributes Physical image parameters 

Tone Gamma, Dynamic range, Tone reproduction curve (Characteristic curve), Histogram 

Colour 
Chromaticity values (xyY, L*u*v*, L*a*b* etc.), Spectral power distribution, Pixel 

values, CIE colour differences 

Sharpness 
Acutance, Point spread function, Line spread function, Edge spread function, 

Modulation transfer function  

Resolution Resolving power, Image cell (cycles/mm, pixels/inch), dots per inch (dpi) 

Noise Granularity, Noise power spectrum (NPS), Autocorrelation function 

Others Information capacity, Detective quantum efficiency (DQE), Entropy, Power spectrum 

Table 2-2. Physical measures relating to the objective evaluation of image quality  
(adapted from Triantaphillidou [33] (pp. 42) and Jacobson [34] (pp. 237)). 

 

According to Yendrikhovskij [21] (pp. 396), subjective image quality can be studied from 

two perspectives: bottom-up and top-down (cf. Figure 2-1). The former is largely based 

on experimental research of the attributes of image quality. The latter is the process of 

analytical research of the perceptual constraints that determine image quality. Both 

approaches are valuable for image quality quantification.  

 

2.2.1 Subjective evaluation  

In the bottom-up perspective, the image quality rating is formed by the combination of 

individual visual attribute scales [31] (pp. 318), [35] (pp. 33), which are characteristics of 

an image that we see [36] (pp. 11-12). However, the individual attribute scaling has been 

a subject of discussion [33] (pp. 38), since image quality attributes are unlikely to be 

independent from other attributes.  

There are many studies about the complicated relationships between attributes. For 

example, Biedermann and Frieser [37] (pp. 28) have studied the association between 

graininess and sharpness. Johnson and Fairchild [38] (pp. 28) have confirmed the 

relationship between sharpness and contrast. The individual attribute scaling is a 

relatively simplistic way of measuring image quality, because it does not take into 

consideration the complicated relationships between attributes. 
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In the top-down perspective, the overall image quality rating is directly judged by the 

observer. It produces “goodness” scales based on the overall image impression. The 

result can be then analysed to get the perceptual constraints that determine image quality. 

This is especially beneficial, because it does not require scaling of individual attributes 

and does not require the assumption that observers can see the quality attribute 

independently (cf. Chapter 6). Engeldrum [11] (pp. 22-23) has noted “it is common in 

image quality scaling studies that the quality judgement varies due to the variation of 

only one “ness.” The resulting scale from this sample set will not be one of image quality, 

although it may be labelled as such, but a scale of the single “ness” that varies in the 

sample set. Much care is needed in identifying the “nesses” in a sample set in order to 

avoid these pitfalls.” 

 

2.2.1.1 Subjective scaling   

The visual judgements produced by psychophysical scaling are quantified using one of 

the following scales: nominal, ordinal, interval or ratio [39] (pp. 678-680). From nominal 

to ratio scales, the information provided by the scale increases and the statistical 

operation complexity also increases. The ratio scales embody all the properties of the 

previous three scales.   

• Nominal scales: These scales are used as indices for objects with numbers or names. 

These numbers or names have no meaning other than to identify the different items. 

An example of this type of scale would be the image categorises, such as architectural, 

natural scenes, portraits.  

• Ordinal scales: These scales categorise variables associated with order. Items can be 

ranked in ascending or descending order, based on the magnitude of a certain visual 

attribute. However, there is no quantification information about the meaning of 

distances between items. The only mathematical operation that is valid for an ordinal 

scale is the use of the greater-than or less-than operators. An example of this type of 

scale would be the ordering from ‘best’ to ‘worst’ quality. The resulting scale would 

only reveal that one was greater than or less than others, but there would be no 

information as to how much greater or less. 
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• Interval scales: These scales have the property of distance to the ordinal scales. The 

mathematical operation that is valid for the interval scale is the use of the greater-than 

or less-than operators, as well as the differences between them. For example, in this 

type of scale if two images are separated by one unit, (e.g. just noticeable difference 

(JND) quality) away from one point on the scale, equal differences in scale values 

represent equal perceptual differences between the images.    

• Ratio scales: These scales have all the properties of the previous three scales, with the 

addition of an origin. Thus, these scales hold the most mathematical power of all the 

scales. The mathematical operation that is valid for a ratio scale is the use of the 

greater-than or less-than operators, as well as the differences between them and an 

origin. However, it is argued that the ratio scales may not be useable in image quality, 

because the concept of the origin point provides philosophical and experimental 

difficulties. For example, what are the meanings of origin image quality in isolation 

assessment (assessment of single image)? [1] (pp. 380-381). 

 

There are several scaling techniques to generate scales [40] (pp. 1115-1128). Most 

common techniques are as follows: 

• Paired-comparison method: This is based on the Law of Comparative Judgement. 

During a test, observers are asked to indicate their preferred image, comparing 

displayed images (side-to-side) or prints. This method is a powerful technique for 

generating interval scales [40] (pp. 1117). It is particularly suited to assessing image 

quality when precise scalability is required. However, a large number of sample 

combinations can cause excessive observer stress, which can affect the accuracy and 

repeatability of results [41] (pp. v).   

• Categorical method: The observer is presented with one stimuli image at a time, in 

identical viewing conditions. The observer is then asked to place the image into a 

specific category, e.g. International Telecommunication Union -Radiocommunication 

Sector (ITU-R). BT 500-12: 2009 [42] (pp. 18): 1. Bad, 2. Poor, 3. Fair, 4. Good, 5. 

Excellent, ISO 20462-2: 2005 [41] (pp. 2-3): 1. Favourable, 2. Acceptable, 3. Just 

acceptable, 4. Unacceptable, 5. Poor. This technique is useful when dealing with a 
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large number of samples. For this reason, this method was used in this study (cf. 

Chapter 6). Using this method, it is possible to derive ordinal and interval scales [40] 

(pp. 1119). The advantages of the category method include low stress and high 

stability [41] (pp. v). However, its scalability within a category is less precise, due to 

range effect. Cookingham [43] (pp. 90) has remarked that “observers seem to want to 

use most of the categories, perhaps so that they feel they are making some distinctions 

among samples, but usually they do not use the end categories much or at all, 

possibly in case a sample appears that is much higher or lower quality than seen 

previously.”   

• Rank ordering method: A series of stimuli images are presented, and the observer is 

asked to arrange the series in order of increasing or decreasing magnitudes. It is easily 

applied to the assessment of printed images. In practice, the number of printed images 

is limited to about 16 [44] (pp. 367). It is, however, a rather impractical method for 

assessing displayed images, since displays are not large enough to present all images 

at a reasonable size uniformly [33] (pp. 39).  

• Magnitude estimation method: First, an image is presented to the observer, and the 

participant assigns a number to it. This image becomes a reference image throughout 

the test, i.e. an anchor image. Other images are then judged against the reference 

image. This method largely avoids being interpreted categories and complicated 

transformations [43] (pp. 91). However, results from this method are extremely 

difficult to replicate when the psychophysical experiments are conducted using non-

expert observers [41] (pp. v). This is because the method is significantly increasing 

the amount of observer effort required [45] (pp. 15). 

 

ISO 20462-2: 2005 [41] and ISO 20462-3: 2005 [17] describe two relatively new scaling 

methods.  

• Triplet comparison method: It comprises of two steps, the “category step” and the 

“triplet comparison step.”  Firstly, the observer is asked to place the image into one of 

three categories, such as favourable, acceptable and unacceptable. The “category step” 

is to reduce the number of the samples to an appropriate number which is determined 
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by the purpose of the experiment. Secondly, the observer is asked again to place the 

sampled images into five categories, such as favourable, acceptable, just acceptable, 

unacceptable and poor. This step is conducted using the simultaneous scaling of three 

test stimuli at a time. The “triplet comparison step” derives a precise scaling [41] (pp. 

2).  

It satisfies the following requirements: it enables a large number of samples to be 

examined, provides precise scalability, provides low observer stress, suitable for 

ordinary (non-expert) observers, provides high repeatability of the results [41] (pp. 2). 

It has been proven to be effective at reducing the assessment time by about one-third, 

when compared with the paired-comparison method [41] (pp. 4).   

• Quality ruler method: This is a technique for obtaining quality or attribute values for   

a test stimulus against a series of univariate reference stimuli, describing a series of 

test or reference stimuli that vary only in a single attribute of image quality. The 

observer is provided with a series of closely spaced stimuli of known separation 

(usually one to three JNDs), which vary in a single attribute of image quality and 

depict a single scene (often the same scene as that of the test stimulus). Other images 

are then judged against the ruler images [17] (pp. 5-9).  

One advantage of the method is that the reference stimuli are calibrated against a 

fixed standard numerical scale of quality, scene-dependent ruler calibration [17] (pp. 

11). The standard reference stimuli (SRS) values are published on the I3A website 

(www.i3a.org, accessed on August, 2008). 

More details of the experimental methods can be found in various texts [17, 40, 41, 42].  

 

There are a number of factors that influence the results of psychophysical scaling: i) the 

choice of test samples, ii) the selection of observers, iii) the question including the 

instructions, iv) the viewing conditions and v) the duration of the experiment.  

i) The choice of test samples: Engeldrum [11] (pp. 21) has identified four issues for 

consideration when selecting test samples.  
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1) What categories should the samples represent? 

2) What range and distribution of “nesses” should the sample set contain? 

3) What image size should be used? 

4) What image content or image features should the samples contain?  

When selecting test samples, the first consideration is the way in which images are 

selected - sample of imagery. Bartleson [46] (pp. 443-446) proposed five categories to 

describe samples of imagery: the random and independent sample, the stratified 

sample, the contrast sample, the purposeful sample and the incidental sample. 

• The random and independent sample: Each image has an equal chance of being 

selected, and selection of one image has no influence on the selection of another. 

Although statistically interesting, it is difficult to implement in the real practice. 

• The stratified sample: This is a more practical method as digital images with 

subclasses of portraits, landscapes and so on. It is a widely available method. 

• The contrast sample: There is an interest in knowing the quality requirements or 

performance of a particular imaging device with respect to some class of imagery. 

This is common in a product development environment. For example, scenes with 

dominant edges may be selected in an investigation of the sharpness of an 

imaging device.  

• The purposeful sample: This is either representative of a segment of the 

population or independently variable with regard to a chosen attribute. A 

purposeful sampling can be useful during product design. For example, scenes 

may be selected in an investigation of the acceptability of the levels of 

compression.   

• The incidental sample: This represents a special collection of unique images (e.g. 

a standard image set [17]) that cannot be added to.  

ISO 20462-1: 2005 [45] (pp. 6) suggests that for a sample of imagery, at least a 

minimum of 3 scenes1 shall be used (and preferably at least 6 scenes should be used). 

                                                           
1 Scene is the “content or subject matter of an image, or a starting image form which multiple stimuli may 
be produced through different experimental treatments” [45] (pp. 4).  
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A small number of scenes do not probably effectively represent the range and variety 

of different scenes. Extensive number of scenes can be preferable.     

The second consideration is the range and distribution of "nesses." ISO 20462-1: 

2005 [45] (pp. 6) suggests describing the nature of the variation among the test 

stimuli (other than scene content) in both subjective terms (image quality attributes) 

and objective terms (stimulus treatment or generation).  

However, the desired range and distribution of "nesses" is often difficult. This is 

because there is no rigid rule. It is generally to have equal numbers of samples that 

uniformly span the range of "nesses” [11] (pp. 23). Engeldrum [11] (pp. 23-24) has 

noted that “it is more than worthwhile to expend the effort to select or generate a 

sample set that meets the scaling study requirements.” 

The third consideration is the image size, which is a well-known factor in image 

quality judgements [47] (pp. 116-119), [48] (pp. 72-75). In general, it is easier to keep 

the size of the image in a scaling study constant, thus eliminating or minimizing its 

influence on observer judgement [11] (pp. 24).    

Also, the consideration should be taken of the image content or image elements. 

These may be selected on the basis of having different tonal ranges, dominant lines 

and edges, high-frequency information, etc. [1] (pp. 383).    

ii)  The selection of the observers: The choice of observers is often based on the target 

viewing population [33] (pp. 41). This has been a subject of discussion, since some 

argued that expert observers produce more accurate results than non-experts [14] (pp. 

140).  

According to ISO 20462-1: 2005 [45] (pp. 6), at least 10 observers should participate 

in the scaling, although 20 observers are preferred. However, an extensive number of 

observers should not be required, since no advantage was seen in having a large 

number of observations in the human observer studies [49] (pp. 2453), [50] (pp. 436). 

Using a large number of observers makes the experiment time-consuming.  

Observers should also be checked for normal vision characteristics, such as colour 

vision and visual acutance [45] (pp. 6).  
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All selection criteria and the number of observers taking part should be reported [45] 

(pp. 6).  

iii)  The question including the instructions: The question needs to be handled carefully 

to achieve meaningful and useful results. The question needs to include a statement 

of what is to be evaluated by the observer, as well as the mechanics of the 

experimental procedure [45] (pp. 6). 

iv) The viewing conditions: ISO 20462-1: 2005 [45] (pp. 7) and ISO 3664: 2000 [51] 

(pp. 13) set out recommended display viewing conditions. Table 2-3 presents the 

recommended viewing conditions for scale accuracy and repeatability of experiments.  

 

 ISO 20462-1: 2005 ISO 3664: 2000 

Display luminance level > 60 cd/m2 > 75 cd/m2  

Display White point CIE illuminant D50 CIE illuminant D65 

Surround luminous reflectance <  64 lx  <  64 lx  

Table 2-3. Recommended viewing conditions for display  
(adapted from ISO 20462-1: 2005 [45] (pp. 7) and ISO 3664: 2000 [51] (pp. 13)). 

 
v) The duration of the experiment: The experimental duration should not exceed a 

maximum of 60 minutes to avoid observer fatigue [45] (pp. 7).  

 

Other issues and factors should be reported, including the complexity of the experiment, 

the adaptation of the viewing conditions and the surrounding environment [33] (pp. 41).  

 

2.2.1.2 Scene dependency  

As mentioned before (in the choice of test samples), the results of psychophysical scaling 

are highly dependent on the context of the image used. Triantaphillidou et al [10] (pp. 

260-262) have described three different origins of scene dependency.   
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i) Scene dependency resulting from the observer’s quality criteria (i.e. observer’s 

preference): An example of the scene dependency from the observer’s preferences is 

that observers judged the sharpness of portraits and landscapes differently [13] (pp. 

28). Portraits with low sharpness are preferred over over-sharpened portraits, while 

the opposite applies to landscapes. The reason being that ‘soft focus’ renders the skin 

smoother and thus more pleasant to the viewer, whereas strong lines and edges are 

usually preferred when they are sharp. Scene characteristics, such as the spatial 

distribution of subjects [16] (pp. 663) and camera to subject distance [12] (pp. 13), are 

crucial scene dependence parameters in the observer’s preferences.  

ii)  Scene dependency due to a visibility of an artefact: This is known as scene 

susceptibility [14] (pp. 131), as imaged scene quality is liable to be influenced or 

harmed by the visibility of an artefact. Variations in scene susceptibility occur when 

the same objective amount of an artefact, such as noise, streaking or banding is 

present in images, but it is more or less evident in different types of scenes or 

different areas with the same scene. Keelan [14] (pp. 131-135) shows that the digital 

artefact of streaking is more evident in clear-sky image areas (i.e. relatively uniform, 

light areas) than in image areas of high-frequency signals and in extensive dark areas, 

which visually mask that streaking. Similarly, for a given print granularity, it has been 

shown that graininess (i.e. a subjective measure of photographic granularity) usually 

decreases with print density [15] (pp. 310), and hence dark areas in prints are less 

visually susceptible to the artefact.  

iii)  Scene dependency due to digital processes or image processing algorithms: A 

classical example is image compression [18] (pp. 253-257), [32] (pp. 144-146). 

Applying the same objective amount of compression (i.e. compression ratio) in two 

different images, one with mostly high and the other with mostly low-frequency 

information, will discard different quantities of information, since both discrete 

cosine transform (DCT) [52] (pp. xx-xxiii) and discrete wavelet transform (DWT) [53] 

(pp. 22) compression schemes discard mostly high spatial frequencies.  
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2.2.1.3 Effect of blur and noise on image quality   

Perceived image quality has been studied using manipulated images, which adjust various 

parameters. Nijenhuis [54] (pp. 61) measured the perceived image quality of a blurred 

image on a cathode ray tube (CRT) monitor at several blur levels. The blurred image was 

varied by Gaussian blur filtering, using different standard deviations. In this study, the 

image was an artificial picture consisting of an evenly lit square area of 0.1 m �0.1 m 

with a luminance of 45 cd/m2. The background was 0.28 m� 0.28 m with a luminance of 

15.7 cd/m2. The viewing distance was 4 m, corresponding with a field size 4° �4°. Figure 

2-2 shows the results for blurred images.  

 

 
Figure 2-2. Subjective image quality of a blurred image at several combinations of horizontal and 
vertical directions. The broken line indicates the subjective image quality result and the solid line 

indicates the calculated SQRI (Square-root Integral) value  
(produced by Nijenhuis [54] (pp. 61) and reproduced by Barten [55] (pp. 180)).  

 

Kayargadde [56] (pp. 78- 96) measured the perceived noisiness, not the perceived image 

quality. In the study noise was added to a pure white field on a CRT monitor. The noise 

image was varied by Gaussian noise filtering, using different standard deviations. The 

images had a size of 0.17 m �0.17 m and were viewed from a distance of 1.4 m 

corresponding with a field size of 7° � 7°. The luminance levels were 30 cd/m2. Figure 2-

3 shows the noisiness results.   
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Figure 2-3. Scaled noisiness as a function of the sigma, measured at a white field on a CRT. The 

broken line indicates the subjective noisiness result and the solid line indicates the calculated 
SQRI value 

 (produced by Kayargadde [56] (pp. 87) and reproduced by Barten [55] (pp. 189)). 

Kayargadde [56] (pp. 91-96) also investigated the effect of noise on two natural images 

(Figure 2-4). The noise image was generated by Gaussian noise filtering, using different 

standard deviations. The results were obtained under the following conditions: viewing 

distance 1.4 m, field size 9.8° × 9.8°, and image size 0.24 m ×0.24 m.   

 
Figure 2-4. Scaled noisiness as a function of the sigma, measured for two natural scenes. The 
broken line indicates the subjective noisiness result and the solid line indicates the calculated 

SQRI value 
 (produced by Kayargadde [56] (pp. 92) and reproduced by Barten [55] (pp. 193)). 
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2.2.2 Objective evaluation  

According to Komineck [57], “what the coding community desperately needs is an easy 

to compute error measure that accurately captures [the] subjective impression of human 

viewers.” Although image quality is the subjective impression of human viewers, it 

would require an objective measurement for quick and easy implementation.  

 

2.2.2.1 Image quality metrics (IQMs)    

Image quality metric (IQM) is the quantified measure of quality as numbers derived from 

physical measurements (cf. Table 2-2), which related to psychophysical attributes of the 

human eye [1] (pp. 371). A simplified diagram for IQM is shown in Figure 2-5.   

 

 

 

 

 
 
 
 
 
 
 

Figure 2-5. Simplified diagram of image quality metric  
(adapted from Triantaphillidou and Jacobson [1] (pp. 372)). 

 

A large number of different IQMs have been proposed in order to predict subjective 

image quality. However, individual metrics have a number of limitations, because of the 

multidimensional nature of image quality [58] (pp. 141). Nevertheless, these metrics have 

been used for image quality assessment since they work well when dealing with a single 

property, such as sharpness on an imaging system [1] (pp. 377-380). According to Farrell 

[59] (pp. 302), “when used properly, metrics can be powerful design evaluation tools.”  

Sharpness 
(MTF) 

Tone 
(Contrast (γ)) Noise 

Visual system  
Parameters 

Image quality metric 
(IQM) 
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There have been various approaches for the universal physical measurement of image 

quality (Figure 2-6).  Examples of IQMs are given in Table 2-4. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 2-6. Various approaches to image quality metric   
(adapted from Jacobson [60] (pp. 55)). 

 

Acronym Full name 

SMTA System Modulation Transfer Acutance 

CMTA Cascaded Modulation Transfer Acutance 

AMTA A Modulation Transfer Acutance 

MTFA Modulation Transfer Function Area 

SQRI Square-root Integral 

SNR Signal-to-Noise Ratio 

SQRIn Square-root Integral to include noise 

PIC Perceived Information Capacity 

CRI Colour Reproduction Index 

s-CIELAB Spatial CIELAB 

iCAM image Color Appearance Model 

EPIC Effective Pictorial Information Capacity 

Table 2-4. Examples of image quality metrics  
(adapted from Jacobson [27] (pp. 7)).  

 

IMAGE 
QUALITY 
METRIC 

Psychophysical 
Observations 

Industry led 
Standards 
approaches  

Cognitive 
approaches  

Visible Differences 
Predictor (VDP) 
based approaches 

Visuo-cognitive 
Information 

CIE + Spatial ∆E 
approaches 

Variable Exponent 
Minkowski Metrics  

MTF based 
approaches  

with/without noise 

Information 
Capacity 

approaches 
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• MTF based approaches with/ without noise: SMTA (system modulation transfer 

acutance) [61] (pp. 643-644) is one of the earliest proposals of a metric for sharpness. 

This sharpness metric was extended in to CMTA (cascaded modulation transfer 

acutance) [62] (pp. 1009) and AMTA (a modulation transfer acutance) [63] (pp. 125-

128), which improved their correlation to the perceived sharpness.      

Another sharpness metric, which achieved wider acceptability as a standard in the 

USA for monochrome CRT displays [64] (pp. 17-18), is MTFA (modulation transfer 

function area) [65] (pp. 387). However, it has been shown to be a poor quality 

predictor when applied to digital systems [66] (pp. 348). [67] (pp. 69-98). 

This limitation of the MTFA metric led to the evolution of SQRI (square-root integral) 

of Barten [68] (pp. 2025) and its further modification to include noise, SQRIn (square-

root integral to include noise) [69] (pp. 9-10), which was based on SNR (Signal-to-

Noise Ratio) [70] (pp. 59). 

Another sharpness and noise metric based on SNR is known as PIC (perceived 

information capacity) [71] (pp. 7-10).  

  PIC = k� 	
 ln 1 + �(�)����� (�)
�(�)����� (�)�����(�)� ��

�
�� ��.! + k"     (2.1) 

where S(u) is the signal spectrum multiplied by the squared MTFs of each system 
component, %&'&(() is the MTF of the observer, )(()  is the noise in the image, )&'&(() is a noise term for the observer, and k1 and k2 are constants.  

• CIE + Spatial ∆E approaches: CRI (colour reproduction index) [72] (pp. 83-87) was 

the first colour IQM, which includes prediction of colour appearance under specified 

viewing conditions. Further metrics now exist, which allow the inclusion of the eye 

responses to the spatial frequencies of images, as well as their colour. The examples 

are Zhang and Wandell’s s-CIELAB (spatial CIELAB) [73] and its modification, 

iCAM (image color appearance model) [9]. Although the s-CIELAB and iCAM are 

considered as image quality models, they might be extensions of fidelity measures. 

This is because the models are based on difference prediction. 
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• Information Capacity approach: EPIC (effective pictorial information capacity) [74] (pp. 

7) is a sharpness and noisiness quality metric, based on information capacity theory [75]. 

The EPIC is derived from the effective pixel dimension in the image (n) and the number 

of effective distinguishable levels for each recording cell (m). 

The effective pixel dimension in the image (n) is calculated by:  

* = +,-.�         (2.2) 
where Aim is the area of the image, and / is the effective pixel dimension. 

The number of effective distinguishable levels for each recording cell (dynamic range of 

a system) (m) is described by:  

0 ≈ 2�
"34 + 1      (2.3) 

where DS is the difference between the maximum and minimum possible levels of 

the recording system, k is a constant and σ is the standard deviation in the 
imaging systems. 

The perceived capacity, C, is derived by:     

C=nlog2(m)      (2.4) 
The perceived capacity (C) is divided by the visual solid angle (Ω), which then yields the 

number of effective bits per visual steradian.  

EPIC = 89      (2.5) 
Ω=Aim/r2     (2.6) 

where Aim is the area of the image, and r is the viewing distance. 

 

2.2.2.2 Tone reproduction  

Tone reproduction was studied firstly by Hurter and Driffield [76], and the theory of tone 

reproduction was established by Jones [77, 78, 79]. The terms were later formalised by 

Nelson [80]. It is concerned with the relationship between input-to-output intensities. 
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This relationship is described by the transfer function that involves the effective single 

parameter, gamma (γ).   

The conventional photographic transfer function, known as the characteristic curve, is 

described by a function that relates the common logarithm of relative exposure and the 

reproduced density. The gamma (γ) is defined by the gradient of the straight line formed 

when plotting data on a logarithmic space (Figure 2-7) [81] (pp. 223-225).  

 

     gamma(?) = tan (c)    (2.7) 

Figure 2-7. Typical characteristic curve and gamma  
(adapted from Attridge [81] (pp. 224)). 

 

The transfer functions for electronic still-picture cameras, known as the opto-electronic 

conversion function (OECF), are described by ISO 14524: 1999 [82]. The OECF is 

commonly described by the relationship between the original scene luminances (often 

expressed by luminance ratios, such as scene or print reflectance, or film transmittance) 

and the generated digital counts. The transfer function is often referred to a power 

function in linear-linear units. The equation is as follows [83] (pp. 384):  

     CD = E + FGHI                 (2.8)    
where PV is the generated normalised pixel value, L is the input luminance ratio, o is 

the system offset, g is the system gain and γa represents the camera gamma.  
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The CRT transfer function is an approximate power function that describes the 

relationship between the input normalised pixel values and the generated normalised 

output luminances. The equation that commonly describes the CRT transfer function is as 

follows [84] (pp. 24):  

     G = E + FDHK     (2.9) 
where L is the displayed normalised luminance, V is the normalised input voltage, o 

and g are the offset (contrast) and gain (brightness) of the system. The γd is the 
gamma of the display system.  

 

The relationship between the input pixel values and the output luminances in a LCD 

differs to that of the CRT [85] (pp. 609), [86] (pp. 2). The LCD native relationship is 

modelled as S-shape function [87] (pp. 191-193). Figure 2-8 shows the transfer functions 

of common CRT and LCD.    

 

    

Figure 2-8. Typical transfer functions for CRT (left) and LCD (right)  
(produced by Sharma [85] (pp. 612-614)). 

 

Many LCD manufacturers build correction tables into the video card, so that the LCD’s 

transfer functions mimic the CRT transfer functions [88] (pp. 15). Therefore, the above 

CRT equation (2.9) can be used to describe the transfer characteristics of such displays 

[83] (pp. 382).  
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In an imaging chain, it is possible to involve image encoding, e.g. sRGB and Adobe RGB. 

The sRGB transfer function is not a pure power function. At exceptionally low relative 

luminances, the transfer function is linear. At relative luminances larger than 0.003130, 

the encoding gamma is equal to the exponent 1/2.4, the offset is -0.055 and the gain is 

1.055 [89] (pp. 12). The Adobe RGB 1998 transfer function is a pure power function, 

which has a gamma of 2.199 [90] (pp. 9-16). The encoding transfer functions are 

described in Appendix A. Figure 2-9 illustrates the sRGB and Adobe RGB 1998 transfer 

functions. 

 

Figure 2-9. sRGB (solid line) and Adobe RGB 1998 (dotted line) transfer functions  
(produced by Triantaphillidou [83] (pp. 387)). 

 

Jones [78] (pp. 235-239) introduced a descriptor of the overall tone reproduction. The 

overall gamma (γoverall) can be calculated by multiplying each component gamma value of 

the imaging chain. Following equation sets out the way of calculating the overall gamma 

in imaging systems: 

γoverall = γsystem 1
 × γ system 2

× ... × γ system n          (2.10) 
Optimal overall gamma (γo) is achieved by a gamma correction (γc) with the overall 

gamma (γoverall). The optimal overall gamma can be expressed by [91] (pp. 205):  

γo = γoverall × γc           (2.11)    
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The optimal overall gamma can only be considered when the viewing conditions are 

known. Typically, the optimal overall gamma values vary between 1.0 and 1.5. Some of 

the reported optimal overall gamma values are listed as follows [83] (pp. 379):  

• Reflection prints: close to 1.1 to compensate for flare in bright viewing conditions. 

• Viewing monitor/ television: approximately 1.25 in dim environments. 

• Transparencies projected motion pictures: 1.5 in dark condition (typically a gamma of 
1.6 to compensate also for flare).  

• Displayed digital images: between 1.1 and 1.15 in office settings.  

• Displayed sRGB images on CRT: 1.125 for dim illumination conditions and flare. 

 

2.2.2.3 Colour reproduction  

The colour of an object depends on three components, the light source, the chemical and 

physical properties of the object and the human visual system (HVS) (Figure 2-10) [92] 

(pp. 54). The first component is the light source which provides the electromagnetic 

energy. This energy is modulated by the physical and chemical properties of the object. 

The modulated energy is perceived by the HVS.      

 

Figure 2-10. The triangle of colour. Colour exists due to the interaction of light sources, objects, 
and the human visual system   

(adapted from Fairchild [92] (pp. 55)). 

 

Light Source 

Human Visual System Objects 
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The description of colour in images is traditionally based on spectral colour definition or 

colorimetry [93] (pp. 205-207). Colorimetry is based on rules of matching colour using 

additive colour mixtures, i.e. it is possible to match all the colours of the spectrum. When 

this is done the result is represented by three curves, referred to as the colour matching 

functions [94, 95].  

In 1931, the Commission Internationale de l'Eclairage (CIE) [96] first assigned colour 

matching functions, which represent the CIE 1931 2° standard colorimetric observer for 

the XYZ primaries.   

N = k 
 O(λ)P(λ)Q̅(λ)dλ
λ

   (2.12) 

T = k 
 O(λ)P(λ)UV(λ)dλ
λ

   (2.13) 

W = k 
 O(λ)P(λ)X̅(λ)dλ
λ

   (2.14) 
where k is a normalizing constant which is defined differently for relative and 
absolute colorimetry, R(λ) is the spectral data of the coloured object, I(λ) is the 
spectral power distribution of the irradiating illuminant Q̅, UV  and X̅  are the colour 
matching functions of the CIE standard colorimetric 2° observer, and λ is the range 
of wavelength of the visible electromagnetic spectrum (CIE publication 15.2 [97] (pp. 
23) recommends that for practical purposes 5nm intervals over the range 380-780 nm 
be used).  

 

In 1964, the CIE suggested the primaries X10, Y10 and Z10, basing them on the colour 

matching functions of the standard colorimetric 10° observer. The comparison between 

the colour matching functions for the 2° and the 10° observers is illustrated in Figure 2-

11 [98] (pp. 99).   
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Figure 2-11. Colour matching functions related to the standard observer CIE 1931 (visual field of 
2°, continuous line) and to the standard observer CIE 1964 (visual field of 10°, dotted line)  

(produced by Hunt [98] (pp. 99)). 

 

The x, y and z chromaticity coordinates are calculated to determine the stimulus 

chromaticity in the CIE XYZ system. The sum of three chromaticity coordinates is one. 

Chromaticity coordinates are plotted in CIE xy chromaticity diagram. The diagram shows 

only two-dimensional stimuli information. The Y tristimulus value is usually reported 

providing full colour information (x,y,Y).  

Q = N/(N + T + W)     (2.15) 
U = T/(N + T + W)     (2.16) 
X = W/(N + T + W)     (2.17) 

The CIE xy chromaticity diagram does not provide perceptual uniformity. A lot of efforts 

were invested into producing a perceptually uniform diagram. This is achieved by the 

CIE u’v’  chromaticity diagram (the CIE 1976 uniform chromaticity diagram). The CIE 

u’,v’ coordinates are derived from either X,Y,Z or x,y,z by the following equation: 

(′ = 4N/(N � 15T � 3W) � 4Q/(\2Q � 12U � 3)   (2.18) 

]′ � 9T/(N � 15T � 3W) � 9U/(\2Q � 12U � 3)   (2.19) 

where the third chromaticity coordinate, w’ is equal to 1-u’-v’. 
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In 1976, the CIE 1976 L*u*v* (CIELUV) and CIE 1976 L*a*b* (CIELAB) colour 

spaces were recommended to represent colour in three-dimensions that approximately 

correlated with the perceived lightness, chroma and hue of a stimulus [99] (pp. 29-33). 

• Lightness is the brightness of an area judged relative to the brightness of a 

similarly illuminated reference white [100] (pp. 86 & 90).  

   Lightness � 	Brightness/Brightness(White)            (2.20) 

• Chroma is the colourfulness of an area judged as a proportion of the brightness of 

a similarly illuminated reference white [100] (pp. 87 & 90).  

 Chroma		 � 	Colourfulness/Brightness(White)       (2.21)		 

• Hue is the attribute of a visual sensation according to which an area appears to be 

similar to one, or to proportions of two of the perceived colours, red, yellow, 

green and blue [100] (pp. 85).   

The CIELAB colour space uses two colour coordinates a*(approximate redness-

greenness) and b*(approximate yellowness-blueness), and a lightness coordinate L* 

(Figure 2-12). These coordinates are derived from the XYZ tristimulus values of the 

stimulus and the Xn,Yn,Zn of a specified reference white. 

 

 

Figure 2-12. Cylindrical representation of CIELAB colour space  
(produced by Fairchild [92] (pp. 80)). 
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G∗ = 116 j k llmn − 16        (2.22) 
o∗ = 500 pj k qqmn − j k llmnr      (2.23) 
 s∗ = 200 pj k llmn − j k ttmnr     (2.24) 

j(Q) =
uv
wQxy                                       Q > 0.008856

7.787(Q) + �{��{            Q ≤ 0.008856
  (2.25) 

In the CIELAB space, the chroma, }~�∗ , and hue angle by ℎ~� are calculated the following 

equation:   

}~�∗ = �o∗� + s∗�      (2.26) 

                                    ℎ~� = tan�� k�∗
�∗n      (2.27) 

 

In the CIELAB space, colour differences (ΔE* ab) are measured as the Euclidean distances 

between the coordinates of the two stimuli (Figure 2-13). The colour differences can be 

broken down into the components of lightness, chroma and hue.  

 

Figure 2-13. Geometrical illustration of the colour difference (ΔE*ab) in CIELAB colour space 
(adapted from Triantaphillidou [101] (pp. 32)). 
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∆�~�∗ = �∆G∗� + ∆o∗� + ∆s∗�    (2.28) 
∆�~�∗ = �∆G∗� + ∆}~�∗� + ∆�~�∗�

    (2.29) 

 

Various modifications (e.g. CMC(l:c), CIE94, CIE DE2000) have been developed to 

improve the uniformity of colour difference measurement, based on the CIELAB colour 

space. The CMC(l:c) [102] (pp. 130) is a modification widely used in the field of textiles. 

The modified CIE94 (ΔE* 94) [103] (pp. 8-11) utilises specified reference conditions, and 

it is used in various industries. It includes weighting functions, KL, KC and KH for better 

representation of colour difference. The CIE DE2000 (ΔE00) [104], [105] (pp. 348-350) 

was developed as an improvement to the CIE94 colour difference formula. It includes 

corrections for variation in colour difference perception dependent on lightness, chroma, 

hue and chroma-hue interaction. The CIE DE2000 has been retained using the same 

conditions as the CIE94 model, presented in Table 2-5.    

∆��� = �k ∆��
����n" + k ∆8�

����n" + k ∆��
����n" + O� k ∆8�

����n k ∆��
����n  (2.30) 

 
where SL = 1+0.015(L’

m-50)2/[20+(L’
m-50)2]1/2   with L’

m =(L’
1 + L’

0)/2    
SC =1+ 0.045(C’

m)   with C’
m =(C’

1 + C’
0)/2    

SH =1+ 0.015(C’
m) (T)                      

with T=1-0.17cos(h’
m-30°)+0.24cos(2h’

m)+ 0.32cos(3h’
m+6°)- 0.20cos(4h’

m-63°)  
with h’

m =(h’
1 + h’

0)/2                        
RT=-sin(2Δθ)Rc           with  Δθ=30exp[-((h’

m-275°)/25°)2]  

Rc =2[C’
m

7 /(C’
m

7+257)]1/2     
L’=L* , a’=a* (1+G), b’=b*            
G= 0.5[1- ((C*

ab,m
7/ (C*

ab,m
7+257)) 1/2]          with  C*

ab,m=( C*
ab,1 + C*

ab,0)/2    

KH, KC and KL are parametric factors, which may be chosen other than 1 if experimental 
conditions deviate from reference condition. 
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 Reference conditions 

Illumination CIE illuminant D65 stimulator 

Illuminance 1000 lx 

Observer normal colour vision 

Background field uniform, neutral grey L*=50 

Viewing mode object (such as colour patch) 

Sample size greater than 4° subtended visual angle 

Sample separation 
minimum sample separation achieved by  

placing the sample pair in direct edge contact 

Sample colour-difference magnitude 0 to 5 CIELAB units 

Sample structure no visually apparent pattern or non-uniformity 

Table 2-5. CIE 94 and CIE DE2000 colour difference’s reference conditions  
(produced by CIE 116: 1995 [103] (pp. 6), CIE 142: 2001 [104] (pp. 2) and reproduced by Bilissi 

[106] (pp. 44-45)). 

 

2.2.2.4 Resolution  

Image quality also depends on structural image properties, such as resolution and 

sharpness. Resolution describes the finest detail that may be recorded by a system [110] 

(pp. 4).  

In a silver based photographic system, the resolution is determined by measuring the 

resolving power of the total system, and it is defined as the number of lines per distance 

that can be resolved by an observer, i.e. the lowest value of the test pattern where the 

individual black and white lines can no longer be distinguished [33] (pp. 53). The 

resolving power is strongly dependent on a line target and quality at each stage of the 

complete system, i.e. lens, photographic, microscopic and visual system [111] (pp. 81).  

In digital imaging systems, the resolution is described as pixel resolution and spatial 

resolution. The pixel resolution is expressed by the number of elements per unit area. The 

spatial resolution is expressed by the number of line pairs per unit distance or cycles per 

unit distance [33] (pp. 53-54).  
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The resolution can be measured by MTF (cf. Section 2.2.2.5). Generally, the 

corresponding point to a 10% MTF can be measured as the limiting resolution (Figure 2-

14) [112] (pp. 34).  

Figure 2-14. Limiting resolution in modulation transfer function (MTF) 
 (adapted from Burns [112] (pp. 34)). 

 

2.2.2.5 Sharpness   

Sharpness is the perception of micro-image contrast [113] (pp. 443). It is commonly 

measured using modulation transfer function (MTF) and acutance. The MTF 

measurement has been a more successful measuring tool than the acutance, since the 

MTF is a function describing the behaviour of the system at different spatial frequencies 

and falls to some threshold value [33] (pp. 55). The MTF measurement has been used as 

a detailed image quality prediction measure for more than fifty years [114] (pp. 7).  

The theory of MTF is strictly valid in linear, isotropic and spatially invariant systems 2 

[115] (pp. 124), [116] (pp. 187). However, digital imaging systems are non-linear, since 

they are non-isotropic and non-stationary systems [117] (pp. 231). Compensation for the 

non-linearity present in a digital system is necessary for the accurate evaluation of the 

MTF. The non-linear compensation is able to be achieved by correcting the system for 

transfer compensation or restricting the test target to a very low contrast [118] (pp. 232-

233).   

                                                           
2 The impulse response of digital imaging systems is not rotationally symmetrical due to the rectangular 
shape of the pixels. A stationary imaging device yields the same response to a point source at any position 
within its field of view [33] (pp. 87).  

Increasing spatial frequency   
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There are various MTF measurement methods, including a periodic (sinusoidal) signal 

method and non-periodic methods [113] (pp. 446). Different methods generally yield 

different results [117] (pp. 235), [119] (pp. 811).  

 

The periodic (sinusoidal) signal method is the original method. The MTF commences 

with the definition of a sinusoidal input:   

P(Q) = o + scos(2π/Q)    (2.31) 
where o is the average signal level (offset), s is the amplitude and / is the spatial frequency. 

The original input modulation, Min(ω), is calculated by:  

%��(/) = ��I��������I������ = ��    (2.32) 
where P��� represents the maximum intensity, and P��� represents the minimum intensity of 
the sinusoid. 

The reduced output sinusoidal signal is expressed by:  

P′(Q) = o + s′cos(2π/Q + �)    (2.33) 

where o is the average signal level (offset), s´ is the reduced amplitude, / is the 
spatial frequency and ε is the phase difference. 

 

The reduced output modulation, Mout(ω), is calculated by:  

%���(/) =
���I�������

���I�������
=

�´

�
     (2.34) 

where P′��� represents the maximum intensity, and P′���  represents the minimum 
intensity of output sinusoid. 

The modulation transfer factor, M(ω), is the ratio of output modulation, Mout(ω), to input 

modulation, Min(ω) (Figure 2-15). The MTF is plotted as the modulation transfer factor 

against spatial frequency (cf. Figure 2-14).  

%(/) =
%���(ω)

%��(ω)
                                                                    (2.35) 
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Figure 2-15. Imaging a sinusoidal exposure  
(adapted from Jenkin [114] (pp. 5)). 

 

The non-periodic MTF methods3 include the edge gradient technique and the slanted 

edge technique.      

In the edge gradient technique, the MTF is derived from the modulus of the Fourier 

transform of the line spread function (LSF) (Figure 2-16). The LSF is obtained by 

differentiation of the edge spread function (ESF) using a reasonably produced edge.   

%(/) = ¡
 G(Q)¢�"£¤.�¥Q���� ¡   (2.36) 
where L(x) is the LSF, x is the distance and ω is the spatial frequency. 

 
Figure 2-16. Derivation of modulation transfer function (MTF) from the edge spread function 

(ESF) via the line spread function (LSF)  
(produced by Axford [123] (pp. 407)). 

                                                           
3 Noise method [120, 121] and dead leaf method [122] are also non-periodic MTF methods. 

Linear 
system 

Input Sinusoid Output Sinusoid 
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The basic relationships between MTF and spread functions are illustrated in Figure 2-17 

[114] (pp. 16).  

 

Figure 2-17. Relationships between spread functions and modulation transfer function (MTF)  
(adapted from Jenkin [114] (pp. 16)). 

 

The basic edge gradient technique was sensitive to phase differences between the 

experimental target and sampling comb and also the under sampling [114] (pp. 25). To 

overcome these problems, Reichenbach et al [124] (pp. 172-174) originally developed an 

extended edge technique based on a sloping target. ISO 12233: 2000 [110] has revised 

this slanted edge technique.  

This technique is based on a sloping edge target, i.e. a small amount of rotation (5-10°) is 

intentionally introduced into the edge target [110] (pp. 5-9). The target is imaged in the 

usual manner. Even illumination of the target is provided using two light sources [110] 

(pp. 10-11).  

Line spread 
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Each row value in the imaged edge represents the response of the system to an edge that 

is slightly shifted with relation to the previous row. The image code values are linearised 

by inverting the OECF of the camera. After that, a one-dimensional super-sampled line 

spread function is formed using the derivatives of the image data. Using the first line as 

reference points, the data points from all the other lines are placed into one of four "bins" 

between these reference points, according to the distance from the edge for that particular 

line. This creates a single super-sampled "composite" line spread function, having four 

times as many points along the line as the original image data. A hamming window is 

then applied to reduce the effects of noise, and the normalised modulus of the Fourier 

transform is calculated to produce the spatial frequency response (SFR).   

The SFR is generated from uniformly super-sampled slanted edge profiles where the 

input edges are of sufficient optical quality. The SFR of the system, SFR(ω), is a 

combination of the frequency content of the edge target, Medge(ω), and the MTF of the 

system, M(ω) [117] (pp. 233):   

SFR(ω)=Medge(ω) × M(ω)    (2.37) 
 

According to Burns [125] (pp. 135), the input edge used needs to be of a sufficient optical 

quality, for the SFR to be taken as an estimate of the MTF of the system. Otherwise, the 

output modulation can be divided by the input target modulation, frequency by frequency, 

to yield the system MTF.  

A diagram of a super-sampled edge construction is shown in Figure 2-18. The SFR 

algorithm is shown in the flow-chart form in Figure 2-19. 
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Figure 2-18. Schematic of CCD/CMOS detector array and super-sampled edge construction  
(produced by Reichenbach [124] (pp. 172)). 

 
 
 

 

Figure 2-19. Flow-chart of spatial frequency response (SFR) measurement algorithm 
(produced by ISO 12233: 2000 [110] (pp. 13)). 
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2.2.2.6 Noise  

According to ISO 15739: 2003 [126] (pp. 2), noise is defined as “the unwanted variations 

in the response of an imaging system.” Theoretically, it varies randomly in the image 

plane and is independent from the input signal. Therefore, the noise is quantified as a 

random process [127] (pp. 413).   

The causes of image noise in digital imaging systems are random partitioning of exposing 

light, photo-electronic noise, electronic noise, quantization noise and Poisson exposure 

noise. If an image is converted from a light intensity or exposure distribution to an 

electrical form, there will be photo-electronic noise. Electronic noise will occur in any 

system with electronic components. Poisson exposure noise means there is a randomness 

of photons in a nominally uniform exposure distribution. The photo-electronic noise and 

the electronic noise are the main cause of image noise at the output of a charge-coupled 

device (CCD) imaging array [113] (pp. 433-434), [127] (pp. 413).  

Noise can be described in density units (denoted D) where the fluctuations might be 

luminance or digital values [113] (pp. 438).  

In the luminance fluctuations, the noise is defined as:   

 ¦+" =  limQ → ∞  �"� 
 ∆©"(Q)dQ���                (2.38) 
where ∆D(x) is the deviation of D(x) from mean density. 

In the digital value fluctuations, the noise is defined as:   

 ¦+" =  1) − 1 ª ∆©�"
�

�«�
                                                     (2.39) 

where ∆Di is the i th measured value of the deviation. N values are recorded, e.g. N is 1000. 

Instead of evaluating the mean square density deviation of a noise trace, the noise power 

spectrum (NPS) or Wiener spectrum is directly calculated [113] (pp. 438):  

)(/) = ��¡
 ∆©(Q)¢�"£¤.�dQ�� ¡"
                (2.40) 
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where )(/) is the noise power spectrum, x is the range of integration and ∆©(Q) is the 
measured fluctuation at position x.  

The noise levels usually correspond to an image signal, thus it should describe the signal-

to-noise ratio for the imaging system [127] (pp. 420-421).  

ISO 15739: 2003 [126] (pp. v) suggests the specified operating conditions be reported 

along with the measurement results, since the noise performance of an image sensor may 

vary significantly, e.g. exposure time, operating temperature and relative humidity, 

illumination, white balance and ISO speed.  

 

2.2.2.7 Models of the human visual system (HVS) 

The contrast sensitivity function (CSF) is widely used as the physical model of the HVS 

in the determination of image quality. It measures the sensitivity to gratings of different 

spatial frequencies as the reciprocal of the modulation threshold [128] (pp. 627-628).  

Barten [129] (pp. 63-64) has provided a physical model for determining the contrast 

sensitivity of the human eye. This has been tested against a wide range of CSF 

measurements from various labs. It takes into account variations in luminance (Figure 2-

20) and viewing angle (Figure 2-21). It is described by [130] (pp. 39): 

 

�
�¬(�) = �®¬(�)

¯ p"
� k �

q°� + �
q�� + ��

���n ( �
±²³ + ´°��µ¶·[�(� �°⁄ )�])r�x�

 (2.41) 
 

where Mopt(u) is the optical MTF of the eye defined as a Gaussian distribution, k is the 

signal-to-noise ratio (k=3.0), u is the spatial frequency in cycles per degree (cpd), T is the 

integration time (T=0.1s), X0 is the image size (degrees), Xe is the maximum angular 

integration size (Xe=12°), Ne is the estimated maximum number of cycles over which the 

eye integrates (Ne=15 cycles), η is the quantum efficiency (η=0.03), ρ is a photon 

conversion factor of the light units, E is the retinal illuminance (trolands), Φ0 is the 

spectral density of the neural noise (Φ0 =3.0 × 10-8 s deg2), and u0 is the frequency above 

which lateral inhibition ceases (u0= 7 cycles per degree).  
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Figure 2-20. Contrast sensitivity functions (CSFs) at different levels of luminance  
(produced by Barten [68] (pp. 2026) and reproduced by Jacobson [27] (pp. 8)). 

 

      

Figure 2-21. Contrast sensitivity functions (CSFs) at different angles of view 
 (produced by Triantaphillidou [33] (pp. 65) using the Barten’s CSF model [69] (pp. 8)). 

 

Farrell [59] (pp. 299) was concerned with the limitations of single-channel metrics that 

are based on the CSF. This CSF is a relatively simple function employed in image quality 

investigation. The study was considered as the contribution to the independent visual 

multi-channels functions employed in image quality investigation [59] (pp. 300). 
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2.2.2.8 Objective scene classification  

As mentioned before (in the section 2.2.1.2), the subjective quality depends upon the 

scene content of the test images. The nature of scene dependency causes problems in 

modelling and predicting image quality.  

The scene classification with respect to image quality might be one possible way of 

overcoming the problem of scene dependency in image quality modelling [14] (pp. 147), 

[131] (pp. 413).  

There are different approaches for the scene classification, such as inspection and 

clustering. Objective scene classification is an approach to identify groups of scene 

having or producing correlated responses across the test stimuli [10] (pp. 269). 

The stages of objective scene classification are shown in Figure 2-22. These stages are 

interrelated and depend on the classification results [132] (pp. 7).  

 

Figure 2-22. Basic stages involved in objective scene classification  
(produced by Theodoridis and Koutroumbas [132] (pp. 7)). 

 

For the classification, a number of features are generated, and then the “best”4 of them is 

adopted [132] (pp. 6).  

i) Feature generation: The goal of this stage is to quantify scene features that will be 

used to classify the image. As the image does not directly provide mathematical 

information in its natural state, the features of the image are encoded, so that the 

relevant information in the image is represented as data.  

                                                           
4  This is important for successful classification and serves different purposes. This is an unresolved 
challenge within the imaging science community [10] (pp. 269).  
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There are a large number of feature generation techniques to quantify scene 

information, as a numerical output. They include second-order statistical measures 

and measurement from edge detection. 

Second-order statistical measurements are normally indicators of texture in the 

imaged scene [133] (pp. 272), [134] (pp. 666-670). The second-order statistical 

measurements are referred to as the grey level co-occurrence matrix (GLCM), 

approximation of the joint probability distribution of pairs of pixels (Figure 2-23) 

[135] (pp. 562-563).  

C(», ¼) �
�(�,½)

�
     (2.42) 

where M is the total number of pixels in the image, N(i, j) denotes the 
number of occurrences between two pixel values i and j: the second 

pixel (b) is specified at distance r and angle θ from the first pixel (a).   
 

 

 

 

Figure 2-23. Relationship of a pair of pixels for grey level co-occurrence matrix (GLCM) 
(adapted from Pratt [135] (pp. 562)). 

 
 

Figure 2-24 presents the example of GLCM using the 0° angle and 1 pixel distance.  

 

Figure 2-24. Example of grey level co-occurrence matrix (GLCM), employed the 0° angle and 1 
pixel distance in a pair of pixels 
(produced by MathWorks [136]). 
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Common second-order statistical measurements are listed below: 
 

• Contrast (or inertia): relates to the scene texture variation.  

Contrast = ª ª |» − ¼|"C(», ¼)¯��
½«�

¯��
�«�

                                (2.43) 

• Homogeneity: relates to the scene texture variation. Contrast (inertia) and 

homogeneity are strongly, but inversely, correlated in terms of equivalent 

distribution in the pixel pairs population. 

Homogenity = ª ª C(», ¼)1 + |» − ¼|
¯��
½«�

¯��
�«�

                                    (2.44) 

• Correlation (or linearity): relates to the scene texture variation with linearity.  

Correlation = ª ª (» − 0�)Á¼ − 0'ÂC"(», ¼)¦�¦'
¯��
½«�

¯��
�«�

             (2.45) 

where  

0� = ª » ª C(», ¼)¯��
½«�

¯��
�«�

,         0' = ª ¼ ª C(», ¼)¯��
�«�

¯��
½«�

 

 ¦�" = ª(1 − 0�)" ª C(», ¼)¯��
½«�

¯��
�«�

,      ¦'" = ª(1 − 0')" ª C(», ¼)¯��
�«�

¯��
½«�

 

• Energy: relates to the disorders in scene texture. The highest energy values 

occur when the grey level distribution has a constant or periodic form. 

Energy = ª ª C(», ¼)"¯��
½«�

¯��
�«�

                                              (2.46) 

where P(i,j) is the joint probability distribution of pairs of pixels in the 
matrix. 
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Edges in an image are fundamentally important, because they often provide an 

indication of the physical extent of objects within the image [137] (pp. 491). The 

edge in an image is defined as a set of connected pixels that lie on the boundary 

between two regions [138] (pp. 572).  

The edge can be detected by the first- and second-order derivatives of the grey level 

edge profile, as an edge detector [139] (pp. 124). Figure 2-25 illustrates the first- and 

second-order derivatives. 

   

 

Figure 2-25. Two regions separated by a vertical edge and detail near the edge, showing a grey 
level profile, first- and second-order derivatives of the profile 

(produced by Gonzalez and Woods [138] (pp. 574)). 

 

The first-order derivatives are based on various approximations of the 2-D gradient, 

such as Sobel, Prewitt and Robert [138] (pp. 578). Examples of Sobel and Prewitt are 

presented in Figure 2-26. 

  

Grey level profile 

First-order derivative 

Second-order derivative 
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Figure 2-26. Examples of approximations of the 2-D gradient 
 

Figure 2-27 illustrates the response of two components of the gradient, Gx and Gy, as 

well as the original image and the sum edge image.  

                       
 

           
 
 

Figure 2-27. Response image of two components of the gradient, Gx (bottom-left) and Gy (bottom-
right), as well as its original “Bike” image (top-left) and the sum edge image (top-right). 

Sobel 

Prewitt 

Original image 

Sobel edge image in the x-direction, Gx Sobel edge image in the y-direction, Gy 

Sum edge image 
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The gradient of an image f(x,y) at location (x,y) is defined in the vector [138] (pp. 

577-580).  

∇f = 	Ä�Ä'�      (2.47) 
The magnitude of the edge was computed by omitting the square-root operation in 

the vector.  

Ä = �Ä�" + Ä'"      (2.48) 
The direction of the edge was also computed in the gradient vector.  

Å(x, y)= tan�� Æ�Æ��                                        (2.49) 
ii)  Feature selection: This could be complicated, since sometimes the salient features are 

not easy to select [140] (pp. 11), [141] (pp. 141). Thus, prior knowledge plays a major 

role in the feature selection.  

The feature selection includes statistical hypothesis testing [142] (pp. 166). This 

helps discard easily recognizable “bad” choices. The aim of the test is to identify 

which of the following hypothesis is correct [143] (pp. 140):  

H1 (alternative hypothesis): The values of the feature differ significantly 

H0 (null hypothesis): The values of the feature do not differ significantly 

The decision is reached on the basis of experimental evidence, supporting the 

rejection or not of the null hypothesis. This is accomplished by exploiting statistical 

information, referred to as the significance level. 10%, 5% and 1% significance 

levels are used to describe results as ‘almost significant’, ’significant’ and ‘highly 

significant.’     

The statistical hypothesis testing is a clear indication of the strength of the relation 

between variables. If the two variables are not approximately normally distributed, a 

rank correlation coefficient is used. An example of such a rank correlation coefficient 

is the Spearman’s correlation coefficient (rs). The correlation coefficients range 

between -1.0 (indicating perfect anti-correlation) and 1.0 (indicating perfect 
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correlation), with 0 denoting no correlation at all [144] (pp. 219-223), [145] (pp. 80-

81). 

iii)  Classifier design: Once the feature has been selected, the classification method is 

considered. The classification is typically the final step for identifying the object, 

which is a step that is automatically carried out without using human visual 

perception. There are a number of suggested classification methods, which include 

supervised/ unsupervised classification [146] (pp. 414).  

Clustering is an unsupervised classification method, where there is no training data 

requirement [147] (pp. 397). In addition, clustering includes k-means clustering. The 

main advantages of k-means clustering are simplicity and speed, which allows it to 

be run on large data sets [148] (pp. 526-528), [149].  

The k-means clustering consists of several steps [21] (pp. 406-408). The first step is 

to define a fixed number of clusters, k. The choice of k is exceedingly influential in 

clustering; an inappropriate choice of k may yield poor results while the correct 

choice of k is often ambiguous. Possible methods for choosing k include empirical 

and numerical methods [150] (pp. 750). The empirical method is usually preferred 

[149]. Once k is chosen, then modifications of the distances between all points in the 

nth cluster (n varying from 1 to k) and the centre of the cluster are applied. The main 

idea for their modifications is that the average distances between all points in each 

cluster and the central point are minimal. During these modifications, new cluster 

centres are allocated using Euclidean distances. The modification stops when the 

average distances from all points in the nth cluster and the new central point are 

minimised.  

iv) System evaluation: Once the results of the clustering algorithm have been obtained, 

the classification accuracy is assessed by Theodoridis and Koutroumbas [132] (pp. 6) 

and Duda et al [140] (pp. 15). 
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2.3 Summary   

This chapter concentrates on the theory of image quality and its measurements.  

The broader concept of image quality has no unique single definition yet. Currently, there 

is a narrow definition of image quality based on third-party, i.e. artefactual, preferential 

and aesthetic attributes. A clearer and broader definition of image quality might be 

required.   

In general, the image quality has been measured using subjective (psychophysical) or 

objective (physical) scaling.  

Subjective image quality measures are studied from bottom-up and top-down. The 

bottom-up perspective is common in image quality scaling studies. The image quality 

rating is formed by the combination of individual visual attribute scales, which are 

characteristics of an image that we sense (could see). However, individual attribute 

scaling has been a subject of discussion. This is because individual attribute scaling is a 

relatively simplistic way of measuring image quality, as it ignores the complicated 

relationships between attributes. A top-down perspective tends to avoid these pitfalls. 

Objective image quality measures are studied for speed and are less complex to 

implement. However, as of yet, no definitive objective scaling method has been put 

forward. For this ultimate aim, further objective measurement requires a full 

understanding of image formation by the imaging system all of which involve the end-

user, and of the scene content of the test images used for the evaluation. 
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Chapter 3  

Camera characterisation  

This chapter presents the digital image acquisition device (camera) characterisation and 

its calibration. Initial examination of the fundamental behaviour of the system is 

described with respect to spatial uniformity, tone reproduction and colour reproduction.  

The characterisation can be defined as the description of the collective qualities of a 

system. The calibration is the process of maintaining the device with a fixed, known 

characteristic [151] (pp. 272-275). The characterisation and calibration form a pair and 

are interrelated [152] (pp. 388). Figure 3-1 shows the general characterisation and 

calibration process of input devices.     

 

 

Figure 3-1. Characterisation and calibration for input devices  
(produced by Bala [151] (pp. 273)). 
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3.1 Digital camera description  

The digital image acquisition device used in this work for image capture was a Canon 

EOS-1Ds full frame digital single lens reflex (SLR) camera [153]. This camera uses a 

complementary metal–oxide–semiconductor (CMOS) with Bayer RGB primary colour 

filter, which has 50% green cells arranged in a checkerboard and alternating cells of red 

and blue (2×2 matrix of R+2G+B pixels form one colour pixel). Figure 3-2 presents the 

colour filter array in the camera.    

 

 

Figure 3-2. Arrangement of RGB sensors in a Bayer colour filter  
(adapted from Ray [154] (pp. 121)). 

 

The camera had a 35mm SLR body, enabling the use of a range of lenses and optical 

accessories. A Canon EF 28-135mm f 3.5-5.6 IS USM zoom lens was used in 

conjunction with this body.   

The camera software consists of two parts: the firmware and the driver. The firmware 

controls the fundamental operations of the camera body and captures the image 

information. The driver is a programme for a computer, which enables the import of the 

image to the computer. Some of the specifications of the camera and lens are in Table 3-1. 
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Component Specifications 

Camera body 

Imaging sensor size: 35.8 x 23.8 mm 
Pixel resolution: 4064 x 2704  
Colour filter system: RBG primary colour filter array 
Low-pass filter: Located in front of the CMOS sensor, non-removable 
Recording image format: JPEG, RAW (12-bit) 
Colour encoding: sRGB and Adobe RGB. 
White balance settings: auto, daylight, shade, overcast, tungsten light, fluorescent light, 
flash, custom, colour temperature setting, personal white balance (Total 10 settings) 
ISO speed range: 100-1250 (in 1/3-stop increments) 

Lens 
Focal length: 28-135 mm 
Maximum aperture: 1:3.5-1:5.6 
Diagonal angle of view: 75° - 18° 

Driving 
software 

EOS-1Ds Firmware 
File Viewer Utility 1.2 

Table 3-1. Technical specifications for the image capture system  
(adapted from Canon [153, 155]). 

 

3.2 Conditions for capturing    

A number of test charts were photographed during the camera characterisation. In order 

to capture the image, the camera was mounted on a tripod with the optical axis of the lens 

being orthogonal to the plane of the target. The camera exposure was operated in manual 

mode, and the lens was focused manually with a 50 mm focal length and an aperture of f 

11. 

Two gas-filled tungsten lamps (3200 K), with 312 mired value [156] (pp. 21), were 

placed on each side at 45° angle and 1m away from the test targets, so that all areas of the 

target were uniformly illuminated (Figure 3-3). Even illumination of the scene was 

assessed using a Kodak R-27 18% grey card. Nine measurements were taken on different 

points of the grey card using a SEKONIC L-308s light meter and a Minolta CL-200 

colorimeter. The even illumination presented in the light meter, and the uniformity of 

illumination ranged from 1939 (-3.7%) to 2092 (3.9%) lx in the colorimeter. EN 61966-9: 

2004 [157] (pp. 7) notes that the uniformity of illumination shall be less than 5 %. 
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Figure 3-3. Equipment arrangement for the camera measurements  

(adapted from EN 61966-9: 2004 [157] (pp. 20)). 

 
 

Kodak conversion filters were then placed in front of the lens, to obtain a fixed white 

point D65 (Xn=0.313, Yn=0.329). The D65 is a commonly used standard illuminant and 

represents average daylight [156] (pp. 25). 

The white balance setting of the camera was set to manual, to stop the automatic function 

of the camera compensating. EN 61966-9: 2004 [157] (pp. 25) notes that the white 

balance control should be considered as part of the camera characterisation. A previous 

study showed the importance of white balance control. Different colour errors were 

identified depending to the white balance settings, and the largest colour errors occurred 

where the auto white balance setting was used [158] (pp. 219). 

 

3.3 Spatial uniformity   

The uniformity of the Canon EOS-1Ds was evaluated using a Kodak R-27 18% grey card. 

Firstly, a number of measurements were taken to ensure the uniformity of the target, 

because a non-uniform test target is likely to produce step intensities.   

The target was divided into 25 (5×5) squares (Figure 3-4). The CIE XYZ values in each 

square on the test target were recorded using a Color-Eye 7000A spectrophotometer, 

≈1.5m 
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which has reported a good inter-instrument agreement and repeatability, i.e. 0.8 average 

ΔE* ab at inter-instrument agreement and 0.1 ΔE*ab maximum at repeatability for a white 

tile [159]. The CIE colour difference (ΔE* ab and ΔE00) between the middle area and 

across the target was then calculated. The reason for using two colour difference 

equations is that ΔE* ab is well established and ΔE00 is a relatively recent modification 

which models approximately uniform colour space. Thus, ΔE* ab is useful for comparing 

these results with previous studies and ΔE00 provides more meaningful insight into 

perceptual information.   

 

 

Figure 3-4. Twenty-five patches on a Kodak R-27 18% grey test target for the camera spatial 
uniformity 

(adapted from EN 61966-9: 2004 [157] (pp. 11)). 

 

The target was found to be almost uniform in all areas; the average colour differences 

produced 0.49 ΔE* ab and 0.38 ΔE00 (Figure 3-5). The colour differences in all areas were 

below perceptibility thresholds in uniform areas (≈ 1.0 ΔE) and complex images, 3.00 

ΔE* ab [160] and 4.12 ΔE* ab [161] (pp. 66-67).   

 

 

1A 1B 1C 1D 1E 

2A 2B 2C 2D 2E 

3A 3B 3C 3D 3E 

4A 4B 4C 4D 4E 

5A 5B 5C 5D 5E 
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1A 1B 1C 1D 1E 

   

 
2A 2B 2C 2D 2E 

 

 

0.4-0.6 

 
3A 3B 3C 3D 3E 

 

 

0.2-0.4 

 
4A 4B 4C 4D 4E 

 

 

0.0-0.2 

 
5A 5B 5C 5D 5E 

   

                  

Figure 3-5. Spatial uniformity on the test target, expressed in ΔE*ab. 

 

After confirmation of the test target uniformity, the target was imaged twice using sRGB 

settings and 12-bit capture. Once the first image was captured, the target was rotated 180° 

before the second image was taken. Then, the imaged target was downloaded and saved 

as 8 bits per channel uncompressed data, Tagged Image File Format (TIFF) file. This was 

because the natural scenes used in the image quality assessment later were also 

downloaded and displayed as 8-bit TIFF uncompressed images (cf. Section 6.1 and 6.3).       

The downloaded image was divided into 25 (5×5) squares (cf. Figure 3-4). The pixel 

values for the red, green and blue channels were recorded in each square. The results 

were then converted to tristimulus values X, Y and Z, via the sRGB encoding 

transformation (cf. Appendix A). The tristimulus values for each area were compared to 

these of the middle area in order to calculate the colour difference between them.  

The non-uniformity of the camera is shown in Figure 3-6. The actual fluctuations of the 

24 patches ranged from 0.15 to 5.38 in ΔE*ab and from 0.12 to 2.82 in ΔE00. The top-right 

area (1E) was shown to be the most non-uniform system area. This result was shown to 

be between perceptibility and acceptability thresholds in complex images, i.e. the 

definitions for perceptibility threshold being set at 3.00 and acceptability threshold at 

ΔE*ab 
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6.00 in ΔE* ab [160].  Where an acceptability threshold has been determined it is typically 

twice as large as that for perceptibility [162] (pp. 69-70), [163] (pp. 199).        

                  

  1A 1B 1C 1D 1E       

 
2A 2B 2C 2D 2E   

 

5.0-6.0  

 
3A 3B 3C 3D 3E   

 

4.0-5.0 

3.0-4.0       

2.0-3.0 

 
4A 4B 4C 4D 4E   

 

1.0-2.0      

0.0-1.0 

  5A 5B 5C 5D 5E       

                  

Figure 3-6. Spatial uniformity on the camera, expressed in ΔE*ab. 

 

These results guided the rest of the investigations, determining that all images would be 

captured using the central area of the captured frame (cf. Section 3.4 & 3.5, section 5.1 & 

5.2 and section 6.1).     

 

3.4 Tone reproduction  
A Kodak Q-60R2 reflection test target was used for the tone reproduction 

characterisation of the camera. The Kodak Q-60R2 includes a 24-step grey scale with 

Density min and Density max of 0.11 and 2.16, respectively. The target is currently an 

American National Standards Institute (ANSI) and ISO standard (Figure 3-7) [164].  

The tone reproduction of the camera was evaluated for different colour settings. This was 

to identify the optimal colour setting and the requirement of gamma correction for 

optimal overall gamma.  

ΔE*ab 
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Figure 3-7. A Kodak Q-60R2 test target 
(reproduced from Kodak [164]). 

 

The camera is capable of capturing images at colour setting of between 1 and 5 (Table 3-

2).  

 
Setting 
number 

Description 

1 
Sets a natural-looking hue and chroma. Effective for bringing out the subject’s natural 
colour tone 

2 Sets a hue and chroma suitable for portraits. Effective for rendering good skin tones. 

3 
Sets a hue and chroma similar to high-chroma slide film. Effective for making the 
colours clear. 

4 

An image corresponding to Adobe RGB colour space is created. It is useful for profile 
conversion to Adobe RGB or fine-tuning of chroma, because the colour reproduction 
range is much wider than the standard sRGB setting. 
Adobe RGB must be selected for profile conversion, because the ICC (International 
Color Consortium) profile is not attached to the image shot by the camera. Also, chroma 
adjustment is required as chroma is lower under sRGB circumstance. 

5 Sets an image low-chroma. Effective for making colour tone moderate. 

The colour settings space for 1,2,3 and 5 is sRGB 

Table 3-2. Colour settings and their descriptions of the camera  
(adapted from Canon [153] (pp. 48)). 
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First of all, a calibrated Macbeth TR 924 reflection densitometer was employed to 

determine the densities of the original grey scale. Mean densities for each patch were 

obtained from three measurements.  

The target was then photographed using a variety of colour settings as listed in Table 3-2, 

i.e. four sRGB and one Adobe RGB. All captured images were downloaded and saved (cf. 

Section 3.3). Then mean pixel values for each captured grey scale step were measured 

using Scion Image software [165]. This measurement was taken using 100×100 pixels 

from the central part of the patches.   

The measured camera OECF is shown in Figure 3-8. The tone reproduction had little 

variation with respect to the colour settings used. These minimal differences indicate that 

the camera’s tone reproduction is affected only slightly by the sRGB/ Abobe RGB colour 

encoding. This result is unsurprising since both the transfer functions have similar trends 

(cf. Figure 2-9).  

 

Figure 3-8. OECF curves of the camera at five different colour settings, plotted in linear-linear 
units. 
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In Figure 3-9, the logarithm of normalised pixel values against the density values for each 

patch are plotted, because the normal practice is for the photographic characteristic curve 

to be plotted in log-log units [83] (pp. 377). 

 

Figure 3-9. OECF curves of the camera at five different colour settings, plotted in log-log units. 

 

The gamma, offset and correlation coefficient derived with linear regression for each 

setting are shown in Table 3-3.  

Settings Gamma (γγγγ) Offset (o) Correlation Coefficient (r) 

1 0.603 0.021 0.997 

2 0.602 0.021 0.997 

3 0.615 0.027 0.997 

4 0.601 0.021 0.997 

5 0.607 0.024 0.997 

Table 3-3. Gamma, offset and correlation coefficient of the camera at five different colour settings 
(1,2,3& 5: sRGB, 4: Adobe RGB).    
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The 0.6 gamma was approximately equivalent to the gamma of photographic film 

negatives, when conventionally developed [81] (pp. 246). The results indicate that the 

gamma settings of the camera are intentionally set by the manufacture, to provide an 

optimal overall gamma of between 1.0 and 1.5 (cf. Section 2.2.2.2) in default display 

gamma 1.8 (Mac) and 2.2 (PC), i.e. if the display has a gamma 1.8 or 2.2, the camera 

gamma will make the optimal overall gamma equal to 1.1 or 1.3.  

The additivity of the camera was also investigated by comparing between the combined 

RGB response and the neutral response. The combined RGB response was calculated by 

weighting each colour channel equally. The transfer functions for the combined RGB 

response and the neutral response are presented in Figure 3-10. The result showed that the 

combined RGB response closely matched the neutral response.  

 

 

Figure 3-10. The camera additivity at the colour setting 1, comparison between the combined 
RGB response and the neutral response. 
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3.5 Colour reproduction  
The Kodak Q-60R2 reflection test target was again used for the colour reproduction 

characterisation of the camera. The Kodak Q-60R2 consists of 264 colour patches, which 

include 12 colour samples of skin tones in columns 20-22, a series of single (CMY), 

double (RGB) and triple (K) dye colours in columns 13-19, and 12 samples each of 12 

hues in columns 1-12. The columns 4, 8 and 12 represent the maximum chroma in three 

lightness levels, and a 24-step grey scale (cf. Figure 3-7) [164].  

The camera’s colour reproduction was assessed for colour accuracy and where necessary 

colour compensation was carried out to ensure accurate colour reproduction.  

The device colour reproduction is classified into three groups: using (a) a custom profile, 

(b) a general profile and (c) a process profile [166] (pp. 25-28). The custom profile is 

designed to find the relationship between device-dependent and device-independent data 

using a suitable number of test colours. Typical custom profile method includes a three-

dimensional lookup table model [167], a polynomial regression model [168, 169, 170, 

171] and a neural network model [170, 171]. The general profile is supplied by the 

vendor. The process profile is an easy to implement method according to standard 

conditions, e.g. sRGB [89] and Adobe RGB [90]. 

 

3.5.1 Colour reproduction using sRGB/ Adobe RGB  

First, mean CIE XYZ values for each patch were obtained from three different 

measurements, using the Color-Eye 7000A spectrophotometer [159]. The colorimetric 

data for all colour samples were obtained using the CIE 2° colorimetric observer and the 

D65 illuminant. 

Then, the target was recorded at five different colour settings, and the captured images 

were transferred to a computer. The mean pixel values for the red, green and blue 

channels were then measured by averaging 100×100 pixels from the central part of each 

patch, using Scion Image software [165]. The results were then converted to tristimulus 

values X, Y and Z, via the two encoding transformations: sRGB and Adobe RGB 

encoding (cf. Appendix A).  
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Finally, the CIE XYZ colorimetric data between the measurement (original) and the 

calculation were assessed using two colour difference equations, CIELAB (ΔE*ab) and 

CIE DE 2000 (ΔE00). 

Figure 3-11 illustrates the process of colour reproduction characterisation for the camera.  

Figure 3-11. Process for the camera colour reproduction characterisation, using process profiles. 
 

The results of the camera’s colour reproduction characterisation are presented in Table 3-

4. The results are the mean, median1 and maximum colour differences between the 

measurement XYZ and the calculation XYZ at all patches.   

Setting 
ΔE* ab ΔE00 

Mean Median Max Mean Median Max 

1 16.85 17.11 49.39 8.31 8.08 25.34 

2 17.04 17.34 50.27 8.22 7.98 25.60 

3 16.27 16.53 40.03 7.89 7.42 24.81 

4 17.18 17.36 51.46 8.22 7.95 25.41 

5 18.16 17.79 53.59 9.10 8.46 26.18 

 Table 3-4. Descriptive statistics (mean, median, maximum) for colour differences (ΔE*ab and 
ΔE00) between measured values and calculated values at five different colour settings. 

 
The accuracy of the camera’s colour reproduction was found to be rather low. The mean 

colour differences were more than 16.00 in ΔE* ab and 7.00 in ΔE00. Orava and 

Jaaskelainen [158] (pp. 219) investigated colour errors in digital cameras and found 

means of 13.1 in ΔE*ab and 8.1 in ΔE00. Possible reasons for this phenomenon include 1) 

the sRGB and the Adobe RGB encoding have colour reproduction errors due to the 

                                                           
1 Median is often used when data are skewed, meaning that the distribution is not a normal distribution [172] 
(pp. 38-39). 

ΔE*ab / ΔE00 
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narrow colour gamut [173] (pp. 86-98), and 2) the camera’s colour reproduction has been 

intentionally set this way by the manufacture based on the observer’s preference.  

Also, the result demonstrated that the colour reproduction of the camera had little 

variation in relation to the colour settings. The smallest mean colour difference was 

achieved with the colour setting 3, i.e. 16.27 in ΔE*ab and 7.89 in ΔE00. The 

manufacture’s claim of the setting being colour clear appeared to be correct (cf. Table 3-

2).  

 

3.5.2 Colour characterisation using polynomial regression model 

Since the accuracy of the camera’s colour reproduction using sRGB and Adobe RGB was 

found to be unsatisfactory, the custom profile was used to ensure accurate colour 

reproduction. The custom profile was applied to a polynomial regression model, which 

assumes that the correlation between scene (CIE XYZ) and image (RGB) can be 

approximated by a set of simultaneous equations. The process of the polynomial 

regression model is illustrated in Figure 3-12.  

 

Figure 3-12. Process for the camera colour reproduction characterisation, using a custom profile, 
a polynomial regression model  

(adapted from Triantaphillidou [33] (pp. 81)). 
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The polynomial regression model consists of two main steps: 1) the grey balance of red, 

green and blue signal (optional but preferable) and 2) the derivation of colour matrixes 

[174] (pp. 282).  

 

1) Grey balance red, green, blue signal: Grey balancing process was achieved by setting 

R=G=B=f(Y) for the neutral patches of the test target, where f(Y) was a function of 

luminance Y. MATLAB code reproduced and applied for the purpose [33] (pp. 83):       

RedLUT=interp1(RedL, Y255, 0:255); 
GreenLUT=interp1(GreenL, Y255, 0:255); 
BlueLUT=interp1(BlueL, Y255, 0:255); 

where the RedLUT, GreenLUT and BlueLUT are red, green and blue look-up-tables, 
and the function Yi=interp1(Xo,Yo,Xi) interpolates to find Yi, the values of the 
underlying function Yo at the points in the vector Xi. The vector Xo specifies the 
points at which the data Yo is given. The RedL, GreenL, BlueL are vectors that 
contain the measured red, green and blue pixel values of the neutral patches in the 
images, rescaled from 0 to 255. 

RedL    = [R1, R2, R3,… R20, R21, R22] 
GreenL = [G1, G2, G3, … G20, G21, G22] 
BlueL   = [B1, B2, B3, … B20, B21, B22] 

The Y255 is the vector containing the original reflectance measurements in the test 
target, rescaled from 0 to 255. 

Y255 = [L1, L2, L3, …L20, L21, L22] 
The look-up-tables were implemented to obtain the grey balanced image.  

Imageout(:, :, 1) = RedLUT(Image(:, :,1)+1); 
Imageout(:, :, 2) = GreenLUT(Image(:, :,2)+1); 
Imageout(:, :, 3) = BlueLUT(Image(:, :,3)+1); 

where the Imageout is the grey balanced image, Image is the captured image and the 
parameters (:, :,1), (:, :,2) and (:, :,3) are referring to red, green and blue channels. 
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2) Derivation of colour matrixes: A number of colour correction matrixes with 

polynomial terms (m) were derived, using the following equation (Table 3-5).   

M= (RTR)-1RTH      (3.1) 
where R is the matrix of independent variables of size 3×m, H is the vector of 
dependent variables and RT denotes the transposition of R and R-1 its inverse. 

 

m Polynomial Terms 

3 R,G,B 

4 R,G,B,RGB 

6 R,G,B, R2,B2,G2 

7 R,G,B, R2,B2,G2,RGB 

9 R,G,B, R2,B2,G2, RG, GB,BR 

10 R,G,B, R2,B2,G2, RG, GB,BR,RGB 

12 R,G,B, R2,B2,G2, RG, GB,BR, R3, G3,B3 

13 R,G,B, R2,B2,G2, RG, GB,BR, R3, G3,B3,RGB 

Table 3-5. Polynomial terms (m) used in the matrix derivation.   

 

The transform matrix M was then calculated into a CIE XYZ value. The best M was 

assessed using the colour differences between the original and calculated colours.  

Table 3-6 describes the colour difference values, ΔE*ab and ΔE00, between the original 

XYZ and the calculated XYZ. The results show that the colour difference values decrease 

when the number of polynomial terms increases2. This phenomenon has been reported by 

many researchers [168] (pp. 167-169), [169] (pp. 80-81).   

 

 

 

 

 

                                                           
2 The black point addition is a possibility to produce a better fit in the regression [169] (pp. 83).     
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Polynomial terms (m) 
ΔE*ab ΔE00 

Mean Median Max Mean Median Max 

3 9.93 9.85 20.60 6.85 6.66 14.51 

4 8.14 7.72 16.71 5.10 4.64 9.21 

6 6.33 5.60 12.23 4.84 4.39 9.76 

7 5.47 5.41 12.36 4.20 4.24 7.10 

9 5.37 4.95 10.20 3.87 3.64 7.69 

10 4.49 4.60 8.80 3.29 3.04 6.14 

12 3.88 3.74 6.67 2.83 2.68 5.66 

13 3.79 3.92 6.92 2.72 2.27 5.37 

Table 3-6. Descriptive statistics (mean, median, maximum) for colour differences (ΔE*ab and 
ΔE00) between measured values and calculated values at different polynomial terms (m). 

 

The acceptability threshold for colour difference in complex images was reached at 

Matrix 7, but the perceptibility colour difference was unattained up to Matrix 13, i.e. the 

perceptibility threshold is 3.00 and the acceptability threshold is 6.00 in ΔE* ab (Figure 3-

13).   

 

Figure 3-13. Effect of the number of terms (m) in the polynomial regression.  
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Overall, the polynomial regression model resulted in visually equivalent colour 

reproduction with high polynomial terms. However, the process is complicated and time-

consuming. In addition, the task was only carried out in a specified standard condition. In 

ISO 17321-1: 2006 [175] (pp. 4), it has been noted that “when target-based 

characterisation is used, the resultant characterisation data is only applicable for similar 

geometric and spectral illumination characteristics.” Thus, the model is extremely limited 

in relation to real-life photography (cf. Chapter 6). Further extensive investigations are 

required for accurate colour reproduction in the real scene images.       
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3.6 Summary 
A Canon EOS-1Ds SLR camera was characterised in terms of spatial uniformity, tone 

reproduction and colour reproduction. The following summary lists the main findings 

regarding the camera’s characteristics.  

1. The spatial variations of the camera ranged from 0.15 to 5.38 in ΔE*ab and from 0.12 

to 2.82 in ΔE00. The highest colour difference was identified as being in the top-right 

corner of the capturing frame. The result was greater than the perceptibility colour 

difference in complex scenes, 3.00 in ΔE* ab. Therefore, the rest of the investigations 

were carried out using the central area of the image (cf. Section 5.1 & 5.2 and section 

6.1).  

2. The camera’s tone reproduction had little variation in relation to the colour settings 

used. In terms of tone reproduction, it was possible to use any setting desired. For this 

project sRGB was used for image capture.   

3. With regard to the camera’s tone reproduction, the gamma and offset of the linear 

regression was approximately equal to 0.60 and 0.02 with a 0.997 correlation 

coefficient. The gamma settings of the camera were intentionally set by the producer 

for the optimal overall gamma of between 1.0 and 1.5. 

4. The camera’s colour reproduction was investigated using two methods: 1) process 

profiles of all of the camera’s colour settings and 2) polynomial regression model, 

which is a type of custom profile. The polynomial regression model provided visually 

equivalent colour reproduction with high polynomial terms. However, the process 

was found to be time-consuming and complicated to implement. The method had 

limitations for a natural scene. On the other hand, camera colour reproduction at 

sRGB/ Adobe RGB encoding was quick and less complex to implement. Thus, the 

camera setting with the smallest colour difference - setting 3, was applied in order to 

optimise the colour image for the rest of studies (cf. Section 5.1 & 5.2 and section 

6.1). Also, the sRGB was designed to match the display output used for the 

psychophysical investigation (cf. Section 6.3).  

 



Kyung Hoon Oh, 2014                          Chapter 4. Liquid Crystal Display (LCD) characterisation 

73 

Chapter 4  

Liquid Crystal Display (LCD) 

characterisation  

This chapter describes the processes of calibration and characterisation of the LCD, prior 

to it being used in the psychophysical experimentation. The LCD characterisation was 

carried out in terms of temporal stability, spatial uniformity, viewing angle, tone 

reproduction and colour reproduction.   

 

4.1 LCD description  

An EIZO CG210 LCD [178] was used in this work. The LCD was controlled by a 

graphic card (S3 Graphics Prosavage DDR (Microsoft Corporation)) in a personal 

computer running Windows XP professional.  

To produce a colour image on the LCD, each pixel is divided into three sub-pixels, which 

are coloured red, green, and blue, respectively. The intensity of each sub-pixel can be 

controlled independently to yield several possible colours for each pixel. The graphic 

card was configured to display 24-bit colour. Figure 4-1 presents the sub-pixels forming a 

colour pixel on the LCD [176, 177].  

The maximum resolution of the display was set to 1600 by 1200 at a frequency of 86 Hz 

[178]. However, the graphic card was configured at a resolution of 1600 by 1200 pixels at 
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a frequency of 60 Hz. This setting was applied throughout the experiment, because this is 

the native and maximum setting of the device. The specifications of the LCD are set out 

in Table 4-1. 

 

 

 

 

Figure 4-1. Example of sub-pixel on TFT-LCD. 

 (adapted from Wikipedia (viewed March 2010) [176] and Farrell et al [177] (pp. 25)) 
 

EIZO CG210 

Size and Type 
54 cm (21.3") Thin film transistor (TFT) 
colour LCD panel 

Viewing Angles (H, V) 170°, 170° (at contrast ratio of 10:1) 

Luminance/ Contrast 250 cd/m2 /550:1 

Maximum Resolution 1600 × 1200 

Active Display Size (H, V) 432 × 324 mm / 17.0 × 12.8" 

Viewable Image Size Diagonal: 540 mm / 21.3" 

Pixel Pitch 0.270× 0.270 mm 

Gamut Coverage sRGB: 99%, Adobe RGB: 78% 

Scanning Frequency (H, V) 
Analogue :24 – 100 kHz, 49 – 86 Hz 
Digital : 31– 100 kHz, 59 – 61 Hz 

Display Mode Options sRGB, Custom 

Table 4-1. The LCD technical specifications  
 (produced by Eizo [178]). 

LCDs typically divide each pixel 
horizontally into three sub-pixels. 

Close-up of an LCD faceplate 
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4.2 Conditions for measurements  

Before the measurements, the LCD1 was adjusted as close as possible to a white point of 

D65, a gamma of 2.2 and a white point luminance of 100 cd/m2. These are the default 

values for photography/graphic design in Colour Navigator 4.1 Eizo software [179].  

The LCD measurements were carried out in complete darkness, using a Minolta CS-200 

hand held incident colorimeter (designed specifically to measure LCDs), which enables 

accurate measurement of luminance and chromaticity [180]. The colorimetry of the 

displayed samples was measured using the 0.2° measuring angle during a 30 second 

measuring period. The instrument’s frequency was set at 60 Hz, the same frequency as 

that of the LCD as instructed by the manufacturer.  

During measurements, the hand held incident colorimeter was mounted on a tripod with 

the colorimeter’s optical axis being perpendicular to the faceplate of the LCD. The 

distance between the LCD’s faceplate and the colorimeter was 128cm, as recommended 

by EN 61966-4: 2000, i.e. four times the display height [181] (pp. 9). The arrangement of 

the equipment is shown in Figure 4-2. 

 

 

Figure 4-2. Equipment arrangement for the LCD measurements  
(adapted from EN 61966-4: 2004 [181] (pp. 9)). 

 

 

 

                                                           
1 sRGB reference display condition is a white point of D65, a gamma of 2.2 and a white point luminance of 
80 cd/m2(cf. Appendix A) [89] (pp. 9).  



Kyung Hoon Oh, 2014                          Chapter 4. Liquid Crystal Display (LCD) characterisation 

76 

4.3 Temporal stability  

The temporal stability of the LCD was estimated from a white patch displayed on a black 

background. The luminance Y and the CIE x,y chromaticity coordinates were measured 

three times for both short-term stability and mid-term stability [181] (pp. 28-31). The 

short-term stability was evaluated over 1 hour, every 2 minutes. The mid-term stability 

was evaluated over 4 hours at 10 minute intervals. During the experiment, the measuring 

point was monitored as temporal stability could be affected by lack of spatial non-

uniformity and viewing angle of the display.  

The short-term stability results are shown in Figure 4-3. According to EN 61966-4: 2000 

[181] (pp. 29), the luminance Y was plotted against time (in minutes), where the 

luminance Y on the vertical axis was from 80 cd/m2 (0.8% average luminance level) to 

120 cd/m2 (1.2% average luminance level). The output luminance level increased quickly 

early on and then reached a very stable level. However, after 20 minutes it actually 

started to decrease slightly. The luminance of the display changed slightly over the one-

hour period. This luminance change was not perceptible by the human eye, i.e. a 

luminance difference of about 1% to 2% is not visible [106] (pp. 105), [182] (pp. 38-39).  

 

Figure 4-3. Short-term luminance stability on the LCD. 
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The CIE x,y chromaticity coordinates are plotted in Figure 4-4, where the vertical axis 

ranges from 0.25 to 0.35. The LCD stabilisation of the CIE x,y chromaticity coordinates 

seemed to be reached after about few seconds, and the LCD kept stable over the one-hour 

period.  

 
Figure 4-4. CIE x,y values of short-term stability on the LCD.  

 

The results of mid-term temporal stability are shown in Figure 4-5 and Figure 4-6. Both 

the results of the luminance Y and the CIE x,y chromaticity coordinates presented a 

similar trend for short-term investigations, which are presented in Figure 4-3 and Figure 

4-4, i.e. the luminance level increased quickly early on and then reached a remarkably 

stable level. After 20 minutes, it started to decrease slightly. The luminance of the display 

changed slightly over the measurement period. However, this luminance change, 93.01 

(2.2%) at 240 minutes, was still not perceptible by the human eye. The chromaticity of 

the LCD reached a stable level after about few seconds, and the LCD stayed stable over 

the period.  
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Figure 4-5. Mid-term luminance stability on the LCD. 

 

Figure 4-6. CIE x,y values of mid-term stability on the LCD.  
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Overall, the LCD temporal stability was remarkably good, when compared with previous 

researches on a CRT [106] (pp. 105-108) and LCDs [88] (pp. 6-8), [183] (pp. 18). The 

result confirmed that the LCD did not require significant warm up time (cf. Section 6.3). 

 

4.4 Spatial uniformity  

All measurements of the LCD were based on the assumption that the responses of all 

areas of the display were identical, for any input. In reality, the spatial characteristics of 

the display vary. The lack of uniformity of the display is often ignored, because it might 

be below the level of perception of the human eye.      

The spatial uniformity of the LCD was investigated by measuring a white patch on 25 

different areas of the display and comparing measurements between the middle area and 

across the display area. Figure 4-7 shows the measurement points on the LCD.  

 

 
h: screen height w: screen width 

      Figure 4-7. Measurement points for the LCD spatial uniformity 
 (adapted from EN 61966-4: 2004 [181] (pp. 25)). 

1A 1B 1C 1D 1E 

2A 2B 2C 2D 2E 

3A 3B 3C 3D 3E 

4A 4B 4C 4D 4E 

5A 5B 5C 5D 5E 
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Figure 4-8 illustrates the uniformity of the LCD faceplate. The actual fluctuations of the 

24 areas were ranged from 0.73 to 4.80 in ΔE* ab and from 0.62 to 3.45 in ΔE00.  

The lower-middle area as defined by 5C, showed the most non-uniform LCD 

measurements, 4.80 in ΔE* ab. The result is greater than the perceptibility colour 

difference in complex scenes, 3.00 in ΔE*ab [160].  A possible reason for the LCD non-

uniformity is the backlight fall-off towards the faceplate [184] (pp. 35).  

The correction of display spatial uniformity [185] (pp. 324) was not applied, because it 

could cause the creation of a contouring artefact. The contouring artefact would be more 

noticeable than lack of uniformity [32] (pp. 82).   

The result led to the choice of the LCD’s central area for the rest of the investigations (cf. 

Section 4.5, 4.6 & 4.7, section 5.1 & 5.2 and section 6.3).  

 

                  

  1A 1B 1C 1D 1E       

  2A 2B 2C 2D 2E   

 

4.0-5.0 

  3A 3B 3C 3D 3E   
 

3.0-4.0       

2.0-3.0 

1.0-2.0      

  4A 4B 4C 4D 4E   

 

0.0-1.0 

  5A 5B 5C 5D 5E       

                  

     Figure 4-8. Spatial uniformity on the LCD, expressed in ΔE*ab. 

  

ΔE*ab 
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4.5 Viewing angle   

One of the major issues, when using an LCD, is the viewing angle. This is because LCDs 

usually have a limited viewing angle [151] (pp. 330). The display luminance variations 

with viewing angle were investigated by horizontal (right-left) and vertical (up-down) 

display rotations [181] (pp. 31-36). A number of patches were displayed in the centre of 

the display and measured by the Minolta CS-200. The arrangement of equipment is 

shown below in Figure 4-9. 

 

 

Figure 4-9. Equipment arrangement for the LCD viewing angle  
(adapted from EN 61966-4: 2004 [181] (pp. 32)). 

 

 

The luminance in peak red, green, blue and peak, medium and dark neutral scale signals 

are plotted in Figure 4-10 and Figure 4-11. The figures illustrate that the viewing angle 

characteristics have minimal effects on the lower luminance and a high impact on the 

higher luminance. Also, the figures show that the vertical viewing angle is impacted more 

than the horizontal viewing angle.  

Table 4-2 presents the contrast ratio values at different viewing angles. The result shows 

that the manufacture’s claim seems to be correct, which is the 10:1 contrast ratio of the 

170° horizontal and vertical [178]. However, the 10:1 contrast ratio of the 170° viewing 

angle makes the image almost imperceptible, and as such the claim is not acceptable.  

 

128 cm 128 cm 
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Figure 4-10. Horizontal viewing angle characteristics on the LCD. 

 

Figure 4-11. Vertical viewing angle characteristics on the LCD. 
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Viewing angle Horizontal Vertical 

+30 344: 1 295: 1 

+20 394: 1 440: 1 

+10 474: 1 515: 1 

0 534: 1 589: 1 

-10 583: 1 596: 1 

-20 492: 1 506: 1 

-30 380: 1 268: 1 

Table 4-2. Contrast ratio at various viewing angles on the LCD. 

In total, the LCD appearance altered significantly with viewing angle. The result showed 

that the viewing angle of the LCD required careful control in the image quality study (cf. 

Section 6.3).  

 

4.6 Tone reproduction  

The LCD tone reproduction was assessed by the transfer function, described by the 

relationship between the input pixel values and the generated output luminance Y (in 

cd/m2). 

The transfer function was determined by measuring a number of colour patches. The 

colour patches were displayed one at a time, ranging from the system maximum to the 

minimum at 25 pixel value intervals. Each patch occupied 50 % of the LCD central area, 

with the surrounding area displaying black. The black background was suggested for 

LCD measurement by EN 61966-4: 2000 [181] (pp. 9). The interface of the software is 

presented in Figure 4-12.  

The luminance of each patch was measured three times, using the Minolta CS-200, and 

then the measurements were averaged.  

The LCD’s transfer functions are illustrated in Figure 4-13. The result presented that the 

relationships between the input and output values appeared to be power functions. The 

LCD seemed to be corrected by built-in correction tables, to mimic the CRT response. 

This is because LCDs have a native sigmoid transfer function [85] (pp. 612), [87] (pp. 

191-193).  
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Figure 4-12. Interface for the LCD tone reproduction characterisation 
(produced by Bilissi [106] (pp. 113)). 

  

Figure 4-13. Transfer functions of the LCD at the R,G,B and neutral responses, plotted in linear-
linear units. 
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The LCD’s transfer functions in normalised units are also illustrated in Figure 4-14. In 

this figure, the transfer functions show appreciable neutral scale tracking, with the red, 

green and blue channel responses being similar.  

 

Figure 4-14. Transfer functions of the LCD at the R,G,B and neutral responses, plotted in linear-
linear normalised units. 

 

The LCD’s transfer functions in log-log normalised units are also illustrated in Figure 4-

15. The gamma and offset was derived with linear regression. Obtained data for each 

colour channel are listed in Table 4-3. It was observed that the gamma and offset of the 

linear regression was equal to 2.20 and 0.00 respectively for the neutral scale input signal. 

The breakdown of the linear relationship was observed at the blue channel (r=0.992). In 

addition, the gamma error (γ=2.04) resulted at the blue channel, caused by low luminance. 

The phenomenon has also been found in a CRT [186] (pp. 147-148).  
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Figure 4-15. Transfer functions of the LCD at the R,G,B and neutral responses, plotted in log-log 
normalised units.  

 Gamma (γγγγ) Offset (o) Correlation Coefficient (r) 

Red 2.22 0.02 0.999 

Green 2.27 0.02 0.999 

Blue 2.04 0.06 0.992 

Neutral 2.20 0.00 0.999 

Table 4-3. Gamma, offset and correlation coefficient of the LCD at the R,G,B and neutral colours.  

 

In order to investigate channel additivity, the LCD neutral response and the combined 

RGB response were compared. The combined RGB response was obtained by equally 

weighting the three colour channels. The result of additivity is shown in Figure 4-16 and 

Table 4-4. The percentage errors between the neutral response and the combined RGB 

response were distributed through the different input signal levels (2.77%). The 

differences were small. The result indicates that the LCD is an additive colour system.       

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

-1.00 -0.80 -0.60 -0.40 -0.20 0.00

Lo
g 

no
rm

al
is

ed
 Y

Log normalised PV

Red

Green

Blue

Neutral



Kyung Hoon Oh, 2014                          Chapter 4. Liquid Crystal Display (LCD) characterisation 

87 

 

Figure 4-16. The LCD additivity, compared between the combined RGB response and the neutral 
response. 

 
 
 

Input values 5 55 105 155 205 255 

Combined RGB 0.19 3.45 13.87 32.89 61.50 99.54 

Neutral 0.18 3.35 13.49 31.98 59.80 96.78 

Percentage error 2.77% 2.77% 2.77% 2.77% 2.77% 2.77% 

Table 4-4. The LCD additivity with percentage error.  

 

4.7 Colour reproduction 

The colour reproduction of the display was evaluated. Figure 4-17 shows the process for 

the LCD colour reproduction evaluation.  
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ΔE*ab /Δ E00 
 

 
Figure 4-17. Process for the LCD colour reproduction characterisation. 

 

Single, double and triple RGB colour combinations of digital colour signals were created 

one at a time, ranging from the system maximum to the minimum at 51 intervals. The 

displayed patches were measured three times, using the Minolta CS-200. The input RGB 

data on each colour patch were converted to the XYZ tristimulus values, using the sRGB 

inverse encoding transformation (cf. Appendix A). Finally, the differences between the 

calculation XYZ and the measurement XYZ were evaluated using two colour difference 

equations (ΔE* ab and ΔE00). The reason of using two colour difference equations is 

explained in section 3.3. 

Table 4-5 presents the result of the performance of the LCD’s colour reproduction. The 

mean colour differences were 1.57 in ΔE*ab and 0.52 in ΔE00. The median colour 

differences were 0.54 in ΔE* ab and 0.20 in ΔE00. The maximum colour differences were 

7.21 in ΔE* ab and 2.17 in ΔE00. As expected, the maximum blue colour signal 

(R,G,B=0,0,255 at pixel value) had the most colour difference between the calculation 

XYZ and the measurement XYZ. Sharma [166] (pp. 29) noted that “the gamut of sRGB, is 

based on CRT-type of display and is very different and therefore not appropriate to use as 

a profile for an LCD flat-panel display. An LCD panel can display some colors, for 

example in the blue part of the color space. If an sRGB profile were used to represent this 

device, we would not get accurate colors, especially in the blue.”     

 
 Mean Median Maximum 

ΔE*ab 1.57 0.54 7.21 

ΔE00 0.52 0.20 2.17 

Table 4-5. Colour reproduction characterisation of the LCD, described in mean, median, 
maximum of colour differences (ΔE*ab and ΔE00). 
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Figure 4-18 illustrates the LCD colour gamut and the sRGB colour gamut at the CIE u’v’ 

chromaticity diagram.       

 

Figure 4-18. The LCD colour gamut and the sRGB colour gamut, plotted in the CIE u’v’ 
chromaticity diagram.  
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4.8 Summary 

The Eizo CG210 LCD was characterised in terms of temporal stability, spatial uniformity, 

viewing angle, tone reproduction and colour reproduction. The following summary lists 

the main findings of the LCD characteristics.  

1. The LCD temporal stability was satisfactory. The result indicates that the LCD does 

not require significant warm up time in order to stabilise.    

2. There was a spatial variation of the display, ranged from 0.73 to 4.80 in ΔE*ab and 

from 0.62 to 3.45 in ΔE00. The highest colour difference was perceptible to the human 

eye and area located the lower-middle of the display. This result leads to the choice of 

the LCD centre area for the psychophysical investigation.   

3. The LCD appearance altered significantly with viewing angle. The result indicates 

that the viewing angle of the LCD requires careful control in the image quality study.  

4. The LCD transfer function was found to fit a power function model. The gamma and 

offset of the linear regression was equal to 2.20 and 0.00 respectively for the neutral 

scale input signal.  

5. The LCD colour reproduction was relatively satisfactory. The average colour 

difference value was 1.57 in ΔE*
ab and 0.52 in ΔE00. The LCD can display accurately 

imaged colours for the psychophysical scaling.  

The results were able to suggest the specific display conditions that were further studied 

in the subjective scaling of image quality (cf. Section 6.3) and the objective scaling (cf. 

Section 8.1).  
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Chapter 5  

Modulation transfer and noise 

characterisation  

This chapter presents image modulation transfer and noise characterisation of the imaging 

chain as part of assessing the performance of the imaging systems used in this study. Data 

from this investigation will be used later for the image quality metric implementation in 

chapter 8. The aim of the chapter is to quantify the modulation transfer function (MTF) 

and noise of the camera and the LCD, and to understand the effect of MTF associated 

with image down-sampling and of noise power spectrum (NPS) in relation to Gaussian 

noise.  

 

5.1 Modulation Transfer Function (MTF) 

5.1.1 Camera MTF  

As mentioned in section 2.2.2.5, there are many methods for camera MTF measurement. 

For this project, the slanted edge technique was used for the camera MTF measurement, 

since it is quick and easy to implement and produces accurate and repeatable results [117] 

(pp. 235). It is a standard method recommended in ISO 12233: 2000 [110]. 

Experimental work was undertaken using the Canon EOS-1Ds digital camera (cf. Table 

3-1). This digital camera operates with a CMOS sensor with approximately 8.8 µm 
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square pixel dimensions. The Nyquist limit of the CMOS sensor array, calculated from 

these pixel dimensions, is 56.8 cycles per millimetre. 

Theoretically, aliasing occurs beyond the camera’s Nyquist limit. Modern cameras 

generally prevent this aliasing by an anti-aliasing filter (low-pass filter) [187] (pp. 737). 

Alongside the positive adjustment, the filter also causes degradation in the optical MTF. 

Thus, digital cameras often include edge sharpening as part of their processing to 

compensate for the losses [187] (pp. 753).  

A slanted edge test target, QA-62 [188], was carefully selected to determine the camera 

SFR and thus derive the MTF (cf. Section 2.2.2.5). The ratio of the maximum chart 

reflectance Rmax to the minimum chart reflectance Rmin was 74: 1. ISO 12233: 2000 [110] 

(pp. 6) recommends that the ratio should be not less than 40:1 and not greater than 80:1. 

The test target’s modulation was 0.54.  

The test target consists of 4 edges and 20 grey steps (Figure 5-1). The edges are 

intentionally slanted at 5-10 degree, and grey steps consist of different, spectrally neutral 

patches.  

 

 

Figure 5-1. A slanted edge target, QA-62  
(reproduced from Applied Image [188]). 
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The camera was mounted on a tripod with the optical axis of the lens being orthogonal to 

the plane of the target. The camera was placed 0.85 m away from the test target. This 

gave the desired low magnification, so that the frequency content of the target was 

constant for the range of spatial frequencies of interest [33] (pp. 187), [114] (pp. 135).  

Thus, the measured SFR was taken as the MTF of the result.  

Two gas-filled tungsten lamps were placed either side of the target at 45° and 1m away, 

so that all areas of the target were uniformly illuminated. Even illumination was 

confirmed using a Kodak R-27 18% grey card, a SEKONIC L-308s light meter and a 

Minolta CL-200 colorimeter. Nine measurements were taken from different regions of 

the card. The non-uniformity of illumination was less than ±5 % of average illumination 

(cf. Section 3.2). 

The camera lens was covered with a black hood to reduce flare and was set to an aperture 

of f 11. This provided an increased depth of field as well as good lens performance, for 

the camera and the combined system (cf. Section 5.1.2). Keelan and Pagano [189] noted 

that the optimum MTF usually occurred two or three stops down from the wide open 

aperture. This is typically in the range of f 5.6 to f 11 (cf. Figure 8-1).   

The camera was set to sRGB colour mode, setting 3 (cf. Section 3.4 and 3.5).  It was 

operated in the self-timer mode to minimise distortion caused by camera shake.  

The sharpness and noise settings of the camera were to keep a specific setting in the 

firmware. The aim of this setting was to use minimum sharpness and some noise 

reduction. However, both procedures are non-linear and may introduce distortions in the 

measured MTF.  

The image was captured in the central area of the frame (cf. Section 3.3) and in correct 

focus. The equipment set-up is illustrated in Figure 5-2. 
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Figure 5-2. Equipment arrangement used to measure the camera MTF  
(adapted from ISO 12233: 2000 [110] (pp. 10)).  

 

The captured images were downloaded to a computer as 8-bit TIFF uncompressed images, 

and the ImCheck software [190] was used to calculate the grey scale MTF (cf. Section 

2.2.2.5).  

The averaged horizontal and vertical MTFs with variations in four measurements are 

illustrated in Figure 5-3. In accordance with ISO12233: 2000 [110] (pp. 15), the results 

are reported as the average of four measurements for the horizontal and vertical directions. 

The responses of the system are shown approximately up to its Nyquist limit. The same 

results are also illustrated in Figure 5-4, this time fitting them with a third degree 

polynomial function with a correlation coefficient, r (Table 5-1). The third degree 

polynomial is often used to represent the MTF of digital cameras [33] (pp. 180).  

 

1 m 1 m 

0.85 m 
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Figure 5-3. Measured MTF curves of the camera, including the variation in four measurements.   

 

Figure 5-4. Polynomial functions representing the camera MTF curves.  
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Component Polynomial function  r 

Camera’s horizontal edge M(ω) = 8.483ω3 – 4.232ω2 - 1.861ω + 1.017 0.9998 

Camera’s vertical edge M(ω) = 6.639ω3 - 3.487ω2 – 1.711ω + 1.012 0.9999 

Table 5-1. Third degree polynomial functions representing the camera MTFs, M(ω). The spatial 
frequency, ω, is measured in cycles/pixel, and r represents the correlation coefficient of fitted 

functions to measured data.   

 

The camera MTF 10% values were 58.5 cycles/mm in the horizontal direction and 61.3 

cycles/mm in the vertical direction. The 10% MTF frequencies were approximately 

equivalent to that of the 10% MTF of medium-speed colour slide material [219]. The 

camera MTF 50% values were 26.1 cycles/mm in the horizontal direction and 29.5 

cycles/mm in the vertical direction. 

 

5.1.2 Camera-display MTF  

This part of the work was based on a previous study [191], where the MTF of a CRT 

display system was measured with an SLR camera. The MTF of the display was 

evaluated by dividing the combined MTF by that of the acquisition system. 

   
Mo(ω)=Ma(ω)×Md(ω)              (5.1) 

where the Mo is the MTF of the overall system, the Ma is the MTF of the 
acquisition system and the Md is the MTF of the display system. 

This method was adapted in the characterisation of the LCD MTF. It used relatively 

inexpensive equipment [191] (pp. 58) and has become a common way of measuring 

display MTFs [192] (pp. 6-8).  

For this purpose, the measurement of the combined system MTF was initially carried out 

as follows:  
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1) A digitally constructed edge target was displayed in the central area of the LCD (cf. 

Section 4.4). The edge target had the same configuration as that of the camera target, 

i.e. it consisted of 4 edges and 20 grey steps (cf. Figure 5-1). Its modulation was 0.27. 

The different characteristic of the input modulation to that of the reflectance test target 

(cf. Section 5.1.1) tended to be insignificant, since similar spatial frequency responses 

were produced at different modulations, ranging from 0.2 to 0.7 [191] (pp. 64). 

2) The camera was positioned approximately 0.9 m from the LCD faceplate, to minimise 

the effect of structural artefacts associated with the display [33] (pp. 186), [192] (pp. 

7).  

3) The camera was set to the same settings that were used to evaluate the camera MTF (cf. 

Section 5.1.1). The displayed edge was captured four times by the camera with its 

optical axis orthogonal to the LCD faceplate.    

4) The captured images were downloaded to a computer as 8-bit TIFF uncompressed 

images and the ImCheck software [190] was implemented to calculate the combined 

grey scale MTF. The calculation was conducted using a high aspect ratio of the 

rectangular region-of-interest (ROI), to increase the signal-to-noise ratio of the MTF 

estimates [191] (pp. 62).    

The equipment set-up is illustrated in Figure 5-5. 

 

 

Figure 5-5. Set-up for measuring the combined camera-LCD MTF. 

0.9 m 
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The responses of the combined system are shown up to the 30 (cycles/mm) frequency of 

the camera plane. Figure 5-6 illustrates the average frequency responses and includes the 

variation in the four measurements. The same results are also illustrated in Figure 5-7, 

this time fitted using a third degree polynomial function with a correlation coefficient, r 

(Table 5-2). 

 

 

Figure 5-6. Measured MTF curves of the combined camera-LCD, including the variation in four 
measurements. 
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Figure 5-7. Polynomial functions representing the MTF curves of the combined camera-LCD.  

 

Component Polynomial function  r 

Combined system’s horizontal edge M(ω) = 7E-05ω3 - 0.0028ω2 - 0.0131ω + 1.0109 0.9997 

Combined system’s vertical edge M(ω) = 4E-05ω3 - 0.0011ω2 - 0.0362ω + 1.0246 0.9986 

Table 5-2. Third degree polynomial functions representing the combined system MTFs, M(ω). 
The spatial frequency, ω, is measured in cycles/mm, and r represents the correlation coefficient of 

fitted functions to measured data.   
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5.1.3 Display MTF 

The LCD MTF was finally calculated by dividing the combined MTF by the camera 

MTF. For this, it was assumed that each component was linear and that the MTF for each 

successive component was independent from that of the previous component [33] (pp. 

183).    

The responses of the system are shown approximately up to its Nyquist limit, which is 

1.86 cycles per millimetre, calculated from 0.27 mm square pixel dimensions.  

Figure 5-8 illustrates the LCD MTF results in cycles/mm on the display faceplate. The 

horizontal and vertical MTFs differ but not considerably. The average response points, 

fitted by the third degree polynomial functions, are also illustrated in Figure 5-9. The 

LCD MTF results will be useful for the calculation of the objective image quality metric 

(cf. Section 8.1). 

 

 

Figure 5-8. Calculated MTF curves of the LCD, including the variation in the measurements. 
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Figure 5-9. Polynomial functions representing the MTF curves of the LCD.  

 

Third degree polynomial functions and exponential functions (often used to fit the display 

MTF [84] (pp. 25)) for the display are tabulated in Table 5-3. Both functions fit well to 

the measured data.  

 

Component Functions r 

LCD’s horizontal edge  
in third polynomial function 

M(ω) = 0.371ω3 - 0.903ω2 - 0.007ω + 0.983 0.9990 

LCD’s vertical edge 
in third polynomial function 

M(ω) = 0.269ω3 - 0.557ω2 - 0.324ω + 1.012 0.9969 

LCD’s horizontal edge  
in exponential function 

M(ω) = 1.264e-1.15ω 0.9751 

LCD’s vertical edge 
in exponential function 

M(ω) = 1.231e-1.2ω 0.9783 

Table 5-3. Third degree polynomial functions and exponential functions representing the LCD 
MTFs, M(ω). The spatial frequency, ω, is measured in cycles/mm, and r represents the correlation 

coefficient of fitted functions to measured data.   
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The LCD MTF 10% values were 1.93 cycles/mm in the horizontal direction and 1.73 

cycles/mm in the vertical direction, which is the approximately LCD Nyquist limit, 1.86 

cycles/mm. The LCD MTF 50% values were 1.14 cycles/mm in the horizontal direction 

and 0.95 cycles/mm in the vertical direction.  

 

5.1.4 MTF associated with image down-sampling 

The MTF associated with image down-sampling was investigated on three different 

image sizes, because the down-sampling affects the system MTF in the imaging chain 

[192] (pp. 8). The captured edges used for the determination of the camera MTF (cf. 

Section 5.1) further were down-sampled using bicubic interpolation at 1x, 1.5x and 2x 

decimation along both the x and y axes. After decimation the image sizes became 4064 

by 2704 pixels for 1x, 2709 by 1802 pixels for 1.5x and 2032 by 1352 pixels for 2x. The 

reason for using bicubic interpolation is that it is used for the down-sampling of images 

employed in the subjective image quality examinations (cf. Section 6.2).   

The MTF was derived using the ImCheck software [190]. The fitted third degree 

polynomial functions for the MTFs (r≈0.99) are illustrated in Figure 5-10 and Figure 5-

11. The responses of the system, i.e. camera and interpolation MTFs, are shown 

approximately up to its Nyquist limit. This result shows that the image down-sampling 

affects significantly the image MTF. However, this difference does not necessarily 

correspond to the perceived sharpness of the different images. This is because the bicubic 

interpolation is a non-linear process. The MTF theory is strictly valid in linear, isotropic 

and spatially invariant systems (cf. Section 2.2.2.5).  
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Figure 5-10. Polynomial functions representing the vertical MTFs associated with down-sampling, 
at three different image sizes. 

 

Figure 5-11. Polynomial functions representing the horizontal MTFs associated with down-
sampling, at three different image sizes. 
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5.2 Noise  

5.2.1 Camera noise  

There are two methods for quantifying camera noise, uniform field measurement and test 

target measurement, as recommended in ISO 15739: 2003 [126] (pp. 5-8). The test target 

noise measurement was employed for the Canon EOS-1Ds digital camera noise 

measurement.   

The camera can be set to ISO speed settings ranging from 100 to 1250 at 1/3 stop 

increments [153] (pp. 49). In addition, the camera can reduce image noise using a noise 

reduction function (cf. Table 3-1) [153] (pp. 129). In this study, the camera was set to an 

ISO speed of 100 in conjunction with noise reduction processing in the camera firmware. 

This setting was also employed for capturing the natural scenes used in the image quality 

assessment later (cf. Section 6.1). 

The camera lens was set to an aperture of f 11 and focused correctly, as with the 

measurement of the camera MTF (cf. Section 5.1.1). The camera was again set to sRGB 

colour mode, setting 3 (cf. Section 3.4 and 3.5).  The camera operated in self-timer mode 

to minimise distortion that could be caused by camera shake.  

The slanted edge test target, QA-62 [188], was again selected to measure the camera 

noise. The target includes uniform 20 grey steps that can be used in noise evaluation (cf. 

Figure 5-1). The uniformity of the test chart was confirmed using density measurements 

taken at different spatial positions [126] (pp. 12).  

Two gas-filled tungsten lamps produced the maximum unclipped level of illumination in 

the camera, checked by examining the image histogram. In addition, the non-uniformity 

of the illumination was confirmed to be less than ±2 % of the average illumination.  

Images were then captured ten times sequentially. ISO 15739: 2003 [126] (pp. 8) 

recommended that at least eight frames should be captured sequentially. During the 

acquisition of the images, the temperature was kept constant at around 21 degree Celsius 

at a distance of 0.2 m from the camera. 
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The captured images were downloaded and saved to a computer as 8-bit sRGB, TIFF 

uncompressed images using the software provided by Canon, via an IEEE 1394 

connection.  

The standard deviation of each image was then measured using the 100×100 pixels in the 

central area of each patch. The values were used to calculate total noise.  

 

The total noise (σtotal) was calculated by:  

                       
∑

=

=
n

j

j
n 1

2
total

1 σσ
       (5.2)

 

where σtotal is the total noise of the system, σj is the standard deviation of each 
individual exposed image j, and n is the number of exposed images. 

 

 

The noise levels usually correspond to an image signal, thus it should describe the signal-

to-noise ratio for the imaging system [127] (pp. 420-421).  

The signal-to-noise ratio was calculated by: 

�� = �ÔÕÖ×�.�××¤ØÙÚµÛµØÜ~Ý Þ~¤Ø4ÖßÖÕà                                
(5.3)

 

 
where Lsat is the luminance which gives the maximum unclipped output from the 
camera, e.g. for an eight bit system, this is 255. 0.18 is the 18% reflectance of the 
target of density of 0.9 with respect to a maximum level of 140%. Incremental gain 
is the first derivative of the OECF, which is the change of between the output and 
the input. 

 

Figure 5-15 illustrates the signal-to-noise ratio of the camera, 47:1. The camera total 

noise value was 1.19. The camera noise characterisation was satisfactory, when compared 

with previous researches [193] (pp. 88-89), [194] (pp. 24). This result enabled a high-

performance camera to be used for the LCD noise characterisation (cf. Section 5.2.2).  
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5.2.2 Display noise 

The noise of the LCD was measured with the aid of the digital camera (cf. Table 3-1), as 

recommended by Roehrig et al [195, 196]. A suitable camera is essential for this method. 

Roehrig et al [196] (pp. 2) have noted that the available cameras for this method are 

characterised by low noise. 

First, the camera was set to the same settings as those used to quantify the noise of the 

camera system (cf. Section 5.2.1). A digitally constructed QA-62 target was displayed on 

the LCD in a relatively small central area (cf. Section 4.4). Images were then captured ten 

times sequentially. The captured images were then downloaded and saved to a computer 

as uncompressed sRGB, TIFF files. The 100×100 pixels from the central area of the 

white patch were selected and saved them as separate uncompressed sRGB, TIFF files.      

Second, the LCD structure removal was applied. This is because the captured images 

introduce the transmission differences of light through the liquid crystal cells. Figure 5-12 

presents the transmission differences of light.   

 

      

 

 
Figure 5-12. Transmission differences of light through the LCD, captured by the camera. 

2D surface plot 3D surface plot 



Kyung Hoon Oh, 2014                                          Chapter 5. Modulation transfer and noise characterisation 

107 

The display pixel structure leads to several large spikes in the power spectrum of the 

captured image. Figure 5-13 presents the one-dimensional power spectrum in Fourier 

space.  

 

 

Figure 5-13. One-dimensional power spectrum in Fourier space.  

 

This LCD structure removal was achieved by a flat fielding technique (Figure 5-14) [195] 

(pp. 167). According to Roehrig et al [196] (pp. 4), “the flat field for the structure 

removal is generated by precise super-positioning of CCD camera images of an LCD 

displaying a uniform field, taken at different spatial positions. Super-imposing many 

images precisely registered with respect to the pixel structure positioning provides a 

picture of the pixel structure only while the spatial noise has been averaged out – this is 

the desired flat field.” 
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Figure 5-14. Example of flat fielding technique. Removal of the pixel structure from left image 
using flat field image results in an image with spatial noise only and no structure   

 (adapted from Roehrig [195] (pp. 167)). 
 

After the removal of the LCD structure, the mean and standard deviation of the captured 

display image were measured. Ultimately this analysis led to the derivation of the LCD 

signal-to-noise ratio [196] (pp. 3).  

SNR LCD = µLCD / σLCD       (5.4) 

where µLCD is the sample mean of the LCD, and σLCD is the sample standard 
deviation of the LCD. 

 
Figure 5-15 illustrates the signal-to-noise ratio of the LCD, 45:1. The LCD noise value 

was 2.13. The LCD noise result will be used in the calculation of the objective IQM (cf. 

Section 8.1).  

 
Figure 5-15. Signal-to-noise ratios of the camera and the LCD.  
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5.2.3 Noise power spectrum (NPS) associated with the addition of 

Gaussian noise   

The NPS associated with adding Gaussian noise was investigated on three different 

standard deviations (σ). Gaussian noise was used to distort images employed in the image 

quality assessments later on (cf. Section 6.2 and 8.1). 

First, uniformly exposed images of a Kodak R-27 18% grey card were acquired. The 

camera was set to the same settings used to evaluate the camera noise (cf. Section 5.2.1). 

Gaussian noise filters were then applied to the originals, using three different standard 

deviations (σ): 0.0, 0.1 and 0.2 (cf. Section 6.2). This created images with three different 

levels of noise.  

Second, average pixel values of the pixel traces of 256 by 10 pixels that simulated a long 

thin slit were measured, and then the fluctuations were calculated by subtracting the mean 

value from each value of the pixel trace. The squared modulus of the Fourier transform of 

the fluctuations of each trace was then calculated. The measured NPS, N(u,v), was finally 

obtained by taking the ensemble average (cf. Section 2.2.2.6).   

Third, the true NPS, N’(u,v), was calculated from the measured NPS, N(u,v), and the 

squared transfer function of the scanning system, T(u,v). The latter was produced using a 

1 by 10 pixels simulated scanning aperture by a sinc function.  

N’(u,v)=|T (u,v)|2 N(u,v)          (5.5) 
T(u,v)=sinc(au)sinc(lv)           (5.6) 

where a is the scanning with, l is the scanning length and (u,v) is the spatial 
frequency at two-direction.  

According to Jenkin [113] (pp. 440), “the noise field (i.e. a two-dimensional image 

containing noise alone) is scanned and sampled using a long thin slit to produce a one-

dimensional trace for analysis.”  

 



Kyung Hoon Oh, 2014                                          Chapter 5. Modulation transfer and noise characterisation 

110 

The NPS results are illustrated in Figure 5-16. The low spatial frequencies of interest for 

the NPS are compared (up to ≈ 0.15 pixel-1). They are due to the same image structure at 

high magnification when capturing the uniform test target. As expected, the area under 

the NPS increases with increasing standard deviation (σ). This is clearly presented in 

Figure 5-17, where NPS is plotted using the common logarithm units. The NPS obtained 

from these measurements were used in the calculation of the objective IQM (cf. Section 

8.1). 

 

 

Figure 5-16. Comparison NPS with adding Gaussian noise for three different standard deviations.  
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Figure 5-17. Comparison the common logarithm of NPS with adding Gaussian noise for three 
different standard deviations.  
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5.3 Summary 

In this chapter, MTF and noise measurements were studied in the two imaging systems: a 

Canon EOS-1Ds camera and an Eizo CG210 LCD.  

The camera MTF and noise were successfully quantified, and the results enabled the 

LCD MTF and noise quantification.    

The following summary lists the main findings of the LCD MTF and noise characteristics. 

1. The LCD MTF 50% values were 1.14 mm-1 in the horizontal direction and 0.95 mm-1 

in the vertical direction. 

2. The LCD MTF 10% values were 1.93 mm-1 in the horizontal direction and 1.73 mm-1 

in the vertical direction, which is the approximately LCD Nyquist limit, 1.86 mm-1.  

3. The LCD noise value was 2.13, and the signal-to-noise ratio was 45: 1.  

Further work could be carried out to investigate LCD MTF and noise measurements. It 

could ensure that the assumptions, made in quantifying the LCD MTF and noise, are 

appropriate.   

The image down-sampling affects were significant. More serious investigations of MTF 

associated with image down-sampling are required for the MTF methods, since the MTF 

is strictly valid only in linear systems. As expected, the NPS in relation to Gaussian noise 

showed that as the level of standard deviation increased the area under the NPS increased. 

These results enable further research into the objective (physical) scaling, which is the 

application of IQMs based on the MTF with noise metric to the image chain (cf. Chapter 

8).  

 



Kyung Hoon Oh, 2014    Chapter 6. Subjective image quality evaluation 

113 

Chapter 6  

Subjective image quality evaluation  

This chapter presents a psychophysical scaling experiment and the derivation of 

subjective image quality scales. The aim of the work presented was to investigate the 

effect of scene content on the perceived image quality, specifically on the perceived 

sharpness and noisiness.  

 

6.1 Image acquisition and selection  

Images of natural scenes were acquired 1) by image capture, using a digital camera (cf. 

Table 3-1), and 2) from two Master Kodak Photo CDs [164]. These images covered a 

range of scene contents and a variety of image characteristics. The scenes represented a 

variety of subjects, such as portraits, natural scenes and buildings with plain and busy 

backgrounds. They were chosen to include various global and local illuminations, 

numerous colours, varying number and strength of lines, edges and spatial distribution of 

the subjects (cf. Section 2.2.1.1). The selected test scenes are illustrated in in Figure 6-1. 
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Figure 6-1. Thirty-two scenes used in the subjective quality scaling. 
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Sixteen natural scenes were captured using the Canon EOS-1Ds full frame digital SLR 

camera, equipped with a Canon EF 28-135mm f 3.5-5.6 IS USM zoom lens (cf. Table 3-

1). The ISO speed 100 setting (cf. Section 5.1) with varying apertures of f 5.6-36 was 

used to capture all scenes (cf. Table 8-1). Camera exposure was determined by taking 

multiple reflection readings from various parts of the scene. This was achieved with the 

through-the-lens centre-weighting and spot metering modes of the camera1. The camera 

was set to auto colour balance mode and sRGB colour mode (cf. Section 3.4 and 3.5). 

The lens was focused manually. Scenes were recorded at about 11 megapixels (4064 by 

2704 pixels). They were saved as 12-bit RAW files. They were then downloaded to a 

computer as 8-bit TIFF uncompressed images using the software provided by Canon, via 

an IEEE 1394 connection.  

In addition, sixteen natural scenes were selected from two Master Kodak Photo CDs. The 

Master Kodak Photo CD images were opened at a resolution of 512 by 786 and at a 

colour resolution of 8 bits per channel in RGB colour space. After inspection to ensure 

that the colour reproduction was satisfactory, they were saved to sRGB colour space. The 

reason for using Master Kodak Photo CD images was to cover a various range of scene 

contents and characteristics that photographers, artists and consumers may wish record 

and reproduce faithfully. In addition, some of images were used a previous image quality 

study [10]. However, these images had limited information on the imaging system’s 

characteristics, i.e. sharpness, noise and colour reproduction characteristics were not 

quantified in the laboratory.  

All thirty-two images were then down-sampled to 317 by 476 pixels using bicubic 

interpolation and saved as uncompressed sRGB, TIFF files of approximately 440 Kb.  

The bicubic interpolation method is reported to be the best technique for maintaining 

image quality [198] (pp. 461), [199] (pp. 250). 

 

 

                                                           
1 The centre-weighting measurement is adequate for average situations, and the spot metering is for precise 
measurement of the luminance of small areas of a large subject [197] (pp. 324). 
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6.2 Test stimuli 

The thirty-two original images were manipulated by varying two physical parameters in 

MATLAB software [136] (Gaussian blurring and Gaussian noise) to obtain a large 

number of test stimuli with different levels of blur and noise.   

Prior to deciding the ranges and levels of distortion, pilot studies were conducted on the 

calibrated 21 inch EIZO CG210 LCD. The method of adjustment [200] (pp. 129-130) was 

employed for this purpose, because it is the most straightforward method for determining 

observer thresholds for a given stimulus. In this technique, the experimenter had control 

over the magnitude of the stimulus itself across several trials [201] (pp. 59-60). The 

average adjustment across several trials was calculated as a 25:75 proportion of responses 

[45] (pp. 2), [200] (pp. 129). Each chosen distortion level corresponded to approximately 

one empirical JND when the images were viewed on the display used for further 

experimentation.  

The following techniques were chosen for the manipulation of the original stimuli: 

• Blurring: Firstly, Gaussian blurring was applied to the 32 originals. The standard 

deviation (σ) of the Gaussian low-pass kernel ranged from 0.01 to 1.24 at 0.3075 

intervals. This created a total of 160 test images, i.e. 32 originals × 5 different 

levels of Gaussian blur.  

• Noise: After blurring, the images were further distorted by adding Gaussian noise, 

using three different standard deviations (σ): 0.0, 0.1 and 0.2. This function created 

three different levels of uniform noise per blurring level. A total of 480 test stimuli 

were finally created, i.e. 32 originals × 5 different levels of Gaussian blur × 3 

different levels of Gaussian noise.  

The manipulation order is based on the fact that an application in the blurring after noise 

addition would suppress the visual response to noise. The blurring is a smoothing 

operation as a noise reduction.  
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6.3 Display, interface and viewing conditions  

Psychophysical tests were carried out under dark viewing conditions to avoid display 

flare in the laboratory. ISO 3664: 2000 [51] (pp. 13) suggests that the level of ambient 

illumination should be less than or equal to 32 lx, when the monitor is switched off.  

All the images were displayed on an EIZO CG210 LCD, controlled by a S3 Graphics 

Prosavage DDR graphic card in a personal computer running Windows XP professional. 

The graphic card was configured to display 24-bit colour, at a resolution of 1600 by 1200 

pixels and a frequency of 60 HZ (cf. Table 4-1).    

The display was switched on for fifteen minutes before the tests to allow stabilisation (cf. 

Section 4.3). The display interface that was generated in MATLAB, presented the images 

in the centre of the display area to minimise non-uniformity display effects (cf. Section 

4.4). The test image was placed at a viewing distance of approximately 60 cm from the 

observers and subtended a visual angle of roughly 10° (cf. Section 4.5). The Eye-One Pro 

monitor calibrator was used to calibrate the display at a white point close to D65 (6500 

K), a gamma of 2.2 and a white point luminance of 100 cd/m2 – the default settings for 

contrast and luminance for this monitor (cf. Section 4.6 and 4.7). 

The images were displayed at 100% pixel resolution (317 by 476 pixels). Each image 

occupied approximately 1/3 of the otherwise neutral grey display area. Figure 6-2 

illustrates the graphic user interface (GUI) for the test. Prior to the investigations, the 

GUI manual was given to the observers to familiarise themselves with the software. 
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Figure 6-2. Graphic user interface (GUI) used in the categorical scaling.  

 

Psychophysical tests were carried out in a quiet and comfortable laboratory space. The 

temperature of the viewing space was kept constant at around 20 degree Celsius. A 

wireless mouse was provided for easy selection of one of 5 quality categories, where 1 

represented the worst quality and 5 the best quality. Simple number categories [203] (pp. 

123) were used here, as they make the meaning of the scaling easy to understand with 

minimum observer effort, e.g. no-translation or definition of terms was given. As 

suggested in reference [11] (pp. 37-38), adequate personal space and a comfortable chair 

were also provided. Figure 6-3 shows a side view of the laboratory set-up and a front 

view from the observer’s eye position.  
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Figure 6-3. Viewing room set-up at a side view (left) and a front view (right). 

 

6.4 Observations 

Subjective assessments were performed by a panel of fourteen selected observers, seven 

males and seven females. They were all familiar with the meaning and assessment of 

image quality. The age of observers ranged from 21 to 52 years old. All observers were 

previously tested and reported as those having normal colour vision and holding normal 

or corrected-to-normal visual acutance.  

Each observer participated in the categorical scaling experiment 6 times, each time 

evaluating a different set of images. Each observation period was around 45 minutes. ISO 

20462-1: 2005 [45] (pp. 7) suggests that the maximum observation period should be no 

more than 60 minutes to avoid tiredness or lack of concentration.  

Before the test, observers were allowed several minutes to adapt to the dark viewing 

conditions of the laboratory, since the process of dark adaptation has a considerable 

impact on the perceived images [109] (pp. 94), [202] (pp. 367).  
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Images were displayed one at a time, in a random order. Observers were asked to place 

each test image according to its perceived image quality in one of 5 quality categories. 

They were provided with the following written instructions:  

I would like to thank you for participating in this study. Please make yourself 

comfortable on the chair in front of the display. Please use the following the 

viewing conditions consistently, i.e. a viewing distance of approximately 60 cm 

from the faceplate, and subtended a visual angle of roughly 10°.   

In this experiment, you will be evaluating the overall quality of a series of images 

using a psychophysical technique called the categorical method. Please remember 

that there are no right, or wrong answers because we are asking you about your 

perception of the quality of the images.   

Here is how to evaluate the test images: 

A single image will be presented at a time on the monitor. For each image, we ask 

you to score its perceived image quality. You can express your opinion from 1 to 5 

(a score of 1 indicates the lowest image quality, and of 5 the highest image quality).  

Once you express your view on a given test image, you are able to evaluate a new 

test image. When you are ready to evaluate a new image, you can click the “next” 

button, so that a new image is randomly accessed. When all images have been 

evaluated, a dialogue box will appear to inform you. Please let the experiment 

organiser know when you have finished going through the images.  

The total observation period will be around 45 minutes. 

Note. If you feel you made an incorrect response and would like to re-evaluate the 

image you are currently evaluating, press the “Reset” key in the pop-up menu. This 

will restart the evaluation sequence for the current image you are evaluating and 

record your new answer.  

If you feel you want to re-evaluate a previous image that is not currently on the screen, 

press the “Re-run” key in the pop-up menu. This will allows you to re-commence the 

quality scaling test. In this case, previous recorded rating is ignored and the test starts 

from scratch.    
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6.5 Analysis of results   

The indirect interval category scaling method [203] (pp. 123) was employed to give 

meaningful interval scales.  

 

6.5.1 Scaling overall image quality 

Interval scales were derived using the simplest condition D of Torgerson’s Law of 

Categorical Judgement, which makes minimum assumptions regarding the category and 

sample variance: correlation coefficients and dispersions of both the sample and the 

category were constant. Category boundaries and sample values were obtained. This 

assumption means that all the elements under the square root sign in equation (6.1) are 

constant and equal to one. 

áâ − ã½ = X½â�¦"½ + ¦"â − 2ä½â¦½¦â                 (6.1) 
 F = 1,2, ⋯ 0 + 1; ¼ = 1,2, ⋯ * 

Where tg is the boundary value between categories, sj is the scale value for each 
sample, X½â  is the unit normal deviate corresponding to the proportion, ¦â  is the 

standard deviation of the category boundary, ¦½  is the standard deviation of the 

sample scale value, äjg is the correlation between sample scale value and category 
boundary, g is the category, j is the sample, m+1 is the number of categories and n is 
the number of samples. 

In the condition D:�¦"æ + ¦"Þ − 2äæÞ¦æ¦Þ = 1, the equation (6.1) changes to tÞ − Sæ = zæÞ  (6.2) 
 

The least square technique was applied to prevent inaccurate scale values derived from 

zero and one elements in the proportion matrix [204, 205]. The key to the technique is to 

recognise that there is an incomplete set of equations that relate the scale value difference 

to the transformed values, or z-values, determined from the proportions, i.e. a linear 

relationship existed between the two unknowns (the boundary value between categories 

and the scale value for each sample) and the one known (the unit normal deviate 
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corresponding to the proportion). In addition, the last row in the matrix forces the sum of 

the scale values to be equal to zero. More details of the least square technique can be 

found in reference [203] (pp. 133-134). 

The goodness-of-fit was examined using the chi-square (χ2) test [203] (pp. 136-138). The 

chi-square value indicates that the condition D with the least square technique fits the 

subjective data well.    

Figure 6-4 presents the interval scales for overall image quality. The solid lines represent 

subjective results from the combined (average of) thirty-two scenes; the grey square is the 

average from all scenes for each level of distortion. Each label on the x-axis represents a 

specific level of distortion - in blurring (B) and noise (N).  

The results show that the modifications in the two attributes overall decreased image 

quality. This is not surprising, since the modifications in blur and noise generally degrade 

image quality [38] (pp. 26-28), [55] (pp. 180-181 and pp. 189-194). The original version 

of the images (B1N1) had an average scale value of 2.03, whilst the distorted images had 

lower scale values. This will be discussed in more detail in the individual attribute scales 

presented later (cf. Section 6.5.2).    

The results also indicate considerable scene dependency. The broken lines in Figure 6-4 

indicate the range of scale values derived from all scenes for each level of distortion.  

The results also indicate some observer variability. The error bars in Figure 6-4 indicate 

the inter-observer agreement for the overall quality, which is calculated using the 

coefficient of variation (CV) across all observers [206] (pp. 42), [207] (pp. 2-3). The 

result of the 12 for the CV calculation indicates a good inter-observer agreement for the 

overall quality. The error bars also indicate a high variation around the end categories. A 

possible reason for this phenomenon was described by Cookingham [43] (pp. 90), i.e. the 

range effect at the categorical method (cf. Section 2.2.1.1).   

   CV = 100 × Standard deviation (σ)/ Mean (µ)   (6.3) 
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Figure 6-4. Interval scales of subjective image quality (solid line) with scene (broken line) and 
observer (error bar) variability, described as Case I (blur-noise).  

 

In addition, individual observer sensitivity [208] (pp. 204) is presented in Figure 6-5. Its 

value ranged between 0.764 and 1.113. Observers 4, 6 and 9 were found to have 

relatively lower sensitivity, while the others have average sensitivity (similar to 1.00).  
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Figure 6-5. Individual observer sensitivity.  

 

6.5.2 Scaling of individual attributes 

The collected overall scale values were rearranged using permutation [209] (pp. 973) 

with an aim to derive individual attribute scales. Since overall scales represent perceived 

image quality that results from variations in two different image attributes (i.e. in blurring 

level and noise level), the attribute variations were first arranged as listed in Step1 of 

Table 6-1. 

Permutation means the arrangement of item. The number of permutations is taken to be 
nPr, where n is a different item taken r at a position, e.g. the number of permutations of 

two stimuli taken two at a position is two, 2P2 =2!= 2.   

The total number of permutations is produced by the product of the total number of 

distorted images and the number of attribute permutations:  

960 total permutations = 480 test images x 2 attribute permutations  (6.4) 
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The full implementation of the method is illustrated in Table 6-1. In addition, examples 

of the implementation, i.e. representative subjective results from the combined (average 

of) thirty-two scenes, are shown in Table 6-2 and Table 6-3.  

The scale values of the individual image attributes were examined across the average 

(calculated by the mean) scale values of the other attributes in process of Step 1 to Step 2. 

The first listed attribute in Step 1, in Table 6-1, is the targeting attribute in the 

permutation. Case I and Case II use the same data, but they are presented differently 

according to the targeting attribute. 

 

Step 1: Arrangement Step 2: Average of last column in Step 1 

Case Arrangement Case Arrangement 

I. 5 blur 3 noise I. 5 blur 

II.  3 noise 5 blur II.  3 noise 

Table 6-1. Individual attribute scaling. Case I and Case II use same data, but they are presented 
differently according to the targeting attribute.   

 Step 1 Step 2 

 Attributes Scale value Attributes Scale value 

I 

Blur1Noise1 2.03 

Blur 1 0.87 Blur1Noise2 0.60 

Blur1Noise3 -0.02 

Blur2Noise1 2.01 

Blur 2 0.86 Blur2Noise2 0.63 

Blur2Noise3 -0.05 

Blur3Noise1 1.19 

Blur 3 0.18 Blur3Noise2 -0.10 

Blur3Noise3 -0.54 

Blur4Noise1 -0.32 

Blur 4 -0.76 Blur4Noise2 -0.84 

Blur4Noise3 -1.12 

Blur5Noise1 -0.90 

Blur 5 -1.18 Blur5Noise2 -1.17 

Blur5Noise3 -1.47 

Table 6-2. Example of individual attribute scaling for the combined (average of) thirty-two scenes, 
Case I.  
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  Step 1 Step 2 

  Attributes Scale value Attributes Scale value 

II 

Noise1Blur1 2.03  

Noise 1 0.80 

Noise1Blur2 2.01  

Noise1Blur3 1.19  

Noise1Blur4 -0.32  

Noise1Blur5 -0.90  

Noise2Blur1 0.60  

Noise 2 -0.18 

Noise2Blur2 0.63  

Noise2Blur3 -0.10  

Noise2Blur4 -0.84  

Noise2Blur5 -1.17  

Noise3 Blur1 -0.02  

Noise 3 -0.64 

Noise3Blur2 -0.05  

Noise3Blur3 -0.54  

Noise3Blur4 -1.12  

Noise3Blur5 -1.47  

Table 6-3. Example of individual attribute scaling for the combined (average of) thirty-two scenes, 
Case II. 

 

Overall quality scales, Case I and II from Step 1 in Table 6-1, are shown in Figure 6-4 

(blur targeting attribute) and Figure 6-6 (noise targeting attribute). Each label on the x-

axis represents a specific level of distortion - in noise (N) and blurring (B) i.e. according 

to the targeting attribute (listed first in the title of the graph), then the second attribute.  

There is clearly a trade-off in image quality when varying the two attributes: high 

amounts of blur in the image significantly decreased the perception of noise and high 

noise in the image decreased the perception of blur [210] (pp. 290), i.e. the range of noise 

1-3 in blur 1 varied 2.05, while the range of noise 1-3 in blur 5 varied 1.37 (Figure 6-4 

and Step 1 in Table 6-2). The range of blur 1-5 in noise 1 varied 2.97, while the range of 

blur 1-5 in noise 3 varied 1.45 (Figure 6-6 and Step 1 in Table 6-3).  
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Figure 6-6. Interval scales of subjective image quality (solid line) with scene (broken line) and 
observer (error bar) variability, described as Case II (noise-blur).  

 
Individual attribute scales, Case I and II from Step 2 in Table 6-1, are presented in Figure 

6-7 and Figure 6-8. The solid lines represent subjective attribute scales from the 

combined (average of) thirty-two scenes; the grey square is the average from all scenes 

for each level of distortion. The broken lines indicate the range of attribute scales derived 

from all scenes for each level of distortion.  
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Figure 6-7. Scaled blur/sharpness attribute as a function of the sigma, analysed from interval 
scales of subjective image quality, Case I (blur).  

 

Figure 6-8. Scaled noise attribute, analysed from interval scales of subjective image quality, Case 
II (noise).  
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Figure 6-7 represents the blur targeting attribute from the Case I. In this figure, it is 

noticeable that the original and original + 1 empirical JND of blur versions were almost 

rated similarly. The quality is shown to decrease significantly for the next blur levels, and 

it reaches a point (at level B5) where more blur would not further reduce the quality, i.e. 

the image quality scale of blurring is an almost hyperbolic (S-shape) function (cf. Figure 

2-2).  

There was a reciprocal relationship between scene dependency and level of distortion, 

identified when considering image blurring, i.e. as the level of distortion increased the 

scene dependency decreased. This result indicates that low levels of blurring might affect 

different scenes in a different manner, but high levels of blurring tend to affect different 

scenes more equally [211] (pp. 158). 

Figure 6-8 represents the noise targeting attribute from the Case II. Case (Noise) indicates 

that 2 levels of added noise (each separated by 1 JND) decreased equally image quality, 

but the ‘toe’ of the quality scale for noise was not reached (cf. Figure 2-3 and Figure 2-4). 

Also, the scene dependency variation appears similar in all levels of distortion. The 

results suggest that a larger range of distortions for added noise should be required to 

cover the full range of image quality.  

The outcomes of these results (sharpness and noisiness) were in line with results from 

previous studies (cf. Section 2.2.1.3).  

 

6.5.3 Measuring the effect of scene content  

The effect of scene content on the perceived quality was examined by correlating the 

combined mean scale values from all scenes and the scale values of each individual scene 

[38] (pp. 28). This task was carried out for each individual attribute. In the example plot 

shown in Figure 6-9 for the scene ‘Saules’, the gradients represent the steepness of the 

lines fitting the data (one for each attribute) between the ratings for each individual scene 

and that of the combined scenes.  

The gradient will be referred to as the scene susceptibility (cf. Section 2.2.1.2). If the 

gradient of the line is one, the scene susceptibility of the individual scene to the specific 

quality attribute is the same as that of the combined scenes. Thus, it represents an 
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‘average’ scene. If the gradient is larger than one, then the scene has larger susceptibility 

than that of the combined scenes for the specific attribute. The reverse is true when the 

gradient is smaller than one.  

The constant in the linear relationship indicates whether the individual scene got a better 

rating than the combined scenes, i.e. the overall ratings for each individual scene is better 

than the overall ratings of the combined scenes (positive offset) or the opposite (negative 

offset).  

The coefficient of determination, r2, indicates the strength of the relationship between 

them. The coefficients of determination on blurring and on added noise were all close to 

1.0, confirming that this method for deriving scene susceptibility is satisfactory.  

 

 

Figure 6-9. Scene dependency on the “Saules.” 

 

Figure 6-10 and Figure 6-11 present examples of scenes having different gradients: 

“African tree” and “Baby.” 
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. 

Figure 6-10. Scene dependency on the “African tree.” 

 

Figure 6-11. Scene dependency on the “Baby.” 
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Table 6-4 presents the gradient, constant and coefficient of determination (r2), for each 

test scene and for blur/sharpness and noise attributes.  

 Blur Noise 

 Gradient Constant r2 Gradient Constant r2 

African tree 0.32 -0.02 0.945 1.96 0.00 0.993 

Baby 1.06 -0.02 0.995 1.06 -0.02 0.995 

Bike 1.21 0.30 0.984 0.72 0.29 0.994 

China town 0.95 0.04 0.995 0.97 0.04 0.984 

Exercise 1.15 -0.20 0.966 0.51 -0.21 0.989 

Formula 1.00 0.53 0.997 1.14 0.53 0.978 

Glasses 0.86 0.10 0.974 1.17 0.11 1.000 

Group 1.07 -0.38 0.980 0.66 -0.38 1.000 

Human 0.91 0.07 0.990 1.10 0.06 1.000 

Human2 0.32 0.31 0.948 1.07 -0.30 0.998 

Human3 1.24 -0.20 0.965 0.55 -0.21 0.998 

Human4 1.08 -0.43 0.991 1.11 -0.43 0.977 

Kids 1.18 0.27 0.996 1.15 0.26 1.000 

Landscape 0.86 -0.20 0.967 1.44 -0.19 1.000 

Landscape2 0.63 0.06 0.936 1.82 0.06 0.976 

Landscape3 1.05 0.07 0.987 1.31 0.07 0.999 

London Eye 0.86 -0.37 0.996 1.09 -0.38 0.989 

London Eye2 0.93 -0.42 0.999 1.28 -0.41 0.987 

Louvre 1.16 -0.35 0.998 1.03 -0.36 1.000 

National gallery 1.07 -0.13 0.996 0.96 -0.13 1.000 

Old building 1.29 0.08 0.997 0.92 0.08 1.000 

Plant1 1.15 0.79 0.985 0.34 0.79 0.841 

Plant2 0.79 0.53 0.969 0.85 0.53 0.993 

Plant3 0.87 0.22 0.992 1.13 0.21 0.997 

Plant4 0.80 -0.12 0.994 1.12 -0.12 0.991 

Plant5 1.09 0.08 0.998 0.99 0.08 0.988 

Plant6 0.97 0.13 0.997 1.04 0.13 1.000 

St. Pauls 1.40 0.03 0.991 0.50 0.02 0.999 

St. Pauls2 1.10 0.03 0.996 0.87 0.03 0.999 

Saules 1.43 0.01 0.964 0.19 0.00 0.861 

Sungsil 1.24 -0.31 0.981 0.83 -0.31 0.990 

Yellow flower 0.91 0.23 0.996 1.14 0.22 0.989 

Table 6-4. The gradient, constant, and coefficient of determination for thirty-two scenes at 
blur/sharpness and noise attributes. 
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Regarding blurring: the scenes “Human2”, “African tree” and “Landscape2” were found 

to have the lowest gradient values, indicating the very low susceptibility to blurring.  On 

the other hand, “Saules” has the highest gradient value, indicating the highest 

susceptibility to blurring. Figure 6-12 shows the thirty-two scenes ranked from lowest to 

highest, the scene susceptibility with respect to blur/ sharpness.  

 

Figure 6-12. Scene ordered according to scene susceptibility parameter on blur/ sharpness. 

 

Regarding noisiness: an extreme result was produced by the “Saules” scene (cf. Figure 6-

9), having an extremely low gradient of 0.19. This is the busiest scene in the set [10] (pp. 

266-267). The noise was largely masked by the high-frequency information in this scene 

and thus very low susceptibility to added noise (cf. Section 7.1). Figure 6-13 shows the 

thirty-two scenes ranked from lowest to highest scales, according to the scene 

susceptibility parameter on noisiness.  
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Figure 6-13. Scene ordered according to scene susceptibility parameter on noisiness. 

 

In Figure 6-12 and Figure 6-13, the scenes are almost ranked in reverse, which indicates 

that scenes with high susceptibility to sharpness have low susceptibility to noisiness, and 

the reverse. This will be discussed in more detail later, in the section that discusses 

correlation between scene susceptibility parameters and scene descriptors (cf. Section 

7.2). 
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6.6 Summary   

A large-scale categorical judgement experiment was conducted. In all fourteen observers 

performed a total of 6720 observations. Psychometric scaling was used to create interval 

scales indicating the overall quality of images subjected to variations in blur and noise.  

From the overall image quality assessments, individual sharpness and noisiness attribute 

scales were derived. The following summary lists the main findings of subjective image 

quality evaluation.   

1. The level of distortion that was introduced by blurring covered the entire image 

quality scale. However, the level of added noise was too small for investigating the 

consequences of these variations on the full range of image quality.  

2. Blurring decreased significantly the perception of noise, while added noise decreased 

the perceived blurring.   

3. The perceived image quality depends on scene content.  

Further the scene content variation in individual sharpness and noisiness was quantified. 

This was achieved by correlating the combined mean scale values from all scenes and the 

scale values of each individual scene, for each attribute. The scene dependency 

parameters were successfully derived.   

The results from this chapter will enable further research into objective scene 

classification (cf. Section 7.2 and 7.3) and take forward the study of objective (physical) 

image quality scaling (cf. Chapter 8).   
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Chapter 7  

Objective scene classification with 

respect to image quality  

The aim of this chapter is to objectively classify the thirty-two original test scenes that 

were used in the psychophysical investigation in chapter 6. Objective scene classification 

will enable further study into application of physical image quality predictions.   

The classification involves: 1) feature generation: investigation of various scene 

descriptors derived to describe properties that influence image quality (or individual 

attribute quality), 2) feature selection: investigation of the degree of correlation between 

scene descriptors and scene susceptibility parameters (cf. Section 6.5.3) and 3) k-means 

clustering for scene grouping.  

 

7.1 Feature generation to describe scene descriptors  

The first step towards the objective scene classification was a feature generation step (cf. 

Figure 2-22). This step aims to investigate a number of scene descriptors, derived to 

describe the original scene properties/features. 

A number of scene descriptors related to texture and spatial image properties were 

derived using second-order statistical measures and measurement from edge detection. 

This was because the observer’s preference should be affected by the spatial frequency 

properties of subjects. They describe how ‘busy’ or how ‘flat’ a scene is. These measures 
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were applied to the grey scale version of the image, which was obtained from the 8 bits 

per channel sRGB image by [136]: 

Grey scale image = 0.2989R + 0.5870G+ 0.1140B.   (7.1) 
where R, G, B correspond to the pixel value of the R, G and B channels, respectively. 

 

7.1.1 Second-order statistical measures 

Second-order statistical measurements, which relate to textural information in images, 

were calculated from the grey level co-occurrence matrix (GLCM).  

Implementation was carried out in MATLAB [136] using the default angle and distance 

values: 0° angle and 1 pixel distance. The parameters investigated in this work are listed 

below (cf. Section 2.2.2.8): 

• Contrast (or inertia): relates to the scene texture variation. Contrast is 1 for a 
“complex” imaged scene. 

• Homogeneity: relates to the scene texture variation. Homogeneity is 1 for a “uniform” 

imaged scene. Contrast (or inertia) and homogeneity are strongly, but inversely, 

correlated.   

• Correlation (or linearity): relates to the scene texture variation with linearity.  

• Energy: relates to the disorders in scene textures. The highest energy values occur 

when the grey level distribution has a constant or periodic form.  

 

Table 7-1 lists the result of second-order statistical measurements.  
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 Contrast Homogeneity Correlation Energy 

African tree 0.05 0.98 0.98 0.26 

Baby 0.15 0.93 0.95 0.17 

Bike 0.37 0.87 0.92 0.11 

China town 0.19 0.93 0.94 0.19 

Exercise 0.32 0.88 0.91 0.15 

Formula 0.22 0.94 0.95 0.16 

Glasses 0.15 0.94 0.96 0.24 

Group 0.31 0.89 0.90 0.15 

Human 0.11 0.95 0.98 0.17 

Human2 0.09 0.95 0.98 0.21 

Human3 0.35 0.88 0.95 0.11 

Human4 0.11 0.96 0.97 0.21 

Kids 0.18 0.94 0.98 0.20 

Landscape 0.05 0.97 0.96 0.31 

Landscape2 0.07 0.97 1.00 0.18 

Landscape3 0.14 0.94 0.97 0.16 

London Eye 0.16 0.94 0.95 0.33 

London Eye2 0.16 0.94 0.95 0.39 

Louvre 0.26 0.90 0.94 0.16 

National gallery 0.42 0.89 0.87 0.18 

Old building 0.23 0.92 0.95 0.27 

Plant1 0.21 0.91 0.94 0.16 

Plant2 0.07 0.97 0.96 0.34 

Plant3 0.10 0.96 0.98 0.25 

Plant4 0.13 0.94 0.96 0.30 

Plant5 0.11 0.95 0.96 0.40 

Plant6 0.11 0.95 0.97 0.24 

St. Pauls 0.57 0.82 0.94 0.09 

St. Pauls2 0.27 0.90 0.90 0.17 

Saules 0.51 0.81 0.87 0.10 

Sungsil 0.66 0.82 0.88 0.10 

Yellow flower 0.21 0.92 0.81 0.43 

Table 7-1. Scene descriptor values from the second-order statistical measurements. 
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Regarding textural information: the scenes “St. Pauls”, “Saules” and “Sungsil” were 

found to have the lowest values in Homogeneity, Correlation and Energy, indicating 

complexity of texture in the imaged scene (there are the highest values in Contrast). On 

the contrary, “African tree” and “Landscape2” have the highest value in Homogeneity, 

Correlation and Energy, indicating that the imaged scene consists of mainly uniform 

areas.  

 

7.1.2 Measurement from edge detection  

The Sobel, Prewitt and Laplacian of Gaussian (LoG) edge detection algorithms were used 

to quantify the presence and strength of edges in the grey scale image. The Sobel and 

Prewitt edge detection algorithms are representative first-order methods. The LoG 

operator is a typical second-order method. The reason for this implementation is that the 

perception of the sharpness of an image is directly related to edge profiles of the image. 

The Sobel and Prewitt edge detectors were applied using a 3 × 3 kernel size and 0.04 for 

sigma, and the LoG edge detector was applied using a 5 × 5 kernel size and 0.5 for sigma, 

which is the default value employed in MATLAB [136]. All edge detectors were 

operated with the ‘replicate’ boundary option in MATLAB [136], where the boundaries 

were assumed to be equal to the nearest border value. During the edge detection, the 

magnitude of the edge (G) was computed by [138] (pp. 577-580):  

Ä = �Ä�" + Ä'"      (7.2) 
where Gx and Gy are the horizontal and vertical edge gradients of the image, respectively. 

 

Then all edge gradients were averaged. Figure 7-1 (a) and (b) illustrate two original 

images and the corresponding threshold images after Sobel edge detection with the 

average edge gradient, related to the edges’ strength as well as the amount of edge 

information in the image. Figure 7-2 illustrates an original image and the corresponding 

images after Sobel, Prewitt and LoG edge detection. 
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Figure 7-1. Average edge gradient value with its original image (left) and the corresponding threshold 
image after Sobel edge detection (right), described in “African tree” (top) and “Kids” (bottom). 

             

  
Figure 7-2. The “Saules” image (top-left) and its edge images after Sobel (top-right), Prewitt 

(bottom-left) and Laplacian of Gaussian (bottom-right) edge detection. 

(a) Average Sobel edge gradient: 11.68 

(b) Average Sobel edge gradient: 66.19 
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Table 7-2 lists the result from edge detection.  

 Sobel Prewitt Laplacian of Gaussian (LoG) 

African tree 11.68 8.45 8.40 

Baby 58.03 42.59 27.98 

Bike 113.12 83.04 61.87 

China town 62.89 46.69 33.52 

Exercise 78.02 56.61 49.90 

Formula 66.28 49.26 34.96 

Glasses 55.27 40.84 23.39 

Group 85.00 62.74 47.01 

Human 28.72 21.01 15.62 

Human2 27.74 20.12 17.21 

Human3 89.64 66.07 48.97 

Human4 31.19 22.95 17.95 

Kids 66.19 49.13 33.37 

Landscape 22.16 16.31 14.01 

Landscape2 17.36 12.69 11.16 

Landscape3 37.88 27.36 25.92 

London Eye 47.95 35.38 30.48 

London Eye2 45.78 33.68 28.38 

Louvre 57.57 41.90 37.14 

National gallery 88.48 65.47 51.83 

Old building 54.00 39.67 31.62 

Plant1 68.10 50.31 24.57 

Plant2 24.55 18.24 8.27 

Plant3 30.18 22.44 10.19 

Plant4 41.06 30.44 17.29 

Plant5 31.43 23.38 10.49 

Plant6 36.19 26.90 11.86 

St. Pauls 111.65 80.85 75.46 

St. Pauls2 82.46 60.80 50.00 

Saules 101.69 73.25 68.69 

Sungsil 125.09 90.91 80.53 

Yellow flower 51.19 37.24 28.48 

Table 7-2. Scene descriptor values from edge detection. 
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Regarding edge information: the scenes “African tree” and “Landscape2” have low G 

values, indicating the low presence and strength of edges in the imaged scene. In contrast, 

“Bike”, “St. Pauls”, “Saules” and “Sungsil” indicate the high presence and strength of 

edges in the imaged scene.  

 

7.2 Feature selection using correlation between scene 

descriptors and scene susceptibility parameters  

The second step toward the objective scene classification was a feature selection step (cf. 

Figure 2-22). This step aims to investigate the degree of correlation between scene 

descriptors and scene susceptibility parameters, i.e. represented by the gradient values in 

Table 6-4. Scene descriptors that successfully correlated with scene susceptibility in 

sharpness and noisiness provided a means toward the objective scene classification. 

Spearman’s correlation coefficient, rs, was used to investigate the correlation between 

various scene descriptors and scene susceptibility to noisiness and to sharpness. 

Spearman’s correlation coefficient is useful when data have a ranking but no clear 

numerical interpretation, such as when assessing preferences for data on an ordinal scale 

[144] (pp. 212). It is thus an appropriate measure for the purpose. The correlation 

coefficients range between -1.0 (indicating perfect anti-correlation) and 1.0 (indicating 

perfect correlation), with 0 indicating no correlation at all [145] (pp. 80-81). 

éê = 1 − 6 ª ¥"��

�
*(*" − 1)ë                                                              (7.3) 

where d: the difference in ranks, and n: the number of items in the sample. 

 

Successful correlations were obtained between noisiness susceptibility parameters and 

second-order statistical measures, as well as measures derived from edge detection. When 

a correlation coefficient is larger than the level of significance at a 1% probability level, 
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i.e. the critical value, it indicates statistical significance. The critical value of the 

Spearman’s correlation coefficient is 0.452 for a sample size of thirty-two [144] (pp. 214).  

Successful correlations were also obtained between sharpness susceptibility parameters 

and, again, second-order statistical measures and measures derived from the edge 

detection. Table 7-3 shows the successful correlation coefficients for noisiness and 

sharpness. 

Scene descriptors 
Correlation coefficient (rs) 

for scene susceptibility to noisiness 
Correlation coefficient (rs) 

for scene susceptibility to sharpness 

Contrast (Inertia) -0.694 0.802 

Homogeneity 0.738 -0.781 

Correlation (Linearity) 0.644 -0.550 

Energy 0.577 -0.647 

Average Sobel gradient -0.701 0.786 

Average Prewitt gradient -0.701 0.786 

Average LoG gradient -0.593 0.747 

Table 7-3. Successful correlation coefficients for noisiness and sharpness. 

 

There were several interesting relationships between scene content and scene 

susceptibility to noisiness and sharpness. The results confirmed that the higher the texture 

in the scene content, the lower the susceptibility to noisiness and the higher the 

susceptibility to sharpness. For example, the correlation coefficients between the 

homogeneity and the scene susceptibility to noisiness and to sharpness were 0.738 and -

0.781 respectively. In addition, the presence of a high number of strong edges in the 

image significantly decreased the susceptibility to noisiness and increased the 

susceptibility to sharpness. For example, the correlation coefficients between the average 

Sobel metric and the scene susceptibility to noisiness and to sharpness were -0.701 and 

0.786 respectively. The results agreed with previous researches [10] (pp. 261), [16] (pp. 

663), i.e. the spatial frequency properties of subjects were important scene dependence 

parameters in the observer’s preferences and the noise was probably masked by the 

mainly high-frequency information in the scene.  
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It was also confirmed that the relationship between sharpness and noisiness is 

complimentary (cf. Figure 6-4 and Figure 6-6). 

Overall, the results indicate that there is a clear relationship between selected scene 

descriptors and scene susceptibility parameters. Thus, the scene descriptors that 

correlated with sharpness and noisiness scene susceptibility can be used to objectively 

classify scenes.  

 

7.3. Clustering for natural scenes 

Finally, k-means clustering was implemented to objectively group the thirty-two test 

scenes according to their susceptibility to both sharpness and noisiness. The k-means 

clustering allows for simple and speedy grouping of large data sets [148] (pp. 526-528). 

As mentioned before (in the section 2.2.2.8), k-means clustering consists of several steps 

[21] (pp. 406-408). The first step is to define a fixed number of clusters, k. Possible 

methods for choosing k include empirical and numerical methods. The empirical method 

is usually preferred. In relevant image quality investigations, k is chosen to be equal to 

3.0 [208] (pp. 204). Once k is chosen, then modifications of the distances between all 

points in the nth cluster (n varying from 1 to 3) and the centre of the cluster are applied 

(step 2). The main idea for their modifications is that the average distances between all 

points in each cluster and the central point are minimal. During these modifications, new 

cluster centres are allocated using Euclidean distances (step 3). The modification stops 

when the average distances from all points in the nth cluster and the new central point 

have reached the minimum (step 4). Figure 7-3 illustrates the k-means clustering process.  
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Figure 7-3. Simplified diagram of k-means clustering  
(produced by Wikipedia (viewed May 2009) [149]). 

 

The two scene descriptors that correlated most successfully with both noisiness and 

sharpness susceptibility, i.e. the homogeneity and average Sobel edge gradient 

descriptors, were used to implement the clustering. Clustering was implemented in the 

SPSS programming environment [212]. Figure 7-4 presents the three clusters, with the 

initial and final centres of each cluster. The images corresponding to each of the three 

clusters (or groups) are shown in Figure 7-5.     

1) k initial "means" 
(in this case k=3) are 
randomly selected 
from the data set 
(shown in colour). 

2) k clusters are created 
by associating every 
observation with the 
nearest mean. The 
partitions here represent 
the Voronoi diagram 
generated by the means. 

3) The centroid of 
each of the k clusters 
becomes the new 
mean. 

4) Steps 2 and 3 are 
repeated until 
convergence has 
been reached. 
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Figure 7-4. Three clusters (groups) in the scatter diagram, measured using the homogeneity and 
average Sobel edge gradient descriptors.  
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Group 2 

 
 

Group 3 

 

Figure 7-5. Images in three clusters (groups). 

 

The k-means clustering classifies images into three groups, using the selected scene 

descriptors. Each group might reflect the spatial configurations in the imaged scene, 

which are well-known "context" factors [11] (pp. 25).  

This k-means clustering involves the old rule “preferences do not occur in a vacuum, they 

are always formed relative to a context [213] (pp. 76)”, and no-requirement was needed 

of the assumption that average spatial configurations of scene elements are considered to 

generate quality scales.  



Kyung Hoon Oh, 2014      Chapter 7. Objective scene classification with respect to image quality 

148 

The validation of the objective scene classification was examined using visual inspection, 

i.e. visual observation [18, 19, 20]. The images in the same group by k-means clustering 

tend to have common visual features, e.g. the “Landscape” seems to have similar 

structural features to “Human 4”, “Landscape 3”, “Plant 2” (Group 1), while it seems to 

have different structural features to “Plant 1” (Group2) and “Saules” (Group3). On the 

other hand, the classification of images around the boarder is an arguable point, e.g. does 

“plant 4” visually belong to the scene group as “Landscape” (Group 1) or is it visually 

closer to “Baby” (Group2)?   

Overall, there was a reasonable match between inspection and objective scene 

classification. Thus, it can be concluded that the three groups of scenes were effectively 

derived using the objective scene classification by k-means clustering, i.e. scenes with: 1) 

low susceptibility to sharpness distortions and high susceptibility to noisiness, 2) average 

susceptibility to sharpness distortions and noisiness, 3) high susceptibility to sharpness 

distortions and low susceptibility to noisiness.  
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7.4. Summary  

Firstly, a number of scene descriptors were successfully derived from second-order 

statistical measurements, as well as measures derived from edge detection. They were 

concerned with the extraction of image features that affect sharpness and noisiness 

judgements.    

Secondly, the degree of correlation between scene descriptors and scene susceptibility 

parameters that were derived in section 6.5.3 was investigated, using the Spearman’s 

correlation coefficient. Successful correlations were obtained between: sharpness and 

noisiness susceptibility parameters and second-order statistical measures, as well as 

measures derived from edge detection. These correlations indicate that the selected scene 

descriptors successfully represent sharpness and noisiness susceptibility, and can be used 

to objectively and automatically classify the test scenes used in image quality 

investigations.  

Thirdly, using the selected scene descriptors and applying k-means clustering, three 

groups of scenes were effectively derived, i.e. scenes with: 1) low susceptibility to 

sharpness distortions and high susceptibility to noisiness, 2) average susceptibility to 

sharpness distortions and noisiness, 3) high susceptibility to sharpness distortions and low 

susceptibility to noisiness.  

The results from this chapter enable further research into the application of physical 

image quality predictions using the objective scene classification (cf. Section 8.3).  
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Chapter 8  

Calculation of image quality metrics 

This chapter sets out the details for objective (physical) image quality scaling. This 

scaling was carried out using two different device-dependent metrics: the Effective 

Pictorial Information Capacity (EPIC) [74] and the Perceived Information Capacity (PIC) 

[71]. The performance of the metrics was assessed using subjective results obtained in 

chapter 6, before the implementation of modifications that account for scene content. 

From the assessment, the modified metrics were considered to be an improvement over 

the original metrics. A validation experiment was then carried out to test the 

improvement in the metrics that account for scene content. 

 

8.1. EPIC and PIC implementation 

An example of a device-dependent model is the Effective Pictorial Information Capacity 

(EPIC) [214]. It is based on signal transfer theory [75] and has been relatively successful 

in predicting the quality of compressed images and images that vary in sharpness and 

noisiness [74] (pp. 7).  

EPIC values were calculated by combining two system variables: the effective pixel 

dimension in the image (n) and the number of effective distinguishable levels for each 

recording cell (dynamic range of a system) (m). These variables were cascaded from the 

input, processing, output and visual system (cf. Section 2.2.2.1).  
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For the EPIC metric calculation, first the measurement of the effective pixel dimension in 

the image (n) was carried out as follows:    

1) The effective pixel dimension (ω) was taken as the width of line spread function (LSF) 

at which the MTF falls to 50% [214] (pp. 3). The model accounted for the variations 

in sharpness of the captured test stimuli (input), the blur introduced by Gaussian blur 

filtering (processing), the sharpness of the 21 inch LCD system (output) and the CSF- 

Barten’s model- which was employed as the model for the human eye (HVS). The 

imaging chain was that employed in the psychophysical scaling of image quality (cf. 

Section 6.1 and 6.3).  

In more detail:  

Input: The MTF of the capturing system was calculated across the range of focal 

lengths and f-numbers used to capture each test image. These are presented in Table 

8-1.   

Image Focal length f-number Image Focal length f-number 

Baby 135 6.3 Exercise 112 5.6 

Group 135 11 London Eye 100 22 

London Eye2 135 20 National gallery 28 5.6 

Old building 28 8 Plant1 135 5.6 

Plant2 135 5.6 Plant3 100 5.6 

Plant4 100 36 Plant5 135 5.6 

Plant6 135 5.6 St. Pauls 28 11 

St. Pauls2 28 22 Sungsil 35 8 

Table 8-1. Lens focal lengths and f-numbers for each of the captured images.  

 

Figure 8-1 shows the fluctuation of the measured MTFs with varying focal lengths 

28-135mm and f-numbers 5.6-36, which were used to capture all the different test 

scenes.   
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Figure 8-1. Polynomial functions representing the variation of the camera MTFs for the captured 
images using different lens focal lengths and f-numbers (refer to Table 8-1). The average 

measurement appears with a red line. 

 

Since the image input systems and experimental conditions for the Kodak Photo CD 

images [74] (pp. 5) were unknown (cf. Section 6.1), the MTF of an ‘average input’ 

system was assumed. Figure 8-1 includes the MTF of an ‘average input’ system, 

based on the Canon EOS-1Ds system. There are likely to be variations between the 

assumed and the actual Photo CD image MTFs (cf. Figure 8-1). Although such 

differences in sharpness for the Kodak Photo CD images exist, including them in the 

test set was, in my view, worthwhile for assessing the image quality of scenes with 

large variations in scene content. Jenkin et al [74] (pp. 5) noted that “scenes were 

chosen purposely to contain different amounts of detail, low varying areas, various 

degrees of global and local intensities and colourfulness, a variety of dominant 

colours and strong and weak edges.” This was the aim for my project too. In addition, 

Barten [220] (pp. 158) noted that “image quality metrics are usually generic measures. 
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This means that they are independent from actual pictorial content. They do not 

contain the modulation of different spatial frequency components of an actual image, 

but only the MTF by which these modulations are multiplied. This is almost 

remarkable, but in practice, it appears that the real amplitude of these components 

does not play an important role in the judgement of image quality.” In this project, a 

various range of different scenes are captured by the input system. Based on Barten’s 

statement, we can envisage that, potentially, the MTF of input system using test 

target may not play a significant role in the MTF metrics at different scenes. This was 

the problem for my project. Nevertheless, the unspecified MTFs of the Photo CD 

images are expected to render results related to these images prone to errors.   

Processing: Captured images of edges were manipulated by varying Gaussian 

blurring in MATLAB software [136]. The standard deviation (σ) of the Gaussian 

low-pass kernel ranged from 0.01 to 1.24 at 0.3075 intervals. This was the same 

range as that implemented the test images in the psychophysical scaling of image 

quality (cf. Section 6.2). 

The error range was calculated using the statistical error [33] (pp. 134), [215] (pp. 

296). Its result produced up to ±8%.  

ã� ≈ 1
√Nì/                                                                (8.1) 

where SE is the standard error, X is the length of data in pixels and ì/ is the effective 
bandwidth of the measurement.   

 

Figure 8-2 illustrates the MTF curves at various amounts of Gaussian blur.  

The MTF of the 10x interpolation was not taken into account, as the bicubic 

interpolation is a highly non-linear process (cf. Section 5.1.4). Some researchers take 

into account the MTF of non-linear process [192] (pp. 8). In some other works it is 

being excluded [32] (pp. 58-62), [74] (pp. 6). 

Output: The MTF of the 21 inch LCD system was calculated by dividing the 

combined MTF by the camera MTF in section 5.1.3. The vertical LCD MTF, fitted 

by a third degree polynomial function, is presented in Figure 8-3.  
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Figure 8-2. Polynomial functions representing the variation of the MTFs with varying the σ using 
Gaussian blur. 

 

Figure 8-3. Polynomial function representing the vertical MTF curve of the LCD.  
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HVS: The Barten CSF was used as the eye’s MTF model, because it takes into 

account various viewing conditions and has been successfully implemented in 

metrics that predict sharpness and noisiness [1] (pp. 377) (cf. Section 2.2.2.7). The 

specific viewing conditions employed were a luminance of 100 cd/m2, a viewing 

distance of approximately 0.6 m, and a visual angle of 90° (cf. Section 6.3). Figure 8-

4 illustrates the Barten CSF calculated with respect to the LCD plane.  

 

Figure 8-4. Contrast sensitivity function (CSF) at a luminance of 100 cd/m2, a viewing distance of 
approximately 0.6 m and a visual angle of 90o on the LCD plane.  

 
Total system: The total system MTF was obtained by multiplying the individual 

system MTFs. For this, it was assumed that each component was linear and that the 

MTF for each successive component was independent from that of the previous 

component [33] (pp. 183). All measurements were considered in the LCD plane. 

Figure 8-5 shows examples of total system MTFs, using the average capture MTF 

(input), all different Gaussian blur MTFs (processing), the MTF of the LCD (output) 

and the CSF (HVS).  
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Figure 8-5. Examples of total system MTFs, obtained by multiplying the MTFs of input, output 
and HVS and the MTFs of different levels of blur (σ values). 

The LSFs for each captured scene were then calculated using the relationship between 

LSF and MTF (cf. Figure 2-17), i.e. the MTF of an imaging system is calculated as the 

normalised modulus of the Fourier transform of the LSF. An example of the 

implementation, i.e. the calculation of one LSF, is shown in Table 8-2, and the results of 

the LSFs for each image are presented in Table 8-3.  

Relative Distance 
(in pixels) 

FT-1 of MTF 
Modulus of 
FT-1 of MTF 

Normalised Modulus of 
FT-1 of MTF 

0.0000 0.1363 0.1363 1 
0.1708 0.0884 + 0.0854i 0.1229 0.858941 
0.3415 0.016 + 0.0963i 0.0976 0.592414 
0.5123 -0.0255 + 0.0713i 0.0757 0.361673 
0.6830 -0.0408 + 0.0437i 0.0598 0.193738 
0.8538 -0.0434 + 0.0233i 0.0493 0.082814 
1.0246 -0.0422 + 0.0099i 0.0433 0.020503 
1.1953 -0.0414 0.0414 0 
1.3661 -0.0422 - 0.0099i 0.0433 0.020503 
1.5368 -0.0434 - 0.0233i 0.0493 0.082814 
1.7076 -0.0408 - 0.0437i 0.0598 0.193738 
1.8784 -0.0255 - 0.0713i 0.0757 0.361673 
2.0491 0.016 - 0.0963i 0.0976 0.592414 
2.2199 0.0884 - 0.0854i 0.1229 0.858941 

Table 8-2. The calculation of LSF for “Exercise” scene.  
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Image 
Half widths of 

0.5 LSF at Blur 
1 (0.01) 

Half widths of 
0.5 LSF at Blur 

2 (0.3175) 

Half widths of 
0.5 LSF at Blur 

3 (0.625) 

Half widths of 
0.5 LSF at Blur 

4 (0.9325) 

Half widths of 
0.5 LSF at Blur 

5 (1.24) 

Baby 0.48749 0.48833 0.49078 0.49462 0.50087 

Exercise 0.47651 0.47736 0.47981 0.48365 0.48990 

Group 0.44989 0.45075 0.45319 0.45703 0.46328 

London Eye 0.48168 0.48254 0.48498 0.48882 0.49507 

London Eye2 0.47377 0.47463 0.47708 0.48091 0.48717 

National gallery 0.47677 0.47763 0.48007 0.48391 0.49016 

Old building 0.43160 0.43246 0.43491 0.43875 0.44499 

Plant1 0.52999 0.53085 0.53330 0.53714 0.54339 

Plant2 0.52999 0.53085 0.53330 0.53714 0.54339 

Plant3 0.52999 0.53085 0.53330 0.53714 0.54339 

Plant4 0.53822 0.53908 0.54153 0.54537 0.55162 

Plant5 0.52999 0.53085 0.53330 0.53714 0.54339 

Plant6 0.52999 0.53085 0.53330 0.53714 0.54339 

St. Pauls 0.42922 0.43008 0.43252 0.43636 0.44261 

St. Pauls2 0.46133 0.46218 0.46463 0.46847 0.47472 

Sungsil 0.42488 0.42574 0.42819 0.43203 0.43828 

Average 0.47178 0.47264 0.47508 0.47892 0.48517 

Table 8-3. Calculated half width of individual scene LSFs at height 0.5. 

 
2) The area of the image (Aim) was calculated as 167 × 111 mm. This was formed by the 

combination of the image pixels, 476 by 317 pixels, and the common SXGA pixel 

dimension of the LCD [216], [217] (pp. 13). This is because the EPIC is designed 

with the specific area of image condition (162 × 105 mm) [74] (pp. 5). As mentioned 

before, metrics are simpler, more efficient computationally, and sometimes are 

designed with specific application in mind, e.g. they could apply to a specific area of 

the image on display devices [218] (pp. 943).  

3) The effective pixel dimension at image area (n) was then calculated by:  

* = +,-.�      (8.2) 
where Aim is the area of the image, and / is the effective pixel dimension. 
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The number of effective distinguishable levels for each recording cell (dynamic range of 

a system) (m) was calculated by:  

0 ≈ 2�
"34 + 1     (8.3) 

where DS is the difference between the maximum and minimum possible levels of the 

recording system (256 available levels in an 8-bit system), k is a constant (2) and σ 
represents the system’s diminishing ability to distinguish independent levels, calculated 
from each individual component of the imaging chain: the noise in the test stimuli 
(processing), the measured noise of a 21 inch LCD system with the aid of the high-
performance digital camera (input-output (cf. Section 5.2.2)) and the human eye 
parameter (1).  

 

The value of σ varies with the scanning aperture (or window), thus the actual standard 

deviation of the noise was approximated by σA≈ σ/L for square recording cells via an 

implementation of the Selwyn granularity, where L is the width of the LSF. All 

measurements were performed in the display plane and the pixel-1 units. Jenkin [74] (pp. 

4) noted that “care must be taken to ensure that all measurements are performed in the 

same plane (eye or display typically) and the units and measurement aperture of the 

variance are understood in order that they may be combined properly.” 

The number of effective distinguishable levels of the system was considered to be 64. 

This number has been found to be a typical value for the intensity levels distinguishable 

on a CRT faceplate under normal display viewing conditions [33], [74] (pp. 4). This 

result is of course valid for the specific conditions. It was also empirically tested and 

found true on the 21 inch LCD. Changing the LCD luminance, angle of subtense and 

viewing conditions can change the number of effective distinguishable levels of the 

system.  

The perceived information capacity (C) was then calculated, based on the effective pixel 

dimension in the image (n) and the number of effective distinguishable levels for each 

recording cell (m).  

C=nlog2(m)      (8.4) 
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EPIC values were finally derived in bits per steradian by:   

EPIC = 89      (8.5) 
The visual solid angle (Ω) is given by: 

Ω=Aim/r2     (8.6) 
where Aim is the area of the image, and r is the viewing distance. 

 

Another example of a device-dependent model is the Perceived Information Capacity 

(PIC) [71] (pp. 8). It is based on SNR [70] (pp. 59) and is derived from the system’s 

parameters, including MTF and NPS. These variables are cascaded from the input, 

processing, output and visual system. 

For this PIC metric calculation, the measurement of the MTF and NPS was combined as 

follows:  

   PIC = k� 	
 ln 1 + �°(�)�í�(�)�î�(�)����� (�)
�(�)����� (�)�����(�) � ��

�
��I�� ��.! + k"       (8.7) 

 

The signal spectrum, S0(u), was obtained from the power spectrum of an ‘average’ scene. 

Mc(u) was the MTF of each individual capture (for each scene) multiplied by the MTF of 

the Gaussian blur that was introduced to the captured test stimuli. Md(u) was the 

measured MTF of the display system, and Meye(u) used the Barten’s CSF model. For 

image noise, N(u), was the area under the noise power spectrum of the imaging chain. 

Neye(u), the eye’s noise, the suggested parameter 1 was used. The constants k� and k" 

were set to 1 and 0, respectively. These constants were determined from a comparison 

with Barten’s parameters [69] (pp. 7). However, these constants have no physical 

meaning [220] (pp. 161).    

The approximation for the power spectrum of an ‘average’ scene was calculated 

according to the equations given by Barten [69] (pp. 5):   
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ã�(() =  ��
"k xïð���n         (8.8) 

where  

o" = ∆(ÝñÞ �)�
"

"
ò

�
ÝØ(ql�-Õó� )     (8.9) 

where I is the intensity, in this case the pixel value for a signal channel, and the value of X 
is obtained from:   

�
q� = �

q°� + �
q�� + k �

��n"        (8.10) 
where X0 is the angular size of the object, and Xe is the maximum angular size over 
which the eye is able to integrate the information (Xe=12°). Ne is the maximum of cycles 
over which the eye is able to integrate the information (Ne=15 cpd). In addition, a 
similar relationship is used to find Y.  

 

Figure 8-6 and Figure 8-7 present the average EPIC and PIC values. Each label on the x-

axis represents a specific level of distortion in blurring (B) and noise (N).  

 

Figure 8-6. EPIC values for all levels of distortion in blurring (B) and noise (N). 
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Figure 8-7. Normalised PIC values for all levels of distortion in blurring (B) and noise (N). 

 
Figure 8-8 presents the comparison between EPIC and PIC. Their values were normalised 

and rescaled as percentages, for comparison purposes, i.e. the EPIC unit is 

Kbytes/steradian, and the PIC unit is arbitrary.     

(a)                                                                                   (b) 

   

Figure 8-8. Comparison between normalised EPIC and normalised PIC values for all levels of 
distortion in blurring (B) and noise (N); (a) targeting attribute-blur (b) targeting attribute-noise. (a) 

and (b) use same data, but they are presented differently according to the targeting attribute. 
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The results demonstrated that the EPIC metric is more sensitive to noisiness at the same 

level of blurring than the PIC (in the Figure 8-8 (a)), while the PIC metric is more 

sensitive to sharpness at the same level of noise than EPIC (in the Figure 8-8 (b)). This 

can explain why the EPIC metric correlates relatively well with noisiness for flat scenes 

and the PIC metric correlates relatively well with sharpness for complex scenes, when the 

two metrics are compared. Jenkin et al [221] (pp. 69) demonstrated that cascading many 

MTF and NPS curves within the SQRIn calculation heavily biases the metric towards 

low-frequencies in the system. Topfer and Jacobson [71] (pp. 8) described that the SNR 

type’s metrics as correlating well with perceived image quality for complex scenes and 

noisy images. This phenomenon was found to be the case in the EPIC and PIC evaluation 

of the individual scenes described later (cf. Section 8.2). 

 

8.2. EPIC and PIC evaluation as device-dependent 
quality predictors 

A validation experiment was carried out to test the success of the EPIC and PIC metrics 

in predicting perceived image quality, using results from subjective tests involving thirty-

two test scenes, replicated with various degrees of sharpness and noisiness (cf. Chapter 6).  

The Pearson’s correlation coefficient (r) was used to investigate the degree of correlation 

between objective and subjective scales. A degree of correlation larger than a level of 

significance at 1% probability level indicates that the degree of correlation between the 

two variables is statically significant. The degree of correlation should exceed 0. 570 for 

a sample size of thirty-two. However, this critical degree may be no practical, due to the 

large sample size [144] (pp. 219). Therefore, the coefficient of determination (r2) was also 

calculated as the third way of measuring statistical significance [222] (pp. 196). The 

reason for using the coefficient of determination is that r2 is often used in image quality 

metric validation. 

 



Kyung Hoon Oh, 2014   Chapter 8. Calculation of the image quality metrics 

163 

Figure 8-9 and Figure 8-10 show the r and r2 coefficients for the thirty-two test scenes. 

Table 8-4 and Table 8-5 list the detailed results. Relatively successful correlations were 

obtained, i.e. the average of 32 coefficients is r  =0.865 (r2=0.748) in EPIC and r  =0.870 

(r2=0.757) in PIC. The result confirmed that the metrics were reliable predictors of image 

quality. Other studies have indicated similar correlations [71] (pp. 22), [74] (pp. 7).  

In general, device-dependent image quality metrics have been shown to be unequally 

successful in predicting the quality of individual scenes [10] (pp. 259), [74] (pp. 6). As 

expected, the results confirmed that the metrics could not predict the quality of different 

images with varying scene content consistently, i.e. the metrics performed well on most 

of the scenes, but predicted less successfully the perceived quality of some individual, 

non-standard looking scenes, e.g. “African tree”.  

 

Figure 8-9. Evaluation of EPIC as an image quality prediction, r and r2 coefficients, for thirty-two 
test scenes. 
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Image r r2 Image r r2 Image r r2 Image r r2 

African tree 0.602 0.362 Baby 0.879 0.773 Bike 0.902 0.814 China town 0.931 0.867 

Exercise 0.906 0.821 Formula 0.918 0.843 Glasses 0.899 0.808 Group 0.863 0.745 

Human 0.910 0.828 Human2 0.775 0.601 Human3 0.877 0.769 Human4 0.802 0.643 

Kids 0.909 0.826 Landscape 0.869 0.755 Landscape2 0.752 0.566 Landscape3 0.863 0.745 

London Eye 0.843 0.711 
London 
Eye2 

0.824 0.679 Louvre 0.888 0.789 
National 
gallery 

0.832 0.692 

Old building 0.934 0.872 Plant1 0.933 0.870 Plant2 0.928 0.861 Plant3 0.897 0.805 

Plant4 0.855 0.731 Plant5 0.861 0.741 Plant6 0.856 0.733 St. Pauls 0.905 0.819 

St. Pauls2 0.906 0.821 Saules 0.813 0.661 Sungsil 0.885 0.783 
Yellow 
flower 

0.851 0.724 

Table 8-4. The r and r2 coefficients for thirty-two scenes, compared between EPIC and perceived 
quality. The bold letters indicate the scene dependency in EPIC metric, “African tree” and 

“Landscape2.” 

 

 

Figure 8-10. Evaluation of PIC as an image quality prediction, r and r2 coefficients, for thirty-two 
test scenes. 
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Image r r2 Image r r2 Image r r2 Image r r2 

African tree 0.519 0.269 Baby 0.891 0.794 Bike 0.944 0.891 China town 0.918 0.843 

Exercise 0.965 0.931 Formula 0.895 0.801 Glasses 0.884 0.781 Group 0.932 0.869 

Human 0.893 0.797 Human2 0.700 0.490 Human3 0.934 0.872 Human4 0.822 0.676 

Kids 0.904 0.817 Landscape 0.832 0.692 Landscape2 0.687 0.472 Landscape3 0.848 0.719 

London Eye 0.849 0.721 
London 
Eye2 

0.836 0.699 Louvre 0.906 0.821 
National 
gallery 

0.856 0.733 

Old building 0.945 0.893 Plant1 0.975 0.951 Plant2 0.891 0.794 Plant3 0.882 0.778 

Plant4 0.828 0.686 Plant5 0.881 0.776 Plant6 0.868 0.753 St. Pauls 0.961 0.924 

St. Pauls2 0.923 0.852 Saules 0.910 0.828 Sungsil 0.927 0.859 
Yellow 
flower 

0.847 0.717 

Table 8-5. The r and r2 coefficients for thirty-two scenes, compared between PIC and perceived 
quality. The bold letters indicate the scene dependency in PIC metric, “African tree,” “Human2” 

and “Landscape2.” 

 

8.3. EPIC and PIC with objective scene classification 

In order to improve the reliability of the metrics, the objective scene classification model 

[10] (pp. 269) and the integrated hyperbolic increment function (IHIF) regression [223] 

(pp. 124) were considered. Figure 8-11 illustrates a modular image quality framework to 

tackle the problem of scene dependency in the metrics. There are three modules in the 

framework.  

 

 

 

 

 

Figure 8-11. Basic stages of quality calculation within the objective scene classification and the 
IHIF regression. 
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1) Objective scene classification was firstly considered in order to tackle the problem of 

scene dependency in the metrics. Triantaphillidou et al [10] (pp. 269) proposed a 

method for scene classification, which uses objective scene descriptors that correlate 

with subjective criteria on scene susceptibility to image quality attributes. Scene 

descriptors are derived to describe inherent scene properties that human observers 

refer to when they judge the quality of images. This classification process enabled 

fully automatic classification of scenes into ‘standard’ or ‘non-standard’ groups, 

instead of being classified by inspection. The objective scene classification 

undertaken in this study is described in detail in chapter 7.  

All of the thirty-two scenes in this study were previously classified into three groups 

as follows: 1) low susceptibility to sharpness and high susceptibility to noisiness 2) 

average susceptibility to sharpness and noisiness, 3) high susceptibility to sharpness 

and low susceptibility to noisiness (cf. Figure 7-5). 

2) This scene group information was used to attempt to improve predictions, using a 

fitting operation. According to Keelan [14] (pp. 147), “one way to characterize the 

variability associated with observer sensitivity and scene susceptibility is to classify 

scenes and observers into small numbers of groups and to form subsets of 

assessments based on combinations of the groups. The data from the different subsets 

can be separately fit with integrated hyperbolic increment function (IHIF) 

regressions. ”  

The IHIF [223] (pp. 124) was employed to account for the quality changes arising for 

scene susceptibility. The reason for using the IHIF is to quantify the image quality 

automatically and to obtain reliable results that correlate well with subjective 

assessments, i.e. the metric produces immediate results without human involvement 

[210] (pp. 289).  

The IHIF value was calculated with free parameters (Table 8-6) [208] (pp. 204). The 

IHIF value ranged between 0.73 and 1.36, i.e. for the intermediately susceptible 

group (i.e. middle), the IHIF value was approximately equal to 1.0; for the least 

susceptible group (i.e. least susceptibility), the IHIF value was 0.73; for the most 

susceptible group (i.e. most susceptibility), the IHIF value was 1.36.  
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∆Q(Ω) = ö÷ø ∆Ωù� ln k1 + ∆Ωù(Ω�Ωú)ö÷ n − Ω�Ωú∆Ωù    (8.11) 
where ∆Q is quality difference,  Ω is objective metric (units variable), ΩÚ is objective 
metric at reference threshold position, ∆Ω�is asymptotic objective metric just noticeable 
difference (JND) increment and Oü is radius of curvature of quality loss function at ΩÚ 
[223] (pp. 124 and 471). 

Observer Sensitivity Scene Susceptibility ∆∆∆∆Ω∞ Ωr Ω-1 

Less Sensitivity 50% Least Susceptibility 25% 5.500 20.76 39.9 

Less Sensitivity 50% Mean 4.364 16.43 36.7 

Less Sensitivity 50% Middle 50% 4.078 17.11 37.2 

Less Sensitivity 50% Most Susceptibility 25% 3.980 11.94 34.4 

Mean Least Susceptibility 25% 5.298 18.72 36.3 

Mean Mean 3.902 15.07 35.2 

Mean Middle 50% 3.708 15.81 35.5 

Mean Most Susceptibility 25% 3.256 10.95 34.3 

More Sensitivity 50% Least Susceptibility 25% 5.088 16.62 33.7 

More Sensitivity 50% Mean 3.470 13.70 33.7 

More Sensitivity 50% Middle 50% 3.351 14.50 33.8 

More Sensitivity 50% Most Susceptibility 25% 2.654 9.81 35.9 

Table 8-6. IHIF fit parameters to predict quality change arising from an attribute, in all cases 
Rr=151.6. The quantity Ω-1 is the objective metric value Ω at which one just noticeable difference 

(JND) of quality loss occurs  
(produced by Keelan [208] (pp. 204)). 

 

The IHIF value was shown to relatively match the perceived quality loss variables for 

scene susceptibility for the three groups (Table 8-7). Thus, it was demonstrated that 

the IHIF value could be used to calibrate scenes for automatic calculation of metric 

values, i.e. Pearson’s correlation coefficients (r) were 0.999 for noisiness and 0.969 

at blur/sharpness for the three groups. The scene susceptibility of the three groups 

was also valid for the weighting values. The scene susceptibility to noisiness or 

blur/sharpness was averaged from the perceived scene susceptibility parameters (cf. 

Table 6-4) in three groups (cf. Figure 7-5). 
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Scene Susceptibility IHIF value 
Scene susceptibility to 

noisiness 
Scene susceptibility to 

blur/sharpness  

Least Susceptibility  0.73 0.72 0.81 

Middle 0.98 0.97 1.05 

Most Susceptibility  1.36 1.25 1.15 

Table 8-7. IHIF values and scene susceptibility to noisiness or blur/sharpness in three groups.  

The IHIF calibration was considered only for noise, since it is implemented for each 

attribute separately and it was shown that the relationship between noisiness and 

sharpness was complimentary (cf. Section 6.5). Therefore, a high IHIF value 

represents a high susceptibility to noisiness and low susceptibility to sharpness/blur.  

An example of the use of the IHIF value for calibrating noise in group 1 is illustrated 

in Table 8-8. The calibrated noise scale in the last column is obtained by multiplying 

the noise scale with the IHIF value. 

Varying Attribute  σσσσ values of the Gaussian 
noise kernel 

IHIF value  Calibrated σσσσ values of the Gaussian 
noise kernel in Group 1 

Noise1 0  0 

Noise2 0.1 1.36 0.136 

Noise3 0.2  0.272 

Table 8-8. Example of using IHIF for calibrating noise.  

3) The calibrated scale was then used to improve the reliability of the metrics. The 

calculation was the same as that of the EPIC and PIC metrics, as set out in section 

8.1.  

The EPIC and PIC scales were normalised and rescaled as percentages, since a scale 

with the maximum unit of 100 is easy to understand. 100 is set as the original quality, 

which means perceived absence for artefacts.  

The normalisation was applied here as a linear process. It could reflect the nature of 

the variation (other than scene content) among the test stimuli [45] (pp. 17). Osberger 

[224] (pp. 21) has noted that “care must be taken in assuming linearity when applying 

psychophysical results from tests using simple, artificial stimuli to complex, natural 

images,” since “the HVS is highly adaptive to the diverse and complex range of 

stimuli which it deals with in the natural world.” 
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Figure 8-12 and Figure 8-13 present the calibrated EPIC and PIC values for the three 

groups. Each label on the x-axis represents a specific level of distortion in blurring (B) 

and noise (N).  

 

Figure 8-12. Calibrated EPIC values in three clusters (groups).  

 

Figure 8-13. Calibrated PIC values in three clusters (groups).  
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8.4. Calibrated EPIC and PIC evaluation  

The success of the implementation was evaluated by correlating the subjective scaled 

values from section 6.5.1, and the calibrated quality scales obtained in section 8.3. The 

Pearson’s correlation coefficient (r) and the coefficient of determination (r2) were again 

used to examine the success of the correlation.  

Figure 8-14 and Figure 8-15 show the r and r2 coefficients for the thirty-two test scenes. 

Table 8-9 and Table 8-10 list the detailed results. Results from the implementation 

showed that generally the quality predictions were improved. The average of 32 

coefficients increased from 0.865 (r2=0.748) to 0.882 (r2=0.778) in EPIC and from 0.870 

(r2=0.757) to 0.886 (r2=0.785) in PIC.  

Improvements were particularly shown in scenes belonging to group 1, with low 

susceptibility to sharpness and high susceptibility to noisiness. For example, the 

coefficients at “African tree” scene increased from 0.602 (r2=0.362) to 0.740 (r2=0.548) 

in EPIC and from 0.519 (r2=0.269) to 0.618 (r2=0.382) in PIC. In the “Human 2” scene, 

the coefficients increased from 0.775 (r2=0.601) to 0.874 (r2=0.764) in EPIC and from 

0.700 (r2=0.490) to 0.782 (r2=0.612) in PIC. The coefficients at “Landscape2” scene 

increased from 0.752 (r2=0.566) to 0.838 (r2=0.702) in EPIC and from 0.687 (r2=0.472) 

to 0.763 (r2=0.582) in PIC. 
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Figure 8-14. Evaluation of calibrated EPIC as an image quality prediction, r and r2 coefficients, 

for thirty-two test scenes in three groups. 

 Image r r2 Image r r2 Image r r2 

Group 1 

African tree 0.740 0.548 Human 0.918 0.843 Human2 0.874 0.764 

Human4 0.786 0.618 Landscape 0.908 0.824 
Landscape

2 
0.838 0.702 

Landscape3 0.870 0.757 Plant2 0.926 0.857 Plant3 0.919 0.845 

Plant4 0.891 0.794 Plant5 0.851 0.724 Plant6 0.863 0.745 

Group 2 

Baby 0.879 0.773 
China 
town 

0.931 0.867 Exercise 0.906 0.821 

Formula 0.918 0.843 Glasses 0.899 0.808 Kids 0.909 0.826 

London Eye 0.843 0.711 
London 
Eye2 

0.824 0.679 Louvre 0.888 0.789 

Old building 0.934 0.872 Plant1 0.933 0.870 
Yellow 
flower 

0.851 0.724 

Group 3 

Bike 0.923 0.852 Group 0.891 0.794 Human3 0.899 0.808 
National 
gallery 

0.810 0.656 St. Pauls 0.942 0.887 St. Pauls2 0.893 0.797 

Saules 0.888 0.789 Sungsil 0.883 0.780 
  

 

Table 8-9. The r and r2 coefficients for thirty-two scenes in three groups, compared between 
calibrated EPIC and perceived quality. The bold letter indicates the scene dependency in 

calibrated EPIC metric, “African tree.” 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

A
fr

ic
a

n 
tr

ee
B

ab
y

B
ik

e
C

h
in

a
 t

ow
n

E
xe

rc
is

e
F

or
m

ul
a

G
la

ss
es

G
ro

up
H

u
m

an
H

u
m

an
2

H
u

m
an

3
H

u
m

an
4

K
id

s
L

an
ds

ca
pe

L
an

ds
ca

pe
2

L
an

ds
ca

pe
3

L
on

do
n 

E
ye

Lo
n

do
n 

E
ye

2
L

ou
vr

e
N

at
io

na
l g

al
le

ry
O

ld
 b

ui
ld

in
g

P
la

nt
1

P
la

nt
2

P
la

nt
3

P
la

nt
4

P
la

nt
5

P
la

nt
6

S
t. 

P
au

ls
S

t. 
P

au
ls

2
S

au
le

s
S

un
gs

il
Y

el
lo

w
 f

lo
w

er

C
o

ef
fic

ie
nt

s 

Scene 

r

r22



Kyung Hoon Oh, 2014   Chapter 8. Calculation of the image quality metrics 

172 

 

Figure 8-15. Evaluation of calibrated PIC as an image quality prediction, r and r2 coefficients, for 
thirty-two test scenes in three groups.  

 Image r r2 Image r r2 Image r r2 

Group 1 

African tree 0.618 0.382 Human 0.929 0.863 Human2 0.782 0.612 

Human4 0.841 0.707 Landscape 0.884 0.781 
Landscape

2 
0.763 0.582 

Landscape3 0.883 0.780 Plant2 0.927 0.859 Plant3 0.924 0.854 

Plant4 0.873 0.762 Plant5 0.898 0.806 Plant6 0.897 0.805 

Group 2 

Baby 0.891 0.794 
China 
town 

0.918 0.843 Exercise 0.965 0.931 

Formula 0.895 0.801 Glasses 0.884 0.781 Kids 0.904 0.817 

London Eye 0.849 0.721 
London 
Eye2 

0.836 0.699 Louvre 0.906 0.821 

Old building 0.945 0.893 Plant1 0.975 0.951 
Yellow 
flower 

0.847 0.717 

Group 3 

Bike 0.930 0.865 Group 0.932 0.869 Human3 0.916 0.839 
National 
gallery 

0.880 0.774 St. Pauls 0.931 0.867 St. Pauls2 0.934 0.872 

Saules 0.858 0.736 Sungsil 0.929 0.863 
  

 

Table 8-10. The r and r2 coefficients for thirty-two scenes in three groups, compared between 
calibrated PIC and perceived quality. The bold letter indicates the scene dependency in calibrated 

PIC metric, “African tree.” 
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In total, objective scene classification was considered in order to tackle the problem of 

scene dependency in the metrics. This implementation allows automatic grouping of 

scenes into ‘standard’ or ‘non-standard’ groups, so that it allows automatic calculation of 

the metric values.  

Results from the implementation showed that generally the quality predictions were 

improved. Most importantly, they were shown to correlate equally well with subjective 

quality scales for standard and non-standard scenes. 

In addition, more extensive investigations into objective scene classification, e.g. optimal 

clustering numbers (k=4 or 5), could help to provide an even better metric calibrations for 

objective image quality predictions. However, an extensive number of clusters or a 

continuous fitting of all scenes might not be required, since there may not be any 

significant advantage with regard to accurate image quality predictions, i.e. the metrics 

already performed well on most of the scenes, and it is a slight increase in correlation for 

some scenes. For example, the coefficients at “Plant1” scene had a slight increase from 

0.933 (r2=0.870) to 0.944 (r2=0.851) in EPIC, using 1.15 scene susceptibility. Using a 

large number of clusters could make the calculations time-consuming.  
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8.5. Summary  

A validation experiment was first carried out to test the success of the metrics; EPIC and 

PIC, using results from subjective tests that involving the thirty-two test scenes replicated 

with various degrees of sharpness and noisiness (cf. Chapter 6). In general, the metrics 

were found to be reliable predictors of image quality. However, as expected of device-

dependent metrics, they were less successful at predicting the perceived quality of some 

‘non-standard’ scenes which had atypical spatial and structural content. 

Objective scene classification was considered in order to tackle the problem of scene 

dependency in the metrics. The scene classification employed for the purpose used 

objective scene descriptors, which correlated with subjective criteria on scene 

susceptibility (cf. Chapter7). The implementation thus allowed the automatic grouping of 

scenes into ‘standard’ or ‘non-standard’ groups, instead of being classified by inspection. 

From this scene group information, the quality change arising for an attribute in the scene 

group was obtained using the integrated hyperbolic increment function (IHIF) regression, 

as described by Keelan. 

The classification and metric calibration performance was quite encouraging, not only 

because it improved mean image quality predictions from all scenes, but also because it 

catered for non-standard scenes, which originally produced low correlations. Also, it is 

because of the efficiency of computation. The findings indicate that the scene 

classification method has a great potential for tackling the problem of scene dependency, 

when modelling device-dependent image quality.  
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Chapter 9  

Discussion 

In this chapter, a discussion of the results from the practical work conducted during the 

investigation is presented. The evaluations of the input (camera) and the output (LCD) 

system characterisation are firstly discussed. A detailed discussion on the results from the 

subjective tests follows. Finally, this chapter presents a discussion of EPIC and PIC as 

quality predictors.  

 

9.1. Systems characterisation and calibration 

Both input and output systems were characterised for the aspects of image quality 

attributes, i.e. tone, colour, resolution, sharpness and noise. The characterisation provided 

a means for producing accurate and reproducible results for image quality investigations. 

It also determined the limitations of the devices for image quality investigations.    

 

Digital camera system 

The Canon EOS-1Ds camera system was identified as having limitations with regard to 

spatial uniformity. The top-right corner of the capturing frame was shown to be the least 

uniform. The result was greater than the perceptibility colour difference in complex 

scenes, 3.00 in ΔE* ab [160]. Therefore, the rest of the investigations were carried out 

using the central area of the image.  
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The tone and colour reproduction results demonstrated variation with respect to the 

camera colour settings in the process profiles. The results showed that a reproduced 

image’s tone and colour were affected by the camera colour settings in the process 

profiles, and the colour setting was influential in optimising colour images. An sRGB 

setting of 3 was used to optimise colour images, i.e. the smallest colour difference 

between original XYZ and calculated XYZ was achieved with the sRGB colour setting of 3.  

The colour reproduction also demonstrated that there was a lack of colour accuracy 

between scene and image. Thus, the custom profile was applied to a polynomial 

regression model, which was able to provide equivalent colour reproduction with high 

polynomial terms. However, there is a significant scientific challenge in calibrating the 

camera’s colour reproduction in relation to real-life photography. The process is 

complicated and time-consuming. Further extensive investigations are required for 

accurate colour reproduction in the real scene images.   

The camera’s MTF was measured for its ability to depict picture details. The camera’s 10% 

MTF values were 58.5 cycles/mm in the horizontal and 61.3 cycles/mm in the vertical. 

The camera may depict picture detail up to those frequencies.  

The camera’s signal-to-noise ratio was 47:1. The camera’s noise characterisation was 

satisfactory, thus this result led to the choice of a high-performance camera for the LCD 

noise characterisation.  

 

LCD  

There was a slight variation in the luminance on the Eizo CG210 LCD temporal 

characteristic. This change in luminance, however, was not perceptible to the human eye.  

The LCD did not require significant warm up time in order to reach stabilisation.  

The LCD system showed limitations with regard to spatial uniformity. The actual 

fluctuations of the 24 areas ranged from 0.73 to 4.80 in ΔE*ab and from 0.62 to 3.45 in 

ΔE00. The lower-middle LCD areas showed the most non-uniformity, 4.80 in ΔE* ab. The 

result was greater than the perceptibility colour difference in complex scenes, 3.00 in 

ΔE* ab [160].  The result showed that a reproduced image was affected by the displayed 
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spatial point. This led to the choice of the LCD’s central area for the psychophysical 

investigation of image quality. 

The LCD had a limited viewing angle. This characteristic was of considerable 

significance in this study, where a differing viewing angle significantly influences the 

assessment of subjective image quality. It was also confirmed that the vertical viewing 

angle had more impact than the horizontal. The LCD required significant careful viewing 

angle control during the image quality study. 

There was a variation in colour reproduction on the LCD. The average colour difference 

value was 1.57 in ΔE* ab and 0.52 in ΔE00.  The LCD’s reproduction of colours was 

acceptable for the psychophysical scaling.    

In the tone reproduction investigations, the optimal overall gamma in the imaging chain, 

camera-LCD, was confirmed. The optimal overall gamma was 1.32 from 2.20 and 0.60 in 

the LCD and the camera, respectively. It was identified that these settings were 

intentionally rendered by the manufacture based on the observer’s preference, i.e. the 

optimal overall gamma was generally between 1.0 and 1.5 [83] (pp. 379).  

The ability of the LCD system to depict picture detail was measured. The LCD 10% MTF 

values were 1.93 cycles/mm in the horizontal and 1.73 cycles/mm in the vertical. The 

LCD 50% MTF values were 1.14 cycles/mm in the horizontal and 0.95 cycles/mm in the 

vertical. The LCD MTF result was used in the calculation of the objective IQM. 

The noise of the LCD was measured with the aid of a high-performance digital camera. 

The signal-to-noise ratio of the LCD was 45:1. The LCD outcome was significant, when 

compared to the previous results and ranged from 31.5:1 to 63.5:1 [195] (pp. 166), [196] 

(pp. 6). The LCD noise result was used in the calculation of the objective IQM.   

 

Two points were emphasised by the characterisation of the systems. First, there was the 

effect of imaging system characteristics on the image quality, which was a crucial factor 

in the image quality. Second, imaging systems have inherent limitations in reproducing 

the original scene. This should be a tremendous challenge for imaging system 
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development, since successful systems often confine the inevitable error to those that are 

least noticeable visually [226] (pp. 436).     

 

9.2. Subjective image quality evaluation  

A novel subjective scaling method was carried out in order to derive individual attribute 

scales from the overall image quality assessments. This approach does not require scaling 

of individual attributes and does not require the assumption that the attribute is one-

dimensional, i.e. observers can see the quality attribute independently.  

In this scaling study, the image quality is considered as an overall impression, not 

individual attribute scaling. Although the individual attribute scaling is commonly used, 

it provides a limited correlation with actual perceived image quality, and therefore it is 

logical to consider image quality as an overall. Engeldrum [11] (pp. 22-23) has noted that 

it is necessary to avoid pitfall of individual scaling and to take much care of quality 

studies. 

Furthermore, the results showed that the five-ranges of distortion introduced by blurring 

covered the entire image quality scale. However, the three-levels of added Gaussian noise 

were too small for investigating the consequences in the full range of image quality.  

There was interesting a trade-off between noise and blur. High amounts of blurring in the 

image significantly decreased the perception of noise, and high noise in the image 

decreased the perceived blur.  

 

Relationship between scene dependency parameters and scene descriptors  

This work was carried out to investigate the degree of correlation between scene 

descriptors and scene dependency parameters. A number of scene descriptors were 

derived from second-order statistical measures and measurement from edge detection.  

The outcomes showed that there was a successful correlation between the sharpness and 

noisiness susceptibility parameters and the spatial frequency properties of subjects, i.e. 
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second-order statistical measures, as well as measures derived from edge detection. The 

higher the frequency in the scene content, the lower the susceptibility to noisiness and the 

higher the susceptibility to sharpness. The result was in line with results from previous 

studies [10] (pp. 261), [16] (pp. 663).  

 

Three points were emphasised by the subjective image quality evaluation. First, the 

perceived subjective quality is dependent upon the pictorial content of the test images. 

Second, the spatial frequency properties of subjects are pivotal scene dependence 

parameters in the observer’s preferences. Third, there is a correlation between the spatial 

frequency properties of subjects and the observer’s scene susceptibility to sharpness and 

noisiness.  

 

9.3. Objective image quality evaluation 

Imaging system characterisation and subjective image quality evaluation have repeatedly 

shown that the perceived quality is dependent both upon the device and scene 

characteristics.   

Subjective overall image quality was predicted using two device-dependent IQMs, EPIC 

[74] and PIC [71]. The metrics were found to be reliable predictors of image quality. 

However, they were not equally successful in predicting the quality of different images 

with varying scene content. This was in line with findings from previous researches [71] 

(pp. 22), [74] (pp. 7). Device-dependent image quality metrics tend to perform well on 

standard looking scenes, but perform less well on some of non-standard looking scenes 

with atypical spatial and structural content: for example, scenes of very low busyness 

with many flat areas [10] (pp. 261). The problem of scene dependency when employing 

device-dependent image quality metrics was confirmed. 

Improvements to the performance of the metrics were then considered using objective 

scene classification. The objective scene classification employed for the purpose utilised 

objective scene descriptors, which correlated with subjective criteria on scene 
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susceptibility. This process enabled fully automatic classification of scenes into ‘standard’ 

or ‘non-standard’ groups, instead of being classified by inspection. This objective scene 

classification was highlighted as one of the key areas in this work.    

A validation experiment was then carried out to test the improvement in the metrics. 

Results from the implementation showed that the quality predictions were improved 

successfully, after according for individual scene classification. Most importantly, the 

metric scales were shown to correlate equally well with subjective quality scales of 

standard and non-standard looking scenes. 

The classification and metric calibration performance was quite encouraging, not only 

because it improved mean image quality predictions from all scenes, but also because it 

catered for non-standard scenes, which originally produced low correlations. Also, it is 

because of the efficiency of computation. The findings indicate that the automatic scene 

classification method has a great potential for tackling the problem of scene dependency, 

when modelling device-dependent image quality. It can provide a tool for fully automatic 

and quick derivation of image quality rating.   

This is a practical consideration of scene classification with respect to image quality, a 

possible way of overcoming the problem of scene dependency in image quality modelling, 

suggested by Keelan [14] (pp. 147). Based on this suggestion, this work is further 

expended in scene classification, which uses objective scene descriptors that correlate 

with subjective criteria on scene susceptibility to image quality attributes [10] (pp. 269).  

This finding could form the basis for a new direction of research, simultaneously 

predicting perception according to imaging system parameters, observer and scene 

properties, taking into account classification.  

 

9.4. Fundamental comments 

The scientific originalities of this research are summarised as follows: 

• The provision of an experimental paradigm for measuring the effect of scene content 

on image quality with respect to sharpness and noisiness.  
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• The development of a methodology in subjective image quality assessment, in order 

to derive individual attribute scales from the overall image quality assessments. This 

approach does not require scaling of individual attributes and does not require the 

assumption that the attribute is one-dimensional, i.e. observers can see the quality 

attribute independently. The method might be ideal for investigating the relationship 

between attributes.  

• The demonstration that the specific, selected scene properties correlate within 

perceived image quality of sharpness and noisiness and the derivation of various 

scene descriptors for scene properties.  

• The application of the objective scene classification to resolve the problem of scene 

dependency in device-dependent image quality metrics. This allows a quick and 

simple objective quality measurement utilizing imaging system characteristics and 

scene properties.   

 

A successful objective scaling study, based on the subjective image quality scaling and 

the system properties, could provide a quick and easy to implement method for the 

evaluation of image quality in industrial laboratories. It could also assist fundamental 

academic research concerning the evaluation of image quality, such as algorithm 

development and imaging system development.   
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Chapter 10  

Conclusions & Recommendations for 

further work 

10.1. Conclusions 

The following conclusions are drawn from the research conducted in this thesis.  

• Perceived image quality is dependent upon the imaging system characteristics.  

Characterisation of the imaging system showed that the perception of image quality 

was dependent on the imaging system. For example, the tone and colour reproduction 

results were demonstrated to have variation with respect to the camera colour settings 

in the process profiles.  

• There are limitations on imaging systems with regard to reproducing scenes.  

It was demonstrated that there was a lack of colour accuracy in the reproduction of 

colour between scene and image. The MTF and noise measurements also 

demonstrated the same finding.    

• Perceived image quality is also dependent upon the scene properties.  

Psychophysical scaling was used to demonstrate that the perception of image quality 

was dependent on scene properties. In addition, successful scene dependency 

quantification was found.  

• There are relationships between sharpness/blur and noise.  
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High amounts of blurring in an image were shown to significantly decrease the 

perception of noise, and high noise was shown to decrease the perceived blur. 

• Spatial frequency properties of subjects are crucial scene dependence parameters and 

influence observers’ perception of image quality in blurred and noisy images. 

It was demonstrated that there was a correlation between the sharpness and noisiness 

susceptibility parameters and the spatial frequency properties of subjects. 

• Device-dependent metrics are unequally successful in predicting the quality of 

different images with varying scene content.  

It was found that two device-dependent image quality metrics, Effective Pictorial 

Information Capacity (EPIC) and Perceived Information Capacity (PIC), predicted 

less successfully the perceived quality of non-standard scenes with atypical spatial 

and structural content. 

• An effective device-dependent metric is required to predict human perception of 

image quality, based on both imaging system properties, as well as scene properties.  

• Scene classification has the potential for tackling the problem of sharpness and 

noisiness scene susceptibility when modelling device-dependent image quality.  

The classification and metric calibration performance was quite encouraging, not 

only because it improved mean image quality predictions from all scenes, but also 

because it catered for non-standard scenes, which originally produced low 

correlations.  

 

10.2. Recommendations for further work 

Several recommendations for further work in this area can be made.  

• Extensive investigations of the standard conditions for the camera would be required 

in order to achieve an accurate colour reproduction. Fairchild et al [227] (pp. 1) 

demonstrated that careful and simple characterisation of digital SLR cameras could 

result in visually equivalent colour reproduction, 4.0 and 6.9 in ΔE*ab.  
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• Extensive investigations of various conditions would be required by custom profile 

(polynomial regression model) for the accuracy of colour reproduction, not only 

illumination in D65. Possible implementation in the camera is in common 

illuminations, such as tungsten light (3200 K), fluorescent light (4500 K), electronic 

flash (5000 K) and overcast daylight (7000 K).  

• More investigations of MTF associated with image down-sampling are required at 

different MTF methods and a wide range of down-sampling levels. 

• More information is required on the MTF and noise characteristics of the display 

device. This is necessary for the improvement of the image quality metric. 

Furthermore, the accurate characterisation of the device would assist in calibrating the 

system, such as noise reduction.  

• More serious effort could be put into quantifying a JND. The method of limits could 

be utilised to provide more precise threshold data than the method of adjustment [200] 

(pp. 130-131).  

• Extending the range of distortion would be necessary in future work, since the range 

of added Gaussian noise was too small to investigate the consequences on the full 

range of image quality, e.g. 5 or 7 JNDs [200] (pp. 131) in added Gaussian noise.  

• The quality ruler method could be used to further study subjective quality scaling, 

since the implementation includes the scene-dependent ruler calibration [17] (pp. 11).  

• Further work is required into identification, selection and classification of scenes, as 

this is an unresolved challenge within the science community, until now [10] (pp. 

269).   

• More extensive investigations of scene descriptors would help to understand scene 

properties. The combination of various scene descriptors, e.g. the integration of 

colour–texture descriptors [228], may describe more successfully the susceptibility of 

test scenes to noisiness and sharpness. 

• Further investigation is required to derive scene descriptors from regions of interest 

within the image (via local application of the algorithm). A possible example of this is 
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a using the central part of the image as a sharpness-critical region and the periphery of 

the image as a noisiness-critical region [229] (pp. 5).   

• More consideration is given to the determination of the number of clusters in a data 

set. This is a distinct issue from the process of solving the clustering problem. A 

possible way of dealing with this issue is to use a mathematical approach, such as a 

rule of thumb [149], an elbow method or an information criterion approach.  

• Different clustering algorithms could be used to apply objective scene classification 

[147, 148], such as hierarchical clustering and Fuzzy c-means clustering. More 

investigations of objective scene classification could assist with better grouping of 

scene susceptibility and lead to better objective image quality investigations. 

•  It is hoped that, in the near future, an image-dependent and device-dependent metric 

can be created that takes into account colour and spatial characteristics. Topfer [225] 

(pp. 303) noted that “preference is an important element in the evaluation of the 

effects of colour and tone on image quality. Despite the preferential aspect of these 

attributes, the framework of image quality modelling developed for artifactual 

attributes is still applicable, with certain extensions.”  

 



Kyung Hoon Oh, 2014     Appendix A. sRGB encoding transformation  

186 

Appendix A 

sRGB encoding transformation  

The standard RGB colour space encoding, sRGB, was originally designed by HP and 

Microsoft as the default colour space encoding for the Internet [89]. The sRGB is based 

on a typical CRT display primaries and transfer function. Table A-1 lists the CIE 1931 

chromaticity coordinates of the sRGB reference primaries. In addition, Table A-2 shows 

the reference display, the reference viewing condition and the reference observer.  

 

 Red Green Blue 

x 0.6400 0.3000 0.1500 

y 0.3300 0.6000 0.0600 

z 0.0300 0.1000 0.7900 

Table A-1. The CIE 1931 chromaticity coordinates for primaries.  

Reference display 

Luminance level 80 cd/m2 

White point CIE D65  (x=0.3127, y=0.3291) 

Model offset(R, G, B) 0.055 

Model gamma(R, G, B) 2.2 

Reference viewing condition 

Background- surrounding the image 20% of the reference display white 

Surround- area surrounding the display 20% reflectance 

Proximal field 20% of the reference display white 

Ambient illuminance level 64 lx 

Ambient white point x=0.3457, y=0.3585 (D50) 

Viewing gamma 1.125 

Reference observer 

Observer CIE 1931 2° standard observer 

Table A-2. sRGB reference display, reference viewing condition and reference observer. 
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The sRGB encoding transformation is described briefly as follows [89]:   

 

1) Transform from XYZ to RGB 
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2) Transform from RGB to XYZ 
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8bit
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8bit
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(A.5) 

BDC is a black digital count, and WDC is a white digital count (8 bits/channel).  

 

if R’ sRGBG’sRGBB’ sRGB≤0.04045 
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or if R’sRGBG’sRGBB’ sRGB 〉0.04045 
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Adobe RGB encoding transformation  

The Adobe RGB colour space encoding was developed by Adobe Systems, as an RGB 

working space suited for print production [90]. The Adobe RGB has been used widely by 

the photographic industry. The CIE 1931 chromaticity coordinates of the green primary 

are slightly different to those of the sRGB (Table A-3).  

 

 Red Green Blue 

x 0.6400 0.2100 0.1500 

y 0.3300 0.7100 0.0600 

z 0.0300 0.0800 0.7900 

Table A-3. The CIE 1931 chromaticity coordinates for Adobe RGB primaries.  

 

The reference display, the reference viewing condition and the reference observer are 

shown below Table A-4.   

Reference display 

Luminance level 160 cd/m2 

White point CIE D65  (x=0.3127, y=0.3291) 

Black point XK =0.5282, YK = 0.5557, ZK=0.6052 

Reference viewing condition 

Surround- area surrounding the display 20% reflectance 

Ambient illuminance level 32 lx 

Ambient white point CIE D65  (x=0.3127, y=0.3291) 

Reference observer 

Observer CIE 1931 2° standard observer 

Table A-4. Adobe RGB reference display, reference viewing condition and reference observer. 
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The Adobe RGB encoding transformation between 8-bit RGB values and CIE XYZ values 

involves the following steps [90]:  

1) Normalisation of the RGB pixel values to a colour space value ranging from 

0.0 to 1.0. 

2) Linearization of the RGB signal using the reference display transfer function. 

199.2
8bit

'

199.2
8bit

'

199.2
8bit

'

)255/(

)255/(

)255/(

BB

GG

RR

=

=

=

      

(A.9) 

3) Transformation (i.e. 3 x 3 matrix multiplication) from linear RGB to XYZ.  
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99133.007069.002703.0

07529.062736.029735.0

18823.018556.057667.0

  

(A.10) 

 

The inverse transformation is obtained by reversing steps 1-3.  
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Appendix B  

The following publications and presentations produced by the author during this project. 

The refereed and published conference proceedings are reproduced in this thesis. The 

unpublished conference contributors are not reproduced in this thesis.  

 

Publications & Presentations 

Refereed and published conference proceedings 

• Kyung Hoon Oh, Sophie Triantaphillidou, and Ralph E. Jacobson, Perceptual image 

attribute scales derived from overall image quality assessments, SPIE Proceeding: 

Image quality and system performance VI , Vol. 7242, San Jose, USA (2009). 

• Kyung Hoon Oh, Sophie Triantaphillidou, and Ralph E. Jacobson, Scene 

classification with respect to image quality measurements, SPIE Proceeding: Image 

quality and system performance VII, Vol. 7529. , San Jose, USA (2010).  

• Kyung Hoon Oh, Sophie Triantaphillidou, and Ralph E. Jacobson, Device dependent, 

scene dependent quality predictions using Effective Pictorial Information Capacity, 

SPIE Proceeding: Image quality and system performance VIII, San Francisco, USA 

(2011).  

 

Other refereed and/or unpublished conference contributions 

• sRGB colour errors in a digital camera- LCD imaging chain, Institute of Physics 

conference 2007, Swansea University, Swansea, Wales, UK (2007). 

• The accuracy of sRGB colour reproduction of a camera and a LCD imaging chain, 

The Royal Photographic Society Imaging Science Group: Digital Futures 2007, Royal 

Institute of British Architects, London, UK (2007). 

(http://www.rps-isg.org/docs/DF2007programme.pdf) 
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• Scene classification with respect to image quality measurements, The Royal 

Photographic Society Imaging Science Group: Digital Futures 2009, Institute of 

Physics, London, UK (2009). 

(http://www.rps-isg.org/DF2009_presentations.php) 

 

Awards  

1. The Royal Photographic Society G.I.S. and A.R.P.S qualification (2008).  

2. The Royal Photographic Society Imaging Science Group Travel Grant (2009).  
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