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Abstract

Device-dependent metrics attempt to predict imagality from an ‘average signal’, usually
embodied on test targets. Consequently, the metederm well on individual ‘average looking’
scenes and test targets, but provide lower coiwalatith subjective assessments when working
with a variety of scenes with different than ‘avggasignal’ characteristics. This study considers
the issues of scene dependency on image qualitg. Sthdy aims to quantify the change in
guality with scene contents, to research the prolié scene dependency in relation to device-

dependent image quality metrics and to providduatiso to it.

A novel subjective scaling method was developedrifer to derive individual attribute scales,

using the results from the overall image qualitgeg@sments. This was an analytical top-down
approach, which does not require separate scafimigdividual attributes and does not assume
that the attribute is not independent from othaitattes. From the measurements, interval scales

were created and the effective scene dependentwy faas calculated, for each attribute.

Two device-dependent image quality metrics, thedife Pictorial Information Capacity (EPIC)
and the Perceived Information Capacity (PIC), wesed to predict subjective image quality for a
test set that varied in sharpness and noisinesseTimetrics were found to be reliable predictors
of image quality. However, they were not equallgcassful in predicting quality for different

images with varying scene content.

Objective scene classification was thus considemed employed in order to deal with the

problem of scene dependency in device-dependentcmelt used objective scene descriptors,
which correlated with subjective criteria on scesusceptibility. This process resulted in the

development of a fully automatic classification sifenes into ‘standard’ and ‘non-standard’

groups, and the result allows the calculation dibcated metric values for each group. The

classification and metric calibration performancaswquite encouraging, not only because it
improved mean image quality predictions from akrses, but also because it catered for non-
standard scenes, which originally produced low edations. The findings indicate that the

proposed automatic scene classification methodgheat potential for tackling the problem of

scene dependency, when modelling device-depenaegfel quality. In addition, possible further

studies of objective scene classification are dised.
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Chapter 1
Introduction

Image quality evaluation is a key part in designigter imaging systems and deciding
on the quality standards in image processing, tag.ratio of image compression. In
general, the quality of an image is assessed ssibgctive (psychophysical) or objective
(physical) scaling [1] (pp. 371-373).

The two scaling methods have their own benefits dradvbacks. Subjective scaling
directly correlates to perceived image quality bsit time-consuming, costly and
complicated to implement. On the other hand, objeccaling is quick and less complex
to implement but does not always provide relialoi@es [2] (pp. 564). For example, the
objective scales have been proven to successfidljigi image quality in the laboratory,
yet they have been poor predictors of quality wapplied to digital systems in the field

for some images, away from the laboratory.

Yendrikhovskij [3] (pp. 363) has noted that thereat image technology does everything
except one final and very crucial step, image tyalppraisal. Many image quality

models, mathematical formulas that are capableretligting human perceptions of

guality, have been proposed over the last fiftyrye¢a] (pp. 371). However, as of yet, no
definitive objective (physical) scaling method teen put forward [1] (pp. 390), [4] (pp.

3315).

Currently, the objective (physical) scaling methads be classified into two groups [5]
(pp. 12): i) the image-dependent (device-indepet)demodels, and ii) the device-

dependent (image-independent) models.
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Image-dependent models attempt to predict the hupegioeption of the image itself
without knowledge of the imaging system’s charastes. These models are based on
the difference between pairs of images, which imweah comparison of an image with

either an ideal image or a non-ideal image.

If the reference image is the ideal image, thenctmpared image will have a lower
quality scale. This is called the impairment applogb] (pp. 251). An example is Daly’s
Visible Differences Predictor (VDP) [7] at imagengpression investigation. The ideal
image is the original version, and the comparedygsaare the compressed versions.

In the image-dependent models that use a compaoisam image with a non-ideal image,
the quality result of the compared image changesascrease or a decrease [8] (pp. 16).
An example is image Color Appearance Model (iCAMI). [The non-ideal image is the
original version, and the compared images arertifage versions that vary in sharpness,
resolution, noise or contrast. Johnson [8] (pp.) ¥88es “what is interesting is this type
of modelling can start to predict both magnitudel atirection of the experimental

sharpness scale.”

These image-dependent models have an actual bémefé¢aling with the problem of
scene dependencyHowever, they are often unable to measure qualgyed on the

imaging system variables.

The image-dependent modelling can be thought ¢faa®lling throughout the left-hand

side of thdmage Quality Circleas shown in Figure 1-1.
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Image
Quality
Models

Customer
Percepfions-
The "Nesses'

Figure 1-1.Image-dependent paths in the Image Quailicle appear on the left-hand side
(adapted from Fairchild [5] (pp. 16)) and (Ima&@eality Circle adapted from
Engeldrum [6] (pp. 251)).

The second group models focus on an element otealépendent image quality. This is
applied in a straightforward fashion for the measugnt of image quality of various
system variables, such as the modulation transfaction (MTF), the noise power

spectrum (NPS) and the gamnya (

These models are extremely powerful tools for meaguand predicting quality
according to system variables, when knowledge @ifrttages used is available. However,
if knowledge of the image used is not availablegesth models have a well-known
drawback, the scene dependency of image qualify(fi0 259), [11] (pp. 25). This is the
reason that the models perform well on individusgres and test targets, but provide
lower correlation with subjective assessments wheirking with a variety of scenes.

The device-dependent image quality modelling fills the right-hand side of the Image
Quality Circle, illustrated in Figure 1-2.



Kyung Hoon Oh, 2014 Chapter 1. Introduction

Technology
Variables

Figure 1-2. Device-dependent paths in the Imagdif@uzircle appear on the right-hand side
(adapted from Fairchild [5] (pp. 13)) and (Imageafdy Circle adapted from Engeldrum

[6] (pp. 251)).

This study is concerned with device-dependent inagrity models. It investigates the
problem of scene dependency in device-dependergeirgaality models. In addition, it
examines a solution with respect to scene depegdergevice-dependent image quality
models.

1.1 The impact of scenes on the perception of image

guality

Image quality researches have confirmed that teeescontent of the test images affects
the observer’'s judgement [12] (pp. 9). For examplaservers judged differently the
sharpness of portraits and landscapes [13] (pp. R8traits with low sharpness are

usually preferred over over-sharpened portraitslenthe opposite applies to landscapes.
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Keelan [14] (pp. 131-135) has shown that the digiteefact of streaking is more evident
in clear-sky image areas (i.e. relatively unifolight areas) than in image areas of high-
frequency signals and in extensive dark areas, hwhisually mask that streaking.
Similarly, for a given print granularity, it hasdreshown that graininess (i.e. a subjective
measure of photographic granularity) usually desgeawith print density [15] (pp. 310),
and hence dark areas in prints are less visualigeqiible to the artefact. Also, scene
characteristics, such as the spatial distributibsubjects [16] (pp. 663) and camera to
subject distance [12] (pp. 13), have been showrbdoimportant in the observer’s

preferences.

Scene dependency makes it difficult to design dedependent image quality models, as

well as to validate the models.

There are several ways of overcoming the probleaused by scene dependency [10] (pp.
262). One commonly employed method is to excludgestive results obtained from
non-standard scenes, when objective quality madgllThe validation of the models then

uses the different set of standard scenes.

Another common technique is to employ a represestaet (e.g. International Standards
Organisation (ISO) 20462-3: 2005 set of test scghékand ‘Lena’), when objective
quality modelling and validating. Nowadays many exxmenters employ this technique
[10] (pp. 262).

These, however, do not effectively represent thgeaand variety of different scenes that
photographers, artists and consumers may wishcardeand reproduce faithfully [10]
(pp. 262-264).

1.2 Scene classification with respect to image qutsl

One possible way of overcoming the problem of scelependency is a scene
classification with respect to image quality. Kee[a4] (pp. 147) notes that “one way to
characterize the variability associated with ...sceumsceptibility is to classify scenes ...

into small number of groups.The classification he proposed is as follows: 1)smo
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susceptible scenes 25%, 2) least susceptible seéfesand 3) intermediately susceptible

scenes 50%.

In addition, Triantaphillidouet al [10] (pp. 269) proposed a method for test scene
classification, which uses objectivicene descriptorghat correlate with subjective
criteria onscene susceptibilitto image quality attributes. Scene descriptorsdaréved

to describe inherent scene properties that humaareérs refer to when they judge the

quality of images.

Some studies consider scene classification eitiggreiction of similarity [18, 19, 20] or
clustering for image indexing [21, 22, 23, 24]. Esample, Alleret al[18] (pp. 253-257)
classified scenes into relatively identical groapgmage quality, which was decreased by
image compression. Their work was an effort to sifgsscenes into five groups by
inspection. Teeselinkt al[19] (pp. 553) also classified scenes by inspectidre study
found that observers classify images into categdhat reflect scene content. Mojsilovic
and Rogowitz [20] (pp- 18-19) similarly classifisdenes using inspection. The study

demonstrated that image semantics play a largerraletermining image similarity.

Yendrikhovskij [21] (pp. 406-408) sought to clagsi€olour images by a k-means
clustering algorithm. The effort was based on thlew coordinates, such as CIELAB in
statistics of natural images. Szummer and Pica®j ([ip. 44)proposed a method for
distinguishing between indoor and outdoor scenesingu colour histograms,
autoregressive texture models and discrete cosamsform information. Vailayat al
[23] (pp. 1924-1930), [24] (pp. 421) described ahud to classify vacation images into
landscape/city, indoors/outdoors and sunset/mouffidaest, using colour histograms,
colour coherence vectors (CCV), edge directionogistms and edge direction coherence

vectors.

This study seeks to group scenes used in imagetyquatestigation, based on scene
descriptors that correlated with scene susceptibii sharpnesandnoisiness This will
provide a fundamental basis for the selection sf-$eenes and will allow meaningful

grouping based on scene content in image qualipsorement.
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1.3 Aims and overview of the project

This research addresses the issue of scene depgnddrch is a crucial factor in image
quality. The main focus of this research is theaotmf scene content on image quality.

This study of scene dependency in image qualitysea®ral goals. The first goal is to
guantify the change of quality according to sceomtent. The second goal is to identify
the problem of scene dependency in device-depenage quality models. The final

goal is to develop a solution for tackling the pesb of scene dependency in device-

dependent image quality models.

These aims will be addressed by considering theessas set out in the following

chapters:

Chapter 2 defines image quality and describes ifferehces between image fidelity and
image quality. In addition, this chapter includedeailed review of the image quality
assessment, by subjective scaling and by objecbading. In the subjective scaling
section, the explanation of the nature of sceneenldgncy and the perceived image
guality that are effected by the blur and noisentduded. The objective scaling section
introduces image quality metrics and individual Igyaattribute assessments in terms of
tone reproduction, colour reproduction, image nasmh, sharpness and noise. This
section also includes details on objective sceassdication, based on scene descriptors

to quantify various scene properties.

Experiments were conducted to characterise theimgadevices (i.e. a camera and a
liquid crystal display (LCD)) used in the studidhe aim is to provide a means for
producing accurate and reproducible results fogienguality assessments. The tone and
colour characterisation of the camera and the LEDo@s are described in chapter 3 and
chapter 4, respectively. Furthermore, the modutatransfer function (MTF) and noise
characterisation of both devices are investigatedhiapter 5. This chapter provides an
account of the measurements of the soft displaip wie aid of a digital camera. The

results of these measurements are presented andpeer 5.

Chapter 6 deals with a series of subjective (psyblsical) experiments that investigate

the effect of scene content on the perceived intpgdity. A novel approach is devised
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for this investigation. The overall image qualisyrated directly by the observer, and the
result is then analysed to get the perceptual caingt that determine image quality. This
chapter provides a detailed description of the erpEntal method used, followed by the

results from the subjective experiments.

Chapter 7 describes an investigation of sceneifitzggon with respect to image quality.
It involves 1) the investigation of various sceresdriptors, derived to describe scene
properties that influence image quality, 2) therelation between scene descriptors and
scene susceptibility parameters (from the resdlthapter 6), and 3) the application of k-
means clustering, using the selected scene demwrifjor test-scene grouping. This
chapter provides a detailed k-means clustering odethith respect to image quality,
followed by the results. The results from this dea@re employed to improve objective

(physical) image quality scaling in chapter 8.

Chapter 8 sets out the details of an Effective dfigt Information Capacity (EPIC)
metric [74] and a Perceived Information CapacityC)Pmetric [71]. In addition, the
various comparisons between EPIC and PIC resulispanceived quality scales from
chapter 6 are described. The comparisons are wsedsess the success of objective
device-dependent quality predictions. In addititms chapter describes the method of
improvement of the EPIC and PIC metrics, usingsttene classification from chapter 7.

Finally, the validity of the implementation is debed.

Chapter 9 gives a discussion based on the redulte avork as the system performance,
subjective and objective image quality assessmeiite conclusions and the

recommendations for further work are presentedhapter 10.
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Chapter 2

Image quality

This chapter describes the concept of image quaitgetailed account of image quality
measurements via subjective (psychophysical) ajette (physical) evaluations is also
presented. Some of these measurements have bdedapphe experimental part of this

research.

2.1 Image quality concept

According to ISO 12231: 2005 [25] (pp. 30), imagealify is “an impression of the
overall merit or excellence of an image, as peexilgy an observer neither associated
with the act of photography, nor closely involvedhathe subject matter depicted.”
Although the definition is approved by ISO 1223103, it cannot comprehensively
explain the broader concept of image quality. TaBnition is slightly restricted. Keelan
[26] (pp- 9) has pointed out “this narrow definitiof image quality, which is based on
third-party assessment, captures the artifactuaefepential and aesthetic attributes, but
excludes personal attributes.” Jacobson [27] (phad noted that “image quality has no

single, unique definition yet.”

Furthermore, the concept of image quality is ofmnfused with image fidelity.
Therefore, it is necessary to distinguish betwdwmt Silverstain and Farrell [28] (pp.
881) have stated that image fidelity is the abitiydiscriminate between two images,

while image quality is the preference for one imager another. Klein [29] (pp. 75-76)
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has distinguished between image fidelity and imgggity, as the difference between the
visibility of a factor and the degree to which tliattor is bothersome. Berns [30] (pp.
107-108) has described the difference between infidgéty and image quality in the
colour reproduction, as explaining that the fidelif colour reproduction is concerned
only with the least noticeable visible change, wiglality of colour reproduction is far

more than the least noticeable visible change.

2.2 Image quality assessment

Jacobson [27] (pp. 7) has noted that observers date to decide almost instantly
whether a particular image is of good or poor dyabut for us to quantify how good an
image is, and the scale of quality is far moreiciift.” Yendrikhovskij [3] (pp. 363) has

mentioned that the “current image technology daesyehing except one final and very
important step-image quality appraisal.” Thus, difiging our own preferences yields a

fascinating scientific challenge.

Engeldrum [31] (pp. 312) has explained image guadwaluations in the form of an
Image Quality CirclgFigure 2-1). It describes subjective (psychoptai$iand objective
(physical) image quality assessments. The Imagdit@uaircle involves four basic
elements: ‘customer image quality rating’, ‘custonperceptions’, ‘physical image
parameters’ and ‘technology variables’.

10
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Subjective (psychophysical) measuremen
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Objective (Physical) measurement

Technology
Variables

System/Image
Models

Bottom-up

Figure 2-1. Image Quality Circle and approacheguantifying image quality
(adapted from Engeldrum [31] (pp. 312)).

The ‘customer image quality rating’ represents ¢hstomer’s opinion of image quality.

It consists of ‘customer perceptions’, such asrgnass, sharpness and brightness. These

perceptual attributes (Table 2-1) are related éo'physical image parameters’ which are

evaluated by physical measurements (Table 2-2). ‘Hohnology variables’ cover an

extensive number of variables. They are eitherdfilzg the system being used or can be
changed as part of the control of the system bejtignised [31] (pp. 313).

Attributes Perceptual description

Tone The macroscopic contrast in an image.

Colour The visual sensation in lightness, chromieaand saturation in an image.
Sharpness The microscopic contrast in an image.
Resolution The ability to depict spatial picturdadiein an image.

Noise The random and non-random spurious informatian image.

Table 2-1. Image attributes and their perceptustidgtions
(adapted from Ford [32] (pp. 32) and Triantaphdlid33] (pp. 38)).

11
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Attributes Physical image parameters
Tone Gamma, Dynamic range, Tone reproduction c(@haracteristic curve), Histogran
Chromaticity valuesxyY,L'u'v, Lab etc.), Spectral power distribution, Pixel
Colour ;
values, CIE colour differences
Acutance, Point spread function, Line spread fumctEdge spread function,
Sharpness - .
Modulation transfer function
Resolution Resolving power, Image cell (cycles/mirels/inch), dots per inch (dpi)
Noise Granularity, Noise power spectrum (NPS), Aateelation function
Others Information capacity, Detective quantumcédficy (DQE), Entropy, Power spectrum

Table 2-2. Physical measures relating to the abetvaluation of image quality
(adapted from Triantaphillidou [33] (pp. 42) anddlason [34] (pp. 237)).

According to Yendrikhovskij [21] (pp. 396), subjee image quality can be studied from
two perspectives: bottom-up and top-down (cf. FegRrl). The former is largely based
on experimental research of the attributes of imquity. The latter is the process of
analytical research of the perceptual constraihtd tletermine image quality. Both

approaches are valuable for image quality quaatibo.

2.2.1 Subjective evaluation

In the bottom-up perspective, the image qualityngats formed by the combination of
individual visual attribute scales [31] (pp. 31B5] (pp. 33), which are characteristics of
an image that we see [36] (pp. 11-12). Howeverjnt&idual attribute scaling has been
a subject of discussion [33] (pp. 38), since imggality attributes are unlikely to be

independent from other attributes.

There are many studies about the complicated oelstips between attributes. For
example, Biedermann and Frieser [37] (pp. 28) hstuelied the association between
graininess and sharpness. Johnson and Fairchilp ((88 28) have confirmed the
relationship between sharpness and contrast. THeidoal attribute scaling is a
relatively simplistic way of measuring image qualibecause it does not take into

consideration the complicated relationships betvagibutes.

12
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In the top-down perspective, the overall image iypahting is directly judged by the

observer. It produces “goodness” scales based erovterall image impression. The
result can be then analysed to get the perceptust@ints that determine image quality.
This is especially beneficial, because it doesraqtire scaling of individual attributes
and does not require the assumption that observans see the quality attribute
independently (cf. Chapter 6). Engeldrum [11] (BR-23) has noted ‘it is common in
image quality scaling studies that the quality jmgnt varies due to the variation of
only one “ness.” The resulting scale from this sknget will not be one of image quality,
although it may be labelled as such, but a scalhefsingle “ness” that varies in the
sample set. Much care is needed in identifying“tlesses” in a sample set in order to

avoid these pitfalls.”

2.2.1.1 Subjective scaling

The visual judgements produced by psychophysicirgg are quantified using one of
the following scales: nominal, ordinal, intervalratio [39] (pp. 678-680). From nominal
to ratio scales, the information provided by thelscincreases and the statistical
operation complexity also increases. The ratioesca@imbody all the properties of the

previous three scales.

* Nominal scales: These scales are used as indicedbjects with numbers or names.
These numbers or names have no meaning other dhderttify the different items.
An example of this type of scale would be the imeagegorises, such as architectural,

natural scenes, portraits.

» Ordinal scales: These scales categorise variaBksciated with order. Items can be
ranked in ascending or descending order, basetiemagnitude of a certain visual
attribute. However, there is no quantification mf@tion about the meaning of
distances between items. The only mathematicalatiperthat is valid for an ordinal
scale is the use of the greater-than or less-tpanators. An example of this type of
scale would be the ordering from ‘best’ to ‘worgtiality. The resulting scale would
only reveal that one was greater than or less tthners, but there would be no

information as to how much greater or less.

13
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» Interval scales: These scales have the propertiistdnce to the ordinal scales. The
mathematical operation that is valid for the ingdrscale is the use of the greater-than
or less-than operators, as well as the differebetween them. For example, in this
type of scale if two images are separated by ofite (@g. just noticeable difference
(JND) quality) away from one point on the scaleyadifferences in scale values

represent equal perceptual differences betweemmges.

» Ratio scales: These scales have all the propetigee previous three scales, with the
addition of an origin. Thus, these scales holdrtiost mathematical power of all the
scales. The mathematical operation that is validafoatio scale is the use of the
greater-than or less-than operators, as well aglifferences between them and an
origin. However, it is argued that the ratio scates/ not be useable in image quality,
because the concept of the origin point providedopbphical and experimental
difficulties. For example, what are the meaning®wfin image quality in isolation

assessment (assessment of single image)? [1] $p3&L1).

There are several scaling techniques to generatless¢40] (pp. 1115-1128). Most

common techniques are as follows:

» Paired-comparison method: This is based on the dh@omparative Judgement.
During a test, observers are asked to indicater thegferred image, comparing
displayed images (side-to-side) or prints. Thishuodtis a powerful technique for
generating interval scales [40] (pp. 1117). It astigularly suited to assessing image
quality when precise scalability is required. Hoeeva large number of sample
combinations can cause excessive observer strégs) wan affect the accuracy and

repeatability of results [41] (pp. V).

» Categorical method: The observer is presented anth stimuli image at a time, in
identical viewing conditions. The observer is thesked to place the image into a
specific category, e.g. International TelecommuimcaUnion -Radiocommunication
Sector (ITU-R). BT 500-12: 2009 [42] (pp. 18): lad 2. Poor, 3. Fair, 4. Good, 5.
Excellent, 1ISO 20462-2: 2005 [41] (pp. 2-3): 1. éarable, 2. Acceptable, 3. Just

acceptable, 4. Unacceptable, 5. Poor. This tecknigwseful when dealing with a

14
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large number of samples. For this reason, this odethas used in this study (cf.
Chapter 6). Using this method, it is possible towdeordinal and interval scales [40]
(pp- 1119). The advantages of the category methotlide low stress and high
stability [41] (pp. v). However, its scalability thin a category is less precise, due to
range effectCookingham [43] (pp. 90) has remarked that “obser seem to want to
use most of the categories, perhaps so that teeyhiey are making some distinctions
among samples, but usually they do not use the catelgories much or at all,
possibly in case a sample appears that is muchehighlower quality than seen

previously.”

Rank ordering method: A series of stimuli images gresented, and the observer is
asked to arrange the series in order of increasimgcreasing magnitudds.is easily
applied to the assessment of printed images. lctipea the number of printed images
is limited to about 16 [44] (pp. 367). It is, hoveeya rather impractical method for
assessing displayed images, since displays arangat enough to present all images

at a reasonable size uniformly [33] (pp. 39).

Magnitude estimation method: First, an image is@ned to the observer, and the
participant assigns a number to it. This image bexa reference image throughout
the test, i.e. an anchor image. Other images a®e jirdged against the reference
image. This method largely avoids being interpretadegories and complicated
transformations [43] (pp- 91). However, resultsnirghis method are extremely

difficult to replicate when the psychophysical espents are conducted using non-
expert observers [41] (pp. V). This is becausentie¢hod is significantly increasing

the amount of observer effort required [45] (pp). 15

ISO 20462-2: 2005 [41] and 1SO 20462-3: 2005 [1&89atibe two relatively new scaling

methods.

Triplet comparison method: It comprises of two stefine “category step” and the
“triplet comparison step.” Firstly, the observerasked to place the image into one of
three categories, such as favourable, acceptalller@acceptablelhe “category step”

is to reduce the number of the samples to an apptepmumber which is determined
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by the purpose of the experiment. Secondly, themes is asked again to place the
sampled images into five categories, such as faber acceptable, just acceptable,
unacceptable and poor. This step is conducted tisengimultaneous scaling of three
test stimuli at a time. The “triplet comparisonpsteerives a precise scaling [41] (pp.
2).

It satisfies the following requirements: it enabkedarge number of samples to be
examined, provides precise scalability, provides lobserver stress, suitable for
ordinary (non-expert) observers, provides high aggality of the results [41] (pp. 2).

It has been proven to be effective at reducingaisessment time by about one-third,

when compared with the paired-comparison methofi(p. 4).

» Quality ruler method: This is a technique for obiag quality or attribute values for
a test stimulus against a seriesuafvariate reference stimyldescribing a series of
test or reference stimuli that vary only in a seg@ittribute of image qualityThe
observer is provided with a series of closely sgasemuli of known separation
(usually one to three JNDs), which vary in a singt&ibute of image quality and
depict a single scene (often the same scene asefttia test stimulus). Other images
are then judged against the ruler images [17] 35®)-

One advantage of the method is that the refereticrils are calibrated against a
fixed standard numerical scale of qualggene-dependent ruler calibrati¢h7] (pp.
11). The standard reference stimuli (SRS) valuespablished on the I3A website

(www.i3a.org, accessed on August, 2008).

More details of the experimental methods can beadan various texts [17, 40, 41, 42].

There are a number of factors that influence tiselte of psychophysical scaling: i) the
choice of test samples, ii) the selection of obsexyviii) the question including the

instructions, iv) the viewing conditions and v) ttheration of the experiment.

i) The choice of test samples: Engeldrum [11] (pp. 249 identified four issues for

consideration when selecting test samples.
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1) What categories should the samples represent?
2) What range and distribution of “nesses” shohkldample set contain?
3) What image size should be used?

4) What image content or image features shouldaneples contain?

When selecting test samples, the first considerasahe way in which images are
selected sample of imageryBartleson [46] (pp. 443-446) proposed five categgoto
describe samples of imagery: the random and indepegnsample, the stratified

sample, the contrast sample, the purposeful saamgléhe incidental sample.

* The random and independent sample: Each imagerhagual chance of being
selected, and selection of one image has no infeien the selection of another.
Although statistically interesting, it is difficulb implement in the real practice.

» The stratified sample: This is a more practical hrodt as digital images with

subclasses of portraits, landscapes and so analiidely available method.

» The contrast sample: There is an interest in kngwiwe quality requirements or
performance of a particular imaging device withpexs to some class of imagery.
This is common in a product development environmEat example, scenes with
dominant edges may be selected in an investigatiothe sharpness of an

imaging device.

 The purposeful sample: This is either represerdatif a segment of the
population or independently variable with regard @ochosen attribute. A
purposeful sampling can be useful during productigie For example, scenes
may be selected in an investigation of the accdptalof the levels of

compression.

» The incidental sample: This represents a specliatimn of unique images (e.g.
a standard image set [17]) that cannot be added to.

ISO 20462-1: 2005 [45] (pp. 6) suggests that fample of imagery, at least a

minimum of 3 scenésshall be used (and preferably at least 6 scermsdshbe used).

! Scene is the “content or subject matter of an enag a starting image form which multiple stimuiay
be produced through different experimental treatsiga5] (pp. 4).
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A small number of scenes do not probably effecyivepresent the range and variety

of different scenes. Extensive number of scenedegmeferable.

The second consideration is the range and disioibudf "nesses.” ISO 20462-1:
2005 [45] (pp. 6) suggests describing the naturehef variation among the test
stimuli (other than scene content) in both subjecterms (image quality attributes)

and objective terms (stimulus treatment or genamati

However, the desired range and distribution of $ee% is often difficult. This is
because there is no rigid rule. It is generalhbh&we equal numbers of samples that
uniformly span the range of "nesses” [11] (pp. E)geldrum [11] (pp. 23-24) has
noted that “it is more than worthwhile to expene #ffort to select or generate a

sample set that meets the scaling study requiresrient

The third consideration is the image size, whictaisvell-known factor in image
quality judgements [47] (pp. 116-119), [48] (pp-72). In general, it is easier to keep
the size of the image in a scaling study constéts eliminating or minimizing its

influence on observer judgement [11] (pp. 24).

Also, the consideration should be taken of the enagntent or image elements.
These may be selected on the basis of having diffdonal ranges, dominant lines
and edges, high-frequency information, etc. [1] @&8).

The selection of the observers: The choice of ofessris often based on the target
viewing population [33] (pp. 41). This has beenuajsct of discussion, since some
argued that expert observers produce more acawstés than non-experts [14] (pp.
140).

According to ISO 20462-1: 2005 [45] (pp. 6), atdied0 observers should participate
in the scaling, although 20 observers are prefettieavever, an extensive number of
observers should not be required, since no adventeas seen in having a large
number of observations in the human observer ssyd® (pp. 2453), [50] (pp. 436).

Using a large number of observers makes the expatitime-consuming.

Observers should also be checked for normal vislmaracteristics, such as colour

vision and visual acutance [45] (pp. 6).
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All selection criteria and the number of obserwetsng part should be reported [45]

(pp. 6).

iii) The question including the instructions: The questeeds to be handled carefully

to achieve meaningful and useful results. The dquesteeds to include a statement

of what is to be evaluated by the observer, as wasllithe mechanics of the

experimental procedure [45] (pp. 6).

iv) The viewing conditions: ISO 20462-1: 2005 [45] (gp.and 1SO 3664: 2000 [51]
(pp. 13) set out recommended display viewing comst Table 2-3 presents the

recommended viewing conditions for scale accuracirapeatability of experiments.

ISO 20462-1: 2005

ISO 3664: 2000

Display luminance level

> 60 cdfm

> 75 cd/m

Display White point

CIE illuminant D50

CIE illumima D65

Surround luminous reflectancs

1%

< 64 Ix

< 64 Ix

Table 2-3. Recommended viewing conditions for digpl
(adapted from ISO 20462-1: 2005 [45] (pp. 7) and BB64: 2000 [51] (pp. 13)).

v) The duration of the experiment: The experimentalation should not exceed a

maximum of 60 minutes to avoid observer fatiguq [$p. 7).

Other issues and factors should be reported, imgyutthe complexity of the experiment,

the adaptation of the viewing conditions and theaunding environment [33] (pp. 41).

2.2.1.2 Scene dependency

As mentioned before (in the choice of test samptésg)results of psychophysical scaling

are highly dependent on the context of the imagsl.uriantaphillidouet al [10] (pp.

260-262) have described three different originscgine dependency.
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)

ii)

Scene dependency resulting from the observer’sitgueatiteria (i.e. observer’s
preference): An example of the scene dependenay fine@ observer’s preferences is
that observers judged the sharpness of portradslaardscapes differently [13] (pp.
28). Portraits with low sharpness are preferredr @wer-sharpened portraits, while
the opposite applies to landscapes. The reasog kg ‘soft focus’ renders the skin
smoother and thus more pleasant to the viewer, e@sestrong lines and edges are
usually preferred when they are sharp. Scene deaistcs, such as the spatial
distribution of subjects [16] (pp. 663) and camieraubject distance [12] (pp. 13), are

crucial scene dependence parameters in the ob'sepveferences.

Scene dependency due to a visibility of an artefddtis is known as scene
susceptibility [14] (pp. 131), as imaged scene iuas liable to be influenced or
harmed by the visibility of an artefadfariations in scene susceptibility occur when
the same objective amount of an artefact, suchoésenstreaking or banding is
present in images, but it is more or less evidendifferent types of scenes or
different areas with the same scene. Keelan [1@] 181-135) shows that the digital
artefact of streaking is more evident in clear-skgge areas (i.e. relatively uniform,
light areas) than in image areas of high-frequesiggals and in extensive dark areas,
which visually mask that streaking. Similarly, #given print granularity, it has been
shown that graininess (i.e. a subjective measugghofographic granularity) usually
decreases with print density [15] (pp. 310), andckedark areas in prints are less

visually susceptible to the artefact.

Scene dependency due to digital processes or irpageessing algorithms: A
classical example is image compression [18] (pB-2%/7), [32] (pp. 144-146).
Applying the same objective amount of compressian ¢ompression ratio) in two
different images, one with mostly high and the otthéh mostly low-frequency
information, will discard different quantities ofhformation, since both discrete
cosine transform (DCT) [52] (pp. xx-xxiii) and diste wavelet transform (DWT) [53]

(pp. 22) compression schemes discard mostly highagrequencies.
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2.2.1.3 Effect of blur and noise on image quality

Perceived image quality has been studied usingpubaied images, which adjust various
parameters. Nijenhuis [54] (pp. 61) measured tlregdeed image quality of a blurred
image on a cathode ray tube (CRT) monitor at sébdmalevels. The blurred image was

varied by Gaussian blur filtering, using differestandard deviations. In this study, the

image was an artificial picture consisting of aremy lit square area of 0.1 k0.1 m
with a luminance of 45 cd/mThe background was 0.28n9.28 m with a luminance of

15.7 cd/m. The viewing distance was 4 m, corresponding wifteld size 4 x4°. Figure

2-2 shows the results for blurred images.

10 _‘Tgubj image quality SQRI value (jndl
_""‘—‘-.;__'_&‘\. sigma vert.
* — s + 0 arc min
8 #L - e \7__\-\\ * 059
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l___ = SN Bﬁ\ ~—— *126
6 — e =
| R \~\“—<‘, )?\\ N - ~—SQRI
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4 \\\ *-\-'4\.\_‘* <_\.\,:'ﬁ-\~<\3<r—‘»\ u
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Figure 2-2. Subjective image quality of a blurredhge at several combinations of horizontal and
vertical directions. The broken line indicates shjective image quality result and the solid line

indicates the calculated SQRI (Square-root Int¢galie

(produced by Nijenhuis [54] (pp. 61) and reprodubgdarten [55] (pp. 180)).

Kayargadde

[56] (pp. 78- 96) measured the percemngsiness, not the perceived image

quality. In the study noise was added to a purdeneld on a CRT monitor. The noise

image was varied by Gaussian noise filtering, uglifferent standard deviations. The

images had

a size of 0.17 ®0D.17 m and were viewed from a distance of 1.4 m

corresponding with a field size of ¥ 7°. The luminance levels were 30 cd/rRigure 2-

3 shows the

noisiness results.
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Figure 2-3. Scaled noisiness as a function of itn@a, measured at a white field on a CRT. The
broken line indicates the subjective noisinessltesud the solid line indicates the calculated
SQRI value
(produced by Kayargadde [56] (pp- 87) and repreduxy Barten [55] (pp. 189)).

Kayargadde [56] (pp. 91-96) also investigated tifiece of noise on two natural images
(Figure 2-4). The noise image was generated by S&usoise filtering, using different
standard deviations. The results were obtained rut#efollowing conditions: viewing
distance 1.4 m, field size 9.& 9.8, and image size 0.24 x0.24 m.
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sigma noise

Figure 2-4. Scaled noisiness as a function of idp@a, measured for two natural scenes. The
broken line indicates the subjective noisinessltesud the solid line indicates the calculated
SQRI value
(produced by Kayargadde [56] (pp. 92) and repreduxy Barten [55] (pp. 193)).
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2.2.2 Objective evaluation

According to Komineck [57], “what the coding comnityrdesperately needs is an easy
to compute error measure that accurately captaine$ $ubjective impression of human

viewers.” Although image quality is the subjectiimpression of human viewers, it

would require an objective measurement for quiak @asy implementation.

2.2.2.1 Image quality metrics (IQMs)

Image quality metric (IQM) is the quantified measof quality as numbers derived from
physical measurements (cf. Table 2-2), which relatepsychophysical attributes of the
human eye [1] (pp. 371). A simplified diagram f@M is shown in Figure 2-5.

Sharpnes . ' Visual systen
Parameters

Image quality metric

(IQM)

Figure 2-5. Simplified diagram of image quality met
(adapted from Triantaphillidou and Jacobson [1] @f2)).

A large number of different IQMs have been proposedrder to predict subjective
image quality. However, individual metrics havewanber of limitations, because of the
multidimensional nature of image quality [58] (d@.1). Nevertheless, these metrics have
been used for image quality assessment since tbaywell when dealing with a single
property, such as sharpness on an imaging sysfefpd1377-380). According to Farrell
[59] (pp. 302), “when used properly, metrics carpbe/erful design evaluation tools.”

23



Kyung Hoon Oh, 2014 Chapter 2. Image quality

There have been various approaches for the unlvphsaical measurement of image

quality (Figure 2-6). Examples of IQMs are giverliable 2-4.

Variable Exponen
Minkowski Metrics

Visible Differences
Predictor (VDP)

E Industry led based approaches|
,  Standards . @@ ' ./ be----------ooo--- '
e IMAGE Cognitive !
| MTF based QUALITY approaches |
' approaches JJCTTTTTTTTTITTICL,
i with/without noise Visuo-cognitive i
ST Information
i Information Z'_ZZ'_'_ZZ'_ZZ'_ZZZ'_ZZI
i Capacity CIE + SpatialhAE i
1 approaches approaches !

Psychophysical

Observations

Figure 2-6. Various approaches to image qualityrimet
(adapted from Jacobson [60] (pp. 55)).

Acronym Full name
SMTA System Modulation Transfer Acutancg
CMTA Cascaded Modulation Transfer Acutarce
AMTA A Modulation Transfer Acutance
MTFA Modulation Transfer Function Area
SQRI Square-root Integral
SNR Signal-to-Noise Ratio
SQR} Square-root Integral to include noisg
PIC Perceived Information Capacity
CRI Colour Reproduction Index
s-CIELAB Spatial CIELAB
iCAM image Color Appearance Model
EPIC Effective Pictorial Information Capacity

Table 2-4. Examples of image quality metrics
(adapted from Jacobson [27] (pp. 7)).
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MTF based approaches with/ without noise: SMTA fteys modulation transfer
acutance) [61] (pp. 643-644) is one of the earlesposals of a metric for sharpness.
This sharpness metric was extended in to CMTA @ded modulation transfer
acutance) [62] (pp. 1009) and AMTA (a modulaticemsfer acutance) [63] (pp. 125-
128), which improved their correlation to the péred sharpness.

Another sharpness metric, which achieved wider @tatdity as a standard in the
USA for monochrome CRT displays [64] (pp. 17-18)MTFA (modulation transfer
function area) [65] (pp. 387). However, it has bedtown to be a poor quality
predictor when applied to digital systems [66] (B#8). [67] (pp. 69-98).

This limitation of the MTFA metric led to the evaion of SQRI (square-root integral)
of Barten [68] (pp. 2025) and its further modificai to include noise, SQR(square-
root integral to include noise) [69] (pp. 9-10), imlhwas based on SNR (Signal-to-
Noise Ratio) [70] (pp. 59).

Another sharpness and noise metric based on SNkhawn as PIC (perceived

information capacity) [71] (pp. 7-10).

- 5 0.5
PIC = k, [fo In (1 +—SWMeye@w )9] +k, 2.1)

N(u) nge (W+Neye(w)/ u

where S(u) is the signal spectrum multiplied by the squaredR8If each system
componentM,,.(u) is the MTF of the observeN(u) is the noise in the image,

Ny (u) is a noise term for the observer, &@ndk; are constants.

CIE + SpatialAE approaches: CRI (colour reproduction index) [44}.(83-87) was
the first colour IQM, which includes prediction oblour appearance under specified
viewing conditions. Further metrics now exist, whillow the inclusion of the eye
responses to the spatial frequencies of imageselsas their colour. The examples
are Zhang and Wandell's s-CIELAB (spatial CIELAB)3] and its modification,
iICAM (image color appearance model) [9]. Althoudie s-CIELAB and iCAM are
considered as image quality models, they mightxtensions of fidelity measures.
This is because the models are based on differ@eckction.
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Information Capacity approach: EPIC (effective pi@l information capacity) [74] (pp.
7) is a sharpness and noisiness quality metriedasa information capacity theory [75].
The EPIC is derived from theffective pixel dimensiom the imagerf) and the number

of effective distinguishable levdisr each recording celir).

The effective pixel dimension in the imag®g (s calculated by:

_ Aim
n= 2 (2.2)

whereA;, is the area of the image, awnds the effective pixel dimension.

The number of effective distinguishable levels dach recording cell (dynamic range of

a system)rq) is described by:
DS
m= Ko +1 (2.3)

whereDSis the difference between the maximum and mininpassible levels of
the recording system, k is a constant ands the standard deviation in the
imaging systems.

The perceived capacitg, is derived by:
C=nlogy(m) (2.4)

The perceived capacitf] is divided by the visual solid angl@), which then yields the

number of effective bits per visual steradian.
EPIC = < 2.5
= (2.5)

Q=An/r? (2.6)

whereA;, is the area of the image, and the viewing distance.

2.2.2.2 Tone reproduction

Tone reproduction was studied firstly by Hurter @nvifield [76], and the theory of tone
reproduction was established by Jones [77, 78, T#83. terms were later formalised by

Nelson [80]. It is concerned with the relationstuptween input-to-output intensities.
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This relationship is described by the transfer fiomcthat involves the effective single
parameter, gamma)(

The conventional photographic transfer functionpwn as the characteristic curve, is
described by a function that relates the commoaritdgn of relative exposure and the
reproduced density. The gamma i§ defined by the gradient of the straight lioenfied
when plotting data on a logarithmic space (Figui® B1] (pp. 223-225).

. ____,.o-'-'____ T
Shoulder regic L Region o \R
solarisation
Linear regiol
Log output
Toe regiol
_-"'-- ] -H|C
Log input
Threshold
gamma(y) = tan(c) (2.7)

Figure 2-7. Typical characteristic curve and gamma
(adapted from Attridge [81] (pp. 224)).

The transfer functions for electronic still-pictucameras, known as the opto-electronic
conversion function (OECF), are described by 1SG28#4 1999 [82]. The OECF is
commonly described by the relationship betweenahginal scene luminances (often
expressed by luminance ratios, such as scene mrrpflectance, or film transmittance)
and the generated digital counts. The transfer tiomcs often referred to a power
function in linear-linear units. The equation isfa@ows [83] (pp. 384):

PV =0+ glLYa (2.8)

wherePV is the generated normalised pixel valués the input luminance ratio,is
the system offsety is the system gain andrepresents the camera gamma.
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The CRT transfer function is an approximate powencfion that describes the

relationship between the input normalised pixelueal and the generated normalised
output luminances. The equation that commonly dessithe CRT transfer function is as
follows [84] (pp. 24):

L=o0o+gVYd (2.9)

wherelL is the displayed normalised luminantgis the normalised input voltage,
and g are the offset (contrast) and gain (brightnessjhef system. Theg is the
gamma of the display system.

The relationship between the input pixel values #r output luminances in a LCD
differs to that of the CRT [85] (pp. 609), [86] (pp). The LCD native relationship is
modelled as S-shape function [87] (pp. 191-193)ufé 2-8 shows the transfer functions
of common CRT and LCD.
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Figure 2-8. Typical transfer functions for CRT {Jednd LCD (right)
(produced by Barma[85] (pp. 612-614)).

Many LCD manufacturers build correction tables itite video card, so that the LCD’s
transfer functions mimic the CRT transfer functig@8] (pp. 15). Therefore, the above
CRT equation (2.9) can be used to describe thafeamcharacteristics of such displays
[83] (pp. 382).
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In an imaging chain, it is possible to involve irragncoding, e.g. SRGB and Adobe RGB.
The sRGB transfer function is not a pure power fi@nc At exceptionally low relative
luminances, the transfer function is linear. Alat®le luminances larger than 0.003130,
the encoding gamma is equal to the exponent liRedoffset is -0.055 and the gain is
1.055 [89] (pp. 12). The Adobe RGB 1998 transferction is a pure power function,
which has a gamma of 2.199 [90] (pp. 9-16). Theodmy transfer functions are
described in Appendix A. Figure 2-9 illustrates #iRGB and Adobe RGB 1998 transfer

functions.

1.0 g
L
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5 08 /
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(=] //"/
@ /////
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7, )
8 0. , Adobe RGB
& / ‘ ‘
2 )
©
[
I
0.2 0.4 0.6 0.8 1.0

Relative RGB input, linear with luminance

Figure 2-9. sRGB (solid line) and Adobe RGB 199&ieH line) transfer functions
(produced by Triantaphillidou [83] (pp. 387)).

Jones [78] (pp. 235-239) introduced a descriptothef overall tone reproduction. The
overall gamma Jgvera) Can be calculated by multiplying each componemigna value of
the imaging chain. Following equation sets outwlag of calculating the overall gamma

in imaging systems:
Yoverall = Joystem, X Vsystem,X ... X Vsystem, (2.10)

Optimal overall gamma)f) is achieved by a gamma correction) (with the overall

gamma fsveral). The optimal overall gamma can be expressed bly([#. 205):
J6= Yoverall X Je (2.11)
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The optimal overall gamma can only be consideregénwthe viewing conditions are
known. Typically, the optimal overall gamma valuesy between 1.0 and 1.5. Some of

the reported optimal overall gamma values arediatefollows [83] (pp. 379):

» Reflection prints: close to 1.1 to compensate lamefin bright viewing conditions.
* Viewing monitor/ television: approximately 1.25dim environments.

» Transparencies projected motion pictures: 1.5 ik dandition (typically a gamma of
1.6 to compensate also for flare).

» Displayed digital images: between 1.1 and 1.15ficesettings.
» Displayed sRGB images on CRT: 1.125 for dim illuatian conditions and flare.

2.2.2.3 Colour reproduction

The colour of an object depends on three compontredight source, the chemical and
physical properties of the object and the humanalisystem (HVS) (Figure 2-10) [92]
(pp. 54). The first component is the light sourckioh provides the electromagnetic
energy. This energy is modulated by the physicdl @remical properties of the object.
The modulated energy is perceived by the HVS.

Light Source

/N

—
B Human Visual System

Objects

Figure 2-10. The triangle of colour. Colour exidte to the interaction of light sources, objects,
and the human visual system
(adapted from Fairchild [92] (pp. 55)).
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The description of colour in images is traditiogddased on spectral colour definition or
colorimetry[93] (pp. 205-207). Colorimetry is based on rulésmatching colour using
additive colour mixtures, i.e. it is possible tototaall the colours of the spectrum. When
this is done the result is represented by threeesyreferred to as thmlour matching
functions[94, 95].

In 1931, the Commission Internationale de I'Eclg@rdCIE) [96] first assigned colour

matching functions, which represent the Q31 2°standard colorimetric observdor

the XYZprimaries.
X =k [,RDI(DZ(D)dA (2.12)
Y =k [,RIDID)F(HdA (2.13)
Z =k [,RIDI(A)Z(DdA (2.14)

where k is a normalizing constant which is defirditferently for relative and
absolute colorimetryR(1) is the spectral data of the coloured obje€t) is the
spectral power distribution of the irradiating ithinantx, y andz are the colour
matching functions of the CIE standard colorimeficobserver, and is the range
of wavelength of the visible electromagnetic speat{CIE publication 15.2 [97] (pp.
23) recommends that for practical purposes 5nnmiake over the range 380-780 nm
be used).

In 1964, the CIE suggested the primangs, Yo and Zjo, basing them on the colour

matching functions of the standard colorimetric b@%erver. The comparison between
the colour matching functions for the 2° and thé @Bservers is illustrated in Figure 2-

11 [98] (pp. 99).
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Figure 2-11. Colour matching functions relatedh® standard observer CIE 1931 (visual field of
2°, continuous line) and to the standard obserVeri®64 (visual field of 10°, dotted line)
(produced by Hunt [98] (pp. 99)).

The x, y and z chromaticity coordinates are calculated to deteemthe stimulus
chromaticity in the CIEXYZsystem. The sum of three chromaticity coordinasesnie.
Chromaticity coordinates are plotted in GliEchromaticity diagram. The diagram shows
only two-dimensional stimuli information. Thé tristimulus value is usually reported

providing full colour informationx,y,Y).

x=X/X+Y+2) (2.15)
y=Y/X+Y+2Z) (2.16)
z=Z/X+Y +2) (2.17)

The CIExy chromaticity diagram does not provide perceptuaoumity. A lot of efforts
were invested into producing a perceptually unifatimgram. This is achieved by the
CIE u'v' chromaticity diagram (the CIE 1976 uniform chroitiy diagram). The CIE

u’,v’ coordinates are derived from eith&iy,Zor x,y,zby the following equation:

u' = 4X/(X + 15Y + 3Z) = 4x/(—2x + 12y + 3) (2.18)
v = 9Y/(X + 15Y + 3Z) = 9y/(—2x + 12y + 3) (2.19)

where the third chromaticity coordinat, is equal to du’-v'.
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In 1976, the CIE 197@*u*v* (CIELUV) and CIE 1976L*a*b* (CIELAB) colour
spaces were recommended to represent colour ie-thngensions that approximately
correlated with the perceived lightness, chromalaraof a stimulus [99] (pp. 29-33).

» Lightness is the brightness of an area judgediveldb the brightness of a
similarly illuminated reference white [100] (pp. &390).
Lightness = Brightness/Brightness(White) (2.20)
» Chroma is the colourfulness of an area judged@sgortion of the brightness of
a similarly illuminated reference white [100] (@Y. & 90).
Chroma = Colourfulness/Brightness(White) (2.21)

* Hue is the attribute of a visual sensation accgrtiinwhich an area appears to be
similar to one, or to proportions of two of the gawved colours, red, yellow,
green and blue [100] (pp. 85).

The CIELAB colour space uses two colour coordinaépproximate redness-
greenness) and*(approximate yellowness-blueness), and a lightressdinate L*
(Figure 2-12). These coordinates are derived fromXYZ tristimulus values of the

stimulus and the, Y, Z, of a specified reference white.

Green

ab
Hue angle

v

Dark

Figure 2-12. Cylindrical representation of CIELABl@ur space
(produced by Fairchild [92] (pp. 80)).
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L'=116f (Yi) ~16 (2.22)

a* =500 [f (Xi) —f (Yl)] (2.23)

b* =200 |f (Yi) —f (Zi)] (2.24)
(x x > 0.008856

flx) = (2.25)
7.787(x) + 7o x < 0.008856

In the CIELAB space, the chrom@y,, and hue angle by, are calculated the following

equation:
Ch =va? +b* (2.26)
hap = tan~* (%) (2.27)

In the CIELAB space, colour differencesE* 5) are measured as the Euclidean distances
between the coordinates of the two stimuli (Figt&3). The colour differences can be

broken down into the components of lightness, claramd hue.

L*

ChromaC* 4

7N

AL* ab

Lightnesd *

a*

Figure 2-13. Geometrical illustration of the colalifference AE* ,,) in CIELAB colour space
(adapted from Triantaphillidou [101] (pp. 32)).
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AE:, =V AL? + Aa*® + Ab* (2.28)

AE}, = J AL* + ACYp + AHZ (2.29)
Various modifications (e.g. CMC(l:c), CIE94, CIE REDO) have been developed to
improve the uniformity of colour difference measuent, based on the CIELAB colour
space. The CMC(l:c) [102] (pp. 130) is a modificatwidely used in the field of textiles.
The modified CIE94 AE*g4) [103] (pp. 8-11) utilises specified reference coinds, and

it is used in various industries. It includes weigy functions K., Kc andKy for better
representation of colour difference. The CIE DE2Q0Hyg) [104], [105] (pp. 348-350)
was developed as an improvement to the CIE94 caldterence formula. It includes
corrections for variation in colour difference pgption dependent on lightness, chroma,
hue and chroma-hue interaction. The CIE DE2000 been retained using the same

conditions as the CIE94 model, presented in Talile 2

o = J(25) + () + (o) + e (25) () 2:30)

whereS. = 1+0.015( ,v50)/[20+(L v50]** with L y=(L 1 + L'g)/2
S =1+ 0.045C ) with C, =(C 1 + C)/2
S=1+ 0.015C ) (T)

with T=1-0.17codf ,-30°)+0.24c0os(R )+ 0.32cos(B ,+6°)- 0.20cos(4 -63°)
with b =(h'1 + h'g)/2

Rr=-sin(2A0)R, with AG=30exp[-(f ,+275)/25°)7]

R.=2[C ' /(C n'+25))]"

L'=L*, a’=a* (1+G), b'=b*

G=0.5[1- (C'abm/ (C'apm +25)) 7 With Capn( Cana+ Candl2

Ku, Kc andK are parametric factors, which may be chosen olfar 1 if experimental

conditions deviate from reference condition.
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Reference conditions

lllumination CIE illuminant D65 stimulator
llluminance 1000 Ix
Observer normal colour vision
Background field uniform, neutral gréy=50
Viewing mode object (such as colour patch)
Sample size greater than 4° subtended visual angle

minimum sample separation achieved by

Sample separation . N
P P placing the sample pair in direct edge contact

Sample colour-difference magnitugle 0 to 5 CIELAB units

Sample structure no visually apparent pattern arunaformity

Table 2-5. CIE 94 and CIE DE2000 colour differesa&ference conditions
(produced by CIE 116: 1995 [103] (pp. 6), CIE 12001 [104] (pp. 2) and reproduced by Bilissi
[106] (pp. 44-45)).

2.2.2.4 Resolution

Image quality also depends on structural image eit@s, such as resolution and

sharpness. Resolution describes the finest détilnhay be recorded by a system [110]
(Pp. 4).

In a silver based photographic system, the resoluis determined by measuring the
resolving power of the total system, and it is edi as the number of lines per distance
that can be resolved by an observer, i.e. the lowase of the test pattern where the
individual black and white lines can no longer hstidguished [33] (pp. 53). The

resolving power is strongly dependent on a lingegtiand quality at each stage of the

complete system, i.e. lens, photographic, microscapd visual system [111] (pp. 81).

In digital imaging systems, the resolution is ddésmt as pixel resolution and spatial
resolution. The pixel resolution is expressed lgyribmber of elements per unit area. The
spatial resolution is expressed by the numbemaf fiairs per unit distance or cycles per
unit distance [33] (pp. 53-54).

36



Kyung Hoon Oh, 2014 Chapter 2. Image quality

The resolution can be measured by MTF (cf. Sectib@.2.5). Generally, the
corresponding point to a 10% MTF can be measurddedsniting resolution(Figure 2-
14) [112] (pp. 34).

= 107 o

Q@ Ry criterion:

2 Limiting resolution will generally
g correspond to the spatial frequency having a
— -

c 0.10 modulation transfer value.
<}

< 0.5 A

>

©

o

=

C'o lx'x S —

Increasing spatial frequency
(In/mm or cycles/mn

Figure 2-14. Limiting resolution in modulation tsdar function (MTF)
(adapted from Burns [112] (pp. 34)).

2.2.2.5 Sharpness

Sharpness is the perception of micro-image conffesd] (pp. 443). It is commonly
measured using modulation transfer function (MTHR)d aacutance. The MTF
measurement has been a more successful measuointhém the acutance, since the
MTF is a function describing the behaviour of tlystem at different spatial frequencies
and falls to some threshold value [33] (pp. 55)e MiTF measurement has been used as

a detailed image quality prediction measure forartban fifty years [114] (pp. 7).

The theory of MTF is strictly valid in linear, isopic and spatially invariant systerhs
[115] (pp. 124), [116] (pp- 187). However, digitalaging systems are non-linear, since
they are non-isotropic and non-stationary systetii3][(pp. 231). Compensation for the
non-linearity present in a digital system is neaegdor the accurate evaluation of the
MTF. The non-linear compensation is able to be ead by correcting the system for
transfer compensation or restricting the test tatge very low contrast [118] (pp. 232-
233).

2 The impulse response of digital imaging systemsoisrotationally symmetrical due to the rectangula
shape of the pixels. A stationary imaging deviadds the same response to a point source at aitjopos
within its field of view [33] (pp. 87).
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There are various MTF measurement methods, indudiperiodic (sinusoidal) signal
method and non-periodic methods [113] (pp. 446¥fe@nt methods generally yield
different results [117] (pp. 235), [119] (pp. 811).

The periodic (sinusoidal) signal method is the ioa method. The MTF commences

with the definition of a sinusoidal input:

I(x) = a + bcos(2mwx) (2.31)

wherea is the average signal level (offset)is the amplitude and is the spatial frequency.
The original input modulatioiMi,(c), is calculated by:

_ Imax—Imin _ b
My (w) = =
Imax+Imin a

(2.32)

wherel,, ., represents the maximum intensity, dpg, represents the minimum intensity of
the sinusoid.

The reduced output sinusoidal signal is expresged b

I'(x) = a+ b'cos(2nwx + ¢€) (2.33)

wherea is the average signal level (offsdi),is the reduced amplitude, is the
spatial frequency anglis the phase difference.

The reduced output modulatiavl, (), is calculated by:
I'max—1"min b
Mour(w) = o=t = = (2.34)
wherel’,,, ., represents the maximum intensity, dnhg, represents the minimum
intensity of output sinusoid.
The modulation transfer factdv](«), is the ratio of output modulatioMou{ <), to input
modulation,Mir(«) (Figure 2-15). The MTF is plotted as the modwolatiransfer factor

against spatial frequency (cf. Figure 2-14).

M gyt (@)

MO = M)

(2.35)
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= N/ V'

Linear
system

2-D

Input Sinusoid Output Sinusoid

Figure 2-15. Imaging a sinusoidal exposure
(adapted from Jenkin [114] (pp. 5)).

The non-periodic MTF methodiénclude the edge gradient technique and the slante

edge technique.

In the edge gradient technique, the MTF is derifredh the modulus of the Fourier
transform of the line spread function (LSF) (Figut€l6). The LSF is obtained by

differentiation of the edge spread function (ES§ipg a reasonably produced edge.

M(w) = |77 L(x)e-2mox dx| (2.36)

whereL(x) is the LSFx is the distance angis the spatial frequency.

ESFJM/\ . LSF 'r{ - \WM MTF
| . T.
| E= ly

. i
wij W’M '”W\'M % W

X ) ¢ [

Figure 2-16. Derivation of modulation transfer ftion (MTF) from the edge spread function
(ESF) via the line spread function (LSF)
(produced by Axford [123] (pp. 407)).

% Noise method [120, 121] and dead leaf method [#2€]also non-periodic MTF methods.
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The basic relationships between MTF and spreadiimecare illustrated in Figure 2-17
[114] (pp. 16).

Modulation

transfer
function (MTF)

Normalised modulus of
Fourier transform

Integrate over one Differentiate
orientation

Line spread

function (LSF)

Point spread Edge spread

function (PSF) Integrate function (ESF)

Figure 2-17. Relationships between spread functamasmodulation transfer function (MTF)
(adapted from Jenkin [114] (pp. 16)).

The basic edge gradient technique was sensitivphtase differences between the
experimental target and sampling comb and alsaitiger sampling [114] (pp. 25). To
overcome these problems, Reichenbetcal [124] (pp. 172-174) originally developed an
extended edge technique based on a sloping td8@t12233: 2000 [110] has revised

this slanted edge technique.

This technique is based on a sloping edge targetaismall amount of rotation (5-10°) is
intentionally introduced into the edge target [1{®}. 5-9). The target is imaged in the
usual manner. Even illumination of the target isvited using two light sources [110]
(pp. 10-11).
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Each row value in the imaged edge represents gpomnse of the system to an edge that
is slightly shifted with relation to the previousw. The image code values are linearised
by inverting the OECF of the camera. After thagre-dimensional super-sampled line
spread function is formed using the derivativeshefimage data. Using the first line as
reference points, the data points from all the olines are placed into one of four "bins"
between these reference points, according to 8tardie from the edge for that particular
line. This creates a single super-sampled "comgbsite spread function, having four
times as many points along the line as the origimalge data. A hamming window is
then applied to reduce the effects of noise, aednibrmalised modulus of the Fourier

transform is calculated to produce the spatialfesgy response (SFR).

The SFR is generated from uniformly super-sampladtasd edge profiles where the
input edges are of sufficient optical quality. TBER of the system, SFR), is a
combination of the frequency content of the edggetaMeqqd @), and the MTF of the
systemM(a) [117] (pp. 233):

SFRE@=Meagd @) X M(c) (237)

According to Burns [125] (pp. 135), the input edped needs to be of a sufficient optical
guality, for the SFR to be taken as an estimath®MTF of the system. Otherwise, the
output modulation can be divided by the input targedulation, frequency by frequency,

to yield the system MTF.

A diagram of a super-sampled edge constructionh@va in Figure 2-18. The SFR

algorithm is shown in the flow-chart form in Figu2elo.
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O == =0 = = O~ - - O ~ V= - - - = - Q-9
G—-—--0-=-0- - - -0 i 2 Lol e > A < Y 5
Scon Line Knife Edge Location
b——-—o——‘—-—b———-A-—-—-A-——-A—-—--—-A———A
Sample Point
G---0---0-- -t —@---@---p
P>]

Figure 2-18. Schematic of CCD/CMOS detector array super-sampled edge construction
(produced by Reichenbach [124] (pp. 172)).

(" Selectregionof | ——
interest (ROT) i OECF |
\including slanted edge ; | /'
l Using the linear fit aata, project
Linearize image data —» (shift) the LSF data along the edge
using the OECF direction to the top line of the ROI
Compute derivative to obtain line "Bin" the shifted data, sampling at
spread function (LSF) in the x 1/4 of the original image sampling,
direction using FIR filter and apply Hamming window
Compute centroid of each LSF in Compute discrete Fourier transform
the ROI, and fit a linear equation to (DFT) of the windowed, binned
the centroid locations LSF data
Calculate the number of lines per | Report the normalized modulus
phase rotation, and reduce the | | values as the SFR
ROI to have an integer number '
of phase rotations

Figure 2-19. Flow-chart of spatial frequency reg@(SFR) measurement algorithm
(produced by ISO 12233: 2000 [110] (pp. 13)).
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2.2.2.6 Noise

According to 1ISO 15739: 2003 [126] (pp. 2), noisaléfined as “the unwanted variations
in the response of an imaging system.” Theoreticdllvaries randomly in the image
plane and is independent from the input signal.r@foee, the noise is quantified as a

random process [127] (pp. 413).

The causes of image noise in digital imaging systare random partitioning of exposing
light, photo-electronic noise, electronic noiseamwfization noise and Poisson exposure
noise. If an image is converted from a light intgn®r exposure distribution to an
electrical form, there will be photo-electronic s@i Electronic noise will occur in any
system with electronic components. Poisson expasoise means there is a randomness
of photons in a nominally uniform exposure disttibn. The photo-electronic noise and
the electronic noise are the main cause of imaggerad the output of a charge-coupled
device (CCD) imaging array [113] (pp. 433-434),{1%p. 413).

Noise can be described in density units (den@gdvhere the fluctuations might be

luminance or digital values [113] (pp. 438).

In the luminance fluctuations, the noise is definsd

lim 1 (x
2 2
on'= ;f_xAD (x)dx (2.38)

whereAD(x) is the deviation oD(x) from mean density.

In the digital value fluctuations, the noise isidefl as:

N
2 1 2
Op~ = mz ADl (239)
i=1

whereAD; is theiy, measured value of the deviatidhvalues are recorded, elgis 1000.

Instead of evaluating the mean square density tleniaf a noise trace, the noise power
spectrum (NPS) or Wiener spectrum is directly dakea [113] (pp. 438):

N(w) = i'fox AD (9c)e‘2“i“”‘dx|2 (2.40)

43



Kyung Hoon Oh, 2014 Chapter 2. Image quality

whereN (w) is the noise power spectrumis the range of integration add (x) is the
measured fluctuation at positian

The noise levels usually correspond to an imageasighus it should describe the signal-
to-noise ratio for the imaging system [127] (pp0421).

ISO 15739: 2003 [126] (pp. V) suggests the spetifiperating conditions be reported
along with the measurement results, since the nmsiermance of an image sensor may
vary significantly, e.g. exposure time, operatirgnperature and relative humidity,

illumination, white balance and 1SO speed.

2.2.2.7 Models of the human visual system (HVS)

The contrast sensitivity function (CSF) is widelsed as the physical model of the HVS
in the determination of image quality. It measuttes sensitivity to gratings of different
spatial frequencies as the reciprocal of the mautudahreshold [128] (pp. 627-628).

Barten [129] (pp. 63-64) has provided a physicaldetdor determining the contrast
sensitivity of the human eye. This has been testgdinst a wide range of CSF
measurements from various labs. It takes into adceariations in luminance (Figure 2-
20) and viewing angle (Figure 2-21). It is desadiyy [130] (pp. 39):

1

1 Mope(u) [E 1,1 u_2 1 @, ]_2
M (u) N k T (Xg T X2 t Ng) (an + 1—eXp[—(u/uo)2]) (2.41)

whereM,(u) is the optical MTF of the eye defined as a Gaussilistributionk is the
signal-to-noise ratiokE3.0), u is the spatial frequency in cycles per degree)(cp& the
integration time T=0.1s), X, is the image size (degree®}, is the maximum angular
integration sizeXs=12°), N, is the estimated maximum number of cycles ovechvliihe
eye integratesN.=15 cycles),n is the quantum efficiencyn€0.03), p is a photon
conversion factor of the light unitg is the retinal illuminance (trolands®, is the
spectral density of the neural noisk, €3.0x 10° s ded), andu is the frequency above

which lateral inhibition ceasesyE 7 cycles per degree).
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Figure 2-20. Contrast sensitivity functions (CS#sflifferent levels of luminance
(produced by Barten [68] (pp. 2026) and reprodumnedacobson [27] (pp. 8)).
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Figure 2-21. Contrast sensitivity functions (CS&sjlifferent angles of view
(produced by Triantaphillidou [33] (pp. 65) usitig Barten’s CSF model [69] (pp. 8)).

Farrell [59] (pp. 299) was concerned with the latitns of single-channel metrics that
are based on the CSF. This CSF is a relativelylsifymction employed in image quality
investigation. The study was considered as theribomion to the independent visual

multi-channels functions employed in image quadthyestigation [59] (pp. 300).
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2.2.2.8 Objective scene classification

As mentioned before (in the section 2.2.1.2), thkjextive quality depends upon the
scene content of the test images. The nature afesdependency causes problems in

modelling and predicting image quality.

The scene classification with respect to image iuahight be one possible way of
overcoming the problem of scene dependency in inqagdity modelling [14] (pp. 147),
[131] (pp. 413).

There are different approaches for the scene @lzson, such as inspection and
clustering. Objective scene classification is aprapch to identify groups of scene

having or producing correlated responses acrosegetimuli [10] (pp. 269).

The stages of objective scene classification aoevehin Figure 2-22. These stages are

interrelated and depend on the classification te$uB2] (pp. 7).

r
S

M
i

v Y v v v

patierns censor .| feature .| feature | classifier system
: "| generation | selection 7| design evaluation

Figure 2-22. Basic stages involved in objectivenscgassification
(produced by Theodoridis and Koutroumbas [132] D).

For the classification, a number of features areeggted, and then the “bebof them is
adopted [132] (pp. 6).

i) Feature generation: The goal of this stage is tntiiy scene features that will be
used to classify the image. As the image does ettty provide mathematical
information in its natural state, the features lué image are encoded, so that the

relevant information in the image is representedads.

* This is important for successful classificationdaserves different purposes. This is an unresolved
challenge within the imaging science community [(@. 269).
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There are a large number of feature generationnigohs to quantify scene
information, as a numerical output. They includeosel-order statistical measures

and measurement from edge detection.

Second-order statistical measurements are norniatlicators of texture in the
imaged scene [133] (pp. 272), [134] (pp. 666-67MHe second-order statistical
measurements are referred to as the grey levelcoarence matrix (GLCM),
approximation of the joint probability distributioof pairs of pixels (Figure 2-23)
[135] (pp. 562-563).

P(i,j) ==2 (2.42)
whereM is the total number of pixels in the imagddj, j) denotes the

number of occurrences between two pixel valuesidj: the second
pixel (b) is specified at distanaeand angledfrom the first pixel §).

b
\ 0
Figure 2-23. Relationship of a pair of pixels foeglevel co-occurrence matrix (GLCM)
(adapted from Pratt [135] (pp. 562)).

a e

Figure 2-24 presents the example of GLCM usingthengleand 1 pixel distance.

el \‘1 2 3 4 5 6 7 8

"1 Ds|e]e S N T 2o 1[0 a]o

2| 3|s| 7|1 21 0(%M| 1|0l 1]oflo]o

NTHEOD =) 2 NHNE R
/_x _’///

JEBdE alolololol1|ola]o
s|1{ofa]o|l ol1]2]0
sloflololololofol
7] 2ol o|l ol o|ofalo
#lojojo]| ol 1|o|o]o

Figure 2-24. Example of grey level co-occurrenc&iméGLCM), employed the 0° angle and 1
pixel distance in a pair of pixels
(produced by MathWorks [136]).
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Common second-order statistical measurementssiesl Ibelow:
» Contrast (or inertia): relates to the scene textaretion.
k

Contrast = li — jI12P (i, )) (2.43)
0 j=0

|
[
=
[

i
* Homogeneity: relates to the scene texture variati@ontrast (inertia) and

homogeneity are strongly, but inversely, correlatederms of equivalent

distribution in the pixel pairs population.

Homogenity = (2.44)

» Correlation (or linearity): relates to the scenduee variation with linearity.

k—1k-1

i —my)(j —my)P2(,j
Correlation = Z Z ( x)(] y) ) (2.45)
o - Ox0y
i=0 j=0
where
k-1 k-1 k-1 k-1
my= ) i) P@Lj), my= ) j) PGj)
i=0 Jj=0 j=0 =0
k-1 k-1 k-1 k-1
o= (A=m)? Y PG, of= ) (A=my)? ) PG
i=0 j=0 j=0 i=0

* Energy: relates to the disorders in scene texfline. highest energy values

occur when the grey level distribution has a cartsta periodic form.

k-1k-1

Energy = Z z P(i, )2 (2.46)

i=0 j=0

whereP(i,j) is the joint probability distribution of pairs ofxels in the
matrix.
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Edges in an image are fundamentally important, lmeahey often provide an
indication of the physical extent of objects withthee image [137] (pp. 491). The
edge in an image is defined as a set of connediedspthat lie on the boundary
between two regions [138] (pp. 572).

The edge can be detected by the first- and secatet-derivatives of the grey level
edge profile, as an edge detector [139] (pp. 1Ri4ure 2-25 illustrates the first- and
second-order derivatives.

Grey level profile

First-order derivative

Second-order derivative

Figure 2-25. Two regions separated by a verticgeexhd detail near the edge, showing a grey
level profile, first- and second-order derivativdghe profile
(produced by Gonzalend Woo0d$138] (pp. 574)).

The first-order derivatives are based on varioyg@pmations of the 2-D gradient,
such as Sobel, Prewitt and Robert [138] (pp. SE8amples of Sobel and Prewitt are
presented in Figure 2-26.
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Figure 2-26. Examples of approximations of the grBdient

Figure 2-27 illustrates the response of two comptef the gradienG, andGy, as

well as the original image and the sum edge image.
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Figure 2-27. Response image of two componentseoftadientG, (bottom-left) ands, (bottom-
right), as well as its original “Bike” image (topft) and the sum edge image (top-right).
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The gradient of an imagexff) at location X,y) is defined in the vector [138] (pp.
577-580).

Vf = [gx] (2.47)
y

The magnitude of the edge was computed by omittiegsquare-root operation in

G = /G,? + G2 (2.48)

The direction of the edge was also computed irgthdient vector.

the vector.

a(X, y)=tan~?! (%) (2.49)

y

Feature selection: This could be complicated, ssmretimes the salient features are

not easy to select [140] (pp. 11), [141] (pp. 14T)us, prior knowledge plays a major
role in the feature selection.

The feature selection includes statistical hypoghéssting [142] (pp. 166). This
helps discard easily recognizable “bad” choicese @m of the test is to identify
which of the following hypothesis is correct [14Bp. 140):

H, (alternative hypothesis): The values of the featliifer significantly

Ho (null hypothesis): The values of the feature dodiffér significantly

The decision is reached on the basis of experirheswt@ence, supporting the
rejection or not of the null hypothesis. This is@mplished by exploiting statistical
information, referred to as the significance levBd%, 5% and 1% significance
levels are used to describe results as ‘almosifiignt’, 'significant’ and ‘highly
significant.’

The statistical hypothesis testing is a clear iatikbn of the strength of the relation
between variables. If the two variables are notragmately normally distributed, a
rank correlation coefficient is used. An examplewoéh a rank correlation coefficient
is the Spearman’s correlation coefficiemt).( The correlation coefficients range

between -1.0 (indicating perfect anti-correlatioaphd 1.0 (indicating perfect
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correlation), with O denoting no correlation at[A#4] (pp. 219-223), [145] (pp. 80-
81).

iii) Classifier design: Once the feature has been seletihe classification method is
considered. The classification is typically theafirstep for identifying the object,
which is a step that is automatically carried outhaut using human visual
perception. There are a number of suggested atzd®h methods, which include
supervised/ unsupervised classification [146] ¢ipt).

Clustering is an unsupervised classification methdaere there is no training data
requirement [147] (pp. 397). In addition, clustgrincludes k-means clustering. The
main advantages of k-means clustering are simplarid speed, which allows it to
be run on large data sets [148] (pp. 526-528),][149

The k-means clustering consists of several stepls(fh. 406-408). The first step is
to define a fixed number of clusters, k. The chaté is exceedingly influential in
clustering; an inappropriate choice lkfmay yield poor results while the correct
choice of k is often ambiguous. Possible methodshwosing k include empirical
and numerical methods [150] (pp. 750). The emdimcathod is usually preferred
[149]. Once k is chosen, then modifications of distances between all points in the
n" cluster @ varying from 1 to k) and the centre of the cluster applied. The main
idea for their modifications is that the averagstahices between all points in each
cluster and the central point are minimal. Durihgse modifications, new cluster
centres are allocated using Euclidean distances. ribddification stops when the
average distances from all points in thf& cluster and the new central point are

minimised.

iv) System evaluation: Once the results of the clusgeaigorithm have been obtained,
the classification accuracy is assessed by Thetidaand Koutroumbas [132] (pp. 6)
and Dudeaet al[140] (pp. 15).
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2.3 Summary

This chapter concentrates on the theory of imagdityand its measurements.

The broader concept of image quality has no ungjugle definition yet. Currently, there
is a narrow definition of image quality based omd#party, i.e. artefactual, preferential
and aesthetic attributes. A clearer and broadeniteh of image quality might be

required.

In general, the image quality has been measured ugibjective (psychophysical) or

objective (physical) scaling.

Subjective image quality measures are studied flmttom-up and top-down. The
bottom-up perspective is common in image qualitglisg studies. The image quality
rating is formed by the combination of individuakwal attribute scales, which are
characteristics of an image that we sense (coud). $eowever, individual attribute
scaling has been a subject of discussion. Thigesuse individual attribute scaling is a
relatively simplistic way of measuring image qualias it ignores the complicated

relationships between attributes. A top-down parSpe tends to avoid these pitfalls.

Objective image quality measures are studied faredpand are less complex to
implement. However, as of yet, no definitive obijeetscaling method has been put
forward. For this ultimate aim, further objective easurement requires a full
understanding of image formation by the imagingesysall of which involve the end-

user, and of the scene content of the test imaggs for the evaluation.
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Chapter 3

Camera characterisation

This chapter presents the digital image acquisitiewvice (camera) characterisation and
its calibration Initial examination of the fundamental behaviour thle system is

described with respect to spatial uniformity, teeproduction and colour reproduction.

The characterisation can be defined as the demgripf the collective qualities of a
system. The calibration is the process of maimgirthe device with a fixed, known
characteristic [151] (pp. 272-275). The charact&iosm and calibration form a pair and
are interrelated [152] (pp. 388). Figure 3-1 shalwe general characterisation and

calibration process of input devices.

[ — Siinverse
forward

Input

Device Calibration p+—» |Characterization == c

~
Calibrated Input Device

Figure 3-1. Characterisation and calibration fquindevices
(produced by Bala [151] (pp. 273)).
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3.1 Digital camera description

The digital image acquisition device used in thisrkvfor image capture was a Canon
EOS-1Ds full frame digital single lens reflex (SLBamera [153]. This camera uses a
complementary metal-oxide—semiconductor (CMOS) iddyer RGB primary colour
filter, which has 50% green cells arranged in ackbeboard and alternating cells of red
and blue (%2 matrix of R+2G+B pixels form one colour pixeljg&re 3-2 presents the

colour filter array in the camera.

Figure 3-2. Arrangement of RGB sensors in a Bagbou filter
(adapted from Ray [154] (pp. 121)).

The camera had a 35mm SLR body, enabling the userahge of lenses and optical
accessories. A Canon EF 28-135nfm3.5-5.6 IS USM zoom lens was used in

conjunction with this body.

The camera software consists of two parts: thewane and the driver. The firmware
controls the fundamental operations of the camevdyband captures the image
information. The driver is a programme for a congputvhich enables the import of the

image to the computer. Some of the specificatidritbecamera and lens are in Table 3-1.
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Component Specifications

Imaging sensor size: 35.8 x 23.8 mm

Pixel resolution: 4064 x 2704

Colour filter system: RBG primary colour filter agr

Low-pass filter: Located in front of the CMOS senswmn-removable

Camera body| Recording image format: JPEG, RAW (12-bit)

Colour encoding: sRGB and Adobe RGB.

White balance settings: auto, daylight, shade,aastr tungsten light, fluorescent light
flash, custom, colour temperature setting, persehite balance (Total 10 settings)
ISO speed range: 100-1250 (in 1/3-stop increments)

Focal length: 28-135 mm

Lens Maximum aperture: 1:3.5-1:5.6
Diagonal angle of view: 75° - 18°
Driving EOS-1Ds Firmware
software File Viewer Utility 1.2

Table 3-1. Technical specifications for the imagptare system
(adapted from Canon [153, 155]).

3.2 Conditions for capturing

A number of test charts were photographed duriegctimera characterisation. In order
to capture the image, the camera was mounted igpoa twith the optical axis of the lens
being orthogonal to the plane of the target. Theera exposure was operated in manual
mode, and the lens was focused manually with a B0focal length and an aperturefof
11.

Two gas-filled tungsten lamps (3200 K), with 312redi value [156] (pp. 21), were
placed on each side at 45° angle and 1m away fertest targets, so that all areas of the
target were uniformly illuminated (Figure 3-3). Evdlumination of the scene was
assessed using a Kodak R-27 18% grey card. Ninsurezaents were taken on different
points of the grey card using a SEKONIC L-308s tligieter and a Minolta CL-200
colorimeter. The even illumination presented in light meter, and the uniformity of
illumination ranged from 1939 (-3.7%) to 2092 (3)9%in the colorimeter. EN 61966-9:
2004 [157] (pp. 7) notes that the uniformity of@iithination shall be less than 5 %.

56



Kyung Hoon Oh, 2014 Chapter 3. Camera charaetéis

Lanp

Test chart
Colowr temperatule conversion filter

Digital camara

Tm® \
d\\\' AN \‘

N
Y
- N
N
H‘“‘x. N

) Lamp
Figure 3-3. Equipment arrangement for the came@sorements
(adapted from EN 61966-9: 2004 [157] (pp. 20)).

Kodak conversion filters were then placed in frohtthe lens, to obtain a fixed white
point D65 ¥,=0.313,Y,=0.329). The D65 is a commonly used standard ithami and
represents average daylight [156] (pp. 25).

The white balance setting of the camera was seiatwual, to stop the automatic function
of the camera compensating. EN 61966-9: 2004 [Xpp] 25) notes that the white
balance control should be considered as part otdémeera characterisation. A previous
study showed the importance of white balance cbnDdferent colour errors were
identified depending to the white balance settirmgsl the largest colour errors occurred

where the auto white balance setting was used [({8]219).

3.3 Spatial uniformity

The uniformity of the Canon EOS-1Ds was evaluatgdgia Kodak R-27 18% grey card.
Firstly, a number of measurements were taken tarenthe uniformity of the target,

because a non-uniform test target is likely to poedstep intensities.

The target was divided into 25 (5x5) squares (Fedd#). The CIEXYZvalues in each

square on the test target were recorded using ar&ge 7000A spectrophotometer,
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which has reported a good inter-instrument agreé@ed repeatability, i.e. 0.8 average
AE* o at inter-instrument agreement and AH* ;omaximum at repeatability for a white
tile [159]. The CIE colour differenceAE*;, and AEy) between the middle area and
across the target was then calculated. The reaspruding two colour difference
equations is thaAE*,, is well established andEqy is a relatively recent modification
which models approximately uniform colour spaceu§,AE* ,, is useful for comparing
these results with previous studies akBly provides more meaningful insight into
perceptual information.

A
1A 1B 1C 1D 1E h /5¢
2A 2B 2C 2D 2E h /53
3A 3B 3C 3D 3E h /51 h
4A 4B 4C 4D 4E h //5f
A
5A 5B 5C 5D g 5E h/5
2n/15 # Y
LD g WD g WD | g W/ | g W/D g
- u -

Figure 3-4. Twenty-five patches on a Kodak R-27 Xfi##y test target for the camera spatial
uniformity
(adapted from EN 61966-9: 2004 [157] (pp. 11)).

The target was found to be almost uniform in a#las the average colour differences
produced 0.4AE* ;pand 0.38AEy (Figure 3-5). The colour differences in all areasav

below perceptibility thresholds in uniform areas1(0 AE) and complex images, 3.00
AE* 55 [160] and 4.12\E* ;5[161] (pp. 66-67).
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1A 1B 1C 1D 1E
AEkat
2A 2B 2C 2D 2E
[J 0.4-0.6
3A 3B 3C 3D 3E [10.2-04
[]0.0-0.2
4A 4B 4c 4D AE
5A 5B 5C 5D 5E

Figure 3-5. Spatial uniformity on the test targetpressed ihE* 4,

After confirmation of the test target uniformityet target was imaged twice using SRGB
settings and 12-bit capture. Once the first image eaptured, the target was rotated 180°
before the second image was taken. Then, the imiagget was downloaded and saved
as 8 bits per channel uncompressed data, Taggegpk IRiee Format (TIFF) file. This was

because the natural scenes used in the image yguagessment later were also

downloaded and displayed as 8-bit TIFF uncompressades (cf. Section 6.1 and 6.3).

The downloaded image was divided into 25 (5x5) sepdcf. Figure 3-4). The pixel
values for the red, green and blue channels werer@¢ed in each square. The results
were then converted to tristimulus valugs Y and Z, via the sRGB encoding
transformation (cf. Appendix A). The tristimuluslwves for each area were compared to

these of the middle area in order to calculatectteur difference between them.

The non-uniformity of the camera is shown in Fig8r6. The actual fluctuations of the
24 patches ranged from 0.15 to 5.3&Hr 5 and from 0.12 to 2.82 inEgp. The top-right

area (1E) was shown to be the most non-uniformesystrea. This result was shown to
be between perceptibility and acceptability thréddioin complex images, i.e. the

definitions for perceptibility threshold being s&t 3.00 and acceptability threshold at

59



Kyung Hoon Oh, 2014 Chapter 3. Camera charaetéis

6.00 inAE* 4, [160] Where an acceptability threshold has been detedninis typically
twice as large as that for perceptibility [162] (89-70), [163] (pp. 199)

1A 1B 1C
AE*
2A 2B 2C
W 5.06.0
MW 4.0-5.0
3A 3B 3C WM3040
M 2030
W10-20
4A 4B 4c [10.0-1.0
58 5C

Figure 3-6. Spatial uniformity on the camera, espesl ilrAE* 5y,

These results guided the rest of the investigatidagermining that all images would be
captured using the central area of the captureddrgf. Section 3.4 & 3.5, section 5.1 &
5.2 and section 6.1).

3.4 Tone reproduction

A Kodak Q-60R2 reflection test target was used fbe tone reproduction
characterisation of the camera. The Kodak Q-60RRides a 24-step grey scale with
Density min and Densitymax Oof 0.11 and 2.16, respectively. The target is entty an
American National Standards Institute (ANSI) an® ISandard (Figure 3-7) [164].

The tone reproduction of the camera was evaluatedifferent colour settings. This was
to identify the optimal colour setting and the regment of gamma correction for

optimal overall gamma.
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Figure 3-7. A Kodak Q-60R2 test target
(reproduced from Kodak [164]).

The camera is capable of capturing images at caetling of between 1 and 5 (Table 3-

=8

A%

DN

na

2).
Setting Description
number
1 Sets a natural-looking hue and chroma. Effectivebfinging out the subject’s natur
colour tone
2 Sets a hue and chroma suitable for portraitedffe for rendering good skin tones.
3 Sets a hue and chroma similar to high-chroma diide Effective for making the
colours clear.
An image corresponding to Adobe RGB colour spacerésited. It is useful for profil
conversion to Adobe RGB or fine-tuning of chromagcéuse the colour reproducti
4 range is much wider than the standard sRGB setting.
Adobe RGB must be selected for profile conversioecause the ICC (Internation|
Color Consortium) profile is not attached to theagm shot by the camera. Also, chro
adjustment is required as chroma is lower underBBi&umstance.
5 Sets an image low-chroma. Effective for makingpueotone moderate.

The colour settings space for 1,2,3 and 5 is SRGB

Table 3-2. Colour settings and their descriptioithe camera
(adapted from Canon [153] (pp. 48)).
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First of all, a calibrated Macbeth TR 924 reflentidensitometer was employed to
determine the densities of the original grey scMean densities for each patch were

obtained from three measurements.

The target was then photographed using a varietplour settings as listed in Table 3-2,
i.e. four sSRGB and one Adobe RGB. All captured ismgere downloaded and saved (cf.
Section 3.3). Then mean pixel values for each cagtgrey scale step were measured
using Scion Image software [165]. This measuremned taken using 16QL00 pixels

from the central part of the patches.

The measured camera OECF is shown in Figure 3-8.t0he reproduction had little

variation with respect to the colour settings usdtese minimal differences indicate that
the camera’s tone reproduction is affected onlyhsly by the sSRGB/ Abobe RGB colour

encoding. This result is unsurprising since bothttnsfer functions have similar trends
(cf. Figure 2-9).

1.00
0.80 -
Settings
>
o 0.60 - 1
°©
O
N .2
£
S —3
< 040 -
——4
ffffffffff 5
0.20 -
0.00 | . . T T
0.00 0.20 0.40 0.60 0.80 1.00

Reflectance

Figure 3-8. OECF curves of the camera at five tffié colour settings, plotted in linear-linear
units.
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In Figure 3-9, the logarithm of normalised pixelues against the density values for each
patch are plotted, because the normal practioarighé photographic characteristic curve

to be plotted in log-log units [83] (pp. 377).

0.00

-0.50
E Settings
© -1.00 -
i 1
©
£ —=—2
2 —3
o -1.50 -
3 ——4

——5
-2.00 -
-2-50 T T T T
0.00 0.50 1.00 1.50 2.00 2.50

Density

Figure 3-9. OECF curves of the camera at five diffié colour settings, plotted in log-log units.

The gamma, offset and correlation coefficient dadiwith linear regression for each

setting are shown in Table 3-3.

Settings Gamma () Offset (0) Correlation Coefficient (r)
1 0.603 0.021 0.997
2 0.602 0.021 0.997
3 0.615 0.027 0.997
4 0.601 0.021 0.997
5 0.607 0.024 0.997

Table 3-3. Gamma, offset and correlation coefficadrthe camerat five different colour settings
(1,2,3& 5: sRGB, 4: Adobe RGB).
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The 0.6 gamma was approximately equivalent to thmrga of photographic film
negatives, when conventionally developed [81] (@#6). The results indicate that the
gamma settings of the camera are intentionallybgethe manufacture, to provide an
optimal overall gamma of between 1.0 and 1.5 (efcti®n 2.2.2.2) in default display
gamma 1.8 (Mac) and 2.2 (PC), i.e. if the displag b gamma 1.8 or 2.2, the camera
gamma will make the optimal overall gamma equadl.foor 1.3.

The additivity of the camera was also investigdigccomparing between the combined
RGB response and the neutral response. The comBi@&lresponse was calculated by
weighting each colour channel equally. The tranéfieictions for the combined RGB

response and the neutral response are preserftgguie 3-10. The result showed that the

combined RGB response closely matched the neespbnse.

0.00

-0.50 -
-1.00 -
neutral

—¥— Combined
-1.50 - RGB

Log normlised PV

-2.00 -

_2.50 T T T T
0.00 0.50 1.00 1.50 2.00 2.50

Density

Figure 3-10. The camera additivity at the coloutisg 1, comparison between the combined
RGB response and the neutral response.
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3.5 Colour reproduction

The Kodak Q-60R2 reflection test target was agaadufor the colour reproduction
characterisation of the camera. The Kodak Q-60Rists of 264 colour patches, which
include 12 colour samples of skin tones in colur@@s22, a series of single (CMY),
double (RGB) and triple (K) dye colours in columi®-19, and 12 samples each of 12
hues in columns 1-12. The columns 4, 8 and 12 septethe maximum chroma in three

lightness levels, and a 24-step grey scale (curgi@-7) [164].

The camera’s colour reproduction was assessefourcaccuracy and where necessary

colour compensation was carried out to ensure ategolour reproduction.

The device colour reproduction is classified iftoee groups: using (a) a custom profile,
(b) a general profile and (c) a process profile6]1pp. 25-28). The custom profile is
designed to find the relationship between devigeeddent and device-independent data
using a suitable number of test colours. Typicataon profile method includes a three-
dimensional lookup table model [167], a polynomiadjression model [168, 169, 170,
171] and a neural network model [170, 171]. Theeganprofile is supplied by the
vendor. The process profile is an easy to implemmaathod according to standard
conditions, e.g. SRGB [89] and Adobe RGB [90].

3.5.1 Colour reproduction using sSRGB/ Adobe RGB

First, mean CIEXYZ values for each patch were obtained from thredergint
measurements, using the Color-Eye 7000A spectropteter [159]. The colorimetric
data for all colour samples were obtained usingGhe 2° colorimetric observer and the
D65 illuminant.

Then, the target was recorded at five differenbgplsettings, and the captured images
were transferred to a computer. The mean pixel emlior the red, green and blue
channels were then measured by averaging100 pixels from the central part of each
patch, using Scion Image software [165]. The reswire then converted to tristimulus
values X, Y and Z, via the two encoding transformations: sRGB andl#ed RGB

encoding (cf. Appendix A).
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Finally, the CIEXYZ colorimetric data between the measurement (odigiaad the
calculation were assessed using two colour difleremquations, CIELABAE* 5, and
CIE DE 2000 AEq).

Figure 3-11 illustrates the process of colour rdpotion characterisation for the camera.

Measurement sRGB/ Adobe RGB Calculation
XYZ Camera Encoding XYZ
Transformatio

g{> AE* a5/ AEqo <‘,:£

Figure 3-11. Process for the camera colour repttimucharacterisation, using process profiles.

The results of the camera’s colour reproductiorrattarisation are presented in Table 3-
4. The results are the mean, mediand maximum colour differences between the

measuremerXYZand the calculatioXYZat all patches.

_ AE* 4 AEg
Setting - -
Mean Median Max Mean | Median Max
1 16.85 17.11 49.39 8.31 8.08 25.34
2 17.04 17.34 50.27 8.22 7.98 25.60
3 16.27 16.53 40.03 7.89 7.42 24.81
4 17.18 17.36 51.46 8.22 7.95 25.41
5 18.16 17.79 53.59 9.10 8.46 26.18

Table 3-4. Descriptive statistics (mean, mediaaximum) for colour differenceg* oband
AEqy) between measured values and calculated valdie® alifferent colour settings.

The accuracy of the camera’s colour reproductios feand to be rather low. The mean
colour differences were more than 16.00 Af*,, and 7.00 inAEg. Orava and
Jaaskelainen [158] (pp. 219) investigated coloworsrin digital cameras and found
means of 13.1 ilAE* ;pand 8.1 inAEy,. Possible reasons for this phenomenon include 1)

the sRGB and the Adobe RGB encoding have colourodegtion errors due to the

! Median is often used when data are skewed, meahirighe distribution is not a normal distributidr72]
(pp. 38-39).
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narrow colour gamut [173] (pp. 86-98), and 2) taeera’s colour reproduction has been

intentionally set this way by the manufacture basedhe observer’s preference.

Also, the result demonstrated that the colour répecton of the camera had little
variation in relation to the colour settings. Thmalest mean colour difference was
achieved with the colour setting 3, i.e. 16.27 Afk*,, and 7.89 inAEg. The
manufacture’s claim of the setting being coloulaclappeared to be correct (cf. Table 3-
2).

3.5.2 Colour characterisation using polynomial regession model

Since the accuracy of the camera’s colour repraalucising SRGB and Adobe RGB was
found to be unsatisfactory, the custom profile we®d to ensure accurate colour
reproduction. The custom profile was applied toos/mpomial regression model, which
assumes that the correlation between scene (CYB) and image (RGB) can be
approximated by a set of simultaneous equation® plocess of the polynomial

regression model is illustrated in Figure 3-12.

Original Camera |R=G=B Grey
f

Scanning \: balanced
CIEXYZ » RGB ' RGB

(Q-60R2) (Q-60R2) (Q-60R2)

Derivation of the correction

matrix using polynomial
regression. Matrix application

h 4

Camera
CIEXYZ
(Q-60R2)

AE*

J Checking

NO

. Adding more terms to the polynomial

Colorimetric
digital
files

.. Matrix
application

Figure 3-12. Process for the camera colour repittmucharacterisation, using a custom profile,
a polynomial regression model
(adapted from Triantaphillidou [33] (pp. 81)).
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The polynomial regression model consists of twomsdeps: 1) the grey balance of red,
green and blue signal (optional but preferable) 2nthe derivation of colour matrixes
[174] (pp. 282).

1) Grey balance red, green, blue signal: Grey lwalgnprocess was achieved by setting
R=G=B=f(Y) for the neutral patches of the test &rgvhere f(Y) was a function of
luminanceY. MATLAB code reproduced and applied for the pugpf{B3] (pp. 83):

RedLUT=interp1(RedL, Y255, 0:255);
GreenLUT=interp1(GreenL, Y255, 0:255);
BlueLUT=interp1(BlueL, Y255, 0:255);

where the RedLUT, GreenLUT and BlueLUT are redegrand blue look-up-tables,
and the function Yi=interpl(Xo,Yo,Xi) interpolatés find Yi, the values of the
underlying function Yo at the points in the vec¥ir The vector Xo specifies the
points at which the data Yo is given. The RedL, €ate BlueL are vectors that
contain the measured red, green and blue pixekesatd the neutral patches in the
images, rescaled from 0 to 255.

RedL = [Ry, Rz, R3,... R2g, Ra1, Rz2]
GreenL = [G1, Gz, G3, GZO, G21, Gzz]
BlueL. = [By, Bz, Bs, ... B2g, B21, B22]

The Y255 is the vector containing the original eefance measurements in the test
target, rescaled from 0 to 255.

Y255 = [Ly, L2, L3, ...Lzo, L21, L22]

The look-up-tables were implemented to obtain ttey dalanced image.

Imageout(;, :, 1) = RedLUT (Image(:, :,1)+1);
Imageout(;, :;, 2) = GreenLUT (Image(:, :,2)+1);
Imageout(;, :;, 3) = BlueLUT(Image(:, :,3)+1);

where the Imageout is the grey balanced image, énmthe captured image and the
parameters (;, :,1), (;, :,2) and (;, :,3) areméfig to red, green and blue channels.
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2) Derivation of colour matrixes: A number of cotogorrection matrixes with

polynomial termsr)) were derived, using the following equation (TaBib).
M= (RTR)-1RTH (3.1)

where R is the matrix of independent variables iné Sxm, H is the vector of
dependent variables and Benotes the transposition of R andii inverse.

m Polynomial Terms

3 R,G,B

4 R,G,B,RGB

6 R,G,B, BB G?

7 R,G,B, RB%G%RGB

9 R,G,B, RB%G? RG, GB,BR

10 R,G,B, BB%G% RG, GB,BR,RGB

12 R,G,B, RB%G% RG, GB,BR, RG B

13 R,G,B, RB%G% RG, GB,BR, RG® B’ RGB

Table 3-5. Polynomial termsnf used in the matrix derivation.

The transform matrix M was then calculated into I& XYZ value. The best M was

assessed using the colour differences betweerrigiaal and calculated colours.

Table 3-6 describes the colour difference valuds',, and AEy,, between the original
XYZand the calculate®YZ The results show that the colour difference valdecrease
when the number of polynomial terms increas&his phenomenon has been reported by
many researchers [168] (pp. 167-169), [169] (pp88D

2 The black point addition is a possibility to preeua better fit in the regression [169] (pp. 83).
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AE* 4 AEqo
Polynomial terms (m)
Mean Median Max Mean Median Max
3 9.93 9.85 20.60 6.85 6.66 14.5
4 8.14 7.72 16.71 5.10 4.64 9.21
6 6.33 5.60 12.23 4.84 4.39 9.76
7 5.47 5.41 12.36 4.20 4.24 7.10
9 5.37 4.95 10.20 3.87 3.64 7.69
10 4.49 4.60 8.80 3.29 3.04 6.14
12 3.88 3.74 6.67 2.83 2.68 5.66
13 3.79 3.92 6.92 2.72 2.27 5.37

Table 3-6. Descriptive statistics (mean, mediarximam) for colour differencesAE* .nand
AEqg) between measured values and calculated valuwkBeaent polynomial termsnf).

The acceptability threshold for colour difference domplex images was reached at
Matrix 7, but the perceptibility colour differengeas unattained up to Matrix 13, i.e. the
perceptibility threshold is 3.00 and the accepigbihreshold is 6.00 iAE* 5»(Figure 3-

13)

12

10 - o

00}
1

AverageAE*
(o]

6

8

Number of polynomial termsf)

14

Figure 3-13. Effect of the number of ternng) {n the polynomial regression.
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Overall, the polynomial regression model resulted visually equivalent colour
reproduction with high polynomial terms. Howevée fprocess is complicated and time-
consuming. In addition, the task was only carriatlio a specified standard condition. In
ISO 17321-1: 2006 [175] (pp.- 4), it has been notédt “when target-based
characterisation is used, the resultant charaateris data is only applicable for similar
geometric and spectral illumination characteristi¢fius, the model is extremely limited
in relation to real-life photography (cf. Chaptgr Burther extensive investigations are

required for accurate colour reproduction in the sEene images.
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3.6 Summary

A Canon EOS-1Ds SLR camera was characterised mstef spatial uniformity, tone
reproduction and colour reproduction. The followisgmmary lists the main findings

regarding the camera’s characteristics.

1. The spatial variations of the camera ranged frobd @ 5.38 inAE* 5, and from 0.12
to 2.82 inAEy. The highest colour difference was identified asg in the top-right
corner of the capturing frame. The result was gretitan the perceptibility colour
difference in complex scenes, 3.00AR* 5 Therefore, the rest of the investigations
were carried out using the central area of the ar(@fj Section 5.1 & 5.2 and section
6.1).

2. The camera’s tone reproduction had little variationelation to the colour settings
used. In terms of tone reproduction, it was posdibluse any setting desired. For this

project SRGB was used for image capture.

3. With regard to the camera’s tone reproduction, gaema and offset of the linear
regression was approximately equal to 0.60 and @B a 0.997 correlation
coefficient. The gamma settings of the camera weentionally set by the producer

for the optimal overall gamma of between 1.0 arid 1.

4. The camera’s colour reproduction was investigateidgitwo methods: 1) process
profiles of all of the camera’s colour settings &jdpolynomial regression model,
which is a type of custom profile. The polynomiegjression model provided visually
equivalent colour reproduction with high polynomtatms. However, the process
was found to be time-consuming and complicatednmplement. The method had
limitations for a natural scene. On the other hasainera colour reproduction at
SRGB/ Adobe RGB encoding was quick and less commexplement. Thus, the
camera setting with the smallest colour differensetting 3, was applied in order to
optimise the colour image for the rest of studiefs $ection 5.1 & 5.2 and section
6.1). Also, the sRGB was designed to match thelajsputput used for the
psychophysical investigation (cf. Section 6.3).
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Chapter 4

Liquid Crystal Display (LCD)
characterisation

This chapter describes the processes of calibratoncharacterisation of the LCD, prior
to it being used in the psychophysical experimaématThe LCD characterisation was
carried out in terms of temporal stability, spatiahiformity, viewing angle, tone

reproduction and colour reproduction.

4.1 LCD description

An EIZO CG210 LCD [178] was used in this work. Th€ED was controlled by a
graphic card (S3 Graphics Prosavage DDR (Microsidtporation)) in a personal

computer running Windows XP professional.

To produce a colour image on the LCD, each pixdivgled into three sub-pixels, which
are coloured red, green, and blue, respectivelg ifitensity of each sub-pixel can be
controlled independently to yield several possitdours for each pixel. The graphic
card was configured to display 24-bilour. Figure 4-1 presents the sub-pixels fornang
colour pixel on the LCD [176, 177].

The maximum resolution of the display was set t001LBy 1200 at a frequency of 86 Hz

[178]. However, the graphic card was configured egsolution of 1600 by 1200 pixels at
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a frequency of 60 Hz. This setting was appliedulgrmut the experiment, because this is
the native and maximum setting of the device. Tgexdications of the LCD are set out
in Table 4-1.

LCDs typically divide each pixel
horizontally into three sub-pixels.

Close-up of an LCD faceplate

Figure 4-1. Example of sub-pixel on TFT-LCD.

(adapted from Wikipedia (viewed March 2010) [1@6H Farrelet al[177] (pp. 25))

ElZO CG210

54 cm (21.3") Thin film transistor (TFT)
colour LCD panel

Size and Type

Viewing Angles (H, V) 170°, 170° (at contrast ratib10:1)
Luminance/ Contrast 250 cdit550:1

Maximum Resolution 1600 x 1200

Active Display Size (H, V) 432 x 324 mm / 17.0 x82
Viewable Image Size Diagonal: 540 mm/ 21.3"

Pixel Pitch 0.270x 0.270 mm

Gamut Coverage SRGB: 99%, Adobe RGB: 78%

Analogue :24 — 100 kHz, 49 — 86 Hz
Digital : 31— 100 kHz, 59 — 61 Hz

Display Mode Options SRGB, Custom

Scanning Frequency (H, V)

Table 4-1. The LCD technical specifications
(produced by Eizo [178]).
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4.2 Conditions for measurements

Before the measurements, the L'Gilas adjusted as close as possible to a white pbint
D65, a gamma of 2.2 and a white point luminancd@d cd/m. These are the default
values for photography/graphic design in Colouriyator 4.1 Eizo software [179].

The LCD measurements were carried out in complatkngss, using a Minolta CS-200
hand held incident colorimeter (designed speciffced measure LCDs), which enables
accurate measurement of luminance and chromatjtB®]. The colorimetry of the

displayed samples was measured using the 0.2° nmgsangle during a 30 second
measuring period. The instrument’s frequency wasas€0 Hz, the same frequency as

that of the LCD as instructed by the manufacturer.

During measurements, the hand held incident coltemwas mounted on a tripod with
the colorimeter’'s optical axis being perpendicularthe faceplate of the LCD. The
distance between the LCD’s faceplate and the cuokter was 128cm, as recommended
by EN 61966-4: 2000, i.e. four times the displaighe[181] (pp. 9). The arrangement of

the equipment is shown in Figure 4-2.

LCD

9

colorimeter

12Bem

Figure 4-2. Equipment arrangement for the LCD mesasents
(adapted from EN 61966-4: 2004 [181] (pp. 9)).

! SRGB reference display condition is a white poinD65, a gamma of 2.2 and a white point luminasice
80 cd/nf(cf. Appendix A) [89] (pp. 9).
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4.3 Temporal stability

The temporal stability of the LCD was estimatedifra white patch displayed on a black
background. The luminancé and the CIEx,y chromaticity coordinates were measured
three times for both short-term stability and nmedat stability [181] (pp. 28-31). The
short-term stability was evaluated over 1 hour,rge®minutes. The mid-term stability
was evaluated over 4 hours at 10 minute intenising the experiment, the measuring
point was monitored as temporal stability could dfeected by lack of spatial non-

uniformity and viewing angle of the display.

The short-term stability results are shown in Fegdr3. According to EN 61966-4: 2000
[181] (pp. 29), the luminanc& was plotted against time (in minutes), where the
luminanceY on the vertical axis was from 80 cd/i{0.8% average luminance level) to
120 cd/ni (1.2% average luminance level). The output lumiedevel increased quickly
early on and then reached a very stable level. Weweafter 20 minutes it actually
started to decrease slightly. The luminance ofdisplay changed slightly over the one-
hour period. This luminance change was not peigeptoy the human eye, i.e. a
luminance difference of about 1% to 2% is not \1esfi06] (pp. 105), [182] (pp. 38-39).

12C

115 4 m e

110 4 m e e

105 - ————

Y(cd/n?)

100 = = = e e e

95 T ee—— —_—

90 - — —

B5

s+
0 4 8 12 16 20 23 28 32 36 40 44 48 52 56 60
Time(min)

Figure 4-3. Short-term luminance stability on thel.
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The CIEX,y chromaticity coordinates are plotted in Figure,4shere the vertical axis
ranges from 0.25 to 0.35. The LCD stabilisatiorth&f CIEX,y chromaticity coordinates
seemed to be reached after about few secondshand’D kept stable over the one-hour

period.

0.35

0.34 4=

0.33 = ————

0.32 = ———

0.31 — —
20830 - m— y
0.29 = ————
0.28 = —————
T e

0.26 f—— -

0.25 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0O 4 8 12 16 20 23 28 32 36 40 44 48 52 56 60

Time(min)

Figure 4-4. CIEx,y values of short-term stability on the LCD.

The results of mid-term temporal stability are shaw Figure 4-5 and Figure 4-6. Both

the results of the luminancé and the CIEX,y chromaticity coordinates presented a
similar trend for short-term investigations, whiate presented in Figure 4-3 and Figure
4-4, i.e. the luminance level increased quicklylyean and then reached a remarkably
stable level. After 20 minutes, it started to daseeslightly. The luminance of the display
changed slightly over the measurement period. Hewehis luminance change, 93.01
(2.2%) at 240 minutes, was still not perceptibletfsy human eye. The chromaticity of

the LCD reached a stable level after about few rsg¢g,0and the LCD stayed stable over
the period.
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80 T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160

Time(min)

180 200 220 240

Figure 4-5. Mid-term luminance stability on the LCD

0.35

0.34 f——m—m—mm ]

0.38 T m——

0.32 frmm e ]

0.31 m— —
2030 fF———— ] —y
0.29 T ——————
0.28 f——————— ]
0.27 f————

0.26 - ——————————

0125 T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160

Time(min)

180 200 220 240

Figure 4-6. CIE,y values of mid-term stability on the LCD.
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Overall, the LCD temporal stability was remarkagbod, when compared with previous
researches on a CRT [106] (pp. 105-108) and LCB§ (|8p. 6-8), [183] (pp. 18). The
result confirmed that the LCD did not require sfgr@int warm up time (cf. Section 6.3).

4.4 Spatial uniformity

All measurements of the LCD were based on the gssomthat the responses of all
areas of the display were identical, for any inputreality, the spatial characteristics of
the display vary. The lack of uniformity of the pligy is often ignored, because it might
be below the level of perception of the human eye.

The spatial uniformity of the LCD was investigatieg measuring a white patch on 25
different areas of the display and comparing meamants between the middle area and

across the display area. Figure 4-7 shows the msasat points on the LCD.

|
1A 1B 1C 1D 1E
No.1 No.2 No’3 No.4 No.s | "/10 A
& A P — o o
A
2A 2B 2C 2D 2E hi5
No.6 No.7 No.8 No.9 No.10] Y
A AC, A A A
A
3A 3B 3C 3D 3E s
No.11 No.12 No.13 ‘N0.14 No.15| Y
A h
4A 4B 4C 4D 4E
hi5
No.16 No.17 No.18 No.19 No.20| Y
5A 58 5C 5D 5E A
hi5
‘/NO 21 No.22 ’No.23 No.24 No.25| ‘
h/i10 v
A
wi1o i . w5 i w5 i wb5 . w5 i w10 |
w

h: screen height w: screen width

Figure 4-7. Measurement points for the LCBtsb uniformity
(adapted from EN 61966-4: 2004 [181] (pp. 25)).
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Figure 4-8 illustrates the uniformity of the LCDcéplate. The actual fluctuations of the
24 areas were ranged from 0.73 to 4.88k1,, and from 0.62 to 3.45 inEg.

The lower-middle area as defined by 5C, showed mh&st non-uniform LCD
measurements, 4.80 inE*,, The result is greater than the perceptibility ocol
difference in complex scenes, 3.00AR*,,[160] A possible reason for the LCD non-
uniformity is the backlight fall-off towards thedeplate [184] (pp. 35).

The correction of display spatial uniformity [18]p. 324) was not applied, because it
could cause the creation of a contouring arteflleé contouring artefact would be more
noticeable than lack of uniformity [32] (pp. 82).

The result led to the choice of the LCD’s centralaafor the rest of the investigations (cf.
Section 4.5, 4.6 & 4.7, section 5.1 & 5.2 and sec6.3).

AE* 5

4.0-5.0

3.0-4.0
2.0-3.0
1.0-2.0

0.0-1.0

O EEEn

Figure 4-8. Spatial uniformity on the LCD, eggsed im\E* 4,
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4.5 Viewing angle

One of the major issues, when using an LCD, isvibeing angle. This is because LCDs
usually have a limited viewing angle [151] (pp. 33he display luminance variations
with viewing angle were investigated by horizonf@aght-left) and vertical (up-down)

display rotations [181] (pp. 31-36). A number otqgtees were displayed in the centre of
the display and measured by the Minolta CS-200. dalvangement of equipment is

shown below in Figure 4-9.

Side View Do | U Top View

Left | Right

colorimeter

—
g

colorimeter

128 cn 128 cn

Input signal Input signal

Figure 4-9. Equipment arrangement for the LCD vimpangle
(adapted from EN 61966-4: 2004 [181] (pp. 32)).

The luminance in peak red, green, blue and peadljumeand dark neutral scale signals
are plotted in Figure 4-10 and Figure 4-11. Therig illustrate that the viewing angle
characteristics have minimal effects on the lowenihance and a high impact on the
higher luminance. Also, the figures show that tedigal viewing angle is impacted more

than the horizontal viewing angle.

Table 4-2 presents the contrast ratio values &rdifit viewing angles. The result shows
that the manufacture’s claim seems to be correligtwis the 10:1 contrast ratio of the
170° horizontal and vertical [178]. However, thellBontrast ratio of the 170° viewing

angle makes the image almost imperceptible, asdiels the claim is not acceptable.
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Y(cd/m?)

== Red
== Green
== Blue
===\ hite
== Gray205
Gray155
et Gray 105

Gray55

Black

20 10 0 -10 -20 -30 -40

Viewing angle

Figure 4-10. Horizontal viewing angle charactetistin the LCD.

Y(cd/n?)

——Red
—m—Green
—t—Blue
=>e=\White
== Gray205
Gray155
== Gray105
Gray55

== Black

Viewing angle

Figure 4-11. Vertical viewing angle characteristicsthe LCD.
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Viewing angle Horizontal Vertical
+30 344: 1 295:1

+20 394:1 440:1

+10 474: 1 515:1

0 534:1 589: 1

-10 583: 1 596: 1

-20 492: 1 506: 1

-30 380: 1 268: 1

Table 4-2. Contrast ratio at various viewing angieshe LCD.

In total, the LCD appearance altered significamtith viewing angle. The result showed
that the viewing angle of the LCD required carefoihtrol in the image quality study (cf.
Section 6.3).

4.6 Tone reproduction

The LCD tone reproduction was assessed by theférafisnction, described by the
relationship between the input pixel values and dheerated output luminancé (in

cd/nf).

The transfer function was determined by measuringumber of colour patches. The
colour patches were displayed one at a time, rgnfyjom the system maximum to the
minimum at 25 pixel value intervals. Each patchupted 50 % of the LCD central area,
with the surrounding area displaying black. Thecbl#®ackground was suggested for
LCD measurement by EN 61966-4: 2000 [181] (pp.The interface of the software is
presented in Figure 4-12.

The luminance of each patch was measured three,tinseng the Minolta CS-200, and

then the measurements were averaged.

The LCD'’s transfer functions are illustrated in diig 4-13. The result presented that the
relationships between the input and output valygeeared to be power functions. The
LCD seemed to be corrected by built-in correctiablés, to mimic the CRT response.
This is because LCDs have a native sigmoid trarfsfection [85] (pp. 612), [87] (pp.
191-193).
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Surrounding 50%

H HAN2
Central 50%
R =255, G = 25656, B = 266 v
v
<« w —>
< W2 >
Figure 4-12. Interface for the LCD tone reproduttitaracterisation
(produced by Bilissi [106] (pp. 113)).
100
—eo—Red
_ —=—Green
E
3 —+—Blue
=
—>—Neutral

100 150 200 250

0 50

Pixel value

Figure 4-13. Transfer functions of the LCD at th&m and neutral responses, plotted in linear-
linear units.
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The LCD’s transfer functions in normalised unite afso illustrated in Figure 4-14. In
this figure, the transfer functions show appre@aiéutral scale tracking, with the red,

green and blue channel responses being similar.

1.00

0.80 -
= 0.60 -
?
-c_é —e—Red
5 —=—Green
z 0.40 - ——Blue

—>—Neutral
0.20 -
0.00 : : :
0.00 0.20 0.40 0.60 0.80 1.00

Normalised PV

Figure 4-14. Transfer functions of the LCD at th&m and neutral responses, plotted in linear-
linear normalised units.

The LCD'’s transfer functions in log-log normalisedits are also illustrated in Figure 4-
15. The gamma and offset was derived with linegragsion. Obtained data for each
colour channel are listed in Table 4-3. It was obse that the gamma and offset of the

linear regression was equal to 2.20 and 0.00 réspbcfor the neutral scale input signal.

The breakdown of the linear relationship was ob=grat the blue channegl=0.992). In
addition, the gamma erropH2.04) resulted at the blue channel, caused bydavinance.

The phenomenon has also been found in a CRT [pR6]147-148).
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0.00
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E -1.00 -
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g —e—Red
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Figure 4-15. Transfer functions of the LCD at th&m and neutral responses, plotted in log-log
normalised units.

Gamma () Offset (0) Correlation Coefficient (r)
Red 2.22 0.02 0.999
Green 2.27 0.02 0.999
Blue 2.04 0.06 0.992
Neutral 2.20 0.00 0.999

Table 4-3. Gamma, offset and correlation coefficafrthe LCD at the R,G,B and neutral colours.

In order to investigate channel additivity, the L@Butral response and the combined
RGB response were compared. The combined RGB respeas obtained by equally
weighting the three colour channels. The resulidifitivity is shown in Figure 4-16 and
Table 4-4. The percentage errors between the meesponse and the combined RGB
response were distributed through the differentuingignal levels (2.77%). The

differences were small. The result indicates thatltCD is an additive colour system.
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100

80 -

60 -
o~ Neutral
£
3
> —»— Combined

40 - RGB

20 -

O ? T T T T
0 50 100 150 200 250
Pixel value

Figure 4-16. The LCD additivity, compared betweesm ¢combined RGB response and the neutral

response.
Input values 5 55 105 155 205 255
Combined RGB 0.19 3.45 13.87 32.89 61.5( 99.5¢
Neutral 0.18 3.35 13.49 31.98 59.80 96.79
Percentage error| 2.77% 2.77% 2.77% 2.77% 2.77% "mR.77

Table 4-4. The LCD additivity with percentage error

4.7 Colour reproduction

The colour reproduction of the display was evaldatégure 4-17 shows the process for

the LCD colour reproduction evaluation.
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Inverse
encoding
transformation

l—lt:> AE* /A Ego <:é

Figure 4-17. Process for the LCD colour reprodurctibaracterisation.

Calculatior
XYZ

Calibrated Measuremer
LCD XYZ

Single, double and triple RGB colour combinatiofsligital colour signals were created

one at a time, ranging from the system maximumh&rhinimum at 51 intervals. The

displayed patches were measured three times, tleniglinolta CS-200. The input RGB

data on each colour patch were converted toXth2&tristimulus values, using the sSRGB
inverse encoding transformation (cf. Appendix Anafly, the differences between the
calculationXYZ and the measuremeRtYZ were evaluated using two colour difference
equations AE* 5, and AEgg). The reason of using two colour difference edquetiis

explained in section 3.3.

Table 4-5 presents the result of the performanddef.CD’s colour reproduction. The
mean colour differences were 1.57 AE*,, and 0.52 inAEy. The median colour
differences were 0.54 InE* 5, and 0.20 inAEg,. The maximum colour differences were
7.21 in AE*5, and 2.17 inAEg. As expected, the maximum blue colour signal
(R,G,B=0,0,255 at pixel value) had the most coldifiierence between the calculation
XYZand the measuremexXyZ Sharma [166] (pp. 29) noted that “the gamut dBBRis
based on CRT-type of display and is very diffetmd therefore not appropriate to use as
a profile for an LCD flat-panel display. An LCD pelncan display some colors, for
example in the blue part of the color space. I§R®GB profile were used to represent this

device, we would not get accurate colors, espgadmlihe blue.”

Mean Median Maximum
AE* 4 1.57 0.54 7.21
AEgyg 0.52 0.20 2.17

Table 4-5. Colour reproduction characterisatiothefLCD, described in mean, median,
maximum of colour differencedE* ;nand AE).
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Figure 4-18 illustrates the LCD colour gamut anel $RGB colour gamut at the CI&/
chromaticity diagram.

0.7

= =| CD gamut
SRGB gamut

0.7

Figure 4-18. The LCD colour gamut and the sSRGB wogamut, plotted in the CIEV'
chromaticity diagram.
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4.8 Summary

The Eizo CG210 LCD was characterised in termsmoptaral stability, spatial uniformity,
viewing angle, tone reproduction and colour repodidm. The following summary lists

the main findings of the LCD characteristics.

1. The LCD temporal stability was satisfactory. Theuleindicates that the LCD does

not require significant warm up time in order tatslise.

2. There was a spatial variation of the display, ranfyem 0.73 to 4.80 il\E* 5, and
from 0.62 to 3.45 imMEge. The highest colour difference was perceptiblthéohuman
eye and area located the lower-middle of the dysglais result leads to the choice of

the LCD centre area for the psychophysical invesitg.

3. The LCD appearance altered significantly with viegviangle. The result indicates

that the viewing angle of the LCD requires carefuttrol in the image quality study.

4. The LCD transfer function was found to fit a povienction model. The gamma and
offset of the linear regression was equal to 2120 @00 respectively for the neutral

scale input signal.

5. The LCD colour reproduction was relatively satisbag. The average colour
difference value was 1.57 iE 4, and 0.52 inAEy The LCD can display accurately

imaged colours for the psychophysical scaling.

The results were able to suggest the specific ayspbnditions that were further studied
in the subjective scaling of image quality (cf. G&t 6.3) and the objective scaling (cf.
Section 8.1).
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Chapter 5

Modulation transfer and noise

characterisation

This chapter presents image modulation transfemarsk characterisation of the imaging
chain as part of assessing the performance ofithging systems used in this study. Data
from this investigation will be used later for tibeage quality metric implementation in
chapter 8. The aim of the chapter is to quantify ttodulation transfer function (MTF)
and noise of the camera and the LCD, and to uratetsthe effect of MTF associated
with image down-sampling and of noise power spect(dPS) in relation to Gaussian

noise.

5.1 Modulation Transfer Function (MTF)

5.1.1 Camera MTF

As mentioned in section 2.2.2.5, there are manyaas for camera MTF measurement.
For this project, the slanted edge technique wasd @& the camera MTF measurement,
since it is quick and easy to implement and prosaceurate and repeatable results [117]
(pp. 235). It is a standard method recommende8@12233: 2000 [110].

Experimental work was undertaken using the Cano8-#Ds digital camera (cf. Table

3-1). This digital camera operates with a CMOS sengith approximately 8.§im
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square pixel dimensions. The Nyquist limit of thB1GS sensor array, calculated from

these pixel dimensions, is 56.8 cycles per millnmet

Theoretically, aliasing occurs beyond the camera’s Nyquist limit. Modemameras
generally prevent this aliasing by an anti-aliadiiftgr (low-pass filter) [187] (pp. 737).
Alongside the positive adjustment, the filter atsmuses degradation in the optical MTF.
Thus, digital cameras often include edge sharpemisigpart of their processing to

compensate for the losses [187] (pp. 753).

A slanted edge test target, QA-62 [188], was célsefielected to determine the camera
SFR and thus derive the MTF (cf. Section 2.2.219)e ratio of the maximum chart
reflectanceRmaxto the minimum chart reflectané®inwas 74: 1. 1ISO 12233: 2000 [110]
(pp. 6) recommends that the ratio should be nat tlegn 40:1 and not greater than 80:1.
The test target’s modulation was 0.54.

The test target consists of 4 edges and 20 grgys dfeigure 5-1). The edges are
intentionally slanted at 5-10 degree, and greysstemsist of different, spectrally neutral

patches.

Figure 5-1. A slanted edge target, QA-62
(reproduced from Applied Image [188]).
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The camera was mounted on a tripod with the opéixal of the lens being orthogonal to
the plane of the target. The camera was placed .8&vay from the test target. This
gave the desired low magnification, so that thejdency content of the target was
constant for the range of spatial frequencies tdrest [33] (pp. 187), [114] (pp. 135).
Thus, the measured SFR was taken as the MTF oéudt.

Two gas-filled tungsten lamps were placed eithde sif the target at 45° and 1m away,
so that all areas of the target were uniformly nilnated. Even illumination was
confirmed using a Kodak R-27 18% grey card, a SEKON-308s light meter and a
Minolta CL-200 colorimeter. Nine measurements wialen from different regions of
the card. The non-uniformity of illumination was$ethant5 % of average illumination
(cf. Section 3.2).

The camera lens was covered with a black hooddaceeflare and was set to an aperture
of f 11. This provided an increased depth of field ad as good lens performance, for
the camera and the combined system (cf. Sectia@)5Keelan and Pagano [189] noted
that the optimum MTF usually occurred two or thezeps down from the wide open

aperture. This is typically in the rangefd.6 tof 11 (cf. Figure 8-1).

The camera was set to SRGB colour mode, settingf. 35éction 3.4 and 3.5). It was

operated in the self-timer mode to minimise distorcaused by camera shake.

The sharpness and noise settings of the camera towekeep a specific setting in the
firmware. The aim of this setting was to use minimsharpness and some noise
reduction. However, both procedures are non-lisea may introduce distortions in the

measured MTF.

The image was captured in the central area ofrdmad (cf. Section 3.3) and in correct

focus. The equipment set-up is illustrated in FegbH2.
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Test chart

0.85m \ \\\:?
o

Electronic still-
picture camera

Figure 5-2. Equipment arrangement used to meakareaimera MTF
(adapted from ISO 12233: 2000 [110] (pp. 10)).

The captured images were downloaded to a compsit@ité TIFF uncompressed images,
and the ImCheck software [190] was used to caleuta¢ grey scale MTF (cf. Section
2.2.2.5).

The averaged horizontal and vertical MTFs with atons in four measurements are
illustrated in Figure 5-3. In accordance with IS@32: 2000 [110] (pp. 15), the results
are reported as the average of four measuremaentseftiorizontal and vertical directions.
The responses of the system are shown approximapety its Nyquist limit. The same
results are also illustrated in Figure 5-4, thisdifitting them with a third degree
polynomial function with a correlation coefficient, (Table 5-1). The third degree

polynomial is often used to represent the MTF gitdl cameras [33] (pp. 180).
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Figure 5-3. Measured MTF curves of the cameraudinl the variation in four measurements.
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Figure 5-4. Polynomial functions representing tamera MTF curves.
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Component Polynomial function r
Camera’s horizontal edge M(a) = 8.4830 — 4.232 - 1.861w+ 1.017 0.9998
Camera’s vertical edge M(c) = 6.63% - 3.487 — 1.714w+ 1.012 0.9999

Table 5-1. Third degree polynomial functions repreisg the camera MTFB)(«). The spatial
frequency,w, is measured in cycles/pixel, antepresents the correlation coefficient of fitted
functions to measured data.

The camera MTF 10% values were 58.5 cycles/mmenhtirizontal direction and 61.3
cycles/mm in the vertical direction. The 10% MTFRduencies were approximately
equivalent to that of the 10% MTF of medium-speetbur slide material [219]. The
camera MTF 50% values were 26.1 cycles/mm in thezdwtal direction and 29.5

cycles/mm in the vertical direction.

5.1.2 Camera-display MTF

This part of the work was based on a previous sft8¢], where the MTF of a CRT
display system was measured with an SLR camera. MRE of the display was

evaluated by dividing the combined MTF by thath## aicquisition system.

Mo(@)=M ) XM4(e) (5.1)

where theM, is the MTF of the overall system, tih\é, is the MTF of the
acquisition system and tiv is the MTF of the display system.

This method was adapted in the characterisatioth®fLCD MTF. It used relatively
inexpensive equipment [191] (pp. 58) and has becan@m@®mmon way of measuring
display MTFs [192] (pp. 6-8).

For this purpose, the measurement of the combiystérs MTF was initially carried out

as follows:
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1) A digitally constructed edge target was dispthye the central area of the LCD (cf.
Section 4.4). The edge target had the same coafigaras that of the camera target,
I.e. it consisted of 4 edges and 20 grey stepg=(gtire 5-1). Its modulation was 0.27.
The different characteristic of the input modulatto that of the reflectance test target
(cf. Section 5.1.1) tended to be insignificantcsisimilar spatial frequency responses
were produced at different modulations, rangingf@2 to 0.7 [191] (pp. 64).

2) The camera was positioned approximately 0.9amfthe LCD faceplate, to minimise
the effect of structural artefacts associated with display [33] (pp. 186), [192] (pp.
7).

3) The camera was set to the same settings thatwged to evaluate the camera MTF (cf.
Section 5.1.1). The displayed edge was captured times by the camera with its

optical axis orthogonal to the LCD faceplate.

4) The captured images were downloaded to a comaste8-bit TIFF uncompressed
images and the ImCheck software [190] was implestend calculate the combined
grey scale MTF. The calculation was conducted usingigh aspect ratio of the
rectangular region-of-interest (ROI), to increase signal-to-noise ratio of the MTF
estimates [191] (pp. 62).

The equipment set-up is illustrated in Figure 5-5.

Test chart on LCD

A

0.9m

'
1

Electronic still-
picture camera

Figure 5-5. Set-up for measuring the combined carh&D MTF.

97



Kyung Hoon Oh, 2014 Chapter 5. Modulation transfer and neisaracterisation

The responses of the combined system are showa the 30 (cycles/mm) frequency of
the camera plane. Figure 5-6 illustrates the aeefaguency responses and includes the
variation in the four measurements. The same esu# also illustrated in Figure 5-7,
this time fitted using a third degree polynomiahdtion with a correlation coefficient,
(Table 5-2).

1.0

0.9 - —a— Horizontal

—a—\Vertical

0.8 -

0.2

0.1 -

0.0

wmn! camera

Figure 5-6. Measured MTF curves of the combinederarh CD, including the variation in four
measurements.
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Figure 5-7. Polynomial functions representing thERturves of the combined camera-LCD.

Component Polynomial function r

Combined system’s horizontal edgeé ~ M(«) = 7E-050 - 0.0028 - 0.013%w+ 1.0109 0.9997

Combined system’s vertical edge M(a) = 4E-05 - 0.001%J - 0.03620+ 1.0246 0.9986

Table 5-2. Third degree polynomial functions reprefmg the combined system MTHR4(w).
The spatial frequencyy, is measured in cycles/mm, ancepresents the correlation coefficient of
fitted functions to measured data.
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5.1.3 Display MTF

The LCD MTF was finally calculated by dividing tttombined MTF by the camera
MTF. For this, it was assumed that each componestliwear and that the MTF for each
successive component was independent from thateoptevious component [33] (pp.
183).

The responses of the system are shown approximagety its Nyquist limit, which is

1.86 cycleper millimetre, calculated from 0.27 mm square pdimensions.

Figure 5-8 illustrates the LCD MTF results in cylam on the display faceplate. The
horizontal and vertical MTFs differ but not consialy. The average response points,
fitted by the third degree polynomial functionse aiso illustrated in Figure 5-9. The

LCD MTF results will be useful for the calculatioh the objective image quality metric

(cf. Section 8.1).
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Figure 5-8. Calculated MTF curves of the LCD, imlthg the variation in the measurements.
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Figure 5-9. Polynomial functions representing thERvturves of the LCD.

Third degree polynomial functions and exponentiaictions (often used to fit the display
MTF [84] (pp. 25)) for the display are tabulatedTiable 5-3. Both functions fit well to

the measured data.

Component Functions r

LCD'’s horizontal edge

in third polynomial function
LCD’s vertical edge

in third polynomial function
LCD'’s horizontal edge

in exponential function
LCD's vertical edge

in exponential function

M(c) = 0.37% - 0.903 - 0.007%v+ 0.983 0.9990

M(a) = 0.269 - 0.557 - 0.324w+ 1.012 0.9969

M(c) = 1.2648% 0.9751

M(e) = 1.231&% 0.9783

Table 5-3. Third degree polynomial functions andamential functions representing the LCD
MTFs, M(«). The spatial frequency, is measured in cycles/mm, antepresents the correlation
coefficient of fitted functions to measured data.
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The LCD MTF 10% values were 1.93 cycles/mm in tloeidontal direction and 1.73
cycles/mm in the vertical direction, which is thgpeoximately LCD Nyquist limit, 1.86
cycles/mm. The LCD MTF 50% values were 1.14 cyahes/in the horizontal direction
and 0.95 cycles/mm in the vertical direction.

5.1.4 MTF associated with image down-sampling

The MTF associated with image down-sampling wasstigated on three different
image sizes, because the down-sampling affectsysiem MTF in the imaging chain
[192] (pp. 8). The captured edges used for thercht@tion of the camera MTF (cf.
Section 5.1) further were down-sampled using bicubierpolation at 1x, 1.5x and 2x
decimation along both the x and y axes. After datiom the image sizes became 4064
by 2704 pixels for 1x, 2709 by 1802 pixels for 1.5xd&032 by 1352 pixels for 2x. The
reason for using bicubic interpolation is thatsitused for the down-sampling of images

employed in the subjective image quality examimei(cf. Section 6.2).

The MTF was derived using the ImCheck software [19he fitted third degree
polynomial functions for the MTFs$£0.99) are illustrated in Figure 5-10 and Figure 5-
11. The responses of the system, i.e. camera aedpatation MTFs, are shown
approximately up to its Nyquist limit. This resslhows that the image down-sampling
affects significantly the image MTF. However, thdfference does not necessarily
correspond to the perceived sharpness of the diffemages. This is because the bicubic
interpolation is a non-linear process. The MTF tlgas strictly valid in linear, isotropic
and spatially invariant systems (cf. Section 25).2.
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Figure 5-10. Polynomial functions representingubdical MTFs associated with down-sampling,
at three different image sizes.
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Figure 5-11. Polynomial functions representinghbeazontal MTFs associated with down-
sampling, at three different image sizes.
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5.2 Noise

5.2.1Camera noise

There are two methods for quantifying camera naisadprm field measurement and test
target measurement, as recommended in ISO 15783:[2@6] (pp. 5-8). The test target
noise measurement was employed for the Canon EQGSdibital camera noise

measurement.

The camera can be set to ISO speed settings rariging 100 to 1250 at 1/3 stop
increments [153] (pp. 49). In addition, the cameaia reduce image noise using a noise
reduction function (cf. Table 3-1) [153] (pp. 129).this study, the camera was set to an
ISO speed of 100 in conjunction with noise reducioocessing in the camera firmware.
This setting was also employed for capturing theeinah scenes used in the image quality

assessment later (cf. Section 6.1).

The camera lens was set to an aperturé ©fi and focused correctly, as with the
measurement of the camera MTF (cf. Section 5.T1&. camera was again set to SRGB
colour mode, setting 3 (cf. Section 3.4 and 3'H)e camera operated in self-timer mode

to minimise distortion that could be caused by cansbake.

The slanted edge test target, QA-62 [188], wasnagalected to measure the camera
noise. The target includes uniform 20 grey steps ¢hn be used in noise evaluation (cf.
Figure 5-1). The uniformity of the test chart wasftrmed using density measurements

taken at different spatial positions [126] (pp..12)

Two gas-filled tungsten lamps produced the maxinunciipped level of illumination in
the camera, checked by examining the image histadraaddition, the non-uniformity

of the illumination was confirmed to be less thie? % of the average illumination.

Images were then captured ten times sequentid@ 015739: 2003 [126] (pp. 8)
recommended that at least eight frames should parea sequentially. During the
acquisition of the images, the temperature was &epstant at around 21 degree Celsius

at a distance of 0.2 m from the camera.
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The captured images were downloaded and savedctonauter as 8-bit sSRGB, TIFF
uncompressed images using the software providedCagon, via an IEEE 1394

connection.

The standard deviation of each image was then megsising the 100100 pixels in the

central area of each patch. The values were usesl¢olate total noise.

The total noisedi.ia) Was calculated by:

1o,
an: — g’
o Vn; J (5.2)

where oy IS the total noise of the system, is the standard deviation of each
individual exposed image and n is the number of exposed images.

The noise levels usually correspond to an imageasighus it should describe the signal-

to-noise ratio for the imaging system [127] (pp04R21).

The signal-to-noise ratio was calculated by:

S Lgatx0.18xincremental gain

N Ototal (5 . 3)

where Lsy is the luminance which gives the maximum unclippedput from the
camera, e.g. for an eight bit system, this is Zb58 is the 18% reflectance of the
target of density of 0.9 with respect to a maxinlaxel of 140%. Incremental gain
is the first derivative of the OECF, which is theaoge of between the output and
the input.

Figure 5-15 illustrates the signal-to-noise ratfottte camera, 47:1. The camera total
noise value was 1.19. The camera noise charadtenisaas satisfactory, when compared
with previous researches [193] (pp. 88-89), [199{.(24). This result enabled a high-
performance camera to be used for the LCD noiseactexisation (cf. Section 5.2.2).
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5.2.2 Display noise

The noise of the LCD was measured with the aidhefdigital camera (cf. Table 3-1), as
recommended by Roehraj al[195, 196]. A suitable camera is essential fos thethod.
Roehriget al [196] (pp. 2) have noted that the available casédoa this method are

characterised by low noise.

First, the camera was set to the same settingsoae used to quantify the noise of the
camera system (cf. Section 5.2.1). A digitally camnsted QA-62 target was displayed on
the LCD in a relatively small central area (cf. S@t4.4). Images were then captured ten
times sequentially. The captured images were tloeymbbaded and saved to a computer
as uncompressed sRGB, TIFF files. The 4000 pixels from the central area of the

white patch were selected and saved them as sepsrempressed sRGB, TIFF files.

Second, the LCD structure removal was applied. Thibecause the captured images
introduce the transmission differences of lighotlgh the liquid crystal cells. Figure 5-12

presents the transmission differences of light.

2D surface plot 3D surface plot

Figure 5-12. Transmission differences of light tigb the LCD, captured by the camera.
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The display pixel structure leads to several lasgies in the power spectrum of the

captured image. Figure 5-13 presents the one-dioraspower spectrum in Fourier
space.
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Figure 5-13. One-dimensional power spectrum in iEogipace.

This LCD structure removal was achieved Hagafielding technique (Figure 5-14) [195]
(pp. 167). According to Roehrigt al [196] (pp. 4), “the flat field for the structure
removal is generated by precise super-positionin@®@D camera images of an LCD
displaying a uniform field, taken at different gphtpositions. Super-imposing many
images precisely registered with respect to theelpstructure positioning provides a

picture of the pixel structure only while the sphtioise has been averaged out — this is
the desired flat field.”
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Noise with structure Flat field Noise without structure

Figure 5-14. Example of flat fielding technique .ni@val of the pixel structure from left image
using flat field image results in an image withtsgdanoise only and no structure
(adapted from Roehrig [195] (pp. 167)).

After the removal of the LCD structure, the mead atandard deviation of the captured
display image were measured. Ultimately this anslied to the derivation of the LCD

signal-to-noise ratio [196] (pp. 3).

SNRcp=Hien/ dicp (5.4)

where pcp is the sample mean of the LCD, awoxkp is the sample standard
deviation of the LCD.

Figure 5-15 illustrates the signal-to-noise ratiadtee LCD, 45:1. The LCD noise value

was 2.13. The LCD noise result will be used ind¢hkulation of the objective IQM (cf.

Section 8.1).
50
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Figure 5-15. Signal-to-noise ratios of the camerhthe LCD.
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5.2.3 Noise power spectrum (NPS) associated with ethaddition of

Gaussian noise

The NPS associated with adding Gaussian noise masstigated on three different
standard deviationg). Gaussian noise was used to distort images emgloythe image

guality assessments later on (cf. Section 6.2 abd 8

First, uniformly exposed images of a Kodak R-27 18Péy card were acquired. The
camera was set to the same settings used to evaheatamera noise (cf. Section 5.2.1).
Gaussian noise filters were then applied to thgimais, using three different standard
deviations §): 0.0, 0.1 and 0.2 (cf. Section 6.2). This createdges with three different

levels of noise.

Second, average pixel values of the pixel tracézb6fby 10 pixels that simulated a long
thin slit were measured, and then the fluctuatisaege calculated by subtracting the mean
value from each value of the pixel trace. The sedianodulus of the Fourier transform of
the fluctuations of each trace was then calculafbd. measured NPS, iN{), was finally
obtained by taking the ensemble average (cf. Seetid.2.6).

Third, the true NPS, NU(V), was calculated from the measured NP, W and the
squared transfer function of the scanning systgMI The latter was produced using a

1 by 10 pixels simulated scanning aperture by afsinction.
N'(u,v)=|T UM N(u,V) (5.5)
T(u,v)=sinc@u)sinc(v) (5.6)

where a is the scanning withl is the scanning length and,¥) is the spatial
frequency at two-direction.

According to Jenkin [113] (pp. 440), “the noiseldidi.e. a two-dimensional image
containing noise alone) is scanned and sampled @siong thin slit to produce a one-

dimensional trace for analysis.”
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The NPS results are illustrated in Figure 5-16. Iove spatial frequencies of interest for
the NPS are compared (upd0.15 pixel"). They are due to the same image structure at
high magnification when capturing the uniform tesiget. As expected, the area under
the NPS increases with increasing standard dewigtip This is clearly presented in
Figure 5-17, where NPS is plotted using the comitogarithm units. The NPS obtained

from these measurements were used in the calaulefithe objective IQM (cf. Section
8.1).
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Figure 5-16. Comparison NPS with adding Gaussiaserfor three different standard deviations.
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Figure 5-17. Comparison the common logarithm of N8 adding Gaussian noise for three
different standard deviations.
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5.3 Summary

In this chapter, MTF and noise measurements warhest in the two imaging systems: a
Canon EOS-1Ds camera and an Eizo CG210 LCD.

The camera MTF and noise were successfully quadtifand the results enabled the

LCD MTF and noise quantification.
The following summary lists the main findings oéthCD MTF and noise characteristics.

1. The LCD MTF 50% values were 1.14 nitrin the horizontal direction and 0.95 ritm

in the vertical direction.

2. The LCD MTF 10% values were 1.93 nirim the horizontal direction and 1.73 riim
in the vertical direction, which is the approximgteCD Nyquist limit, 1.86 mri.

3. The LCD noise value was 2.13, and the signal-tesacatio was 45: 1.

Further work could be carried out to investigateDL®ITF and noise measurements. It
could ensure that the assumptions, made in quargifthe LCD MTF and noise, are

appropriate.

The image down-sampling affects were significanbrdlserious investigations of MTF
associated with image down-sampling are requiredhi® MTF methods, since the MTF
is strictly valid only in linear systems. As expatttthe NPS in relation to Gaussian noise

showed that as the level of standard deviatiores®ed the area under the NPS increased.

These results enable further research into thectoge(physical) scaling, which is the
application of IQMs based on the MTF with noise meetio the image chain (cf. Chapter
8).
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Chapter 6

Subjective image quality evaluation

This chapter presents a psychophysical scaling rempet and the derivation of
subjective image quality scales. The aim of thekwmresented was to investigate the
effect of scene content on the perceived imageitguapecifically on the perceived

sharpness and noisiness.

6.1 Image acquisition and selection

Images of natural scenes were acquired 1) by incagaure, using a digital camera (cf.
Table 3-1), and 2) from two Master Kodak Photo GD&4]. These images covered a
range of scene contents and a variety of imageactaistics. The scenes represented a
variety of subjects, such as portraits, naturaheseand buildings with plain and busy
backgrounds. They were chosen to include variowbayl and local illuminations,
numerous colours, varying number and strengthnefsli edges and spatial distribution of
the subjects (cf. Section 2.2.1.1). The selectsdsteenes are illustrated in in Figure 6-1.
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Figure 6-1. Thirty-two scenes used in the subjeatjuality scaling.
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Sixteen natural scenes were captured using therCBQS-1Ds full frame digital SLR
camera, equipped with a Canon EF 28-135h#15-5.6 IS USM zoom lens (cf. Table 3-
1). The ISO speed 100 setting (cf. Section 5.1h warying apertures df 5.6-36 was
used to capture all scenes (cf. Table 8-1). Caragpmsure was determined by taking
multiple reflection readings from various partstleé scene. This was achieved with the
through-the-lens centre-weighting and spot metenigles of the cameraThe camera
was set to auto colour balance mode and sRGB cohmgae (cf. Section 3.4 and 3.5).
The lens was focused manually. Scenes were recatdaidout 11 megapixels (4064 by
2704 pixels). They were saved as 12-bit RAW filEsey were then downloaded to a
computer as 8-bit TIFF uncompressed images usmgdaftware provided by Canon, via
an IEEE 1394 connection.

In addition, sixteen natural scenes were selected fwo Master Kodak Photo CDs. The
Master Kodak Photo CD images were opened at autssolof 512 by 786 and at a

colour resolution of 8 bits per channel in RGB cwlgpace. After inspection to ensure
that the colour reproduction was satisfactory, tveye saved to SRGB colour space. The
reason for using Master Kodak Photo CD images waover a various range of scene
contents and characteristics that photographetisisaand consumers may wish record
and reproduce faithfully. In addition, some of ireagvere used a previous image quality
study [10]. However, these images had limited imfation on the imaging system’s

characteristics, i.e. sharpness, noise and coleproduction characteristics were not

quantified in the laboratory.

All thirty-two images were then down-sampled to 34y 476 pixels using bicubic

interpolation and saved as uncompressed sRGB, Tiléd-of approximately 440 Kb.

The bicubic interpolation method is reported tothe best technique for maintaining
image quality [198] (pp. 461), [199] (pp. 250).

! The centre-weighting measurement is adequatevimage situations, and the spot metering is focipee
measurement of the luminance of small areas afge lsubject [197] (pp. 324).
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6.2 Test stimuli

The thirty-two original images were manipulatedayying two physical parameters in
MATLAB software [136] (Gaussian blurring and Gawassinoise) to obtain a large

number of test stimuli with different levels of bland noise.

Prior to deciding the ranges and levels of disbortipilot studies were conducted on the
calibrated 21 inch EIZO CG210 LCD. Theethod of adjustmef200] (pp. 129-130) was
employed for this purpose, because it is the nmosightforward method for determining
observer thresholds for a given stimulus. In teshhique, the experimenter had control
over the magnitude of the stimulus itself acrosgesd trials [201] (pp. 59-60). The
average adjustment across several trials was e#dclibs a 25:75 proportion of responses
[45] (pp. 2), [200] (pp. 129). Each chosen distortievel corresponded to approximately
one empirical JND when the images were viewed an display used for further

experimentation.
The following techniques were chosen for the malaijan of the original stimuli:

» Blurring: Firstly, Gaussian blurringzas applied to the 32 originals. The standard
deviation @) of the Gaussian low-pass kernel ranged from @01.24 at 0.3075
intervals. This created a total of 160 test images, 32 originalsx 5 different
levels of Gaussian blur.

» Noise: After blurring, the images were further distortedduslding Gaussian noise,
using three different standard deviatioas 0.0, 0.1 and 0.2. This function created
three different levels of uniform noise per blugilevel. A total of 480 test stimuli
were finally created, i.e. 32 originals5 different levels of Gaussian blur3

different levels of Gaussian noise.

The manipulation order is based on the fact tha@piication in the blurring after noise
addition would suppress the visual response toendl$ie blurring is a smoothing

operation as a noise reduction.
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6.3 Display, interface and viewing conditions

Psychophysical tests were carried out under daglwimg conditions to avoid display
flare in the laboratory. ISO 3664: 2000 [51] (pR) Buggests that the level of ambient

illumination should be less than or equal to 32aken the monitor is switched off.

All the images were displayed on an EIZO CG210 L&bntrolled by a S3 Graphics
Prosavage DDR graphic card in a personal computerimg Windows XP professional.
The graphic card was configured to display 24-blbar, at a resolution of 1600 by 1200
pixels and a frequency of 60 HZ (cf. Table 4-1).

The display was switched on for fifteen minutesobefthe tests to allow stabilisation (cf.
Section 4.3). The display interface that was geaedren MATLAB, presented the images
in the centre of the display area to minimise naifeumity display effects (cf. Section

4.4). The test image was placed at a viewing digtaf approximately 60 cm from the
observers and subtended a visual angle of roudflycl Section 4.5). The Eye-One Pro
monitor calibrator was used to calibrate the dig@ta white point close to D65 (6500
K), a gamma of 2.2 and a white point luminance @ td/nf — the default settings for

contrast and luminance for this monitor (cf. Sat¥o6 and 4.7).

The images were displayed at 100% pixel resolufBiv by 476 pixels). Each image
occupied approximately 1/3 of the otherwise neutgedy display area. Figure 6-2
illustrates the graphic user interface (GUI) foe tiest. Prior to the investigations, the
GUI manual was given to the observers to familatiemselves with the software.
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) Test2 (9=

Figure 6-2. Graphic user interface (GUI) used ec¢htegorical scaling.

Psychophysical tests were carried out in a quidt @mfortable laboratory space. The
temperature of the viewing space was kept constrdround 20 degree Celsius. A
wireless mouse was provided for easy selectionnef af 5 quality categories, where 1
represented the worst quality and 5 the best qu&imple number categori¢203] (pp.
123) were used here, as they make the meaningeaddhling easy to understand with
minimum observer effort, e.g. no-translation oriniébn of terms was given. As
suggested in reference [11] (pp. 37-38), adequattsopal space and a comfortable chair
were also provided. Figure 6-3 shows a side viewheflaboratory set-up and a front

view from the observer’s eye position.
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Figure 6-3. Viewing room set-up at a side viewtflahd a front view (right).

6.4 Observations

Subjective assessments were performed by a parieliiéen selected observers, seven
males and seven females. They were all familiah lie meaning and assessment of
image quality. The age of observers ranged fronto232 years old. All observers were
previously tested and reported as those having alocolour vision and holding normal
or corrected-to-normal visual acutance.

Each observer participated in the categorical sgagxperiment 6 times, each time
evaluating a different set of images. Each obsemwaderiod was around 45 minutes. ISO
20462-1: 2005 [45] (pp. 7) suggests that the mamnabservation period should be no

more than 60 minutes to avoid tiredness or laatoofcentration.

Before the test, observers were allowed severautesnto adapt to the dark viewing
conditions of the laboratory, since the processlark adaptation has a considerable
impact on the perceived images [109] (pp. 94), [Zp@. 367).
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Images were displayed one at a time, in a randataroObservers were asked to place
each test image according to its perceived imagditgun one of 5 quality categories.

They were provided with the following written ingttions:

| would like to thank you for participating in thistudy. Please make yourself
comfortable on the chair in front of the displayle&se use the following the
viewing conditions consistently, i.e. a viewingtaliee of approximately 60 cm

from the faceplate, and subtended a visual angteughly 10°.

In this experiment, you will be evaluating the @llequality of a series of images
using a psychophysical technique called the caiegbmethod. Please remember
that there are no right, or wrong answers becaugeane asking you about your

perception of the quality of the images.
Here is how to evaluate the test images:

A single image will be presented at a time on tloaitor. For each image, we ask
you to score its perceived image quality. You ogress your opinion from 1 to 5

(a score of 1 indicates the lowest image qualibg af 5 the highest image quality).

Once you express your view on a given test imageaye able to evaluate a new
test image. When you are ready to evaluate a negeimyou can click the “next”

button, so that a new image is randomly accessdtenVll images have been
evaluated, a dialogue box will appear to inform y®lease let the experiment

organiser know when you have finished going thraihghimages.
The total observation period will be around 45 ntéesu

Note. If you feel you made an incorrect responsg w&ould like to re-evaluate the
image you are currently evaluating, press tReset” key in the pop-up menu. This
will restart the evaluation sequence for the cutr@anage you are evaluating and

record your new answer.

If you feel you want to re-evaluate a previous im#gat is not currently on the screen,
press the “Re-run” key in the pop-up menu. Thid allows you to re-commence the
quality scaling test. In this case, previous re@atdating is ignored and the test starts

from scratch.
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6.5 Analysis of results

The indirect interval category scaling method [2Q8p. 123) was employed to give

meaningful interval scales.

6.5.1 Scaling overall image quality

Interval scales were derived using the simplestdidmm D of Torgerson’s Law of

Categorical Judgement, which makes minimum assomptiegarding the category and
sample variance: correlation coefficients and dsipaes of both the sample and the
category were constant. Category boundaries angleavalues were obtained. This
assumption means that all the elements under tha&egoot sign in equation (6.1) are

constant and equal to one.

tg—Sj = ng\]azj + 025 —2pjg0i04 (6.1)
g=12,-m+1;,j=12,--n

Wheret,is the boundary value between categorgess the scale value for each
samplez;, is the unit normal deviate corresponding to thepprtion,o, is the
standard deviation of the category boundafyis the standard deviation of the
sample scale valupy is the correlation between sample scale valuecaegory
boundaryg is the categoryj, is the samplan+1 is the number of categories amis
the number of samples.

In the condition D\:]azj + 024 — 2pjg0i05 = 1, the equation (6.1) changestfo- S; = zj; (6.2)

The least square techniqusas applied to prevent inaccurate scale valuevetkifirom
zero and one elements in the proportion matrix [20%6]. The key to the technique is to
recognise that there is an incomplete set of egustihat relate the scale value difference
to the transformed values, or z-values, determiimech the proportions, i.e. a linear
relationship existed between the two unknowns Kibendary value between categories

and the scale value for each sample) and the ooevrkr(the unit normal deviate
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corresponding to the proportion). In addition, st row in the matrix forces the sum of
the scale values to be equal to zero. More detdithe least square technique can be
found in reference [203] (pp. 133-134).

The goodness-of-fit was examined using the chi-sg(&) test [203] (pp. 136-138). The

chi-square value indicates that the condition Dhwite least square technique fits the

subjective data well.

Figure 6-4 presents the interval scales for ovaémaige quality. The solid lines represent
subjective results from the combined (averagehofyttwo scenes; the grey square is the
average from all scenes for each level of distartiBach label on the x-axis represents a
specific level of distortion - in blurring (B) antbise (N).

The results show that the modifications in the wttysibutes overall decreased image
quality. This is not surprising, since the modifioas in blur and noise generally degrade
image quality [38] (pp. 26-28), [5%bp. 180-181 and pp. 189-194). The original version
of the images (B1N1) had an average scale val@e08f whilst the distorted images had
lower scale values. This will be discussed in naetail in the individual attribute scales

presented later (cf. Section 6.5.2).

The results also indicate considerabbene dependencyhe broken lines in Figure 6-4

indicate the range of scale values derived froms@hes for each level of distortion.

The results also indicate sorabserver variability The error bars in Figure 6-4 indicate
the inter-observer agreement for the overall gualvhich is calculated using the
coefficient of variation(CV) across all observers [206] (pp. 42), [207] (pEB)2The
result of the 12 for th€V calculation indicates a good inter-observer agesgrfor the
overall quality. The error bars also indicate ehhgriation around the end categories. A
possible reason for this phenomenon was descrip&bbkingham [43] (pp. 90), i.e. the

range effect at the categorical method (cf. Se@i@nl.1).

CV = 100x Standard deviationg)/ Mean(L) (6.3)
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Figure 6-4. Interval scales of subjective imageliquésolid line) with scene (broken line) and
observer (error bar) variability, described as Qdgdur-noise).

In addition, individualobserver sensitivity208] (pp. 204) is presented in Figure 6-5. Its
value ranged between 0.764 and 1.113osérvers 4, 6 and 9 were found to have

relatively lower sensitivity, while the others haaeerage sensitivity (similar to 1.00).
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Figure 6-5. Individual observer sensitivity.

6.5.2 Scaling of individual attributes

The collected overall scale values were rearrangadg permutation[209] (pp. 973)
with an aim to derive individual attribute scal&nce overall scales represent perceived
image quality that results from variations in twiietent image attributes (i.e. in blurring
level and noise level), the attribute variationsravérst arranged as listed in Stepl of
Table 6-1.

Permutation means the arrangement of item. The auwofippermutations is taken to be
"P,, wheren is a different item taken at a position, e.g. the number of permutations of

two stimuli taken two at a position is twi, =2!= 2.

The total number of permutations is produced by gheduct of the total number of

distorted images and the number of attribute peatiars:

960 total permutations = 480 test images x 2 afteilpermutations (6.4)

124



Kyung Hoon Oh, 2014

The full implementation of the method is illustrdte Table 6-1. In addition, examples

of the implementation, i.e. representative subyectesults from the combined (average

Chapter 6. Subjective imagugality evaluation

of) thirty-two scenes, are shown in Table 6-2 aad|& 6-3.

The scale values of the individual image attributese examined across the average
(calculated by the mean) scale values of the @ttigbutes in process of Step 1 to Step 2.
The first listed attribute in Step 1, in Table 64%, the targeting attributein the

permutation. Case | and Case Il use the same batahey are presented differently

according to the targeting attribute.

Step 1: Arrangemen

Step 2: Average of last column in Step

Case Arrangement Case Arrangement
l. 5blur 3 noise l. 5 blur
Il. 3noise 5blur Il. 3 noise

Table 6-1. Individual attribute scaling. Case | &abe |l use same data, but they are presented
differently according to th&argeting attribute

Step 1 Step 2

Attributes Scale value Attributes Scale value
BlurlNoisel 2.03
BlurlNoise2 0.60 Blur 1 0.87
BlurlNoise3 -0.02
Blur2Noisel 2.01
Blur2Noise2 0.63 Blur 2 0.86
Blur2Noise3 -0.05
Blur3Noisel 1.19

I Blur3Noise2 -0.10 Blur 3 0.18
Blur3Noise3 -0.54
Blur4Noisel -0.32
Blur4Noise2 -0.84 Blur 4 -0.76
Blur4Noise3 -1.12
Blur5Noisel -0.90
Blur5Noise2 -1.17 Blur 5 -1.18
Blur5Noise3 -1.47

Table 6-2. Example of individual attribute scalfiogthe combined (average of) thirty-two scenes,
Case l.
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Step 1 Step 2
Attributes Scale value Attributes Scale value
NoiselBlurl 2.03
NoiselBlur2 2.01
NoiselBlur3 1.19 Noise 1 0.80
NoiselBlur4 -0.32
NoiselBlur5 -0.90
Noise2Blurl 0.60
Noise2Blur2 0.63
Il Noise2Blur3 -0.10 Noise 2 -0.18
Noise2Blur4 -0.84
Noise2Blur5 -1.17
Noise3 Blurl -0.02
Noise3Blur2 -0.05
Noise3Blur3 -0.54 Noise 3 -0.64
Noise3Blur4 -1.12
Noise3Blur5 -1.47

Table 6-3. Example of individual attribute scalfiogthe combined (average of) thirty-two scenes,
Case ll.

Overall quality scales, Case | and Il from Step ITable 6-1, are shown in Figure 6-4
(blur targeting attribute) and Figure 6-6 (noisggé&ding attribute). Each label on the x-
axis represents a specific level of distortion naise (N) and blurring (B) i.e. according
to the targeting attribute (listed first in theddibf the graph), then the second attribute.

There is clearly a trade-off in image quality whearying the two attributes: high

amounts of blur in the image significantly decreasiege perception of noise and high
noise in the image decreased the perception of BL@] (pp. 290), i.e. the range of noise
1-3 in blur 1 varied 2.05, while the range of nols8 in blur 5 varied 1.37 (Figure 6-4
and Step 1 in Table 6-2). The range of blur 1-Barse 1 varied 2.97, while the range of
blur 1-5 in noise 3 varied 1.45 (Figure 6-6 ancpSten Table 6-3).
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Figure 6-6. Interval scales of subjective imageliguésolid line) with scene (broken line) and
observer (error bar) variability, described as Qageoise-blur).

Individual attribute scales, Case | and Il fromB2ein Table 6-1, are presented in Figure
6-7 and Figure 6-8. The solid lines represent stive attribute scales from the

combined (average of) thirty-two scenes; the gigyase is the average from all scenes
for each level of distortion. The broken lines sate the range of attribute scales derived

from all scenes for each level of distortion.
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Figure 6-7. Scaled blur/sharpness attribute agetifin of the sigma, analysed from interval
scales of subjective image quality, Case | (blur).
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Figure 6-8. Scaled noise attribute, analysed fratierval scales of subjective image quality, Case
Il (noise).
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Figure 6-7 represents the blur targeting attrifoben the Case I. In this figure, it is
noticeable that the original and original + 1 enggir JND of blur versions were almost
rated similarly. The quality is shown to decreagaificantly for the next blur levels, and
it reaches a point (at level B5) where more bluuldaot further reduce the quality, i.e.
the image quality scale of blurring is an almogpdmnpolic (S-shape) function (cf. Figure
2-2).

There was a reciprocal relationship between scepertiency and level of distortion,
identified when considering image blurring, i.e.the level of distortion increased the
scene dependency decreased. This result indidaeotv levels of blurring might affect
different scenes in a different manner, but higlele of blurring tend to affect different
scenes more equally [211] (pp. 158).

Figure 6-8 represents the noise targeting attrifrote the Case 1l. Case (Noise) indicates
that 2 levels of added noise (each separated IND) decreased equally image quality,
but the ‘toe’ of the quality scale for noise was$ reached (cf. Figure 2-3 and Figure 2-4).
Also, the scene dependency variation appears sinmlall levels of distortion. The
results suggest that a larger range of distorttonsadded noise should be required to

cover the full range of image quality.

The outcomes of these results (sharpness and essginvere in line with results from

previous studies (cf. Section 2.2.1.3).

6.5.3 Measuring the effect of scene content

The effect of scene content on the perceived qualds examined by correlating the
combined mean scale values from all scenes ansctie values of each individual scene
[38] (pp. 28). This task was carried out for eaatiividual attribute. In the example plot
shown in Figure 6-9 for the scene ‘Saules’, thaligrats represent the steepness of the
lines fitting the data (one for each attribute)westn the ratings for each individual scene
and that of the combined scenes.

The gradient will be referred to as theene susceptibilitfcf. Section 2.2.1.2). If the
gradient of the line is one, the scene susceftitoli the individual scene to the specific

quality attribute is the same as that of the combiscenes. Thus, it represents an
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‘average’ scene. If the gradient is larger than, dinen the scene has larger susceptibility
than that of the combined scenes for the spedifrdate. The reverse is true when the

gradient is smaller than one.

The constant in the linear relationship indicaté®tler the individual scene got a better
rating than the combined scenes, i.e. the oveatifigs for each individual scene is better
than the overall ratings of the combined scenesiijpe offset) or the opposite (negative
offset).

The coefficient of determination?, indicates the strength of the relationship betwee
them. The coefficients of determination on blurremgd on added noise were all close to

1.0, confirming that this method for deriving scesceptibilityis satisfactory.
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Figure 6-9. Scene dependency on the “Saules.”

Figure 6-10 and Figure 6-11 present examples ofiescdnaving different gradients:

“African tree” and “Baby.”
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Subjective rating "African tree"

Subijective rating "Baby"
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Figure 6-10. Scene dependency on the “African’tree.
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Figure 6-11. Scene dependency on the “Baby.”
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Table 6-4 presents the gradient, constant andicizeff of determinationrf), for each

test scene and for blur/sharpness and raitsibutes.

Blur Noise
Gradient Constant r? Gradient Constant r?
African tree 0.32 -0.02 0.945 1.96 0.00 0.993
Baby 1.06 -0.02 0.995 1.06 -0.02 0.995
Bike 1.21 0.30 0.984 0.72 0.29 0.99¢
China town 0.95 0.04 0.995 0.97 0.04 0.984
Exercise 1.15 -0.20 0.966 0.51 -0.21 0.989
Formula 1.00 0.53 0.997 1.14 0.53 0.918
Glasses 0.86 0.10 0.974 117 0.11 1.0p0
Group 1.07 -0.38 0.980 0.66 -0.38 1.090
Human 0.91 0.07 0.990 1.10 0.06 1.04q0
Human2 0.32 0.31 0.948 1.07 -0.30 0.998
Human3 1.24 -0.20 0.965 0.55 -0.21 0.998
Human4 1.08 -0.43 0.991 111 -0.43 0.917
Kids 1.18 0.27 0.996 1.15 0.26 1.00p
Landscape 0.86 -0.20 0.967 1.44 -0.19 1.0p0
Landscape2 0.63 0.06 0.936 1.82 0.06 0.9[76
Landscape3 1.05 0.07 0.98y 1.31 0.07 0.9p9
London Eye 0.86 -0.37 0.994 1.09 -0.38 0.989
London Eye2 0.93 -0.42 0.994 1.28 -0.41 0.987
Louvre 1.16 -0.35 0.998 1.03 -0.36 1.000
National gallery 1.07 -0.13 0.994 0.96 -0.13 1.000
Old building 1.29 0.08 0.997 0.92 0.08 1.000
Plantl 1.15 0.79 0.985 0.34 0.79 0.841
Plant2 0.79 0.53 0.969 0.85 0.53 0.993
Plant3 0.87 0.22 0.992 1.13 0.21 0.997
Plant4 0.80 -0.12 0.994 112 -0.12 0.991
Plant5 1.09 0.08 0.998 0.99 0.08 0.948
Plant6 0.97 0.13 0.997 1.04 0.13 1.04q0
St. Pauls 1.40 0.03 0.991 0.50 0.02 0.999
St. Pauls2 1.10 0.03 0.99¢ 0.87 0.03 0.9p9
Saules 1.43 0.01 0.964 0.19 0.00 0.8¢61
Sungsil 1.24 -0.31 0.981 0.83 -0.31 0.990
Yellow flower 0.91 0.23 0.996 1.14 0.22 0.98p

Table 6-4. The gradient, constant, and coefficidmtetermination for thirty-two scenes at
blur/sharpness and noise attributes.
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Regarding blurring: the scenes “Human2”, “Africaee” and “Landscape2” were found
to have the lowest gradient values, indicatingw@ly low susceptibility to blurring. On

the other hand, “Saules” has the highest gradiemtiey indicating the highest
susceptibility to blurring. Figure 6-12 shows thétly-two scenes ranked from lowest to

highest, the scene susceptibility with respectito/ lsharpness.

Figure 6-12. Scene ordered according to scene #ilsitiey parameter on blur/ sharpness.

Regarding noisiness: an extreme result was prodogéde “Saules” scene (cf. Figure 6-
9), having an extremely low gradient of 0.19. Tigishe busiest scene in the set [10] (pp.
266-267). The noise was largely masked by the frigtpiency information in this scene
and thus very low susceptibility to added noise Sgction 7.1). Figure 6-13 shows the
thirty-two scenes ranked from lowest to highestles;aaccording to the scene

susceptibility parameter on noisiness.
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Figure 6-13. Scene ordered according to scene silsitiey parameter on noisiness.

In Figure 6-12 and Figure 6-13, the scenes aresilnamked in reverse, which indicates
that scenes with high susceptibility to sharpnessHow susceptibility to noisiness, and
the reverse. This will be discussed in more ddtdér, in the section that discusses
correlation between scene susceptibility paramedes scene descriptors (cf. Section
7.2).
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6.6 Summary

A large-scale categorical judgement experiment ezalucted. In all fourteen observers
performed a total of 6720 observations. Psychometraling was used to create interval

scales indicating the overall quality of imagesjsated to variations in blur and noise.

From the overall image quality assessments, indalidharpness and noisiness attribute
scales were derived. The following summary lists thain findings of subjective image

quality evaluation.

1. The level of distortion that was introduced by hbhg covered the entire image
quality scale. However, the level of added noises tee small for investigating the

consequences of these variations on the full rahgeage quality.

2. Blurring decreased significantly the perceptiomoise, while added noise decreased

the perceived blurring.
3. The perceived image quality depends on scene donten

Further the scene content variation in individudarpness and noisiness was quantified.
This was achieved by correlating the combined nseate values from all scenes and the
scale values of each individual scene, for eachibate. The scene dependency

parameters were successfully derived.

The results from this chapter will enable furthexsgarch into objective scene
classification (cf. Section 7.2 and 7.3) and takevard the study of objective (physical)
image quality scaling (cf. Chapter 8).
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Chapter 7

Objective scene classification with

respect to image quality

The aim of this chapter is to objectively clasdif thirty-two original test scenes that
were used in the psychophysical investigation iaptér 6. Objective scene classification

will enable further study into application of phyai image quality predictions.

The classification involves: 1feature generation investigation of various scene
descriptors derived to describe properties thauemice image quality (or individual

attribute quality), 2feature selectioninvestigation of the degree of correlation betwee
scene descriptors and scene susceptibility parasn@te Section 6.5.3) and 3) k-means

clustering for scene grouping.

7.1 Feature generation to describe scene descripsor

The first step towards the objective scene clasgibn was a feature generation step (cf.
Figure 2-22). This step aims to investigate a nundfescene descriptorsderived to

describe the original scene properties/features.

A number of scene descriptors related to texturé spatial image properties were
derived using second-order statistical measuresnasasurement from edge detection.
This was because the observer’'s preference sheulffbcted by the spatial frequency

properties of subjects. They describe how ‘busyhaw ‘flat’ a scene is. These measures
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were applied to the grey scale version of the imagech was obtained from the 8 bits

per channel sSRGB image by [136]:

Grey scale image = 0.2989R + 0.5870G+ 0.1140B. (7.1)

where R, G, B correspond to the pixel value ofRh& and B channels, respectively.

7.1.1 Second-order statistical measures

Second-order statistical measurements, which retatiextural information in images,

were calculated from the grey level co-occurrenegrion (GLCM).

Implementation was carried out in MATLAB [136] ugithe default angle and distance

values: 0° angle and 1 pixel distance. The param@tgestigated in this work are listed

below (cf. Section 2.2.2.8):

* Contrast (or inertia): relates to the scene textwmeation. Contrast is 1 for a
“complex” imaged scene.

* Homogeneity: relates to the scene texture variattmmogeneity is 1 for a “uniform”
imaged scene. Contrast (or inertia) and homogereigy strongly, but inversely,
correlated.

» Correlation (or linearity): relates to the scenduee variation with linearity.
* Energy: relates to the disorders in scene texturks. highest energy values occur

when the grey level distribution has a constangesiodic form.

Table 7-1 lists the result of second-order stat$tneasurements.
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Contrast Homogeneity Correlation Energy
African tree 0.05 0.98 0.98 0.26
Baby 0.15 0.93 0.95 0.17
Bike 0.37 0.87 0.92 0.11
China town 0.19 0.93 0.94 0.19
Exercise 0.32 0.88 0.91 0.15
Formula 0.22 0.94 0.95 0.16
Glasses 0.15 0.94 0.96 0.24
Group 0.31 0.89 0.90 0.15
Human 0.11 0.95 0.98 0.17
Human?2 0.09 0.95 0.98 0.21
Human3 0.35 0.88 0.95 0.11
Human4 0.11 0.96 0.97 0.21
Kids 0.18 0.94 0.98 0.20
Landscape 0.05 0.97 0.96 0.31
Landscape2 0.07 0.97 1.00 0.18
Landscape3 0.14 0.94 0.97 0.16
London Eye 0.16 0.94 0.95 0.33
London Eye2 0.16 0.94 0.95 0.39
Louvre 0.26 0.90 0.94 0.16
National gallery 0.42 0.89 0.87 0.18
Old building 0.23 0.92 0.95 0.27
Plantl 0.21 0.91 0.94 0.16
Plant2 0.07 0.97 0.96 0.34
Plant3 0.10 0.96 0.98 0.25
Plant4 0.13 0.94 0.96 0.30
Plant5 0.11 0.95 0.96 0.40
Plant6 0.11 0.95 0.97 0.24
St. Pauls 0.57 0.82 0.94 0.09
St. Pauls2 0.27 0.90 0.90 0.17
Saules 0.51 0.81 0.87 0.10
Sungsil 0.66 0.82 0.88 0.10
Yellow flower 0.21 0.92 0.81 0.43

Table 7-1. Scene descriptor values from the secodeF statistical measurements.
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Regarding textural information: the scenes “St.|faudSaules” and “Sungsil” were
found to have the lowest values in Homogeneity,r€ation and Energy, indicating
complexity of texture in the imaged scene (theeethe highest values in Contrast). On
the contrary, “African tree” and “Landscape2” hahe highest value in Homogeneity,
Correlation and Energy, indicating that the imageene consists of mainly uniform

areas.

7.1.2 Measurement from edge detection

The Sobel, Prewitt and Laplacian of Gaussian (Ledje detection algorithms were used
to quantify the presence and strength of edgebtangtey scale image. The Sobel and
Prewitt edge detection algorithms are represematfixst-order methods. The LoG
operator is a typical second-order method. Theore&sr this implementation is that the

perception of the sharpness of an image is direethted to edge profiles of the image.

The Sobel and Prewitt edge detectors were appsetjwa 3x 3 kernel size and 0.04 for
sigma, and the LoG edge detector was applied asbig 5 kernel size and 0.5 for sigma,
which is the default value employed in MATLAB [136All edge detectors were
operated with the ‘replicate’ boundary option in MI8AB [136], where the boundaries
were assumed to be equal to the nearest bordee.vBluring the edge detection, the
magnitude of the edg&] was computed by [138] (pp. 577-580):

G = /G,? + G2 (7.2)

whereG, andG, are the horizontal and vertical edge gradients®@image, respectively.

Then all edge gradients were averaged. Figure &lafd (b) illustrate two original

images and the corresponding threshold images Sidel edge detection with the
average edge gradient, related to the edges’ skremgy well as the amount of edge
information in the image. Figure 7-2 illustratesaiginal image and the corresponding

images after Sobel, Prewitt and LoG edge detection.
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(a) Average Sobel edge gradient: 11.68
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(b) Average Sobel edge gradient: 6¢
Figure 7-1. Average edge gradient value with itginal image (left) and the corresponding threshold
image after Sobel edge detection (right), describédfrican tree” (top) and “Kids” (bottom).

Figure 7-2. The “Saules” image (top-left) and iflge images after Sobel (top-right), Prewitt
(bottom-left) and Laplacian of Gaussian (bottonft)gedge detection.
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Table 7-2 lists the result from edge detection.

Sobel Prewitt Laplacian of Gaussian (LoG)
African tree 11.68 8.45 8.40
Baby 58.03 42.59 27.98
Bike 113.12 83.04 61.87
China town 62.89 46.69 33.52
Exercise 78.02 56.61 49.90
Formula 66.28 49.26 34.96
Glasses 55.27 40.84 23.39
Group 85.00 62.74 47.01
Human 28.72 21.01 15.62
Human2 27.74 20.12 17.21
Human3 89.64 66.07 48.97
Human4 31.19 22.95 17.95
Kids 66.19 49.13 33.37
Landscape 22.16 16.31 14.01
Landscape2 17.36 12.69 11.16
Landscape3 37.88 27.36 25.92
London Eye 47.95 35.38 30.48
London Eye2 45.78 33.68 28.38
Louvre 57.57 41.90 37.14
National gallery 88.48 65.47 51.83
Old building 54.00 39.67 31.62
Plantl 68.10 50.31 24.57
Plant2 24.55 18.24 8.27
Plant3 30.18 22.44 10.19
Plant4 41.06 30.44 17.29
Plant5 31.43 23.38 10.49
Plant6 36.19 26.90 11.86
St. Pauls 111.65 80.85 75.46
St. Pauls2 82.46 60.80 50.00
Saules 101.69 73.25 68.69
Sungsil 125.09 90.91 80.53
Yellow flower 51.19 37.24 28.48

Table 7-2. Scene descriptor values from edge detect
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Regarding edge information: the scenes “Africartrand “Landscape2” have lo®
values, indicating the low presence and streng#tdges in the imaged scene. In contrast,
“Bike”, “St. Pauls”, “Saules” and “Sungsil” indicatthe high presence and strength of

edges in the imaged scene.

7.2 Feature selection using correlation between st

descriptors and scene susceptibility parameters

The second step toward the objective scene cleatdn was a feature selection step (cf.
Figure 2-22). This step aims to investigate therelegof correlation between scene
descriptors and scene susceptibility parametersrapresented by the gradient values in
Table 6-4. Scene descriptors that successfullyetaied with scene susceptibility in

sharpness and noisiness provided a means towaabjihetive scene classification.

Spearman’s correlation coefficient, was used to investigate the correlation between
various scene descriptors and scene susceptilititynoisiness and to sharpness.
Spearman’s correlation coefficient is useful wheatadhave a ranking but no clear
numerical interpretation, such as when assesskgifgnences for data on an ordinal scale
[144] (pp. 212). It is thus an appropriate measiore the purpose. The correlation
coefficients range between -1.0 (indicating perfaati-correlation) and 1.0 (indicating

perfect correlation), with 0 indicating no correbat at all [145] (pp. 80-81).
=1—6 ) d*/n(n?>-1) (7.3)
Y/

whered: the difference in ranks, amd the number of items in the sample.

Successful correlations were obtained between messi susceptibility parameters and
second-order statistical measures, as well as mesadarived from edge detection. When

a correlation coefficient is larger than the legékignificance at a 1% probability level,
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i.e. the critical value, it indicates statisticagrsficance. The critical value of the

Spearman'’s correlation coefficient is 0.452 foample size of thirty-two [144] (pp. 214).

Successful correlations were also obtained betvgbanpness susceptibility parameters
and, again, second-order statistical measures asasures derived from the edge

detection. Table 7-3 shows the successful coroglatoefficients for noisiness and

sharpness.
Scene descriptors Correlation cqeff'icient (rS:) . Correlation cgeﬁicient ()
for scene susceptibility to noisiness for scene susceptibility to sharpness$

Contrast (Inertia) -0.694 0.802
Homogeneity 0.738 -0.781
Correlation (Linearity) 0.644 -0.550
Energy 0.577 -0.647

Average Sobel gradien -0.701 0.786

Average Prewitt gradiert -0.701 0.786
Average LoG gradient -0.593 0.747

Table 7-3. Successful correlation coefficientsrfoisiness and sharpness.

There were several interesting relationships batweeene content and scene
susceptibility to noisiness and sharpness. Thdtsesonfirmed that the higher the texture
in the scene content, the lower the susceptibiidynoisiness and the higher the
susceptibility to sharpness. For example, the tairom coefficients between the
homogeneity and the scene susceptibility to nossirend to sharpness were 0.738 and -
0.781 respectively. In addition, the presence dfigh number of strong edges in the
image significantly decreased the susceptibility noisiness and increased the
susceptibility to sharpness. For example, the tatiom coefficients between the average
Sobel metric and the scene susceptibility to nessnand to sharpness were -0.701 and
0.786 respectively. The results agreed with previ@searches [10] (pp. 261), [16] (pp.
663), i.e. the spatial frequency properties of scigj were important scene dependence
parameters in the observer's preferences and tise veas probably masked by the

mainly high-frequency information in the scene.

143



Kyung Hoon Oh, 2014 Chapter 7. Objective sadassification with respect to image quality

It was also confirmed that the relationship betwesrarpness and noisiness is

complimentary (cf. Figure 6-4 and Figure 6-6).

Overall, the results indicate that there is a cledationship between selected scene
descriptors and scene susceptibility parameterais, Thhe scene descriptors that
correlated with sharpness and noisiness scenedimlity can be used to objectively

classify scenes.

7.3. Clustering for natural scenes

Finally, k-means clustering was implemented to cipjely group the thirty-two test
scenes according to their susceptibility to botArghess and noisiness. The k-means
clustering allows for simple and speedy groupintaaje data sets [148] (pp. 526-528).

As mentioned before (in the section 2.2.2.8), kdmseclustering consists of several steps
[21] (pp. 406-408). The first step is to defineigetl number of clusters, k. Possible
methods for choosing k include empirical and nuoanmethods. The empirical method
is usually preferred. In relevant image qualityestrgations, k is chosen to be equal to
3.0 [208] (pp. 204). Once k is chosen, then modiifons of the distances between all
points in then™ cluster @ varying from 1 to 3) and the centre of the cluster applied
(step 2). The main idea for their modificationghat the average distances between all
points in each cluster and the central point ar@mal. During these modifications, new
cluster centres are allocated using Euclidean riista (step 3). The modification stops
when the average distances from all points inrfReluster and the new central point

have reached the minimum (step 4). Figure 7-3tithtiss the k-means clustering process.
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step 1 step 2 step 3 step 4
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1) k initial "means" 2) k clusters are created 3) The centroid of 4) Steps 2 and 3 are
(in this case k=3) are by associating every each of the k clusters  repeated until
randomly selected observation with the becomes the new convergence has
from the data set nearest mean. The mean. been reached.
(shown in colour). partitions here represent

the Voronoi diagram
generated by the means.

Figure 7-3. Simplified diagram of k-means clustgrin
(produced by Wikipedia (viewed May 2009) [149]).

The two scene descriptors that correlated mostesstaly with both noisiness and

sharpness susceptibility, i.e. theomogeneity and average Sobel edge gradient
descriptors, were used to implement the clustei@igstering was implemented in the

SPSS programming environment [212]. Figure 7-4 emtssthe three clusters, with the
initial and final centres of each cluster. The iemgorresponding to each of the three
clusters (or groups) are shown in Figure 7-5.
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Figure 7-4. Three clusters (groups) in the scaliteyram, measured using themogeneityand
average Sobel edge gradiatdscriptors.
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Group 2
Plant1 London Eye
China town Kids London Eye2 i

Exercise

Formula Yellow flower Glasses Old building

Group 3

Saules 5t. Pauls 5t. Pauls2

Mational gallery

Figure 7-5. Images in three clusters (groups).

The k-means clustering classifies images into thlgemips, using the selected scene
descriptors. Each group might reflect the spat@ifigurations in the imaged scene,
which are well-known "context" factors [11] (pp.)25

This k-means clustering involves the old rule “prehces do not occur in a vacuum, they
are always formed relative to a context [213] (p@)”, and no-requirement was needed

of the assumption that average spatial configunatmf scene elements are considered to
generate quality scales.

147



Kyung Hoon Oh, 2014 Chapter 7. Objective sadassification with respect to image quality

The validation of the objective scene classifigaticas examined using visual inspection,
i.e. visual observation [18, 19, 20]. The imagesh& same group by k-means clustering
tend to have common visual features, e.g. the “keape” seems to have similar
structural features to “Human 4”, “Landscape 3’lafit 2” (Group 1), while it seems to
have different structural features to “Plant 1” ¢Gp2) and “Saules” (Group3). On the
other hand, the classification of images aroundotieader is an arguable point, e.g. does
“plant 4” visually belong to the scene group asritlacape” (Group 1) or is it visually
closer to “Baby” (Group2)?

Overall, there was a reasonable match between dtispe and objective scene

classification. Thus, it can be concluded thatttiree groups of scenes were effectively
derived using the objective scene classificatiok4myeans clustering, i.e. scenes with: 1)
low susceptibility to sharpness distortions anchlsgsceptibility to noisiness, 2) average
susceptibility to sharpness distortions and nogsn&) high susceptibility to sharpness

distortions and low susceptibility to noisiness.
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7.4. Summary

Firstly, a number of scene descriptors were subtddssderived from second-order
statistical measurements, as well as measuresedefiom edge detection. They were
concerned with the extraction of image features #féect sharpness and noisiness

judgements.

Secondly, the degree of correlation between sceserightors and scene susceptibility
parameters that were derived in section 6.5.3 wasstigated, using the Spearman’s
correlation coefficient. Successful correlationsravebtained between: sharpness and
noisiness susceptibility parameters and second-cstigistical measures, as well as
measures derived from edge detection. These cboredandicate that the selected scene
descriptors successfully represent sharpness dsshess susceptibility, and can be used
to objectively and automatically classify the testenes used in image quality

investigations.

Thirdly, using the selected scene descriptors goulyeng k-means clustering, three
groups of scenes were effectively derived, i.e.nesewith: 1) low susceptibility to

sharpness distortions and high susceptibility tesiness, 2) average susceptibility to
sharpness distortions and noisiness, 3) high stibdep to sharpness distortions and low

susceptibility to noisiness.

The results from this chapter enable further reteamnto the application of physical

image quality predictions using the objective scelassification (cf. Section 8.3).
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Chapter 8

Calculation of image quality metrics

This chapter sets out the details for objectiveygptal) image quality scaling. This
scaling was carried out using two different dewilependent metrics: the Effective
Pictorial Information Capacity (EPIC) [74] and tRerceived Information Capacity (PIC)
[71]. The performance of the metrics was assessedjsubjective results obtained in
chapter 6, before the implementation of modificasidhat account for scene content.
From the assessment, the modified metrics wereidenesl to be an improvement over
the original metrics. A validation experiment walken carried out to test the

improvement in the metrics that account for scemdent.

8.1. EPIC and PIC implementation

An example of a device-dependent model is the EWfedictorial Information Capacity
(EPIC) [214]. It is based on signal transfer theld®y] and has been relatively successful
in predicting the quality of compressed images Bsndges that vary in sharpness and
noisiness [74] (pp. 7).

EPIC values were calculated by combining two systamables: the effective pixel
dimension in the imagen) and the number of effective distinguishable lsvielr each
recording cell (dynamic range of a system).(These variables were cascaded from the

input, processing, output and visual system (cftiSe 2.2.2.1).
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For the EPIC metric calculation, first the measueetof the effective pixel dimension in
the image f) was carried out as follows:

1) The effective pixel dimensiond was taken as the width of line spread functio8K)
at which the MTF falls to 50% [214] (pp. 3). The aebaccounted for the variations
in sharpness of the captured test stimuli (ingt®,blur introduced by Gaussian blur
filtering (processing), the sharpness of the 2hib€D system (output) and the CSF-
Barten’s model- which was employed as the modeltHierhuman eye (HVS). The
imaging chain was that employed in the psychoplaysicaling of image quality (cf.
Section 6.1 and 6.3).

In more detail:

Input: The MTF of the capturing system was cal@daacross the range of focal
lengths and-numbers used to capture each test image. Theggemented in Table
8-1.

Image Focal length f-number Image Focal length f-number
Baby 135 6.3 Exercise 112 5.6
Group 135 11 London Eye 100 22
London Eye2 135 20 National gallery 28 5.6
Old building 28 8 Plantl 135 5.6
Plant2 135 5.6 Plant3 100 5.6
Plant4 100 36 Plant5 135 5.6
Plant6 135 5.6 St. Pauls 28 11
St. Pauls2 28 22 Sungsil 35 8

Table 8-1. Lens focal lengths afkdumbers for each of the captured images.

Figure 8-1 shows the fluctuation of the measured=MWith varying focal lengths

28-135mm and-numbers 5.6-36, which were used to capture alldifferent test
scenes.
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ABaby e Exercise
X Group = London Eye
X London Eye2 A National galler
+0Ild building Plantl
=Plant2 * Plant3

Plant4 Plant5

Plant6 St. Pauls

St. Pauls2 Sungsil
- Average

0.0 —_— T
0 0.1 0.2 0.3 0.4 0.5

wpixel! camera

Figure 8-1. Polynomial functions representing thdation of the camera MTFs for the captured
images using different lens focal lengths &ndimbers (refer to Table 8-1). The average
measurement appears with a red line.

Since the image input systems and experimentalitonsl for the Kodak Photo CD
images [74] (pp. 5) were unknown (cf. Section 6thg MTF of an ‘average input’
system was assumed. Figure 8-1 includes the MT&nofaverage input’ system,
based on the Canon EOS-18stem. There are likely to be variations betwden t
assumed and the actual Photo CD image MTFs (clur&i®-1). Although such
differences in sharpness for the Kodak Photo CDgesaexist, including them in the
test set was, in my view, worthwhile for assesshgyimage quality of scenes with
large variations in scene content. Jenéiral [74] (pp. 5) noted that “scenes were
chosen purposely to contain different amounts ¢éifjdow varying areas, various
degrees of global and local intensities and coldnéss, a variety of dominant
colours and strong and weak edges.” This was thd@i my project too. In addition,

Barten [220] (pp. 158) noted that “image qualitytnes are usually generic measures.
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This means that they are independent from actuabndl content. They do not
contain the modulation of different spatial freqgaggomponents of an actual image,
but only the MTF by which these modulations are tipliéd. This is almost
remarkable, but in practice, it appears that tla amplitude of these components
does not play an important role in the judgemeritrzfge quality.” In this project, a
various range of different scenes are capturedh@yrput system. Based on Barten’s
statement, we can envisage that, potentially, thié-Mf input system using test
target may not play a significant role in the MTEtnts at different scenes. This was
the problem for my project. Nevertheless, the uoiigel MTFs of the Photo CD

images are expected to render results relatecese timages prone to errors.

Processing: Captured images of edges were margpuley varying Gaussian
blurring in MATLAB software [136]. The standard deviatiow)(of the Gaussian
low-pass kernel ranged from 0.01 to 1.24 at 0.3Diférvals. This was the same
range as that implemented the test images in thehpphysical scaling of image

quality (cf. Section 6.2).

The error range was calculated using the statisticar [33] (pp. 134), [215] (pp.
296). Its result produced up #8%.

1
Xow

SE =

(8.1)

:

whereSE is the standard erroX is the length of data in pixels afd is the effective
bandwidth of the measurement.

Figure 8-2 illustrates the MTF curves at variou®ants of Gaussian blur.

The MTF of the 10x interpolation was not taken irgocount, as the bicubic
interpolation is a highly non-linear process (cécton 5.1.4). Some researchers take
into account the MTF of non-linear process [194].(B). In some other works it is
being excluded [32] (pp. 58-62), [74] (pp. 6).

Output: The MTF of the 21 inch LCD system was chat@d by dividing the
combined MTF by the camera MTF in section 5.1.3e Vbrtical LCD MTF, fitted

by a third degree polynomial function, is presenteBigure 8-3.
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Figure 8-2. Polynomial functions representing thaation of the MTFs with varying theusing
Gaussian blur.
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Figure 8-3. Polynomial function representing theigal MTF curve of the LCD.
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HVS: The Barten CSF was used as the eye’s MTF mdulause it takes into
account various viewing conditions and has beercessfully implemented in
metrics that predict sharpness and noisihgkgpp. 377) (cf. Section 2.2.2.7). The
specific viewing conditions employed were a lumicarof 100 cd/fh a viewing
distance of approximately 0.6 m, and a visual angRC (cf. Section 6.3). Figure 8-
4 illustrates the Barten CSF calculated with respethe LCD plane.

0.0 0.1 0.2 0.3 0.4 0.5
pixel -1 display

Figure 8-4. Contrast sensitivity function (CSFpadtiminance of 100 cd/ma viewing distance of
approximately 0.6 m and a visual angle of 80 the LCD plane.

Total system: The total system MTF was obtainedmyltiplying the individual
system MTFs. For this, it was assumed that eaclpooent was linear and that the
MTF for each successive component was independent fhat of the previous
component [33] (pp. 183). All measurements werestared in the LCD plane.
Figure 8-5 shows examples of total system MTFs)qusne average capture MTF
(input), all different Gaussian blur MTFs (procesgi the MTF of the LCD (output)
and the CSF (HVS).

155



Kyung Hoon Oh, 2014 Chapter 8. Calculation ofithage quality metrics

1.0 -
—0.01
0.9 -
----- 0.3175
0.8 -
------ 0.625
0.7 1 ———0.9325
069 --- 124
= 0.5 \
0.4 - \
\‘\
0.3 - W)
\\\
0.2 - N
\‘\\
0.1_ \\\\\\
oo db— . . .. TF=
0 0.1 0.2 0.3 0.4 0.5

pixel® display

Figure 8-5. Examples of total system MTFs, obtaimgdnultiplying the MTFs of input, output
and HVS and the MTFs of different levels of blanfalues).

The LSFs for each captured scene were then cadculating the relationship between
LSF and MTF (cf. Figure 2-17), i.e. the MTF of anaging system is calculated as the
normalised modulus of the Fourier transform of th8F. An example of the

implementation, i.e. the calculation of one LSFsh®wn in Table 8-2, and the results of

the LSFs for each image are presented in Table 8-3.

Relative Distance ET of MTE Modulus of Normalised Modulus of
(in pixels) FT™ of MTF FT* of MTE

0.0000 0.1363 0.1363 1

0.1708 0.0884 + 0.0854i 0.1229 0.858941
0.3415 0.016 + 0.0963i 0.0976 0.592414
0.5123 -0.0255 + 0.0713i 0.0757 0.361673
0.6830 -0.0408 + 0.0437i 0.0598 0.193738
0.8538 -0.0434 + 0.0233i 0.0493 0.082814
1.0246 -0.0422 + 0.0099i 0.0433 0.020503
1.1953 -0.0414 0.0414 0

1.3661 -0.0422 - 0.0099i 0.0433 0.020503
1.5368 -0.0434 - 0.0233i 0.0493 0.082814
1.7076 -0.0408 - 0.0437i 0.0598 0.193738
1.8784 -0.0255 - 0.0713i 0.0757 0.361673
2.0491 0.016 - 0.0963i 0.0976 0.592414
2.2199 0.0884 - 0.0854i 0.1229 0.858941

Table 8-2. The calculation of LSF for “Exerciseege.
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Half widths of | Half widths of | Half widths of | Half widths of | Half widths of
Image 0.5LSF at Blur[0.5LSF at Blur [0.5LSF at Blur|0.5LSF at Blur|0.5LSF at Blur
1(0.01) 2 (0.3175) 3 (0.625) 4 (0.9325) 5(1.24)
Baby 0.48749 0.48833 0.49078 0.49462 0.50087
Exercise 0.47651 0.47736 0.47981 0.48365 0.4899p
Group 0.44989 0.45075 0.45319 0.45703 0.46328
London Eye 0.48168 0.48254 0.48498 0.48882 0.495017
London Eye2 0.47377 0.47463 0.47708 0.48091 0.48717
National gallery  0.47677 0.47763 0.48007 0.48391 0.49014
Old building 0.43160 0.43246 0.43491 0.43875 0.8449
Plantl 0.52999 0.53085 0.53330 0.53714 0.5433p¢
Plant2 0.52999 0.53085 0.53330 0.53714 0.5433p¢
Plant3 0.52999 0.53085 0.53330 0.53714 0.5433p¢
Plant4 0.53822 0.53908 0.54153 0.54537 0.5516p
Plant5 0.52999 0.53085 0.53330 0.53714 0.5433p¢
Plant6 0.52999 0.53085 0.53330 0.53714 0.5433p¢
St. Pauls 0.42922 0.43008 0.43252 0.4363¢ 0.44261
St. Pauls2 0.46133 0.46218 0.46463 0.46847 0.47442
Sungsil 0.42488 0.42574 0.42819 0.43203] 0.43828
Average 0.47178 0.47264 0.47508 0.47892 0.4851)

Table 8-3. Calculated half width of individual sedrSFs at height 0.5.

2) The area of the imagéf,) was calculated as 16¢111 mm. This was formed by the
combination of the image pixels, 476 by 317 pixalsd the common SXGA pixel
dimension of the LCD [216], [217] (pp. 13). Thisbhecause the EPIC is designed
with the specific area of image condition (26205 mm) [74] (pp. 5). As mentioned
before, metrics are simpler, more efficient compatelly, and sometimes are

designed with specific application in mind, e.geytitould apply to a specific area of
the image on display devices [218] (pp. 943).

3) The effective pixel dimension at image a(gpwas then calculated by:

_ Aim
wZ

(8.2)

whereA, is the area of the image, awds the effective pixel dimension.
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The number of effective distinguishable levels éach recording cell (dynamic range of

a system)r) was calculated by:

DS
m= Ko +1 (8.3)

whereDS is the difference between the maximum and mininpassible levels of the
recording system (256 available levels in an 8sgitem), k is a constant (2) awod
represents the system'’s diminishing ability toidgatish independent levels, calculated
from each individual component of the imaging chahe noise in the test stimuli
(processing), the measured noise of a 21 inch L&Mem with the aid of the high-
performance digital camera (input-output (cf. S®tti5.2.2)) and the human eye
parameter (1).

The value ofo varies with the scanning aperture (or window) stlioe actual standard
deviation of the noise was approximated &y o/L for square recording cells via an
implementation of the Selwyn granularity, wheleis the width of the LSF. All
measurements were performed in the display pladet@pixet units. Jenkin [74] (pp.
4) noted that “care must be taken to ensure thah@hsurements are performed in the
same plane (eye or display typically) and the umitsl measurement aperture of the
variance are understood in order that they mayob@med properly.”

The number of effective distinguishable levels lné system was considered to be 64.
This number has been found to be a typical value¢hie intensity levels distinguishable
on a CRT faceplate under normal display viewingditons [33], [74] (pp. 4). This
result is of course valid for the specific condiso It was also empirically tested and
found true on the 21 inch LCD. Changing the LCD ience, angle of subtense and
viewing conditions can change the number of effectlistinguishable levels of the
system.

The perceived information capacit§)(was then calculated, based on the effective pixel
dimension in the imagen) and the number of effective distinguishable lsvielr each

recording cell ().

C=nlog,(m) (8.4)
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EPIC values were finally derived in bits per stéaady:

C
EPIC == (8.5)

The visual solid angleq) is given by:
Q=A/r? (8.6)

whereA;, is the area of the image, an the viewing distance.

Another example of a device-dependent model isReeeived Information Capacity
(PIC) [71] (pp- 8). It is based on SNR [70] (pp.) Ed is derived from the system’s
parameters, including MTF and NPS. These variables cascaded from the input,

processing, output and visual system.

For this PIC metric calculation, the measuremerthefMTF and NPS was combined as

follows:

0.5
] +k, (8.7)

PIC = k1 [f:max In (1 + So(u)Mg(u)Mczi(u)nge(u)> d_u

N(u)nge(u)"'Neye(u) u

The signal spectrungy(u), was obtained from the power spectrum of an ‘ay&racene.
Mc(u) was the MTF of each individual capture (for eacbng) multiplied by the MTF of
the Gaussian blur that was introduced to the cagdtuest stimuli.Mgy(u) was the
measured MTF of the display system, dvigl{u) used the Barten's CSF model. For
image noiseN(u), was the area under the noise power spectrum oiithging chain.
NeydU), the eye’s noise, the suggested parameter 1 wexk U$ie constants, andk,
were set to 1 and 0, respectively. These constaets determined from a comparison
with Barten’s parameters [69] (pp. 7). However, stheconstants have no physical
meaning [220] (pp. 161).

The approximation for the power spectrum of an rfage’ scene was calculated
according to the equations given by Barten [69] &p
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a?
SO(u) - 2(%_’__“2) (8.8)
where
2
a2 _ A(logI) 2 1 8.9)

2 mwin(XYuZ.x)

wherel is the intensity, in this case the pixel valuedaignal channel, and the valuexof
is obtained from:

2
1 1 1 u
= X_g + X2 + (N_e) (8.10)
where Xp is the angular size of the object, aKgis the maximum angular size over
which the eye is able to integrate the informafs12°). Neis the maximum of cycles
over which the eye is able to integrate the infdioma (N.=15 cpd). In addition, a
similar relationship is used to find

Figure 8-6 and Figure 8-7 present the average BRUICPIC values. Each label on the x-

axis represents a specific level of distortion luriing (B) and noise (N).
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Figure 8-6. EPIC values for all levels of distontiom blurring (B) and noise (N).
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Normalised PIC (Arbitrary units)
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Figure 8-7. Normalised PIC values for all levelsdtortion in blurring (B) and noise (N).

Figure 8-8 presents the comparison between EPIGHDdTheir values were normalised

and

rescaled as percentages,

Kbytes/steradian, and the PIC unit is arbitrary.
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Figure 8-8. Comparison between normalised EPICnanchalised PIC values for all levels of
distortion in blurring (B) and noise (N); (a) tatigg attribute-blur (b) targeting attribute-noi¢e)

and (b) use same data, but they are presentedetifiie according to th&argeting attribute
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The results demonstrated that the EPIC metric isersensitive to noisiness at the same
level of blurring than the PIC (in the Figure 8-&))( while the PIC metric is more
sensitive to sharpness at the same level of nbese EPIC (in the Figure 8-8 (b)). This
can explain why the EPIC metric correlates reldyiwveell with noisiness for flat scenes
and the PIC metric correlates relatively well wstrarpness for complex scenes, when the
two metrics are compared. Jenkinal[221] (pp. 69) demonstrated that cascading many
MTF and NPS curves within the SQRtalculation heavily biases the metric towards
low-frequencies in the system. Topfer and Jacolpgbh(pp. 8) described that the SNR
type’s metrics as correlating well with perceivadage quality for complex scenes and
noisy images. This phenomenon was found to beake im the EPIC and PIC evaluation

of the individual scenes described later (cf. $ec8.2).

8.2. EPIC and PIC evaluation as device-dependent
quality predictors

A validation experiment was carried out to test $bhecess of the EPIC and PIC metrics
in predicting perceived image quality, using resfilom subjective tests involving thirty-

two test scenes, replicated with various degreshafpness and noisiness (cf. Chapter 6).

The Pearson’s correlation coefficien} vas used to investigate the degree of correlation
between objective and subjective scales. A degfemmelation larger than a level of
significance at 1% probability level indicates tlia¢ degree of correlation between the
two variables is statically significant. The degodecorrelation should exceed 0. 570 for
a sample size of thirty-two. However, this criticedlgree may be no practical, due to the
large sample size [144] (pp. 219). Therefore dbefficient of determinatiofr?) was also
calculated as the third way of measuring statistsignificance [222] (pp. 196). The
reason for using the coefficient of determinatisritiatr? is often used in image quality
metric validation.
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Figure 8-9 and Figure 8-10 show thandr?coefficients for the thirty-two test scenes.
Table 8-4 and Table 8-5 list the detailed resuslatively successful correlations were
obtained, i.e. the average of 32 coefficients 36.865 (°=0.748) in EPIC and=0.870

(r?=0.757) in PIC. The result confirmed that the nustrvere reliable predictors of image

quality. Other studies have indicated similar clatrens [71] (pp. 22), [74] (pp- 7).

In general, device-dependent image quality metn&age been shown to be unequally
successful in predicting the quality of individusdenes [10] (pp. 259), [74] (pp. 6). As
expected, the results confirmed that the metrieddcoot predict the quality of different
images with varying scene content consistently,the metrics performed well on most
of the scenes, but predicted less successfullyp#neeived quality of some individual,

non-standard looking scenes, e.g. “African tree”.
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Figure 8-9. Evaluation of EPIC as an image qualigdiction,r andr? coefficients, for thirty-two
test scenes.
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2 2 2

Image r r Image r r Image r r Image r r?

African tree| 0.602| 0.362| Baby | 0.8790.773 Bike 0.902 0.814| China town 0.931]0.867

Exercise | 0.9060.821| Formula |0.918|0.843( Glasses | 0.89pP0.808] Group | 0.8630.745

Human 0.9100.828| Human2|0.775]0.601f Human3 |0.877|0.769( Human4 [0.8020.643

Kids 0.909| 0.826| Landscap¢0.869| 0.755| Landscapep0.752( 0.566| Landscapep).8630.745

London Eyd 0.843| 0.711] Y°N99M | 824 0.679| Louvre | 0.8840.789] Natonal |4 e300 god
Eye2 gallery

Old building[ 0.934]| 0.872| Plantl | 0.9330.870[ Plant2 | 0.9280.861| Plant3 | 0.8970.805

Plant4 0.8530.731| Plant5 | 0.8610.741] Plant6 | 0.8560.733| St. Pauls|0.9050.819

St. Pauls2] 0.906| 0.821| Saules | 0.81B0.661| Sungsil | 0.88%0.783 z(ce){ll\j)e\l\rl 0.851§0.724

Table 8-4Ther andr? coefficients for thirty-two scenes, compared bewEPIC and perceived
quality. The bold letters indicate the scene depaogin EPIC metric, “African tree” and

“Landscape2.”
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Figure 8-10. Evaluation of PIC as an image qualisdiction,r andr? coefficients, for thirty-two
test scenes.
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Image r r? Image r r? Image r r2 Image r r?
African tree[ 0.519( 0.269| Baby | 0.8910.794( Bike 0.944] 0.891| China town0.9180.843
Exercise | 0.9650.931| Formula |0.895/0.801| Glasses | 0.88/0.781| Group | 0.9320.869
Human | 0.8930.797| Human2|0.700{0.490, Human3 [0.934| 0.872] Human4 [0.822/0.676
Kids 0.904] 0.817(Landscapg0.832| 0.692| Landscapep0.687| 0.472|Landscapep).848(0.719
London Eyq 0.849| 0.721 L‘ér)‘,gg“ 0.836|0.699| Louvre | 0.904 0.821 '\éaatlil‘érr‘;' 0.8560.733
Old building 0.945(0.893| Plantl | 0.97%0.951| Plant2 0.8910.794 Plant3 | 0.8820.778
Plant4 0.8280.686 Plant5 | 0.8810.776| Plant6 0.868 0.753| St. Pauls [0.961{0.924
St. Pauls2|0.923]0.852[ Saules | 0.9100.828| Sungsil | 0.9270.859 \f(lﬁl/l\?(:\rl 0.847)0.717,

Table 8-5. The andr? coefficients for thirty-two scenes, compared bem®IC and perceived
quality. The bold letters indicate the scene depaogin PIC metric, “African tree,” “Human2”
and “Landscape2.”

8.3. EPIC and PIC with objective scene classificain

In order to improve the reliability of the metridhe objective scene classification model

[10] (pp. 269) and thentegrated hyperbolic increment functighHIF) regression [223]

(pp. 124) were considered. Figure 8-11 illustratesodular image quality framework to

tackle the problem of scene dependency in the csetfihere are three modules in the

framework.

Image

—

Objective scene

Scene group
informatior

classification

Obijective scale

Integrated hyperbolic
increment function (IHIF)

regre

ssion

Calibrated sca

Objective image quality
calculation

Figure 8-11Basic stages of quality calculation within the alijge scene classification and the
IHIF regression.
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1) Obijective scene classification was firstly consedein order to tackle the problem of
scene dependency in the metrics. Triantaphilliéowal [10] (pp. 269) proposed a
method for scene classification, which uses objecsicene descriptors that correlate
with subjective criteria on scene susceptibility ilmage quality attributes. Scene
descriptors are derived to describe inherent sgeaperties that human observers
refer to when they judge the quality of images.sTtlassification process enabled
fully automatic classification of scenes into ‘ddlamd’ or ‘non-standard’ groups,
instead of being classified by inspection. The oibje scene classification

undertaken in this study is described in detadhapter 7.

All of the thirty-two scenes in this study were yaoisly classified into three groups
as follows: 1) low susceptibility to sharpness dungh susceptibility to noisiness 2)
average susceptibility to sharpness and noisirgdsigh susceptibility to sharpness

and low susceptibility to noisiness (cf. Figure)7-5

2) This scene group information was used to attempmimove predictions, using a
fitting operation.According to Keelan [14] (pp. 147), “one way to cderize the
variability associated with observer sensitivitydastene susceptibility is to classify
scenes and observers into small numbers of grougs ta form subsets of
assessments based on combinations of the groupsiaka from the different subsets
can be separately fit with integrated hyperbolicrément function (IHIF)

regressions. ”

The IHIF [223] (pp. 124) was employed to accoumttfe quality changes arising for
scene susceptibility. The reason for using the I8l quantify the image quality
automatically and to obtain reliable results thatrelate well with subjective
assessments, i.e. the metric produces immediatéisegithout human involvement
[210] (pp. 289).

The IHIF value was calculated with free paramef@eble 8-6) [208] (pp. 204). The
IHIF value ranged between 0.73 and 1.36, fe: the intermediately susceptible
group (i.e. middle), the IHIF value was approxinhatequal to 1.0; for the least
susceptible group (i.e. least susceptibility), thHéF value was 0.73; for the most

susceptible group (i.e. most susceptibility), tH&H value was 1.36.
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Ao (Q-00)\ 00,
In(1+ . ) o (8.11)

— _Rr
AQUY) ==
where AQ is quality difference,Q is objective metric (units variabld),. is objective
metric at reference threshold positia).is asymptotic objective metric just noticeable
difference (JND) increment arit}. is radius of curvature of quality loss functionQat
[223] (pp. 124 and 471).

Observer Sensitivity Scene Susceptibility AQ, Q, Q,
Less Sensitivity 50% Least Susceptibility 25p65.500 20.76 39.9
Less Sensitivity 50% Mean 4.364 16.43 367
Less Sensitivity 50% Middle 50% 4.078 17.2 372
Less Sensitivity 50% Most Susceptibility 25% 3.980 11.94 34.4
Mean Least Susceptibility 25% 5.298 18.72 36.3
Mean Mean 3.902 15.07 35.2
Mean Middle 50% 3.708 15.8] 355
Mean Most Susceptibility 2594 3.256 10.95 34.3
More Sensitivity 50% Least Susceptibility 25% 5.088 16.62 33.7
More Sensitivity 50% Mean 3.47( 13.70 33.Y
More Sensitivity 50% Middle 50% 3.35] 14.50 33.8
More Sensitivity 50% Most Susceptibility 25% 2.654 9.81 35.9

Table 8-6. IHIF fit parameters to predict qualitvange arising from an attribute, in all cases
R=151.6. The quantitQ.; is the objective metric valug at which one just noticeable difference
(JND) of quality loss occurs
(produced by Keelan [208] (pp. 204)).

The IHIF value was shown to relatively match thecpeved quality loss variables for
scene susceptibility for the three groups (Tabl®.8Fhus, it was demonstrated that
the IHIF value could be used to calibrate scenesdbomatic calculation of metric
values, i.e. Pearson’s correlation coefficiem)swere 0.999 for noisiness and 0.969
at blur/sharpness for the three groups. The sceseeptibility of the three groups
was also valid for the weighting values. The scensceptibility to noisiness or
blur/sharpness was averaged from the perceivecd: siesteptibility parameters (cf.

Table 6-4) in three groups (cf. Figure 7-5).
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Scene Susceptibility | IHIF value Scenens;:zﬁqeepstisbility 0 Scetr)llﬁishsg;ap;;tiebsigty to
Least Susceptibility 0.73 0.72 0.81

Middle 0.98 0.97 1.05
Most Susceptibility 1.36 1.25 1.15

Table 8-7. IHIF values and scene susceptibilitydgsiness or blur/sharpness in three groups.

The IHIF calibration was considered only for noisigce it is implemented for each
attribute separately and it was shown that thetioglship between noisiness and
sharpness was complimentary (cf. Section 6.5). &fibex, a high IHIF value

represents a high susceptibility to noisiness amddusceptibility to sharpness/blur.

An example of the use of the IHIF value for caltbrg noise in group 1 is illustrated
in Table 8-8. The calibrated noise scale in thedakimn is obtained by multiplying

the noise scale with the IHIF value.

Noisel 0 0
Noise2 0.1 1.36 0.136
Noise3 0.2 0.272

Table 8-8. Example of using IHIF for calibratingise

3) The calibrated scale was then used to improve e¢hability of the metrics. The
calculation was the same as that of the EPIC afdrtrics, as set out in section
8.1.

The EPIC and PIC scales were normalised and resesl@ercentages, since a scale
with the maximum unit of 100 is easy to understd is set as the original quality,

which means perceived absence for artefacts.

The normalisation was applied here as a linearga®dt could reflect the nature of
the variation (other than scene content) amondetstestimuli [45] (pp. 17). Osberger
[224] (pp- 21) has noted that “care must be takeassuming linearity when applying
psychophysical results from tests using simplefi@al stimuli to complex, natural

images,” since “the HVS is highly adaptive to theedse and complex range of

stimuli which it deals with in the natural world.”
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Figure 8-12 and Figure 8-13 present the calibr&tetC and PIC values for the three
groups. Each label on the x-axis represents afgpkiel of distortion in blurring (B)

and noise (N).
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Figure 8-12. Calibrated EPIC values in three chsstgroups).
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Figure 8-13. Calibrated PIC values in three cligsf(groups).
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8.4. Calibrated EPIC and PIC evaluation

The success of the implementation was evaluatedobrelating the subjective scaled
values from section 6.5.1, and the calibrated guakales obtained in section 8.3. The
Pearson’s correlation coefficier) @nd the coefficient of determinatiorf)(were again

used to examine the success of the correlation.

Figure 8-14 and Figure 8-15 show thandr? coefficients for the thirty-two test scenes.
Table 8-9 and Table 8-10 list the detailed resuRssults from the implementation
showed that generally the quality predictions wérgroved. The average of 32
coefficients increased from 0.8680.748) to 0.882rf=0.778) in EPIC and from 0.870
(r?=0.757) to 0.886rf=0.785) in PIC.

Improvements were particularly shown in scenes riggitgy to group 1, with low
susceptibility to sharpness and high susceptibitity noisiness. For example, the
coefficients at “African tree” scene increased fror02 (?=0.362) to 0.740rf=0.548)

in EPIC and from 0.519%0.269) to 0.618rf=0.382) in PIC. In the “Human 2" scene,
the coefficients increased from 0.7#5=0.601) to 0.874rf=0.764) in EPIC and from
0.700 ¢%=0.490) to 0.782rf=0.612) in PIC. The coefficients at “Landscape2érse
increased from 0.752%0.566) to 0.838r¢=0.702) in EPIC and from 0.687%€0.472)
to 0.763 (°=0.582) in PIC.
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Figure 8-14. Evaluation of calibrated EPIC as aagmquality predictiorr, andr? coefficients,
for thirty-two test scenes in three groups.

Image r r? Image r r? Image r r

African tree | 0.740 | 0.548| Human 0.918| 0.843 Human?2 0.874 0.764

Humand | 0.786 0.618 | Landscapd 0.908 | 0.824 | -aNdSCape|  gag | 702
Group 1 2

Landscape3| 0.870| 0.757 Plant2 0.926| 0.857 Plant3 0.919| 0.845
Plant4 0.891| 0.794 Plant5 0.851| 0.724 Plant6 0.863| 0.745

China

Baby 0.879| 0.773| & | 0931 | 0.867 | Exercise | 0.90§ 0.821

Formula | 0.918 0.843| Glasses | 0.899 0.808 | Kids | 0.909| 0.826

GrouP 2 || hndon Eye | 0.843| 0.711 L‘é';gg” 0.824 | 0.679 | Louvre | 0.888| 0.789
Old building | 0.934 | 0.872| Plantl | 0.933| 0.870 }(l‘;i,'f;’;’ 0.851| 0.724

Bike 0.923| 0.852 Group 0.891| 0.794 | Human3 0.899 0.808

Group 3 '\éztlil‘;?;' 0.810| 0.656| St Pauls| 0.942 0.887 | St. Pauls2| 0.893 0.797

Saules 0.88§ 0.789| Sungsil 0.883| 0.780

Table 8-9. The andr? coefficients for thirty-two scenes in three grqupsmpared between
calibrated EPIC and perceived quality. The boltetdahdicates the scene dependency in
calibrated EPIC metric, “African tree.”
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Figure 8-15. Evaluation of calibrated PIC as angenquality prediction; andr? coefficients, for
thirty-two test scenes in three groups.

Image r r? Image r r? Image r r

African tree | 0.618 | 0.382 Human 0.929| 0.863 Human?2 0.782 0.612

Human4 | 0.841 0.707 | Landscapd 0.884 | 0.781 | -3"dSCaPe| ¢ 7641 ¢ 5gp
Group 1 2

Landscape3| 0.883 | 0.780 Plant2 0.927| 0.859 Plant3 0.924| 0.854
Plant4 0.873| 0.762| Plant5 0.898| 0.806 Plant6 0.897| 0.805

China

Baby 0.891| 0.794 town 0.918 | 0.843 | Exercise 0.965 0.931

Formula 0.895| 0.801| Glasses 0.884 0.781 Kids 0.904| 0.817

GrouP 2 || sndon Eye | 0.849| 0.721 L‘é’;fejg” 0.836 | 0.699 | Louvre | 0.906| 0.821
Old building | 0.945| 0.893| Plantl | 0.975| 0.951 :flf){,'fe";’ 0.847| 0.717

Bike 0.930] 0.865| Group | 0.932| 0.869 | Human3 | 0.916] 0.839

Group 3 '\gl‘;rr‘;' 0.880| 0.774| St Pauls| 0.931 0.867 | St Pauls2| 0.934 0.872

Saules 0.858 0.736| Sungsil 0.929| 0.863

Table 8-10. The andr? coefficients for thirty-two scenes in three groupsmpared between
calibrated PIC and perceived quality. The bolcleittdicates the scene dependency in calibrated
PIC metric, “African tree.”
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In total, objective scene classification was coessd in order to tackle the problem of
scene dependency in the metrics. This implementagibows automatic grouping of
scenes into ‘standard’ or ‘non-standard’ groupsths it allows automatic calculation of

the metric values.

Results from the implementation showed that gehetale quality predictions were
improved. Most importantly, they were shown to etate equally well with subjective

quality scales for standard and non-standard scenes

In addition, more extensive investigations intoealive scene classification, e.g. optimal
clustering numbers (k=4 or 5), could help to prevash even better metric calibrations for
objective image quality predictions. However, arteagsive number of clusters or a
continuous fitting of all scenes might not be regdj since there may not be any
significant advantage with regard to accurate imaugality predictions, i.e. the metrics
already performed well on most of the scenes, aigda slight increase in correlation for
some scenes. For example, the coefficients at tPleatene had a slight increase from
0.933 (?=0.870) to 0.944rf=0.851) in EPIC, using 1.15 scene susceptibilitging a
large number of clusters could make the calculattone-consuming.
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8.5. Summary

A validation experiment was first carried out tettéhe success of the metrics; EPIC and
PIC, using results from subjective tests that imva) the thirty-two test scenes replicated
with various degrees of sharpness and noisines<Clpter 6). In general, the metrics
were found to be reliable predictors of image dualHowever, as expected of device-
dependent metrics, they were less successful dictirey the perceived quality of some

‘non-standard’ scenes which had atypical spatidlstructural content.

Objective scene classification was considered gteoto tackle the problem of scene
dependency in the metrics. The scene classificatioployed for the purpose used
objective scene descriptors, which correlated wshbjective criteria on scene

susceptibility (cf. Chapter7). The implementatibng allowed the automatic grouping of
scenes into ‘standard’ or ‘non-standard’ groupstdad of being classified by inspection.
From this scene group information, the quality @earising for an attribute in the scene
group was obtained using the integrated hyperhotiement function (IHIF) regression,

as described by Keelan.

The classification and metric calibration performm@rwas quite encouraging, not only
because it improved mean image quality predictioms all scenes, but also because it
catered for non-standard scenes, which originalbdpced low correlations. Also, it is

because of the efficiency of computation. The figdi indicate that the scene
classification method has a great potential fokltag the problem of scene dependency,
when modelling device-dependent image quality.
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Chapter 9

Discussion

In this chapter, a discussion of the results fromn practical work conducted during the
investigation is presented. The evaluations ofitipait (camera) and the output (LCD)
system characterisation are firstly discussed. tilbel discussion on the results from the
subjective tests follows. Finally, this chaptergaets a discussion of EPIC and PIC as

quality predictors.

9.1. Systems characterisation and calibration

Both input and output systems were characterisedtife aspects of image quality
attributes, i.e. tone, colour, resolution, shargreesd noise. The characterisation provided
a means for producing accurate and reproducibldtsefor image quality investigations.

It also determined the limitations of the devicasimage quality investigations.

Digital camera system

The Canon EOS-1Ds camera system was identifiechasdn limitations with regard to
spatial uniformity. The top-right corner of the tajing frame was shown to be the least
uniform. The result was greater than the percdjtibcolour difference in complex
scenes, 3.00 iAE*,, [160]. Therefore, the rest of the investigationsrevcarried out

using the central area of the image.
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The tone and colour reproduction results demomstratariation with respect to the
camera colour settings in the process profiles. fidsilts showed that a reproduced
image’s tone and colour were affected by the cansetaur settings in the process
profiles, and the colour setting was influentialdptimising colour images. An sRGB
setting of 3 was used to optimise colour images, the smallest colour difference

between originaKYZand calculateXYZwas achieved with the SRGB colour setting of 3.

The colour reproduction also demonstrated thatetiveas a lack of colour accuracy
between scene and image. Thus, the custom profie applied to a polynomial
regression model, which was able to provide egaiatolour reproduction with high
polynomial terms. However, there is a significagestific challenge in calibrating the
camera’s colour reproduction in relation to re#d-liphotography. The process is
complicated and time-consuming. Further extensireestigations are required for

accurate colour reproduction in the real scene @sag

The camera’s MTF was measured for its ability tpickepicture details. The camera’s 10%
MTF values were 58.5 cycles/mm in the horizontal &4.3 cycles/mm in the vertical.

The camera may depict picture detail up to thosguencies.

The camera’s signal-to-noise ratio was 47he camera’s noise characterisation was
satisfactory, thus this result led to the choica ¢figh-performance camera for the LCD

noise characterisation.

LCD

There was a slight variation in the luminance oer thizo CG210 LCD temporal
characteristic. This change in luminance, howewas not perceptible to the human eye.

The LCD did not require significant warm up timeoirder to reach stabilisation.

The LCD system showed limitations with regard tatsd uniformity. The actual
fluctuations of the 24 areas ranged from 0.73 &9 4n AE* 5, and from 0.62 to 3.45 in
AEgo. The lower-middle LCD areas showed the most nafetmity, 4.80 inAE* 5, The
result was greater than the perceptibility coloiffecence in complex scenes, 3.00 in

AE* 5, [160]. The result showed that a reproduced image affected by the displayed
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spatial point. This led to the choice of the LC@antral area for the psychophysical
investigation of image quality.

The LCD had a limited viewing angle. This charaster was of considerable
significance in this study, where a differing viegiangle significantly influences the
assessment of subjective image quality. It was etsdirmed that the vertical viewing
angle had more impact than the horizontal. The k&duired significant careful viewing

angle control during the image quality study.

There was a variation in colour reproduction onlt&®. The average colour difference
value was 1.57 il\E*,, and 0.52 inAEyy. The LCD’s reproduction of colours was

acceptable for the psychophysical scaling.

In the tone reproduction investigations, the optimeerall gamma in the imaging chain,
camera-LCD, was confirmed. The optimal overall ganwias 1.32 from 2.20 and 0.60 in
the LCD and the camera, respectively. It was idiedti that these settings were
intentionally rendered by the manufacture basedhenobserver’'s preference, i.e. the

optimal overall gamma was generally between 1.01ahd83] (pp. 379).

The ability of the LCD system to depict picturealketvas measured. The LCD 10% MTF
values were 1.93 cycles/mm in the horizontal ari8 Lycles/mm in the vertical. The
LCD 50% MTF values were 1.14 cycles/mm in the hamtal and 0.95 cycles/mm in the
vertical. The LCD MTF result was used in the cadtioin of the objective IQM.

The noise of the LCD was measured with the aid biga-performance digital camera.
The signal-to-noise ratio of the LCD was 45:1. Ti@D outcome was significant, when
compared to the previous results and ranged frostBio 63.5:1 [195] (pp. 166), [196]
(pp. 6). The LCD noise result was used in the datmn of the objective IQM.

Two points were emphasised by the characterisatidhe systems. First, there was the
effect of imaging system characteristics on thegenquality, which was a crucial factor
in the image quality. Second, imaging systems hakierent limitations in reproducing

the original scene. This should be a tremendoudletiygg for imaging system
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development, since successful systems often cottiménevitable error to those that are

least noticeable visually [226] (pp. 436).

9.2. Subjective image quality evaluation

A novel subjective scaling method was carried aubrder to derive individual attribute
scales from the overall image quality assessm@&his.approach does not require scaling
of individual attributes and does not require tlssumption that the attribute is one-

dimensional, i.e. observers can see the qualitypate independently.

In this scaling study, the image quality is consideas an overall impression, not
individual attribute scaling. Although the indivigluattribute scaling is commonly used,
it provides a limited correlation with actual pexesl image quality, and therefore it is
logical to consider image quality as an overallg&drum [11] (pp. 22-23) has noted that
it is necessary to avoid pitfall of individual scg) and to take much care of quality

studies.

Furthermore, the results showed that the five-rarajelistortion introduced by blurring
covered the entire image quality scale. However tlinee-levels of added Gaussian noise

were too small for investigating the consequencdbe full range of image quality.

There was interesting a trade-off between noisebdund High amounts of blurring in the
image significantly decreased the perception ofseéoiand high noise in the image

decreased the perceived blur.

Relationship between scene dependency parametersdescene descriptors

This work was carried out to investigate the degoéecorrelation between scene
descriptors and scene dependency parameters. A emuafbscene descriptors were

derived from second-order statistical measuresa@asurement from edge detection.

The outcomes showed that there was a successfelattn between the sharpness and

noisiness susceptibility parameters and the spiiguency properties of subjects, i.e.
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second-order statistical measures, as well as mesagerived from edge detection. The
higher the frequency in the scene content, the ddlaeesusceptibility to noisiness and the
higher the susceptibility to sharpness. The resal in line with results from previous
studies [10] (pp. 261), [16] (pp- 663).

Three points were emphasised by the subjective englity evaluation. First, the
perceived subjective quality is dependent uponpilstorial content of the test images.
Second, the spatial frequency properties of subject pivotal scene dependence
parameters in the observer’s preferences. Thiatgtlts a correlation between the spatial
frequency properties of subjects and the obsengeese susceptibility to sharpness and

noisiness.

9.3. Objective image quality evaluation

Imaging system characterisation and subjective enqaglity evaluation have repeatedly
shown that the perceived quality is dependent bgplon the device and scene

characteristics.

Subjective overall image quality was predicted gdimo device-dependent IQMs, EPIC
[74] and PIC [71]. The metrics were found to beatde predictors of image quality.
However, they were not equally successful in ptaticthe quality of different images
with varying scene content. This was in line witindfngs from previous researches [71]
(pp.- 22), [74] (pp. 7). Device-dependent image igyahetrics tend to perform well on
standard looking scenes, but perform less well@mnesof non-standard looking scenes
with atypical spatial and structural content: foiample, scenes of very low busyness
with many flat areas [10] (pp. 261). The problensoéne dependency when employing

device-dependent image quality metrics was confirme

Improvements to the performance of the metrics wkem considered using objective
scene classification. The objective scene clasgiio employed for the purpose utilised

objective scene descriptors, which correlated wshbjective criteria on scene
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susceptibility. This process enabled fully automatassification of scenes into ‘standard’
or ‘non-standard’ groups, instead of being clasdifioy inspection. This objective scene

classification was highlighted as one of the keaaarin this work.

A validation experiment was then carried out ta the improvement in the metrics.
Results from the implementation showed that thelityupredictions were improved
successfully, after according for individual sceslassification. Most importantly, the
metric scales were shown to correlate equally weth subjective quality scales of

standard and non-standard looking scenes.

The classification and metric calibration perforrm@rwas quite encouraging, not only
because it improved mean image quality predictioms all scenes, but also because it
catered for non-standard scenes, which originaibdpced low correlations. Also, it is
because of the efficiency of computation. The figgi indicate that the automatic scene
classification method has a great potential fokltag the problem of scene dependency,
when modelling device-dependent image qualityait provide a tool for fully automatic

and quick derivation of image quality rating.

This is a practical consideration of scene classibn with respect to image quality, a
possible way of overcoming the problem of sceneeddpncy in image quality modelling,
suggested by Keelan [14] (pp. 147). Based on thggestion, this work is further
expended in scene classification, which uses digstene descriptorghat correlate

with subjective criteria oscene susceptibilityp image quality attributes [10] (pp. 269).

This finding could form the basis for a new direatiof research, simultaneously
predicting perception according to imaging systearameters, observer and scene

properties, taking into account classification.

9.4. Fundamental comments

The scientific originalities of this research anensnarised as follows:

» The provision of an experimental paradigm for meaguthe effect of scene content
on image quality with respect to sharpness andness.
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* The development of a methodology in subjective ienggality assessment, in order
to derive individual attribute scales from the @leimage quality assessments. This
approach does not require scaling of individualitaites and does not require the
assumption that the attribute is one-dimensional, abservers can see the quality
attribute independently. The method might be ideainvestigating the relationship
between attributes.

 The demonstration that the specific, selected sgamoperties correlate within
perceived image quality of sharpness and noisiaesk the derivation of various

scene descriptors for scene properties.

» The application of the objective scene classifaratio resolve the problem of scene
dependency in device-dependent image quality nsetiitis allows a quick and
simple objective quality measurement utilizing inmagsystem characteristics and
scene properties.

A successful objective scaling study, based onstligective image quality scaling and
the system properties, could provide a quick amsly éa implement method for the
evaluation of image quality in industrial laboragst It could also assist fundamental
academic research concerning the evaluation of emagality, such as algorithm

development and imaging system development.
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Chapter 10

Conclusions & Recommendations for

further work

10.1. Conclusions

The following conclusions are drawn from the reskaronducted in this thesis.

Perceived image quality is dependent upon the ingagystem characteristics.

Characterisation of the imaging system showed tti&iperception of image quality
was dependent on the imaging system. For exant@dphe and colour reproduction
results were demonstrated to have variation wipeet to the camera colour settings

in the process profiles.
There are limitations on imaging systems with rdgarreproducing scenes.

It was demonstrated that there was a lack of cad@ouracy in the reproduction of
colour between scene and image. The MTF and noisasumements also
demonstrated the same finding.

Perceived image quality is also dependent uposdhee properties.

Psychophysical scaling was used to demonstratehibgierception of image quality
was dependent on scene properties. In additiongesstul scene dependency
guantification was found.

There are relationships between sharpness/blunaisd.
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High amounts of blurring in an image were shownsignificantly decrease the
perception of noise, and high noise was shown toedese the perceived blur.

Spatial frequency properties of subjects are chisodane dependence parameters and
influence observers’ perception of image qualitplurred and noisy images.

It was demonstrated that there was a correlatibwd®n the sharpness and noisiness

susceptibility parameters and the spatial frequgmoperties of subjects.

Device-dependent metrics are unequally successfupredicting the quality of
different images with varying scene content.

It was found that two device-dependent image quatietrics, Effective Pictorial

Information Capacity (EPIC) and Perceived InformatiCapacity (PIC), predicted
less successfully the perceived quality of nongdath scenes with atypical spatial
and structural content.

An effective device-dependent metric is requiredptedict human perception of

image quality, based on both imaging system progseras well as scene properties.

Scene classification has the potential for tacklthg problem of sharpness and

noisiness scene susceptibility when modelling dedependent image quality.

The classification and metric calibration perforro@arwas quite encouraging, not
only because it improved mean image quality premhst from all scenes, but also
because it catered for non-standard scenes, whigginaly produced low
correlations.

10.2. Recommendations for further work

Several recommendations for further work in thEssacan be made.

Extensive investigations of the standard conditimmghe camera would be required
in order to achieve an accurate colour reproductkeairchild et al [227] (pp. 1)
demonstrated that careful and simple charactesisaif digitalSLR cameras could

result in visually equivalent colour reproductidn) and 6.9 im\E* 4.

183



Kyung Hoon Oh, 2014 Chapter 10. Conclusions & Recommendations fahé&r work

» Extensive investigations of various conditions vebbke required by custom profile
(polynomial regression model) for the accuracy ofoar reproduction, not only
illumination in D65. Possible implementation in theamera is in common
illuminations, such as tungsten light (3200 K)oflescent light (4500 K), electronic
flash (5000 K) and overcast daylight (7000 K).

* More investigations of MTF associated with imagevdesampling are required at

different MTF methods and a wide range of down-dargpevels.

* More information is required on the MTF and nois&racteristics of the display
device. This is necessary for the improvement of tmage quality metric.
Furthermore, the accurate characterisation of éwicd would assist in calibrating the

system, such as noise reduction.

* More serious effort could be put into quantifyingD. Themethod of limitscould
be utilised to provide more precise threshold daéa the method of adjustment [200]
(pp. 130-131).

» Extending the range of distortion would be necessafuture work, since the range
of added Gaussian noise was too small to investited consequences on the full

range of image quality, e.g. 5 or 7 JNDs [200] (5@1) in added Gaussian noise.

* The quality ruler method could be used to furthteidg subjective quality scaling,

since the implementation includes the scene-depemdier calibration [17] (pp. 11).

» Further work is required into identification, sdlen and classification of scenes, as
this is an unresolved challenge within the sciecasmunity, until now [10] (pp.
269).

* More extensive investigations of scene descriptassld help to understand scene
properties. The combination of various scene detus, e.g. the integration of
colour—texture descriptors [228], may describe nsuecessfully the susceptibility of

test scenes to noisiness and sharpness.

» Further investigation is required to derive sceascdptors from regions of interest

within the image (via local application of the aligiom). A possible example of this is
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a using the central part of the image as a shasperégcal region and the periphery of

the image as a noisiness-critical region [229] &p.

* More consideration is given to the determinatiorth&f number of clusters in a data
set. This is a distinct issue from the processab¥isg the clustering problem. A
possible way of dealing with this issue is to usaeathematical approach, such as a

rule of thumb [149], an elbow method or an inforimatcriterion approach.

» Different clustering algorithms could be used t@lgmbjective scene classification
[147, 148], such as hierarchical clustering andziug-means clustering. More
investigations of objective scene classificatiomldoassist with better grouping of

scene susceptibility and lead to better objectivage quality investigations.

e ltis hoped that, in the near future, an imageeteent and device-dependent metric
can be created that takes into account colour patia characteristics. Topfer [225]
(pp. 303) noted that “preference is an importaetmant in the evaluation of the
effects of colour and tone on image quality. Destiite preferential aspect of these
attributes, the framework of image quality modgllinleveloped for artifactual

attributes is still applicable, with certain extems.”
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Appendix A

SRGB encoding transformation

The standard RGB colour space encoding, sSRGB, wigsally designed by HP and
Microsoft as the default colour space encodingther Internet [89]. The sRGB is based
on a typical CRT display primaries and transferction. Table A-1 lists the CIE 1931
chromaticity coordinates of the sSRGB reference grigs. In addition, Table A-2 shows

the reference display, the reference viewing cooniand the reference observer.

Red Green Blue
X 0.6400 0.3000 0.1500
y 0.3300 0.6000 0.0600
z 0.0300 0.1000 0.7900

Table A-1. The CIE 1931 chromaticity coordinatesgaomaries.

Reference display

Luminance level 80 cd/Mm
White point CIE D65(x=0.3127 y=0.3291)
Model offset(R, G, B) 0.055
Model gamma(R, G, B) 2.2
Reference viewing condition
Background- surrounding the image 20% of the refegalisplay white
Surround- area surrounding the display 20% refiexga
Proximal field 20% of the reference display white
Ambient illuminance level 64 Ix
Ambient white point x=0.3457 y=0.3585 (D50)
Viewing gamma 1.125

Reference observer
Observer CIE 1931 2° standard observer

Table A-2. sSRGB reference display, reference vigvdandition and reference observer.
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The sRGB encoding transformation is described lgrees follows [89]:

1) Transform fronXYZto RGB

Rires 32406 -15372 -0.4986| X
Geros | =| —0.9689 1.8758  0.0415 || Y (A1)
Baras 0.0557 -0.2040 1.0570 | Z

if Rerop, Gsrop, Bsrae<0.0031308

Rires = Rires X12.92
G;RGB = GSRGB x1292 (A.2)

Beros = Bsros X12.92

S

or if RSRGB,GSRGB,BSRGB> 0.0031308
R res = 1055x R%E224—-0.0055

Gepes = 1055x G224 - 0.0055 (A3)
Bires = 1055 BL224 - 0,0055

S

and

Ry = round((WDC - BDC) X Rgg) + KDC)
Gy, = round(((WDC - BDC) X G_,s) + KDC) (A4)
Bg,; = round(((WDC - BDC) x B_,.s) + KDC)
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2) Transform from RGB tXYZ

R;RGB = (Ryy ~ BDC)/((WDC- BDC)
sRGB (Gstm BDC) /(VVDC_ BDC) (A5)
sRGB (88b|t BDC) /(\NDC_ BDC)

BDC is a black digital count, and WDC is a whitgithil count (8 bits/channel).

if R’ srcEG’sreB’ sree<0.04045
Rires = R;RGB +1292
Gires = G;RGB +1292
Beres = B;RGB +1292

(A.6)

or if R’sRGBG,sRGEB’sRGB> 0.04045

_[(Res +0.005 *
RSRGB - (RS %_055}

- 24
Gipos = (GSRGBJrO'OOS%OSS} A7

5 =[(Bags+00055/ 1
SRGB — 1_055

and

X] [0.4124 03576 0.1805| Rnes
Y |=|02126 0.7152 00722 G ep (A8)
Z | 100193 01192 09505| B ..,
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Adobe RGB encoding transformation

The Adobe RGB colour space encoding was develogefldobe Systems, as an RGB
working space suited for print production [90]. Théobe RGB has been used widely by
the photographic industry. The CIE 1931 chromatictbordinates of the green primary
are slightly different to those of the sSRGB (TaAl8).

Red Green Blue
X 0.6400 0.2100 0.1500
y 0.3300 0.7100 0.0600
0.0300 0.0800 0.7900

Table A-3. The CIE 1931 chromaticity coordinatesAdobe RGB primaries.

The reference display, the reference viewing camdiaind the reference observer are
shown below Table A-4.

Reference display

Luminance level 160 cd/m
White point CIE D65(x=0.3127 y=0.3291)
Black point Xk =0.5282.Yx = 0.5557 Zc=0.6052
Reference viewing condition
Surround- area surrounding the display 20% reftexga
Ambient illuminance level 32 Ix
Ambient white point CIE D6%x=0.3127y=0.3291)

Reference observer
Observer CIE 1931 2° standard observer

Table A-4. Adobe RGB reference display, refereriea/ing condition and reference observer.
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The Adobe RGB encoding transformation between &BB values and CIKYZvalues

involves the following steps [90]:

1) Normalisation of the RGB pixel values to a celgpace value ranging from
0.0to 1.0.

2) Linearization of the RGB signal using the refee display transfer function.

R = (Ry /259 %%
G =(Ggy, /259 (A.9)
B = (By, /259 "%

3) Transformation (i.e. 3 x 3 matrix multiplicatjoinom linear RGB toXYZ

X1 [057667 0.18556 0.18823| R
Y |=] 029735 062736 007529| G’ (A10)
7 | 1002703 007069 099133 B’

The inverse transformation is obtained by reversiegs 1-3.
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Perceptual image attribute scales derived from overall image guality
assessments

Eyumg Hoon Oh, Sophie Tnantaphillidoun, Ralph E. Jacobson
Imaging Technology Research Group, University of Westminster, Harrow, UK

ABSTRACT

Peychophyzical scaling is commonly hased on the asswmption that the owverall quality of images is based on the
assessment of imdfnidual aroributes which the observer iz able to recopnise snd separate, ie. charpmess comtrast, etc.
However, the assessment of mdividues] atribotes is 2 subject of debate, since they are unlikely to be independent from
each other.

This paper presents an experiment that was camied to derive individus] perceptual attribute interval scsles from overall
image guality assessments, therefore examine the weight of each individnal attribute to the overall perceived quality. A
psychophysical experiment wes taken by fourteen observers. Thirty rwo origizal imagzes were manipalsted by adjustng
thres plysical parsmeters that altered image blar, notse and contrast The data were then amanged by permutation, where
ratings for each individosl atribute wese averaged to examine the varistion of ratings in other attributes.

The remnlts confirmed that one THID of added noise and one TMD of sdded bhaming reduced imape quality more than did
one JHMD in comtrast change. Furthermore, they indicated that the range of distortion thet was imreduced by bhoring
covered the entive imapge quality scale but the ramses of added noise and contrast sdjustments were too small for
imvestigating the comsequences in the full range of image quality. There wee several interesting tradecfie betaeen nodse,
bhir and changes in contrast. Further work on the effect of (test) scene content was camied o to objectively reveal
which types of scenes were significantly affected by changes in each atiribute.

Keywords: Psychophysical scaling, image quality, overall quality assessment, percepizal quality attributes.

1. INTRODUCTION

Imape quality can be defined as the overall impresszion of image excellence. Many psychophysical imvestizations have
been conducted on the assessment of mdnddual mage amributes. This mdividesl sssessment has been the subject of
discmssion since 3 single image quality atiribute is nnlikely to be independent from other attributes [1, 2]. It creates &
problem in simplifying imsge quality measurements since it does not consider the complicated relationships between
them [3].

This paper describes experimental work that was cammied ouat to derive inddividual perceptoal attribute imterval scales from
overall image quality assessments This approach does not require scaling of individuwsl attribates and does not regquire
the sssumption that the atribote is ope dimensional This research aims: 1) to imvestgate the percepiaal constraints that
determine image queality 7} to deterrmine the weight of each individual arribate 1o the oversl] image guality.

1. IMPLEMENTATION OF PSYCHOPHYSICAL SCATING
21 Image acquisition and selection

Imapes of natural scenes were acquired 1) by image capture, using a dizital camera and &) from two Master Kodak Photo
CDs, to cover 3 range of images with differing content and characteristics. The scenes represented 2 variety of subjects,
such as portraits, natural scenes, tuildings with plan and busy background, etc. They were chosen to inchide various
global and local ilhoninations, numerons colours, varying ommber and strength of lines, edges and spatial distibution of
the subjects. The test scenes are included in Appendie.
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Fifteen natural scenes were captured nsing 8 Canon EQS-1D0s foll frame digitel SLE camera, equipped with 3 Cenon EF
28-135mm £ 3.5-5.6 IS USM zoom lens. The IS0 104 setting was used to caphue 20 scepes. Camers exposure was
the-lens centre-weighting and spot metering modes of the camers The camers was sef to sute colour balance mede and
sBGH colouwr mode The lens was focwsed manmslly. Scenes were reconded ar sbouwt 11 megs pixels resolution
(4064 2704) im a CMOS sensor (with spproximately 8.8 pm square pixel dimensions). The scenes were saved as 12-bit
BAW files and then dewnloaded to a computer 2z 8-bit TIFF mcompressed images by wsing the software provided by
Canon, via an IEEE 1394 connecticn.

In addition seventeen natural scenss were selected from twro Master Eodsk Photo CDs. The Master Eodsk Photo CD
images were opened at a spatial resohition of 512 by 786 and at 2 colour resohrtion of 8 bits per chanmel

Al thirty teo images were down—sampled to 317 by 476 pixels using spline interpolation and saved as TIFF files of
spproximately 400 EB.

11 Test Stimmb

The thirty two originsl images were manipulsted by altering three physical parameters: Gawssisn blwming, Ganssian
noise and comfrast adjustment to obtain 3 large mumber of test stinmli with different levels of blur, noise and contrast
Prior to deciding the ranpes and levels of distortion, pilot sdies were conducted on the calibrated 21 inch EIZ0 CG-210
LCD, which was then nsed for the imvestipation. Each chosen distortion level comesponded o approximstely one THD

Blwming: Firstly, Gaussian biuring was spplied on the thirty two onginals. The standard devistion () of the
Gaussian low-pass kamel ranged from 0.01 to 1.24 at 03075 intervals. This created a total of one imdred and sixty
fest images.

Additioee Mgjge: After bhnming, the imazes were firther distorted by Gaussian moise filtering, using three different
standard devzations (&): 0.0, 0.1 and 02, This fimction created three different levels of uniform noise and provided a
total of four mmdred and eighty distorted images.

Contrast adjustment: After bluming and adding nodise, conmast sdjustment was applied to sl distorted mmages ar five
different levels. This inchaded the original level, two levels for conirast enhancement and rwo levels for confrest
Teduction. The five levels of contrast were achieved by varying comtrast () from 0.9 to 1.1, at 0.05 intervals. A totl
of two thonsand four hondreds test stimmli were fnally created.

23 Psychophysical display, interface and viewing conditions

Poychophysical tests were camied o under dark viewins conditions. All images were displayed on an EIZ0 COG-210

LCD, comtrolled by the 53 Graphics Prosavaze DDE sraphic card in 8 personsl computer. The sraphic card was
confipured to display 24-bit colour, at 2 resoltion of 1600 by 12040 pixels and a feguency of §0 HE.

The display was switched on for fifteen mimpes before the tests to allow stabilization It was placed at a viewing
distance of approximately §0 cm from the observers, and subtended 3 visual angle of roughly 10°. The Eye-Omne Pro
momitor calibrator was nsed to calibrate the display at a white point close to D63, a contrast of 22 and 2 white point
himinsnce of 100 cd‘or’ — the defeult settings for contrast and huminance for this monitor.

2.4 Observatioms

Subjective sssessments were performed by a panel of fourteen selected observers, seven males and seven females. They
were all familiar with the meaning and assessment of image quality. The age of observers ranged from 21 to 52 years old.
All observers had normal colour vision and normeal or comrected-to-nomal viswal aootance.

Each observer umdartook 3 categorical scaling experiment § times, each time evalnating @ different set of images. Each
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imdividual ohservation period was around 43 mimes. The standard [S020462-1 suggests that the observation periods
should be o maximmum of 60 minmtes 1o avold tiredness or lock m coneentration 4], Before starting the test, ohservers
were allowed several minmes o adapt 1o the dark viewing conditions of the laboratory | 3],

Images were displayed one at a tme, randomly, in the centre of the display aren to minmise non-uniformity display
effects. Ohservers were asked 1o place each test image according 1o the perceived mage quality m ome oul of 5 quality
cotegories, with 1 indicating the worst quality amd 5 the best quality,

3. ANALYSIS OF THE ASSESSMENTS

.1 Scaling overall image quality

Interval scales were derived wsing the simplest conditiom, £, of Torgerson s Law of Cotegoricad Sidpements [6], which
mikes minimum assumpiions regardmg the category and sample variance: correlation coefficients and dispersions of
busih the sample and the category are constant, Category boundamies and sample valwes were obtained. The least square
technigque was applied (o prevent maccurate seale values from zero-one elements in proportion matris [&].
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Frgure 1. Interval scales of combaned scene

Figure 1 presents mierval scales of overall image quality from the combined (average o) 32 scenes. Each label in the x
axis represents a specific level of distortion = m blurrmg (B) and netse (N Within each of these levels there are 3
different variations in contrast - represented by the mdividun] points in the graph. Fach label corresponds 1o the point

which imdicates the 1 variation in contrast (e therefore C1 in the label)

The results confirmed that the modifications in all three image attributes, in mest cases, decreased image quality. The
originil versiens of the mmages hod an averoge seale value of 203, whilst maest of the distorted mmages hod a lower seale
value. The specilic changes in contrast did not signilicamly affect image quality (in a fow cases they improved i), while
noisiness and sharpoess were found 10 be by far the mest nfluentiol suributes on pereeived mage quality. This wall be
diseussed inmore detail in te individual ateributes scales presented later.

The results also ndicats seene dependeney. The broken lines m Figure 1 indieate the range of seale valves derived from
all ssenes for cach level of distortion; the grey square i3 the average from all scenes.
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3.1 Scaling of individual attributes

The collected scale values were rearranged using permmaation’ [7]. Since we have variations in three different image
atribtes (ie. in bhiming level, noise level, and comrast) the atributes were first amanged as listed in Stepl of Table 1.

The total number of permutations is produced by the product of the total mumber of distorted images and the number of
attribute permutation:

14400 total pemmtations = (2400 test images) x (§ attribute permutstions)

The full implementation of the method is illustrated in Tsble 1. In addition, an example of the implementation is shown
in Table 2. The scale walues of the individus] imsze stiribates were examined across the average (caloolated by the meamn)
scale values of the other atiributes [8]. The first histed attribute in Step 1, in Table 1, is the farpeting arribute in the
permutation. The maan scale value for this anribate is caloulated by Steps 2 and 3. Step two calculates the sverage scale
valoe across the last attribute listed in Step 1, Table 1. Step 3 caloolates the average scale value across the last listed
attritmte in Step 2, Table 1.

Step 1: Arrangement Step 1: Aversge of last column in Siep 1 | Seep 3. Aversge of Last cobumm im Step 1
I 5Shhw 3 noise 3 contrast I 5bhm 3 oise I 5bhor
O 5bhr 5 comtrast 3 naoise oI 5bhr 5 confrast O 5bhr
Il 3poe  5comfmast 5hbiur Il 3 mnoise 5 contrast I 3 moise
IV. Ipose 5 hbiur 5 contrast IV. 3 mnoise 5bha IV. 3 moise
V. 5conmast 5bhor 3 nise V. jcommst 5bhr V. 5 contrast
VL 3 contrast 3 moise 5 bhur VI Scontrast 3 moiss V1L 5 comtrast
Table 1. Individual atiritute scaling
Siep 1 Step 2 Siep 3
Attributes Scale valne Attribmtes Scale value | Atbiribuies Scale valoe
BlurlMois=] Contrast] 147
BlurlMoise] Confrast2 1.7
Blur] Moize] Conirast3 1.79 Bhr1Noizel 1.64
BlurlMoiz=] Contrast4 1.73
BlurlMoise] Contrast5 142
Blurl Moise2 Contrast] 115
Blr] Moize? Conirast? 1.7
I Blurl Mois=2Contrast3 0.94 BharlMoisel 142 Bhurl 139
Blurl Mois=2 Contrast3 1.58
Blurl Moise2 Contrast 5 1.52
Blr] Moize3 Conirast] 1.08
Blur] Moise3 Contrast? 1.12
Blurl Moise5 Contrast 3 138 Bhar]oise3 113
Blur] Moize3 Conirast4 115
Blur] Moize3 Conirast5 08

Tahle 2. Example of indvidual atiribute scaling

! Permutation means arrangemens of items. The word arrangemens is nsed. if the order of items i considened. In peneral, the number
of permutation is taken by "F, . where n is different item of r at a position. Three of stinmli and three at a time forms six pemutations,
P=3=6
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Resulis from cases [ o VI from Step 1, Table 1, are shown m Figure 2. Each resultmg Agure uses the same data, but they
are presented differently e according to the targeting attribute (listed Orst in the ttle of the graph), then the second and
third atiributes. For example the top lefl graph in Figure 2 presents the data in the same fashion as Figure 1 —case 1L In
the groph next to i, the dota are presented acsording to the same rgeting sttribute but the seeond and third sitnbutes ore
interchanged — case II. - The middle row in Figure 2 shows cases 11 and [V and the last row cases V and VI, as listed in
Table 1. Samilarly to Figure 1, on the grophs on Figure 2 the labels in the x axis represent o speatfic level of distortion for
the targeting and second attnbutes, where as each pomt represents the scale value of the targetmg, second and third
attribuies.

Further results from Step 2. Table |, are shovwn in Figure 3. Finally, the individual atiribwte scales are presented in Figure
4, which are denved from the final Step 3 in the process. The results present the mean scale value of quality for each

attribute.
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There are several mieresting radeoffs in image qualiy when varving the three attributes, Le blur, noise and contrast
(Figure 33, The results agrees with previows research which found that the higher the sharpoess the higher the graininess
|8, 9]. This is obaerved in Figure 3, cases 1 and TV (Blur-Moeise & Moise-Blury which indicate that high ameunt of blur in
the mmage signilicontly decreased the pereeption of noise (gase [ and hgh noise decreased pereeived blur (eose [V). The
relationship between the contrast and the other attributes is not significant for the specific levels of contrast modification
that were used for this expermment, which appesr not 1o hove altered imoge quality. This s seen in Figure 4 which
mdicates that one JNI of added noise and one WD of blur reduced image quality muoch more than ene NI incontrast
changes
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From Figure 4, addmg nose redoces the quality scale values by an avernge of 048, adding blur alse reduced ot by an

average of (.41, whereas mereasing contrast merensed it very slightly by 0,01,

Case (Blur) we notice that the original and ociginal + 1 N1 of Blur were almost rated similarly. The quality is shown te
decrease significontly for the next Blur levels and it reaches a point (&t level B3} where mere blur would nod further
reduce it Le. the image quality scale of blurring is a hyperbolic (8-shape) function. The ranges of added noise (2 levels)
und somirest sdpustments (4 levels) werg too small for investigating the sonsequences in the full ronge of image quality
Case (Moise) indicates that 2 levels of added noise (each separated by 1 TN decrensed equally image quality but the
“toe’ of the |.||.u|]:i[:.' sanle For motse was nol reached. ]"il:l:l.l]_\'._ s menbioned above, 2 modifications o comtrast aroumd the
“optimum” contrast did not alter mage quality — Case(Contrast). The resulis are of course valid for the specific display
and viewing conditions
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Figure 4 Individusl antribute scales
3.3 Beene dependency in the observations

The results show scone dependeney caused by the nature of scenes and their inherent propertics. This is shown in Figures
5, fand 7, where the meon seale volue of the distortion level 15 indicated by the grev square and the ronge eovered by all
seenas with the broken lines. When considering image Bluving, a3 the level of distortion increased the scene dependency
deeteased. Figure 5 mdicates that low levels of blurnng might affect different scenes moa different manner, but high
levels of blurring tend o affiect different scenes more equally. On the other hand, Figures & and T show that the variation
from the mean scale value for added notse and variations in contrast appears similar moall levels of distortion. This result
supgests that as mmage quality decrenses we Fownd less and less scene dependency bt high quality images temd 10 be
rated differently aceording to their mdividual scene content.
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Figure &. Seene dependency on noise scale

300 Case{Cantrast)
-
o
B
5 1H | | 1
nﬂ B oo 4,
E b.oo L] - - ] |
F - =3 P " min
;ﬁ*.] a0 2l s a3 Ca ak
e B et
-200
S Tiviag e wersion

FigureT. Seene dependeney on contrast seale

The effect of individual scenes was examined. To determuine the comparability of the results far esch mdividual scene
with the average combaned ratmg for all scenes, the seale values of each scene were plotied against the combined mean
ratings from all scenes, for each mdividual atiribote [#].

In the example plot shown in Figure & for the scene *Saules’, the gradients of the Imes fitting the data (one for each
:|11ri|:su[|:} rapresenl the ucurlimli'hi]il_l. Thetwesn e Lenli u_-ll"rah'.ug.'r for each mdividual scene and that of the combined
seenes. 11 the gradient of the line is one, the range of seale valwes for the scene 12 the same as that of the combined scenes
for the gpecific attribute, 15 the gradient is larger than 1, then the scene has a larger quality range meaning that it i maore
senzative than the “overnge scene” to the chonges in the specific atinbute, The reverse 15 true when the gradient 15 smaller
than ome.

The correlation coefficient lines fiting the data ndieates the strength of relationzhip between them. The constant m the
linear relationship indicates whether, overall, the mdividual scene got better average quality satings than the average
ratings of the combined scenes (positive oflset) or the opposite (negative offset).
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88, Pauls 140 003 095 | 080 ooz osse | a20e 003 0BE
5L Pauls2 110 o3 0.888 0a7 pelik] 0.BE8 -1.47 oo 0480
Saules 143 001 0064 | 018 oo0  osel | ooe 000 0.O0M
Sungsil 124 EETIC T T oM o0g%0 | 268 0N 0857
Yellow Tower o 023 0.BEg 1.14 022 0.BE8 -0.01 022 0.0

Table 3. The gradient, constant, and correlation coefficients for each test image for oll 3 abtributes
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Table 3 presents the sradient, constant and correlation coefficient of the repression lines for each test scene and for all
three atiributes.

Fegarding blmming: the scenss “Hpman?™, “Aftican wee™ and “Landscape?” were found to be the three less sensigve
scenes o blmring, with the lower gradient valoes. Om the other hand “Saules™ has the highest pradient value, indicatine
high sensitivity to blmming.

Fegarding added noise: An extreme result was produced by the “Saules™ scens (Figure 3), which was showm the most
incansifive scene to added noise, having an extremely low gradient of (.19, This iz the busisst scens in the set [10] and
the noize was probably masked by the high frequency information in this scene.

The most unusesl resalts regarding both blwming and noize were produeced from the “African tee™ scene. The scene was
found to be the most sensitive to added noise (gradient = 1.94) and the second most insensitive to bluming (Eradient =
0.32). This result was also confrmed by previous research [11].

The correlation coefficients of the linear regression on bhaming and added noise were all close to 1.0 wheress on contrast
they were varsbla (0001093461,

4. CONCLUSION

A larpe-scale cateporical judgment experiment was conducted. In all 14 observers performed a total of 2400 observations.
Poychomestic scaling was used to create mperval scales indicating the quality of imapes subjected to blar, noise and
VATEATIONS il Comirast

This work successfully derived imdividus]l perceptzal attribate interval scales fiom overall image quality assessments and
the following summary Lists the main effects of the individual attributes.

1. Ome TMD of added noise and ome THID of added “bhaoming’ reduced image gquality more than ope TMD in
conirast change - in the ranze of distortion applied in this experiment.

2. The range of distortion was introduced by bluming to cover the entire image quality scale; however, the ranges
of added Gaussian noise and contrast adjustment were too small for imvestigating the consequences on the fll
range of imaze quality.

Bluming decreased significantly the percepbon of noiss.
Imagethnrassmnmm;hwedmdspmy

As image quality decresses we found less and less scene dependency but high quality images tend to be rated
differently sccording to their individns] scene content.

& e

Further work on the effect of sceme content will be camed out to objectively revesl which types of scemes are
sizmificantly affected by chanzes in each attribute.
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Scene classification with respect to image guality measurements

Eyung Hoon Ob, Sophie Tnantaphillidow and Ralph E. Jacebson
Imaging Technology Research Group, University of Westminster, HA1 3TP, Hammow, UK

ABSTRACT

Peychophysical image quality assessments have shown that subjective quality depended upon the pictorial content of the
test images. This smdy is concerned with the nanme of sceme dependency, which canses problems in modeling and
predicting image quality. This paper Socwses on scene classification to resolve this issue and nsed K-means clustering to
classify test scenes. The aim was to classify thirty two originsl test scenes that were previously used in 3 psychophysical
imvestipation conducted by the suthors, sccording to their suscaptilbulity to sharpness and noisiness. The objective scene
classification involved: 1) investization of various sceme desoripfors, derived to describe properties that influence image
quality, and 2) investization of the degres of comelation between scene descriptors and scene suecepiibility parameters.
Scene descriptors that comrelated with scens susceptibility in charpness and in noisiness sre assumed fo be nsefiol in the
objective scene classificstion. The work successfully derived three sroups of scenes. The findings indicate that there is 2
potential for tackling the problem of charpness snd ooisiness scene suscepadbility when modeling imape quality. In
addition. more extensive imvestigations of scene descriptors would be required at global and locsl image levels in ondar
o achieve sufficient zccuracy of objective scene classification.

qugrkmdmmhxy(smm@ﬂi&y}dﬁg&quﬂty,mﬂuﬁﬁmﬁmxmd&mﬁﬂrs{m
analysis tools)

L. INTRODUCTION

Imape quality can be defined as the overall impression of image excellence and depends upon the pictorial content of the
test imapes [1, 2] This study is concerned with the nature of scene dependency, which canses problems in modeling and
predicting image guality, especially in device dependent image quality measures. This iz because objective quality
megsures tend to perform relatively well on individnal sversge-locking scenes, but they provide lower comelation with
subjective assessments when working with non-standard looking scenss.

There are several ways of overcoming the problems caused by scene dependency [3]. One commonly employed is to
exclude resnlts obtaining from ‘edd scenes’ in gquality measuwrements. These however, do not effectively represent the
range and varety of different scemes that photographers, artists and consumers may wish to record and

faithfulty [3]. Furthermore, scenes that deviate in content from & representative set (e.g. IS0 set of test scenes [4]) may
not be reproduced appropriately, since they are not in accordance with the “average’ reproduction derived from image
qmality resufts.

Esalan [5] suggests test scene classification with respect to image quality. The classification he proposes which is based
on test scene confent and it's impact of quality stiribates, is as follows; 3) most susceptible scenes 25%, b) least
susceptible scenes 25% and c) intermedistely susceptible scenes 50%. In addition, Trisntsphillidon & af [3] propose test
sceme classification, wsing objective scene descriptors that comelate with subjective criteria on scene susceptibility to
image quality aroibutes. Scene descriptors are derived o describe basic imherent scene propertes that buman observers
refer to when they jodze the quality of images.

The aim of the research describe bere was to classify thirty two original test scepes that were previously used im a
peychophysical imvestization conducted by the suthors [2], according to thedr surcepiibilisy (see section 3.1) to charpness
and noisiness. The objective sceme classificstion mvolved: 1) imvestization of varions sceme descriptors, derived to
describe properties that influence image quality, and ) imvestipstion of the degpee of comrelation betaeen scene
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1. SCENE DESCRIPTORES

The first step in the objective scene classification was to investizate sceme descriptors, derived to describe a number of
scene properties. The algerithms deriving these descriptors were implemented in global and bocal image regions. The
reason for lecal region implementstion was that somse researchers [§, 7] balieve that a local messure of image quality is
probably more useful than a global one. A Kadir and Brade’s saliency model [8] was applied in MATLAR [9] for this
purpose. The implementation involved in following:

the division of a 20=20 grid on the image

the calculstion of the local entropy in esch srid, using 8 radins from 3 to 70 pixels

the detection of 30 high in saliency points

the erosion of the non-saliency areas to amplify the saliency areas

Figure 1 illustrates the saliency process for one test image and presents local regions derived from the saliency model

Qrgina irEaR Ealenany oo

Falardy waqinerias lirsda

Fipure 1. Saliency process for ene test mage (top row) and local repons for another four test scenes.
A pumber of scene descriptors were desived using first-order and second-order statistical measures as well as edge
detection. Some of these measures (sectons 2.1, 2.2 and 2 3) were applied to the sray=cale version of the image which
wis obtained from the 8-bit per channe] sRGH image by [9]:
Grayscale_imape = 0. 2989 + 0.5570G+ 0.11408.
where B, G, B correspond to the pixel value of the B G and B channels, respectively.

Further, first-order statistical measmres were employed to derived measures from the imsge represented in CIELAB
coordinates (section 2.4).
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21 First-order statistical measures
First-order statistical measures were derived from the Probability Density Functions (FDF) of the grayscale image The
ones investigated in this work are listed below:
# Mean is the average valoe in PDE
# Medisn: is that valoe of the middle term of PDF when 211 the observations are arranged is ascending or
descending order.
+ Mode: is the valoe that ocomred most often in FDF.
# Variance: is 3 messure of conrast in PDF, the second power of standard deviation.
+ 5k cisa sure of imbalance of the PDE We zet a value close to zero when the distribution of
ey level is balanced (symmetric PDF).
+ Eniropy: is 3 measure of information content of the PDF.

11 Secomd-order statistical measures

Second-order statistical messurements, which reveal textural information i mages, were caloulated from the sray-level
co~ocomrence matrix (GLCM) [9, 10]. Inplementation was carried out in MATLAB [9] using default angle and distance
wahoes: 0 and 1 in pinels, respectively. The ones investizated for this work are listed below:

+ Imertia {or contrast (Co)):
Co=) ) li=jPP(L)

U= =i

R PLR

Z. (i = m)(j = my )P

ey

+ Homogeneity (H):

+  Comelation (or linearity (Cor)):

Cor =
=t j=0

Ene = 2. Z PLLLj

=0l j=0

* Energy (Ene)

Where Fyij} is the the joint probability distribution of pairs of pixels (1, j}. m; and m, are the
mean values of the pair of gray levels j and j. o and oy are the standard deviation vahe of
the: pair of gray levels 7 and j [10].
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23 Measorement from edge detection

The Sobel, Prewitt and DOG (Laplacian of Gaussizn) edpe detection algoritoms wese used to queantify the presence and
strength of edges in the prayscale image [11]. The Sobel and Prewin edgze detectors performed using 8 3 » 3 kemnel size
and 0.04 for sigma [3]. The LOG edpe detector was set to a 5 x5 kernel size and 0.5 for sipma, which s the defamlt
valne employed m MATLAR [9]. All edge deteciors were operated with the ‘replicate’ boundsry option in MATLAB,
where the boundsries were assumed to be equal the nesrest border valoe During the edze detection, the magnimde of
edee (7)) was computed by the square-root operation [11]:

Ge= JEE-HZ‘.E
where 3, and G, are the horizontal and vertical edge gradients of the image respectively.
Then sl individusl edze gradients were sversged Figure 2 illuswates two originsl images and the corresponding

threshold images after Sobel edge detection with the sverage edge gradient, related to the edges’ strength as well as the
amount of edge information in the image,

Avernga édoe gpradiewd 108 Aarage adge gradism, 0615
Figure 2 Example of averxge edee pradient
2.4 Measorement from the CTELAB image

The variznce in chroms and satorstdon were considered as measures of color mformation They have been shown to
commelate successfolly with the percenved image colorfulness [3] and perceived color stremgth respectively [12]. The

wansnce in chroma (FC¥ was caloolated [3]:
Vo= ||a§_ 4+ af,
In addifon color strength mefric (F5%, based on the definition of samration: Saturation = Chroma/Lighntness,
derived by [12]:
VE =V
where the lightness (L7 is L = Ly 4+ [ — LIl
where L=_.=50.

3. CORRELATION BETWEEN SCENE DESCRIFTORS AND SCENE SUSCEPTIBILITY
PARAMETERS
The second step in the objective scene classification was fo iovestigsie the depree of comelation between scene
descriptors and scene suscephbility parameters, described in reference [2]. Scene descriptors that successfully comelated
with scene susceptibility in sharpness and in nedsiness provided means toward the objectve scene classification.
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31 Scene susceptibility parameters

The scens susceptbility parameters were collected from previous experimental work on “Perceprual imagze atmibue
scales derived from overall image quality sssessmenre” [2] (Table 1). They were based on the viswal quality loss that
ocourred 1o individheal rest soenes with sharpness and nodsiness distortions.

Susceplbily Io | Suscoplbiiity (o SuBcepEDINTy [0 | SUscepbily o
shapness nolsineas sharpness notainess

African tres 032 156 Baby 1.06 1.06
Bilke 1H o7z China town (i3 097
Exarciss 115 0.51 Formuta 1.00 114
Glazses 0B6 147 Group 107 066
Human 0.2 1.0 Human2 0.3 1.07
Human3 124 055 Humand. 1.08 141
Kida 1.18 115 Landscaps 0.56 1.44
Landecapa? 06s 152 Lendscaped 105 131
LoMmion Eye 0.86 1.0% LOAWION Eyed 093 128
Louvre 116 103 Mational pabery 107 096
Oid buliding 129 0.4z Ptantt 1.15 034
Plantz 073 0.B5 Ptantd 0.87 113
Plant4 £.B0 112 Ptants 1.09 0o
Planit 097 104 5t Panis 140 0.50
5t Pauls2 1.10 08T Saules 143 o1g
Sungall 134 0.82 Yeliow Hower .91 114

Tahle 1. Subjective scene susceptibility parameters for sharpnsss and noisiness

A srepe susceptibility parameter was identified for each test sceme by calculating the pradient of the straight line
Commecting sverage subjective quality ratings (calonlated from the entire test-sef) snd individual quality ratngs for the
test scene. When the pradient of the lme is one, the subjective scale valoes for the individoal scene are the same with
these of the combined scenes - for the specific attribute. When the zradient is larzer than one the individas] scens is more
susceptible than the “sverage scene’ to changes in the specific attribate. The reverse is moe when the gradient is smaller
than one An example is shown in Figure 3 for the test scene “Saules”, with gradients for scene susceptibility to noisiness
and charpoecs equal to 0.1858 and 14289 respectively.

13 =1428x+ 0009
. P oo f
I § f
3 /
r ol 4 y= 0185+ 0000
'E 4 C E=0860
4 1 _‘____—L---
£ ;/ e R
“Minisa
a3
4 /
F
-1
o~
13 . ] , . 4 i
43 1 A3 0 03 I L3
Subjective rating "all combined soemes"

Figure 3. Scene susceptibility parameters for the test scene "Saales” (shown i Figure 7)
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32 Scene descriptors verses susceptibility paramefer for noisiness and sharpmess

The Spearman’s comelation coefficient, r,, was dedved to mvestigate comelstion berween scene descriptors and scene
susceptibility to noisiness and to sharpmess. The coefficient is usefnl when dam have a ranking bt no clesr numerical
Imterpretation, such as when assessing preferences fior dam on an ordins] scale [13]. The comelation coefficients ranze
between -1.0 (indicating perfect anfi-comelstion) and 1.0 (indicating perfect comelation), with 0 denoting no cormelation
atall

Sucressfil comelations' were obtained batween noisiness susceptibility parameters snd most second order statistical
megsures, a5 well a5 messures derived from edge detection. Table 2 shows the smocessfnl comelation coefficients for
moisiness. An example of cormelating susceptibility with a scene descriptor is shomm in Figure 4.

Scene descriptor mm";mqmngium hra;:nlumpﬂlllyh -
“Narma [Conbaat). E= T80z
Homogenalty D738 0781
Correlation (Linsarity) 0644 0550
Energy 0.s77 0,647
‘Awerage Sobel gradient 470 0,786
Avaraga Prowitt gradant 4TH 0.736
Average LOG gradient 40.583 0747

bt

B

B

i

Mesliness scene suscoptibility seale
[

0.80 085 020 0.85 1.0 103

Fimme 4. Relationship between the bomogensity descriptor and the sascepibility parameter for nodsiness

Suwocessful comelations were slso obtained between sharpness susceptibility paramesers and apam most second order
mMMMEMWmmmmmt.WEzmm&mm
coafficients obtained for charpness. An example is shown in Figure 5.

" When a correlation coefficient is larger than a lewel of significance at 1% probability level it indicates statically significant [13].
* For oth sharpness and neisiness sasceptibility predictions, comelations were more successful when the messures were applied at

global imaze level.

210



Kyung Hoon Oh, 2014 Appendix B. Publications &&entations, Awards

Shaprneas scens susceptibility smbe
[

.00 3000 000 9000 12000 130,00

Fimure 5. Relationship beforeen the average Sobel descrptor and the suscepiibility parameter for sharpmess

There were several interesting relationships between scene content and scene soscepiibility o noisiness and sharpmess.
The results confirmed that the higher the texnme in the scene content, the lower the susceptibility to noisiness and the
highar the susceptbility to sharpness. For example, the comelstion coefficients between the homogeneity and scene
susceptibility to nodsi and to sharp were (1.738 and 0. 781 respectively. In addition hizh presence and strength of
edges i the image significantly decressad the perception of noise snd increszed the swsceptibility to sharpness. For
example, the comelation coefficients between the averaze Sobel metric and sceme spsceptibility to noisiness and to
sharpness were 0,701 and 0.786 respectively. It is also evident and confirmed that the relstionship between sharpness
and noisiness is complimentary e high amount of blor in the image significandy decreased the perception of noise, and
high noice decressed perceived bhar [2, 7).

Correlstions were more significent when the descriptors were derived from the entire image (algorithms were applied
globally). Further investization is required for the derivation of scene descriptors from specific image regions of imterest
(algorithm application bocally). For example using the central part of the mage, a= by Eeelan and Tin have suggested [7]
as 3 sharpmess-critical region and the periphery of the imape 25 3 noismess—critical region. Also, forther imvestigation is
required toward the combinston of various sceme descriptors to derive scenme metrics that may describe more
successfilly the susceptibility of test scenes to noisiness snd sharpoess.

Crerall the resmlts indicated that there is association between selected sceme descriptors and scene sosceptbility
parameters. This, the scene descripeors that correlated with sharpness and nodsiness scene suscepiibility can be nsed to
objectvely classify scemes.

4. CLUSTERING FOR NATURAL SCENES

Finally, k-mesns parfitionsl clostering was mmplemented to objectively group the 32 test scenes according to their
susceptibility to both sharpness and moisiness.

The k-means partitional chostering consists of several steps [14]. The first step of is to define a fixed ourcher of clusters,
k. The choice of k is exceedingly importsnt in clustering: an insppropriate choice of & may yiald poor resalts while the
correct choice of k is offen ambiznons. Possible methods for choosing ¥ include empiricsl and onmesical methods [15].
The empirical method is nsuslly preferred [15]. In relevant image quality investizations £ is nsually chosen to be aqual 1o
3.1][S,lﬁ].ﬂn:\el:isdnm,Mmﬂiﬁcﬁmnfﬂ!ﬂisﬂusbﬂwmnﬂmmn'ﬁdma’(n‘mymgﬁmlInt}
and the centre of the cluster are applied The msin idea for modification is that the average distances between all points
in cluster and the central point is minims]l Dhoring these madifications, new cluster cemters are allocated using Euclidean
distances. The modification stops when the sverages distance from all pommts in n™ cluster and the new central point is
—
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Twio scene descriptors that correlated successtully with both noisiness and sharpaess susceptibility, Le. the fowogenein
und averaie Sobel edee gradient descripior, were used for testing the clustering. Clustering was implemented m 3PSS
proaramiming environment [17)]. Figure 6 presents the three clusters with the initial and fnal centres of the cluster, and
then the images eorresponding to each of the three clusters (or growps) are shown in Figure 7

00§ @* Cacip1
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“}‘ Group 3

"0t
E ano * #hame depeins
& ous Bl cemire

0gs AFinal esire

084

{182

080 v T T !

00 00 M0 SROD B0 [RC0 1000 LEkG)
S

Figune & Initeal and (nal Gatne in thres groups

5. CONCULSION

A number of seene deseriptors were sugeessfully dertved from firsterder and second-order statisticn] measurements ns
well as edge detection. They were concernad with the extraction of image Features, such as brightness, contrast, texiure,
edges, golor conirast efe

The degrew of comelation between scene descriptors and  scene susceptibility  parameters was investigated using
Spearman’s eormelntion coefficien. Suceessful eorrelations were oblamed between: scene suscephibility parameters for
nodsivess and the fomogreneiy descripior, and soene susceptibility parameters For sharpness and the average edege
grasdient deseripiors, These cormelations mdicoted that the selected seene deseriptors successfully represented sharmpness
and poisiness susceptibility and can be used to clazsify the est scenes used o image quality investigations.

Usimg the selected seene deseripters and applving k-meun clustening, three groups of seenes were suecessfully derived,
te scenes with: 1) kow susceptibdlity 1o sharpoess distortions and high susceptibility o noisiness 1) average
suscepdibality Lo sharpness distortions and noisiness, 31 high susceptibality 1o shorpress distortions and low susceptibality
Lo nodsiness.

The findings indicate that there 15 a potentiol for teekling the problem of sharpness and nolsiness seene susceptibality
when modeling image quality. More extensive investigations of scene deseriptors with respect to both global and local
mmage features wall help further toward objective scene elassification of test scene used in mmage quality myestigations,
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Figure 7. [mages in three clusters {proups)
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ABSTRACT

Thiz smdy aims to intoduce improvements in the predictions of device dependent image quslity metrics (IQMs) A
whﬁnmapmmmmﬁnmnaimmnstﬂnmofs@amﬂnﬁemwhmmw
(EPIC), using results from subjective tests mvolving 32 test scenes replicated with varions degrees of sharpoess and
noisiness. The metric was found o be 3 peod predictor when fested against sversge rabings e, as expected by device-
dependent metrics, it predicted less snocessfolly the perceived quality of individual non-standard scenes with atypical spatial
and soucnoral content. Improvemsnt in predictions was attempted by wsing 4 modular image quality Tamework and s
mplementation with the EPIC metric. It imolves modeling a complicated set of conditions, induding classifying scenes mito
a small nureber of proups. The scene clessification employed for the piopose nses objective scene descriptors which comelate
with subjective crteria on scene susceptibility to charpness and noisiness The implementstion ties allows automatic
prouping of scemes and caloalation of the metmic values. Fesults indicate that model predictions were improved Most
importantly, they were shown to comelate equally well with subjective quality scales of standard and non-standard scenes.
The findings mdirate that a device-dependant scenedependent imaze quality modsl cam be achieved

EKeywords: Scene dependency of image quality, objective scene classification, Effective Pictorial Information Capacity

1. INTRODUCTION

Miamy imape quality models and metmics capable of predicting the perception of quality have been proposed over the last Gfty
ears [1]. They can be classified inbo two proups: the device-independent models and the device-dependent models [2].
Device-independent models amtempt 1o predict the visual perception of the image itself withowt knowledge of the mmaping
system’s charscteristics. These models heve sn acmal benefit in dealing with sceme dependiency in image quabity, ie the
effect of scene content the perceived quslity. However, they are unshble to messure gquality based on the imazng system
wariables [3].

Device-dependent models attempt to predict imagze quality from an “average signal”, nsuslly embodied on test tarpets, the
effect of which may be removed from the measured result to obtain the system performance They forus on the imaging
system’s chamscteristics. Device-dependent models are applied in a siraightforward fashion for the messurement of image
quality of varioos system vanisbles, such as sharpmess, noise, and comfrast. Such medels are extremely powerful fools for
measuring and predicting quality when the properties of the test scene (l.e. signal) are avzilsble [3]. However, if the
characteristics of the mput siznal are not in hend (and not sccoumted for), these models are poor quality predictors when
applied to individual test scene judgments, which are ususlly shown to be scene dependent [1, 4]. Scene dependency is a
mAjor reason why these models perform well on individwsl ‘average looking” scenes snd test targets, bt provide lower
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comelation with subjective assessments when working with & varety of scenes with different than “gverage sizmal”

characteristics.
mmdm:mtmmE&m@wmmm[s @] Tt is based on
agﬂmﬁhmymdhasbemrﬂmudym&sfu]mpedrmgﬂnthrynfmﬁ and images that vary

i charpness spd nodsiness. Tt tends to perform well on ‘svemage’ tmdmhim:mhcmﬂm!&amasﬁﬂy
with subjective assessments of noa-standard scenes with atypical spatial and strectursl content [5].

Thiz work is a case study on the calibration of a device-dependens image quality metric, such as EPIC, to account for the
it sizmal characteristics. A validaton experiment was first camied out to test the success of the EPIC, using results from

subjective tests imvolving 32 test scenes replicated with various degrees of charpmess and noisiness Improvement in
predictions was then attenpted by nsing Eeelan’s image quality framework [7] and its implementation with the EPEC metric.

2. EFFECTIVE PICTORIAL INFORMATION CAPACITY

11 EPIC implementation

The EPIC metric is based on Shannon's information theory [8] and has been proposed as 3 sharpness snd noisiness image
quality metric (IQAD) [5]. EPIC values were caloubated by combining two system variables: the effective pixel dimension in
the imaze and the owmber of effective distinguishable lewvels for each recording cell (dmamic range of a system). These
wvariables are cascaded from the inpat, owtpat and visnal system.

Far the EPIC memc calculation, first the measurement of the effective pizel dimension in the mnapge (7)) was camied out [3,
6]

1} The effective pizel dimension () was taken a5 the width of line spread fimction (LSF) at which the MTF falls to
50%%. The model accomited of the varying sharpness of the est stinmlbi {mpax), the sharpness of the 21" LCD system
(output} and employed Barten's confrast sensitivity fimction (C5F) 2= the model for the human eye. The imaging
chzin was that employed in a previous smdy dealing with the psychophysical scaling of image quality [9]. The
Barten's C5F was nsed a5 the eye’s MTF model becsmse it tskes into scooumt various viewing condidons [10]. The
specific viewing conditions emploved were a heminance of 100 cd'm’, & viewing distance of spproximately 0.6 m,
and an image size of 167x 111 mm

) The effective pizel dimension at image area () was then calcnlated by:

H=% (1)

where, 4, is ates of image and g i the affective pixsl dimension.

The menber of effective distingnishable levels for esch recording cell {dynaric range of 3 system) {m) were calonlated by [3,
6]
m-r%+l (£

whese, D5 is the difference between the macimmim and minimmm poessible levels of the reconding system (256
available levels in an 8-bit gystem) and £ is 3 constant () snd o represents the system’s diminiching sbility to
distineich mdependent levels, caloulated from each individual component of the fmaping chain: the noise n te
test stimmli (input), the measured noise of 2 217 LCD system (outpus) and the homan eye parameter.

216



Kyung Hoon Oh, 2014 Appendix B. Publications &$&entations, Awards

The numdber of effective distinguishable kevels of the system was approximately &4, empirically tested on the 217 LCD. The
6 hies been found 1o be o tvpacal valee for the miensity bevels detinguishable on a CRT feep late under nonmal display
viwing conditions [11].

The pemerved mioomation expacity (O wos then caleulated, based on the effective piel dimension m the mage (o) and the
numiber of effective distinguishable levels for each record ing cell (m) | 5. 6]

= nkgim) (3
EPLC values were Fmally derved m bits per steradm by
Epic =5 (4)
4]
L2 s grven by
=4,/ (5}

A 15 the deploved area of the image and »viewing distance

2.2 EPIC as an everall quality peedicior

Aovalidation experiment was camiod oul 1o test the success of the FPIC metrc in predicting perceived inmge quality, using
resulls from subjective tests mvolemg 32 est scenes, replicated with vanouws degrees of shampaess and nosiness [9)

To investigate the depree of comelation betveen objective (Le, FPIC volues) and subjective sendes, the Peorson™s comelntion
coellicient (¢] was used [120 13]. A degree of comelation lorger than o level of snificonce ot 1% probability level mdicates
that the degree of comelation between the two varahles & statically significant. The comelation coefficient mnges betaeen -
Lo mdisating perfect anti-comebation) and 1.0 (indiecating perfoct corelation ), with O denoting no comalation at all

Figure 1 presents a scatler plot of average subjective ratings versus FPIC values obtained from all scenes. A elatively
sueeessin] comelation (e = 0L805) was oblamed. The resull confirmed that the metme = a relable predicior of Tmagee quakity
whien tested agoinst ovemge mimgs. Other studes hove indiested smmlar comelations (¢ = 0090 5]

100
200 s T=R L]
o
v

s +

R B
2
Ry

] ] ] M “n wm

EPICY LB Bl

Frgure 1. Comporison between FPIC vales and svemge subpectne mtmg fromall seenes.
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In general, device-dependent 108 ane shovwn to be wiequally successful in predicting the quality of mdividual scenes [1, 4,
13]. Tabbke | shows madidoal comebaton coeflicwents for thirty Twe test seemes (ofl Appending. As expected, the EPIC metne
QU ES ur||_'1|u;11|:. sugeessiul m ]m_'lJl's:[mp, the duahty of difFeremt [iRIHISILES with varymyp sceme conlenl, Lie, the metrie pl_'r['urnu.u.l
wellon most of the scenes, but predicted less success fully the percenved quality of indnidunl, non-standand looking scenes.

Tmape r Image ¥ Innage F Ima g F
Albrican tree .30 Haby 0.7RE Bike 0.893 Chima tewn a814
Exercise ER. L) Farmmla 0.794 Cilasses 0.743 Giroup 0.859
Human D353 Human2 0.447 Human3 0883 Hhansasd 0753
Euls 0RIT Landscape 0.6E1 Landscape 0498 Landscaped 0.740
London Eve 0708 Londee Fyve2 0.6 Louvre 0816 | Maticmal gallery 070G
Old bailding .R5D Flant | 0.571 Plami2 0Ell Flant3 0762
Planid .70 Flant3 0Eld Planté 0782 St Punls 0933
S Pouls2 LRSI Saules 05915 Sumn gl 0.853 Yellow flower 0743

Tabbe 1. Correlation coefficimis for each some (e aveaage of 32 coefTicients 15 0771,

Figure 2 presents exanples scenes having very different eomelation coefficients: (a) Plantl (¢ = 0971, (b) African tree (¢ =

1 30,
L i
by | Hl ., m0ET » Afriean tres e e
I‘ .®
18
. .
.
© um .
i - * . T
F L * ! .
* " *
-2 LH
" AH
e 40 £ s Bl s o =) 15 5is) sl 24
EFCkH iz S1en) EPHEEvies e
[l by

Frgure 2, Comparson between mean EPIC values and subpeciive mtmg of scenes (00 Plant 1 (b} Afrcan tree,
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[18].

& illusimated in Figure 3.

3. EPIC AND OBJECTIVE SCENE CLASSIFICATION

In order o improve the perfommance of the FFIC, we combined Keelan’s THIF model, proposed for calibrating deviee-
dependent metrics | 14, 13], and objective scene elassilication, as proposal by Trantaphillidou e af [4]. The test scenes in
this study were previously objeetively classified nto three groups with different susceptibility 1o noisiness and sharpoess

31 Animage quality framework that includes EPIC and objective scene classification

BMomte Carlo sinmlation has been adopted in mage quality medelling by Keelan [7] and meludes basie factors such & i) an
objective melre assocmted with the image quabiy attmbutes mquestion, 1 observer sensitivity, aned i) scene susceptibality
A digram of the proposed Frmework, myvolving the FFIC as the obpective 10 metre and accountmg For seene susceptibality

S, EFC au an objective e i
., - H
., e r !
., e H
- -~ I
| ~— |
H e |
i . }
- I
H olbeelive b1 |
' 4 T 4 1
1 . A !
| Madule 2 ||
i |
| e |
I sl !
[} dewnpise  f |
I | [ |
| ! ' i
i 1 |
i . — |
1 - |
i wene |
i sascsptitality i
| i
| I
1 — i
I i
i |
i i
1 i
i |
1 o |
i | i
| o i
N i

3 = . -4

Madila e, bt anate ~

. Pl

o

¥ Sy
! aoezall qualary |
*, A

Figure 3. Dhagram of the [0 framewark proposed by Eoclan [T], using the EPIC as the [0} metne and objective scene

clasgificatson bo scoount for scene suscephibiliy (pan haghlighted i grey )
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There are three modules in the framework. An exsmple of the implementation of the first module is illhestrated in Table 2 and
Tahle 3. EPIC vahes' for each degree of sharpness/blur and noisiness (ie. IQ) attribates - factor £2 in Figure 3) were derived,
as listed in Stap 1 of Table 2. The resulting data was then analyzed nsing the top-down method” [9] to derive EPIC values for
each individusl armibte (Le. bhor, noise), as listed in Step 2 of Table 2. All derived EPIC values for each step in bhr and
noise are listed in the “TDenved EPIC valoes™ im Table 3.

The “Derived EPIC values™ was then used to derive the “Quality differences™ fior the individual attributes, as listed in Table 3,
ie AQ= -0, where (3, was the reference quality for each atiribate. Vahes for Blur] and Noisel in Table 3 were used as the
reference quality values for each attribute.

Step 1 Sep 1
Varying Atmributes | EPIC values | Varying Atimibae Deerived EPIC values for bhr only
Bihurl¥aisal 50509

Bl Naise2 500,51 Bhrl w770

e ] 486,79

Bhraisal 531

BhrTNaise? 408,05 Bhr? 40615

Bl Yoise3 48519

Takle 1. Example of individual atiritute scaling in the EPIC.

Varying Aribute | Derived EPIC vaboes | Guality differences | Varying Arribute | Derived EFIC vales | Quality differences
Bhrrl 48779 0.00 Naisel 49656 0.00
Bhurl 406,15 164 oizel 40130 537
Bhr3 401 48 531 Noise3 47778 1870
Bhird 484 30 1349
Bhirs 47300 2480

Tahle 3. Derived EFIC vahses and quality differences scaling.

The second module used the Integrated Hyperbolic Increment Fumction (THIF) to account for scene snsceptibility.

Ohjective scene classification previously classified the test scemes used in this work into three zroups withc 1) low
susceptibility to sharpness and high susceptibility to noisiness ) sveraze susceptibility to sharpness and noisiness, 3) hizh
susceptibility to sharpness and low susceptibility to noisiness {cf Appendix) [16]). The dassification first employed objective
srene descriptors (objective measures derived from scenes to describe individual scene properties), which were found to
comelate with subjective criteria on scene suscepdbility to sharpoess/blur and nolsiness; subsequently k-reeans clhistering
was used fo group the scenes. In Figure 3 the grey box denotes the objective scene classification as proposed in [4] and
carried ot in [16]. This implementation allows the folly sutomatic calolation of the medric values, i.e. values are calibrated
for individnal scenes that are classified objectively, instead of being classified by inspection.

! Kpelan [7] suzgesss the quality changes in TMDs arising from individual attributes of image quality.
? 1t is the process of denving individual attritngte scales from overall quality assessments [0].
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The THIF was then employed to account for the quslity changes arising for sharpnessbhar and for noisiness in each group of
scenes. The THIF value was caloulated with free parameters, as described in [14, 15].

Far the sroup of scenses having “middle’ scene susceptibility [15], ie. average looking scenas as in group 2) shove, the THIF
walue was approcimately equal to 1.0, For the “least susceptible” group, ie. groups 1) or 3) sbowve depending on the stiribute,
the THIF value was 0.73. For the ‘most susceptible’ group, ie group 3) or 1) above depending on the attribute, the THIF
walue was 1.36.

An example of the use of the THIF vahe for calibrating the quality differences for the group with lesst susceptibility to
sharpness/bir is illustrated in Table 4. The calibrated quality differences in the last cohomn are obtained by muoltiplying the
quality differences with the THIF valoe.

Varying Attrituie | Quality differences | THIF vakue Calibrated quality differances in Group 1
Blurl 0.0 0.00
Blurl -1.64 -1.20
Blur3 631 073 462
Blur} -13.49 D87
Blurs -14.80 -18.14

Tikle 4. Exampile of using THIE vahue for calibrasing quality differences.

The calibrated quality differences for esch atrilute mnd each group is shown in Table 5.

Varying Atmribute | Calibrated quality differences | Varying Attribute | Calibwated quality differences

Bhurl 0.00 Naisel 0.00

Bhur 120 Toaise2 116
Gronp 1 Bhur3 Y] Toaized 1553

Bhurd 087

Blurs -1814

Bhurl 0.00 Haisel 0.00

B2 -150 Taise? 514
Gronp 2 Blhur3 516 Toaised -1833

Bhurd 1316

Blurs 419

Bhurl 000 ‘Taizel 0.00

Bhurd 23 } 385
Gronp 3 Blur3 558 Toaised 1374

Bhurd -1833

Blhurs 3370

Tahle 5. Croalsty differences values at each sroup after applying THIF valne
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The kst module s a multivariate foromulation. The quality changes from ndividual quality attributes in each grougp integrate
it the overall quality rating, The maltvanate formakation is expressed as o rootamean-squane (RMS ) s0m [ 17)

AQ, [Z{ MJ]] ) 16

where, the ACK is the quality change snismg from the * attribule (i shampnessblur and noisiness ), AC, 15
the cvemll quality chonge and o, = 20

Figure 4 presents the overall quality changes in each group. Each label m the xaxs represents a specific kyvel of distention in
blur (B and noise (M.

=& = o |
=— (romp 2

e o d

Avaae

Oqualiry chanpes m EFTC(KBY rea Svar)

B4l
B4
para:

B2t

H1mM
Hirz
Bl

o]

nswn
BANT
BaM3
BN
BSM
(RIS

linize vesuas

Frawre 4. Owverall quality chames for cach group and average.

3.2 Objective w5 subjective quality

The suesess of the [0 framework implementation was evabuated by comelating subjective scaled values fom [9), this time
with the cabbrated quality differences obtamed m secton 3.1, The Pearson's comelation coefficient (¢ was again nsed fo
eximine the specess of the comelation, Tobkle & lists the comeltion ecefficients for all scenes. Hesults from the
implementotion mdieated that, genemlly the quably predictions of the meine were improved. The measn come lntion
coefficient between subjective and objective mtings for the 32 scenes inereased from 00771 (in Table 1) to 00869 (in Tab e 6
Most nnporantly, the calibrated objective values were shown o comelate egually well with subjective quality scales of
standand and non-standand looking scenes. Tmprovements in comelations wene particularly shown in scenes belonging fo
Cirowge 1, with low susceptibility To s hampaess and high susceptibahty (o nosmess . For esampde, the cormzlatom eoefTeient for
seene “Alrican tree” increased om 0309 w0 08 lond of  ‘Landscape 27 from 0458 10 OR17 (Figure 53, Oveml], the
fmdings mdicnted that a device-dependent, scene-dependent I0M can be achieved
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Imags: r L psir r Imag r
African tree oAl Hivman 0830 Husigain2 Q834
N | Husirssaed 0,742 Landseape 0,862 Lavdscapeld LT
T
e Landscaped OHIE Plamz2 0HAE Flaat3 L]
Plantd 0.H72 Plams 0. R0 Flanatt L
Fatry 0507 Clhami towm 043l Exerise LUk K
Formula 0543 LEIEEERE 0412 Kids LU
Girosap 2
Lomdon Eve DHSE London Evel 0R50 Ly 080G
Oild bailding 0891 Plani 1 0855 Wellow ower {885
Hake 0423 Ciroup 0.8ay Humani LUk Lok
Ciroap 3 Nutioanl gallery 08T §t. Pauls 0516 51. Pauls2 4912
Smiles 0872 Sumgsil 0890
Table 6. Correlation coefficients w eoch class (the mess of 32 coelficient 1 0.509),
L 10K
A . . Landseapel =0 ET "
™. Alrecas lréw ¥ IHI. A -
T k Bl ¥
. s
f Lo (1] .
L
g .ot ’
) 3 +
F -um . ° L8 . .
+ . -
=0 am
Y Il
FETE L T Ty 1) MW EH R S [ LT U RR R 1L B e 1E S R R D) i M
ety clemges m FFI R Evtes S ety clewiges m EFECE R 1ss Sy
(a} b

Fagare 3. Compansom betwam ebjoctive scabes and subjective rtm g of scenes (a) Al tree, (b) Landscape.

4. CONCLUSION
This study puts forvard the iden of device-dependent md scene-dependent 10 medric, where metric values are calibrated 1o
aceount For the susceptibiliny of the individual scenes for which metrie values are caleulated. Further, the seene susceptibality
= eatimated using objective seane clasaification that relates it 1o scene (image) lfeatures and inherent propertios and this
e e heulat dons can be Tully automated
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In 3 case study we nsed the EPIC as the device dependent metric. First an EPIC validstion experiment was carmied out, nsing
The metic was fomd to be a good predicior of image quality when tested against average ratings from all scenes. Hosvever,
a5 expecied, the metnic predicted less suocessflly the perceived quality of individosl non-standsrd scemes with differens
ssceptibilities to sharpness and nolsimess.

Then & modular image quality framework was implemented using the EPEC metric. The aim was to simmltaneously predict
the queality of images that vary in sharpnessblur and noise levels, while scoounting for the snsceptibility of different images
with varying scene confent to sharpness and noisiness. The framework was originslly derived nsing Monte Carlo sinmlation
and accounss for observer sensitivity and scene susceptibility. The kater is done by classifying scenes into 3 small momber of
groups. In our implementstion only the scene sosceptibility was considersd The sceme classification that was employed in
the framework uses objective scene descriptors that are found to comelzte with subjective oiteria on scene susceptibility to
sharpmess and noisiness and k-mesn chisterimg to derive three groaps.

comelation coefficient betwesn subjective and objective ratings incressed from 0.771 fo 0.869. Most importantly, the mesric
scales wese shown to cormelate equally well with subjective quality scales of standard and non-standard scenes. The findings
imndicared that a device-dependent and scenedependant FOM can be achieved
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APPENDIX - TEST IMAGES IN THREE GROUPS

Graup 1

African e Las

1
l =1 |

Fhpmany Fraeib

TRl Plardd

Hman P

Group 2

226



Kyung Hoon Oh, 2014 References

References

10.

11.

12.

Trinataphillidou, S. and Jacobson, R. E. Metricrapphes to image qualjtyn:
MacDonald, L. W. and Luo, M. R. (editors}olour image scienceChichester,
John Wiley & sons, 2002, pp. 371-392.

LEE, Hsien-Che. Image quality, inntroduction to color imaging science
Cambridge, Cambridge Press, 2005, pp. 564-584.

Yendrikhovskij, S. Towards perceptually optimal ol reproduction of natural
scenes, in: MacDonald, L. W. and Luo, M. R. (edi}p€olour imaging- vision
and technologyChichester, John Wiley & sons, 1999, pp. 363-382.

Wang, Z. Why is image quality assessment so difffclEEE International
Conference on Acoustics, Speech & Signal Processnf 5, pp. 3313-3316,
2002.

Fairchild, M. D. Image quality measurement and nliade for digital
photography, [Presentation Slidésiernational Congress on Imaging Science
Tokyo, 2002.

Engeldrum, P. G. Image quality modeling: Where we® IS&T PICS:Image
processing, image quality, image capture, systeoméecence Vol. 52, pp. 251-
255, 1999.

Daly, S. The visible differences predictor: An aigun for the assessment of
image fidelity, in: Watson, A. B. (editorDigital images and human visipn
Cambridge, MIT Press, 1993, pp. 179-206.

Johnson, G. M. Measuring images: differences, tuand appearance, PhD
Thesis, New York, Rochester Institute of Technoldf§03.

Fairchild, M. D. and Johnson, G. The iCAM framewdok image appearance,
image differences, and image qualilpurnal of Electronic Imagingvol. 13, pp.
126-138, 2004.

Triantaphillidou, S., Allen, E. and Jacobson, R.lBage quality of JPEG vs
JPEG 2000 part 2: Scene dependency, scene anahgislassificationJournal
of Imaging Science and Technolo§yl. 51, pp. 259-271, 2007.

Engeldrum, P. The process of scaling and someipaatiints, in:Psychometric
scaling Winchester, Imcotek Press, 2000, pp. 19-42.

Corey, G. P., Clayton, M. J. and Cuprey, K. N. Sceependence of image
quality, Photographic Science and Engineeringl. 27, pp. 9-13, 1982.

227



Kyung Hoon Oh, 2014 References

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Frieser, H. and Biedermann, K. Experiments on imgugglity in relation to the
modulation transfer function and graininess of pgoaphsPhotographic Science
and EngineeringVol. 7, pp. 28-34, 1963.

Keelan, B. W. Scene and observer variability, ireelan, B. W. (editor),
Handbook of image qualitjNew York, Marcel Dekker, 2003, pp.129-148.

Hunt, R. W. G. Image structure in colour photogsgph: The reproduction of
colour 6", Chichester, John Wiley & sons, 2004, pp. 300-334.

Jones, L. A. and Condit, H. R. The brightness soélexterior scenes and the
computation of correct photographic exposu@jrnal of the Optical Society of
Americag Vol. 31, pp. 651-678, 1941.

ISO 20462-3: 2005. Photography-psychophysical emxpsrtal methods for
estimating image quality, International Organizatior Standardization, 2005.

Allen, E., Triantaphillidou, S. and Jacobson, R.lfBage quality compression
between JPEG and JPEG 2000 I: Psychophysical nesaeuts,Journal of
Imaging Science and Technolodol. 51, pp. 248-258, 2007.

Teeselink, ., Bilmmaert, F. and Ridder, H. Imag&egorization,Journal of
Imaging Science and Technolodol. 44, pp. 552-559, 2000.

Mojsilovic, A. and Rogowitz, B. Capturing image samics with low-level
descriptors)nternational Conference on Image Processimg. 18-21, 2001.

Yendrikhovskij, S. Image quality and colour categation, in: MacDonald, L. W.
and Luo, M. R. (editors)Colour image sciengeChichester, John Wiley & sons,
2002, pp. 393-4109.

Szummer, M. and Picard, R. W. Indoor-outdoor imalgessification,|IEEE Intl
Workshop on Content-based Access of Image and \Ddémbasespp. 42-51,
1998.

Vailaya, A., Jain, A. and Zhang, Hong Jiang. Ongmalassification: City images
vs landscapednternational Journal of Pattern Recognitiowol. 31, pp. 1921-
1935, 1998.

Vailaya, A., Figueiredo, M., Jaina, A. and Zhangnlg Jiang. H. A Bayesian
framework for hierarchical semantic classificatioh vacation images|EEE
International Conference on Multimedia Computingl é8ystemsVol. 3656, pp.
415-426, 1998.

ISO 12231: 2005. Photography-electronic still pietuimaging-vocabulary,
International Organization for Standardization, 200

228



Kyung Hoon Oh, 2014 References

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Keelan, B. W. Can image quality be usefully quaedi? in: Keelan, B. W.
(editor),Handbook of image qualitfNew York, Marcel Dekker, 2003, pp. 3-18.

Jacobson, R. E. An evaluation of image quality regtdournal of Photographic
ScienceVol. 43, pp. 7-16, 1995.

Silverstain, D. A. and Farrell, J. E. The relatioipsbetween image fidelity and
image qualityProceeding ICIP-96Vol. 1, pp. 881-884, 1996.

Klein, S. A. Image quality and image compression, Watson, A. B. (editor),
Digital images and human visip@ambridge, MIT Press, 1993, pp. 73-88.

Berns, R. S. Measuring color qualiBillmeyer and Saltzman's principles of color
technology, New York, Wiley-Interscience, 2000, pp. 107-130.

Engeldrum, P. G. A framework for image quality misgd&lassachusettdpurnal
of Imaging Science and Technolo§l. 39, pp. 312-318, 1995.

Ford, A. M. The relationship between image quadity still image compression,
PhD Thesis, London, University of Westminster, 1997

Triantaphillidou, S. Aspects of image quality iretHigitisation of photographic
collection, PhD Thesis, London, University of Westster, 2001.

Jacobson, R. E. Approaches to total quality forassessment of imaging systems.
Information Services & Us&/ol. 13, pp. 235-246, 1993.

Bartleson, C. The combined influence of sharpnessgraininess on the quality
of colour printsJournal Photographic Scienc¥ol. 30, pp. 33-38, 1982.

Engeldrum, P. G. The Image Quality Circle, Bsychometric scalingVinchester,
Imcotek Press, 2000, pp. 5-18.

Biedermann, H. and Frieser, K. Experiments on imagugglity in relation to the
modulation transfer function and graininess of plgeaphsPhotographic Science
and EngineeringVol. 7, pp. 28-33, 1963.

Johnson, G. M. and Fairchild, M. Sharpness ru®&T Color Imaging
ConferenceVol. 8, pp. 24-30, 2000.

Stevens, S. S. On the theory of scales and measntg/8cience Vol. 103, pp.
677-680, 1946.

Besore, C. Testing and evaluation, in: Woodlief,(&ditor), SPIE handbook of

photographic science and engineerimddew York, Wiley-Interscience, 1973, pp.
1023-1132.

229



Kyung Hoon Oh, 2014 References

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

ISO 20462-2: 2005. Photography-psychophysical emmtal methods for
estimating image quality, International Organizatior Standardization, 2005.

ITU-R. BT 500-12. Methodology for subjective asseent of the quality of
television pictures, International Telecommunicatio Union -
Radiocommunication Sector, 2009.

Cookingham, R. E. Calibrated psychometrics usinglityurulers, in: Keelan, B.
W. (editor),Handbook of image qualitjNew York, Marcel Dekker, 2003, pp. 87-
100.

MacDonald, L. and Jacobson, R. E. Assessing imagédty in: MacDonald, L.
W. (editor), Digital heritage: Applying digital imaging to cuiltal heritage
Oxford, Elservier, 2006, pp. 351-373.

ISO 20462-1: 2005. Photography-psychophysical emmtal methods for
estimating image quality, International Organizatior Standardization, 2005.

Bartleson, C. J. Measuring difference®ptical Radiation Measurements
Academic Press, Vol. 5, pp. 441-489, 1984.

Westerink, J. H. D. M. and Roufs, J. A. J. Subjecimage quality as a function
of viewing distance, resolution and picture si3PTE Journal Vol. 98, pp.
113-119, 1989.

Van der Zee, E. and Boesten, M. H. W. A. The infeeof luminance and size on
the image quality of complex scenéBO Annual Progress Reporpp. 69-75,
1980.

Myers, K. J. Addition of a channel mechanism to tteal observer model,
Journal of the Optical Society of AmericaVol. 4, pp. 2447-2457, 1987.

Sankaran, S., Frey, E., Gilland, K. and Tsui, BuiT®ptimum compensation
method and filter cut off frequency in myocardid?EBCT: A human observer
study, The Journal of Nuclear Medicin®&ol. 43, pp. 432-438, 2002.

ISO 3664: 2000. Viewing conditions for graphic tectogy and photography,
International Organization for Standardization, @00

Wallace, G. K. The JPEG still picture compressitandard,|EEE Transactions
on Consumer Electronic¥ol. 38, pp. xviii - xxxiv, 1992.

Usevitch, B. E. A tutorial on modern lossy waveletage compression:
Foundations of JPEG 200[EEE Signal Processing Magazin€ol. 18, pp. 22—
35, 2001.

Nijenhuis, M. R. M. Sampling and interpolation dgatic images: A perceptual
view, PhD Thesis, Eindhoven, Eindhoven Universitffechnology, 1993.

230



Kyung Hoon Oh, 2014 References

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Barten, P. G. J. Effect of various parameters oagenquality, in:contrast
sensitivity of the human eye and its effects orgemguality Bellingham, SPIE
Press, 1999, pp. 175-200.

Kayargadde, V. Feature extraction for image quatitgdiction, PhD Thesis,
Eindhoven, Eindhoven University of Technology, 1995

Kominek, J. Introduction to fractal compression n@p [Online] 1996,
http://www.fags.org/fags/compression-fag/part2fieec8.html.

Ahmada, A. J. and Null, C. H. Image quality: multiénsional problem, in:
Watson, A. B. (editor)Digital images and human visip@ambridge, MIT Press,
1993, pp. 141-148.

Farrell, J. E. Image quality evaluation, in: Maclth L. W. and Luo, M. R.
(editors),Colour imaging - vision and technolag@hichester, John Wiley & sons,
1999, pp. 285-313.

Jacobson, R. E. Image quality: meanings, minefiald mastery, [Presentation
Slides] Good Picture 2003, London, The Royal Ph@tpigic Society, 2003.

Crane, E. M. An objective method for rating pictwigarpness: SMT acutance,
Journal of the SMPTEVol. 73, pp. 643-647, 1964.

Gendron, R. G. An improved objective method fom@ipicture sharpness: CMT
acutanceJournal of the SMPTEVol. 82, pp. 1009-1012, 1973.

Crane, E. M. Acutance and granulan8BJE Proceeding: Image qualjtyol. 310,
pp. 125-132, 1981.

ANSI/HFS 100: 1988. American national standardifeman factors engineering
of visual display terminal workstations, Human FEastSociety, 1988.

Charman, W. N. and Olin, A. Image quality critefa aerial camera system,
Photographic Science and Engineerivpl. 9, pp. 385-397, 1965.

Gerfelder, N. and Muller, W. Objective quality esétion for digital images in
multimedia environment, in: MacDonald, L. W. andol.WM. R. (editors)Colour
imaging - vision and technologZhichester, John Wiley & sons, 1999, pp. 339-
361.

Beaton, R. J. and Farley, W. W. Comparative stddyhe MTFA, ICS, and SQRI
image quality metrics for visual display systemgmatrong Lab, Air Force
Systems Command, Report AL-TR-1992—-0001, 1991.

Barten, P. G. J. Evaluation of subjective imagelityuavith the square-root

integral methodJournal of the Optical Society of America ¥ol. 7, pp. 2024-
2031, 1990.

231



Kyung Hoon Oh, 2014 References

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

Barten, P. G. J. Evaluation of the effect of n@sesubjective image qualitgPIE
Proceeding: Human vision, visual processing andtdiglisplay I, Vol. 1453, pp.
2-15, 1991.

Higgins, G. C. Image quality criteriaJournal of Applied Photographic
Engineering Vol. 3, pp. 53-60, 1977.

Topfer, K. and Jacobson, R. E. The relationshigveenh objective and subjective
image quality criteriaJournal of Information Recording Material¥ol. 21, pp.
5-27, 1993.

Pointer, M. R. Measuring colour reproductidournal of Photographic Science
Vol. 34, pp. 81-90, 1986.

Zhang, X. M. and Wandell, B. A. A spatial extenstorCIELAB for digital color
image reproductionJournal of the Society for Information Displayol. 5, pp.
61-63, 1997.

Jenkin, R., Triantaphillidou, S. and Richardson, K. Effective Pictorial
Information Capacity as an Image Quality Metr8PIE Proceeding: Image
quality and system performance Nol. 6494, 2007.

Shannon, C. E. A Mathematical Theory of CommunagtiThe Bells System
Technical JournalVol. 27, 623-656, 1948.

Hurter, F. and Diriffield, V. C. Photochemical intigations and new method of
determination of the sensitiveness of photographates,The Journal of Society
of Chemical Industrypp. 455-469, 1890.

Jones, L. A. On the theory of tone reproductionhwgtaphic methods for the
solution of the problemJournal of Franklin InstituteVol. 190, pp. 39-90, 1920.

Jones, L. A. Photographic reproduction of tadmjrnal of the Optical Society of
America Vol. 2, pp. 232-258, 1921.

Jones, L. A. Psychophysics and photogragloyrnal of the Optical Society of
Americg Vol. 35, pp. 66-88, 1944.

Nelson, C. N. Tone and colour reproduction. Jarie$] (editor),The theory of
photographic procesNew York, The Macmillan Company, 1966, pp. 536-57

Attridge, G. G. Sensitometry, in: Jacobson, Retkal (editors), The manual of
photographygth, Oxford, Focal Press, 2000, pp. 218-246.

ISO 14524: 1999. Photography-electronic still-pietucameras-Methods for

measuring opto-electronic  conversion functions (BEC International
Organization for Standardization, 1999.

232



Kyung Hoon Oh, 2014 References

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Triantaphillidou, S. Tone reproduction, in: Allek. and Triantaphillidou, S.
(editors), The manual of photograpty0", Oxford, Focal Press, 2010, pp. 377-
392.

Ford, A. M., Jacobson, R. E. and Attridge, G. Gafteristics of CRT monitors
for the display of still digital imagegournal of Photographic Scienc¥ol. 44,
pp. 23-26, 1996.

Sharma, G. LCDs Versus CRTs - color calibration gadiut considerations,
Proceedings of the IEEE/ol. 90, pp. 605-622, 2002.

Tamura, N., Tsumura, N. and Miyake, Y. Masking moder accurate
colorimetric characterisation of LCDJournal of the Society for Information
Display, Vol. 11, pp. 1-7, 2003.

Kwak, Y. and MacDonald, L. Characterisation of asidep LCD projector,
Displays Vol. 21, pp. 179-194, 2001.

Fairchild, M. D. and Wyble, D. Colorimetric charadsation of the Apple studio
display (Flat Panel LCD), Munsell Color Science aediory Technical Report,
Rochester Institute of Technology, 1998.

EN 61966-2-1:2000. Multimedia systems and equiprsefdur measurement and
management-part 2-1: colour management-Default RGBur space- sRGB,
European standard: IEC, 2000.

Adobe_system. Adobe® RGB (1998) Color image enapdwersion 2005-05,
Adobe system, 2005.

Triantaphillidou S., Jacobson R. E. and Ford A Rveferred tone reproduction of
images on soft display8CPS’98 Proceeding: International congress on inmagi
science pp. 204-208, Belgium, 1998.

Fairchild, M. D. Colorimetry, inColor appearance mode®", Chichester, John
Wiley & sons, 2004, pp. 53-82.

Hunt, R. W. G. Objectives in colour reproductiomyeDournal of Photographic
ScienceVol. 18, pp. 205-215, 1970.

Guild, J. The colorimetric properties of the spewtr Philosophical transactions
of the Royal Society of Londd®er A, Vol. 230, pp. 149-187, 1932.

Wright, W. D. A re-determination of the trichromatoefficients of the spectral
colours,Transactions of the optical societyol. 30, pp. 141-164, 1928-29.

CIE, Proc. & session, Cambridge, Commission Internationale 'Beldirage,
1931.

233



Kyung Hoon Oh, 2014 References

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

CIE Publication 15.2. Colorimetry, Commission Imationale de I'Eclairage,
1986.

Hunt, R. W. G. Colour standard and calculation;Tine reproduction of colous™,
Chichester, John Wiley & sons, 2004, pp. 92-125.

CIE Supplement No.2 to CIE Publication 15: Recomaiagions on uniform color
spaces, color-difference equations, psychometritorcaerms, Commission
Internationale de I'Eclairage, 1978, now Part d& ©5.2-1986: Colorimetry.

Fairchild, M. D. Color apJoearance terminology, Fairchild, M. D. (editor),
Color appearance mode®, Chichester, John Wiley & sons, 2004, pp. 83-93.

Triantaphillidou, S. Colorimetry and Colour Differee Formulae, [Presentation
Slides]Lecture note for MSC Digital imaging and Photographmaging
University of Westminster, London, 2004.

Clarke, F. J. J., McDonald, R. and Rigg, B. Modifion to the JPC79 colour-
difference formula,Journal of the Society of Dyers and Colouridtsl. 100, pp.
128-132, 1984.

CIE Publication 116. Industrial colour-differencevaluation, Commission
Internationale de I'Eclairage, 1995.

CIE Publication 142. Improvement to industrial aotdifference evaluation,
Commission Internationale de I'Eclairage, 2001.

Luo, M. R., Cui, G. and Rigg, B. The developmenCdE 2000 colour-difference
formula: CIEDE2000,Color Research and Applicatioi/ol. 26, pp. 340-350,
2001.

Bilissi, E. Aspects of image quality and the insttnPhD Thesis, London,
University of Westminster, 2004.

Wyszecki, G. and Stiles, W. S. Colorimetry, i@olor science: concepts and
methods, quantitative data and formyl&hichester, John Wiley & sons, 1982,
pp. 117-248.

Witt, K. CIE color difference metrics, in: Janosh&oda (editor)Colorimetry:
understanding the CIE systeMew York, Wiley-Interscience, 2007, pp. 79-100.

Triantaphillidou, S. Introduction to colour sciencen: Allen, E. and
Triantaphillidou, S. (editors)The manual of photograph;lO‘h, Oxford, Focal
Press, 2010, pp. 77-102.

ISO 12233: 2000. Photography-electronic still pietucameras-Resolution
measurements, International Organization for Statiztion, 2000.

234



Kyung Hoon Oh, 2014 References

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

Ray, S. Optical aberrations and lens performance,Jacobson, R. Eet al
(editors),The Manual of Photograpt§", Oxford, Focal Press, 2000, pp. 72-82.

Burns, P. Evaluating digital scanner and cameraging performance for digital
collections, [Presentation Slides] Half-day shodurse, London, The Royal
Photographic Society, 2006.

Jenkin, R. Noise, sharpness resolution and infaamatin: Allen, E. and
Triantaphillidou, S. (editors)The manual of photograph;lO‘h, Oxford, Focal
Press, 2010, pp. 433-456.

Jenkin, R. On the application of the modulatiomsfar function to discrete
imaging system, PhD Thesis, London, University asivhinster, 2002.

Jenkin, R. Image and image formation, in: Allen, &ad Triantaphillidou, S.
(editors), The manual of photographwth, Oxford, Focal Press, 2010, pp. 119 -
138.

Lehmbeck, D. R. and Urbach, J. C. Image qualitystanning, in: Marshall, G. F.
(editor), Handbook of optical and laser scannjnjew York, Marcel Dekker,
2001, pp. 139 -264.

Triantaphillidou, S., Jacobson, R. E. and Jenkin,AR evaluation of MTF
determination methods for 35mm scann&&T PICS:Image Processing, image
quality, image capture, systems confereintd. 52, pp. 231-235, 1999.

Dainty, J. C. and Shaw, R. The modulation trangfaction, in:Image science:
principles, analysis and evaluation of photograptyipe imaging processes
London, Academic Press, 1974, pp. 232-275.

Dainty, J. C. Methods of measuring the modulatisangfer function of
photographic emulsionQptica Acta Vol. 18, pp. 795-813, 1971.

Sensiper, D., Boreman, G. D. and Ducharme, A. Ddlition transfer function
testing of detector arrays using narrow-band lapexckle,Optical Engineering,
Vol. 32, pp. 395-400, 1993.

Van Metter, R. Measurement of MTF by noise poweslgsis of —dimensional
white noise patterng.he Journal of Photographic Sciendéol. 38, pp. 144-147,
1990.

Cao, F., Guichard, F. and Hornung, Hervé. Measutexgure sharpness of a
digital cameraSPIE Proceeding: Digital photography, Vol. 7250, 2009.

Axford, N. R. Theory of image formation, in: JacobhsR. E.et al (editors),The
manual of photograph§", Oxford, Focal Press, 2000, pp. 393-412.

235



Kyung Hoon Oh, 2014 References

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

Reichenbach, S., Park, S. and Narayanswamy, R.aCleazing digital image
acquisition deviceptical EngineeringVol. 30, pp. 170-177, 1991.

Burns, P. Slanted-edge MTF for digital camera asahser analysi$S&T PICS:
Image processing, image quality, image capturetesys conference/ol. 53, pp.
135-138, 2000.

ISO 15739: 2003. Photography-electronic still-pietu imaging-Noise
measurements, International Organization for Stathzation, 2003.

Axford, N. R. Image and information, in: Jacobséh, E. et al (editors), The
manual of photographg9™, Oxford, Focal Press, 2000, pp. 413-427.

Georgeson, M. A. and Sullivan, G. D. Contrast camsy: deblurring in human
vision by spatial frequency channele Journal of Physiologywol. 252, pp.
627-656, 1975.

Barten, P. G. J. Physical model for the contrassisieity of the human ey&SPIE
Proceeding: Human vision, visual processing andtdiglisplay Ill, Vol. 1666,
pp. 57-72, 1992.

Barten, P. G. J. Model for the spatial contrasisdmity of the eye, inccontrast
sensitivity of the human eye and its effects orgemguality Bellingham, SPIE
Press, 1999, pp. 27-66.

Keelan, B. W. Monte Carlo Simulation of system parfance, in: Keelan, B. W.
(editor), Handbook of image qualityNew York, Marcel Dekker, 2003, pp. 413-
422.

Theodoridis, S. and Koutroumbas, K. Introductiam, Pattern recognition2™
London, Elsevier, 2003, pp. 1-12.

Theodoridis, S. and Koutroumbas, K. Feature gemerall, in: Pattern
recognition2", London, Elsevier, 2003, pp. 269-320.

Gonzalez, R. C. and Woods, R. E. Representationdasdription, in:Digital
image processing™ London, Prentice Hall, 2002, pp. 643-692.

Pratt, W. K. Image feature extraction, iigital image processingChichester,
John Wiley & sons, 1991, pp. 557-596.

MathWorks. MATLAB, The MathWorks Inc, 2007.

Pratt, W. K. Edge detection, ibigital image processingChichester, John Wiley
& sons, 1991, pp. 491-556.

Gonzalez, R. C. and Woods, R. E. Image segmentationDigital image
processing?™, London, Prentice Hall, 2002, pp. 567-642.

236



Kyung Hoon Oh, 2014 References

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

Umbaugh, S. E. Segmentation and edge/line detedtmorComputer imaging:
digital image analysis and processjrigopndon, CRC Press, 2005, pp. 121-200.

Duda, R. O., Hart, P. E. and Stork, D. G. Introductin: Pattern classification
Chichester, John Wiley & sons, 2001, pp. 1-19.

Friedman, M. and Kandel, A. Feature selection, lmmroduction to pattern
recognition: Statistical, structural, neural, andzkzy logic approached.ondon,
Imperial College Press, 1999, pp. 141-166.

Theodoridis, S. and Koutroumbas, K. Feature selectin: Pattern recognition
2" London, Elsevier, 2003, pp. 163-206.

Rees, D. G. Hypothesis testing, Essential statisticd.ondon, Chapman & Hall,
2001, pp. 139-160.

Rees, D. G. Correlation of quantitative variablasEssential statistigsLondon,
Chapman & Hall, 2001, pp. 211-230.

Cohen, S. S. One sample with two variables,Hractical statistics London,
Edward Arnold, 1988, pp. 62-85.

Jain, A. K. Image analysis and computer visionFemdamentals of digital image
processingPrentice hall, 1989, pp. 342-430.

Theodoridis, S. and Koutroumbas, K. Clustering:ibancepts, in:Pattern
recognition2", London, Elsevier, 2003, pp. 397-428.

Duda, R. O., Hart, P. E. and Stork, D. G. Unsugedilearning and clustering, in:
Pattern classificationChichester, John Wiley & sons, 2001, pp. 517-600.

Wikipedia, the free encyclopaedia. [Online] Wikineed~oundation Inc, May
2009, http://en.wikipedia.org/wiki/K-means_clusteyi

Catherine, A. S. and Gareth, M. J. Finding the nemdf clusters in a data set: An
information theoretic approacipurnal of the American Statistical Association
Vol. 98, pp. 750-763, 2003.

Bala, R. Device characterisation, in: Gaurav Shafeditor), Digital color
imaging handboakiL_ondon, CRC Press, 2003, pp. 269-384.

LEE, Hsien-Che. Device calibration, ilntroduction to color imaging science
Cambridge, Cambridge Press, 2005, pp. 387-414.

Canon. EOS-1Ds digital instruction manual, Tokyan@n, 2002.

Ray, S. Types of camera, in: Jacobson, RetEal (editors), The manual of
photographyd™. Oxford, Focal Press, 2000, pp. 104-130.

237



Kyung Hoon Oh, 2014 References

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.
165.

166.

167.

168.

169.

Canon. [Online] 2006, http://www.canon.co.uk.

Ray, S. Photographic light sources, in: Jacobsof. Bt al (editors),The manual
of photographyg™, Oxford, Focal Press, 2000, pp. 16-38.

EN 61966-9:2004. Multimedia systems and equipmetdwr measurement and
management-part 9: digital camera, European stdntiaC, 2004.

Orava, J. and Jaaskelainen, T. Color errors ofaligameraColor Research and
Application Vol. 29, pp. 217-221, 2004.

GretagMacbeth. Color-Eye® 7000A spectrophotom&esfagMacbeth.

Stokes, M., Fairchild, M. D. and Berns, R. S. Coatrically quantified visual
tolerances for pictorial imageBroceeding TAGA conferenceol. 2, pp. 757-777,
1992.

Uroz, J., Luo, M. R. and Morovic, J. Perceptioncofour differences in large
printed images, in: MacDonald, L. W. and Luo, M. (Rditors),Colour image
science Chichester, John Wiley & sons, 2002, pp. 49-73.

Green, P. Colorimetry and colour difference, ine@r, P. and MacDonald, L. W.
(editors), Colour engineering: achieving device independenbuwg Chichester,
John Wiley & sons, 2002, pp. 49-78.

Bilissi, E., Jacobson, R. E. and Attridge, G. GstJooticeable differences and
acceptability of SRGB images displayed on a CRT itoonimaging Science
Journal 2008, Vol. 56, pp. 189-200.

Kodak. [Online] 2006, http://www.kodak.com.
Scion Corporation, [Online] 2006, http://www.sciang.com.

Sharma, A. Introduction, inUnderstanding color managemeniew York,
Thomson/Delmar Learning, 2004, pp. 1-48.

Hung, P. C. Colorimetric calibration in electromeaging devices using a look-up
tables model and interpolatiornkyurnal of Electronic Imagingvol. 2, pp. 53-61,
1993.

Kang, H. R. Color scanner calibratiodournal of Imaging science and
TechnologyVol. 36, pp. 162-170, 1992.

Hong, G., Luo, R. and Rhodes, P. A study of digitaimera colorimetric

characterisation based on polynomial model@glor Research and Applicatipn
Vol. 26, pp. 76-84, 2001.

238



Kyung Hoon Oh, 2014 References

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

Cheung, V. and Westland, S. A comparative of chiarasation of colour cameras
by means of neural networks and polynomial tramsfalournal of Coloration
TechnologyVol. 120, pp. 19-25, 2004.

Pointer, M., Attridge, G. G. and Jacobson, R. EcBecal camera characterisation
for colour measurementhe Imaging Science Journaol. 43, pp. 63-80, 2001.

Howell, D. C. Describing and exploring dagtatistical Methods in Psychology,
Duxbury, 2001, Vol. 2, pp. 15-72.

Kang, H. R. RGB color space, i@omputational Color Technologellingham,
SPIE Press, 2006, pp. 77-101.

Kang, H. R. Color input devices, i€olor Technology for Electronic Imaging
Devices Bellingham, SPIE Press, 1997, pp. 272-294.

ISO 17321-1: 2006. Graphic technology and photdgrapolour characterisation
of digital still camera, International Organizatitom Standardization, 2006.

Wikipedia, the free encyclopaedia. [Online] Wikineed-oundation Inc, March
2010, http://en.wikipedia.org/wiki/Pixel.

Farrell, J. E., Parmar, M., Catrysse, P. and WanBeDigital camera simulation,
in handbook of digital imaginglohn Wiley & sons (in preparation) [Online] 2006,
http://www.imageval.com/public/Products/ISET/Resb&apers.html.

ElIZO. ColorEdge CG210-N Specifications, EIZO, 2008.
EIZO. ColorNavigator Ver 4.1. : EIZO NANAO, 2005.
KONICA-MINOLTA, [Online] 2006, http://www.konicamialta.com.

EN: 61966-4: 2000. Multimedia systems and equipreeidur measurement and
management-part 4: Equipment using liquid crystapldy panels, European
standard: IEC, 2000.

Pearson, D. ETransmission and display of pictorial informatjohondon,
Pentech Press, 1975.

Gibson, J. and Fairchild, M. Colorimetric charasiation of three computer
displays (LCD and CRT), Munsell Color Science Lattory Technical Report,
Rochester Institute of Technology, 2000.

Kimpe, T. and Sneyders, Y. Effect of non-uniformign DICOM GSDF
compliance of medical displaydnternational Journal of Computer Assisted
Radiology and Surgeywol. 1, pp. 35-36, 2006.

239



Kyung Hoon Oh, 2014 References

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

Berns, R. S., Gorynski, M. E. and Motta, R. J. CRdlorimetry. Part Il
Metrology, Color Research and Applicatipiol. 18, pp. 315-325, 1993.

Ford, A. M., Jacobson, R. E. and Attridge, G. Gsséssment of a CRT Display
System The Journal of Photographic Sciendéol. 44, pp. 147 — 154, 1996.

Parulski, K. and Spaulding, K. Color image proaegdior digital cameras, in:
Gaurav Sharma (editorigital color imaging handbogkLondon, CRC Press,
2003, pp. 727-758.

Applied Image. [Online] Applied Image, 2007, httwww.aig-imaging.com.

Keelan, B. W. and Pagano, D. M. External projectems aperture, US Patent 5-
537-166, 1996.

LosBurns, [Online] 2009, http://losburns.com/imagsoftware/index.html.

Triantaphillidou, S. and Jacobson, R. E. Measurésneihthe modulation transfer
function of image displayslournal of Imaging Science and Technologgl. 48,
pp. 58-65, 2004.

Jin, E. W., Keelan, B. W. and Chen, J. Softcopy liguaruler method:
Implementation and validationrSPIE Proceeding: Image quality and system
performance VIVol. 7242, 2009.

Smoyer, E. M., Taplin, L. A. and Berns, R. S. Expental Evaluation of
Museum Case Study Digital Camera Systeneceedings of the IS&T Archiving
Conferencepp. 85-90, 2005.

Karniyati. Evaluating a camera for archiving cudtuheritage, Munsell Color
Science Laboratory Technical Report, Rochesteitirstof Technology, 2005.

Roehrig, H., Krupinski, E. A., Chawla, A. S., Fah, Gandhi, K., Furukawa, T.
and Ohashi, M. Noise of LCD display systdnternational Congress Seriegol.
1256, pp. 162-168, 2003.

Roehrig, H., Krupinski, E. A., Chawla, A. S., Fdnand Gandhi, K. Spatial noise
and threshold contrasts in LCD displa®RIE Proceeding: Image Perception,
Observer Performance, and Technology Assessieht5034, 2003.

Ray, S. Camera exposure determination, in: Jacoli®ok.et al (editors),The
manual of photograph§", Oxford, Focal Press, 2000, pp. 310-335.

Elizabeth, A. Digital image workflow, in: Allen, Eand Triantaphillidou, S.

(editors), The manual of photograptyd”, Oxford, Focal Press, 2010, pp. 457 -
474.

240



Kyung Hoon Oh, 2014 References

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

Elizabeth, A. Digital image manipulation, in: Laog, M. and Bilissi, E.
(editors), Langford's advanced photograph!, Oxford, Focal Press, 2008, pp.
229-266.

Garrett, J. and Fairchild, M. Visual psychophysasd color appearance, in:
Gaurav Sharma (editorpigital color imaging handbogkLondon, CRC Press,
2003, pp. 115-171.

Engeldrum, P. G. Thresholds and Just Noticeablé@ifces, inPsychometric
scaling Winchester, Imcotek Press, 2000, pp. 53-78.

Hunt, R. W. G. The effect of daylight and tungstegit adaptation on colour
perception,Journal of the Optical Society of Amerjdéol. 40, pp. 362-371, 1950.

Engeldrum, P. G. Indirect interval scaling-Categosgaling methods, in:
Psychometric scalingVinchester, Imcotek Press, 2000, pp. 123-138.

Gulliksen, H. A least squares solution for pair@anparisons with incomplete
data,PsychometrikaVol. 21, pp. 125-134, 1956.

Morrissey, J. H. New method for the assignment fchometric scale values
from incomplete paired comparisodsurnal of Optical Society Americ&ol. 45,
pp. 373-378, 1955.

Rees, D. G. Summarizing data by numerical measume&ssential statistics
London, Chapman & Hall, 2001, pp. 31-46.

Choi, S. Y., Luo, M. R., Pointer, M. R. and RhodBsA. Investigation of large
display colour image appearanceJdournal of Imaging Science and Technology
Vol. 52, 2008.

Keelan, B. W. A detailed example of objective neettesign, in: Keelan, B. W.
(editor), Handbook of image qualityNew York, Marcel Dekker, 2003, pp. 197-
206.

Stroud, K.A. Probability, in: Engineering mathematics: programmes and
problems Basingstoke, Macmillan, 1995, pp. 953-998.

Cohen, E. and Yitzhaky, Y. No-reference assessofdoiur and noise impacts on
image qualitySignal Image and Video Processi2910, pp. 289-302.

MacLennan-Brown, K. Quantification of artefacts endént within digital imaging
chains, PhD Thesis, London, University of Westnens2001.

SPSS Inc, SPSS 14.0, 2005.

Mellers, B. J. and Cook, A. D. J. The role of taskd context in preference
measuremenisychological Scienc&/ol. 7, pp. 76-82, 1996.

241



Kyung Hoon Oh, 2014 References

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

Jenkin, R. and Richardson, M. Comparison between Effective Pictorial
Information Capacities JPEG 6b and 20@pto-lreland 2005: Imaging and
vision, Vol. 13, 2005.

Dainty, J. C. and Shaw, R. Image noise analysisiniage science: principles,
analysis and evaluation of photographic-type imagiprocesses London,
Academic Press, 1974, pp. 276-319.

ITU-R. BT 1543. 1280 x 720, 16 x 9 progressivelptoaed image format for
production and international programme exchangehen 60 Hz environment,
International Telecommunication Union - Radiocomination Sector, 2001.

Sugawara, M., Mitani, K., Kanazawa, M., Okano, Rd aishida, Y. Future
prospects of HDTVSMPTE JournalVol. 115, pp. 10-15, 2006.

Pappas, T. N. Safranek, R. J. and Chen, J. Pesatapiteria for image quality
evaluation, in: Bovik, A. (editor)Handbook of image & video processiaff’,
London, Elsevier, 2005, pp. 939-959.

Bilissi, E. Films-types and technical data. in: géord, M. and Bilissi, E. (editors),
Langford's advanced photograp@}, Oxford, Focal Press, 2008, pp. 85-107.

Barten, P. G. J. Image quality measure,ciontrast sensitivity of the human eye
and its effects on image quali§ellingham, SPIE Press, 1999, pp. 153-174.

Jenkin, R., Jacobson, R.E. and Richardson, M. A& &fghe First Order Wiener
Kernel Transform in the Evaluation of SQRiInd PIC Quality Metrics for JPEG
Compression SPIE Proceeding: Image quality and system perfocgaivol.
5294, 2004.

Cohen, S. S. Computing aspects of statistics,Practical statistics London,
Edward Arnold, 1988, pp. 177-197.

Keelan, B. W. A general equation to fit qualityddsinctions, in: Keelan, B. W.
(editor), Handbook of image qualityNew York, Marcel Dekker, 2003, pp. 119-
128.

Osberger, W. Perceptual Vision Models for Picturaeal@y Assessment and
Compression Applications, PhD Thesis, Brisbane, eé@sknd University of
Technology, 1999.

Topfer, K. Preference in color and tone reprodumtia: Keelan, B. W. (editor),
Handbook of image qualitfNew York, Marcel Dekker, 2003, pp. 285-304.

Hunt, R. W. G. How to make pictures and please lggop: MacDonald, L. W.

and Luo, M. R. (editors)Colour image sciengeChichester, John Wiley & sons,
2002, pp. 421-437.

242



Kyung Hoon Oh, 2014 References

227. Fairchild, M. D., Wyble, D. R. and Johnson, G. Mateghing image color from
different camerasSPIE Proceeding: Image quality and system perfocaav,
Vol. 6808, 2008.

228. llea, D. E. and Whelan, P. F. Image segmentatigedan the integration of
colour—texture descriptorBattern Recognitionvol. 44, pp. 2479-2501, 2011.

229. Keelan, B. W. and Jin, E. W. Weighting of field gleis for sharpness and
noisinessSPIE Proceeding: Image quality and system perfocean Vol. 7242,
2009.

243



