
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

A Generic Framework and Methodology for Implementing Science

Gateways for Analysing Molecular Docking Results

Kiss, T., Temelkovski, D. and Terstyanszky, G.

This is an author version of a paper presented at the 10th International Workshop on

Science Gateways, Edinburgh, UK, 13 to 15 June 2018.

Further details of conference:

https://sites.google.com/a/nd.edu/iwsg2018/

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://sites.google.com/a/nd.edu/iwsg2018/
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

10
th

 International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

A Generic Framework and Methodology for

Implementing Science Gateways for Analysing

Molecular Docking Results

Damjan Temelkovski, Tamas Kiss, Gabor Terstyanszky

University of Westminster, London, UK

damjan.temelkovski@my.westminster.ac.uk, {t.kiss, g.z.terstyanszky}@westminster.ac.uk

Abstract—Molecular docking and virtual screening

experiments require large computational and data resources and

high-level user interfaces in the form of science gateways. While

science gateways supporting such experiments are relatively

common, there is a clearly identified need to design and

implement more complex environments for further analysis of

docking results. This paper describes a generic framework and a

related methodology that supports the efficient development of

such environments. The framework is modular enabling the

reuse of already existing components. The methodology is agile

and encourages the input and participation of end-users. A

prototype implementation, based on the framework and

methodology, of a science-gateway-based molecular docking

environment for recommending a ligand-protein pair for next

docking experiment is also presented and evaluated.

Keywords—bioinformatics; modelling; molecular docking;

science gateway; virtual screening.

I. INTRODUCTION

Molecular docking is a computational simulation that models

biochemical interactions to predict where and how two

molecules would bind. Large-scale molecular docking

simulations are used in areas such as drug discovery where

they can decrease the amount of wet-lab experiments required.

Since molecular docking uses the structure of the receptor,

large-scale molecular docking of hundreds of thousands of

ligands and one receptor is called structure-based virtual

screening (virtual as opposed to the robotics-based high

throughput screening). Although a single docking simulation

is relatively short, a typical virtual screening experiment, that

may combine thousands of simulations, is computationally

demanding, requiring the use of Distributed Computing

Infrastructures (DCIs). Utilising and accessing such

computational resources adds an extra level of complexity to

the task making it increasingly difficult for biomedical

scientists. Science gateways are widely utilised in this area to

help bridging this gap.

Although this field has seen great advancements recently,

feedback from biomedical scientists shows that there is still a

significant gap to bridge. Examples for science gateways

supporting molecular docking and virtual screening

experiments include several WS-PGRADE/gUSE [1] based

gateways, such as the MosGrid Portal [2], the AutoDock

Gateway [3], and the AMC Docking Gateway [4]; as well as

non-workflow-based pipelines such as the virtual screening

environment for Windows Azure [5], the supercomputer-based

[6] or the Linux cluster-based [7] virtual screening pipelines.

However, there is still a need for more complex environments

that enable scientists to access a wide range of computing,

data and network resources for the further analysis of docking

results. Such environments should support complex scenarios

where intelligent support can be provided for the more

efficient execution of large-scale molecular docking

experiments.

This paper investigates such scenarios and proposes a generic

conceptual framework to support the analysis of molecular

docking results, and a related methodology that uses regular

input from scientists when developing complex science-

gateway-based environments for the storage, analysis and

reuse of molecular docking results. It has been developed

considering biomedical scientists’ requirements collected from

semi-structured interviews and a literature review of 14 related

projects including those mentioned in the paragraph above.

From this generic framework, specific architectures can be

derived supporting various molecular-docking-related

analytical scenarios as shown in Section II. Additionally, a

software development methodology that supports creating

docking experiments based on this framework is explained in

Section III. Finally, a prototype implementation of such

system is presented in Section IV.

II. GENERIC FRAMEWORK FOR THE ANALYSIS OF MOLECULAR

DOCKING RESULTS

The aim of our research was to identify potential similarities in
the work of biomedical scientists working with molecular
docking experiments, and to investigate whether a generic
framework for such application scenarios can be defined. The
assumption was that based on this generic framework more
specific science gateway based environments can be
implemented supporting different application scenarios. As
these scenarios have large similarity, deriving and
implementing such specific environments can be speeded up
significantly. In other words, the aim was to formalise and

This work was partially supported by the COLA Cloud Orchestration at the
level of Applications project, Project No. 731574.

10
th

 International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

speed up the development of specific science gateway
environments supporting various molecular docking scenarios.

In order to identify typical user requirements, several
interviews with five scientists from different backgrounds and
with various degrees of experience with molecular docking
simulations were conducted. Since the number of the
interviewees was small and the population localised in London,
this is a not a representative sample of the world-wide
population of scientists that use molecular docking simulations.
However, considering its diversity, the sample was useful in
producing several conclusions. The interviews aimed at
identifying requirements of the scientists when performing
molecular docking experiments and specifying scenarios that
are not supported by currently available science gateways for
molecular docking. These scenarios typically represent
software systems that make a decision based on the molecular
docking results, mimicking the steps that a scientist needs to
take after obtaining the results. Some representative and
identified scenarios are listed below:

1. Suggest a ligand-protein pair that should be used in the

next molecular docking, based on protein similarity and

previous results

2. Filter docking results which are suitable for wet

laboratory experiments, based on ligand properties

3. Find off-target drugs, based on deducing if the estimated

binding is at an active site

4. Enable verification of the docking methodology and

learning from previous docking for novice users

5. Compare results from different molecular docking tools

Based on the conceptual similarities of these scenarios and an

extended review of literature, a generic framework has been

designed. The design focuses on the similar elements in the

scenarios and includes the following components (see Figure

1):

Molecular Docking Environment (MDE): All scenarios

include an environment where the molecular docking

simulation is executed. It could be as simple as running a

single simulation from the command line on a local computer,

to more complex such as executing a virtual screening

experiment on a DCI. This environment includes the software

tool used for the docking itself, and may also include

additional elements to connect to a DCI or to provide a high

level user interface.

Molecular Docking Results Repository (MDRR): After the

execution of the molecular docking, the results need to be

stored as previous molecular docking results are needed by

various scenarios. The repository should also store

information about the final decision made by the whole

simulation environment.

Additional Tool (AT): The results which have been stored in

the MDRR are then processed by an AT. This is a generic

element that describes a tool which takes one or more

molecular docking results as input and conducts a calculation.

ATs can refer back to other molecular docking results stored

in the MDRR, communicate with other ATs, or refer to data

stored in an Additional Data Source.

Additional Data Source (ADS): It contains data that is

relevant for the final decision and usually is an external

database.

Decision Maker (DM): All the information processed from

the various ATs is passed to a DM. This element groups and

analyses the calculations performed by the ATs in order to

make a decision.

The numbers in Figure 1 present the order or flow of events

through the different elements:

1. A scientist uses an MDE to conduct the molecular

docking and the result is uploaded to the MDRR.

2. The MDRR sends the results to one or more ATs.

3. An AT may communicate with one or more other ATs.

4. An AT may look up data stored in the ADS.

5. An AT may require additional previous molecular

docking results as input for its calculation.

6. An AT would provide its calculation results to the DM.

7. The MDRR may use data from the ADS directly.

8. Previous results from the MDRR may be used by the DM

9. The DM may use data from the ADS directly.

10. Once the analysis is complete and the decision is made, it

can be passed back to the MDRR.

11. Finally, the decision is passed to the MDE to visualise it.

Figure 1 – Basic diagram of the Generic Framework

From this generic framework each specific scenario

introduced earlier, and also the ones covered in the literature

review can be derived. For illustration, a basic architecture

diagram for the first scenario is shown in Figure 2. Similar

figures for each scenario have been designed and analysed

demonstrating that the framework is generic enough to support

at least the five identified scenarios and the 14 related

solutions covered in the literature. However, these figures are

not presented here due to limitations in length of the paper.

10
th

 International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

In Scenario 1 (Figure 2) the framework would analyse

previous molecular docking results and look for good docking

results that have used a receptor similar to the currently used

receptor. Based on this, the system suggests a new protein-

ligand pair that would be an interesting candidate for docking.

Two key issues here are the definitions of good docking result

or similar receptor.

In Figure 2 the building blocks of the Generic Framework

have been replaced with concrete elements supporting this

particular scenario. One of the advantages of this modular

design is that these building blocks can be easily replaced with

other elements if necessary. This way multiple existing tools

can be integrated into the scenario design and evaluated,

requiring only the implementation of components that are not

currently available. Mapping of the generic framework for

this particular scenario in the presented example is as follows:

The MDE is an extended version of the popular Racoon2 [8]

desktop application, a virtual screening environment. The WS-

PGRADE/gUSE science gateway framework was integrated

with Raccoon2 to support large-scale experiments on

heterogeneous cloud computing resources, as it was presented

in [9]. The MDRR is a custom-made repository based on a

MongoDB database. Three ATs are utilised in this scenario.

The structural alignment tool DeepAlign [10] is used to

calculate similarities between receptors. A custom-made AT is

used to assess whether the structural alignment result means

that the two receptors are similar, while another custom-made

AT is required to assess a docking result and categorise it as

good. Finally, a custom-made DM is needed to suggest which

protein-ligand pair to dock next.

Figure 2 – Basic diagram of scenario to suggest a ligand-

protein pair for next docking (Scenario 1)

The flow of events is shown in Figure 2. Raccoon2 executes

the molecular docking and the results are uploaded to the

MDRR (1). The MDRR sends the receptor pairs to DeepAlign

(2). The results of DeepAlign are assessed by the custom-

made AT (3) that sends the results to the MDRR (4) and the

DM (5). All past docking results of similar receptors are sent

to be assessed (6) and the good results are sent to the DM. The

DM combines the results from the ATs, and suggests which

protein-ligand pair to dock as a next step. This suggestion is

returned to the MDRR and stored as meta-data (8). Finally, it

is presented to the user (9).

Based on the basic generic architecture of Figure 1, a more

detailed framework has been developed that consist of a

diagram, a textual description of elements and interfaces, and

a formal description using Z-notation [11]. The aim of this

framework is to describe the generic architecture and the way

how the specific scenarios are derived from this in a

formalised way. Based on this formalism we aim to support

application developers to make specific decisions when

evaluating and implementing these scenarios. The designed

framework is independent from the actual implementation, or

indeed, the programming language of choice.

The diagram representing the framework in Figure 3 is a

generic model, showing all generic elements and all possible

interfaces between them. It is based on the UML Component

Diagram in the sense that the elements are drawn as

components and the interfaces between them are the typical

provided and required interface connections. Additionally, it

features arrows pointing towards the direction of the flow of

data in a particular interface.

Figure 3 – Generic Framework diagram

The framework features 13 interface types between its

elements. As next step, each of these interfaces have been

identified and described. For example:

1. User → MDE, provided by the MDE: allows the user to

upload the correct input for the molecular docking or

additional user input values needed by another element.

2. MDE → user, provided by the MDE: displays the result

of the molecular docking to the user, along with other

results from the MDRR.

Following this, each element and each interface have been

described formally using Z-notation. As the set of descriptions

is too extensive for this paper, only a representative example is

10
th

 International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

presented here, describing the MDE and its interfaces (see

Figures 4 and 5).

The docking process expressed by the MDE needs a ligand,

receptor, and optionally configuration (config) files as input,

and provides a docking result file as output. When there is no

config file then the dockingWithoutConfig() function will

generate the docking result, while when there is a config file

then the dockingWithConfig() function will do it. Furthermore,

the Z-notation for dockingWithoutConfig() describes that for

every ligand × receptor pair, as long as the ligand and receptor

are not empty files, there exists a docking result. Similarly,

dockingWithConfig() defines that for each ligand and for each

receptor there exists a configuration file that can be used to

produce a docking result. The corresponding Z-notation

descriptions can be seen in Figure 4.

Figure 4 – MDE Described in Z-notation

Figure 5 models the MDE and its interfaces for the three types

of input files. This schema explains that the ligand, receptor,

and config files are input, while the docking results as well as

data about the date are produced as output. The lower part of

Figure 5 describes the interface that enables users to view

results, as long as they are not non-existent.

Figure 5 – Interfaces of the MDE described with Z-notation

Based on the above detailed description of the generic

framework, a detailed architecture diagram of each scenario

can now be derived followed by the textual and formal

descriptions of these scenarios. Figure 6 shows part of the

detailed architecture diagram of Scenario 1, representing the

extended Raccoon2 as an MDE, and corresponding to that part

of the basic diagram of Figure 2. In Figure 7 the formal

description of this module is shown. (Please note that full

diagram and description are not provided due to limitation of

length, but has been produced.)

Figure 6 – Extract of the detailed architecture diagram of

Scenario 1

Figure 7 – Extract of the formal description of Scenario 1

III. METHODOLOGY FOR DEVELOPING ENVIRONMENTS FOR THE

ANALYSIS OF MOLECULAR DOCKING RESULTS

This section describes the methodology for developing

complex environments that reuse and analyse molecular

docking results. This methodology complements the

framework described in the previous section by explaining

how this framework can be used during development. It

clearly states the roles that are required and the specific sub-

10
th

 International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

projects for which they need to collaborate. The methodology

is based on the seven principles identified by Cockburn [12].

Based on Cockburn’s general recommendations, a role-

deliverable-milestone diagram has been created to represent

the methodology (Figure 8). This diagram illustrates that the

modeller, biomedical scientist and bioinformatician should

collaborate when creating the diagram and textual description

of the scenario. Furthermore, the modeller should collaborate

with the bioinformatician and the software developer when

creating the formal description. Key components of this

diagram, extensions to Cockburn's original model, are the

dotted lines which show that the process is agile. For instance,

in the top section where the life scientist works on the textual

description and go from milestone M4 to M5, there is a dotted

line showing that (s)he could revisit and alter the diagram if

necessary. The same logic is used for the agile development of

the final system code. Figure 8 presents a high level role-

deliverable-milestone diagram where the coding section has an

asterisk (*) indicating that a similar but more detailed

description of this section (not presented in this paper) has

also been developed in the form of a lower-level diagram.

Figure 8 – Role-deliverable-milestone diagram of the

developed methodology

IV. IMPLEMENTATION OF THE SELECTED SCENARIO

In order to demonstrate how the developed framework and

methodology support implementing molecular docking

science gateways, an implementation of Scenario 1

(https://github.com/damjanmk/mdrr-scenarios) is presented

here. All components in the implementation are accessible via

a basic RESTful API. We used Bottle [13], a minimalist web-

framework which enables easy server setup. The MDRR and

the DM have been deployed on Server 1, the DeepAlign AT

and the AT to assess the DeepAlign results on Server 2, while

the docking assessment AT on Server 3 (Figure 9). In order to

insert results from Raccoon2, the MDRR on Server 1 expects

zip files as POST parameters. It parses them and inserts

information into MongoDB, which includes the collections

receptors, ligands, results, and analysis. Another request is

sent to continue with Scenario 1 where the MDRR selects all

receptors from the database, parses and compresses them.

Next, these are sent to Server 2 along with the target receptor

(the receptor used in the original simulation), and a threshold

value (input by the user in Raccoon2). The first AT on Server

2 executes DeepAlign to find similarities between the target

receptor, and each different receptor it received. It then calls

the AT: AssessDeepAlign, located on the same server, in order

to select the similar receptors. In the simplest form of this AT,

it assesses the DeepAlign results by comparing the value of

DeepScore to a user input threshold. A list of these similar

receptors is returned to Server 1 where the analysis collection

is updated to keep track of the events so far. Then, the MDRR

selects past docking results which have used one of the similar

receptors, and compresses them. It sends a request to Server 3,

including a threshold value of the AutoDock Vina affinity,

entered by the user within Raccoon2.

Figure 9 – Architecture of implementation of Scenario 1

The AT on Server 3 searches through the Vina results for a

result that has at least one model where the Vina affinity is

less than the threshold, and calls this a good docking result (a

Vina docking result can contain for example 10 models). It

returns a list of good docking results to Server 1.

Upon receiving this, Server 1 inserts a document in the

analysis collection before initialising the DM and sending it

the similar receptors and the good results. The DM combines

these two lists into one and sorts it based firstly on the

DeepScore value, then on the affinity. This enables users to

view an ordered list of results that contain ligands which are

suggested for a subsequent docking.

A. Designing the MongoDB database

At the core of this custom-made MDRR is a MongoDB

database. There were several reasons why we chose this type

of non-relational database:

1. MongoDB’s schеma-less design is ideal because a single

collection can be used for: input files in different formats,

output files of any of the over 50 docking tools [14], or

meta-data about different ATs.

10
th

 International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

2. MongoDB scales very well for large amounts of data,

provided it is well designed and features such as sharding

and indexing are utilised.

3. MongoDB is well-suited for prototyping because it is

easier to change what is stored during development.

In this prototype implementation we have considered .pdbqt

molecules and AutoDock Vina results (as used by Raccoon2).

The ligands collection contains molecular properties

calculated using the OpenBabel and PyBel [15] Python

modules such as canonical_SMILES, logP, mol_weight, etc.

Biomedical scientists at the University of Westminster were

consulted when deciding which properties to store. Both the

ligands and receptors collections include the full parsed 3D

structure from the .pdbqt files. Each line of the .pdbqt file is

stored as an element of an array. The structure of each

molecule should be unique. However, the structure itself

cannot be uniquely indexed due to size limitations, so we have

introduced structure_id - an MD5 hash of the structure. This

uniquely describes the structure and allows for a MongoDB

index to be created.

The results collection contains references to the ligand and

receptor used, specific properties extracted from the result

files (e.g. CPUs, random_seed), a list of the result models,

each model containing affinity, rmsd_from_best, and the

parsed model segment of the Vina result. The parsing process

is simple – it stores all lines between MODEL and ENDMDL

as elements of an array.

B. Use of the framework and methodology

The framework was followed as described in Section II. A list

of documented meetings and events is not presented with this

paper, but serves as supporting evidence of following the

methodology. The required roles were taken up by different

researchers at the University of Westminster (with some

doubling as multiple roles). The presented implementation

proves that following the methodology such molecular

docking framework can be implemented. Work is currently

ongoing to quantify advantages when compared to more ad-

hoc implementation.

C. Limitations of the prototype implementation

Due to the Global Interpreter Lock (GIL), Python is not the

optimal language for multi-threading without additional

optimisations. Furthermore, Bottle uses a non-threading type

of servers by default, so using a different specialised server

would improve performance for simultaneous users. The

number of items in the collections may become too big to be

included in one zip file which is used to transfer data from

servers and sending large files through the network could be a

bottleneck. Finally, the current DM joins and sorts two lists

without specific performance optimisations.

V. CONCLUSION AND FUTURE WORK

This paper presented a generic framework and a corresponding
methodology to implement complex science-gateway-based

environments for the execution of molecular docking
experiments extended with the intelligent analysis and
utilisation of docking results. The framework incorporates a
diagram, and textual and formal description enabling a modular
design and the replacement and reuse of components. The
methodology involves multiple stakeholders and requires their
collaboration in an agile manner. In order to demonstrate the
usability of the above, a scenario for suggesting a ligand-
protein pair for next docking was also presented.

Future work includes the implementation and detailed
evaluation of multiple scenarios to identify, and where possible
quantify, the advantages provided by the framework and
methodology. In order to achieve this, the implemented
solutions are compared to state-of-the-art methods and
environments to demonstrate the added value of our research.

REFERENCES

[1] P. Kacsuk et al., “WS-PGRADE/gUSE generic DCI gateway framework
for a large variety of user communities” J. Grid Comput., vol. 10, no. 4,
pp. 601-630, Dec, 2012.

[2] J. Krüger et al., “The MoSGrid Science Gateway – A Complete Solution
for Molecular Simulations”, J. Chem. Theory Comput., vol. 10, no 6, pp.
2232–2245, May, 2014.

[3] Z. Farkas et al., “AutoDock gateway for user friendly execution of
molecular docking simulations in cloud systems”, in Cloud Computing
with E-science Applications, Olivier Terzo, Lorenzo Mossucca, Eds.
Boca Raton, FL: CRC Press/Taylor & Francis, 2015, pp 217-236.

[4] M. Jaghoori et al., “A multi-infrastructure gateway for virtual drug
screening”, Concurr. Comp. Pract. E., vol. 27, no. 16, pp. 4478–4490,
Nov, 2015.

[5] T. Kiss et al., “Large-scale virtual screening experiments on Windows
Azure-based cloud resources”, Concurr. Comp. Pract. E., vol. 26, no 10,
pp. 1760-1770, Jul, 2014.

[6] X. Zhang, S. E. Wong, and F. C. Lightstone, “Toward fully automated
high performance computing drug discovery: a massively parallel virtual
screening pipeline for docking and molecular mechanics/generalized
born surface area rescoring to improve enrichment”, J. Chem. Inf.
Model., vol. 54, no 1, pp. 324-337, 2014.

[7] P. D’Ursi et al., “Virtual screening pipeline and ligand modelling for
H5N1 neuraminidase”, Biochem. Biophys. Res. Commun., vol. 383, no.
4, pp. 445-449, Jun, 2009.

[8] S. Forli et al., “Computational protein-ligand docking and virtual drug
screening with the AutoDock suite”. Nat. Protoc., vol. 11, no. 5, pp.
905-919, Apr. 2016.

[9] D. Temelkovski, T. Kiss, and G. Terstyanszky, “Molecular docking with
Raccoon2 on clouds: extending desktop applications with cloud
computing”, in 9th International Workshop on Science Gateways,
Poznań, Poland, 2017.

[10] S. Wang, J. Ma, J. Peng, and J. Xu, “Protein structure alignment beyond
spatial proximity”, Sci Rep vol. 3, no. 1448, Mar, 2013.

[11] J. M. Spivey, The Z Notation - A Reference Manual, 2nd ed. Oxford, UK:
Oriel College, 1998.

[12] A. Cockburn, Agile Software Development: The Cooperative Game, 2nd
ed. Boston, MA: Addison Wesley, 2006.

[13] M. Hellkamp. Bottle: Python Web Framework [Online]. Available:
https://bottlepy.org/docs/dev/. [Accessed: 6 Mar 2018]

[14] Swiss Institute of Bioinformatics. Directory of in-silico Drug Design
tools - Docking [Online]. Available: https://www.click2drug.org
/directory_Docking.html. [Accessed: 6 Mar 2018]

[15] N. M. O'Boyle, C. Morley, and G. R. Hutchison, “Pybel: a Python
wrapper for the OpenBabel cheminformatics toolkit”, Chem. Cent. J.,
vol. 2, no. 5, Mar 2008.

