The Potential of Omega-3 Supplementation to Reduce Muscle Inflammation after Muscle-Damaging Exercise

Yvoni Kyriakidou¹, Rebeca C. Kantorovich¹, Prof. Jimmy Bell¹, Dr Stefania Morteris² and Dr Alberto Dolci¹

Abstract
Muscle Damaging exercise (EIMD) induces inflammation and relates to strength loss, muscle-soreness and impaired recovery. Overall, this means a performance impairment which might be relevant for those who engage in competitions or strenuous physical activities. It remains unclear whether Omega-3 fatty acids (O-3) supplementation blunts the exercise-induced inflammation associated with EIMD and therefore prevents performance impairment.

PURPOSE: Following a three-week supplementation with O-3, indirect markers of muscle damage were examined after a bout of EIMD to determine if supplementation had any beneficial effect in maintaining leg-strength levels.

METHODS: Eight healthy, recreationally active caucasian males (28.3 ± 3.4 yr) were randomly allocated to a supplementation group (SUP, n = 4) to receive 2.85g/day O-3 supplementation or a control group (CON, n = 4) for three weeks. Following supplementation, participants performed a bout of EIMD, which consisted of performing 10 sets of 15 repetitions of leg extension at a self-assessed intensity of 7/10 on the Rate of Perceived Exertion scale. Creatine Kinase (CK) from venous blood samples, isometric right-leg strength, squat-jump test and perceived soreness were determined, as indirect markers of muscle-damage at Baseline, immediately after EIMD (POST) and 48 hours after EIMD to coincide with the delayed muscle inflammatory response.

RESULTS: No statistically significant differences were found between Baseline and POST. There was a trend for smaller increase of CK levels (pre vs 48h post EIMD) on the SUP group (38.8% increase) compared with the CON group (105.6% increase; P = 0.051). There was no significant effect (baseline vs 48h post EIMD) on muscle strength between SUP and CON group (P > 0.05), however, CON showed a larger decrease in strength compared to SUP (6.3% vs SUP). No differences in jump height were found between SUP and CON (P > 0.05). There was no significant difference in muscle soreness at 48h post EIMD between SUP and CON group (P = 0.171).

CONCLUSION: Three weeks of O-3 supplementation might decrease exercise-induced muscle inflammation after eccentric exercise. The lack of statistical significance may be added to the limitations of the study design and sample size. Supplementation with O-3 can be beneficial in athletes undergoing heavy exercise regimes and in sedentary individuals re-starting physical activity, decreasing the exercise related muscle inflammation. The encouraging results from this pilot study have led to designing further work related to this topic.

Introduction
• Muscle inflammation which follows Exercise-Induced Muscle Damage (EIMD) relates to strength loss, muscle-soreness and impaired recovery [4].
• This affects athletes, those who engage in vigorous physical activity [2] and elderly people who suffer of chronic inflammation [3].
• It remains unclear whether Omega-3 fatty acids (O-3) supplementation blunts the exercise-induced inflammation associated with EIMD. Decreased levels of inflammation can result in improved performance and reduced recovery periods.

Aim
The aim is to determine if O-3 supplementation can maintain performance and improve recovery time by reducing muscle inflammation following exercise as assessed by plasmatic and indirect markers.

Objectives
• Assess the effect of 2.85g of O-3 supplementation in muscle inflammation in active individuals
• Design nutrition strategy to minimize post- exercise muscle soreness and attenuate force loss

Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>SUP, n = 4</th>
<th>CON, n = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 males aged 18-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE EIMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIMD (10 sets of 15 repetitions of leg extension)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatine Kinase (CK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum right-leg press strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squat-jump test & perceived leg muscle soreness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow up assessment</td>
<td>3 weeks</td>
<td>3 weeks</td>
</tr>
<tr>
<td>POST EIMD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Figure 1. Circulating plasma CK measured at baseline and 48h after an eccentric muscle-damaging protocol in the SUP group (38.8% increase) and in the CON group (105.6% increase; P=0.051). Individual responses are shown, with mean value presented as a line.

Figure 2. Perceived muscle soreness measured at baseline and 48h after an eccentric muscle-damaging protocol in the SUP group (5.7 ± 1.76) and in the CON group (4.5 ± 1.56; P=0.171). Individual responses are shown, with mean value presented as a line.

Figure 3. BLM right-leg press assessed at baseline and 48h after an eccentric muscle-damaging protocol. SUP showed a larger increase in strength compared to CON (6.3% vs SUP). No differences were found between SUP and CON (P > 0.05). No differences in jump height were found between SUP and CON (P = 0.171).

Figure 4. Squat jump test performed at baseline and 48h after an eccentric muscle-damaging protocol. No differences were found between SUP and CON (P > 0.05). Supplementation with O-3 can be beneficial in athletes undergoing heavy exercise regimes and in sedentary individuals re-starting physical activity, decreasing the exercise related muscle inflammation.

Future work
• A bigger sample size may be required.
• Other inflammatory markers, such as IL-4, IL-6 and IL-10 could be of interest.
• Additional measurements should be done at 24h, 48h and 72h post EIMD.

References:

Contact Information
Yvoni Kyriakidou
Doctoral Researcher
University of Westminster
115 New Cavendish Street,
London W1W 6LW
E: w16993013@my.westminster.ac.uk

1st June 2017, Denver, Colorado USA