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Context:  
Insulin resistance in skeletal muscle contributes to whole body hyperglycaemia and the 
secondary complications associated with type 2 diabetes.  Inositol hexakisphosphate kinase-1 
(IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type.  
Objective:  
Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control 
in insulin-resistant hyperinsulimic individuals. Muscle IP6K1 was also compared following 
two different exercise trials.  
Methods:  
Nine pre-diabetic [HbA1c; 6.1 (0.2) %)] were recruited to take part in a resting control, a 
continuous exercise (90% of lactate threshold) and a high-intensity exercise trial (6 x 30 sec 
sprints). Muscle biopsies were drawn pre- and post each 60-minute trial. A labeled 
([6,62H2]glucose) intravenous glucose tolerance test (IVGTT) was performed immediately 
after the second muscle sample.  
Results:  
Fasting muscle IP6K1 content did not correlate with SI

2* (P = 0.961). High-intensity exercise 
reduced IP6K1 muscle protein and mRNA expression (P = 0.001). There was no effect on 
protein IP6K1 content following continuous exercise. Akt308 phosphorylation of was 
significantly greater following high-intensity exercise. Intermittent exercise reduced hepatic 
glucose production (HGP) following the same trial. The same intervention also improved SI

2* 
and this was significantly greater compared to the continuous exercise improvements. Our in 
vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin 
signaling in C2C12 myotubes. 
Conclusions: 
The in vivo and in vitro approaches used in the current study suggest that a decrease in 
muscle IP6K1 may be linked to whole body improvements in SI

2*. In addition, high-intensity 
exercise reduces HPG in insulin-resistant individuals.  

This work investigated the role IP6K1 plays in causing insulin resistance (IR) and found that high-
intensity exercise reduces IP6K1, improves IR &amp; hepatic glucose production in hyperinsulinemic 
humans. 

Background  

Type 2 diabetes (T2Ds) is a multifactorial metabolic disease characterized by defects in 
insulin sensitivity (SI), glucose effectiveness (SG), β-cell function and endogenous glucose 
production (EGP) (1).  Although not conclusive, insulin resistance seems to occur due to a 
decrease in the insulin receptor substrate’s (IRS) ability to activate downstream insulin 
signaling kinases (2). A reduction in the serine/threonine protein kinase Akt phosphorylation 
is a known characteristic of insulin resistance and type 2 diabetes (3) and is an important 
protein in the insulin-signaling cascade.  

Insulin-stimulated glucose uptake involves insulin receptor autophosphorylation, tyrosine 
phosphorylation of insulin receptor substrate (IRS), and the subsequent activation of 
phosphatidylinositol (PI) 3-kinase. (PI3K). The downstream target of PI3K, Akt is then 
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activated via the phosphorylation of Thr308 and Ser473 by phosphatidylinositol 3,4,5-
triphosphate-dependent protein kinase (PDK)-1 & PDK-2, respectively (4). Akt contains an 
N-terminal pleckstrin homology (PH) domain, allowing for the binding of 
phosphatidylinositol-3,4,5-triphosphate (PIP3), and the subsequent membrane translocation 
& subsequent activation of Akt (5). Upon activation, Akt is then responsible for the 
subsequent phosphorylation of AS160, GLUT4 translocation, glucose uptake (6) 
phosphorylation and inhibition of GSK3β & glycogen synthesis (7, 8); making Akt a 
potential target in the treatment of type 2 diabetes.  

Diphosphoinositol polyphosphates, also known as inositol pyrophosphates, are a family 
of water-soluble inositol phosphates (9). The inositol hexakisphosphate (IP6) kinase 1 
(IP6K1) produces a pyrophosphate group at the 5th position of IP6 to generate a further 
inositol pyrophosphate, diphosphoinositol pentakisphosphate (5-PP-1(1,2,3,4,6)IP5 or IP7) 
(10). Production of IP7 results in its binding to the PH domain of Akt/PKB, preventing its 
translocation to the cell membrane and reducing its subsequent phosphorylation by PDK1. 
The evidence for this comes from the finding that IP7 fails to prevent PDK1 phosphorylation 
of AktThr308 lacking a PH domain (11). The consequence of this is a potential reduction in 
insulin (Akt)-stimulated glucose uptake in muscle and adipose tissue (12).  (11) have shown 
that IP6K1 KO mice demonstrate augmented Akt activity and increased glucose transport 
rates in skeletal muscle. Key to the current work, recent in vivo data suggests a novel role of 
IP6K1 in insulin resistance with IP6K1 KO mice displaying normal glycaemic control despite 
low circulating plasma insulin (13). In addition, the pharmacological inhibition of IP6K1 
increases Akt signaling in mouse embryonic fibroblasts (MEF), while suppressing IP7 
synthesis (14). The increased availability of IP6K1 and its product IP7, are thought to be 
stimulated by insulin. The competition of IP7 with PIP3 for binding at PH domain of Akt 
may represent a negative feedback mechanism whereby hyperinsulinaemia eventually 
decreases Akt activity, indirectly shown through the presence of decreased insulin action 
despite augmented insulin secretion in pre-diabetic states  (15) and an increase in IP6K1 
activity and reduced p-Akt in rodents treated with insulin (11).  

 However, research suggesting a role of IP6K1 inhibition as a future target of insulin 
resistance has been limited to in vitro and animal work. The current study aimed to tackle this 
by measuring IP6K1 muscle content in hyperinsulinaemic insulin resistant humans. 

Insulin-stimulated glucose uptake increases from 2 to 72 hours post exercise (16, 17, 18) 
with the amount of muscle mass an important determinant to this response, thus exercise 
involving a larger muscle mass is preferable. Higher intensity exercise recruits a larger 
proportion of muscle as well as a greater number of type 2 glycolytic muscle fibres compared 
with moderate-intensity activity (19), which may offer a greater sink for glucose disposal. 
Recently a form of high-intensity interval training (HIIT) has been shown to improve SI (20, 
21, 22). However, data on the other metabolic defects associated with type 2 diabetes, 
including hepatic glucose production, β-cell function and glucose effectiveness, remains 
sparse. Here we assessed the effects of high-intensity exercise on two-compartment models 
of insulin sensitivity, glucose effectiveness and hepatic glucose production.  

 Therefore, the aims of this study were to firstly characterise this novel insulin 
signalling pathway (Akt-IP6K1) in pre-diabetic humans for the first time.  Secondly, using a 
stimulus known to improve insulin sensitivity (muscle contraction), we aimed to examine if 
IP6K1 could be manipulated following muscle contraction in glucose intolerant individuals 
and to evaluate the effects of different types of exercise stimuli on IP6K1 muscle content. 
The C2C12 skeletal muscle cell line was also used to investigate the role of N2-(m-
Trifluorobenzyl), N6-(p-nitrobenzyl)purine (TNP), treatment on Akt-AS160 signalling.  

Participants and ethics  
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In vivo study - nine sedentary glucose intolerant individuals (7 male & 2 female) were 
recruited for this investigation. Subjects’ clinical characteristics were age, 47 (3) yr; BMI, 
32.0 (2.4); Body Fat, 39.0 (4.4); HbA1c 6.1 (0.2); HOMAIR 3.3 (0.8). Each participant was 
informed of the study purpose, experimental procedures, and all of its potential risks prior to 
providing written  consent to participate.  Ethical approval was granted by the local 
University Ethics Committee (Ref: 11_12_23_) and conformed to Declaration of Helsinki 
for the use of human participants in research. Exclusion criteria included diabetic-related 
complications (i.e. neuropathy, peripheral vascular and cardiovascular disease), current 
smokers or treatment with insulin or any other pharmaceutical intervention. Glycated 
haemoglobin (HbA1c) values of >5.7% and <6.4% were used to define individuals in a pre-
diabetic state (23).   

Experimental protocol 

Participants were required to attend our laboratory on four occasions each separated by 7-14 
days. During a preliminary visit percentage of body fat was estimated using Bodpod as 
previously described (24). Venous blood samples were drawn for the determination of HbA1c 
(Axis-Shields, U.K.). Fasting blood glucose and plasma insulin concentrations were 
measured for the determination of homeostasis model of insulin resistance [HOMAIR; fasting 
insulin (µU/ml) x fasting glucose (mmol/l) / 22.5] and HOMA of β-cell function [HOMAβ-
Cell; 20 x fasting insulin (µU/ml) / fasting glucose – 3.5 (mmol/l)] (25). During this 
preliminary visit, individual lactate threshold (LT) values were obtained as previously 
described (26) using a cycle ergometer (Lode Corival).  

On experimental days, volunteers reported to the laboratory at ~08:30 having fasted for 
12 hr, abstained from caffeine and alcohol for 24 hr, and exhaustive exercise for 72 hr. An 
18-gauge cannula was positioned into a dorsal hand vein to allow for frequent sampling of 
arterialised blood, using a thermoregulated hot box (~60ºC) (27). A second 18-gauge cannula 
was placed into a prominent contralateral antecubital vein for administration of labelled 
glucose. In a randomised fashion, subjects completed 1) a resting control trial (Rest) of 60 
minutes of passive sitting, 2) continuous exercise at an intensity equal to 90% LT for 60 
minutes (Continuous) (cycle ergometer, Lode Corival) and 3) high-intensity intermittent 
exercise (6 x 30 sec Wingate’s) (Intermittent) (Monark 894 E, Weight Ergometer). The 30 
sec sprints were interspersed with 9.5 minutes of passive recovery in the intermittent trial. 
Each trial lasted 60 minutes in duration. Muscle biopsies were drawn under local anesthesia 
from vastus lateralis using the conchotome method (28) at baseline (0 min) and immediately 
post (60 min) trials with volunteers in a supine position. Immediately after the post-treatment 
muscle biopsy, a 4 hour labelled intravenous glucose tolerance test (IVGTT) was 
administered (28.4 mg/kg of [6,62H2]glucose & ∼250 mg/kg of unlabeled glucose), prepared 
under sterile conditions. Thereafter, frequent arterialized (∼5 mL) blood samples were drawn 
over the ensuing 240 min, as previously described (26). The concentration of circulating 
glucose was measured in whole blood using a YSI 2300 (STAT; Yellow Springs, USA), 
whilst spun separated (4 °C, 10 minutes, 5 000 rpm) plasma was frozen and later analyzed for 
plasma insulin, endogenous glucose and isotope enriched [6,62H2]glucose concentrations. 

Blood Analysis  

Glucose enriched plasma samples were deproteinized in ethanol (99%) with the resulting 
supernatants centrifuged to dryness.   Hydroxylamine hydrochloride (100 µl, 0.18 M 
pyridine) was then added before a 60 minutes incubation at 70 °C. After which, 
Bis(trimethyl)trifluoroacetamide: 1% trimethyl- chorosilane (TMCS; 99%) (Sigma-Aldrich, 
Exeter, UK) before a further incubation (45 min at 70 °C). Samples were then analysed for 
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glucose derivatives of 319 (unlabele glucose; trace) and 321 ([6,62H2]glucose; tracer) by 
GC/MS.  Endogenous glucose concentration was measured in whole blood (YSI 2300; 
STAT; Yellow Springs, USA) and plasma insulin using a commercially available ELISA 
(DRG diagnostics, UK).  

Plasma insulin, endogenous glucose concentrations and [6,62H2]glucose-enriched values 
were used to model the metabolic indices; insulin sensitivity (SI

2*), glucose effectiveness 
(SG

2*), hepatic glucose production (HGP), acute insulin response to glucose (AIRg) and 
disposition index (DI = SI

2*x AIRg), as described previously (29, 30) (SAAMII Institute, 
Seattle, WA). SI

2* explains the effects of insulin on glucose disposal rates while SG
2* 

quantifies the effects of glucose to cause its own transport via mass action at basal insulin 
concentrations.  

Muscle Analysis  

Immediately post collection, muscle samples were washed in ice-cold saline, with visible fat 
removed before being frozen in liquid nitrogen and transferred to -80 °C until analysis. 
Muscle tissue homogenates were used for Western Blot Protein analysis. Protein content of 
the homogenates was quantified using Lowry’s method (Bio-Rad DC protein assay) with 20 
ug of total protein separated using 7.5% precast polyacrylamide gels before being transferred 
using a semi-dry method to nitrocellulose membranes (Bio-Rad).   

Immunoblotting  

Membranes were blocked in 5 % BSA (1 hour), and polyclonal antibodies pAkt308, 
pAkt473, total Akt, AS160, pAS160 on Thr642 (Cell Signalling) and IP6K1 (Abcam) 
incubated overnight at 1:1,000 in 5 % BSA at 4°C. Membranes were then washed and 
incubated with anti-rabbit secondary antibody (Cell Signalling; 1:10,000) in 0.5 – 5 % BSA. 
Membranes were quantified using Odyssey® Fc Imaging System (LI-COR). Blots were 
normalized to total protein  (31) as this method shows greater sensitivity than ‘house-
keeping’ proteins. 

Real-time quantitative PCR 

Total RNA from muscle biopsy samples (20 mg) was extracted using the RNeasy Plus Mini 
Kit (Qiagen, Hilden, Germany) following the standard manufacturers protocol. Cell lysates 
were homogenized using Qiashredder spin columns (Qiagen, Hilden, Germany). The 
concentration and purity of extracted RNA were measured at 260 nm by spectrophotometry 
using a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 
Extracted RNA samples were stored at -80 °C. For relative quantification of mRNAs, total 
RNA was reverse transcribed to cDNA using the QuantiTect Reverse Transcription Kit 
(Qiagen, Hilden, Germany) according to the manufacturer's instructions. In brief, up to 1 µg 
RNA was reverse transcribed to cDNA in a final volume of 20 µl using Oligo (dT)15 primers 
(0.5 µg/reaction). Each quantitative real-time PCR reaction mixture (20 µl) contained 1 µl of 
RT product (cDNA transcribed from 1 µg of total RNA) was performed using Rotor-Gene 
SYBR Green PCR Kit (Qiagen, Hilden, Germany) according to the manufacturer's 
instructions. The mixture was initially incubated at 95 °C for 5 min, followed by 40 cycles of 
95 °C for 15 s, 52 °C for 15 s and 72 °C for 30 s. PCR reactions were carried out on a Rotor-
Gene Q (Qiagen, Hilden, Germany) in triplicate. Samples were normalized relative to the 
mRNA level of GAPDH. For each individual, all samples were simultaneously analyzed in 
one assay run. Measurements of the relative distribution of each target gene were performed 
for each individual; a cycle threshold (CT) value was obtained by subtracting GAPDH CT 
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values from respective target CT values. The expression of each target was then evaluated by 
the Rotor-Gene Q Software 2.3 (Qiagen, Hilden, Germany).  

In vitro experiment 

Myoblasts from the muscle-derived mouse C2C12 cell line (ATCC # CRL - 1772) were 
grown in growth media (GM) of Dulbecco’s modified Eagle’s Media (DMEM; Gibco # 
22320), supplemented with 10 % FBS, penicillin (50 U.mL-1) and streptomycin (50 U.mL-1) 
in a standard manner (37 °C, 5 % CO2, 100 % humidity) until ≈ 80% confluent. Cells were 
trypsinized and seeded for experimental conditions in standard 6-well.  To induce 
differentiation into myotubes confluents cells were washed in Dulbecco’s PBS (DPBS) and 
incubated in differentiation media (DM) of DMEM with 2 % equine serum, penicillin (50 
U.mL-1) and streptomycin (50 U.mL-1) for 96 hours with DM changed every 24 hr before 
experimental conditions were applied.  

After 96 hr for myotube formation, cultures were incubated under control, 
hyperglycaemic and hyperinsulinaemic conditions +/- N2-(m-Trifluorobenzyl), N6-(p-
nitrobenzyl)purine (TNP), a pan-IP6K inhibitor. For hyperinsulinaemic treatment, myotubes 
were incubated in 100 nM insulin (Sigma, UK) for 24 hr in serum-free DMEM containing 
5mM glucose (32) with control cells incubated in DMEM containing 5mM glucose for the 
same time period.  For hyperglycaemia, C2C12 cells were treated in serum-free DMEM 
containing 30mM D-glucose for 24hr (33). Each treatment was performed +/- TNP at 10µM 
(34). At the 24 hr point, total protein was extracted. Cells were aspirated and washed on ice 
with ice cold PBS before 400 µL lysis buffer with protease inhibitor (1:100) (Cell Signalling) 
was added. After 20 minutes incubation, cells were scrapped into 1.5ml Eppendorf tubes, 
spun (6 min, 6000 rpm) and supernatant removed and aliquoted for protein quantification 
(Lowry, Bio-Rad DC protein assay) and later analysis of proteins of interest by Western blot 
(described above).  

Statistics 

The area under the curve for both glucose (AUC
Glu

) and insulin (AUCIns) were calculated 

using the trapezoidal rule. Differences over time and between conditions were evaluated by 
two-way repeated measures analysis of variance. Tukey’s post hoc tests were used when 
statistical significance was found. Linear regression analyses were carried out to test for 
significance where appropriate. All statistical tests were carried out using the statistical 
software package SPSS (version 15). Data are expressed as mean (SE). Statistical 
significance was set at the level P < 0.05. 

Results  

Correlation analysis  
IP6K1 has been shown in cell culture and animal models to be implicated in reduced glucose 
control. One of the key aims of his research was to assess if muscle and plasma IP6K1 
correlated with whole body measures of glucose control.  Figure 1A &B show correlation 
analysis between plasma IP6K1 concentration and two-compartment measures of peripheral 
glucose control. This data has been combined with that of previously published work to 
include a range of insulin resistant individuals including type 2 diabetics (26).  Neither SI

2* (r 
= 0.402; P = 0.055) or SG

2* (r = 0.151; P = 0.281) showed significant relationship with 
plasma IP6K1. Baseline measures HbA1c (r = 0.357; P = 0.080), fasting blood glucose (r = 
0.232; P = 0.185), fasting insulin (r = 0.365; P = 0.075), % body fat (r = 0.028; P = 0.457) 
and HOMAβ-Cell (r = 0.006; P = 0.491) were also correlated with plasma IP6K1 with only 
HOMA IR demonstrating a significant relationship (r = 0.429; P = 0.043) with this measure. A 

A
D

V
A

N
C

E
 A

R
T

IC
LE

:
T

H
E

 J
O

U
R

N
A

L 
O

F
 C

LI
N

IC
A

L 
E

N
D

O
C

R
IN

O
LO

G
Y

 &
 M

E
T

A
B

O
LI

S
M

JC
EM

Downloaded from https://academic.oup.com/jcem/advance-article-abstract/doi/10.1210/jc.2017-02019/4781494
by guest
on 03 January 2018



ADVANCE A
RTIC

LE

The Journal of Clinical Endocrinology & Metabolism; Copyright 2017  DOI: 10.1210/jc.2017-02019 
 

 6

full set of correlation a data is displayed in Table 1. No relationship was noted between 
muscle IP6K1 protein content and SI

2* (r = 0.019; P = 0.961). This comparison was for the 
current data set  (Figure 1C) as muscle tissue was not collect in our earlier work (26).  

Exercise Intervention  
Immediately following the labeled intravenous glucose load, AUCGlu was significant lower 
post intermittent (P = 0.008) and continuous (P = 0.016) exercise treatments when compared 
to the resting control trial. No difference was noted for AUCGlu between exercise treatments 
(P = 0.084) (Figure 2D). Despite a trend for being lower post treatment, neither exercise 
condition affected AUCIns (Figure 2E; P = 0.421). Endogenous glucose, labeled glucose and 
insulin concentrations were modeled to determined two-compartment measures of SI

2*, SG
2* 

and HGP. Both exercise conditions demonstrated a significant increase in SI
2* over the 

control trial (P < 0.001). SI
2* was also significantly higher following high-intensity 

intermittent when compared to traditional moderate intensity exercise (Figure 2A; P < 0.01). 
Despite being higher following both exercise conditions, SG

2* was not found to be statistically 
different from resting control (Figure 2B; P = 0.561) 

Skeletal muscle Signaling  
Comparisons between treatments in human skeletal muscle samples were made as fold 
change from fasting control. IP6K1 was significantly lower immediately post intermittent 
exercise compared to fasted samples (P = 0.001) with no difference noted for the same 
comparisons for continuous exercise (P = 0.337; Figure 3A). Phosphorylation of Akt at serine 
308 was elevated for intermittent exercise (P = 0.003) above fasted values, with no difference 
for the same comparison with the continuous treatment (P = 0.175; Figure 3B). There was no 
difference between treatments for pAkt473 (P = 0.200; Figure 3C). The downstream target for 
Akt, AS160 was significantly increased following both intermittent (P = 0.012) and 
continuous exercise (P = 0.041; Figure 3D). Intramuscular IP6K1 mRNA expression 
decreased significantly after both exercise treatments (P < 0.01) with continuous exercise 
lower than the intermittent protocol (P < 0.05). Akt and GLUT4 expression was significantly 
higher following intermittent and continuous exercise when compared to fasting samples (P < 
0.01). PDK1 mRNA expression was significantly greater for the intermittent exercise 
treatment only (P < 0.01).  

Insulin signaling in C2C12 cell  
C2C12 skeletal muscle cell were treated with both insulin and glucose +/- TNP (10 µM) to 
assess the effects of the stated treatment on IP6K1. Insulin treatment increased IP6K1 protein 
content over the control treatment (P = 0.010). Insulin + TNP treatment was not different to 
control (P = 0.647) but was significantly lower compared to the insulin condition (P = 0.008). 
Glucose treatment increased IP6K1 (P = 0.007) which was lowered with the addition of TNP 
(Glu + TNP; P = 0.008). Phosphorylation of Akt at 308 was significantly reduced with 
insulin when compared to the control condition (P = 0.041) and elevated in the insulin + TNP 
over the insulin only treatment (P = 0.030). Twenty-four hours of insulin treatment with and 
without TNP increased p/t Akt473 in the C2C12 skeletal muscle cells (P < 0.05). In addition, 
p/t Akt473 was significantly higher in the insulin only trial when compared with insulin + TNP 
(P < 0.05). The 160 kDa Akt substrate (AS160), one of the last proximal steps in glucose 
transport in skeletal muscle was elevated in both the insulin and insulin + TNP treatments (P 
< 0.05). The same target was significantly reduced with the addition of glucose + TNP to the 
treatment media (Figure 5D; P = 0.039).  

Discussion  

Previous work has shown that IP6K1 KO mice display both normal glycaemic control and 
low circulating plasma insulin (13). In addition, IP6K1 gene deleted mouse embryonic 
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fibroblasts (MEFs) demonstrate increased Akt phosphorylation and glucose transport rates 
(13, 11). While important, these basic and reductionists approaches lack complete 
translational relevance. Here we show that IP6K1 protein content in insulin resistant skeletal 
muscle does not correlate with whole body measures of glucose control. Conversely, exercise 
decreased IP6K1 protein content in human skeletal muscle and that the exercise treatment 
that caused the greatest improvements in SI

2* also caused the greatest decrease in muscle 
IP6K1 content. A supplementary aim of this work was to invesigate IP6K1 roles in insulin 
signalling in skeletal muscle. Our work showed that the chemical inhibition of IP6K1 in vitro 
increased phosphorylation of Akt at both Ser473 and Thr308 in the skeletal muscle C2C12 cell 
line. While insulin increased AS160Thr642, IP6K1 inhibition had no additive effect on this 
important target in insulin-stimulated glucose uptake suggesting that IP6K1 may not interfere 
with AS160 activity despite increasing its upstream activator pAkt.  

The production of IP7, stimulated in part by insulin, is known to compete with PIP3 at the 
PH domain of Akt, inhibiting subsequent translocation and phosphorylation of Akt by PDK1. 
This process may represent a negative feedback mechanism whereby hyperinsulinaemia 
eventually decreases Akt activity (11). Given this notion, it was hypothesied that muscle 
IP6K1 protein content would correlate with two-compartment modules of (SI

2*), yet despite a 
negative relationship, this was not found to be signifcant (r = 0.019; P = 0.961). Interestingly, 
plasma IP6K1 demonstrated the stongest relationship with SI

2*, although not significant 
(r=0.389; P = 0.110). This would suggest that muscle and plasma IP6K1 are not key 
mediators in the development of whole body insulin resistance, despite being seemingly 
important in an in vitro model of insulin resistance. It’s worth noting the relatively small 
sample size in the current work and that this study focused on skeletal muscle in isolation. 
Thus future work should examin the role of IP6K1 in adipose tissue as well as other insulin 
sensitive tissue. In addition to this, a major limition of this data is the assumption that muscle 
protein signalling in the vastus lateralis is relfective of insulin signalling in other musle 
groups and insulin sensitive tissue. Data elsewhere reports that glucose uptake is different for 
different muscle types (35). Our data did however show a significant relationship between 
HOMA IR and plasma IP6K1 with the fomer known to correlate with one compartment 
modules of insulin sensitivity (36) and validated against the euglycaemic-hyperinsulinemic 
clamp technique (37), considered the gold standard assessment of insulin sensitivity and 
secretion (38, 39). Taken together, this suggests that HOMAIR is a useful measure in the 
assessment of glucose control and that circulating IP6K1 may be implicated as one of the 
available predictor of insulin resistance.  

In skeletal muscle, insulin-mediated IRS activation causes the downstream 
phosphorylation of Akt and AS160 to facilitate translocation of GLUT4 proteins to the 
plasma membrane, where they fuse, leading to increased glucose uptake into the cell (40).  
Phosphorylation of AS160Thr642 was also elevated post both exercise conditions suggesting 
that exercise can increase SI

2* and pAS160Thr642 while also decreasing muscle IP6K1. Our 
data does not allow us to speculate on a possible mechanism linking IP6K1 and AS160. Yet it 
is likely that any relief on the inhibitory effects of IP6K1 on Akt (11) would likley result in 
an increase in pAS160Thr642, particually in a post-exercise muscle cellular environment. 
Chemical inhibition of IP6K1 with TNP  in vitro elevated Akt308 and Akt473 phosphorylation 
yet had no additive effect over insulin on pAS160Thr642, suggesting that IP6K1 may play a 
part in Akt activity but this may not be sufficient to change downstream releated targets. 

Contrary to our hypothesis, IP6K1 protein content was not correlated with whole body 
measures of SI

2* or SG
2*. At least from the current data set, it appears that exercise can 

decrease muscle IP6K1 content in the acute period (~1.5 hr) (41) following muscle 
contraction and that the same stimulus improved SI

2*. We note two novel finding within our 
exercise data 1) high-intensity exercise had a greater effect on two-compartment models of 
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insulin sensitivity when compared to the lower intenesity exercise at 90% of lactate threshold 
and 2) high-intensity exercise decreased hepatic glucose production (HGP) in the 4 hours 
following exercise. Continuous moderate-intensity exercise offered clear improvments in SI

2* 
but showed no change in HGP. This data suggests that greater improvements in glucose 
control can be obtained with high-intesnity exercise over more traditional forms in pre-
diabetic individuals. The cellular mechanisms explaining improvments in insulin sensivity in 
response to exercise have been well documented and reviewed elsewhere (42, 43). The 
mechanisms by which muscle contraction influences other insulin sensitive tissue remains a 
key question. Elevated HGP is a major contributing factor to hyperglycemia in type 2 
diabetes (44) owing to hepatic insulin resistance. Increased glucose Ra is a normal and well 
documented response to exercise and that higher intenesity exercise is met with a greater 
glucose Ra over moderate intensity exercise (45, 46, 47). The increase in glucose Ra during 
exercise is a product of increased heaptic AMP, elevated AMPK levels (48), increased 
hepatic glucagon delivery (49) and sensitivity (50). Indeed, increased glucagon and reduced 
insulin (51, 52, 53) are key contributory factors of HGP during exercise. The rise in glucagon 
causes a decrease in hepatic glycogenolysis and gluconeogenesis, while a reduction in insulin 
secretion also causes hepatic glycogenolysis (52). Thus post exercise hepatic Ra is likely to 
be down-regulated following higher-intensity exercise due to a reduction in hepatic insulin 
requirements (54), resynthesis of liver glycogen (55) and an exercise induced increase in 
hepatic AMPK (56) and IRS-2 (57). AMPK inhibits phosphoenolpyruvate carboxykinase and 
glucose-6-phosphatase (58), both of which are key enzymes responsible for reducing 
gluconeogenesis while upregulation of IRS-2 is associated with improved hepatic sensitivity 
to insulin (59). Data shows that post exercise ingestion of 13C-glucose increased hepatic 
glycogen resynthesis by 0.7 mg . kg . min over a 4 hr period in humans (60, 61).  

High-intensity exercise also decreased muscle IP6K1 content while increasing pAktThr308. 
Historical exercise data consistently shows increased Akt expression post exercise due to its 
key role in both protein synthesis (62) and insulin-stimulated glucose uptake (12). Short-term 
TNP treatment increases pAktThr308, pGSKα

Ser21 and pGSKβSer9 in mice (63), suggesting that 
inhibition of IP6K1 has the potential to increase the activity of key proteins in the insulin 
signal cascade. This notion supported by the current study (Figure 5F). The mechanism by 
which high-intensity exercise decreases IP6K1 is currently unexplained. Previous research 
has suggested that increased intercellular Ca2+ levels (64) may interfere with IP6K1-IP7 
signalling (65). Muscle contraction requires the depolarisation of the sarcolemma resulting in 
Ca2+ releases from the muscle sarcoplasmic reticulum. Thus the increase in intracellular Ca2+ 
concentration maybe the link between exercise and reduced IP6K1 levels. Yet IP6 has been 
shown to suppress excitatory neurotransmission in hippocampal neuron by inhibiting the 
presynaptic Syt1–C2B domain  (66). The synaptotagmin 1 (Syt1) is a key Ca2+ sensor 
essential for synaptic membrane fusion. The interaction of IP6K1 and its products on Ca2+ 
actions in skeletal muscle requires further investigation.   

Ghoshal et al. (63) suggested that IP6K1 inhibition in rodents may reduce the inhibitory 
effects of IP7 on both pAkt and energy expenditure, the latter caused in an AMPK dependent 
mechansium. IP6K/5-IP7 inhibits Akt and LKB1-AMPK pathways (67, 68, 69, 70) with both 
pathways known to enhance UCP1 mediated thermogenesis (59, 71, 72, 73, 74). Exercise 
also stimulates AMPK during muscle contraction with elevated pAkt-GSK3 a current picture 
in a post exercise muscle environment. Thus, IP6K1 mediated regulation of AMPK- and Akt-
dependant mechanisms has the potential to up-regulate glucose transport and offer the 
appearance of improved whole body insulin sensitivity. In support of this former point, data 
from our laboratory shows that pAMPKThr172 is increased in C2C12 muscle cells in response 
to insulin and insulin-like growth factor treatment when supplemented with TNP (Figure 5F). 
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AMPK protein content was not determined in human muscle homogenate from the current 
study.  

In conclusion, muscle IP6K1 did not correlate with insulin sensitivity, as measured by the 
labelled IVGTT. However, plasma IP6K1 was related to HOMAIR in hyperinsulimaic pre-
diabetic humans suggesting that global IP6K1 and not muscle bound IP6K1 maybe 
implicated in insulin resistance. High-intensity exercise did however reduce muscle IP6K1 
content and this is met with a significant increase in insulin sensitivity. Here we have shown 
that TNP inhibits IP6K1 in C2C12 myotubes, but this is not accompanied with changes in 
AS160 phosphorylation. Taken together, these data suggest that muscle IP6K1 may play a 
part in insulin resistance but do not provide a complete and whole picture with other 
signalling intermediates likely to be involved.  
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Figure 1. Correlation analysis between plasma IPK61, glucose effectiveness (SG
2*; r = 0.151; 

P = 0.281), insulin sensitivity (SI
2*; r = 0.402; P = 0.055) and homeostasis model of insulin 

resistance (HOMAIR; r = 0.429; P = 0.043). Figure 1A, 1B, 1C include additional data from a 
previously published paper (Mackenzie et al., 2011) and the current data set (n = 17). 
Correlation analysis includes both pre-diabetics and type 2 diabetics. Figure 1D shows 
correlation analysis for muscle IP6K1 protein content (n = 9) with SI

2* from the current data 
only.  

Figure 2. Insulin Sensitivity (SI
2*) (A), glucose effectiveness (SG

2*) (B) and Hepatic Glucose 
Production (HGP) (C) in response to a control, continuous and intermittent exercise trials. 
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The integrated area under the curve for arterialized blood glucose (D) and plasma insulin (E) 
following iv labeled glucose loads 4 hr post trials. *Denotes significant difference between 
resting control (P < 0.01). † Denotes difference between continuous and intermittent exercise 
(P < 0.001) 

Figure 3. Muscle protein content of IP6K1 (A), phosphorylation of Akt at Thr308 (B), Akt at 
Ser473 (C), AS160 at Thr642 (D) and representative blots (E) (n=9). * P<0.05 vs. Fasting 
(pre-exercise).  

Figure 4. Intramuscular mRNA expression of IP6K1 (A); Akt (B); GLUT 4 (C); PDK1 (D). 
Values are expressed as fold change from fasting pre-exercise and post each trial as mean 
(SE) (n=9). *Different from Fast, P<0.01; ‡ different to Rest, P<0.05; †different to 

continuous exercise, P<0.05.  

Figure 5. Muscle protein content of IP6K1 (A), phosphorylation of Akt at Thr308 (B), Akt at 
Ser473 (C), AS160 at Thr642 (D) and representative blots (E) for C2C12 treatments. * 
P<0.05 vs. control. α P<0.05 vs. Ins+TNP and † P<0.05 vs. Ins. Data are mean ± SE (n=4). 
Figure 5F shows PathScan® Akt Signaling Antibody Fluorescent read (700). * P<0.05 vs. 
control, † P<0.05 vs. IGF, α P<0.05 vs. Ins and γ P<0.05 vs. Ins+TNP. Data are mean ± SE 
(n=4).   

Table 1.   Correlation analysis  between plasma IP6K1 and measures of glycemic control  

 Pre-Diabetics Type 2 Diabetics Combined  
SI

2* r = 0.033 (0.932) r = 0.733 (0.025)* r = 0.402 (0.055) 
SG

2* r = 0.247 (0.521) r = 0.472 (0.200) r = 0.151 (0.281) 
HbA1c r = 0.194 (0.595) r = 0.310 (0.493) r = 0.357 (0.080) 
Fasting blood glucose r = 0.119 (0.760) r = 0.043 (0.913) r = 0.232 (0.185) 
Plasma Fasting insulin r = 0.179 (0.645) r = 0.340 (0.370) r = 0.365 (0.075) 
% body fat r = 0.086 (0.825) r = 0.061 (0.870) r = 0.028 (0.457) 
HOMAβ-Cell r = 0.171 (0.661) r = 0.261 (0.498) r = 0.006 (0.491) 
HOMAIR r = 0.194 (0.617) r = 0.311 (0.415) r = 0.429 (0.043)* 

Values are means (SEM). Insulin sensitivity (SI
2*); glucose effectiveness (SG

2*); Body Mass Index (BMI); 
Glycosylated Haemoglobin  
(HbA1c), Homeostasis Model Assessment of Insulin Resistance (HOMAIR); β-Cell function (HOMAβ-Cell).  
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