
A U T O M A T E D R E A S O N I N G
W O R K S H O P 2 0 1 9

 TECHNICAL REPORT

Proceedings of the
26th Automated Reasoning Workshop 2019
Bridging the Gap between Theory and Practice
ARW 2019

2–3 September 2019
University of Middlesex
United Kingdom

Editors:
Alexander Bolotov and Florian Kammueller

c© 2019 for the individual papers by the papers’ authors. Reproduction (electronically or by other
means) of all or part of this technical report is permitted for educational or research purposes only, on
condition that (i) this copyright notice is included, (ii) proper attribution to the editor(s) or author(s) is
made, (iii) no commercial gain is involved, and (iv) the document is reproduced without any alteration
whatsoever. Re-publication of material in this technical report requires permission by the copyright
owners.

ARW2019 organisers:

Alexander Bolotov and Florian Kammueller

Program Commitee

Alexander Bolotov Chair, (University of Westminster)

Jacques Fleuriot Secretary/Treasurer (University of Edinburgh)
David Crocker (Escher Technologies)
Louise Dennis (University of Liverpool)
Ullrich Hustadt (University of Liverpool)
Mateja Jamnik (Univerity of Cambridge)
Florian Kammueller (Middlesex University)
Ekaterina Komendantskaya (University of Dundee)
Konstantin Korovin (University of Manchester)
Alice Miller (University of Glasgow)
Oliver Ray (University of Bristol)
Giles Reger (University of Manchester)

Workshop Website

https://www.arw2019.org/

Preface

This volume contains the proceedings of ARW 2019, the twenty sixths Workshop on Automated Rea-
soning (2nd–3d September 2019) hosted by the Department of Computer Science, Middlesex University,
England (UK). Traditionally, this annual workshop which brings together, for a two-day intensive pro-
gramme, researchers from different areas of automated reasoning, covers both traditional and emerging
topics, disseminates achieved results or work in progress. During informal discussions at workshop ses-
sions, the attendees, whether they are established in the Automated Reasoning community or are only at
their early stages of their research career, gain invaluable feedback from colleagues. ARW always looks
at the ways of strengthening links between academia, industry and government; between theoretical and
practical advances. The 26th ARW is affiliated with TABLEAUX 2019 conference.

These proceedings contain forteen extended abstracts contributed by the participants of the workshop
and assembled in order of their presentations at the workshop. The abstracts cover a wide range of topics
including the development of reasoning techniques for Agents, Model-Checking, Proof Search for classical
and non-classical logics, Description Logics, development of Intelligent Prediction Models, application of
Machine Learning to theorem proving, applications of AR in Cloud Computing and Networking.

I would like to thank the members of the ARW Organising Committee for their advice and assis-
tance. I would also like to thank the organisers of TABLEAUX/FroCoS 2019, and Andrei Popescu, the
TABLEAUX Conference Chair, in particular, for the enormous work related to the organisation of this
affiliation. I would also like to thank Natalia Yerashenia for helping in preparing these proceedings.

London Alexander Bolotov
September 2019

i

Contributed Papers

Knowledge Sharing among Agents with Ontological Reasoning . 1
David Toluhi, Renate Schmidt

Towards an Under-Approximation Abstraction-Refinement for Reasoning with Large Theories . . 3
Julio Cesar Lopez Hernandez, Konstantin Korovin

Forgetting Relative to A Background Theory for The Description Logic ALC 5
Mostafa Sakr, Renate Schmidt

Querying Clique Guarded Existential Rules . 7
Sen Zheng, Renate A. Schmidt

Experiments with Selection of Theorem Proving Heuristics . 9
Edvard K. Holden, Konstantin Korovin

Creating an Intelligent System for Bankruptcy Detection: Semantic data Analysis Integrating
Graph Database and Financial Ontology . 11

Natalia Yerashenia, Alexander Bolotov

Reinforcement-Learned Input for Saturation Provers . 13
Michael Rawson, Giles Reger

Chained Strategy Generation: A Technique for Balancing Multiplayer Games Using Model Checking 15
William Kavanagh, Alice Miller

Using model checking in the design of a sensor network protocol 17
Ivaylo Valkov, Alice Miller

Exploring Secure Service Migration in Commercial Cloud Environments 19
Gayathri Karthick, Dr.Florian Kammueller, Dr.Glenford Mapp, Dr.Mahdi Aiash

UBiSKt-Prolog: an automated theorem prover for a bi-intuitionistic modal logic with universal
modalities . 21

Giulia Sindoni, Brandon Bennett

Using Contexts in Tableaux for PLTL: An illustrative Example . 23
Alex Abuin, Alexander Bolotov, Unai Diaz de Cerio, Montserrat Hermo, Paqui Lucio

Uniform Interpolation in Modal Logic . 25
Ruba Alassaf, Renate Schmidt

Experimenting with superposition in iProver . 27
Andr Duarte, Konstantin Korovin

ii

Knowledge Sharing among Agents with Ontological Reasoning
David Toluhi Renate Schmidt

University of Manchester, UK
{david.toluhi, renate.schmidt}@manchester.ac.uk

Abstract: In Multi-Agent Systems a simplifying assumption is that agents represent the world using the same
vocabulary. We relax this assumption and focus on scenarios where knowledge is distributed among agents
with some overlap and investigate ways in which agents can restrict and adapt their knowledge with respect
to their overlap in vocabulary to ensure that knowledge being shared is understood by their communication
partners. Specifically, we focus on belief-desire-intention agents that make use of description logics to rep-
resent their knowledge of the world. This paper gives a brief overview of preliminary research and theory
development: especially the approximation of concepts across subset vocabularies.

1 Introduction

The importance of knowledge approximation is highlighted
in our day to day activities. Humans frequently approxi-
mate knowledge. For example, when communicating with
toddlers or younger audiences, an adult restricts the used
vocabulary to a level that can be understood. Other ex-
amples include experts communicating with people outside
their domain of expertise: a medical doctor approximates
knowledge when explaining a diagnosis to a patient or an
IT expert explaining a system-diagnosis to a client.

Our work is motivated by recent advances in Description
Logics (DLs): the development of forgetting tools for DLs,
specifically those in [10] and [5]. Forgetting can be used
to compute theory approximations [6] [1], part of our plan
is to realize and demonstrate this in DLs. This approach is
appealing because there is also an interest in the agent com-
munity in using ontologies/ontological-reasoning to model
agents such as the efforts made in [3] and [8].

Ideas and realizations of the usefulness of knowledge ap-
proximation, particularly in the domain of agent communi-
cation can be found in [1] and [6].

Multi-Agent System (MAS) communication is mainly
assertional1 and is implemented using speech acts [2]
which has been formalized and integrated into agent plat-
forms such as that in [7]. Our aims are summarized as fol-
lows:

1. Study existing agent communication protocols.
2. Develop new generalized agent communication pro-

tocols and standards suitable for agents with different
vocabularies.

3. Develop theory approximation techniques based on
forgetting and definition generation.

4. Implement our ideas using LETHE/FAME as an ex-
tension to an existing MAS such as JASON [4].

We believe that definitions are mechanisms essential to
tasks involving translation and approximation and also al-
low for two different agents to build and expand their com-
mon vocabulary. Agents may encounter unfamiliar symbols

1composed of ground statements

when sharing knowledge such as plans, descriptions or as-
sertions. We look into building a define speech-act in order
to solve this problem.

Our approach will attempt to develop ways of using the
forgetting tools in [10] and [5] to automatically generate
definitions. Our work draws on related work on defini-
tion generation in second-order logic presented in [9], and
propositional logic briefly mentioned in [6]; we aim to im-
plement tools to provide this functionality in DL. Also re-
lated is terminological negotiation [8] which uses an inter-
pretation approach to compute translations and mappings
between concepts in different agent’s ontologies.

The necessity for sharing knowledge across disparate
(but intersecting) vocabularies is highlighted in [8] and [1].
In [8] one of the listed motivations is the current inability
to model agents in a heterogenous fashion which restricts
the flexibility and application domain of the agents. Do-
herty et al in [1] highlight the requirements in large scale
applications for agents to use different vocabularies.

2 Theory Approximation using Weakest Sufficient and
Strongest Necessary Conditions

Our work focuses on disparate but intersecting sets of vo-
cabularies. In order to communicate in such a setting, some
sort of approximation is needed. In logic, necessary condi-
tions and sufficient conditions [6] are two key established
notions on the subject of approximating theories. More
specifically, a theory α is a strongest necessary condition
of a formula X over a signature Σ with respect to a back-
ground theory OB denoted SNC(X;OB ; Σ) iff for any
theory α′: OB , α |= α′ where α′ any other necessary con-
dition [1]. A theory β is a weakest sufficient condition of a
formula X over a signature Σ with respect to a background
theory OB denoted WSC(X;OB ; Σ) iff for any theory β′:
OB , β

′ |= β where β′ is any other sufficient condition [1].
Intuitively, one can think of the strongest necessary con-
dition as the closest 2 upper bound of term and the weak-
est sufficient condition with respect to a given vocabulary
that is a subset of the vocabulary of the background theory.

2with respect to logical entailment ordering

1

It is suggested in [1] and [6] that forgetting plays a cru-
cial role in computing both conditions. Our early attempts
to implement these ideas suggest that this is not quite the
case: we observe that forgetting can be used to compute
theories/ontologies that entail the strongest-necessary or
weakest-sufficient conditions. At the moment, it seems that
more a appropriate method would be to use a modified ver-
sion of forgetting modulo a background theory/ontology.

3 Definition generation

Following [1, 6, 9], we refined our goal for definition gen-
eration as follows:

Given: is an ontology OB (background ontology/theory), a
definiendum3 X which is atomic, and a set of symbols Σ,
where Σ, X ⊂ signature(OB).

The goal is to: find a definiens 4 φ for X such that:

1. signature(φ) ⊆ Σ,

2. OB |= φ ≡ X or
OB |= φ v X or
OB |= φ w X , and

3. φ is a complex expression or logical axiom.
The second requirement uses one of three copulae: ≡, v or
w. Assume we use the ≡ copula.
Definability Following [6, 9], a theory OB defines a sym-
bol X w.r.t Σ where Σ ⊆ signature(OB) iff:

OB , SNC(X;OB ; Σ) |= WSC(X;OB ; Σ)

Following [9] definitions are characterised as follows:
φ is a definiens of X in terms of Σ within OB iffdef

OB , SNC(X;OB ; Σ) |= φ and

OB , φ |= WSC(X;OB ; Σ)

As [9] points out, this captures the equivalence copula:
OB |= φ ≡ X . Our proposed procedure is as follows:

Step 1: Compute the strongest necessary condition:
SNC(X;OB ; Σ) using forgetting modulo a background
theory.

Step 2: Compute the weakest sufficient condition:
WSC(X;OB ; Σ) using forgetting modulo a background
theory.

Step 3 (Definability Check): Confirm that

OB , SNC(X;OB ; Σ) |= WSC(X;OB ; Σ)

Step 4 (Definiens): Compute a definiens φ such that :

OB , SNC(X;OB ; Σ) |= φ and

OB , φ |= WSC(X;OB ; Σ)

Step 5: If signature(φ) 6= {⊥,>, X} return φ else re-
turn Failed.

3Latin for subject of definition
4Latin for definition

4 Conclusion

We are currently exploring the procedure and researching
methods to computing Craig-interpolants in DLs in order
to compute a definition φ that satisfies the requirements of
Step 4 above.

References

[1] Patrick Doherty, Witold Lukaszewicz, and Andrzej
Szalas. Computing strongest necessary and weakest
sufficient conditions of first-order formulas. In Proc.
IJCAI, pages 145–154, 2001.

[2] Tim Finin, Richard Fritzson, Don McKay, and Robin
McEntire. KQML as an agent communication lan-
guage. In Proc. CIKM, pages 456–463. ACM, 1994.

[3] Artur Freitas, Alison R Panisson, Lucas Hilgert, Fe-
lipe Meneguzzi, Renata Vieira, and Rafael H Bor-
dini. Integrating ontologies with multi-agent systems
through cartago artifacts. In Proc.IEEE/WIC/ACM,
volume 2, pages 143–150. IEEE, 2015.

[4] Thomas Klapiscak and Rafael H Bordini. Jasdl: A
practical programming approach combining agent and
semantic web technologies. In International Work-
shop on Declarative Agent Languages and Technolo-
gies, pages 91–110. Springer, 2008.

[5] P. Koopmann and R. A. Schmidt. LETHE: A
saturation-based tool for non-classical reasoning. In
M. Dumontier, B. Glimm, R. Goncalves, M. Horridge,
E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, G. Sta-
mou, and G. Stoilos, editors, Proc. ORE-2015, vol-
ume 1387 of CEUR Workshop Proceedings. CEUR-
WS.org, 2015.

[6] Fangzhen Lin. On strongest necessary and weakest
sufficient conditions. Artificial Intelligence, 128(1-
2):143–159, 2001.

[7] Anand S. Rao. Agentspeak (l): BDI agents speak out
in a logical computable language. In Proc. MAAMAW,
pages 42–55. Springer, 1996.

[8] Marlo Souza, Alvaro Moreira, Renata Vieira, and
John-Jules Ch. Meyer. Integrating ontology negotia-
tion and agent communication. In Proc. International
Experiences and Directions Workshop on OWL, pages
56–68. Springer, 2015.

[9] Christoph Wernhard. Second-order characterizations
of definientia in formula classes. In Proc. IJCAR
Workshop. IJCAR, 2014.

[10] Y. Zhao and R. A. Schmidt. FAME: An automated
tool for semantic forgetting in expressive description
logics. In D. Galmiche, S. Schulz, and R. Sebastiani,
editors, Proc. IJCAR 2018, volume 10900 of Lecture
Notes in Artificial Intelligence, pages 19–27. Springer,
2018.

2

Towards an Under-Approximation Abstraction-Refinement for
Reasoning with Large Theories

Julio Cesar Lopez Hernandez Konstantin Korovin
The University of Manchester, School of Computer Science

{lopezhej,korovin}@cs.man.ac.uk

Abstract: We present the main ideas of the under-approximation process, which is part of an abstraction-
refinement framework for reasoning with large theories. The framework has the purpose of interleaving the ax-
ioms selection and reasoning phase, and it consists of two approximations: the over- and under-approximation,
which can be combined to converge to a solution more quickly.

1 Introduction

Efficient reasoning with large theories is one of the main
challenges in automated theorem proving. The main prob-
lem arises because of the enormous number of superfluous
premises in the theories, and usually, a few of them are
needed to prove a conjecture. Therefore it is desirable to
select the most relevant axioms when proving a conjecture.

Current methods for axiom selection are based on the
syntactic or semantic structure of the axioms, and conjec-
ture formulas [2]. Other methods for axiom selection use
machine learning to take advantage of previous knowledge
about proving conjectures [6]. In [5], we present a frame-
work based on abstraction-refinement for reasoning with
large theories, which could use different methods to select
suitable premises. In this abstract, we present the under-
approximation, which is part of the abstraction-refinement
framework.

2 Preliminaries

Let us consider a set of formulas F which we call a con-
crete domain and a set of formulas F̂ which we will call
an abstract domain. For example, F can be the set of all
first-order formulas and F̂ can be a fragment of first-order
logic. Concrete and abstract domains can coincide.

An abstraction function is a mapping α : F 7→ F̂ . When
there is no ambiguity we will call an abstraction function
just an abstraction of F . The identity function is an ab-
straction which will be called the identity abstraction αid .

An abstraction α is called under-approximating abstrac-
tion (wrt. refutation) if for every F ∈ F , α(F) |=
⊥ implies F |= ⊥. An abstraction α is called over-
approximating abstraction (wrt. refutation) if for every
F ∈ F , F |= ⊥ implies α(F) |= ⊥.

We define an ordering on abstractions v called abstrac-
tion refinement ordering as follows: α v α′ if for all
F ∈ F , α(F) |= ⊥ implies α′(F) |= ⊥. Two abstractions
are equivalent, denoted by α ≡ α′ if α v α′ and α′ v α.
The strict part @ of v is defined as α @ α′ if α v α′

and α 6≡ α′. An abstraction is precise if it is equivalent to
the identity abstraction. An example of a non-trivial pre-
cise abstraction can be obtained by renaming function and

predicate symbols. We have that every over-approximating
abstraction αs is above and every under-approximation ab-
straction αw is below the identity abstraction wrt. the ab-
straction refinement ordering, i.e., αw v αid v αs.

Strengthening abstraction refinement of an under-
approximating abstraction α is an abstraction α′ which is
above α and below the identity abstraction in the abstrac-
tion refinement ordering, i.e., α v α′ v αid .

An under-approximation abstraction-refinement process
is a possibly infinite sequence of strengthening abstraction
refinements α0, . . . , αn, . . . such that α0 v . . . v αn v
. . . v αid .

3 Under-Approximation Abstraction-Refinement Pro-
cess

We use ATPS to denote an automated theorem prover,
which is sound but possibly incomplete (wrt. refuta-
tion) [1]. The process starts by applying the under-
approximating abstraction function to the set of concrete
axioms A, Âw = αw(A). This set Âw of weaker axioms is
used to prove the conjecture, using anATPS . If the conjec-
ture is proved, the procedure stops and provides the proof.
Otherwise, a model I of Âw and the negated conjecture is
obtained. This model is used to refine the set of weaker
axioms Âw. During this refinement (strengthening abstrac-
tion refinement), the procedure tries to find a set of axioms
Ă that turns the model into a countermodel but are still im-
plied by A, i.e., I 6|= Ă and A |= Ă. If the set of axioms
Ă is empty, Ă = ∅, the procedure stops and disproves the
conjecture. Otherwise, the obtained set of axioms is added
to the set of weaker axioms, Âw := Âw ∪ Ă. Using this
new set of abstract axioms Âw, another round for proving
the conjecture starts. The process finishes when the conjec-
ture is proved or disproved or the time limit for the quest of
proof is reached.

3.1 Under-Approximating Abstraction Functions

In the case of under-approximation, we propose two under-
approximating abstractions: instantiation abstraction and
deletion abstraction. For the case of instantiation abstrac-
tion, abstraction function generates ground instances of the

3

concrete axioms as it is done in the Inst-Gen framework
[3]. In the case of deletion abstraction, we delete certain
concrete axioms from the theory. This particular abstrac-
tion can be used to incorporate other axioms selection meth-
ods (based on removing irrelevant axioms) into the under-
approximation process. SInE algorithm is one example of
this kind of methods. Also, approaches based on machine
learning can be incorporated into the under-approximation
process [6]. In practice, different abstractions can be re-
combined.

3.2 Strengthening Abstraction Refinement

In the case of deletion abstraction, refinement can be done
by adding concrete axioms Ă that turn the model I , which
is obtained formATPS , into a countermodel, Ă ⊆ {ă | ă ∈
A, I 6|= ă}. In the case of instantiation abstraction, refine-
ment can be done by generating a set of ground instances
of axioms Aσ such that I 6|= Aσ, Ă := Aσ.

4 Early Results

Currently, we are experimenting with a deletion abstraction
based on SInE. The core idea of SInE is to use the general-
ity of symbols. This generality is defined as the number of
axioms where each of the symbols appears , i.e., symbols
that appears in more axioms are more common (general).
This generality establishes a relationship among formulas
by linking the less common symbol in a formula (called
trigger) with other formulas where the trigger appears. We
consider different criteria for symbol to be a trigger based
on its relationship to the conjecture. The premise selec-
tion is made by recursively following the links mentioned
above, starting from the conjecture symbols.

In the implementation, the refinement of the deletion ab-
straction is performed by increasing the selection parame-
ters: depth and tolerance. The first one controls the reacha-
bility depth of the selected axioms from the conjecture us-
ing links, and the second one the symbol generality to treat
symbols with closer values of generality as equals.

In table 1 and 2, we show some comparative results of
using: over/under-approximation and its combination [5]
integrated with iProver. We used the set of problems from
CASC-26 LTB category (1500 problems) for our experi-
ments and turned off most of the iProver’s preprocessing
flags. Also, we use different values for iProver’s option
--schedule. In both tables, the column "SInE clausi-
fier" indicates if a previous deletion of axioms was per-
formed during the clausification using the given parameters
to Vampire clausifier [4].

5 Conclusions

From the results showed in tables 1 and 2, we can see that
using iProver with only under-approximation performs bet-
ter than just using over-approximation. Overall the best re-
sult 2 was obtained when we combine over argument fil-
tering approximation with SInE under-approximation with

Table 1: under: under-approx abstraction based on SInE.
Over-approx. strategy: [arg_filter;sig] restricted
to split/Skolem symbols with refine until SAT (over)

Strategy SInE clausifier schedule solutions

over -sd 1 -st 1 default 1004
under none 1016
under-over none 996
under-over abstr_ref 916
under-over -sd 2 -st 4 abstr_ref 1008

Table 2: under: under-approx abstraction based on SInE.
Over-approximating strategy: [arg_filter] restricted
to split/Skolem symbols with refine until SAT (over)

Strategy SInE clausifier schedule solutions

over -sd 1 -st 1 default 986
under none 1015
under-over none 1019
under-over abstr_ref 1000
under-over -sd 2 -st 4 abstr_ref 1033

paramteres depth 2 and tolerance 4. It is not the case
for results in 1 where the combination of approximations
have a lower performance than using under- and over-
approximation by separate. We need to experiment with
more combinations of under and over-approximating strate-
gies and investigate how the combination of over and under
approximations could increase the performance.

References
[1] Kryštof Hoder, Giles Reger, Martin Suda, and Andrei Voronkov. Se-

lecting the Selection. In Nicola Olivetti and Ashish Tiwari, editors,
Automated Reasoning, volume 9706, pages 313–329, Cham, 2016.
Springer International Publishing.

[2] Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory
reasoning. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 6803 LNAI:299–314, 2011.

[3] Konstantin Korovin. Inst-Gen – A Modular Approach to Instantiation-
Based Automated Reasoning. Programming Logics: Essays in Mem-
ory of Harald Ganzinger, 7797:239–270, 2013.

[4] Laura Kovács and Andrei Voronkov. First-order theorem proving and
VAMPIRE. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 8044 LNCS:1–35, 2013.

[5] Julio Cesar Lopez Hernandez and Konstantin Korovin. An
Abstraction-Refinement Framework for Reasoning with Large The-
ories. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Automated Reasoning - 9th International Joint Conference,
IJCAR 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of
Lecture Notes in Computer Science, pages 663–679. Springer, 2018.

[6] Josef Urban. MaLARea: A metasystem for automated reasoning in
large theories. CEUR Workshop Proceedings, 257:45–58, 2007.

4

Forgetting Relative to A Background Theory for The Description
Logic ALC

Mostafa Sakr Renate A. Schmidt
School of Computer Science, University of Manchester, Oxford Rd, Manchester M13 9PL

Abstract: Forgetting is the process of finding a restricted view of an ontology by removing a subset of the
concept and role symbols that are present in the ontology while preserving all the entailments of the original
ontology that can be represented by the remaining symbols. The contribution of our research is to develop
a theory for forgetting relative to a background theory. The proposal is to consider another ontology (a.k.a.
a background theory) as another input to the forgetting task. Here the aim is not to apply forgetting on the
background theory, but rather to take support from it when forgetting symbols from the input ontology. An
important application is abduction where there are two ontologies, observations and background theory. The
aim of abduction is to generate hypothesis that if added to the background theory, would explain the observa-
tions. We define the problem forgetting relative to background theory, give an illustration to its application in
abduction, and give an overview of related work and other related research.

1 Introduction

Knowledge is often represented as a set of axioms ex-
pressed in terms of concept and role symbols (also called
signature) using logic L. A set of axioms describing a par-
ticular domain is called an ontology.

Forgetting has been an active field of study recently. It is
a non-standard reasoning task that takes as input an ontol-
ogy and a subset of the concept and roles symbols that are
present in the ontology (a.k.a. forgetting signature). The
output of forgetting is an ontology that is subject to two
conditions. The first condition is that the forgetting signa-
ture is not present in output ontology. The second is that
any entailment of the original ontology that can be repre-
sented by the remaining signature is preserved in the output
ontology. [7, 6, 4].

This problem has been mostly studied on single ontolo-
gies [5, 9] which is inadequate to real world applications in
which knowledge tends to be represented by several inter-
connected ontologies. For example in Fig. 1, the SNOMED
ontology, a very large and widely used medical ontology,
is organized in several interconnected substructures. Each
substructure can be considered as a separate ontology. The
organism ontology for instance, is connected with other
substructures, collectively called background theory. These
connections are entailments established by the common vo-
cabulary of the organism ontology and the background the-
ory. For instance, concepts related joints may be defined in
the organism ontology while procedures related to them are
defined in the procedure ontology. When forgetting a set
of symbols F from the organism ontology, the entailments
over the remaining symbols together with the signature of
the background theory should be preserved. For example,
assume the following axioms in the organism and the pro-
cedure ontologies respectively: Knee v Joint, joint v
∃applicableOperation.JointReplacement. Forgetting
the symbol Joint from the organism ontology should pre-
serve the entailment that JointReplacement is an opera-

tion applicable to Knee even though JointReplacement
is defined in the procedure ontology. This allows any rea-
soning application to execute on the forgetting solution to-
gether with the background theory. Additionally, since the
background theory is available to the reasoning application,
entailments that follow from the background theory only
are irrelevant or redundant because they can be inferred
when needed by the reasoning application. Therefore, such
entailments should be avoided by the forgetting method.

Figure 1: The SNOMED ontology is organized in intercon-
nected ontologies. In order to use the forgetting solution of
any ontology, for instance organism, the entailments (dot-
ted lines) over the signature of the forgetting solution and
the signature of the background theory must be preserved.

2 Contribution

Our research is concerned with developing the theory of a
new forgetting method that takes into consideration a back-
ground theory. We also aim at producing a practical imple-
mentation that realizes this method.

The introduction of a background theory introduces con-
ceptual and theoretical connections to the problem of satis-
fiability modulo theories (smt) [1]. smt, is the problem con-
cerned with the satisfiability of a formula over one or more
theories. In both applications, the interpretation of some

5

symbols that are present in the input formula/ontology is
constrained by the background theory. The theoretical rela-
tions are yet to be investigated.

Another related topic is the problem of query reformula-
tion with background theory[2, 8]. This problem is central
for the database community where a database maintains two
ontologies. The first represents a logical schema which is
known to end user, and the second represents the physical
schema which describes how the data is physically stored.
The relation between both is described in a third ontology.
Given a query, a database system reformulates it into an-
other optimized query that uses the vocabulary of the phys-
ical schema. Similar to smt, the theoretical connections to
this research are still not clear and are yet to be investigated.

3 Forgetting Relative to Background Theory

The introduction of a background theory requires a mod-
ification to the definition of forgetting. In this paper we
consider the setting when the background theory is using
the same description logic as the main ontology.

We define forgetting relative to background theory as fol-
lows: Let Ob and O be a background theory and an ontol-
ogy written in a description logic L, also let F be the for-
getting signature, and Σ = sig(Ob ∪ O)\F . We define V
as the forgetting of O relative to Ob iff:

1. sig(V) ⊆ Σ, and

2. For every axiom α with sig(α) ⊆ Σ,Ob,V |= α iff
Ob,O |= α

3. For every axiom β with sig(β) ⊆ Σ, V |= β only if
Ob 6|= β

4 Related Work

Forgetting relative to background theory was used to for-
malize the problem of finding the strongest necessary
conditions (snc) and the weakest sufficient conditions
(wsc) [6]. The problem can be formulated as: Let Σ =
sig(Ob ∪ O)\F and let V be any formula where sig(V) ⊆
Σ. Then V is snc/wsc iff:

snc : Ob |= O → V and, Ob |= V → V ′

for any necessary condition V ′, sig(V ′) ⊆ Σ (1)
wsc : Ob |= V → O and, Ob |= V ′ → V

for any sufficient condition V ′, sig(V ′) ⊆ Σ (2)

whereOb,O,F are as in section 3. This problem was stud-
ied as a second order quantifier elimination problem [4].
The approach to compute snc/wsc is based on the follow-
ing formulation:

SNC(O,Ob,Σ) ≡ ∃F(Ob ∧ O) (3)
WSC(O,Ob,Σ) ≡ ¬∃F(Ob ∧ ¬O) (4)

This directly corresponds to forgetting since eliminating the
existential quantifier in (3) and (4) means generating equiv-
alent formula in which the quantified symbols F are not

present. Equations 3 and 4 may generate solutions that fol-
low only fromOb. Notice however that if we removed these
solutions from V , equations 1 and 2 remain satisfied. In
other words, these solutions are redundant w.r.t equations 1
and 2 and are not snc/wsc on O w.r.t. Ob.

This observation became more visible in [3] where an
ABox abduction method based on equation 4 was proposed.
Here O is a disjunction of ABox observations and Ob is a
background theory. The aim is to generate a hypothesis H
that is when added to the background theory would explain
the observation. The application of equation 4 generates
many redundant formulas that follow only from Ob. On
one hand these formulas are not abductive solutions and a
filtering post-process was required to exclude them[3]. On
the other hand, these formulas are expensive to compute
and should be avoided. Combining the background theory
with the negated observations is forced by the fact that ex-
isting forgetting methods accept only one ontology. Our
contribution solves this problem by generalizing the forget-
ting method to take the background theory separately. Con-
dition 3 in our definition of forgetting (see section 3) then
guarantees that these redundant solutions are avoided.

References

[1] C. Barrett and C. Tinelli. Satisfiability Modulo Theo-
ries. In Handbook of Model Checking, pages 305–343.
Springer International Publishing, Cham, 2018.

[2] M Benedikt, E. V. Kostylev, F. Mogavero, and
E. Tsamoura. Reformulating queries: Theory and prac-
tice. In Proc. IJCAI’26, pages 837–843, 2017.

[3] W. Del-Pinto and R. A. Schmidt. ABox Abduction via
Forgetting in ALC. Proc. AAAI’33, 2019.

[4] P. Doherty, W. Łukaszewicz, and A. Szałas. Computing
strongest necessary and weakest sufficient conditions
of first-order formulas. In Proc. IJCAI, pages 145–151.
Morgan Kaufmann Publishers Inc., 2001.

[5] P. Koopmann and R. A. Schmidt. Uniform interpolation
of ALC-ontologies using fixpoints. In FroCoS 2013,
volume 8152 of LNAI, pages 87–102. Springer, 2013.

[6] F. Lin. On strongest necessary and weakest sufficient
conditions. Artificial Intelligence, 128(1):143 – 159,
2001.

[7] C. Lutz and F. Wolter. Foundations for uniform inter-
polation and forgetting in expressive description logics.
In Proc. IJCAI’22, 2011.

[8] L. Popa. Object/relational query optimization with
chase and backchase. PhD thesis, University of Penn-
sylvania, 2001.

[9] Y. Zhao and R. A. Schmidt. Fame: An automated tool
for semantic forgetting in expressive description logics.
In Proc. IJCAR 2018, volume 10900 of LNAI, pages
19–27. Springer, 2018.

6

Querying Clique Guarded Existential Rules
Sen Zheng Renate A. Schmidt

University of Manchester, Manchester, UK
{sen.zheng,renate.schmidt}@manchester.ac.uk

Abstract: We investigate the Boolean conjunctive query answering problem, where from a given a Boolean
conjunctive query q, a database D and a theory Σ, the aim is to check whether D ∪ Σ |= q. We show that
Boolean conjunctive query answering can be decided using ordered resolution with dynamic selection when
Σ is expressed as clique guarded existential rules. Clique guarded existential rules subsume rules commonly
used in ontology-based query answering systems such as guarded existential rules.

1 Introduction

Query answering against decidable fragments is one of the
fundamental problems behind ontology-based data access
systems. This work is concerned with checking whether
D ∪ Σ |= q, where D is a set of ground facts, Σ is a set of
clique guarded existential rules and q is a Boolean conjunc-
tive query. The class of clique guarded existential rules is a
Horn fragment of the clique guarded fragment [5]. For the
latter, the satisfiability is known as 2EXPTIME-complete
[5]. This means the class of clique guarded existential rules
is decidable. As far as we know, as yet there is no complex-
ity result for (querying) clique guarded existential rules and
there is no approach to decide the problem of query answer-
ing for clique guarded existential rules.

Our querying approach is based on ordered resolution
with selection and can be embedded into the framework
of [1]. Hence, the soundness and refutational complete-
ness result from [1] applies immediately. We use the top
variable technique to avoid term depth increase in the re-
solvents. This technique is inspired by the partial hyper-
resolution technique from [3, 4], where it is used to decide
the loosely guarded fragment [6]. We adapt this approach
so that the top variable technique can be used for answering
queries. The idea of the top variable technique is that we
only apply resolution when the positive premises contains
the potentially deepest terms.

2 Preliminaries

An existential rule R is a first order formula of the
form ∀X∀Y φ(X,Y) → ∃Zψ(X,Z) where φ(X,Y) and
ψ(X,Z) are conjunctions of atoms, and called the body
and the head of R, respectively. X , Y and Z are vari-
able sets. An existential rule R is clique guarded if each
pair of free variables of the head co-occurs in at least one
atom of the body. The definition of clique guarded exis-
tential rules (CGERs) is a strict extension of the definition
of guarded existential rules [2] since free variables of the
head do not require to occur in a single atom of the body.
An example of a CGER is ∀xyzv1v2v3(A1(x, y, v1) ∧
A2(x, z, v2) ∧ A3(y, z, v3) → ∃wB(x, y, z, w)), which is
not a guarded existential rule. The class of CGERs can be
seen as a Horn fragment of the clique guarded fragment [5].

A Boolean conjunctive query (BCQ) q is a first-order for-
mula of the form q = ∃Xϕ(X) where ϕ is a conjunction of
atoms containing only variables and constants. The rule set
Σ denotes a set of clique guarded existential rules and the
database D denotes a set of ground atoms. We answer BCQ
satisfiability of D∪Σ |= q by answering D∪Σ∪¬q |= ⊥.

A term is flat if it is a variable or a ground term. A term
is simple if it is a variable, a constant or a compound term
f(u1, ..., un) where n > 0, such that u1, ..., un are vari-
ables or ground terms. A flat (simple) literal is a literal so
that every term in it is flat (simple). A flat (simple) clause
is a clause so that every literal in it is flat (simple). Assume
a clause φ → ψ where φ is a conjunction of flat atoms.
Chained variables in φ are variables that occur in multiple
atoms of φ. A compound term t is weakly covering if for
every non-ground, compound subterm s of t, it is the case
that var(s) = var(t). A literal L is weakly covering if
each argument of L is either a ground term, a variable, or
a weakly covering term t, such that var(t) = var(L). A
clause C is weakly covering if each term t in C is either
a ground term, a variable, or a weakly covering term such
that var(t) = var(C).

3 Decision Procedures

Now we describe the steps of our approach to deciding
query answering for clique guarded existential rules.

Clausal Transformation. We use CGER-Trans to de-
note the clausal transformation for CGERs. There are three
major steps to transform a clique guarded existential rule R
into a set of clauses:

1. Rewrite implications by using negations and disjunc-
tions, and transform R into negation normal form, ob-
taining the formula Rnnf .

2. Transform Rnnf into prenex normal form and apply
outer Skolemisation: if ∀X is the subsequence of
all universal quantifiers of the ψ-prefix of subformula
∃yψ of ψ, then ψ[y/f(X)] is the outer Skolemisation
of ∃yψ, obtaining the formula Rsko.

3. Drop all universal quantifiers and transform Rsko

into its conjunctive normal form, denoted as a set of
clauses, obtaining the Horn cliques guarded clauses.

7

By Query-Trans we denote the clausal transformation for
Boolean conjunctive queries. One can obtain a query clause
by simply negating a Boolean conjunctive query.

Clausal Normal Forms. A clause C is a Horn clique
guarded clause if a condensed form of Horn clause C sat-
isfies these conditions:

1. C is simple and weakly covering.

2. There is a set of negative flat literals L containing
chained variables in C.

(a) If there is no more than two chained variables, all
variables in C occur in one literal of L.

(b) If there is more than two chained variables, all
chained variables co-occur in at least one literal
of L. These literals are called guards. All vari-
ables in non-guard literals of C are chained vari-
ables in guards.

The definition of Horn clique guarded clause is a proper
superset of the definition of the clique guarded existential
rules because function symbols are allowed in negative lit-
erals. A ground fact is a Horn clique guarded clause and a
query clause is a negative flat clause.

Resolution Refinement. We use an admissible ordering
and a selection function making use of the top variable tech-
nique to restrict the application of resolution. Let Query-
Refine denote the refinement using: A lexicographic path
ordering ≻lpo based on a precedence f > a > p for f
denoting function symbols, a denoting constants and p de-
noting predicate symbols, and a selection function such that
the following conditions all hold:

1. If a clause contains negative non-ground compound
literals, then at least one of these literals is selected.

2. If there is no negative non-ground compound literal,
but there are positive non-ground compound literals,
then the maximality principle with respect to ≻lpo is
applied to determine the eligible literals.

3. If a clause contains no non-ground compound literals,
select all the negative literals containing top variables.

Condition 3 indicates that the selected literals are not set in
advance. Instead, in each inference, these selected literals
are determined before resolution by checking whether they
contain top variables. Hence, we call this kind of selection
the dynamic selection.

4 Termination

We use Query-Res to denote the calculus consisting of: the
condensation rule, tautology elimination, ordered factoring
and ordered resolution with selection defined by Query-
Refine.

Claim 1 In an application of Query-Res, the resolvents of
a set of Horn clique guarded clauses and query clauses are
query clauses.

Claim 2 In an application of Query-Res, the resolvents
of a set of Horn clique guarded clauses are Horn clique
guarded clauses.

Claim 1 and Claim 2 show that Query-Res can guarantee
that given a set of Horn clique guarded clauses and query
clauses, all derived clauses are either Horn clique guarded
clauses or query clauses.

Claim 3 In an application of Query-Res, given a finite
set of fixed-length Horn clique guarded clauses and fixed-
length query clauses, each derived clause have a fixed
length.

Claim 3 shows that using Query-Res, a derived clause can-
not be arbitrarily long. Claim 1, 2 and 3 show that:

Claim 4 Query-Res decides query clauses and Horn clique
guarded clauses.

The following claim shows the main result of this work:

Claim 5 The combination of the clausal transformations
(CGER-Trans and Query-Trans) and resolution procedures
Query-Res decide the Boolean conjunctive query answer-
ing problem for the clique guarded existential rules.

5 Conclusion

We developed a decision procedure for answering Boolean
conjunctive queries against clique guarded existential rules,
based on ordered resolution and a sophisticated form of se-
lection. Since this is still ongoing work, current work is
focused on offering formal proofs to support our claims.

References

[1] Leo Bachmair and Harald Ganzinger. Resolution theo-
rem proving. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, pages 19–
99. Elsevier and MIT Press, 2001.

[2] Andrea Calı̀, Georg Gottlob, Thomas Lukasiewicz,
Bruno Marnette, and Andreas Pieris. Datalog+/-: A
family of logical knowledge representation and query
languages for new applications. In Proc. LICS’10,
pages 228–242. IEEE, 2010.

[3] Hans de Nivelle and Maarten de Rijke. Deciding the
guarded fragments by resolution. J. Symb. Comput.,
35(1):21–58, 2003.

[4] Harald Ganzinger and Hans de Nivelle. A superposi-
tion decision procedure for the guarded fragment with
equality. In Proc. LICS’99, pages 295–303. IEEE,
1999.

[5] Erich Grädel. Decision procedures for guarded logics.
In Proc. CADE’16, pages 31–51. Springer, 1999.

[6] Johan van Benthem. Dynamic bits and pieces. Re-
search Report LP-97-01, Univ. Amsterdam, 1997.

8

Experiments with Selection of Theorem Proving Heuristics
Edvard K. Holden Konstantin Korovin

The University of Manchester, UK

Abstract: Heuristics are crucial for the performance and success of a theorem prover. Selecting and schedul-
ing heuristics has traditionally been handled by system experts. However, in recent years this challenge has
been approached with machine learning [1, 3, 5, 6]. We describe multiple machine learning approaches for
heuristic selection, then evaluate the techniques with iProver using the CASC-26 FOF problem set.

1 Introduction

Automatic Theorem Provers (ATP) utilise sophisticated al-
gorithms to search for a proof in what can be an infi-
nite search space. Numerous parameters tune the algo-
rithms, where an efficient and successful parameter setting
is known as a heuristic.

A robust set of heuristics is beneficial for the prover, but
running the heuristics in an arbitrary order is computation-
ally ineffective. Therefore, it is necessary to select a single
optimal heuristic or to devise a custom heuristic schedule
for a given problem.

In this paper, we compare prediction and scheduling ap-
proaches which utilise Machine Learning (ML), and syn-
tactic properties of the problems. The different techniques
are evaluated with iProver [4].

2 Predicting Heuristics

2.1 Supervised Heuristic Selection

Heuristic selection can be addressed with supervised
machine learning, which requires features x and la-
bels y. The features and labels form a dataset D =
[(x1, y1), ..., (xn, yn)], and the goal of the selection func-
tion is to learn the mapping function f : x→ y.

A problem p is a first-order problem in clausal form. A
feature vector xn represents the problem pn, and the set
of features utilised are counts of syntactic problem proper-
ties, as shown in table 1. The properties are computed after
pre-processing in the prover. Log-scaling is further applied
before learning.

Problem Properties
Clauses Conjectures
EPR Clauses Horn Clauses
Unary Functions Binary Functions
Literals Equality Literals

Table 1: List of Features

The problem set is from the CASC-26 FOF dataset, and
is combined with machine learnt heuristics generated in [3].
The minimum set cover of the heuristics is 7, which solves
a total of 257 out of 500 problems. The heuristics in the
minimum set cover are used for learning and selection.

2.2 Single and Scheduled Heuristics

There are two standard ways of selecting heuristics in ATP.
The first method is to run a single optimal heuristic on a
problem until a global timeout is met or a solution is found.
The second procedure is to construct a scheduler. Here we
construct a scheduler by imposing a ranking on the heuris-
tics. A solving time is estimated for each problem-heuristic
pair. The heuristics are then ran in order for the estimated
time, until a solution is found or a global time-limit is met.

2.3 Prediction Approaches

Multiclass Prediction

In the multiclass setting, the model learns the mapping from
a problem xn to the heuristic yn. The output of this model
is a score on each heuristic which is used to impose a rank-
ing, or a single selection by choosing the heuristic with the
highest score. We use two different labelling approaches.

A1: Multiclass Fastest Label Prediction

In the fastest label prediction, every problem is labelled
with the heuristic that solves it the fastest.

A2: Multiclass Temporal Label Prediction

In the temporal case, the labelling is carried out by assign-
ing similar problems to the same heuristic. First, similar
problems are clustered together. Then the problems in each
cluster are labelled with the locally best heuristic, for the
problems that are solved under this heuristic. Further, the
locally best heuristic amongst the unassigned problems are
computed and assigned to the unassigned problems that are
solved under this heuristic. This process is repeated until
all the problems are labelled.

Multi-Label Prediction

In multi-label setting, the model learns the mapping be-
tween a problem and a set of labels. We build the ML model
by utilising a one-vs-the-rest strategy. To construct the deci-
sion rule, the probabilities for the heuristics being positive
are ranked in order. The most probable heuristic is used
as the single prediction, while the ranking constitutes the
schedule. We experiment with 2 different multi-labelling
methods.

9

Metric Base
Static Heuristic Heuristic Scheduler

A1 A2 B1 B2 C A1 A2 B1 B2 C
Problems Solved 217 246 248 253 253 182 238 236 240 239 223
Average Time 19.7 7.0 12.9 6.2 15.9 6.1 10.5 16.4 9.4 17.6 8.8

Table 2: Practical Evaluation of the Approaches

B1: Multi-Label Fastest

In the fastest label case, a problem is labelled as positive if
the heuristic is the fastest for the particular problem. Other-
wise, it is labelled negative. This results in a single positive
label per problem and is similar to the approach by Bridge
et al. [1].

B2: Multi-Label Solved

In this approach, a problem-heuristic pair is labelled as pos-
itive if the heuristic solves the problem. Otherwise, it is
labelled negative. This results in every problem being la-
belled with the heuristics that yields a proof of the problem.

C: Smallest Solving Time Prediction

For the last approach, the models learn the solving time y
of a problem when ran over heuristic h. Thus, it learns the
function fh : xp → time(h, p) by a regression model.

A regression model is constructed for every heuristic to
learn the solving time for every solved problem. For the
decision rule, the estimated solving times are ranked from
smallest to lowest, where the heuristic with the smallest
solving time is selected first. This is similar to the selec-
tion in MaLeS [5].

3 Experiments and Evaluation

We implemented the approaches above with XGBoost [2]
as the ML model and iProver as the prover. XGBoost is an
efficient random forest model which supports both regres-
sion and prediction. The baseline for the experiment is the
top heuristic in the set cover, which solves 217 problems.

The models are trained and evaluated using 5-fold cross-
validation. For the decision rules we evaluate their accuracy
for the single heuristic according to the model’s true labels.
The test accuracies are shown in table 3.

The accuracy may indicate how well the models learn,
but it does not necessarily provide information about how
it performs at the task at hand. Therefore, the selection ap-
proaches are evaluated on the number of problems solved.
They are also evaluated based on the average solving time
per problem, for the problems in the intersection of all
solved problems. The practical performance results are
shown in table 2.

We evaluated the approaches both for the single heuristic
selector and as a scheduler. The time allocation for each
heuristic is allocated by a solving time estimator similar to
the approach described in C.

Approach Accuracy
A1 16
A2 85
B1 78
B2 26
C 25

Table 3: 5-Fold Cross Validation Accuracy

4 Conclusion

We have evaluated multiple heuristic selection techniques
with machine learning and syntactic problem features.
From the results, we observe that the accuracy scores vary
greatly and that the models with the best accuracies also
tend to have the best performance results. However, as
B2 learns the set of solvable heuristics instead of optimal
heuristics, the accuracy score is not necessaril a fair metric.

For four out of the five approaches, running a schedule
has a negative impact. However, we have also experimented
with neural networks, where the scheduler contributed pos-
itively. The neural networks generally had weaker re-
sults, probably due to little training data. This observation
suggests that scheduling improves weakly performing ML
models but obstructs strongly performing models.

The multi-label approaches solves the most problems
overall, and B1 both solves the most problems and solves
them second fastest. The task in B1 is fundamentally the
same as A1 but in the multi-label case. This suggests
that the complexity of multiclass learning is challenging to
model with the given features. It remains to be seen whether
the results will persist over a larger dataset.

References
[1] J. P. Bridge, S. B. Holden, and L. C. Paulson. Machine learning

for first-order theorem proving. Journal of Automated Reasoning,
53(2):141–172, Aug 2014.

[2] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system.
CoRR, abs/1603.02754, 2016.

[3] E. K. Holden and K. Korovin. Smac and xgboost your theorem prover.
In Proc. 4th Conference on Artificial Intelligence and Theorem Prov-
ing, 2019.

[4] K. Korovin. iProver - an instantiation-based theorem prover for first-
order logic (system description). In IJCAR 2008. Proceedings, pages
292–298, 2008.

[5] D. Kühlwein, S. Schulz, and J. Urban. E-males 1.1. In M. P. Bonacina,
editor, Automated Deduction - CADE-24 - 24th International Confer-
ence on Automated Deduction, Lake Placid, NY, USA, 2013. Proceed-
ings, volume 7898 of LNCS, pages 407–413. Springer, 2013.

[6] M. Rawson and G. Reger. Dynamic strategy priority: Empower the
strong and abandon the weak. In B. Konev, J. Urban, and P. Rmmer,
editors, 6th Workshop on Practical Aspects of Automated Reasoning
(PAAR), number 2162 in CEUR Workshop Proceedings, pages 58–71,
Aachen, 2018.

10

Creating an Intelligent System for Bankruptcy Detection: Semantic
data Analysis Integrating Graph Database and Financial Ontology

Natalia Yerashenia1 Alexander Bolotov2

1 University of Westminster, London, United Kingdom, w1578366@my.westminster.ac.uk
2 University of Westminster, London, United Kingdom, A.Bolotov@westminster.ac.uk

Abstract: In this paper, we propose a novel intelligent methodology to construct a Bankruptcy Prediction
Computation Model, which is aimed to execute a company’s financial status analysis accurately. Based on the
semantic data analysis and management, our methodology considers Semantic Database System as the core of
the system. It comprises three layers: an Ontology of Bankruptcy Prediction, Semantic Search Engine, and a
Semantic Analysis Graph Database.

1 Introduction

We propose a concept of an intelligent, analytical system to
perform the prediction of the companies’ bankruptcy. The
system processes financial information of a company and
undertakes a comprehensive investigation of companies’ fi-
nancial activities during a particular designated time period.
We aim at creating a Bankruptcy Prediction Computational
Model (BPCM) which is capable of the automated construc-
tion of an expert analytical report, where various data and
information are presented reliably and objectively.

The main feature of the proposed system is the consol-
idation of the information management with the decision-
making process to serve the prediction. This involves mod-
ern methods of searching, processing and storing poten-
tially large amount of heterogeneous data together with
advanced machine learning methods. In this paper, we
define the process of the Semantic Database System con-
struction, a novel development, which comprises an On-
tology of Bankruptcy Prediction (OBP), a Semantic Search
Engine (SDS) and a Semantic Analysis Graph Database
(SAGRADA).

In Fig. 1 we present a flowchart of a BPCM, which is a
visual representation of our research methodology.

2 Developing a Semantic Database System

We argue that the financial dataset to be analysed for our
purposes, figuratively speaking, can be characterised by
four ‘V’ and ‘R’. It shares most (four out of five big ‘V’) of
the qualities of Big Data – Variety, Velocity, Veracity and
Value [4] being not dependent on the Volume. However,
we underline the fifth, ‘R’, feature of these financial data –
an extremely high level of Relationships. Indeed, similar to
big data, in our case, we have heterogeneous data, coming
from different sources. These components of a company’s
financial system can be (and usually this is the most com-
mon practice) described in the form of relational tables,
e.g. it is easy to present a balance sheet or income state-
ment in such a way. However, to show the interconnec-
tions between all elements of these tables, it is necessary
to create a number of tables of a different structure con-

Figure 1: Bankruptcy Prediction Computational Model
flowchart

taining thousands of objects. In this case, the efficiency of
database management and search are substantially affected.
For example, it becomes problematic to formulate a general
query to several databases, because of the difference in ob-
jects and attributes of the domain or changes in objects over
time. When the data are inserted, updated or deleted, the
integrity constraints for the database with changing objects
should be checked and assured that the data will be con-
sistent after all modifications. Also, there is a problem of
the integration of new nodes into the system. When adding
a new node, it is essential to check the data and the data
schema for consistency with the information already avail-
able in the system.

There are NoSQL systems that extend the capabilities of
relational databases and tackle the requirements of the ‘Big
Four V + R’.

11

Financial Ontology. The ontology presentation format
defines the mechanisms to store concepts and their rela-
tionships in the library; it is a method of transmitting on-
tological descriptions to other consumers and a method of
processing its concepts. Specific ontology presentation lan-
guages have been developed as ontological description for-
mats (OWL, RDF, KIF) [1].

Ontologies are used as data sources for many software
applications such as information retrieval, text analysis,
knowledge extraction, and other information technologies,
allowing more efficient processing of complex and diverse
information. This way of representing knowledge enables
applications to recognise those semantic differences that are
obvious to people but not known to the computer.

The main and most crucial component of the financial
risk management of a company is the knowledge base.
Our approach to building an ontology describes the basic
concepts of financial analysis, as well as the objects that
serve as sources of knowledge for predicting a company’s
bankruptcy. It also contains the concepts and relationships
required for the formation of a hierarchy of knowledge
fields and the subsequent use of this hierarchy by various
applications. In addition, expert rules and regulations can
be described in terms of ontology, which significantly in-
creases their level of succinctness and transparency for the
users.

The structure and the content of the OBP are based on
the experience of analysts specialising in the theory and
practice of bankruptcy prediction. The hierarchy reflects
a number of the most popular indicators used to conduct
a financial analysis of a company, as well as their origin
(documents and concepts to which they relate) and the rela-
tionship of these indicators to each other. Financial analytic
factors form the penultimate row of the hierarchy, while the
principal generalising object is the concept of Companys
Financial Records. The last row in the hierarchy contains
linguistic variables that will be later involved in the devel-
opment of machine learning computational modules.

Graph Database. Graph DB (for instance, Neo4J) are
an example of NoSQL databases aimed at representing se-
mantical data [2]. Graph databases are used for storing,
processing and automated visualisation of standard struc-
tural elements. A typical Graph DB usually contains some
reference information regarding objects [3]. Therefore, the
user/designer does not have to spend time searching for this
information in the DB directories. It also reduces the num-
ber of possible human factor related errors. Graph DB en-
ables to create standard elements automatically, which sig-
nificantly reduces the design time.

Neo4j1 is an open source Graph DB management system
implemented in Java. This Graph DB environment stores
data in a proprietary format specifically adapted for the pre-
sentation of graph information; this approach, in compar-
ison with the modelling of a graph database, using a re-
lational Databases Management Systems, allows for addi-
tional optimisation in the case of data with a more complex

1https://neo4j.com/product/

structure.
We emphasise that the OBP structure is an excellent basis

for the Semantic Analysis Graph Database which is used as
a repository of the financial data for BPCM. So, we intend
to apply an existing solution of creating and managing GB
and integrate it into our novel approach.

We have implemented a prototype Graph DB,
SAGRADA, in Neo4j. The basic concepts in a Graph
DB are nodes (an object of the database), relations (graph
edges) and their properties. In our case, the nodes of the
graph are financial ratios, financial indicators, and the
documents containing them. Our graphical repository has
29 nodes divided into three categories – Ratio, Criteria
(financial indicator), Statement, and 52 relationships
between them (of two types – direct and inverse).

3 Conclusions

Based on the analysis of various modern approaches to the
processing and storage of the heterogeneous data related
to the financial analysis, we proposed a novel intelligent
methodology to construct a BPCM. Our methodology is
based upon the utilisation and integration of the seman-
tic data management methods. Following this methodol-
ogy, we have introduced a novel layered architecture for
this BPCM, which integrates the Semantic Database Sys-
tem and a set of modern machine learning algorithms. We
have implemented the principles of the new OBP and the
Semantic Analysis Graph Database on the example of a
company financial record.

Further, we will improve the structure of the OBP creat-
ing its formal conceptual representation through OWL/RDF
languages. We will also work on further enhancement of
the SAGRADA itself. We will also tackle a problem of
the data exchange between the structural parts of the SDS
finding a way to transfer data in various directions automat-
ically.

References

[1] Helena Dudycz and Jerzy Korczak. Conceptual design
of financial ontology. In 2015 Federated Conference on
Computer Science and Information Systems (FedCSIS),
pages 1505–1511. IEEE, 2015.

[2] Venkat N Gudivada, Dhana Rao, and Vijay V Ragha-
van. Nosql systems for big data management. In
2014 IEEE World congress on services, pages 190–197.
IEEE, 2014.

[3] Jaroslav Pokornỳ. Graph databases: their power and
limitations. In IFIP International Conference on Com-
puter Information Systems and Industrial Management,
pages 58–69. Springer, 2015.

[4] Xizhao Wang and Yulin He. Learning from uncertainty
for big data: Future analytical challenges and strate-
gies. IEEE Systems, Man, and Cybernetics Magazine,
2(2):26–31, 2016.

12

Reinforcement-Learned Input for Saturation Provers
Michael Rawson Giles Reger

University of Manchester, UK

Abstract: Many of today’s best-performing automatic theorem provers (ATPs) for first-order logic rely on
saturation algorithms. However, to date the most successful work on applying machine-learned guidance to
ATPs relies on tableaux methods, as these are friendlier toward machine learning algorithms. We describe a
reinforcement-learning system which selectively infers new clauses from an input problem. The system (in
progress) is rewarded if generated clauses are subsequently used by the first-order saturation prover VAMPIRE
in a proof. In this way, the system learns to generate new clauses which are important in the proof search, but
might otherwise not be selected for some time in Vampire’s proof search algorithm. The system is implemented
via Q-learning, with a graph neural net processing the structure of the clause set acting as an approximator.

1 Saturation Provers

Saturation-based ATPs such as VAMPIRE [11] utilise an al-
gorithm which attempts to produce a saturated set of first-
order clauses from their input: that is, clauses closed un-
der all possible inferences in their calculus (usually ordered
resolution and superposition). If the empty clause is found,
then this witnesses refutation and a proof may be given.
Conversely, if a saturated set is produced, then the input is
satisfiable and therefore not a theorem. On hard problems,
neither case will occur and the prover will diverge and con-
tinue to generate a very large set of clauses until either time
or memory runs out.

This approach lends itself to efficiency, but it is inher-
ently unguided and ill-conditioned with respect to the input.
In VAMPIRE and other similar ATP systems, a number of
options and manually-programmed heuristics are available
in order to try and delay divergence or find a proof faster
on certain problem classes: these are made more useful by
portfolio modes [9] in which many combinations of options
are run in sequence in order to ameliorate the brittle perfor-
mance of the underlying prover. Such provers have accu-
mulated several pieces of experimentally-validated “folk-
lore” [10, 1], notably

“There is (at least) one clause, which, once found,
significantly accelerates finding a proof.”

A system which learns to find such a clause early would
therefore be very useful.

2 Guidance for ATP systems

The general idea of guiding ATP systems with a machine-
learned heuristic is hardly novel: experiments with premise
selection [12] and internal guidance of tableau-based
provers [4] have produced successful results. However,
guiding saturation-based theorem provers has proved more
difficult: there is a tradeoff between learning power [6] and
throughput [2]: the better the heuristic, the more computa-
tionally expensive it is and therefore the greater the impact
on prover throughput.

The system described falls somewhere between premise
selection and internal guidance: while it can select clauses,
it can also perform inferences which may help proof search
directly (even acting as an poor man’s theorem prover in its
own right). However, it does not affect internal proof search
routines and therefore does not impact prover throughput.

3 Reinforcement Learning Clausal Search

Reinforcement learning aims to produce agents which learn
to perform actions in an environment while maximising a
reward function [3]. Theorem proving with clauses can be
viewed as performing actions (generating inferences) in an
environment (the current clause set), aiming to find a reward
(the empty clause). In principle, this would be a good way
to build a learning theorem prover in its own right. How-
ever, this approach has a few problems:

1. The reward function here is very sparse, with only a
single reward at the end of proof search.

2. Proofs may be very deep, which an agent at the start of
its training may not be able to find in reasonable time.

3. The space of all possible inferences with all available
clauses is very large, particularly in large knowledge
bases.

In order to make this approach more friendly to reinforce-
ment learning, a few modifications are introduced. An ex-
isting ATP system is employed after a fixed number of steps
on the modified clause set: if the existing ATP can prove
the modified problem making use of the generated clauses,
a reward is applied. This helps with issues (1) and (2).

To reduce the number of possible inferences (3), the sys-
tem is allowed to select which clauses from the input it
wishes to use in generating inferences. We therefore par-
tition the system into two disjoint clause sets:

selected: initially empty, the set the system has selected

available: input clauses, and inferences from selected

13

4 System Description

The system first uses the VAMPIRE ATP to clausify an input
problem, obtaining a set of input clauses — those related to
the conjecture are tracked and marked as such to enable the
system to be goal-directed if it chooses. Any other reason-
able clausifier could be used here.

Then, the system is allowed to choose one clause at a
time from available and move it to selected: any infer-
ences from the new clause with others in selected are then
added to available. The agent’s action-selection policy may
be slightly randomised (e.g. ε-greedy or Boltzmann selec-
tion [8]): in training this gives an exploration effect, in test-
ing this allows for multiple distinct clause sets to be pro-
duced: multiple proof attempts can then be run in parallel.

After a fixed number of clause selections, the process is
halted and VAMPIRE runs in its default mode for a short
time on all the original clauses, plus the generated clauses
in selected. Clauses are ordered in such a way that VAM-
PIRE prefers those in selected before those in available. If
clauses in selected are used in proof search, a reward sig-
nal is propagated, and the agent may learn from its experi-
ence. A mild punishment signal is propagated for clauses
that were selected but not used.

The particular reinforcement algorithm used presently is
Q-learning [13], with a graph convolutional network [5] ap-
plied to the entire clause set’s structure as a Q-function ap-
proximator.

5 Future Work

As well as completing the implementation and evaluation of
the system, there are several possible directions for future
work:

• Different (neural) function approximators. The exist-
ing neural architecture is known to perform well on
similar problems, but there is much to explore here.

• Other learning approaches: modern approaches such
as A3C [7] claim significantly better performance on
some domains.

• Suitable VAMPIRE modes for this environment, and
the effect the underlying ATP algorithm has on learned
policy.

• Modified reward functions: appearing in the proof
is not the only way a clause may be useful within
VAMPIRE. For example, if a clause subsumes a large
section of search space, it may still increase proof
search performance despite not appearing in the even-
tual proof. Possible future rewards might include the
number of subsumed clauses, and the time taken for
the ATP to run.

• There are a significant number of hyper-parameters
within this system, all of which may be tuned to in-
crease system performance on a given benchmark set.

References

[1] Kryštof Hoder, Giles Reger, Martin Suda, and An-
drei Voronkov. Selecting the selection. In Inter-
national Joint Conference on Automated Reasoning,
pages 313–329. Springer, 2016.

[2] Jan Jakubův and Josef Urban. ENIGMA: efficient
learning-based inference guiding machine. In Inter-
national Conference on Intelligent Computer Mathe-
matics, pages 292–302. Springer, 2017.

[3] Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285,
1996.

[4] Cezary Kaliszyk, Josef Urban, Henryk Michalewski,
and Miroslav Olšák. Reinforcement learning of theo-
rem proving. In Advances in Neural Information Pro-
cessing Systems, pages 8822–8833, 2018.

[5] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[6] Sarah Loos, Geoffrey Irving, Christian Szegedy, and
Cezary Kaliszyk. Deep network guided proof search.
arXiv preprint arXiv:1701.06972, 2017.

[7] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–
1937, 2016.

[8] Warren B Powell and Ilya O Ryzhov. Ranking and
selection. Chapter 4 in Optimal Learning, pages 71–
88, 2012.

[9] Michael Rawson and Giles Reger. Dynamic strategy
priority: Empower the strong and abandon the weak.
AITP 2018, 2018.

[10] Giles Reger and Martin Suda. Measuring progress
to predict success: Can a good proof strategy be
evolved? AITP 2017, 2017.

[11] Alexandre Riazanov and Andrei Voronkov. The de-
sign and implementation of VAMPIRE. AI communi-
cations, 15(2, 3):91–110, 2002.

[12] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
Premise selection for theorem proving by deep graph
embedding. In Advances in Neural Information Pro-
cessing Systems, pages 2786–2796, 2017.

[13] Christopher JCH Watkins and Peter Dayan. Q-
learning. Machine learning, 8(3-4):279–292, 1992.

14

Chained Strategy Generation: A Technique for Balancing Multiplayer
Games Using Model Checking
William Kavanagh Dr Alice Miller

W.Kavanagh.1@research.gla.ac.uk, Alice.Miller@glasgow.ac.uk
University of Glasgow

Abstract: Game balancing is the task of ensuring that a game is both fair to its player and interesting to
play. Many games offer players a choice of disparate game material (such as cars, characters or weapons) and
ensuring that these materials are all balanced is a notoriously complex task. We introduce a new technique
called Chained Strategy Generation (CSG) that uses probabilistic model checking and strategy synthesis to
model high-level competitive play to represent games being played over a long period of time. We then apply
CSG to a case study to show how it can be used to help describe a game that is cyclically balanced, ensuring
players have a number of impactful decisions, which will lead to more interesting gameplay.

1 Introduction

An abstraction of a game known as the metagame [1], de-
scribes the evolving state of play between the strategies
and materials offered to players. Games are often designed
around a set of game material – such as heroes, cards, ve-
hicles or weapons – which players can choose from at the
start of the game. A game is considered well balanced if
it has a healthy metagame, where a variety of strategies for
different materials are popular over a long period of time,
with new strategies becoming prominent when they are ef-
fective against the current meta. In order to achieve this,
the ways of playing need to form an intransitive relation-
ship, similar to Rock Paper Scissors. Rock Paper Scissors
is frequently used as the foundation for game design where
all materials are organised in small cycles with each ma-
terial unit able to beat the next with a high probability. A
relationship where one unit is designed to beat another may
make a game seem imbalanced, but as part of a network
of similar relationships where all of a unit’s drawbacks are
compensated by advantages the whole game is balanced. In
a system like this quantifying which materials are best is
not possible, one must consider what materials are best at
a given point in time. Materials are judged based on what
strategies are popular (or what is the current meta) and how
well they can perform against them.

We have devised a mechanism for representing a full
metagame representation which can be analysed to inform
design decisions about which materials are too powerful
and which are too weak. To do this, we use the proba-
bilistic model checker Prism [3] to generate strategies using
strategy synthesis [2]. By repeatedly doing this we induc-
tively define a set of effective strategies, a process we call
chained strategy generation (CSG). By studying these ef-
fective strategies, the materials that are used by them and
how well other materials can perform against them we can
make judgements on the comparative strengths of the ma-
terials. We also identify dominant strategies and dominated
material, without the need to consider the full strategy sets
of all material units.

2 Methodology

Let G be a two-player game between players {p1, p2} and
M the set of material. We define a strategy in terms of
players and material such that θ(p,m) is a strategy for
player p using material m ∈ M . Define a particular strat-
egy θnaive(p,M) which chooses material randomly with a
uniform distribution at the start of the game and chooses
actions randomly with a uniform distribution of all ac-
tions available. Let θp→p′ be a function that maps a strat-
egy for player p into the equivalent strategy for p′ and let
Pwin(1)(θ(p,m), θ′(p′,m)) be the probability that strategy
θ(p,m) beats θ′(p′,m).

By modelling the game as a Markov Decision Process
where one player has a fixed strategy and the other is rep-
resented as having a nondeterministic choice of actions, we
can use model checking to generate the strategy with the
highest probability of winning against the fixed strategy,
i.e. the optimal counter. For example, given some strategy
θ(p,m), we can use model checking to find the strategy
θ′(p′,m) for which Pwin(2)(θ(p,m), θ′(p′,m)) is a max-
imum. This is equivalent to finding the adversary which
maximises the probability of reaching a state in which p2
wins. We denote the strategy generated by this process
counterp′(θ(p,m)).

CSG is described by:

1. For m ∈M :
θ∗(p1,m) := counterp1(θnaive(p2,M))

2. The meta at iteration 0 (θ0) is θ∗(p1,m) for which
Pwin(1)(θ

∗(p1,m), θnaive(p2,M)) is maximum
3. k := 1
4. For m ∈M :
θ∗(p1,m) := counterp1(θ

(k−1)
p1→p2)

5. θ∗(p1,m) for which Pwin(1)(θ
∗(p1,m), θ

(k−1)
p1→p2) is

maximum is the meta at iteration k (θk)
6. If θk 6= θj for all j < k : k++; Goto step 4

Else: Quit

CSG terminates under one of two conditions, either a
dominant strategy has been identified – a strategy best

15

played against by itself – or a cycle of effective non-
dominant strategies have been found. A dominant strat-
egy suggests that a game is poorly balanced and easily
solved, players would soon converge upon the dominant
strategy and repeated plays of the game are likely to in-
volve both players employing the dominant strategy. In a
well-designed game it would take a long time for CSG to
terminate and most material units would at some point be
used by a meta strategy.

3 Results

We implemented CSG on a simple case-study of a 2-player
turn-based game where players choose a pair of characters
from a choice of 5: a Knight, an Archer, a Wizard, a Rogue
and a Healer. These characters are all qualitatively differen-
tiated. The Archer can target multiple opponents, the Wiz-
ard can stun an opponent, preventing them from acting on
their next turn, the Rogue can execute low-health opponents
and the Healer will increase either their current health value
or that of an ally upon successfully attacking an opponent.
All characters have have a maximum health value, an accu-
racy value and a damage value, the healer also has a heal
value – the value by which they increase an ally’s health –
and the rogue also has an execute value – the value at which
they can do damage equal to the opponent’s current health.
These 17 attributes are the configuration of the game. A
coin is flipped to decide who goes first then players take it
in turns to attempt one action from any of their alive charac-
ters targetting any of their opponent’s alive characters. Our
aim is to assess how balanced the materials are for a given
configuration and, if needed, to suggest what to change.

Figure 1: CSG performed on a poorly balanced game.

Character initial K A W R H
Health 9 6 7 7 7

Accuracy 0.5 0.85 0.75 0.65 0.7
Damage 4 2 2 3 2

Execute/Heal - - - 6 2

Table 1: A configuration for the case study

One way the results of CSG can be analysed is to plot the
probabilities of each material played maximally against the
meta strategies. This is shown in fig. 1 for the configura-
tion in table 1. A dominant strategy is clearly identified for
a Wizard-Rogue pair (WR). Because our case study uses
teams of material, we study the aggregate win chance for
each character when all 10 pairs play against each other us-
ing their final strategies. Ideally these values would be close
to 0.5 to indicate that each pair is as likely to win as each
other overall. The results for each character are shown in
table 2. It is clear that the Archer is too weak and should
be made stronger whilst the Rogue is too strong and should
be brought more in line with the other characters. We re-
configured the Archer to have 7 health and 0.9 accuracy
and the Rogue to have an execute range of 5 and accuracy
of 0.6. The result of this change is that average win rates
for all characters are more uniform as shown in table 2 and
no dominant strategy is identified. This shows how effec-
tively CSG informs game design in spite of the sensitivity
of metagame development.

Char. initial K A W R H
Former 0.497 0.404 0.5 0.602 0.497
Updated 0.478 0.521 0.484 0.514 0.504

Table 2: Table comparing the aggregate win probabilities
for all characters between the two configurations to 3dp.

4 Conclusion

We have shown how CSG allows for analysis of a game’s
balance and can be used to inform better game configura-
tions. By predicting the direction of the metagame, CSG al-
lows game designers to compare material units in terms of
how viable they are throughout the game’s lifespan, rather
than at a single point in time.

Future work will involved the development of an au-
tomated tool that analyses and reconfigures games itself,
until it finds the optimal configuration within user defined
bounds. This tool has the potential to be highly useful for
game development and to furthering understanding of com-
plex game systems. Ultimately, by ensuring the material
is developed to be fair, CSG will help designers to make
games which are more interesting and more fun to play.

References

[1] M. Debus. Metagames: on the ontology of games out-
side of games. In Proceedings of the International Con-
ference on the Foundations of Digital Games, 2017.

[2] Ruben Giaquinta, Ruth Hoffmann, Murray Ireland, Al-
ice Miller, and Gethin Norman. Strategy synthesis
for autonomous agents using PRISM. pages 220–236,
2018.

[3] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
Proc. Int. Conf. Computer Aided Verification (CAV’11).

16

Using model checking in the design of a sensor network protocol
Ivaylo Valkov Alice Miller

University of Glasgow

Abstract: We investigate how the PRISM and Alloy model checkers can be used in the design of a sensor
network communication protocol. We introduce the two model checkers and illustrate how Alloy can be used
to specify and analyse an existing communication protocol WirelessHART. We then propose how PRISM and
Alloy will be used in the design of a new protocol, Ctrl-MAC, which is currently being developed as part of
an EPSRC funded program grant, S4: Science of Sensor System Software. The aim is to exploit the strengths
of each approach to allow us to select parameters and configurations to optimise the protocol.

1 Introduction

Testing is the most commonly used method for validation
of software systems. However testing alone can not pro-
vide guarantees of complex system behaviour. Concurrent
systems, such as communication protocols, are particularly
hard to verify using testing. In such systems we want to
prove temporal properties such as: “when a message is sent
it will eventually arrive at its destination”, or “if a message
is sent from a component then it will receive an acknowl-
edgement before the timeout period has elapsed”.

Formal methods are commonly used for the verification
of software and hardware systems. They comprise a range
of techniques based on mathematics and logical reasoning,
and are important in the creation of more robust and reli-
able systems. One such technique is model checking. We
propose using model checking in the design of a new sen-
sor network protocol. We can identify and prove properties
of the protocol as it is developed - and adjust parameters
accordingly. This differs from the common use in which
properties of an existing protocol are verified, with no op-
tion to modify the protocol.

2 Model checking

Model checking is the process of creating a formal model
of a software or hardware system and then using a soft-
ware tool, called a model checker, to automate the search
for proofs of or counterexamples to some properties of the
system. The syntax and structure of the model that is being
created depends on the choice of model checker, as each
model checker relates a model to the underlying logical rea-
soning and logical concepts in a different way.

PRISM [5] is a probabilistic model checker that allows
for the verification of a number of Markov chain variants,
like Discrete Time Markov Chains (DTMCs) and Markov
Decision Processes (MDPs). It has been used to formally
verify quantitative properties of many network protocols in-
cluding the device discovery phase of Bluetooth [2] and the
CSMA/CA mechanism of the 802.15.4 based Zigbee stan-
dard [3].

The Alloy Analyzer (Alloy) is a model checker that uses
a simple and powerful first-order logic language for spec-

ifying models which are then analysed with off-the-shelf
SAT solvers. This allows models to be created in an it-
erative and incremental manner: they can be verified, in-
spected, evaluated and modified during multiple iterations.
Furthermore, Alloy allows the configuration of the setting
on which properties are being verified to be easily changed.
For example, in the context of protocol analysis, models are
often confined to a small fixed number of devices, which
are placed in a particular configuration which should best
exhibit the property under verification. Using Alloy a fam-
ily of configurations can be analysed simultaneously.

Alloy has been used in the past to provide formal proofs
for a variety of network protocols and to find security flaws
in others. For example it has been used to formally verify
five web security mechanisms that relate to user-supplied
information [1]. In [4] Alloy is applied directly to model
web protocols in a novel security analysis technique. In
Section 3 we illustrate the use of Alloy for modelling an
existing wireless protocol and in Section 4 we propose its
use, along with PRISM, in the design of a new protocol.

3 An example: WirelessHART

We have investigated the use of Alloy for protocol analy-
sis within the context of an existing protocol, namely the
WirelessHART protocol, based on the IEEE 802.15.4 pro-
tocol standard.

WirelessHART is a short-range network protocol whose
main goal is to perform low-cost communications over a
network in such a way as to preserve battery life. It is a cen-
tralised protocol with one device acting as the personal area
network (PAN) coordinator for the network. The protocol
distinguishes between reduced function devices (RFDs),
that are only able to gather and send data, and full func-
tion devices (FFDs), that are capable of transferring data
from other nodes. All of the data is gathered at the PAN co-
ordinator, which must be an FFD. Fig 1 shows an example
of such a network.

As an illustration, we present below a small fragment
of Alloy in which we declare the basic entities (atoms) that
will be used in the model. These are referred to as signa-
tures (sig).

17

/ / There i s n ’ t a d e v i c e t h a t i s n o t
/ / a RFD or FFD
a b s t r a c t s i g Device { }
/ / D e v i c e s are e i t h e r reduced f u n c t i o n
/ / or f u l l f u n c t i o n
s i g RFD, FFD ex tends Device { }

Figure 1: Network consisting of 3 FFDs and 4 RFDs. One
device is not connected to the network.

After specifying the types of devices that exist we need
to define how they relate in a network. To do so we cre-
ate a Network signature which contains a number of nested
relations. The connected relation is used to specify which
devices belong to a given network. This is particularly use-
ful when modelling scenarios where devices join or leave a
network.

s i g Network {
c o n n e c t e d : s e t Device ,
P a n C o o r d i n a t o r : FFD & connec t ed ,
managedBy : (c o n n e c t e d − P a n C o o r d i n a t o r)

−> (FFD & c o n n e c t e d) ,
/ / RFDs ca nn o t r e c e i v e da ta
r e c e i v e F r o m : FFD −> Device

}{
/ / c o n n e c t e d d e v i c e s are r e a c h a b l e
/ / from t h e PanCoord ina tor
c o n n e c t e d i n P a n C o o r d i n a t o r .∗ r e c e i v e F r o m
/ / managedBy : i n v e r s e o f
/ / r ece i veFrom
managedBy = ˜ r e c e i v e F r o m

}
The PanCoordinator relation is used to specify a single

device which acts as a central device for the network. The
relations: managedBy and receiveFrom denote immediate
connections between two devices. Finally, the connected
relation defines that to be connected to a network a node
means to be reachable from the central node.

In order to ensure that devices cannot send data to them-
selves, we add an additional constraint to the model:

f a c t { a l l nw : Network | a l l d : Device |
d−>d n o t i n nw . r e c e i v e F r o m }

We can now use Alloy to generate an instance of this model
for a defined number and type of devices. Fig 1 is an ex-
ample of such an instance. Manual inspection demonstrates
that there are no self-related devices and that connected de-
vices are appropriately marked.

4 Model checking for sensor network protocol design

PRISM is an obvious formalism for modelling communi-
cation protocolols and our wirelessHART example demon-
strates the suitability of Alloy in this context. We propose to
model and analyse a wireless communications protocol that
is currently under development, in both PRISM and Alloy.
Ctrl-MAC is a sensor network communication protocol that
is being developed as part of the Science of Sensor Systems
Software (S4) project. This is an EPSRC-funded project
held by the University of Glasgow with the Universities of
St Andrews and Liverpool and Imperial College. Ctrl-MAC
is similar to WirelessHart in that they both use time divi-
sion multiple access governed by a central gateway node.
Its main goal is to provide reliable communication within
a given time constraint for Cyber Physical Systems (CPS)
such as water distribution systems and electric grids. By
using model checking throughout the development of the
protocol we will inform its design by choosing parameters
and configurations to optimise performance.

References

[1] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and
D. Song. Towards a formal foundation of web secu-
rity. In 2010 23rd IEEE Computer Security Founda-
tions Symposium, pages 290–304, 2010.

[2] M. Duflot, M. Kwiatkowska, G. Norman, and
D. Parker. A formal analysis of Bluetooth device dis-
covery. Int. Journal on Software Tools for Technology
Transfer, 8(6):621–632, 2006.

[3] M. Fruth. Formal Methods for the Analysis of Wire-
less Network Protocols. PhD thesis, Oxford University,
2011.

[4] A Kumar. A lightweight formal approach for analyzing
security of web protocols. In Proc. RAID 2014, pages
289–298.

[5] M. Kwiatkowska, G. Norman, and D. Parker. Prism
4.0: Verification of probabilistic real-time systems. In
CAV 2011, pages 585–591.

18

Exploring Secure Service Migration in
Commercial Cloud Environments

Gayathri Karthick, Dr.Florian Kammueller, Dr.Glenford Mapp, and Dr.Mahdi Aiash

School of Science and Technology, Middlesex University, Email: gk419s@live.mdx.ac.uk, F.kammueller@mdx.ac.uk„ G.Mapp@mdx.ac.uk, M.Aiash@mdx.ac.uk

Mobile users are making more demand of future networks.
They want to access the applications such as Video and audio
which involved the allocation of network resources. In addi-
tion, Commercial Providers are actively advertising their re-
sources such as CPU, Memory, Storage, and Network which
must be allocated appropriately according to the capacity of
Cloud Servers. The advent of virtual machine technology for
example, VMware, Container technology, such as Docker and
Kubernetes, have made the migration of services between dif-
ferent Cloud systems possible. This enables the development
of mobile services that can ensure low latency between servers
and their mobile clients resulting in better Quality of Service.
Though there are many mechanisms in place to provide support
for mobile services, a key component that is missing is the de-
velopment of security protocols that allow the safe transfer of
servers to different Cloud environments. This lack of security
has resulted in technical failures, service disruption, and un-
availability that directly affect the Cloud Provider’s profit. This
paper proposes a new Resource Allocation Security Protocol for
Secure Service Migration. The new protocol has been verified
in Avispa and Proverif and is being implemented in a new Ser-
vice Migration Prototype in order to securely manage, allocate
resources in Commercial Cloud Environments.

Mobile services, Security protocol, Vehicular Cloud, Avispa and ProVerif.

1. Introduction

Cloud computing facilitates the migration of data and ser-
vices. This gives many incentives for data owners to mi-
grate their data and services to Cloud Storage Platforms at
low cost. One aspect of the research on mobile services that
has been inadequate is support for security. In particular, it
is important that servers do not end up being hosted on un-
safe Cloud infrastructure which can hamper service delivery
to mobile clients and also Clouds do not end up hosting mali-
cious servers which can damage Cloud infrastructure. In our
first attempt, using Avispa tool, we showed that the proposed
protocol is safe under normal operation(1); In our second at-
tempt, using ProVerif, we showed that the proposed protocol
succeeds in three significant security properties namely: Se-
crecy, Authentication and Key exchange(2). In addition, we
are building a Service Migration Prototype for service mi-
gration systems using Docker and Kubernetes to verify the
proposed protocol.The rest of the paper is organized as fol-
lows. Section II describes background methodologies for our
solution approach. Section III details Resource Allocation
Algorithm while Section IV shows the design for the Service
Migration Prototype. The paper concludes with Section V.

2. Solution Approach
In our new approach, we are working on secure service mi-
gration between Commercial Cloud infrastructures. The Re-
source Allocation Security Protocol (RASP) has been devel-
oped to support mobile services that allow the safe transfers
of resources to different Cloud environments. The key com-
ponents are Server SA which is presently located on Cloud
CA. SA receives an advertisement from Commercial Cloud
CB and therefore needs to consider whether the migration
is feasible and can be done securely. The final key compo-
nent is a Registry which contains all the records of Cloud
Resources.The protocol is broken into four stages to clarify
the necessary operations involved in secure migration. (3).

1. Stage1: Advertisement: Cloud CB actively advertises
its resources which is picked up by server SA on Cloud
CA.

2. Stage2: Authentication of SA and CB as well as
migration request and response: Server SA first re-
quests the Registry to authenticate Cloud CB and the
resources it holds. Once it receives the approval from
the Registry, it sends a migration request to Cloud CB.
Cloud CB then requests the Registry to authenticate
server SA and the resources it requires. Once this is
verified, Cloud CB sends a positive migration response
to server SA.

3. Stage3: Migration transfer: Server SA sends a mes-
sage to Cloud CB to begin the migration transfer.
Cloud CB begins the transfer and signals server SA
when the transfer is completed.

4. Stage4: Update of New service location to the Reg-
istry: The new service SB is now running on Cloud CB
and informs the Registry that it has been successfully
migrated.

2.2 Results using Proverif. In our second attempt, by using
symmetric session key(Ksc), the requested service is trans-
ferred to the new location CB. As we mentioned in the first
attempt, nonces are used to protect the session between SA
and CB. However,in the second attempt(Fig.12), the Ksc is
used to do the actual transfer.Hence, this is a more secure
mechanism than using nonces for the actual data transfer .

4.Resource Allocation Algorithm
The RASP algorithm has two key components for each Cloud
Systems. one is total resources in terms of CPU, Storage,

19

Fig. 1. Proverif shows the results that RASP can preserve the secrecy and key
exchange.

Fig. 2. Proverif shows the results that RASP can preserve the authentication and
key exchange.

Network and Memory which is fixed accordingly to the ca-
pacity of the system. The second component is available re-
sources which can be allocated to migrating services. Each
Cloud Systems advertise their total and available resources to
mobile services. In order to efficiently migrate the services,
the first step is to verify whether its feasible to migrate based
on the server requirements and the second step is to ensure
that the service migration to the new Cloud Systems can be
securely achieved. Once the server has verified that it is fea-
sible to migrate the service, then RASP protocol is invoked to
do the transfer. In the RASP protocol, the Registry also con-
tains information about the capacity and available resources
on the Cloud and thus can verify that the new Cloud System is
a Valid Cloud and has the resources to host the server. In ad-
dition, according to the RASP protocol the server running on

Fig. 3. Prototype Design shows the new Service Migration Prototype.

the new Cloud, will inform the Registry that the service mi-
gration is completed and therefore the Registry will update
its Resource Database for the previous and the new Cloud
Systems.

5.Service Migration Prototype
The new prototype has 4 layers and is an implementation
of the service framework developed by Sardis (4). The first
layer is an Application Layer which runs on the mobile node
and invokes the service through the Service Management
Layer(SML) giving the service name, service id and the re-
quired QoS. The SML administers the service and is respon-
sible for Service Subscription and Service Delivery. The
SML runs RASP and uses Docker and Kubernetes to do the
migration. The Service Connection Layer monitors the con-
nection between the mobile node and the server and reports
to the SML.This is shown in Fig.2.
The first application that will use the framework is to pro-
vide storage for mobile applications using the FUSE system.
However, the new system will divide the FUSE system in two
parts. The file system which runs on the mobile node and the
storage system which will be implemented on network mem-
ory service.Hence, as the mobile node moves around its data
is moved to the nearest network memory server to maintain
low latency and provide a good QoS.

6.Conclusions and Future work
Based on the protocol presented, which was verified us-
ing Proverif, VANET systems would be the best option on
which to implement the Resource Allocation Security Proto-
col. Hence, the protocol will be tested on a VANET test bed
developed by Middlesex University on its Hendon Campus.

Bibliography
1. Gayathri Karthick, Glenford E Mapp, Florian Kammueller, and Mahdi Aiash. Exploring a

security protocol for secure service migration in commercial cloud environments. 2017.
2. Gayathri Karthick, Glenford Mapp, Florian Kammueller, and Mahdi Aiash. Formalization and

analysis of a resource allocation security protocol for secure service migration. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Com-
panion), pages 207–212. IEEE, 2018.

3. K Kammueller, Glenford Mapp, Sandip Patel, and S Abubaker. Engineering security protocols
with model checking-radius-sha256 and secured simple protocol. In Proceedings of the 7th
International Conference on Internet Monitoring and Protection, 2012.

4. Fragkiskos Sardis, Glenford Mapp, Jonathan Loo, Mahdi Aiash, and Alexey Vinel. On the
investigation of cloud-based mobile media environments with service-populating and qos-
aware mechanisms. IEEE transactions on multimedia, 15(4):769–777, 2013.

2
20

UBiSKt-Prolog: an automated theorem prover for a bi-intuitionistic
modal logic with universal modalities

Giulia Sindoni1 Brandon Bennett2

1 School of Computing, University of Leeds, Leeds, LS2 9JT, UK scgsi@leeds.ac.uk
2 School of Computing, University of Leeds, Leeds, LS2 9JT, UK B.Bennett@leeds.ac.uk

Abstract: We present a tableau-style automated theorem-prover for the bi-intuitionistic modal logic with
universal modalities, UBiSKt. The prover has been implemented using Prolog.

1 Introduction

We present an automated tableau-style theorem-prover for
the logic UBiSKt, implemented within Prolog. UBiSKt
is a bi-intuitionistic modal logic, which extends the logic
BiSKt [4] with universal modalities [3, 2]. The semantics
of UBiSKt is based on a pre-ordered set (U,H). Four
modalities �, �, �, ♦ are interpreted with respect to an ad-
ditional relation R ⊆ U × U . The universal modalities A
(“everywhere”) and E (“somewhere”), are interpreted with
respect to the universal relation U × U . Under a certain in-
terpretation, (U,H) can be seen as an undirected graph, or,
more generally, as a hypergraph, and formulae in the logic
can be regarded as referring to subgraphs. UBiSKt has
been considered in the context of qualitative spatial reason-
ing over discrete space. Indeed, a variety of spatial rela-
tions between subgraphs can be defined within UBiSKt,
such as external connection between two subgraphs, or a
subgraph being a core part or a peripheral part of a second
one [3, 2]. Given the connection between this logic and the
discipline of mathematical morphology, these spatial rela-
tions are considered with respect to change in level of de-
tail [2]. Various extensions of UBiSKt can be obtained,
as S4-UBiSKt, whereR is a pre-order, and S5-UBiSKt
that can be seen as a logic for graphs and hypergraphs par-
titions, following the approach from [1].

2 The tableau calculus and its implementation

TabUBiSKt is a signed tableau calculus with internalised
Kripke semantics, extending TabBiSKt [4] with rules for
universal modalities. Expressions in the calculus can be
of the form w : Sϕ, ⊥, wHv, wRv, where S denotes a
sign, either T for true or F for false, and w, v are labels
from a fixed denumerable set Label in the tableau language,
whose intended meanings are elements of U . A pair of
rules is associated with each logical connective and opera-
tor, one handling truth and the other handling falsity. As any
tableau-style calculus, TabUBiSKt is a refutation proce-
dure. If we want to know whether a formula ϕ is a theorem,
then the input to the calculus is the signed labelled formula
w : F (ϕ). If a model can be build from this then ϕ is not
a theorem in UBiSKt. Otherwise a closed tableau will be
built, meaning that there is no model of the initial assump-
tion w : F (ϕ).

Rules are of five different kinds: closure rules, deriv-
ing contradiction and closing a branch; non-creating and
non-branching rules, adding a new leaf to the branch and
adding truth (or falsity) of a formula at a world; branching
rules, splitting the branch in two different branches; creat-
ing rules, adding leaves with new labels, names for worlds
that are new in the tree; and relational rules, describing the
properties of H and R. Table 1 provides with some exam-
ples of tableau-rules in TabUBiSKt and the correspond-
ing implementation in Prolog.

The proof procedure is implemented by a recursive algo-
rithm. Rules will be applied until no “active” formula with
a logical connective or operator remains. For some of the
rules, we adopt a non-destructive-tableau approach: once a
formula (or group of formulae) that matches the premise of
a rule has been analysed by that rule and the correspond-
ing conclusion has been added to the branch, the formula-
premise is kept in the branch. However the formula will not
be analysed again by the same rule, as the conclusion is al-
ready present it the branch. A non-destructive approach is
preferable for the rules handling truth of a box, and falsity
of a diamond. For example, consider the rule handling truth
of the universal box A. It needs to be applied every time a
new label for a new world is added to the tree. The fact the
rule will be blocked if the conclusion of the rule is already
present in the branch, will stop the program from applying
the rule over again, as this might cause the program to loop.

3 Conclusion

Our initial work has indicated many possibilities for en-
hancing tableau-based reasoning in this kind of modal cal-
culus, by constraining the ordering of rule applications
and by special handling of formulae relating to the rela-
tional structure of possible worlds. A further challenge
is to automate a theorem-prover for the S5 extension of
UBiSKt, where graphs and hypergraphs partitions can be
represented. We are also interested in comparing our Pro-
log implementation with an alternative implementation of
TabUBiSKt in MetTel [5], which we are also working
on.

21

w : T (ϕ), w : Fϕ
(⊥)⊥

refute(Formulae, [tf_close]) :-
select(W:(Phi=t), Formulae, Rest),
member(W:(Phi=f), Rest), !.

w : T (Aϕ), v : Sψ
(T A)

v : Tϕ

refute(Formulae, [t_ubox| Rules]) :-
select(_W:(ubox(Phi)=t),

Formulae, Rest),
member(V:(_), Formulae),
\+(member(V:(Phi=t), Rest)),!,
refute([V:(Phi=t) | Formulae],

Rules).

w : F (¬ϕ)
v fresh on the branch (F¬)

H(w, v) v : Tϕ

refute(Formulae, [f_nneg | Rules]) :-
select(W:(nneg(Phi)=f),

Formulae, Rest),
!,

V= @(nneg(Phi),S),
refute([h(W,V), h(V,V),

V:(Phi=t) | Rest],
Rules).

Table 1: The top row shows the branch closing rule used to derive contradiction. The middle row gives the rule handling
the truth of the universal box, A. The bottom row gives the rule handling the falsity of the intuitionistic negation ¬.

References

[1] T. Shaheen and J. G. Stell. Graphical partitions
and graphical relations. Fundamenta Informaticae,
165(1):75–98, 2019.

[2] G Sindoni, K. Sano, and J. G. Stell. Axiomatizing
discrete spatial relations. In International Conference
on Relational and Algebraic Methods in Computer Sci-
ence, pages 113–130. Springer, 2018.

[3] G. Sindoni and J. G Stell. The logic of discrete quali-
tative relations. In COSIT’17 proceedings, volume 86,
pages 1:1–1:15. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2017.

[4] J.G. Stell, R.A. Schmidt, and D. Rydeheard. A bi-
intuitionistic modal logic: Foundations and automa-
tion. J. Logical and Algebraic Methods in Program-
ming, 85(4):500–519, 2016.

[5] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi.
Mettel2: Towards a tableau prover generation platform.
In PAAR@ IJCAR, pages 149–162, 2012.

22

Using Contexts in Tableaux for PLTL: An illustrative Example
Alex Abuin1 Alexander Bolotov2 Unai Diaz de Cerio1 Montserrat Hermo3

Paqui Lucio3

1 Ikerlan Technology Research Centre, Mondragon, Spain {aabuin,udiazcerio}@ikerlan.es
2 University of Westminster, London, UK. A.Bolotov@westminster.ac.uk

3 University of the Basque Country, San Sebastián, Spain.
{montserrat.hermo,paqui.lucio}@ehu.es

Abstract: The use of contexts in the one-pass tableau eliminates the required test that two-pass tableau make
in order to check whether all eventualities are fulfilled or not. In this paper, we provide a succinct description of
both: two-pass and context-based (one-pass) tableau, and illustrate the role that contexts play via an example.

1 Introduction

Various tableaux techniques have been proposed for Propo-
sitional Linear-Time Temporal Logic (PLTL) (see [3]).
Formulae of PLTL are constructed over a set of propo-
sitional symbols Prop, the constants T and F, by using
the classical connectives (¬,∧,∨) and the temporal oper-
ators: ◦, �, ♦, U and R. Formulae of the type ♦ϕ and
ϕUψ are called eventualities, and formulae of the type
�ϕ are called always-formulae. Semantic structures are
M = s0, s1, s2, s3, . . . , i.e. discrete, linear sequence of
states, isomorphic to natural numbers. Each state, si, 0 ≤ i,
is the set of atoms that are true at the i-th moment of time.
The relation |=, where 〈M, i〉 |= ϕ means that ϕ is true
in the model M at the (state) index i ∈ N, is inductively
defined in the usual way for classical constants, atoms and
connectives. For the two basic temporal connectives: (1)
〈M, i〉 |= ◦ϕ iff 〈M, i+1〉 |= ϕ and (2) 〈M, i〉 |= ϕUψ iff
there exists j ≥ i such that 〈M, j〉 |= ψ and 〈M, k〉 |= ϕ
for every k, i ≤ k < j. The semantic of temporal con-
nectives ♦,R and � is derived based on the abbreviations:
♦ϕ ≡ TUϕ, �ϕ ≡ ¬♦¬ϕ and ϕRψ ≡ ¬((¬ϕ)U(¬ψ)).
If, for a formula ϕ, there exists a model, M , such that
〈M, 0〉 |= ϕ then ϕ is satisfiable.
The core idea of tableaux methods for PLTL is to gener-
ate all possible pre-models of the input set of formulae and
to check whether eventualities are fulfilled on them. Two-
pass tableaux techniques, based on [4], require two phases
to perform this test. In the first phase, a graph of states,
which represents all possible pre-models, is constructed and
loaded in memory. In the second phase, for each state s
that contains some eventualityϕUψ, a graph-theoretic algo-
rithm should look for a state, reachable from s, that satisfies
ψ. Two-pass tableaux methods fail to maintain the classical
correspondence between tableaux and sequents that asso-
ciates a sequent proof with the closed tableau. To avoid the
second phase and, hence, to keep the ability of generating
(sequent) proofs from tableaux, in [1, 2], dual systems of
tableaux and sequents were presented. The tableau system
in [2] is proved to be sound, refutationally complete, and
terminating.

2 Two-pass and Context-based Tableaux

The one-pass tableau method [2] adds to the standard
tableau rules (that are used in the first pass of the two-pass
approach [4]) the so called β+-rules. These use the con-
text to expand a branch where the fulfilment of the selected
eventuality is delayed. The standard tableau rules can be
written as decomposition rules that map a set of formulae
into a set of sets of formulae. Some examples are

(∨) Φ ∪ {ϕ ∨ ψ} −→ {Φ′ ∪ {ϕ},Φ′ ∪ {ψ}}
(�) Φ ∪ {�ϕ} −→ {Φ′ ∪ {ϕ,◦�ϕ}}
(U) Φ ∪ {ϕUψ} −→ {Φ′ ∪ {ψ},Φ′ ∪ {ϕ,◦(ϕUψ)}}

where the Φ′s are, depending on the approach, equal to Φ
or Φ ∪ {χ} where χ is the decomposed formula in each
case. In [4] these rules are applied to the set of formulae,
starting with the initial set of sets {Φ0}, where Φ0 is the
set of formulae to test for satisfiability. The decomposed
formulae are marked, but not discharged, because they are
needed for the fulfilment test (hence, in rules, the decom-
posed formula is kept in Φ′). The process, for each set
Φ, stops when either Φ contains a contradiction (i.e. F or
{φ,¬φ} for some φ), or Φ or every non-marked formula
is elementary i.e. of type ◦ϕ or literals (atoms or negated
atoms). Contradictory sets do not have successors. Sets of
elementary formulae are called pre-states, to which the rule
(◦) Φ −→ {ϕ | ◦ϕ ∈ Φ} is applied for jumping to the next
state, hence producing the successors of the initial state. In
[2] the same process is applied except for discharging the
decomposed formula (hence Φ′ = Φ in the above rules,
and for using the additional (U)+ rule:
∆ ∪ {ϕUψ} −→ {∆ ∪ {ψ},∆ ∪ {ϕ,◦((ϕ ∧ ¬∆′)Uψ)}}
where ∆ is the so-called context and ∆′ is the conjunction
of all elements of ∆ except the always-formulae. The con-
text of an eventuality is simply the set of formulae that ‘ac-
companies’ the eventuality in the label of the state, and the
rule use it to force its fulfilment. When (U)+ is applied to
a node labelled by a set of formulae ∆ ∪ {ϕUψ}, then the
context is ∆. Therefore, if ψ is not satisfied, then ¬∆′ also
belongs to the labels of that state. This means that the con-
text, ∆, of the previous label is not repeated. As ∆′ is a

23

finite set/conjunction of formulae and ¬∆′ is the finite dis-
junction of the negations of the formulae in ∆′, the (U)+

rule forces at least one formula in ∆ to be falsified during
the transition from the previous state to the subsequent one
(whenever ψ is not satisfied). The (U)+ rule allows us to
avoid the construction of an auxiliary graph that is used (in
the second pass in two-pass tableau) to determine whether
all eventualities are satisfied or not.

3 The Role of Contexts

In the construction of all possible models of a (set of) PLTL
formula(e) –which could be either a graph (as in [4]) or a
tree-shaped structure (as in [2])– there are two crucial op-
erations: the first is to generate all the successors (or next-
states) of a given state; and the second is to check the fulfil-
ment of eventualities. In this section we illustrate, through
a representative example, how contexts are used in the one-
pass tableau for (1) guiding the generation of the succes-
sors and (2) replacing the fulfilment test by a fair selection
of eventualities. For clarity, and also for comparison, we
first briefly explain the graph construction in [4] for an il-
lustrative example. Then, we explain how contexts guide
the construction of successors based on the same example.
From now on, we call Succ(s) to the set of all successors of
a given state s.
Let us consider some fixed n > 0 and the following set A
of always-formulae:

{�(¬xi ∨ ◦xi+1) | 0 ≤ i < n} ∪
{�(¬xn ∨ ◦x0)} ∪ {�(¬xi ∨ ◦p) | 0 ≤ i < n}

Our concern is to test if the set Φ = A ∪ {p, x0,♦¬p} is
satisfiable. We use X to denote the set {x0, x1, . . . , xn}.
For that, the construction of the graph ([4]) for Φ starts
with the initial state (a node of the graph) s0 = Φ1. Then,
the calculation of the set Succ(s0) produces one state of
the form sZ = A ∪ Z ∪ {p,♦¬p}2, for each non-empty
Z ⊆ X such that x1 ∈ Z. Hence, Succ(s0) consists
of

(
n
0

)
+

(
n
1

)
+ · · · +

(
n
n

)
= 2n sets. Next, for each

sZ ∈ Succ(s0), and for all 0 ≤ i < n, if xi ∈ sZ then xi+1

is included in all elements of Succ(sZ), and if xn ∈ sZ
then x0 is included in all elements of Succ(sZ). Hence,
again, Succ(sZ) contains exponentially many sets. Many
of them are repeatedly generated. When a generated state
is already in the graph, a new successor-edge is added to the
graph. The exact number of (different) states in the graph is
2n+1−1, while the number of successor-edges is 2O(n). At
the end, the fulfilment test shows that the eventuality ♦¬p
(which belongs to every state) is never fulfilled.

The context-based tableau construction starts with initial
state s0 = Φ. Then, Succ(s0) consists on one state sZ1

=
A∪Z1∪{p, (¬p∨¬x0)U¬p} for each non-empty Z1 ⊆ X
such that x1 ∈ Z1. Then, Succ(sZ1) is empty for each Z1

1Nodes/states are labelled by set of formulae, we intentionally use the
same name for a node and its label.

2For clarity, we omit the negative literals ¬xj , and the subformulae of
formulae in A

such that x0 ∈ Z1. Otherwise, if x0 6∈ Z1, then successors
of sZ1 are of the form

sZ2 = A ∪ Z2 ∪ {p, (¬p ∨ (¬x0 ∧ ¬Z1))U¬p}
where Z2 ⊆ X and ¬Z1 is the disjunction of all ¬xj such
that xj ∈ Z1. Since, x0 6∈ Z1, if xj ∈ Z1 then j 6= 0.
Therefore, Succ(sZ2) is empty for each Z2 ⊆ X such that
{x0, xj} ∩Z2 6= ∅ for some j 6= 0. The value of j depends
on the elements in Z1, and could be different for each state
in Succ(sZ2

). Consider any fixed j 6= 0 such that xj ∈ Z1

for eachZ2 such that {x0, xj}∩Z2 = ∅, then the successors
of sZ2 are of the form
sZ3 = A ∪ Z3 ∪ {p, (¬p ∨ (¬x0 ∧ ¬Z1 ∧ ¬Z2))U¬p}

Since {x0, xj}∩Z2 = ∅, then Succ(sZ3
) is empty for each

Z3 ⊆ X such that {x0, xj , xk} ∩ Z3 6= ∅ for some k 6= j
and k 6= 0 Therefore, at each step, half of the successors
(in the previous graph) are not generated in the tableau, and
the context in the eventuality is increased. We construct a
tree whose breadth is reduced in a half at each level. And,
what is more important, each branch has at most depth n.
Indeed, in at most n+ 1 steps, the node
sZn+1

= A∪Zn∪{p, (¬p∨(¬x0∧¬Z1∧· · ·∧¬Zn))U¬p}
has the empty set of successors. We construct this tree in
depth and prune each branch, where the successor of a state
has been previously generated. The tree has at most 2O(n)

nodes as the number of different contexts coincides with
the number of different states. When the tree construction
ends no fulfilment test is needed, since the eventuality has
been selected in every branch. Since the tableau is closed,
Φ is unsatisfiable. SAT-solvers are currently used for calcu-
lating successors, preventing repetitions of successors, and
the formulae like ¬p ∨ (¬Z0 ∧ · · · ∧ ¬Zj) are included in
the set passed to the SAT-solver.

References

[1] Joxe Gaintzarain, Montserrat Hermo, Paqui Lucio,
Marisa Navarro, and Fernando Orejas. A cut-free
and invariant-free sequent calculus for PLTL. In
Jacques Duparc and Thomas A. Henzinger, editors,
Computer Science Logic, 21st International Workshop,
CSL 2007, 16th Annual Conference of the EACSL,
volume 4646 of Lecture Notes in Computer Science,
pages 481–495. Springer, 2007.

[2] Joxe Gaintzarain, Montserrat Hermo, Paqui Lucio,
Marisa Navarro, and Fernando Orejas. Dual systems of
tableaux and sequents for PLTL. The Journal of Logic
and Algebraic Programming, 78(8):701–722, 2009.

[3] Rajeev Goré. Tableau methods for modal and tem-
poral logics. In Marcello D’Agostino, Dov M.
Gabbay, Reiner Hähnle, and Joachim Posegga, edi-
tors, Handbook of Tableau Methods, pages 297–396.
Springer Netherlands, Dordrecht, 1999.

[4] Pierre Wolper. The tableau method for temporal logic:
An overview. Logique Et Analyse, 28(110-111):119–
136, 1985.

24

Uniform Interpolation in Modal Logic
Ruba Alassaf Renate Schmidt

The University of Manchester
{ruba.alassaf,renate.schmidt}@manchester.ac.uk

Abstract: Uniform interpolation is a reasoning technique that seeks to compute a weaker theory by restricting
its signature. We are interested in uniform interpolation in modal logic which is an under explored area. This
paper gives a high-level description of an automated approach to compute uniform interpolation based on
Ackermann’s Lemma together with modal resolution.

1 Introduction

Uniform interpolation is a nonstandard automated reason-
ing task that aims to restrict the symbols used to describe a
theory whilst preserving logical consequences up to the re-
maining symbols. More formally, the uniform interpolant
of a logical formula φ with respect to a signature Σ is a
formula φ′ so that for any formula ψ where φ′ and ψ only
contain symbols from Σ, we have that φ |= ψ iff φ′ |= ψ.

Uniform interpolation is an under explored area in modal
logic. Ghilardi constructively proved that the basic modal
logic K has the uniform interpolation property [7]. A
syntactical approach to compute uniform interpolation for
modal logics K and T was presented in [2]. A result that
found that modal logic S5 has the uniform interpolation
property was given in [11]. The modal logics K45 and
KD45 were shown to have the uniform interpolation prop-
erty in [4] and an algorithm to compute it was given for
the modal logics K, D, T , K45 and KD45. On the other
hand, it is known that S4 and K4 do not have the uniform
interpolation property [7].

The main shortcoming with these methods is that they are
not designed for application purposes. Herzig and Mengin
[8] proposed a practical method that is based on resolution
to compute uniform interpolant for modal logic K which
is, as far as we know, the only practical method available.
Therefore, the focus of this research is to give practical
methods to compute uniform interpolants for the modal log-
ics in which the problem is known to be solvable. We seek
to achieve this by analysing the ideas that were recently
proposed for uniform interpolation in description logic (see
e.g. [9, 10, 12, 13]), and studying if they could be adapted
for modal logic. Although the impact of our research is ex-
pected to be mainly theoretical, we recognise that our work
may indirectly impact other more applied research areas. In
the following, we discuss how this could be possible.

Modal logic is widely used in agent systems to model
and formalise the cognitive behaviours of an agent such
as knowledge and belief. Agents become more interesting
when they are integrated into a multi-agent system. The
goal of multi-agent systems is to build agents that are able
to cooperatively interact with a community of other agents
in order to achieve a certain goal, such as sharing knowl-
edge.

In game applications, it is sometimes required that agents

communicate and share some of their knowledge. An agent
that aims to win the game is more likely to be interested
in sharing information regarding certain variables without
giving any information about other variables, i.e., without
giving other agents more information than required. This
can be achieved by applying uniform interpolation to re-
strict the signature in order to compute a weaker view of
the agents knowledge that does not expose any possibly se-
cret information.

In most agent-based applications, it is often assumed that
agents communicate using the same language. Uniform in-
terpolation becomes very useful when this assumption is re-
laxed. The idea is to use uniform interpolation to allow an
agent to express knowledge about a certain topic by com-
puting a view that only uses some terms. By this method,
an agent is equipped to deliver their knowledge in a way
that can be understood by other communicating agents. De-
pending on the expertise of the receiving agent, the sending
agent would share its knowledge by applying a uniform in-
terpolation algorithm to the terms that the receiving agent
can understand. In this way, the agents will be able to share
their knowledge with other agents who specialise in differ-
ent domains.

2 Related Work

Uniform interpolation has been studied in various other log-
ics such as first-order logic [3, 5, 6] and description logic
[9, 10, 12, 13]. The problem is investigated under other
names such as second-order quantifier elimination [5, 6]
since uniform interpolation can be viewed as the problem
of eliminating second-order existential quantifiers [1]. It is
also studied as forgetting [10, 12, 13] which is the dual no-
tion of uniform interpolation.

Generally, the known practical approaches to compute
uniform interpolation fall within two categories:

• Resolution-based approaches.
The idea behind these approaches is to exhaustively
generate consequences and subsequently eliminate the
ones that contain symbols outside the restricted sig-
nature. Examples of methods that are based on this
approach include [5, 6, 8, 9].

• Ackermann-based approaches.
These methods rely on a monotonicity theorem due

25

to Ackermann [1]. The idea is to eliminate the sym-
bols outside the restricted signature by attempting to
compute a definition for a selected symbol and subse-
quently replacing the symbol with its computed defi-
nition. This idea was used in methods such as [3, 12].

3 Current Work

Motivated by the recent advancements for uniform inter-
polation in description logic and its relationship to modal
logic, we are currently studying these approaches and ideas
in order to see if they are applicable to the solvable nor-
mal modal systems. Generally, it was noticeable that ap-
proaches that use Ackermann’s Lemma had better perfor-
mance in practice but in some cases, a few symbols out-
side the signature Σ remained in the output. On the other
hand, approaches that were based on resolution computed
uniform interpolants, sometimes with definer symbols, but
did not always terminate within an acceptable time-frame.
Hence, we believe that it may be beneficial to combine the
two approaches into one method; since in this way, the pro-
cedure benefits from the good performance of Ackermann-
based approaches and the high success rate of resolution-
based approaches.

The general idea behind our approach to compute a uni-
form interpolant is outlined by the following steps. Let φ
be an logical formula and Σ be a signature.

1. Normalise φ into a set of clauses N .

2. Apply Ackermann’s lemma to eliminate the symbols
that do not appear in Σ iteratively until it could not be
applied anymore. Let the result be Nack.

3. If symbols outside Σ still remain, proceed to the next
step; otherwise return the uniform interpolant φ′(=
Nack).

4. Apply the modal resolution rules to Nack until it can
not be applied anymore. Let the result be Nres.

5. Eliminate the clauses that contain symbols outside Σ
from Nres to produce the uniform interpolant φ′.

Furthermore, it would be interesting to study the possibil-
ity of incorporating orderings and selection functions from
automated reasoning to reduce the computational complex-
ity space, and potentially guarantee termination.

References

[1] W. Ackermann. Untersuchungen über das Elimina-
tionsproblem der mathematischen Logik. Mathema-
tische Annalen, 110:390–413, 1935.

[2] Marta Blkov. Uniform interpolation and propositional
quantifiers in modal logics. Studia Logica: An In-
ternational Journal for Symbolic Logic, 85(1):1–31,
2007.

[3] Patrick Doherty, Witold Łukaszewicz, and Andrzej
Szałas. Computing circumscription revisited: A re-
duction algorithm. Journal of Automated Reasoning,
18(3):297–336, 1997.

[4] Liangda Fang, Yongmei Liu, and Hans Van Dit-
marsch. Forgetting in multi-agent modal logics. In
Proc. IJCAI 2016, pages 1066–1073. IJCAI/AAAI
Press, 2016.

[5] D. M. Gabbay, R. A. Schmidt, and A. Szałas. Second-
Order Quantifier Elimination: Foundations, Compu-
tational Aspects and Applications. College Publica-
tions, 2008.

[6] Dov M. Gabbay and Hans Jürgen Ohlbach. Quan-
tifier elimination in second-order predicate logic. In
Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reason-
ing, KR’92, pages 425–435, San Francisco, CA, USA,
1992. Morgan Kaufmann Publishers Inc.

[7] Silvio Ghilardi and Marek Zawadowski. Undefinabil-
ity of propositional quantifiers in the modal system s4.
Studia Logica, 55(2):259–271, Jun 1995.

[8] Andreas Herzig and Jérôme Mengin. Uniform inter-
polation by resolution in modal logic. In JELIA, 2008.

[9] P. Koopmann. Practical Uniform Interpolation for
Expressive Description Logics. PhD thesis, Univer-
sity of Manchester, 2015.

[10] P. Koopmann and R. A. Schmidt. Implementation and
evaluation of forgetting in ALC-ontologies. In Proc.
WoMO 2013. CEUR-WS.org, 2013.

[11] Frank Wolter. Fusions of modal logics revisited. In In
Advances in modal logic, pages 361–379. CSLI, 1998.

[12] Y. Zhao and R. A. Schmidt. Concept forgetting in
ALCOI-ontologies using an Ackermann approach.
In Proc. ISWC 2015, volume 9366 of Lecture Notes
in Computer Science, pages 587–602. Springer, 2015.

[13] Yizheng Zhao and Renate A. Schmidt. Fame: An au-
tomated tool for semantic forgetting in expressive de-
scription logics. In Didier Galmiche, Stephan Schulz,
and Roberto Sebastiani, editors, Automated Reason-
ing, pages 19–27, Cham, 2018. Springer International
Publishing.

26

Experimenting with superposition in iProver
André Duarte Konstantin Korovin

University of Manchester, {andre.duarte,konstantin.korovin}@manchester.ac.uk

Abstract: In this work we extend iProver with support for the superposition calculus. Then, we
develop a flexible simplification setup that subsumes and generalises common architectures such as
Discount or Otter. This also includes the concept of “immediate simplification”, wherein newly derived
clauses are more aggressively simplified among themselves, which can make the given clause redundant
and thus its children discarded.

1 Introduction
iProver [1] is an automated theorem prover for first-order
logic. It implements primarily the Inst-Gen calculus,
but it also implements resolution and supports running
them in combination. In this work we extend iProver
with support for the superposition calculus.

Superposition is a set of inference rules that is com-
plete for first-order logic with equality predicates only
(and therefore for all first-order logic via an embedding
in the former fragment). We do not present it here (see
e.g. [2]).
The calculus is performed in a conventional given

clause loop [3]. In iProver, it can either be run stan-
dalone, or in combination with the main instantiation
calculus. In the latter mode, superposition is run sim-
ultaneously with instantiation to generate clauses for
simplifications in the instantiation loop (but not to per-
form instantiation inferences).

2 Simplifications
Apart from the generating inferences, necessary for com-
pleteness, we can add simplification inferences. These
are inferences where some or all of the premises are
deleted. They are not required for completeness but
are crucial for performance. In this work, we use the
following rules (where a ((((((crossed out premise indicates
that it can be deleted after adding the conclusion):

Tautology deletion ���
�

l ∨ l ∨ C (((((t = t ∨ C
(1)

Syntactic eq. res. ���
��t 6= t ∨ C

(2)

Subsumption ���
�

Cθ ∨D C
(3)

Subset subsumption
���C ∨D C

(4)

Subsumption res.
p ∨ C ���q ∨D

D
(5)

where there exists θ such that (p ∨ C)θ ⊆ q ∨D.

Demodulation l = r ��
�C[lθ]

C[lθ 7→ rθ]
(6)

where lθ � rθ and {lθ = rθ} ≺ C[lθ 7→ rθ].

Light normalisation In addition, we introduce the fol-
lowing rule:

Light normalisation l = r �
�C[l]

C[l 7→ r]
(7)

which is a special case of the demodulation rule. It’s ad-
vantageous to formulate this separately because it may
be implemented much more efficiently than demodula-
tion (simple replacement, no instantiation), and as such
we may want e.g. to apply light normalisation wrt. all
clauses but demodulation only wrt. active clauses

Simplification scheduling How these simplifications
are performed can greatly impact the performance of
the solver, so care is needed, and tuning this part of
the solver can pay off significantly. We can choose to
perform some simplifications at different times, or not at
all. Additionally, some of these simplifications require
auxiliary data structures (here referred to generally as
‘indices’) to be done efficiently, and some indices support
several rules. Therefore we also need to choose which
clauses to add to each indices at which stages.

For example, Otter-style loops [3] perform simplifica-
tions on clauses before adding them to the passive set.
The problem with that is that the passive set is often
orders of magnitude larger than the active set, there-
fore performance will degrade significantly as this set
grows, and the system will spend most of its time per-
forming simplifications on clauses that may not even
end up being used. On the other hand, Discount-style
loops [4] perform simplifications only with clauses that
have been added to the active set. This has the bene-
fit of reducing the time spent in simplifications, at the
cost of potentially missing many valuable simplifications
wrt. passive clauses. It is not clear where the “sweet
spot” is, in terms of these setups, so we want a flexible
configuration to experiment with and compare different
approaches.

Immediate simplification In addition, we also intro-
duce the idea of “immediate simplification”. The intu-
ition is as follows. Clauses that are derived in each loop
are “related” to each other. It may be beneficial to keep
the set of immediate conclusions inter-simplified. Also,

27

throughout the execution of the program the set of gen-
erated clauses in each loop remains small compared to
the set of passive or active clauses. Therefore, we can
get away with applying more expensive rules that we
don’t necessarily want to apply on the set of all clauses
(e.g. only “light” simplifications between newly derived
clauses and passive clauses, but more expensive “full”
simplifications among newly derived clauses). Finally,
during this process, it is possible that the given clause
itself becomes redundant (e.g. subsumed by one of its
children). If this happens, we can add the responsible
clauses to the passive set, remove the given clause from
the set, and then throw away this iteration’s newly gen-
erated clauses and abort the iteration and proceed to
the next given clause. This may speed things up if many
iterations are thus aborted.
Also, we may want to apply a distinct set of (more

expensive) simplifications among the input clauses. We
also take this into consideration.

Simplification setup We propose a general and flexible
framework to specify how these simplifications are per-
formed. This lets us experiment with and evaluate many
different configurations. In pseudocode:
input_set = ∅
for i in input_clauses:

simplify(i wrt input_set via input)
add(i to indices_input)

for i in input_set:
add(i to indices_passive)

main_set = ∅
loop:

immed_set = ∅
given = take(clause from passive)
simplify(given wrt main_set via

rules_active)
add(given to indices_active)
for i in all generating inferences between

given and active:
simplify(i wrt immed_set via rules_immed)
if given was eliminated in immed_set

by clauses:
add(clauses to indices_passive)
goto loop

simplify(i wrt main_set via rules_passive)
add(i to indices_immed)

for i in immed_set:
add(i to indices_passive)

where add(clause to indices) adds a clause to some
simplification indices, and simplify(clause wrt set
via rules) simplifies a clause, via a set of rules, by
some clause(s) in set.
This general scheme gives great flexibility for the

user to specify which simplifications are done at which
stages. Namely, we can specify: to which indices are
clauses added after generation (indices_passive), after
adding to passive (indices_active), during immedi-
ate simplification (indices_immed), during input pre-
processing (indices_input); also which simplifications
are done before activation (rules_active), after genera-
tuion, wrt. the main set (rules_passive), and wrt. the

immediate set (rules_immed), and among input clauses
(rules_input).

An Otter loop would be
indices_passive = all rules_passive = ∅
indices_active = ∅ rules_active = all

while a Discount loop would be
indices_passive = ∅ rules_passive = ∅
indices_active = all rules_active = all

with the rest =∅. In our experiments we will test several
distinct setups.

Simultaneous superposition Another improvement is
the usage of “simultaneous superposition” [5]. Recall
the superposition rule:

l = r ∨ C t[s] .= u ∨D
(t[s 7→ r] = u ∨ C ∨D)θ

(8)

where θ = mgu(l, s), lθ � rθ, tθ � uθ, and s is not a vari-
able. The conventional rule is that by t[s] and t[s 7→ r]
we mean resp. “a distinguished occurrence of s as a sub-
term of t” and “replacing that subterm at that position
by r. We call the variant simultaneous superposition
where we mean instead “replacing all occurrences of s
in t by r”. This variant is still refutationally complete.

3 Results
We integrated the simultaneous superposition calculus
into iProver and evaluated it over 15 168 first-order prob-
lems in TPTP-v7.2.0. The superposition loop can solve
7375 (49%), the instantiation loop (on the previous ver-
sion of iProver) 7884 (52%), and their combination can
solve 8708 (57%). Therefore we can conclude that com-
bination with superposition improved the performance
of iProver over the whole TPTP.

References
[1] K. Korovin, “Inst-Gen — A Modular Approach to

Instantiation-Based Automated Reasoning,” in Pro-
gramming Logics (A. Voronkov and C. Weidenbach,
eds.), vol. 7797, pp. 239–270, Springer Berlin Heidel-
berg.

[2] J. A. Robinson, Handbook of automated reasoning.
Elsevier MIT Press, 2001.

[3] W. McCune, “OTTER 3.3 reference manual,” CoRR,
vol. cs.SC/0310056, 2003.

[4] J. Denzinger, M. Kronenburg, and S. Schulz, “DIS-
COUNT — A distributed and learning equational
prover,” Journal of Automated Reasoning, vol. 18,
pp. 189–198, Apr 1997.

[5] D. Benanav, “Simultaneous paramodulation,” in
10th International Conference on Automated Deduc-
tion, Kaiserslautern, FRG, July 24-27, 1990, Pro-
ceedings, pp. 442–455, 1990.

28

29

