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Evaluating Oil Price Forecasts: A Meta-analysis

Michail Filippidis,a George Filis,b and Georgios Magkonisa

abstract

Oil price forecasts have traditionally attracted the interest of both the empirical 
literature and policy makers, although research efforts have been intensified in the 
last 15 years. The present study investigates the forecasting characteristics that 
have the greatest impact on the accuracy level of such forecasts. To achieve this, 
we employ a meta-analysis approach of more than 6,000 observations of relative 
root mean squared errors (RRMSEs) which are pooled within a Bayesian Model 
Averaging (BMA) method. The findings indicate that forecasting frameworks 
such as MIDAS and combined forecasts tend to report significantly lower forecast 
errors. In addition, the choice of the oil price benchmark is an important factor, 
with the Brent price to offer lower forecast errors. Furthermore, the short-run hori-
zons tend to produce more accurate forecasts and the same holds for the real, in-
stead of the nominal oil prices. A number of robustness tests confirms the validity 
of these results. Overall, the findings of this study serve as a guide for future oil 
price forecasting exercises.

Keywords: Oil price forecasts, Meta-analysis, Bayesian model averaging
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1. INTRODUCTION

Since the regime change in oil price fluctuations in the early 2000’s, which is characterised 
by the unprecedented levels of oil prices and their severe volatility, the extant literature (Knetsch, 
2007; Alquist et al., 2013; Degiannakis and Filis, 2018) and policy documents (Bernanke, 2005; 
ECB, 2015) have highlighted the need for more accurate oil price forecasts. Figure 1 depicts the 
regime change in oil prices in the post-2003 period, when we observe a series of episodes with huge 
price swings. For instance, the WTI crude oil price reached its peak at almost $140 in July 2008, 
which was then followed by a rapid and sharp decline at about $40 in January 2009. In addition, in 
June 2014, oil reached once again a price above $100, and then a fall below $50 seven months later 
(February 2015). More recently, due to Covid-19 pandemic, oil prices lost about 65% of their value 
(from $60 in December 2019 to almost $20 in April 2020). We should also highlight that for the first 
time we experienced negative oil prices, when the WTI dropped at -$37 on the 20th April 2020 (not 
shown in Figure 1 as it was constructed using monthly data).

The need for accurate oil price forecasts, given the aforementioned abrupt changes, 
stems from the fact that they form important decision-making inputs for a number of stakeholders, 
including private businesses, central banks and the national governments. For instance, Alquist et 
al. (2013) provide evidence that oil price forecasts help industrial sector companies to forecast their 
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product prices. Moreover, they indicate that investment decisions regarding climate change and 
carbon emissions predictions, as well as, formulation of regulatory policies in the energy sector 
may significantly be influenced by oil price forecasts. In addition, Baumeister (2014) shows that 
oil price forecasting is an important tool for monetary authorities given that it conveys information 
about predictions in inflation and economic activity. Finally, Baumeister et al. (2018) highlight the 
importance of oil price forecasts for national governments of both oil-exporters and oil-importers 
in devising their investment strategies and budget plans. It is also important to highlight that central 
banks are interested in forecasting real oil prices in domestic currency units, which captures the real 
cost of oil for domestic consumption (Baumeister and Kilian, 2014). In turn, this further increases 
the complexity of oil price forecasts as their accuracy further depends of how future exchange rates 
are estimated.

Moreover, since oil is a physical commodity, it is intuitively expected that its price should 
be primarily affected by oil market fundamentals, namely unexpected oil supply disruptions, 
unanticipated changes in global demand for crude oil and unexpected changes in inventory demand 
(see, for instance, Kilian, 2009; Kilian, 2010; Kilian and Murphy, 2014). However, the more recent 
literature highlights the significant effect of financial markets as drivers of oil price movements. This 
is known as the financialisation of the oil market and is primarily related to speculative activity in 
this market. In this regard, Fratzscher et al. (2014) explain that oil acts as a financial asset due to the 
fact that it reacts rapidly to information associated with other financial assets such as stock prices 
or exchange rates. More recently, Degiannakis and Filis (2018) show that apart from the oil market 
fundamentals, information stemming from the financial markets could improve oil price forecasts.

Based on the aforementioned developments in the oil market, as well as, the complexity of 
its price forecasts, the literature has developed an array of different forecasting frameworks and has 

Figure 1: Nominal (spot) oil price

Notes: The figure demonstrates monthly data for the nominal US refiners’ acquisition cost of crude oil imports (RAC), the 
nominal West Texas Intermediate (WTI) price and the nominal Brent (BRENT) price. The time period spans from January 
1990 to January 2021. Source of collecting the data: Energy Information Administration.
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employed a series of different predictors in search of improved accuracy. For instance, early studies 
that focus on the use of Vector Error Correction models (Coppola, 2008; Murat and Tokat, 2009) or 
futures-based forecasts (Knetsch, 2007; Alquist and Kilian, 2010) attempt to show whether these 
forecasts can outperform the random-walk. Other studies, such as those by Baumeister and Kilian 
(2012), Baumeister and Kilian (2014) and Naser (2016) employ Vector Autoregressive-type (VAR) 
forecasting frameworks (e.g., structural VARs, time-varying parameter VARs), whereas Baumeister 
et al. (2014) and Baumeister and Kilian (2014, 2015) assess the predictive accuracy of combined 
forecasts. Baumeister et al. (2015) and, more recently, Degiannakis and Filis (2018) exploit the 
advantages of the mixed-data sampling (MIDAS) forecasting framework.

In terms of predictors, the existing studies have more commonly used the oil market 
fundamentals such as world oil production, global economic activity index, US crude oil inventories 
among others (see, for example, Baumeister and Kilian, 2012; Baumeister et al., 2015; Rubaszek, 
2021). It should be noted also that it is not uncommon for studies to use futures prices (see 
Coppola, 2008; Alquist and Kilian, 2010; Baumeister et al., 2014; Pak, 2018) and product spreads 
(see Baumeister et al., 2018) as potential predictors. Furthermore, recent studies, such as those by 
Baumeister et al. (2015), Degiannakis and Filis (2018) and Zhang and Wang (2019), assess the 
predictive information of financial data in oil price forecasts. Turning to the data frequency, we note 
that for most studies data are collected and reported monthly, although quarterly frequencies are also 
reported (see Baumeister et al., 2014). In addition, the use of financial data allows to assess whether 
higher frequency data (daily or weekly) could improve the forecasting accuracy of oil prices.

The choice of the crude oil price benchmark is another interesting distinction among the 
existing studies. There are three main variables, namely, the US refiners’ acquisition cost (RAC), the 
West Texas Intermediate (WTI) and the Brent crude oil (Brent), which are used extensively in the 
forecasting exercises. Pertaining to the readily available information, empirical studies that forecast 
both WTI and RAC include Alquist et al. (2013), Baumeister et al. (2015), Baumeister and Kilian 
(2015), Wang et al. (2017) and Baumeister et al. (2018). In addition, authors such as Coppola (2008), 
Alquist and Kilian (2010), Naser (2016) and Rubaszek (2021) focus on the WTI price forecasts, 
whereas other studies such as Knetsch (2007), and Degiannakis and Filis (2018) concentrate solely 
on the Brent crude oil prices. Finally, authors who develop forecasting frameworks for both WTI 
and Brent benchmarks include Chen (2014), Funk (2018), and Zhang and Wang (2019).

We should emphasise that the aim of this study is not to provide a thorough review 
of the related literature. Rather, with the aforementioned considerations in mind, we perform a 
meta-analysis approach, which has been proven to be a useful methodical tool for integrating the 
empirical findings of numerous existing studies. Each oil price forecasting study presents different 
results given the use of different modelling frameworks, data frequencies, forecast horizons, and 
sample periods, among others. However, when these empirical results are systematically combined 
and reviewed, we are able to identify and interpret the various factors that contribute the most to 
higher forecast accuracy. Therefore, the meta-analysis technique is important in order to provide 
meaningful interpretations regarding differences in forecasting accuracy from one study to another.

Hence, given the increasing interest in this line of research and the numerous papers that 
have been published, especially in the last 15 years, our study makes an important contribution 
by providing a quantitative navigation that will allow to explore those factors that systematically 
provide more accurate oil price forecasts. In this regard, this is the first meta-analysis attempt in this 
line of research. For this purpose, we employ a Bayesian Model Averaging (BMA) model, which 
facilitates the investigation of the factors leading to more accurate forecasts across the different 
studies.
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Our findings can be succinctly summarised as follows. First, MIDAS and combined 
forecasting frameworks, among other forecasting techniques, exhibit significantly higher forecasting 
accuracy. Second, the use of Brent crude oil price generates better predictions in comparison with 
other crude oil benchmarks. Finally, the short-run forecasting horizons and the use of real oil price 
also contribute to lower forecast errors.

The remaining of the paper is structured as follows. Section 2 describes the data collection 
process. Section 3 presents the empirical method, while Section 4 discusses the main results along 
with robustness checks. Finally, Section 5 concludes the study.

2. FORECASTS ERRORS ACROSS LITERATURE

2.1 Data collection

A significant part of the forecasting literature uses the random walk (RW) without a drift, 
(also known as the no-change forecast), as the benchmark forecasting framework. Its h-month ahead 
forecast error at any time point is shown as | |=RW

t h t t h t t he o o+ + +− , where o represents the price of oil. 
Furthermore, the root mean squared error (RMSE, thereafter) is used as the main loss function to 
measure the forecasting accuracy. The forecasting accuracy of the RW forecasting framework can 
be defined as follows:

=1

1
= ( ) ,

T
RW RW
h t h t

t

RMSE e
T +∑  (1)

where = 1...t T  denotes the out-of-sample forecasting observations. Furthermore, h shows the 
h-month ahead forecast horizon that takes values from 1 up to N months ahead. For instance, 

1
RWRMSE  is the RMSE of the RW model for the 1-month ahead horizon, 2

RWRMSE  denotes the RMSE 
for the 2-month ahead horizon, and so on. It is also very common for studies to report the forecasting 
performance of competing forecasting frameworks in relative terms against the RMSE of the RW 
forecasting framework. This can be calculated as follows:

= = ( ) / ( ),m m m RW
hl hl hl hlRRMSE RMSE RMSEψ  (2)

where the superscript m denotes a forecasting model other than the random walk, while hl indicates 
the h-month ahead horizon from study l. When the ratios are lower than one then the competing 
model is able to outperform the benchmark model. The main variable of interest in our study is the 
relative RMSE (RRMSE, thereafter).1 We use the terms m

hlRRMSE , m
hlψ  and ‘relative forecasting 

performance’ interchangeably throughout the remainder of this paper.
We perform a Google scholar search using the key combinations ‘oil price predictability’, 

‘oil price forecasts’, ‘oil price forecasting’ and ‘oil price modelling’. In order to impose a certain 
quality threshold, we only focus on published papers. The inclusion of working papers, many 
of which produce large horse-races of forecasts, would make the total amount of observations 
intractable. This search was carried out between July and September 2021.

The next step is to impose a number of criteria according to which a study can be included 
in our sample. Our first criterion requires for a study to report at least one RMSE or RRMSE, which 
is the metric that we focus on. Therefore, the papers that report on alternative evaluation metrics 
for the relative forecasting performance (such as the direction of change statistic) are excluded. 

1. See Eickmeier and Ziegler (2008).
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The second criterion is associated with the great number of combinations of forecasting techniques 
and the corresponding RMSEs or RRMSEs, and thus, we only collect on the reported RMSEs or 
RRMSEs that use random walk as the benchmark forecasting framework. 2 Therefore, the reported 
RMSEs or RRMSEs that are based on different benchmark are not included in our meta-sample. 
Our third criterion is related to the use of non-standard machine learning strategies (such as random 
forests and artificial neural networks) from a number of papers the last years. As a result, we focus 
on traditional econometric models and thus we excluded those studies. In this way, we ensure the 
comparability of the collected RRMSEs across studies. 3

Overall, the total sample consists of 6,089 observations collected from 21 papers. Table 1 
presents the summary of the selected studies, together with the descriptive statistics of their RRMSEs. 
Figure 2 presents the histogram of the selected RRMSEs, which exhibits fat tails, showing a wide 
range of forecast errors. The selection process is summarised in a PRISMA chart in Appendix 1, 
while the full list of studies is provided in Appendix 2.

Table 1: Forecast errors’ descriptive statistics of the selected studies

Study Mean SD  95% CI 

1. Alquist and Kilian (2010) 1.034 0.009 1.015 1.053
2. Alquist et al. (2013) 0.952 0.007 0.938 0.966
3. Baumeister et al. (2015) 1.044 0.008 1.027 1.061
4. Baumeister and Kilian (2012) 0.877 0.004 0.867 0.886
5. Baumeister and Kilian (2014) 0.957 0.004 0.949 0.966
6. Baumeister and Kilian (2015) 0.942 0.017 0.907 0.977
7. Baumeister et al. (2014) 1.003 0.003 0.995 1.010
8. Baumeister et al. (2018) 0.994 0.004 0.985 1.002
9. Chen (2014) 1.109 0.015 1.078 1.139
10. Coppola (2008) 0.949 0.005 0.939 0.960
11. Degiannakis and Filis (2018) 0.995 0.006 0.983 1.007
12. Funk (2018) 0.947 0.002 0.943 0.951
13. Garratt et al. (2019) 0.975 0.050 0.875 1.074
14. Knetsch (2007) 0.852 0.010 0.830 0.873
15. Naser (2016) 0.977 0.003 0.971 0.984
16. Pak (2018) 1.140 0.017 1.105 1.175
17. Rubaszek (2021) 0.895 0.008 0.879 0.912
18. Snudden (2018) 1.251 0.042 1.167 1.335
19. Wang et al. (2015) 1.130 0.031 1.068 1.191
20. Wang et al. (2017) 0.957 0.002 0.952 0.962
21. Zhang et al. (2019) 1.137 0.051 1.036 1.237

Notes: The table reports the mean, the standard deviation (SD) as well as the 5th and 95th per-
centile values of the relative root mean squared errors (RRMSEs) for different subsets of data.

2.2 Heterogeneity of forecasts errors

In order to examine the heterogeneity of the reported RRMSEs across the literature, we 
look into three categories. From each category we identify factors that may systematically influence 
the reported RRMSEs. We describe this process in the following paragraphs.

Oil price. Primarily, we focus our attention on the oil price that is forecasted in the published 
studies. We posit that there could be oil price benchmarks that are harder to predict. If this holds true, 

2. Benmoussa et al. (2020) argue that the conventional random walk forecast is uninformative in terms of forecast 
accuracy and should not be used for forecasting comparisons of aggregated data. However, our decision to employ the random 
walk based on the fact that this benchmark is widely used in the literature on forecasting oil prices.

3. For simplicity, we use the term RRMSE to the remainder of the paper.



54 / The Energy Journal

All rights reserved. Copyright © 2024 by the IAEE.

forecasters should be aware so as to engage in efforts to improve their forecasting frameworks for 
these benchmarks. In line with the collected papers, we concentrate on three oil price benchmarks. 
The first is the West Texas Intermediate (WTI). Therefore, we create a dummy variable that takes 1 
when the RRMSE comes from a forecasting exercise that uses WTI and 0 otherwise. Secondly, we 
consider the US refiners’ acquisition cost (RAC) as an alternative price index. In a similar vein, we 
use a dummy variable that takes 1 when the RRMSE comes from an analysis that uses RAC and 0 
otherwise. Finally, we use the Brent benchmark which serves as our base category. Another feature 
of the oil price is whether the forecasting exercise uses the nominal or real price. Thus, we create an 
additional moderator variable (‘real’) that takes 1 for the real and 0 for the nominal oil price.

Forecasting Framework. First, we treat as the base category the relative forecasting 
performance of the frameworks that belong to the ARIMA family. Mathematically, this can be 
formalised by:

= ( ) / ( ).ARIMA ARIMA RW
hl hl hlRMSE RMSEψ  (3)

Second, we create the moderator variable ‘structural’ that takes 1 when the RRMSE comes 
from a structural framework, either a structural VAR or a DSGE. Third, we create the dummy 
variable ‘midas’ where a value of 1 is assigned when a MIDAS framework is used. In a similar 
fashion, we use the same type of moderator dummy variables for frameworks using regression-
based forecasts (‘regression’), combined forecasts (‘combined’) and finally, frameworks that use 
futures prices (‘future’) and product spreads (‘product’).4

Forecasting Features. Finally, we consider three features of the forecasting exercise. The 
first characteristic is the forecasting horizon (the variable is named ‘horizon’). The collected studies 

4. See Degiannakis and Filis (2018) for a brief discussion of these methods.

Figure 2: Histogram of RRMSEs

Notes: The figure depicts the histogram of the relative root mean squared errors (RRMSEs), reported by individual studies. 
The black solid line indicates the sample mean.
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that constitute our meta-sample use different data frequencies. Therefore, the forecasting horizon is 
expressed in different frequencies. Following Eickmeier and Ziegler (2008), we convert the horizons 
into months in order to obtain a homogeneous measure across all studies. The ‘horizon’ takes values 
from 1 up to h, depending on the h-months ahead horizon of each study l. For robustness, we also 
follow Chinn and Meese (1995) and we create a dummy variable where one (1) is assigned to the 
short-run forecast horizons (up to 12-months ahead) and zero (0) to the long-run horizons (more 
than 12-months ahead).5

The second characteristic is the forecasting period. More precisely, we take into account 
the date of the end-of-sample, as the forecast errors are reported for the end of the sample period. In 
this way, we examine whether there is a trend in the reported results.

The third characteristic is associated with the use of real-time forecasts which are introduced 
by Baumeister and Kilian (2012) and followed by other authors in the literature of this particular 
area of research. We additionally take this characteristic into account by including the variable ‘real-
time’ that takes 1 when real-time forecasts are reported.

Table 2 presents a reflection of the three forecasting groups and the variables under 
consideration, while Figure 3 provides a graphical illustration of the heterogeneity of the reported 
estimates across the three different categories.

Table 2: List of Moderator Variables

Variable Name Description 

Forecasting Frameworks  
ARIMA ψhl from an ARIMA model (base category) 
Structural 1 if ψhl from a structural model 
MIDAS 1 if ψhl from a MIDAS model 
Regression 1 if ψhl from a regression-based model 
Combined 1 if ψhl from a combined forecast model 
Future 1 if ψhl from a futures-based model 
Product 1 if ψhl from a product spread-based model 

Oil Price  
Brent ψhl from using Brent (base category) 
WTI 1 if ψhl uses West Texas Intermediate 
RAC 1 if ψhl uses US refiners’ acquisition cost 

Oil Price  
Real 1 if ψhl uses real price 

Forecasting Features  
Horizon Number of months 
Period Standardized date of the end-of-sample 
Real-time 1 if ψhl uses real-time forecasts 

Notes: The table shows the definition of each potential explanatory variable for the 
observed heterogeneity of the reported RRMSEs.

3. METHODOLOGY

This section presents the method according to which the factors that systematically affect 
the reported estimates can be identified. The benchmark method is the Bayesian Model Averaging 
(BMA) that belongs to the family of models that deal with big data (Koop, 2017). The usefulness 
of this technique is properly revealed when the number of regressors is quite large. Overall, BMA 
remains an increasingly popular method of identifying the significant drivers of a specific variable 
(here the RRMSE). Our meta-regression model can be written as:

5. The VIF statistics do not support the existence of multicollinearity. The values are available upon request.
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12

,
=1

= ,hl S S hl hl
S

c Zξψ γ ε+ +∑  (4)

where ψhl is the h-month ahead horizon’s relative forecast error from study l , Z depicts the moderator 
variables described in Section 2.2, sγ  are the coefficients of each moderator and the subscript S is 
the indicator of each moderator. In total, we have 12 moderator variables, and therefore S ∈ [1,12]. 
As usual, the error term, ε, is normally distributed; ε ~ N(0,σ). The superscript ξ indicates that the 
equation (4) is valid under model Mξ of the BMA exercise. In our case, the use of 12 regressors 
results in 4,096(=212) different models to choose from. This means that the model space consists 
of M1,...,Mξ models, where ξ ∈ [1,...,4096]. Due to the moderate number of explanatory variables, 
it is computationally feasible to evaluate and average all model specifications. At the same time, 
the analytical solution can also be derived. We estimate the posterior model density as well as 
the posterior inclusion probabilities both analytically and computationally. The results from both 
approaches are identical.

The main characteristic of the model averaging techniques is that they assign a weight 
to each model and then, average across these models. Therefore, the inference is not based on 
individual models, but instead on weighted averages. Even with a small number of regressors, the 
model space consists of many potential combinations. In the remaining part of this Section, we 
present the basic concepts of the BMA. Appendix 3 provides a more detailed technical discussion. 
Based on the Bayes’ rule, the posterior density of γ  is written as:

Figure 3:  Heterogeneity of RRMSEs across different forecasting frameworks, prices and 
horizons

Notes: The upper left boxplot shows the heterogeneity of the reported relative root mean squared errors (RRMSEs) across 
different forecasting frameworks. The upper right boxplot shows the heterogeneity of RRMSEs across different oil prices. 
The bottom boxplot shows the heterogeneity of the RRMSEs across different forecasting horizons.
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4096

=1

( | , ) = ( | , , ) ( | , ),j j j
j

p Z p Z M p M Zγ ψ γ ψ ψ∑  (5)

where ( | , , )j jp Z Mγ ψ  is the posterior distribution under model Mj and ( | , )jp M Zψ  is the posterior
 model probability.6 The above equation shows that the posterior model probabilities are used as 
weights. More precisely, the posterior density of γ  for each model Mj is weighted by the posterior 
model probability of each model Mj. The point estimates for the posterior mean can be derived by 
taking expectations:

4096

=1

( | , ) = ( | , , ) ( | , ).j j j
j

E Z E Z M p M Zγ ψ γ ψ ψ∑  (6)

The posterior variance is proved to be:

4096

=1

4096
2

=1

( | , ) = ( | , ) ( | , , )

( | , )( ( | , , ) ( | , , )) .

j j j
j

j j j j j
j

Var Z p M Z Var Z M

p M Z E Z M E Z M

γ ψ ψ γ ψ

ψ γ ψ γ ψ+ −

∑

∑
 (7)

To help better understand our benchmark model, it is instructive at this point to consider 
the posterior inclusion probability (PIP) metric which is defined as the sum of posterior model 
probabilities of all models that include the specific regressor and takes the following form:

=1

= ( | , ),i j
j

PIP p M Zψ∑  (8)

with i ∈ [1,12] indicating that each regressor has a specific inclusion probability. Therefore, the 
PIP shows how frequently a regressor appears in the alternative Mj models. In this way, the level of 
PIP determines whether a regressor can be considered as a robust determinant. The value of the PIP 
ranges between zero and one, where a value close to one for a particular regressor denotes larger 
explanatory power. In other words, the variable with the highest estimated PIP is this variable that is 
present in almost all alternative model specifications and therefore, a robust driver that explains the 
heterogeneity of the reported estimates.

As far as the parameters priors are concerned, we choose the following options. As there is 
no prior knowledge, we use non-informative priors for the intercept and the variance; ( ) 1p c ∝  and 

1( )p σ σ −∝ . Regarding the γ  parameters, we assume that they are centered at zero and the variance 
is proportional to 2 1( ( ) )i ig Z Zσ −′ , where g is the Zellner’s g hyperparameter that indicates the level of 
uncertainty (the forecasters’ prior belief that the γ  parameters are zero). A small (large) g indicates 
few (many) prior coefficient variance and therefore the lower (higher) the forecasters’ uncertainty. 
In summary, the coefficients’ distribution depends on g:

2 1(0, ( ( ) )).i i i| g N g Z Zγ σ −′
  (9)

In this study, we employ two different choices regarding g. Firstly, we set g = N, which is 
the unit information prior (UIP), where N is the sample size. Secondly, we set the hyper-g prior as 
suggested by Liang et al. (2008). For the case of model priors, we also use two alternative choices. 
Firstly, we use the uniform model prior that assumes equal probability to all models. Secondly, 
we relax this assumption by setting a beta-binomial prior. The approximation of the posterior 
distribution is simulated by a MCMC sampler algorithm.

6. To avoid unnecessary confusion, we will use ψ  instead of m
hlψ  for the remaining of the paper.
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4. RESULTS

4.1 Main evidence

Table 3 shows the first round of results. Following Kass and Raftery (1995), we categorise 
the effect of a variable as weak, positive, strong, and decisive if its PIP lies between 0.5–0.75, 
0.75–0.95, 0.95–0.99 and 0.99–1, respectively. We begin our analysis with the evaluation of the 
relative performance of the different forecasting frameworks. The results suggest that the MIDAS 
frameworks, as well as, the combined forecasts tend to generate significantly lower forecast errors. 
Such forecasting frameworks have the ability to outperform the ARIMA framework, given the 
negative and significant coefficients. By contrast, the use of structural-based, regression-based, 
futures-based, as well as, forecasts based on product spreads, does not seem to significantly 
outperform the forecasting accuracy of the ARIMA framework.

The fact that MIDAS models tend to produce lower forecast errors can be interpreted as 
follows. The related literature has shown that oil price forecasts are impacted by the fundamental 
factors of the oil market (i.e., unanticipated changes in oil supply, oil demand, and inventory levels). 
However, recent research efforts (Degiannakis and Filis, 2018) have also shown that the oil market 
has become more financialised, meaning that it has become more interconnected with other global 
financial markets (such as the stock markets, or foreign exchange, among others). Considering that 
these asset markets convey information to the oil market at a much higher frequency, relatively to 
the oil market fundamentals, our finding suggests that the use of such higher-frequency financial 
data, tends to improve oil price forecasts at lower frequencies. This is a feature only available to the 
MIDAS framework.

With reference to the improved predictive accuracy of combined forecasts frameworks, 
we maintain that such forecast combinations act as insurance against the poorer forecasting 
performance of the individual frameworks. Hence, when combining forecasts the weak performance 
of an individual forecasting framework can be counterbalanced by the better performance of another 
framework, leading to an overall improvement in the forecast accuracy. This argument is also 
evident in the work of Baumeister and Kilian (2015) who employ forecast (pooled) combinations. 
Furthermore, different forecasting strategies exhibit superior forecasting performance at different 
horizons. Consequently, their combination improves the overall forecasting performance. Therefore, 
we note that information derived from combined forecasts helps to provide significant predictive 
gains.

Turning our attention to the choice of the oil price benchmark, our results suggest that the 
forecasting exercises that use either the US refiners’ acquisition cost (RAC) or the WTI crude oil 
price tend to report higher RRMSEs compared to those studies that use the Brent crude oil price, 
given the positive and significant coefficients. Alquist et al. (2013) argue that although the RAC can 
be used to approximate global oil price movements, it cannot be viewed as the indicative proxy for 
the price that US refineries paid for crude oil. In this regard, Baumeister et al. (2014) are supportive 
in favour of the WTI spot price. According to them, the WTI is not subject to revisions and it is also 
available without delays, which is not the case when the RAC is considered. This could justify the 
higher forecast error of the RAC compared to the Brent price.

Furthermore, the WTI is considered to be more volatile than the Brent, which makes it 
harder to be accurately predicted. Possible reasons can be found in the geographical area that they 
are produced and the transportation costs. Brent is extracted at sea and transferred by ships, which 
makes it to be less dependent on abrupt changes in transportation costs. By contrast, the WTI is 
drilled in landlocked regions and thus, its price is affected by both higher transportation costs as 
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well as pipeline bottlenecks and higher storage constraints (Baumeister and Kilian, 2015). Overall, 
our arguments help to clarify the reasons why the use of Brent appears to provide better forecasting 
performance. Such findings are also in accordance with Manescu and Van Robays (2014) and 
Degiannakis and Filis (2018) who propose the importance to use the Brent spot price.

Even more, the WTI crude oil market has attracted the attention of the non-commercial 
investors, via its futures contracts. Indeed, the WTI has the most liquid and actively traded futures 
contracts in the crude oil market compared with Brent (Buyuksahin et al., 2013). This explains why 
the WTI is regarded as a valuable financial asset by energy traders. Such trading activity results in 
higher volatility for the WTI, which could further explain the lower forecasting accuracy for this 
crude oil benchmark. Such finding has important implications for end-users of oil price forecasts. 
Let us assume that there is a Permian Basin operator who is interested in forecasting the price of oil 
to help guide current production decisions. It is apparent that the appropriate oil price measure to 
forecast is the price of WTI. In this case, the operator should be aware that her forecasting framework 
should be improved so as to accommodate the fact that the WTI is harder to predict.

As far as the difference between real and nominal oil prices is concerned, our evidence 
shows a negative and significant coefficient, which indicates lower forecast errors for the real oil 
price. This suggests that forecasts of the real price tend to be better than forecasts of the nominal 
one. A plausible explanation for this finding can be traced at the effect of inflation. More specifically, 
the higher forecast errors of the nominal oil prices could be explained by the fact that they have an 
inflation component, which adds uncertainty to the future path of oil prices. Put differently, nominal 
oil price forecasts make also implicit assumptions about the future inflation, hence they are harder 
to predict.

Interestingly enough, we do not find evidence that the real-time forecasts are superior. 
Real-time forecasts are based on datasets that take into consideration delays in reporting relevant 
information or potential revisions in data series (for instance, this is particular relevant for oil 
production information). According to Alquist et al. (2013) and Baumeister et al. (2014), forecasters 
who ignore such constraints in the data series, tend to produce better forecasts. Nevertheless, our 
findings do not lend support to this claim.

Furthermore, ‘horizon’ appears to have a positive and significant coefficient. This means 
that longer forecasting horizons produce higher RRMSEs, indicating a lower forecast performance.7 
This is a plausible finding given that at longer horizons we expect the autoregressive and moving-
average components of oil prices to prevail relatively to the fundamentals of the oil market or 
the financial information. By contrast, we do not find any significant influence on the quality of 
forecasts from the forecasting period moderator, suggesting that either the more recent or the earlier 
forecasts in our dataset do not seem to exhibit different levels of predictive accuracy. Such finding 
could potentially suggest that the oil market maintains a certain level of unpredictability even 
under the use of the more recently developed forecasting frameworks and data availability (e.g., 
MIDAS framework and intra-day data). This could be explained by the fact that since 2003 there is 
a regime change in the behaviour of oil prices, as already mentioned in Section 1. More specifically, 
prices have become more volatile, adding extra difficulty to the forecaster to generate significantly 
improved forecasts in the more recent years, relatively to the earlier period. Therefore, it is not 
entirely unexpected that this variable is not found statistically significant.

7. This result remains the same when we use a dummy variable for measuring the horizon assigning 1 for shorter forecasts 
(up to 12 months) and 0 otherwise.
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Table 3: Bayesian Model Averaging results

  BMA1  BMA2 

Variable PIP post Mean post SD PIP post Mean post SD

Forecasting Frameworks 
Structural 0.048 0.001 0.004 0.104 0.002 0.007
MIDAS 0.981b –0.057 0.016 0.977b –0.057 0.016
Regression 0.029 –0.001 0.003 0.055 –0.001 0.004
Combined 0.999a –0.083 0.009 0.999a –0.082 0.010
Future 0.086 0.003 0.013 0.123 0.005 0.014
Product 0.039 0.001 0.004 0.091 0.002 0.006

Oil Price 
WTI 0.999a 0.049 0.009 0.999a 0.049 0.009
RAC 0.999a 0.058 0.010 0.999a 0.058 0.010
Real 0.951b –0.072 0.023 0.954b –0.072 0.023

Forecasting Features  
Horizon 0.999a 0.003 0.000 0.999a 0.003 0.000
Period 0.001 0.006 0.001 0.001 0.006 0.001
Real-time 0.084 0.001 0.004 0.143 0.002 0.006

Notes: PIP stands for posterior inclusion probability. For BMA1 unit information prior is used as parameters’ prior, 
whereas, uniform model prior is used as model prior. For BMA2 hyper-g prior and beta-binomial are used as parameter 
and model priors, respectively. a/b denotes decisive/strong evidence that a regressor has a significant effect (see Kass and 
Raftery, 1995).

4.2 Robustness tests

Having analysed the first round results, it is important to use an array of robustness tests 
so as to verify the stability of our findings. The first test is to replace the Bayesian setting (BMA) 
with a frequentist one (FMA) which allows us to maintain the basic rational of model averaging 
techniques. In this respect, the main difference between frequentist and Bayesian averaging is 
the construction of weights. Instead of using posterior model probabilities, the new weights are 
replaced with information criteria. In our exercise, we follow the approach proposed by Magnus 
et al. (2010) and extended by Amini and Parmeter (2012) who select the weights by minimising 
the Mallows criterion (Hansen, 2007). The main benefit is that this version of FMA is based on the 
orthogonalisation of the covariate space that leads to the significant reduction of the models that 
need to be estimated. In our case, the model space is not an issue due to the moderate number of 
regressors, as explained in the previous Sections.

The second test is to apply a pure frequentist least squares exercise without using any 
weighting scheme. Table 4 shows the results for both FMA and OLS with clustered standard errors 
at study level. Applying both types of frequentist analysis leads to results that are quantitatively and 
qualitatively similar to the BMA.

Overall, the moderator variables that were found to be robust drivers of the observed 
heterogeneity of the forecast errors remain the same; MIDAS and combined forecasts frameworks 
tend to have a better performance. The opposite is true when the forecasting exercises are based 
on the WTI and RAC oil price benchmarks. The horizon does continue to play a role, with longer 
horizons resulting in worse forecasts. Finally, when the focus is on real prices, then these forecasts 
are superior compared to those based on nominal prices.

Finally, we apply a variant of the least absolute shrinkage and selection operator (LASSO). 
This method combines the concept of minimising the least squares along with a shrinkage process 
that removes the drivers that are not important. The minimisation process can be written as: 

12 122
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Z | |ψ γ λ γ− +∑ ∑ , where λ is the shrinkage parameter. Even though the number of 
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regressors is not very large, the insertion of a shrinkage parameter provides a natural way to test 
the robustness of model averaging. To this point, we adopt its more widely used Bayesian version. 
Under certain assumptions regarding the prior distributions, the outcome is a set of estimations for 
those γ  coefficients that have not being shrunk to zero.8 Therefore, the variables that still have a non-
zero coefficient after the shrinkage process are the most robust drivers that explain the forecasting 
ability. The results are shown in Table 5. As in the frequentist exercise, MIDAS and combined 
forecasts frameworks continue to report lower forecasts errors. In a similar vein, the use of Brent 

8. See Appendix 3 for technical details.

Table 5: LASSO estimates

Variable  post Mean  post SD  post τ

Forecasting Frameworks 
Structural  0.000  0.000  0.000 
MIDAS  –0.032  0.002  0.304 
Regression  0.000  0.000  0.000 
Combined  –0.092  0.004  0.401 
Future  0.000  0.001  0.004 
Product  0.000  0.000  0.000 

Oil Price    
WTI  0.034  0.004  0.185 
RAC  0.022  0.003  0.155 
Real  0.029  0.004  0.158 

Forecasting Features    
Horizon  0.015  0.004  0.011 
Period  0.000  0.000  0.000 
Real-time  0.001  0.001  0.001 

Notes: indicates the variables whose coefficients remain non-zero after the 
shrinkage process. Posterior τ  is referring to the mean of the posterior distri-
bution of the hyperparameter τ  that determines the variance of γ  parameters. 
Details are explained in Appendix 3.

Table 4: Frequentist Model Averaging and Least Squares

  FMA  OLS 

Variable Coefficient SD Coefficient SD

Forecasting Frameworks 
Structural –0.039 0.041 0.027 0.056
MIDAS –0.039* 0.032 –0.042 0.045
Regression –0.019 0.029 0.002 0.046
Combined –0.033* 0.024 –0.067** 0.033
Future 0.000 0.021 0.033 0.042
Product 0.001 0.018 0.026 0.041

Oil Price 
WTI 0.035* 0.022 0.049* 0.018
RAC 0.047* 0.037 0.057** 0.027
Real –0.075* 0.044 –0.065 0.044

Forecasting Features 
Horizon 0.004* 0.000 0.003*** 0.001
Period 0.000 0.001 0.006 0.004
Real-time 0.070 0.114 0.011 0.018

Notes: For the OLS estimates, clustered standard errors at study level are reported. ***, ** and * indicate statistical signif-
icant at 1%, 5% and 10%, respectively. For the case of FMA the asterisk is used for illustrative purposes only and should 
be cautiously interpreted as the results from this method do not correspond to only one specification, but they represent an 
average.
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price tends along with using real prices to provide better forecasts across the examined literature. 
Once more, better forecasts come from shorter forecasting horizons.

5. CONCLUSIONS

The aim of this paper is to provide a comprehensive assessment of the factors that contribute 
to improve oil price forecasts, by conducting a meta-analysis. The period of time of the paper stems 
from the fact that since the early 2000’s and the regime change in oil price fluctuations, there is an 
ever-increasing interest in oil price forecasts. However, despite the numerous efforts, there is no 
empirical evidence to summarise the different findings from different studies and identify the key 
factors that contribute to the accuracy of such forecasts. Thus, our quantitative survey on forecasting 
characteristics contributes to the practice of oil price forecasting. To the best of our knowledge, this 
is the first study that attempts to detect the factors that play an important role in oil price prediction 
by focusing on the relative root mean squared error (RRMSE) metric. We employ a Bayesian 
Model Averaging (BMA) method which is used to combine information from various forecasting 
characteristics in order to produce an accurate predictive performance.

Using a dataset that covers a large range of different forecasting frameworks, datasets, 
horizons and oil price benchmarks, we attempt to identify the most importance drivers of the 
forecasting accuracy. Based on the RRMSE metric, we summarise our findings as follows. First, 
the choice of the forecasting framework plays an important role. MIDAS and combined forecasts 
provide systematically better predictions than other forecasting strategies. Second, the price 
benchmark is also an important factor. Our evidence indicates that the forecasting ability is improved 
when the Brent price is used, whereas the opposite holds when the WTI or the RAC are employed. 
Finally, shorter forecasting horizons, as well as the use of real prices generate forecasts of greater 
accuracy. By contrast, the forecasting period and the real-time datasets are not important factors of 
the forecasting ability. Our findings remain unchanged under a set of different robustness tests.

The results of the present study have important implications for various stakeholders. 
Forecasting characteristics contain information that help financial market participants (traders and 
energy investors), policy makers, multinational corporations, and the oil industry, among other 
stakeholders, to improve oil price forecasts. Considering financial market participants, accurate oil 
price forecasts convey information regarding future oil price returns. Given that oil is also regarded 
as a financial asset, energy investors and traders should pay attention to superior forecasts in order 
to make better decisions regarding allocation of funds or portfolio risk estimation, among others. 
Similarly, policy makers benefit from accurate oil price forecasts in order to develop macroeconomic 
policies that help to prevent economic recessions, tackle inflationary pressures or boost industrial 
production. Furthermore, accurate oil price forecasts offer important information to the oil industry 
companies in terms of their financing, investment and managerial decisions related to their capital 
expenditure, market share, earnings expectations and stock price performance, among others. 
Additionally, multinational corporations are significantly benefited by accurate oil price forecasts 
and thus corporate decision making managers could be able to create strategies to mitigate the 
impact of higher oil price for example, in order to reduce the effect of rising costs on production.

For the purposes of the current meta-analysis, we make use of the RRMSE which is the 
most frequently used metric of forecasting performance. Therefore, a potential venue for future 
research in this field of study could be the consideration of alternative forecasting accuracy metrics, 
such as the directional accuracy. The extent to which alternative measures behave differently within 
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the context of this type of empirical analysis may trigger attempts for more accurate oil price 
forecasts and thus such attempts are expected to intensify in the future.
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 Appendix 3: Technical details

The key concept of the BMA methodology is that BMA treats each model, Mi as an extra 
parameter that its posterior has to be estimated. A useful starting point is the use of Bayesian rule 
which can be written as:

( | , ) ( | , ) ( ).i i ip M Z p M Z p Mψ ψ∝  (A.1)

Hence, the left-hand side term is the posterior model probability (PMP), while the right-
hand side term is the marginal likelihood function times the prior probability of model Mi. Put 
differently, the left-hand side term is proportional to the right-hand side term.
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In addition, the BMA methodology indicates that posterior model probabilities are used as 
weights, such as:

4096

=1

( , ) = ( , , ) ( , ).i i i
i

p | Z p | Z M p M | Zγ ψ γ ψ ψ∑  (A.2)

Here, ( , , )i ip | Z Mγ ψ  is the posterior distribution under model Mi and ( , )ip M | Zψ  is the posterior 
model probability. More precisely, the posterior density of γ  for each model Mi is weighted by the 
posterior model probability of each model Mi.

As far as the parameters priors are concerned, we follow [Zellner, 1986] and assume that 
the variance is proportional to

2 1| (0, ( ( ) )).i i ig N g Z Zγ σ −′
  (A.3)

In this study, we employ two different choices regarding g. Firstly, we set g = N, which 
leads to the most trivial case of unit information prior (UIP), where N is the sample size. Secondly, 
we employ the hyper-g prior as suggested by Liang et al. (2008). Specifically, 1

g
g+  2(1, 1)aBeta − , 

where α ∈ (2,4] with a Beta distribution mean equal to 2
α . Regarding the model priors, we assume the 

binomial model prior according to which the model probability is given by ( ) = (1 )
k K ki i

ip M δ δ −− ,  
where K is the maximum number of regressors, ki is the number of regressors included in the 
model Mi and δ is a hyperparameter that expresses the probability of each regressor. Based on this 
assumption, we discern between two different cases. Firstly, we set δ = 1

2  assigning equal probability 
to all models under consideration. Secondly, we use an alternative model prior that is less restrictive 
as far as the model size is concerned, assuming a hyperprior beta-binomial.

Turning to the LASSO technique, it was originally developed as a frequentist method for 
variable selection. We assume the following distributions for the parameters of interest:

2 1 2| , (0, ),i i iNγ ω τ ω τ−  (A.4)

2 2( | ) ( / 2),i ip expτ λ λτ∝ −  (A.5)

( ) 1 / ,p ω ω∝  (A.6)

where ω and τ  are the two hyperparameters that determine the variance of the parameters of 
interest (γ ), and the inference is based on simulations on four posterior conditional distributions: 

2 2( | , , , )p γ ψ ω τ λ , 2 2( | , , , )p ω ψ γ τ λ , 2 2( | , , , )p τ ψ γ ω λ  and 2 2( | , , , )p λ ψ γ ω τ . Following the standard 
practice, we assume an independent normal-gamma prior for the first two conditionals. For ω we 
assume a non-informative prior as indicated by equation (A.6), while for τ  (and for calculative 
purposes for 1 /τ  we assume an inverse gamma and for λ we assume a gamma distribution. With this 
prior structure, the simulations are reduced to a Gibbs sampler.

Finally, in the main part of the paper, we report the posterior mean and the standard 
deviation for γ  and the posterior mean for τ  that shows which variables can remain in the model and 
which ones can be deleted. On the one hand, coefficients that their estimated τ  is zero are deleted 
from the model as their estimated mean is zero as equation (A.4) indicates. On the other hand, the 
meta-regression model keeps only the determinants whose estimated iγ  have a variance that is larger 
than zero (i.e., > 0iτ ).




