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Abstract – Computerised processing of medical images can ease the 

search of the representative features in the images. The endoscopic 

images possess rich information expressed by texture. In this paper 

schemes have been developed to extract texture features from the 

texture spectra in the chromatic and achromatic domains for a 

selected region of interest from each colour component histogram of 

images acquired by the new M2A Swallowable Capsule. The 

implementation of advanced learning-based schemes and the 

concept of fusion of multiple classifiers have been also adopted in 

this paper. The preliminary test results support the feasibility of the 

proposed methodology.

Keywords – Medical imaging, Computer aided diagnosis, 

Endoscopy, Neural networks, Fuzzy integral.

I. INTRODUCTION 

In medical practice, endoscopic diagnosis and other 

minimally invasive imaging procedures, such as computed 

tomography, ultrasonography, con-focal microscopy, 

computed radiography, or magnetic resonance imaging, are 

now permitting visualisation of previously inaccessible 

regions of the body. Their objective is to increase the expert’s 

ability in identifying malignant regions and decrease the need 

for intervention while maintaining the ability for accurate 

diagnosis. For more than 10 years, flexible video-endoscopes 

have a widespread use in medicine and guide a variety of 

diagnostic and therapeutic procedures including colonoscopy, 

gastroenterology and laparoscopy [1]. A miniaturised CCD-

imager is integrated on the distal side on such endoscopes to 

acquire intra-corporeal images in video quality ("chip on a 

stick"). This electronic imager is substituting the fibre-optic 

bundle of conventional large-diameter flexible endoscopes. 

Conventional diagnosis of endoscopic images employs visual 

interpretation of an expert physician. Since the beginning of 

computer technology, it becomes necessary for visual 

systems to “understand a scene”, that is making its own 

properties to be outstanding, by enclosing them in a general 

description of an analysed environment. Computer-assisted 

image analysis can extract the representative features of the 

images together with quantitative measurements and thus can 

ease the task of objective interpretations by a physician 

expert in endoscopy. A system capable to classify image 

regions to normal or abnormal will act as a second - more 

detailed - “eye” by processing the endoscopic video. Its 

exceptional value and contribution in supporting the medical 

diagnosis procedure is high. Endoscopic images possess rich 

information [2], which facilitates the abnormality detection 

by multiple techniques. However, from the literature survey, 

it has been found that only a few techniques for endoscopic 

image analysis have been reported and they are still 

undergoing testing. In addition, most of the techniques were 

developed on the basis of features in a single domain: 

chromatic domain or spatial domain. Applying these 

techniques individually for detecting the disease patterns 

based on possible incomplete and partial information may 

lead to inaccurate diagnosis. For example, regions affected 

with bleeding and inflammation may have different colour 

and texture characteristics. Parameters in the spatial domain 

related with lumen can be used to suggest the cues for 

abnormality. For instance, small area of lumen implies the 

narrowing of the lumen which is often one of the symptoms 

for lump formation and not the presence of possible bleeding. 

Therefore, maximising the use of all available image analysis 

techniques for diagnosing from multiple feature domains is 

particularly important to improve the tasks of classification 

of endoscopic images.  

Krishnan, et al.[3] have been using endoscopic images to 

define features of the normal and the abnormal colon. New 

approaches for the characterisation of colon based on a set of 

quantitative parameters, extracted by the fuzzy processing of 

colon images, have been used for assisting the colonoscopist 

in the assessment of the status of patients and were used as 

inputs to a rule-based decision strategy to find out whether 

the colon's lumen belongs to either an abnormal or normal 

category. The quantitative characteristics of the colon are: 

mean and standard deviation of RGB, perimeter, enclosed 

boundary area, form factor, and center of mass. The analysis 

of the extracted quantitative parameters was performed using 

three different neural networks selected for classification of 

the colon. The three networks include a two-layer perceptron 

trained with the delta rule, a multilayer perceptron with back-

propagation (BP) learning and a self-organizing network. A 

comparative study of the three methods was also performed 

and it was observed that the self-organizing network is more 

appropriate for the classification of colon status. Endoscopic 

images contain rich information of texture. Therefore, the 

additional texture information can provide better results for 

the image analysis than approaches using merely intensity 

information. Such information has been used in CoLD 

(colorectal lesions detector) an innovative detection system to 

support colorectal cancer diagnosis and detection of pre-

cancerous polyps, by processing endoscopy images or video 
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frame sequences acquired during colonoscopy [4]. It utilised 

second-order statistical features that were calculated on the 

wavelet transformation of each image to discriminate 

amongst regions of normal or abnormal tissue. A neural 

network based on the classic BP learning algorithm 

performed the classification of the features. CoLD integrated 

the feature extraction and classification algorithms under a 

graphical user interface, which allowed both novice and 

expert users to utilise effectively all system’s functions. The 

detection accuracy of the proposed system has been estimated 

to be more than 95%.  

Intra-operative endoscopy, although used with great 

success, is more invasive and associated with a higher rate of 

complications. Though the gastrointestinal (GI) endoscopic 

procedure has been widely used, doctors must be skilful and 

experienced to reach deep sites such as the duodenum and 

small intestine. The cleaning and sterilisation of these devices 

is still a problem leading to the desire for disposable 

instruments. In GI tract, great skill and concentration are 

required for navigating the endoscope because of its flexible 

structure. Discomfort to the patient and the time required for 

diagnosis heavily depend on the technical skill of the 

physician and there is always a possibility of the tip of the 

endoscope injuring the walls. Standard endoscopic 

examinations evaluate only short segments of the proximal 

and distal small bowel and barium follow-through has a low 

sensitivity and specificity of only 10% for detecting 

pathologies. Hence, endoscopic examination of the entire 

small bowel has always been a diagnostic challenge. 

Limitations of the diagnostic techniques in detection of the 

lesions located in the small bowel are mainly due to the 

length of the small intestine, overlying loops and intra-

peritoneal location. This caused also the desire for 

autonomous instruments without the bundles of optical fibres 

and tubes, which are more than the size of the instrument 

itself, the reason for the objections of the patients. The use of 

highly integrated microcircuit in bioelectric data acquisition 

systems promises new insights into the origin of a large 

variety of health problems by providing lightweight, low-

power, low-cost medical measurement devices. 

Fig. 1: Given Imaging Capsule 

At present, there is only one type of microcapsule which 

has been introduced recently to improve the health outcome. 

It might sound like the sci-fi story Fantastic Voyage, but the 

capsule can efficiently diagnose a range of GI disorders, 

suspected Crohn's cases, celiac disease, unexplained 

bleeding, and other small-bowel disorders. This first 

swallowable video-capsule for the gastroenterological 

diagnosis has been presented by Given Imaging, a company 

from Israel, and its schematic diagram is illustrated in Fig. 1 

[5]. The system consists of a small swallowable capsule 

containing a battery, a camera on a chip, a light source, and a 

transmitter. The camera-capsule has a one centimetre section 

and a length of three centimetres so it can be swallowed with 

some effort. In 24 hours, the capsule is crossing the patient's 

alimentary canal.  

For the purpose of this research work, endoscopic images 

have been obtained using this innovative endoscopic device. 

They have spatial resolution of 171x151 pixels, a brightness 

resolution of 256 levels per colour plane (8bits), and 

consisted of three colour planes (red, green and blue) for a 

total of 24 bits per pixel. The proposed methodology in this 

paper is considered in two phases. The first implements the 

extraction of image features while in the second phase an 

advanced neural network is implemented / employed to 

perform the diagnostic task. Texture analysis is one of the 

most important features used in image processing and pattern 

recognition. It can give information about the arrangement 

and spatial properties of fundamental image elements. Many 

methods have been proposed to extract texture features, e.g. 

the co-occurrence matrix, and the texture spectrum in the 

achromatic component of the image. The definition and 

extraction of quantitative parameters from endoscopic images 

based on texture information in the chromatic and achromatic 

domain is being proposed. This information is initially 

represented by a set of descriptive statistical features 

calculated on the histogram of the original image. 

Additionally, in this study an alternative approach of 

obtaining those quantitative parameters from the texture 

spectra is proposed both in the chromatic and achromatic 

domains of the image. The definition of texture spectrum 

employs the determination of the texture unit (TU) and 

texture unit number (NTU) values. Texture units characterise 

the local texture information for a given pixel and its 

neighbourhood, and the statistics of the entire texture unit 

over the whole image reveal the global texture aspects. For 

the diagnostic part, the concept of multiple-classifier scheme 

has been adopted, where the fusion of the individual outputs 

was realised using fuzzy integral. An intelligent classifier-

scheme based on modified Extended Normalised Radial 

Basis Function (ENRBF) neural networks enhanced with 

split/merge issues has been also implemented while is then 

compared with a classical radial basis function network 

scheme. 

II. IMAGE FEATURES EXTRACTION 

A major component in analysing images involves data 

reduction which is accomplished by intelligently modifying 

the image from the lowest level of pixel data into higher level 

representations. Texture is broadly defined as the rate and 

direction of change of the chromatic properties of the image, 
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and could be subjectively described as fine, coarse, smooth, 

random, rippled, and irregular, etc. 

Fig. 2: Selected endoscopic images of normal and abnormal cases.

For this reason, we focused our attention on nine statistical 

measures (standard deviation, variance, skew, kurtosis, 

entropy, energy, inverse difference moment, contrast, and 

covariance) [6]. All texture descriptors are estimated for all 

planes in both RGB {R (Red), G (Green), B (Blue)} and 

HSV {H (Hue), S (Saturation), V (Intensity)} spaces, 

creating a feature vector for each descriptor 

Di=(Ri,Gi,Bi,Hi,Si,Vi). Thus, a total of 54 features (9 

statistical measures x 6 image planes) are then estimated. For 

our experiments, we have used 70 endoscopic images related 

to abnormal cases and 70 images related to normal ones. Fig. 

2 shows samples of selected images acquired using the M2A 

capsule of normal and abnormal cases. Generally, the 

statistical measures are estimated on histograms of the 

original image (1
st
 order statistics) [7]. However, the 

histogram of the original image carries no information 

regarding relative position of the pixels in the texture. 

Obviously this can fail to distinguish between textures with 

similar distributions of grey levels. We therefore have to 

implement methods which recognise characteristic relative 

positions of pixels of given intensity levels. An additional 

scheme is proposed in this study to extract new texture 

features from the texture spectra in the chromatic and 

achromatic domains, for a selected region of interest from 

each colour component histogram of the endoscopic images. 

A. NTU Transformation  

The definition of texture spectrum employs the 

determination of the texture unit (TU) and texture unit 

number (NTU) values.  Texture units characterise the local 

texture information for a given pixel and its neighbourhood, 

and the statistics of all the texture units over the whole image 

reveal the global texture aspects. Given a neighbourhood of 

δ δ×  pixels, which are denoted by a set containing δ δ×

elements 0 1 ( ) 1{ , ,...., }P P P Pδ δ× −= , where 0P represents the 

chromatic or achromatic (i.e. intensity) value of the central 

pixel and  { 1,2,...,( ) 1}
i

P i δ δ= × −  is the chromatic or 

achromatic value of the neighbouring pixel i , the 

0 1 ( ) 1{ , ,...., }TU E E Eδ δ× −= , where { 1,2,...,( ) 1}
i

E i δ δ= × −  is determined 

as follows: 
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The element 
i

E occupies the same position as the 
th

i pixel. 

Each element of the TU has one of three possible values; 

therefore the combination of all the eight elements results in 

6561 possible TU's in total. The texture unit number (NTU) is 

the label of the texture unit and is defined using the following 

equation: 
( ) 1

1

1

T U i

i

N E
δ δ

ιδ
× −

−

=

= ×    (2) 

Where, in our case, 3δ = . The texture spectrum histogram 

( ( ))Hist i is obtained as the frequency distribution of all the 

texture units, with the abscissa showing the NTU and the 

ordinate representing its occurrence frequency. The texture 

spectra of various image components {I (Intensity), R (Red), 

G (Green), B (Blue), H (Hue), S (Saturation)} are obtained 

from their texture unit numbers. The statistical features are 

then estimated on the histograms of the NTU transformations 

of the chromatic and achromatic planes of the image 

(R,G,B,H,S,V). 

III. FEATURES EVALUATION 

Recently, the concept of combining multiple classifiers 

has been actively exploited for developing highly reliable 

“diagnostic” systems [8]. One of the key issues of this 

approach is how to combine the results of the various 

systems to give the best estimate of the optimal result. A 

straightforward approach is to decompose the problem into 

manageable ones for several different sub-systems and 

combine them via a gating network. The presumption is that 

each classifier/sub-system is “an expert” in some local area 

of the feature space.  

Fig. 3: Proposed fusion scheme 

The sub-systems are local in the sense that the weights in one 

“expert” are decoupled from the weights in other sub-

networks. In this study, six subsystems have been developed, 
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and each of them was associated with the six planes specified 

in the feature extraction process (i.e. R, G, B, H, S, & V). 

Each subsystem was modelled with an appropriate intelligent 

learning scheme.  In our case, two alternative schemes have 

been proposed: a modified Extended Normalised Radial 

Basis Function Network (ENRBF) and an RBF network 

using the orthogonal least squares learning algorithm. Such 

schemes provide a degree of certainty for each classification 

based on the statistics for each plane. The outputs of each of 

these networks must then be combined to produce a total 

output for the system as a whole as can be seen in Fig. 3.  

While a usual scheme chooses one best subsystem from 

amongst the set of candidate subsystems based on a winner-

takes-all strategy, the current proposed approach runs all 

multiple subsystems with an appropriate collective decision 

strategy. The aim in this study is to incorporate information 

from each plane/space so that decisions are based on the 

whole input space. The adopted in this paper methodology 

was to use the fuzzy integral concept. Fuzzy integral (FI) is a 

promising method that incorporates information from each 

space/plane so that decisions are based on the whole input 

space in the case of multiple classifier schemes. FI combines 

evidence of a classification with the systems expectation of 

the importance of that evidence. By treating the classification 

results a series of disjointed subsets of the input space 

Sugeno defined the 
λg -fuzzy measure [10].

( ) ( ) ( ) ( ) ( )g A B g A g B g A g Bλ= + + ; (3)

( )1,λ ∈ − ∞

Where the λ  measure can be given by solving the following 

non-linear equation. 

( )
1

1 1
K

i

i

gλ λ
=

+ = +∏ 1λ > −    (4) 

The { }, 1,...,i
g i K∈  values are fuzzy densities relating to 

the reliability of each of the K feature networks and satisfy 

the conditions of fuzzy sets laid out by Sugeno.  

A. Extended Normalised RBF Network  

The first classification scheme utilised here is a modified 

version of the Extended Normalised Radial Basis Function 

Network (ENRBF) [9], which utilises a series of linear 

models instead of the linear combiner in an RBF network. 

The scheme is illustrated in Fig. 4. We propose a supervised 

training method for this scheme that is fully supervised and 

self organising in terms of structure. The method incorporates 

training techniques from Bayesian Ying-Yang (BYY) 

training which treats the problem of optimisation as one of 

maximising the entropy between the original non-parametric 

data distribution based on Kernel estimates or user specified 

values and the parametric distributions represented by the 

network. This is achieved through the derivation of a series 

of Expectation Maximisation (EM) update equations using a 

series of entropy functions as the Q function or log-likelihood 

function. The ENRBF network can be represented by the 

following equations.  

( )
( ) ( )

( )

1

1

| ,

| ,

| ,

K

T

j j j

j

K

j

j

W x c p x j

E z x

p x j

θ

θ

=

=

+

Θ =  (5) 

Where z is the output of the network z Z∈ , x is an input 

vector x X∈ , [ ], ,W c θΘ = are the network parameters 

and [ ],mθ = Σ are the parameters of the Gaussian activation 

functions given by: 

( ) ( ) ( ){ }11

2
| , exp

j j j j
p x j x m x mθ −= − − Σ −    (6)

Fig. 4: ENRBF scheme. 

The BYY method attempts to maximise the degree of 

agreement between the expected value of z from the network 

and the true value of z from the training data. It is guaranteed 

to lead to a local optimum and unlike the original EM 

algorithm for learning the parameters of Gaussian functions 

this method encourages coordination between the input and 

output domains. Like the EM algorithm this method is also 

very fast in terms of the number of iterations needed for the 

parameters to converge. However, as BYY is an EM based 

technique it is still susceptible to locally maximal values. The 

Split and Merge EM (SMEM) concept for Gaussian Mixture 

Models (GMM) proposed initially by Ueda, has been applied 

to the ENRBF scheme. The original SMEM algorithm is able 

to move neurons from over populated areas of the problem 

domain to underrepresented areas by merging the over 

populated neurons and splitting the under-populated. The use 

of Eigenvectors to split along the axis of maximum 

divergence instead of randomly as in original SMEM has 

been proposed recently. The SMEM algorithm suffers from 

the fact that before terminating all possible combinations of 

Split and Merge operations must be examined. Although 

many options can be discounted, the training time still 

increases exponentially with network size and again suffers 

from problems inherent with k-means and basic EM in that it 

is essentially unsupervised. In this work we incorporate the 

supervised nature of BYY training with improved statistical 

criteria for determining the neurons which poorly fit their 

local areas of the problem domain.   
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IV. RESULTS 

The proposed approaches were evaluated using 140 

clinically obtained endoscopic M2A images. For the present 

analysis, two decision-classes are considered: abnormal and 

normal. Seventy images (35 abnormal and 35 normal) were 

used for the training and the remaining ones (35 abnormal 

and 35 normal) were used for testing. The extraction of 

quantitative parameters from these endoscopic images is 

based on texture information. Initially, this information is 

represented by a set of descriptive statistical features 

calculated on the histogram of the original image. Both types 

of networks (i.e. ENRBF and RBF) are incorporated into a 

multiple classifier scheme, where the structure of each 

individual (for R, G, B, H, S, & V planes) classifier is 

composed of 9 input nodes (i.e. nine statistical features) and 

2 output nodes. In a second stage, the nine statistical 

measures for each individual image component are then 

calculated though the related texture spectra after applying 

the (NTU) transformation. 

A. Performance of Histograms-based Features  

The multiple-classifier scheme using the ENRBF network 

has been trained on the six feature spaces. The network 

trained on the R feature space and it then achieved an 

accuracy of 94.28% on the testing data incorrectly classifying 

2 of the normal images as abnormal and 2 abnormal as 

normal ones.  
Table I: Performances of ENRBF

The network trained on the G feature space misclassified 2 

normal images as abnormal but not the same ones as the R 

space.  
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Fig. 5: Histogram-based Performance 

The remaining 3 images were misclassified as normal 

ones. The B feature space achieved an accuracy of 94.28% on 

the testing data with 4 misclassifications, i.e. 3 abnormal as 

normal ones and the remaining one image as abnormal ones. 

The network trained on the H feature space achieved 91.43% 

accuracy on the testing data. The network trained on the S 

feature space achieved an accuracy of only 88.57% on the 

testing data. Finally, the network for the V feature space 

misclassified 2 normal cases as abnormal and 2 abnormal as 

normal ones, giving it an accuracy of 94.28% on the testing 

data. The fuzzy integral (FI) concept has been used here to 

combine the results from each sub-network and the overall 

system misclassified 1 normal cases as abnormal and 3 

abnormal as normal ones, giving the system an overall 

accuracy of 94.28%. These results are illustrated in Fig. 5, 

while Table I presents the performance of individual 

components. It can be shown that in general the confidence 

levels for each correct classification is above 0.6. 

In a similar way, a multi classifier consisting of RBF 

networks with 9 input nodes and 2 output nodes was trained 

on each of the six feature spaces. The network trained on the 

R feature space and classified incorrectly 2 of the normal 

images as abnormal and 4 abnormal as normal ones. The 

network trained on the G feature space misclassified 3 

normal images as abnormal but not the same ones as the R 

space. The remaining 2 images were misclassified as normal 

ones. The B feature space has resulted 8 misclassifications, 

i.e. 5 abnormal as normal ones and the remaining 3 images as 

abnormal ones.   
Table II: Performances of RBF

The network trained on the H and S feature spaces achieved 

90% and 85.71% accuracy respectively on the testing data.  

Finally, the network for the V feature space misclassified 3 

normal cases as abnormal and one abnormal as normal one. 

Using the fuzzy integral (FI) concept, the overall system 

achieved an accuracy of 88.57%. Table II presents the 

performance of individual components. The confidence 

levels for each correct classification were above 0.50. 

B. Performance of NTU-based Features 

In the NTU-based extraction process, the texture spectrum 

of the six components (R, G, B, H, S, V) have been obtained 

from the texture unit numbers, and the same nine statistical 

measures have been used  in order  to extract new features 

from each textures spectrum. A multi classifier consisting of 

ENRBF networks with 9 input nodes and 2 output nodes was 

again trained on each of the six feature spaces. The NTU

transformation of the original histogram has produced a 

ENRBF Accuracy (70 testing patterns) 

Modules Histogram-based NTU-based

R 94.28% ( 4 mistakes) 92.85% (5 mistakes) 

G 92.85% (5 mistakes) 97.14% (2 mistakes) 

B 94.28% (4 mistakes) 95.71% (3 mistakes) 

H 91.43% (6 mistakes) 94.28% (4 mistakes) 

S 88.57% (8 mistakes) 91.43% (6 mistakes) 

V 94.28% (4 mistakes) 97.14% (2 mistakes) 

Overall 94.28% (4 mistakes) 95.71% (3 mistakes) 

RBF Accuracy (70 testing patterns) 

Modules Histogram-based NTU-based

R 91.42% (6 mistakes) 92.85% (5 mistakes) 

G 92.85% (5 mistakes) 91.43% (3 mistakes) 

B 88.57% (8 mistakes) 91.43% (6 mistakes) 

H 90% (7 mistakes) 92.85% (5 mistakes) 

S 85.71% (10 mistakes) 90.00% (7 mistakes) 

V  94.28% (4 mistakes) 94.28% (4 mistakes) 

Overall 88.57% (8 mistakes) 91.43% (6 mistakes) 
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slight but unambiguous improvement in the diagnostic 

performance of the multi-classifier scheme. Table I illustrates 

the performances of the network in the individual 

components.  
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Fig. 6: NTU-based Performance 

The ENRBF network trained on the R feature space and it 

then achieved an accuracy of 92.85% on the testing data 

incorrectly classifying 3 of the normal images as abnormal 

and 2 abnormal as normal ones. The network trained on the 

G feature space misclassified 2 normal images as abnormal 

but not the same ones as the R space. The B feature space 

achieved an accuracy of 95.71% on the testing data with 3 

misclassifications, i.e. 2 abnormal as normal ones and the 

remaining one image as abnormal one. The network trained 

on the H feature space achieved 94.28% accuracy on the 

testing data. The network trained on the S feature space 

achieved an accuracy of only 91.43% on the testing data. 

Finally, the network for the V feature space misclassified 1 

normal case as abnormal  and 1 abnormal as normal one, 

giving it an accuracy of 97.14% on the testing data. The 

fuzzy integral (FI) concept has been used here to combine the 

results from each sub-network and the overall system 

provided an accuracy of 95.71%. More specifically, 1 normal 

case as abnormal and 2 abnormal as normal ones provide us a 

good indication of a “healthy” diagnostic performance. 

However the level of confidence in this case was slight less 

than the previous case (i.e. the histogram), that is 0.54 as 

shown in Fig. 6. 

Similarly for the RBF case, the FI concept has been used 

to combine the results from each sub-network and the overall 

system misclassified 3 normal cases as abnormal and 3 

abnormal as normal ones, giving the system an overall 

accuracy of 91.43%., despite the fact that RBF was 

characterised by a very fast training  process. Table II 

presents the performance of individual components. The 

confidence levels for each correct classification were above 

0.55.

V. CONCLUSIONS

An approach on extracting texture features from endoscopic 

images using the M2A Given Imaging capsule has been 

developed. Statistical features based on texture are important 

features, and were able to distinguish the normal and 

abnormal status in the selected clinical cases. The multiple 

classifier approach used in this study with the inclusion of 

advanced neural network algorithms provided encouraging 

results. Two approaches on extracting statistical features 

from endoscopic images using the M2A Given Imaging 

capsule have been developed. In addition to the histogram-

based texture spectrum, an alternative approach of obtaining 

those quantitative parameters from the texture spectra is 

proposed both in the chromatic and achromatic domains of 

the image by calculating the texture unit numbers (NTU) over 

the histogram spectrum. Future studies will be focused on 

further development of this “diagnostic” system by 

incorporating additional features, investigation of algorithms 

for reduction of input dimensionality as well as the testing of 

this approach to the IVP-endoscopic capsule which is under 

development through a European research project. 
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