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Abstract:  
Food product safety is one of the most promising areas for the application of electronic noses. During the last twenty 

years, these sensor-based systems have made odour analyses possible. Their application into the area of food is mainly 

focused on quality control, freshness evaluation, shelf-life analysis and authenticity assessment. In this paper, the 

performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillets stored either 

aerobically or under modified atmosphere packaging, at different storage temperatures. A novel multi-output fuzzy 

wavelet neural network model has been developed, which incorporates a clustering pre-processing stage for the 

definition of fuzzy rules. The dual purpose of the proposed modelling approach is not only to classify beef samples in 

the relevant quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological 

population. Comparison results against advanced machine learning schemes indicated that the proposed modelling 

scheme could be considered as a valuable detection methodology in food microbiology. 
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1. Introduction 

One of the most commonly consumed food item worldwide is meat. However, meat’s shelf life is low and the 

consumption of spoiled meat products can easily cause serious health hazards. The development of reliable systems to 

determine safety/quality of meat products would certainly benefit the public enormously, and also prevent unnecessary 

economic losses. Although beef is considered as a good source for essential nutrients, it is also a perfect “environment” 

for the growth of pathogenic microorganisms and consequently spoilage.  

Currently, meat safety is mainly relied on regulatory inspection and sampling protocols. This methodology, however, 

seems insufficient as 100% inspection and sampling is simple difficult to be achieved. Additionally, although a plethora 

of chemical and microbiological methods have been proposed for the detection and measurement of bacterial meat 

spoilage, the majority of them are considered as time-consuming processes (Ellis, et al., 2001). Thus, the development 

and application of rapid and non-invasive sensors for spoilage detection is very desirable for Meat Industry. Various 

methods based on analytical instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR) 

(Amamcharla, et al., 2010), Raman spectroscopy (Meisel, et al., 2014) and Hyperspectral Imaging (Tao, et al., 2014) 

have been investigated for their potential in assessing meat quality.  

In the past two decades, consideration of food safety from the point of specific bacteria has resulted in the need for 

an alternative detection system for microbial spoilage by inspecting volatile organic compounds (VOCs) generated by 

these microorganisms (Boothe, et al., 2002). The application of human nose as a smell assessment instrument is rather 

restricted by the fact that our sense of smell is subjective and is therefore difficult to use. Consequently, there was need 

for an instrument that could “mimic” the human sense of smell and its use in routine industrial applications. To support 

such technology for industrial usage, gas/odour sensors became ideal candidates in areas like food industry, 

environment control, automobile industry, indoor air quality check and monitoring and medicine (Capelli, et al., 2014), 

(Fend, et al., 2006). 

The electronic nose (enose) is a system initially created to “mimic” the function of human nose. An enose consists 

of an array of chemical gas sensors with broad and partly overlapping selectivity that measure volatile compounds 

(VCs), a signal-preparation system, and a pattern-recognition system. Such device is usually characterised by 

reproducibility and reliability, as it has a short reaction and recovery time. Although the instrument does not allow the 

actual identification of compounds and has a higher detection limit against GC–MS, it has been successfully used in 

processing monitoring, shelf-life investigation, freshness evaluation and authenticity assessment in a wide range of food 

products (Di Natale, et al., 1998).  

The main applications of enose with respect to meat are in assessing quality, spoilage identification and detection 

of off-flavours. In one of the earliest related studies, the changes in the headspace of vacuum packaged beef, vaccinated 

with Salmonella typhimurium, was evaluated using a metal oxide (MOS) based enose (Balasubramanian, et al., 2008). 

The VCs of pork and meat products such as sausages were also studied for Halal verification (Nurjuliana, et al., 2011). 

An enose, consisting of 18 MOS gas sensors, has been used for measuring flavour quality changes of refined chicken fat 

during controlled oxidation and partial least squares regression (PLS) was utilised as a prediction model (Song, et al., 

2013). An olfactory system has been considered for the detection of Salmonella contamination in packaged beef steaks 

using neural network classifiers (Khot, et al., 2012). The prediction of total viable counts (TVC) in chilled pork using 

an enose and support vector machine (SVM) has been also investigated. In this specific experiment, enose and 

microbiological measurements were carried out on pork samples stored at 4 °C for up to 10 days (Wang, et al., 2012). 



  
 
Adulteration detection of meat has attracted growing attention in recent years. In this perspective, enose was utilised to 

detect pork adulteration in minced mutton (Tian, et al., 2013).  

The main objective of this paper is to associate, for the first time according to literature, volatile fingerprints of 

odour profile with beef spoilage through a multi-input-multi-output (MIMO) clustering-based fuzzy wavelet neural 

network (CFWNN) system. The proposed CFWNN system classifies beef fillets stored either aerobically or under 

modified atmosphere packaging to one of three quality classes (i.e. fresh, semi-fresh, and spoiled) and simultaneously 

predicts the microbial load (as total viable counts – TVC) on meat surface, based on the biochemical profile provided 

by the enose dataset. Results from CFWNN scheme are compared against models based on Adaptive Neural Fuzzy 

Inference System (ANFIS), Multilayer Neural Networks (MLP), Support Vector Machines (SVM) as well as linear 

(PLS) regression schemes. Such comparison is considered as a essential test, as we have to emphasise the need of 

induction to the area of food microbiology, advanced learning-based modelling schemes, which may have a significant 

potential for the accurate estimation of meat spoilage.  

 

2. Experimental case 
2.1 Sample Preparation and Microbiological Analysis 
The entire experimental case study was performed at the Agricultural University of Athens, Greece. A detailed 

description of the experimental methodology, as well as the related microbiological analysis of the meat samples, is 

described in (Papadopoulou, et al., 2013). Briefly, the samples were prepared by cutting fresh beef  fillers into small 

pieces and then stored aerobically (AIR) and in modified atmosphere packaging (MAP) (40% CO2, 30% O2, 30% N2) at 

different temperatures. More specifically, these samples were stored under controlled isothermal conditions at 0, 4, 8, 

12, 16 and 20°C in high precision incubators for up to 434 h, depending on storage temperature, until spoilage was 

observed (Christiansen, et al., 2011). After appropriate time intervals during storage, duplicate samples were collected 

for microbiological, sensory and enose analysis. It was assumed that the microbial population at these parts would be 

comparable and samples were not subjected to any prior pre-processing such as fat and connective tissue removal. Meat 

samples stored at aerobic conditions were analyzed every 24, 24, 12 and 8 h for 0, 4, 8 and 12°C respectively. Finally, 

samples stored at 16 and 20°C were analyzed at 4–6 h intervals. Similarly, samples stored at MAP conditions were 

analyzed every 48, 24, 16, 12, 8 and 6 h for 0, 4, 8, 12, 16 and 20°C respectively.   In parallel, microbiological analysis 

was performed and resulting growth data were log10 transformed and fitted to the primary model of Baranyi in order to 

verify the kinetic parameters of microbial growth (maximum specific growth rate and lag phase duration) 

(Papadopoulou, et al., 2013).   

Figure 1 

The growth curves of TVC for beef fillet storage at different temperatures under aerobic and MAP conditions as a 

function of storage time are illustrated in Fig. 1. A close inspection, however, reveals that the maximum specific growth 

rate (μmax) for the AIR packaged condition is different than of that of the MAP case. It has been found that packaging 

under modified atmosphere delay the growth rates of all members of the microbial association, as well as the maximum 

population attained by each microbial group compared with aerobic storage. Aerobic storage increases the rate of 

spoilage due to the fast growing Pseudomonas spp.; in addition such growth can be considerably inhibited by the 

presence of gas carbon dioxide (Skandamis, et al., 2002). Analysis specified that the total viable counts ranged from 
2

103.058 9.885log cfu cm−− for aerobic cases, and 2
103.146 8.063log cfu cm−− for MAP cases. However, for both 

aerobic and MAP packaging conditions, the growth rate is increased faster, as the storage temperature increases. 



  
 
Additionally, sensory evaluation of samples was performed during storage, based on the observation of colour and 

smell before and after cooking (Papadopoulou, et al., 2013).  Each sensory attribute was assigned to a three-point scale 

corresponding to: 1=fresh (acceptable meat quality and the absence of off-flavors); 2=semi-fresh (presence of slight off-

flavors but not spoiled); and 3= spoiled (clearly off-flavor development). In total, 210 meat samples were evaluated by a 

sensory panel and classified into the selected three groups as fresh (n = 48), semi-fresh (n = 72), and spoiled (n = 90) for 

the aerobic case, while 213 meat samples were classified as fresh (n = 51), semi-fresh (n = 84), and spoiled (n = 78) for 

the MAP case. 

 

2.2 Volatile Samples Acquisition  
Libra enose (Fig. 2) is a portable device produced by Technobiochip and is used to identify complex odours (Di Natale, 

et al., 2001). The instrument is composed by an array of chemical sensors and a data analysis system. The integrated 

data analysis system “transforms” the extracted information from an odour to an “olfactory” image, similarly with our 

sense of a smell. The detection of odours is then based on the concept that different odours have different “olfactory” 

images. This distinguishes enose from gas chromatography which identifies single molecular classes inside a gaseous 

mixture. Enose recognises an odour as a whole, showing the synergic activity of different molecular species in a single 

“olfactory” image.  

Figure 2 

This sensing device uses a set of eight 20MHz piezoelectric transducers placed in a measuring chamber. The measuring 

chamber is held at a constant temperature during the measurements by a thermostatic electronic system, while a flow 

system formed by a micro-electric valve and a micro-pump transmits the gas sample to the measuring chamber. For 

each measurement, a beef fillet sample of 5 g was introduced inside a 100 ml volume glass jar and left at room 

temperature (20°C ±2°C) for 15 min to enhance desorption of volatile compounds from the meat into the headspace. 

The headspace was then pumped over the sensors of the enose and the generated signal was recorded to a computer.  

Datasets related to volatile extracted information from Libra enose as well as the associated microbiological analysis 

from meat samples for both aerobic and MAP cases, were provided by Agricultural University of Athens, Greece and 

were further utilised towards the development of the proposed intelligent model. 

3. CFWNN Architecture 

In the current study, a novel Multi-Input Multi-Output (MIMO) Clustering-based Fuzzy Wavelet Neural Network 

system (CFWNN) has been developed to predict the microbial load (as TVC) on meat surface, based on the biochemical 

profile provided by the enose dataset. In addition, the same model can classify beef samples to one of three quality 

classes (i.e. fresh, semi-fresh, and spoiled).  

Wavelets are known to have good modelling properties over a range of frequencies; hence they have been utilised 

in neuro-fuzzy (NF) systems (Kodogiannis, et al., 2013). Generally, the fuzzy wavelet neural network (FWNN) is a 

combined structure based on fuzzy rules that includes wavelet functions in their consequent parts, in the form of a 

wavelet neural network. In these FWNN schemes, such combination is achieved through a Takagi–Sugeno–Kang 

(TSK) architecture, which allows us to model nonlinear behaviour with relatively fast training speed. The domain 

interval of each input is split into fuzzy regions and each region is associated with a membership function (MF) in the 

IF part of the fuzzy rules. The rules are then learnt adaptively similarly to ANFIS scheme (Abiyev, et al., 2008). The 

number of fuzzy rules at FWNN scheme is an important issue, as it affects the accuracy and the efficiency of the 



  
 
developed prediction system. A second problem however is related with the initialization stage. In fact, network’s initial 

parameters definition affects the accuracy result, the time required for learning and even the convergence of the training 

process.  

Figure 3 

The proposed CFWNN model differs from traditional FWNN approaches that utilise the “look-up table” concept. In 

those models, an input space is divided into 1 2 nK K .... K× × × fuzzy subspaces, where iK , 1 2i , ,..,n= , is the number of 

fuzzy subsets for the thi input variable (Nelles, 2000). The Adaptive Neuro-Fuzzy Inference System (ANFIS) is an 

example of such approach, where the number of fuzzy rules is associated to the number of input variables as well as the 

number of MF for each input. In the case of CFWNN, a clustering algorithm is applied for the sample data in order to 

organize feature vectors into clusters. The fuzzy rule base is then derived using results obtained from a clustering 

algorithm. In the proposed scheme, the number of memberships for each input variable is directly associated to the 

number of rules, hence, the “curse of dimensionality” problem is significantly reduced. Fig. 3 illustrates the general 

concept of the proposed CFWNN architecture. Its configuration includes a fuzzy rule base, which consists of a 

collection of fuzzy IF-THEN rules in the following form: 

1 1 2 2

1 1

:                   ....       
                  ....      

i i i n ni

p p

R IF x is A and x is A and x is A
THEN y is G and y is G

        (1) 

where 1 2, ,..., nx x x  are input variables, niA  is the thi  membership function for the thn  input and 1,..., pG G  are the 

labels of the fuzzy sets in the output space. Although Gaussian MFs are commonly used in NF systems, their deficiency 

is their limited ability to localize in the frequency domain. By comparison, the proposed CFWNN, where wavelet 

functions are utilised, has the ability to localize in both the time and frequency domains. In this paper, the following 

generalized Mexican Hat wavelet function with translation ( )µ  and dilation ( )σ  parameters has been considered as 

MF: 

2 2

1 exp 0.5x x xµ µ µψ
σ σ σ

   − − −     = − −                   
        (2) 

Translation parameter determines the center position of the wavelet, while dilation parameter controls the spread of the 

wavelet. As MF values cannot be negative and larger than unity, the Mexican Hat MF has been normalised / modified 

as follows: 

2 2

1 exp 0.5

1

i ij i ij

ij ij

ij

x x

A

µ µ
ε

σ σ

ε

      − −   − − +               =
+

       (3) 

where constant 0.446ε = . Fig. 4 illustrates graphically the proposed modified Mexican Hat function. 

Figure 4 

The structure of the proposed CFWNN is explained below layer by layer: 

• Layer 1: This layer is simply the input layer. Nodes in this layer pass on the input signals 1 2, ,..., nx x x  to L2. 

• Layer 2: This layer is the fuzzification layer, and its nodes represent the fuzzy sets used in the antecedent parts 

of the fuzzy rules. A fuzzification node receives an input and determines the degree to which this input belongs 

to in the node’s fuzzy set. The outputs of this layer are the values of wavelet MFs for the input values. The 

modified Mexican Hat MF ijA presented at Eq. 3 has been utilised for the proposed CFWNN, where, index j  is 



  
 

associated with the input variable, while index i  is linked with MF’s thj input. The initial translation variables 

ijµ at Eq. 3 are equal to the values of the components of the vectors iv , which come from the second stage of 

the clustering pre-processing step. The dilation values σ ij  are initialised according to  

1
2

2

1 1
( )

n n

ij ijik kj ik
k k

u x v uσ
= =

 
  
 

= −∑ ∑       (4) 

These values are calculated based on the matrix U , where its elements correspond to the fuzzy memberships of 

kx  in the thi  cluster and its values obtained again from the fuzzy c-means part of the clustering step. 

• Layer 3: This layer is the firing strength calculation layer. Since each fuzzy rule’s antecedent part has AND 

connection operator, the firing strengths are calculated using the product T-norm operator. The most 

commonly used fuzzy AND operations are intersection and algebraic product (Lee, 1990). In this case, the 

multiplication has been used, and the output of this layer has the following form:  

( )
n

j ji i
i

R A x=∏         (5) 

The number of nodes, at this layer, is equal to the number of clusters, as it was defined by the clustering pre-

processing step. 

• Layer 4: This layer is the normalization layer. Each node in this layer calculates the normalized activation 

firing of each rule by:  

1

i
i c

j
j

R
R

R
=

=

∑
          (6) 

The normalized activation firing is the ratio of the activation firing of a given combination to the sum of 

activation firings of all combinations. It represents the contribution of a given combination to the final result. 

• Layer 5: This layer is related to the defuzzification/output part of the CFWNN. Each node at this layer 

combines the output of each node in L4 by algebraic sum operation after being multiplied by the output weight 

value ijw : 

1

c

i ij j
j

O w R
=

=∑           (7) 

3.1 Clustering-based Initialisation 
The applied clustering algorithm at layer L2 consists of two stages (Kodogiannis, et al., 2012). In the first stage, the 

method similar to Learning Vector Quantization (LVQ) algorithm generates crisp c-partitions of the data set. The 

number of clusters c and the cluster centres ,   1,..., ,iv i c=  obtained from this stage are used by Fuzzy c-means (FCM) 

algorithm in the second stage. Fig. 5 illustrates the clustering concept. 

The first stage clustering algorithm determines the number of clusters by dividing the learning data into these crisp 

clusters and calculates the cluster centres which are the initial values of the fuzzy cluster centres derived the second 

stage algorithm. If we consider that np
1[ , ..., ]   R= ∈nX x x  be a learning data, then the first cluster is created starting 

with the first data vector from X and the initial value of the cluster centre is taking as a value of this data vector. Then 

other data vectors are included into the cluster but only these ones which satisfy the following condition 



  
 

         k ix v D− <          (8) 

where , 1, ...,k   X  k nx ∈ =  and ,  1,...,iv i c= are cluster centres, cp
1[ ,..., ]    RnV v v= ∈ , the constant value D is fixed at the beginning 

of the algorithm. Cluster centres iv are updated for each cluster (i.e., 1,...,i c= ) according to the following equation 

( 1) ( ) ( ( ))+ = + −i i t k iv t v t x v tη         (9) 

where 0,1, 2,...t = denotes the number of iterations, [0,1]∈tη  is the learning rate and it is decreasing during the 

execution of the algorithm (depending on the number of elements in the cluster). 

Figure 5 

At the end of first stage, the number of clusters c is defined, while the dataset is divided into the clusters. In addition, 

the values of cluster centres  iv  1,...,i c= , which can be used as initial values for the second stage clustering 

algorithm, are calculated. In the second stage the traditional fuzzy c-means algorithm has been used to optimize the 

values of cluster centres.  

 

3.2 CFWNN Learning Phase  
The learning algorithm of CFWNN involves the use of the gradient descent (GD) method to optimize the various 

network parameters. During, the backward “training” passes, the error signals are calculating from the output layer 

backward to the premise (i.e. membership) layers, and parameters at both defuzzification and fuzzification sections are 

fine-tuned. For each training pair ( , )x y , the system output iO is obtained by forward pass after feeding an input pattern 

into the network. Then the purpose of this learning phase is that, for a given thp training data pair ( , )p px y , the 

parameters are adjusted so as to minimise the error function  

2

1

1
( )

2

P

p p
p

E D O
=

= −∑             (10) 

where P is the number of outputs and pD  the desired response of the pth output. Variable pO is defined as in Eq. 7. 

According to the GD method, the weights in the defuzzification layer are updated by the following equation 

( )i
ij i i j

ij i ij

OE EW D O R
W O W

∂∂ ∂
∆ = − = − = −

∂ ∂ ∂
        (11) 

where 1,2,..,i p=  and 1,2,..j c= denote the number of output and normalisation units respectively. The weights of 

the output units are updated according to the following equation 

( 1) ( )+ = + ∆ij ij w ijW t W t Wη           (12) 

where wη  is the learning rate. 

The ijµ  and ijσ  parameters of the wavelet membership function are adjusted by the amount 

( 1) ( ) .

( 1) ( )

ij ij
ij

ij ij
ij

Et t

Et t

µ

σ

µ µ η
µ

σ σ η
σ

 ∂
+ = −   ∂ 

 ∂
+ = −   ∂ 

         (13) 

ij

E
µ
∂
∂

, 
ij

E
σ
∂
∂

components need to be calculated using the chain rule. 
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R R AE E
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µ µ

σ σ

∂ ∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂

          (14) 

Analytically, the partial derivatives are defined as 

( )
1

p

i i ij
j i

E D O w
R =

∂
= − −

∂ ∑          (15) 

1
2

1

c

i j
j i

cj
i

i

R R
R
R

R

=

=

−
∂

=
∂  

  
 

∑

∑
          (16) 

 j
ij

ij i j

R
A

A ≠

∂
=

∂ ∏            (17) 

( )
( )

( )
( )

( )
( )

2 2

2 2 2
1 13 exp

1 2
j ijij

ij ij ij ij

xA x xµ µ µ
µ ε σ σ σ

     −∂ − −     = − −     ∂ +           

      (18) 

and 

( )
( )

( )
( )

( )
( )

2 2 2

3 2 2
1 13 exp

1 2
j ijij

ij ij ij ij

xA x xµ µ µ
σ ε σ σ σ

     −∂ − −     = − −     ∂ +           

      (19) 

All modelling schemes have been implemented in MATLAB (ver. R2015a, Mathworks.com). 

 

4. Monitoring Framework Development  

A machine learning approach, based on the proposed CFWNN model, has been adopted in order to create a decision 

support system acting in parallel as an efficient classifier, in an effort to classify meat samples in three quality classes 

(fresh, semi-fresh, spoiled), as well as a prediction system. The merit of this paper is to propose a learning-based 

structure which could be considered as a new benchmark method towards the development of efficient intelligent 

methods in food quality analysis.  

Figure 6 

For this reason, CFWNN’s results are compared with those obtained by MLP neural networks, ANFIS neurofuzzy 

identification models, support vector machines (SVM) and PLS regression schemes which are considered as well-

recognised tools in chemometric analysis. Its overall schematic diagram shown at Fig. 6 includes two CFWNN models 

for aerobic and MAP storage respectively. Pre-processing of the data acquired from enose sensors is required to create 

the “olfactory image” of the sample. Generally, this process involves extracting certain significant characteristics from 

the sensor response curves in order to produce a set of data that can be processed by the recognition system of the 

enose. Various features can be extracted and utilized in further steps, based on enose’s characteristics, such as the type 

of chemical sensors as well as the stability of their responses to the reference gas, to variations in humidity and 

temperature levels (Ehret et al., 2011). For this particular experiment, responses as frequency variations ( )f∆ , were 

acquired and in Fig. 7 such responses for all sensor signals classes for meat samples stored at 4°C are shown.  



  
 

Figure 7 

The concept that the discriminating power of an enose depends on the independence amongst its sensors, i.e. inversely 

on their redundancy or cross-correlation, is well documented (Berna et al., 2009). In order to compare the sensor 

correlations, the pair-wise Pearson correlation between all sensors’ responses for the training dataset has been derived. 

Table 1 illustrates the Pearson correlation matrix among the eight enose sensors. From the eight odorant receptors, only 

seven were considered as highly correlated ( 0.7≥ ), with the exclusion of S2. Taking into account that each 

measurement can be represented as a point in an 8-dimensional space, a dimensionality reduction algorithm has been 

applied on those enose data used for training purposes.  

Table 1 

The robust PCA (RPCA) scheme has been utilised to obtain principal components that are not influenced much by 

outliers. The RPCA is implemented in three main steps. First, the data were pre-processed such that the transformed 

data are lying in a subspace whose dimension is at most 1n − . An initial covariance matrix was then constructed and 

used for selecting the number of components k  that will be retained in the sequel, yielding a k-dimensional subspace 

that fits the data well. Then the data points were projected on this subspace where their location and scatter matrix are 

robustly estimated, from which its k nonzero eigenvalues 1,..., kl l   are computed. The corresponding eigenvectors are 

the k robust principal components (Hubert et al., 2005). RPCA scheme was implemented in MATLAB, with the aid of 

PLS_Toolbox (ver. 8.1 Eigenvector.com).  

Table 2 

For this particular case study, the first four principal components (PC) were associated with the 99% of the total 

variance, as shown in Table 2. These specific PCs were extracted and utilised as inputs variables to the learning-based 

models developed for this specific case study, together with information from the various storage temperatures, as well 

as the related sampling times. Checking however is required to validate the integrity of the developed models in 

predicting/classifying unknown samples to make sure that models could work in the future for new and similar data. For 

the aerobic and MAP cases, 140 and 142 samples were considered as training subsets respectively, while the remaining 

70 and 71 samples were included in the testing subsets. 

As meat quality classification is direct related to microbiological counts and vice versa, a model that combines 

both these “characteristics” has been considered to be desirable. In order to accommodate both classification and 

prediction tasks in the same CFWNN structure, the classification task has been modified accordingly. Rather than trying 

to create a distinct classifier, an attempt has been made to “model” the classes (Kodogiannis, et al., 2008). Initially, 

values of 10, 20 and 30, have been used respectively, to associate the three classes (i.e. fresh, semi-fresh and spoiled), 

with a cluster centre. During the identification process, the output values of [ ]5.....15 were associated to “fresh” class 

with cluster centre 10, values of [ ]15.01.....25  were associated to “semi-fresh” class with cluster centre 20, and finally 

values of [ ]25.01.....35  were associated to “spoiled” class with cluster centre 30. The second output node has been 

assigned to TVC prediction. The classification accuracy of CFWNN models was determined by the number of correctly 

classified samples in each sensory class divided by the total number of samples in the class. The performance of 

developed models for TVC prediction for each meat sample was determined by the bias (Bf) and accuracy (Af) factors, 

the mean relative percentage residual (MRPE) and the mean absolute percentage residual (MAPR), the root mean 

squared error (RMSE) and finally the standard error of prediction (SEP) (Panagou, et al., 2007).  



  
 

5. Results & Discussion 

5.1 Aerobic storage case study 
CFWNN’s structure consists of an input layer which contains six input nodes (i.e. storage temperature, sampling time, 

and the values of the first four principal components). In the proposed CFWNN model, 10 final rules have been created, 

using the clustering pre-processing stage. Although GD learning algorithm was utilised as a learning scheme, the 

training time was completed in less than 1000 epochs, much faster from the equivalent time used to train the MLP 

neural network. Results revealed that the classification accuracy of the CFWNN model was very satisfactory in the 

characterization of beef samples, indicating the advantage of a hybrid intelligent approach in tackling complex, 

nonlinear problems, such as meat spoilage. The classification accuracy is presented in the form of a confusion matrix in 

Table 3.  

Table 3 

The model overall achieved a 95.7% correct classification, with 100%, 87.5% and 100% for fresh, semi-fresh and 

spoiled meat samples, respectively. The sensitivities for fresh and spoiled meat samples reveal zero misclassifications.  

Table 4 

One spoiled meat sample was accurately classified as spoiled, even marginally and the same situation occurred for one 

fresh sample. In the case of semi-fresh samples, two samples (“10A7” and “12A7”) were misclassified as fresh ones 

while one semi-fresh sample (“33A5”) was misclassified as spoiled one. The “10A7” and “12A7” cases correspond to 

aerobic samples stored at the same time (12 oC) and collected at 30h, and 36h respectively. Finally, the “33A5” case 

corresponds to an aerobic sample stored at 8 oC and collected at 103h. The specificity index was also high, indicating 

satisfactory discrimination between these three classes (Table 3). It is characteristic that no fresh samples were 

misclassified as spoiled and vice versa, indicating that the biochemical information provided by enose data could 

discriminate at least these two classes accurately. It must be emphasised however that the number of examined samples 

within each class was not equally distributed, due to the different spoilage rate of beef samples at the different 

temperatures. The lower accuracies obtained in the semi-fresh class could be explained by the fact that in the evaluation 

process, sometimes the discrimination between “fresh” and “semi-fresh” class is difficult to be performed accurately. 

Figure 8 

An MLP network was also constructed for this case study, using the same input vector. The neural network was 

implemented with two hidden layers (with 12 and 6 nodes respectively) and two output nodes, one for the sensory class 

and one for the TVC. The model overall achieved a 91.42% correct classification, with 100%, 79.16% and 96.66% for 

fresh, semi-fresh and spoiled meat samples, respectively. The related sensitivities represent 5 misclassifications out of 

24 semi-fresh meat samples, and one misclassification out of 30 spoiled samples, as shown at Table 4. More specifically 

for the case of semi-fresh samples, four cases were misclassified as fresh cases, while the remaining one as spoiled. 

Finally, one spoiled sample was misclassified as semi-fresh case. 

Table 5 

The plot of predicted (via CFWNN) versus observed total viable counts is illustrated in Fig. 8, and shows a very good 

distribution around the line of equity, with all the testing data included within the ±1 log unit area. Two samples 

(“8A9”, “38A5”) have been placed however very close to the borderline. “8A9” sample corresponds to a semi-fresh 

case stored at 16oC and collected after 24h of storage, while “38A5” corresponds to a spoiled beef sample stored at 8oC 

and collected after 139h of storage. The performance of the CFWNN model to predict TVCs in beef samples in terms of 

statistical indices is presented in Table 5. Based on the calculated values of the bias factor fB , it can be assumed that the 



  
 
proposed model under-estimated TVCs in fresh and spoiled samples ( fB <1), whereas over-estimation of microbial 

population for semi-fresh samples was manifested. The mean relative percentage residual index (MRPR) similarly 

verified the over-prediction for semi-fresh samples (MRPR < 0) and under-prediction for fresh and spoiled samples 

(MRPR > 0). Finally, the standard error of prediction (SEP) index, a relative typical deviation of the mean prediction 

values, was 4.57% for the overall samples, indicating a good performance of the network for microbial count 

predictions. However in the case of fresh samples, the index gave much higher values (i.e. 8.17%). 

Figure 9 

Although CFWNN model utilises the GD learning method for training, its main advantage over similar systems is 

related to its MIMO structure capability. Many neuro-fuzzy/fuzzy-wavelet schemes are following the Takagi–Sugeno–

Kang (TSK) structure, where only one output is enabled. ANFIS is a well-known representative of TSK-based neuro-

fuzzy systems (Jang, et al., 1997). By analysing input/output mapping relationships, ANFIS optimises the distribution 

of membership functions by using a hybrid learning algorithm. However, ANFIS’s main limitation is the exponential 

growth of rules subjected to the number of input variables. An effective partition of the input space would however 

decrease the number of rules and thus accelerate training learning speed. A fuzzy rule generation technique that 

integrates ANFIS with FCM clustering has been applied in this paper in order to minimise the number of fuzzy rules. 

The FCM is used to systematically create the fuzzy MFs as well as the fuzzy rules for ANFIS. The performance of the 

proposed model (CANFIS) depends on the optimal number of MFs (clusters). Too few MFs do not allow the CANFIS 

model to be mapped well, while too many MFs increase the difficulty of training and lead to over-fitting undesirable 

inputs such as noise.  

In addition to CFWNN, a CANFIS as well as an ANFIS model has been developed to predict TVCs. Under the 

same training conditions, CANFIS performed very satisfactory, while the SEP score of 6.53% for the overall testing 

samples, is indicating a very good performance of the network for microbial count predictions. It is important to be 

mentioned, that such performance was achieved with only 7 fuzzy rules. The related plot of the predicted versus the 

observed TVCs, as shown in Fig. 9, with the majority of data included within the ± 1 log unit area. More specifically, 

the spoiled “11A11” sample was clearly outside the ± 1 log unit area. “11A11” corresponds to a beef sample stored at 

20oC and collected after 32 h of storage. Spoiled sample, “51A1” and semi-fresh sample “26A3” were placed very close 

to the borderline. “51A1” sample corresponds to a beef sample stored at 0oC and collected after 287 h of storage, while 

“26A3” corresponds to a beef sample stored at 4oC and collected after 73 h of storage. The performance of the CANFIS 

model in predicting TVC in meat samples in terms of statistical indices is presented in Table 6. CANFIS model 

achieved a comparable performance against CFWNN for the semi-fresh case, while divergence was occurred especially 

for the case of fresh meat samples. An ANFIS scheme was also implemented in order to demonstrate the significance of 

using a clustering pre-processing stage. Results are shown also at Table 6. ANFIS’s performance however was achieved 

with a high computational cost, by utilizing two membership functions for each input variables and 64 fuzzy rules.   

Table 6 

In addition to these computational intelligence structures, a multilayer neural network (MLP) and a support vector 

machine model have been applied to the same case in order reveal the advantage of the proposed advanced learning-

based method. The performance of the MLP network in predicting TVC in meat samples in terms of statistical indices is 

presented in Table 7. The localisation spread through the membership functions, is one advantage of CFWNN and 

ANFIS-like models against the classic MLP structure.  

Support vector machine (SVM) is an alternative machine learning approach based on statistical learning theory 

(Vapnik, 1998). It has acquired a widely acceptance due to its successful application in classification and regression 



  
 
tasks (Quan, et al., 2010). The advantages of SVM over MLP models are a global optimal solution and robustness to 

outliers. 

Table 7 

The specific SVM used in this paper involves epsilon support vector regression ( SVRε − ). The value of epsilon is used 

to measure the error between the predicted and real values in a high-dimension space and its value is determined based 

on practical experience. The objective of SVR is to search for the optimal parameters that minimize the prediction error 

of the regression model by solving the following optimization problem: 
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ω ξ ω ξ
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= + ∑          (20) 

where ω  is the weight vector and ξ  is a variable that is used to penalize complex fitting functions. The aim of 

optimisation process is to estimate the parameters ω  of the function that give the best-fit of the data. The constant C  

allows for the penalizing of the error by determining the trade-off between the training error and the model complexity 

(Al-Anazi, et al., 2010). If C is too large, the algorithm will over-fit the training data; if C is too small then insufficient 

training will occur. 

Appropriate selection of Kernel function at SVR models provides the option of using a non-linear function in 

inputs space. One specific selection that utilises the radial basis function (RBF) is known as LS-SVMs. The main 

benefit of LS-SVM is that it is computationally more efficient than the customary SVM method, since the LS-SVM 

training needs only the solution of a set of linear equations instead of the lengthy and computationally demanding 

quadratic programming problem that is involved in the standard SVM. The kernel Gaussian function employed at LS-

SVM has the following form: 

( )2
i iK(x,x ) exp x xγ= − −           (21) 

where the γ  parameter controls the smoothness of the decision boundary in the feature space. For this specific case 

study, SVR models were implemented in MATLAB using the PLS_Toolbox software and the criterion for the optimal 

model was defined by the evaluation of SEP index. The C ranges are chosen in between [1 and 1000] and γ value 

ranges from [0.05 to 1] for training SVRε − . The epsilon tolerance value was set to be 0.001. Penalty coefficient C  

was set at 100, while γ parameter at 0.35. The performance of the SVR model in predicting TVC in meat samples in 

terms of statistical indices is also presented in Table 7. 

Finally, in addition to these learning-based schemes, a partial least squares (PLS) regression scheme has been 

applied to the same dataset, in order reveal the advantage of advanced learning-based methods. The PLS model was 

constructed using the same input vector and the PLS_Toolbox software (ver. 8.1, Eigenvector.com) in association with 

MATLAB was used to perform the PLS analysis. The SIMPLS algorithm has been chosen as the appropriate 

optimisation scheme. The algorithm calculates the PLS factors directly as linear combinations of the original variables. 

These factors are determined such as to maximize a covariance criterion, while obeying certain orthogonality and 

normalization restrictions. The following PLS model is associated with this specific case study.  

1 2 3

4 5 6

Y  1.81789 0.00139* X 0.00098* X 0.00300* X
         0.00387 * X 0.23396* X 0.02352* X

= + + +
+ + +      (22) 

Although in general, PLS results are worse than those obtained by learning-based schemes, as shown from linear Table 

7, such results were expected. It is well known that in modelling of real processes, linear PLS has some difficulties in its 

practical applications since most real problems are inherently nonlinear and dynamic (Lee, et al., 2006).  



  
 
5.2 Modified Atmosphere Packaging storage case study 
An important advancement in food packaging techniques is the development of Modified Atmosphere Packaging 

(MAP). Modified atmospheric packaged foods have become increasingly more available, as food manufactures are 

interested for foods with extended shelf life. In addition to aerobic TVCs prediction, a CFWNN model has been also 

applied for meat samples packaged under modified atmosphere conditions. For this particular case, 14 final rules have 

been created, using the clustering pre-processing stage. 

Results revealed that although CFWNN’s classification accuracy was considered satisfactory in the characterization of 

beef samples, it was rather inferior compared to the previous aerobic case study. Such accuracy is presented in the form 

of a confusion matrix in Table 8. The model achieved a 92.95% overall correct classification, and 94.11%, 89.28% and 

96.15% for fresh, semi-fresh and spoiled meat samples, respectively. This performance reveals the increased level of 

difficulty in predicting /classifying meat samples packaged under MAP conditions. Sensitivity information reveals 

however misclassifications for all categories. One fresh and spoiled meat sample were misclassified as semi-fresh, 

while three semi-fresh samples were categorised in a different class. Sample “6M11” which corresponds to a fresh 

sample, stored at 20 oC and collected at 18h, was classified as semi-fresh, while the spoiled sample “38M5”, stored at 8 
oC and collected at 139h, was classified as semi-fresh too. The semi-fresh “36M3” sample, which was stored at 4 oC and 

collected at 120h, was classified as fresh class, while semi-fresh “30M7” sample, which was stored at 12 oC and 

collected at 91h, was classified as spoiled class. Similarly, the semi-fresh “23M9” case which was stored at 16 oC and 

collected at 67h, was classified as spoiled class too. 

Table 8 

Similarly to the aerobic case, an MLP network was also constructed for this case study, using the same input vector. 

The neural network was implemented with two hidden layers (with 18 and 10 nodes respectively) and two output nodes, 

one for the sensory class and one for the TVCs. The model overall achieved a 87.32% correct classification, with 

88.23%, 78.57% and 96.15% for fresh, semi-fresh and spoiled meat samples, respectively. Obviously, MLP’s 

classification performance has been deteriorated in this case, revealing the difficulty in modelling meat samples under 

this specific storage environment. 

Table 9 

The related sensitivities include 6 misclassifications out of 28 semi-fresh meat samples, one misclassification out of 30 

spoiled samples and two misclassifications on fresh samples, as shown at Table 9.  

Figure 10 

The plot of predicted vs. observed TVCs for MAP spectra is illustrated in Fig 10, and shows a good distribution around 

the line of equity, with all the data included within the ±1.0 log unit area. Based on Fig. 10, three semi-fresh samples 

(i.e. “12M11”, “54M1”, “22M5”) were however in the border line of the ±1.0 log unit area. “12M11” corresponds to a 

beef sample stored at 20oC and collected after 36h of storage, while “54M1” corresponds to a sample stored at 0oC and 

collected after 359h of storage. Finally, “22M5” case corresponds to a beef sample stored at 8oC and collected after 60h 

of storage.  

Table 10 

The performance of the CFWNN model to predict TVCs in beef samples in terms of statistical indices for this case is 

presented in Table 10. The mean relative percentage residual index (MRPR) revealed an under-prediction for semi-fresh 

samples (MRPR > 0) and over-prediction for fresh and spoiled samples (MRPR <0). Finally, the standard error of 

prediction (SEP) index was 5.74% for the overall samples, indicating an inferior performance compared to previous 

aerobic case.  



  
 

Table 11 

In addition to CFWNN scheme, CANFIS, ANFIS, SVM and MLP models have been developed to predict TVCs for the 

MAP case. ANFIS model, utilising 64 rules outperformed MLP’s prediction performance.  

Figure 11 

Although ANFIS performed less satisfactory than CFWNN, MLP’s performance revealed again its deficiency in 

handling highly non-linear problems. Prediction from PLS model was similar to the aerobic case study. CANFIS model 

has shown to have the advantage of requiring fewer rules, in this case requiring only five rules as opposed to the 

standard ANFIS model. This is a major benefit, since the method is significantly less laborious to construct than the 

case of ANFIS. The performance of SVRε − model against results provided by MLP and ANFIS-like approaches 

reveal the robustness of this specific learning-based technique. For the MAP case study, epsilon tolerance and penalty 

coefficient C  were set to 0.001 and 100 respectively, while γ parameter was set at 0.24. The plot of the SVR-based 

predicted vs. the observed TVCs, as shown in Fig. 11, reveals a good distribution around the line of equity, with the 

majority of data included within the ± 1 log unit area.  Based on Fig. 11, two semi-fresh samples (i.e. “16M5”, “13M9”) 

were placed outside the border line of the ±1.0 log unit area. “16M5” corresponds to a beef sample stored at 8oC and 

collected after 73h of storage, while “13M9” corresponds to a sample stored at 16oC and collected after 42h of storage. 

Similarly two spoiled samples (i.e. “16M11”, “35M9”) were placed outside the border line of the ±1.0 log unit area. 

“16M11” corresponds to a beef sample stored at 20oC and collected after 48h of storage, while “35M9” corresponds to 

a sample stored at 16oC and collected after 115h of storage. The performance of the SVR model in predicting TVC in 

meat samples in terms of statistical indices is also presented in Table 11. 

6. Conclusion 

In conclusion, this simulation study demonstrated the effectiveness of the detection approach based on electronic nose 

which in combination with an appropriate machine learning strategy could become an effective tool for monitoring 

meat spoilage during aerobic storage at various temperatures. The collected “volatile” data could be considered as 

biochemical “signature” containing information for the discrimination of meat samples in quality classes corresponding 

to different spoilage levels, whereas in the same time could be used to predict satisfactorily the microbial load directly 

from the sample surface. The realization of this strategy has been fulfilled with the development of a MIMO fuzzy-

wavelet network which incorporates a clustering pre-processing stage. Classification performance was very satisfactory, 

while overall prediction for TVCs has been considered as very promising, although lower performance was observed 

especially for samples packaged under MAP conditions. Prediction performances of MLP and PLS schemes revealed 

the deficiencies of these systems which have been used extensively in the area of Food Microbiology, while the SVM’s 

performance revealed its robustness in providing acceptable performances for either aerobic or MAP packaging 

conditions. There is need to explore further the use of hybrid intelligent systems, and this paper has attempted for the 

first time to associate enose data with such systems. Research work is in progress to access such intelligent systems 

utilising only volatile signatures, ignoring thus temperature and time information. Future work will be also focused in 

incorporating to the data analysis, specific microbiological data, such as Pseudomonas spp., Brochothrix thermosphacta 

and Lactic acid bacteria. Additionally, an ensemble model which will involve many individual learning-based 

predictors, which will be allocated for the same spoilage detection problem, could enhance the existing prediction 

accuracy. It has been investigated that ensemble models have advantages with respect single models in terms of better 

accuracy and robustness for forecasting problems (Li, et al., 2016).  
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Figures 

  
Fig. 1:   Population dynamics of TVC at various temperatures for beef samples 

 

 

 

 

 

Fig. 2:   Libra Electronic Nose  

 

 

 
Fig. 3:   CFWNN architecture 

 

 

 

 

 



  
 
 

 
Fig. 4:   Mexican Hat wavelet functions 

 

 
Fig. 5:   Clustering concept  

 

 

 
Fig. 6:   Structure of proposed decision support system 



  
 

  
Fig. 7:   Enose responses during storage of beef fillets at 4°C 

 

 

Fig. 8:  CFWNN prediction model for TVC (AIR) 

 

 

Fig. 9:  CANFIS prediction model for TVC (AIR) 

 

 

 



  
 

 

Fig. 10:  CFWNN prediction model for TVC (MAP) 

 

Fig. 11:  SVM prediction model for TVC (MAP) 

Tables 

  
Table 1: Pearson correlation matrix 

 

PCs Robust PCA 
 Eigenvalue Prop. % Cum. prop. % 
1 7.17e+004          71.45           71.45           
2 1.11e+004          21.88           93.34 
3 2.40e+003           4.11           97.45 
4 9.47e+002           1.55           99.01 

 

Table 2: Robust PCA scheme 



  
 

True class 
(CFWNN) 

Predicted class (AIR) Row total 
( in ) 

Sensitivity 
(%) 

 Fresh Semi-fresh Spoiled  
Fresh ( n 16= ) 15+1(marginal) 0 0 16 100 
Semi-fresh ( n 24= ) 2 20+1(marginal) 1 24 87.5 
Spoiled ( n 30= ) 0 0 29+1(marginal) 30 100 
Column total ( )jn  18 21 31 70  

Specificity (%) 88.88 100 96.77   
Overall correct classification (accuracy): 95.71% 

 

Table 3: Confusion Matrix for CFWNN acting as classifier (AIR case) 
 

True class 
(MLP) 

Predicted class (AIR) Row total 
( in ) 

Sensitivity 
(%) 

 Fresh Semi-fresh Spoiled  
Fresh ( n 16= ) 16 0 0 16 100 
Semi-fresh ( n 24= ) 4 19 1 24 79.16 
Spoiled ( n 30= ) 0 1 29 30 96.66 
Column total (

jn ) 20 20 30 70  

Specificity (%) 0.80 0.95 96.66   
Overall correct classification (accuracy): 91.42% 

 

Table 4: Confusion Matrix for MLP acting as classifier (AIR case) 
 

Statistical index  (AIR) - CFWNN Fresh Semi-fresh Spoiled Overall 
Mean squared error (MSE) 0.0911 0.1112   0.0681 0.0881 
Root mean squared error (RMSE) 0.3019 0.3334 0.2610 0.2969 
Mean relative percentage residual (MRPR %) 1.6654 -2.2672 0.5252 -0.1716 
Mean absolute percentage residual (MAPR %) 5.2899 4.4713 2.3303 3.7409 
Bias factor (Bf) 0.9805 1.0212 0.9943 1.0002 
Accuracy factor (Af) 1.0559 1.0446 1.0238 1.0382 
Standard error of prediction (SEP %) 8.1776 5.9582 3.0053 4.5785 

 

Table 5: Performance of CFWNN model for TVC (AIR case) 
 

Statistical index  (AIR) - CANFIS Fresh Semi-fresh Spoiled Overall 
CANFIS 

Overall 
ANFIS 

Mean squared error (MSE) 0.2064 0.1246 0.1958 0.1738 0.2214 
Root mean squared error (RMSE) 0.4543 0.3529 0.4425 0.4169 0.4705 
Mean relative percentage residual (MRPR %) -3.5284 -1.5079 2.7259 -0.1552 -1.1780 
Mean absolute percentage residual (MAPR %) 10.1934 5.4898 3.9800 5.9178 6.3007 
Bias factor (Bf) 1.0276 1.0126 0.9717 0.9982 1.0081 
Accuracy factor (Af) 1.1059 1.0550 1.0419 1.0607 1.0644 
Standard error of prediction (SEP %) 12.3061 6.3076 5.0951 6.4292 7.2567 

 

Table 6: Performance of CANFIS/ANFIS models for TVC (AIR case) 
 

Statistical index  (AIR) Overall 
SVM 

Overall 
MLP 

Overall 
PLS 

Mean squared error (MSE) 0.2258 0.2397 1.8587 
Root mean squared error (RMSE) 0.4752 0.4896 1.3633 
Mean relative percentage residual (MRPR %) -0.6310 -0.4163 -2.2667 
Mean absolute percentage residual (MAPR %) 5.2761 6.2523 20.1221 
Bias factor (Bf) 1.0034 1.0002 0.9946 
Accuracy factor (Af) 1.0536 1.0643 1.2126 
Standard error of prediction (SEP %) 7.3284 7.5514 21.0263 

 

Table 7: Performance of SVM/MLP/PLS models for TVC (AIR case) 
 

 

 



  
 

True class 
(CFWNN) 

Predicted class (MAP) Row total 
( in ) 

Sensitivity 
(%) 

 Fresh Semi-fresh Spoiled  
Fresh ( n 17= ) 15+1(marginal) 1 0 17 94.11 
Semi-fresh ( n 28= ) 1 23+2(marginal) 2 28 89.28 
Spoiled ( n 26= ) 0 1 24+1(marginal) 26 96.15 
Column total ( )jn  17 27 27 71  

Specificity (%) 94.11 92.59 92.59   
Overall correct classification (accuracy): 92.95% 

 
Table 8: Confusion Matrix for CFWNN acting as classifier (MAP case) 

 

 
True class 
(MLP) 

Predicted class (MAP) Row total 
( in ) 

Sensitivity 
(%) 

 Fresh Semi-fresh Spoiled  
Fresh ( n 17= ) 14+1(marginal) 2 0 17 88.23 
Semi-fresh ( n 28= ) 2 22 4 28 78.57 
Spoiled ( n 26= ) 0 1 25 26 96.15 
Column total ( jn ) 17 25 29 71  

Specificity (%) 88.23 88 86.2   
Overall correct classification (accuracy): 87.32% 

 

Table 9: Confusion Matrix for MLP acting as classifier (MAP case) 
 

Statistical index  (CFWNN case)  MAP Fresh Semi-fresh Spoiled Overall 
Mean squared error (MSE) 0.0737 0.1419 0.0652 0.0975 
Root mean squared error (RMSE) 0.2715 0.3767 0.2554 0.3123 
Mean relative percentage residual (MRPR %) -2.0669 0.6115 -0.1570 -0.3112 
Mean absolute percentage residual (MAPR %) 5.7326 5.7387 2.9474 4.7151 
Bias factor (Bf) 1.0182 0.9907 1.0008 1.0010 
Accuracy factor (Af) 1.0573 1.0589 1.0299 1.0478 
Standard error of prediction (SEP %) 7.1594 7.2481 3.7681 5.7401 

 
Table 10: Performance of CFWNN model for TVC (MAP case) 

 
Statistical index  (MAP) Overall 

CANFIS 
Overall 
ANFIS 

Overall 
SVM 

Overall 
MLP 

Overall 
PLS 

Mean squared error (MSE) 0.2063 0.2387 0.1770 0.3029 1.4229 
Root mean squared error (RMSE) 0.4542 0.4886 0.4207 0.5503 1.1929 
Mean relative percentage residual (MRPR %) 0.0711 0.4371 0.6063 1.2118 -7.2958 
Mean absolute percentage residual (MAPR %) 7.1096 6.7719 5.1825 7.8681 20.5115 
Bias factor (Bf) 0.9949 0.9912 0.9910 0.9829 1.0411 
Accuracy factor (Af) 1.0731 1.0701 1.0536 1.0831 1.2017 
Standard error of prediction (SEP %) 8.3489 8.9815 7.7340 10.1169 21.9282 

 

Table 11: Comparison with alternative models (MAP case) 
 


