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programme. 

 

 

Abstract  

This deliverable presents the metrics proposed to assess the impact of innovations in the ATM 
system and a stylized ABM model, called a ‘toy model’, to be used as a test ground for the metrics. 
Existing network metrics are reviewed and their limitations are highlighted by applying them to real 
data. New metrics are then suggested to overcome these limitations. Their better results in 
measuring interconnections and causal relationships between the elements of the ATM system are 
shown for empirical case studies. The design of the toy model is presented and preliminary results of 
its baseline implementation are shown. 
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Executive summary 

The main goal of Domino is to characterize how different subsystems interact and to quantify the 
dependence structure of the interactions, and especially to understand whether they become 
stronger or weaker with the implementation of certain ATM innovations. This Deliverable presents 
metrics relevant for the evaluation of the impact of innovations in the ATM system and a simple 
agent-based model (ABM) model, called the ‘toy model’, to be used as a testing ground for the 
metrics. 

We review some standard metrics that are usually used in the ATM community for performance 
monitoring and to understand the impact of different ATM solutions on the different stakeholders. 
We also examine network-level indicators to better capture the complex relationships among the 
elements of the system. To this end, we focus on two types of network metrics, namely: centrality 
and causality metrics. We propose several new network metrics and methods to assess centrality and 
causality in the ATM system. Domino will use these metrics (together with basic, classical measures) 
to compare simulations of the ATM system obtained from the Domino ABM under different 
innovation scenarios. For example, in addition, the outgoing centrality of a flight could be a tool for 
airlines to decide which flights to prioritize. 

In a network system, centrality is a measure of the importance of a node and relies on the concept of 
the connectivity of the node in terms of links, paths or walks joining it to the other nodes of the 
network. Regarding centrality, the difference between scheduled and actual centrality using newly-
defined metrics ‘Trip Centrality’ and ‘TripRank’ gives an indication of the loss of centrality of airports 
and of flights. When aggregated across the different elements of the system (e.g., airports), these 
measure the loss of performance of the whole ATM system. When considering single airports or 
flights, Domino could highlight the effect of innovation implementation on the airlines/airports 
adopting them. In the case of the simulations of the model with ATM innovations, Domino could 
verify whether actual and scheduled centralities of the airline implementing them become more 
similar, i.e., the extent to which disruption is mitigated. 

Considering causality, the density of the Granger causality network is a measure of interconnection 
and tightness of the system (or of a part of it). Domino will investigate whether the introduction of 
innovations modifies the causality network making it less dense and/or more modular, i.e., how 
resilience is impacted. The number of reciprocated causal links and feedback triangles is a simple 
measure of causal feedback in the system, and its monitoring under different innovations can 
provide insights into their effects on the stability of the ATM system. The multilayer causality 
network, and specifically the density and level of reciprocity of its components, give indications of 
the tightness of its elements and their mutual interconnection. We implement for the first time in 
ATM the ‘Granger in tail’ metric. 

Whilst we have considered the empirical application of the proposed metrics to a network of flights 
and airports, they can be applied much more generally, especially in other parts of ATM that can be 
mapped by a network or monitored with multivariate time series. One could consider as nodes the 
DMAN and AMAN at different airports and their queue size as the variables describing their state. 
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We plan to extend the existing metrics by weighting the links by considering: (i) the number of 
passengers traveling in the flight represented by the link or in the considered walk; and, (ii) the cost 
of delay to study how the network structure affects the propagation of cost and to identify the most 
central nodes (flights or airports) in terms of airline cost. 
 
Two specific features of the causality network emerge: the overexpression of feedback triangles and 
of mutual linkages with respect to the randomized graphs. The interpretation of this result is that 
delay tends to propagate in both directions between a couple of airports and in triangle loops. Both 
these patterns tend to amplify delays in the system, and therefore innovations should aim at their 
reduction. Hence, we conclude that these two metrics, i.e., feedback triangles and mutual linkages in 
the Granger causality networks, are two important metrics to assess the impact of innovations on the 
system’s performance. According to our initial results, large airports are more informative regarding 
the prediction of the state of delay of the whole system and more central for the process of delay 
propagation. However, when the focus is on extreme events, i.e., the states of distress of airports, 
information on small and medium airports is central for predictions and the characteristics of the 
corresponding causality network are not strongly correlated with traffic. 

The results prove that the generalized metrics which we have introduced are able to tell apart 
different delay conditions, differently from the existing centrality metrics, and therefore they 
represent a suitable tool to compare the different scenarios simulated by the ABM in terms of 
disruptions caused by delays. Additionally, the loss of centrality provides more specific information 
with respect to delay statistics, as it measures the real impact of delays in terms of missed 
connections, a central point to assess because it entails the highest costs for airlines and disutility for 
passengers. 

To the best of our knowledge no metrics have been previously formulated which account for the 
time-ordering of scheduled links nor for the different meaning of inter- and intra-layer walks. This is 
the reason why we have introduced a set of new centrality metrics which answer to the needs of the 
project. Also, to the best of our knowledge, multiple hypothesis test correction has not been applied 
before to Granger networks in ATM, although it has a large impact on the inferred causality 
networks. 
 
A detailed description of a simple, yet controllable model of the interactions between airlines, the 
agents of the model, and other elements of the ATM system, such as departure and arrival managers 
and passengers is also being developed in Domino. This model, referred to as the ‘toy model’, is 
much simpler with respect to the ABM model, as it currently contains less details on the processes 
and considers only one type of agent, the airline. Preliminary results of its baseline implementation 
are presented. 

In the next deliverables, the causality metrics presented here will be applied to both the outputs of 
the agent-based model and the toy model under different innovation scenarios. 
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1 Introduction 

This Deliverable contains the results of the Task 5.1 of the Domino project. The Domino project will 
produce simulations from agent-based models (ABMs) of the European air traffic under current 
conditions and for the scenarios which have been defined in D3.2. These scenarios consider different 
mechanisms (4D trajectory adjustments, flight prioritisation, and flight arrival coordination) with the 
aim of studying the impact of the introduction of such mechanisms on ATM. To this end, the first 
objective of WP5, to which this Deliverable belongs, is to identify the relevant network metrics used 
to quantify such impacts. 

For these reasons, as specified in the proposal, this Deliverable can be broadly divided in three parts:  

● the first one concerns network metrics for ATM. In particular, weaknesses and strengths of 
existing network metrics are reviewed. Of note, new network metrics are introduced and 
their superior performance in capturing interconnection, tightness, and causal relationships 
between elements of the ATM systems is justified theoretically. 

● the second one shows the performance of the existing and new network metrics by applying 
them to large datasets of European and US air traffic. The superior performance of the new 
metrics is confirmed by these empirical case studies.  

● the third part contains the development of a stylized ABM, termed a “toy model”, which is 
calibrated on scheduled traffic data and can be used as a testbed for the developed metrics.  

 

1.1 ATM networks 

Air traffic can naturally be described as a networked system and in recent years a large number of 
studies have applied concepts from network science to ATM (for a recent review, see [1]. The 
advantage of a network description is clearly that it is possible to focus on the role of interactions 
between the elements or between the parts of the system, the role of network topology in the 
propagation of signals, distress, congestion, etc. Since the focus of Domino is to understand the 
impact of the new mechanisms at a global level, the use of network science is a natural choice.  

The ABM developed in Domino will consider the different elements of the airspace, i.e., passengers, 
airlines, aircraft, network manager, arrival and departing manager, etc. The interaction between 
these different elements will be modeled with networks whose nodes are used differently for 
different stakeholders. The links between these nodes describe the interaction between them or the 
indirect effect of the state of a node on the state of another node. Metrics will be used to extract 
relevant information from these networks.  
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In order to test the existing metrics and to develop new ones, in this Deliverable we decided to focus 
on a specific, yet important, ATM network, namely the one whose nodes are airports and the links 
are the flights between them. This choice is in part dictated by the data availability. However, this is 
also an important system, which has been investigated in the past and that share the main property 
of being composed by a planned network and a actual network. We are confident that the metrics 
and methods developed for this system will be very useful when we will investigate the more 
heterogeneous network obtained from the simulation of the Domino ABM. The reason is that we 
believe the concepts of interconnection, centrality, and causality (see below) that we will consider in 
the following are generally important for the research questions of the Domino project. 

Specifically, in this Deliverable we consider two different airspaces (ECAC and US) and we review a 
large number of existing network metrics by investigating their application on the two datasets. In 
particular, in the Deliverable, apart from the standard interconnection metrics (density, degree 
distribution, clustering coefficient, assortativity, etc), we focus on two types of network metrics that 
we believe are relevant for the Domino project: centrality and causality metrics. 

Centrality. Centrality is a key property of a node in the network. Generally speaking, the centrality of 
a node describes its ‘importance’, either in terms of the number of connections, or in terms of its role 
in getting the network connected, or in terms of its role in the shortest paths connecting other 
nodes. Centrality describes several different properties and therefore many different metrics have 
been proposed. In the context of the Domino project, it is important to study the centralities of the 
nodes of the ATM networks to investigate whether the introduction of the new mechanisms 
(possibly in a subset of the nodes, e.g., airports) drastically changes the centralities of all the nodes. 
This is particularly relevant when one considers that there are two networks which can be associated 
with air traffic: the first one considers the scheduled flights (including the times of departing and 
landing) and the other one considers the actual flights. The relevant question is whether the 
introduction of the new mechanisms makes the system (of parts thereof) more robust, in the sense 
that an airport preserves its centrality also when the system is perturbed and many flights are 
delayed.  

In reviewing the existing network metrics, we actual that many of them are not suitable for such 
comparison [2]. The main reason is that most of such metrics were developed for static and single 
layer networks, while air traffic is naturally described by a temporal multilayer network. The air 
traffic network is temporal because links (flights) appear and disappear, and connections between 
two flights are possible only if the corresponding links appear in time in the right order. Moreover, 
the network is multilayer because each layer describes a single airline (or alliance) and the effect of a 
missing connection on the centrality decrease of an airport is very different if the two flights belong 
to the same or different airlines (for example because of reactionary delays or passengers changing 
airlines). Also, the existing network metrics for temporal networks and multilayer networks do not 
seem to be suitable for ATM. 

For these reasons, in this Deliverable we develop three new centrality metrics for temporal 
multilayer networks, which we termed ‘Trip centrality’, ‘TripRank’ and ‘2-legs Trip centrality’. Their 
advantage is that they have a clear operational meaning in terms of paths in the air system.  

Causality. As mentioned above, networks are the natural structure to study the propagation of 
disturbances (or information) in a complex system. In the ATM case, where the nodes of the network 
are the airports, an interesting problem is to study how the congestion state of an airport, for 
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example because there is a large number of delayed flights, propagates to the other airports. In the 
context of Domino, the relevant question is whether the introduction of the new mechanisms makes 
the propagation of the congestion state more or less likely, and the paths of propagation. For 
example, if UDPP is implemented in few airports, will the congestion propagate less likely in the 
connected airports? 

In this Deliverable we decided to study the propagation of congestion by using a well established 
concept in time series analysis, namely Granger causality. In a nutshell, a time series ‘Granger causes’ 
another one if the past history of the former helps to predict the future of the latter. Since we are 
interested in direct and indirect contagion effects, we will perform a statistical test for causality 
between all the pairs of airports. The detected causality between the nodes (airports) constitute a 
Granger causality network. This approach has been considered in ATM in some recent papers (see 
the literature review in the corresponding Section).  

In this Deliverable we introduce several innovations to the Granger causality network methods. First, 
since these methods are based on statistical testing, we show that taking into account the fact that a 
large number of tests is performed is critical to obtain clear results. Second, differently from the 
standard Granger method (also applied in ATM) which considers the possibility of predicting the 
average behavior, we implement for the first time in ATM the ‘Granger in tail’ metric (which we 
define in Section 2.2.2.1). The idea is to focus on extreme, rather than common, events and to 
identify causality relationships between them. In the ATM context, this means to identify whether 
the congested state of an airport helps predicting the congested state of another one. The third 
innovation is the construction of multilayer Granger causality networks: the ATM system is 
composed by many interacting parts and each part can be modeled as a network, thus the whole 
system can be seen as a multilayer network. For example, in the investigated system, each layer is 
the network of an airline. We extend the concept of Granger causality to the case of a multilayer 
system, where therefore the causal connection between the different layers can be seen as a 
measure of the tightness of their mutual interaction. 

1.2 Toy model 

In order to test the performance of the metrics not only with real observations but also with 
synthetic data, we developed a simplified model of the airports-flights network. The idea is to 
minimize the number of parameters and assumptions, but by calibrating the model on real scheduled 
data, simulate the actual flights with simple decision making processes of the airlines/pilots. If the 
model is able to reproduce the statistical properties of the real actual flights, we can test on 
simulated data the performance of the proposed metrics in the current and future scenarios. This will 
constitute a testbed for the application of the proposed metrics to the simulations of the full Domino 
ABM.  

In the version of the model presented in this Deliverable, only the current scenario is considered. The 
whole ECAC space is simulated by calibrating it with the scheduled times for one day in September 
2014. With a minimum amount of behavioral assumptions and by calibrating the statistical 
distribution of the percentage delay in the en-route phase, we are able to reproduce remarkably well 
the statistical properties of delays and airport congestions. Several of the baseline metrics 
investigated in the data analysis part of this Deliverable show good agreement with the ones 
obtained from the simulations of the toy model. We are therefore confident that our model is a 
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significant asset to test the new and more sophisticated metrics, by considering the current and the 
future scenarios with the implementation of the different mechanisms. This will be done in future 
Deliverables. 

Finally, the choice of using delays and not, for example, costs for the validation of the model is 
dictated by the fact that delays are observable while costs are not (at least to us) and must be 
estimated. We believe that to validate a model is much better to use first observable quantities. 
However, even if we consider here only delays, we have calibrated airline costs by using data from 
recent literature. In the next Deliverables we will consider explicitly statistics and metrics related to 
costs, by comparing the estimations from real and simulated data. 

1.3 Organization of the Deliverable 

The Deliverable is organized as follows. In Section 2 we review existing metrics and present the new 
ones. In Section 2.1 we review classical basic metrics used in ATM, while Section 2.2 is devoted to 
network metrics. Specifically, Section 2.2.1 concerns centrality metrics, and Section 2.2.2 causality 
metrics. In Section 3, existing and newly proposed network metrics are applied to two datasets, 
presented in Section 3.1. Section 3.2 presents a simple descriptive analysis of the data, while Sections 
3.3 and 3.4 focus, respectively, on the application of centrality and causality metrics. Section 3.3.1 
highlights the limits of the existing centrality metrics, and the following Section 3.3.2 shows the 
superior performance of the proposed ones. Section 3.4.1 specifies how the causality methods 
presented in Section 2.2.2 are applied to the specific case study, and the results of the analysis are 
shown in Section 3.4.2, with particular attention to the difference between existing methods and the 
improved ones proposed in this deliverable. Section 3.3, finally, summarizes the new metrics 
proposed and indicates future perspectives. Section 4 is devoted to the toy model. The model 
designed is illustrated in Section 4.1, by explaining, e.g., who are the agents and subsystems 
modelled (Section 4.1.2), what are the model inputs (Section 4.1.3), how is a day of operation 
simulated in the model (4.1.4). Section 4.2 presents a baseline implementation of the model, which 
results are presented and analysed in Section 4.3.  
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2 Metrics 

To assess the results of the agent-based model (ABM) presented in WP4, comparing its outcomes in 
different investigative and adaptive case studies, it is necessary to establish a set of tools able to 
characterise such outcomes and highlight and quantify their differences. To this end, we first 
consider, in Section 2.1, classical metrics strictly pertaining to the ATM field. Such metrics are a useful 
starting point to evaluate a model outcome. However, in order to analyse the network impact of the 
different mechanisms, additional and more detailed insight on the outcomes can be obtained from 
the theory of complex networks. In fact, from the outcome of the ABM we can obtain a network 
description of the ATM system, where nodes may be the different system’s elements (e.g., airport, E-
AMAN) and links are flights or passengers’ itineraries. While the network of scheduled flights and 
passenger itineraries is fixed for a chosen day, the results of the ABM determine the actual 
interaction of the network’s nodes, e.g., the actual delays and costs of flights, in the case study 
considered. Delays and cancellations influence the network connectivity by disrupting possible 
connections. Additionally, delays and costs propagate through the network, creating the observed 
situation. 

Complex network theory provides metrics able to characterize the functionality of the network from 
different points of view. In Sections 2.2.1 and 2.2.2 we focus on two types of network metrics of 
particular relevance to the ATM network, i.e., centrality and causality metrics. In this Section, existing 
metrics are reviewed, and their limits are highlighted. New metrics are then proposed to overcome 
such limitations. 

2.1 Classical basic metrics 

There are a set of metrics that are usually used in the ATM community. These metrics can be 
grouped by different areas and stakeholders and are considered when assessing the performance of 
the system. However, they lack a network view of the system. Also, it is common to consider average 
values when it has been shown that the distribution of the values is critical to understand the system 
performance. This is particularly true in the case of delay and cost of delay due to the non-linearity 
between them [3]. 

SESAR identifies 6 different key performance areas (KPAs) with different key performance indicator 
(KPIs) that need to be monitored in order to assess the impact of the different solutions. Table 1 
summarises these. 
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Table 1. SESAR performance KPAs/KPIs (adapted from [4]) 

Key performance area Key performance indicator 

Cost efficiency: ANS 
productivity 

• Gate-to-gate direct ANS cost per flight 
o Determined unit cost for en-route ANS 
o Determined unit cost for terminal ANS 

Operational efficiency • Fuel burn per flight (tonne/flight) 
• Flight time per flight (min/flight) 

Capacity • Departure delay (min/dep) 
• En-route air traffic flow management delay 
• Primary and reactionary delays all causes 
• Additional flights at congested airports (million) 
• Network throughput additional flights (million) 

Environment • CO2 emissions (tonne/flight) 
o Horizontal flight efficiency (actual trajectory) 
o Vertical efficiency 
o Taxi-out phase 

Safety • Accidents with ATM contribution 

Security • ATM related security incidents resulting in traffic disruptions 

 

These indicators allow us to monitor the performance of the ATM system at a very high level and 
define political goals. The Domino model will be able to generate low level indicators that will help to 
describe trade-offs and the performance of the system for the different stakeholders in the ATM. The 
different stakeholders that have been identified are: 

• ANSPs 
• Airports 
• Airspace users 
• Passengers 
• Environment 

 
Table 2 summarises different metrics per stakeholder that will be generated by the ABM model and 
that have been explored in previous research [5], [6]. 
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Table 2. Basic metrics per stakeholder 

Stakeholder Metrics 

ANSP • En-route airspace charges revenues 

Airport • departing queue delay 
• arrival queue delay 
• number of operations 

o departures 
o arrivals 

Airspace users • flight departure delay 
• flight arrival delay 
• fuel 
• delay per flight segment 
• reactionary delay 
• ATFM delay 
• gate-to-gate time 
• cost of delay 

o non-passenger related 
o passenger related (hard and soft) 

• cost 
o en-route charges 
o fuel cost 

Passengers • departure delay 
• arrival delay 
• missed connections 
• connecting time 
• gate-to-gate time 

Environment • fuel kg 
• CO2 tonnes 

 

As identified in previous research and previously mentioned, average metrics are not always 
representatives of the performance of the system, and therefore, for each metrics not only their 
average but their distribution needs to be considered. 

Also, it has been pointed out several times how similar metrics (e.g., delay) could be experienced 
very differently by different stakeholders and in particular the differences between flight-centric and 
passenger-centric metrics. For example, reductions in flight arrival delay with passenger arrival delay 
map close to a 1:1.3 ratio [6]. That is, on average, one minute of flight delay corresponds to 1.3 
minutes of delay per passenger (in this model; other projects have reported similar values). This is 
due to the fact that the delay experienced by passengers is higher due to missed connections (ibid.). 
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This is one of the main reasons why Domino will focus on describing not only flight-centric metrics 
but also passenger-centric ones. We also suspect that the relationship between the elements in the 
ATM system might be different for different stakeholders and the link between elements might be 
different from the flight or passenger perspective. 

The metrics described here are useful for performance monitoring and to understand the impact of 
different ATM solutions on the different stakeholders and their trade-offs. However, they do not 
address the complexity of the network or provide information on how the different elements are 
related in the system. 

2.2 Network metrics 

In this Section, we move to network-level indicators. With respect to the classical metrics presented 
in the previous Section, network metrics often provide more specific understanding of the system-
wide implications of changes in the elements of the system implemented in the different case 
studies. In particular, we will focus on two types of network metrics: centrality metrics and causality 
metrics.  

Centrality (of a node, a link, or a group of nodes) is a key property in network science, quantifying the 
‘importance’ of an element in the overall network architecture. Examples of questions related to the 
importance are: how influential is a person in a social network? How critical is an element in an 
infrastructure network? What is the disease spreading capacity of an individual? What is the most 
systemically important financial institution? Since the definition of importance depends on the 
context and on the questions raised, many different metrics have been proposed in the literature. In 
this deliverable, we will review existing centrality metrics, both for static and for temporal networks 
(i.e., where links appears and disappears in time). In particular, we are interested in developing new 
centrality metrics for temporal networks, which explicitly take in into account the temporal order of 
links and therefore consider network paths which are time consistent. As an important example, as 
explained in detail in Section 2.2.1, we shall consider centrality metrics measuring the connectivity of 
airports, i.e., the passenger’s potential of moving through the network passing through a particular 
airport. Therefore, centrality metrics help to assess if innovations improve the network connectivity 
from the passenger point of view.  

Causality is an important, yet elusive, concept in many disciplines. Knowing that the state of a 
particular subsystem ‘causes’ a state in another subsystem is important, even if there is no consensus 
on the way of identifying causality. Since many ATM variables, both from real data and from the 
simulations of the ABM, can be cast in time series, in this Deliverable we will consider a widespread 
and operative definition of causality, termed Granger causality. Broadly speaking, the idea is that a 
time series Granger causes another one if the past history of the former helps to predict the second 
one, even when one considers as explanatory variable the past history of the second. This very 
general definition can be applied to many different contexts, depending on the forecasting model 
adopted (e.g., linear or non-linear models), and moreover can be specialized by choosing which 
quantity to forecast: for example, are we interested in forecasting the average behavior of the 
second variable or the occurrence of an extreme event? Finally, when, as in ATM, the system is 
composed of many interacting units, each of them represented by a time series, one can test for 
causality between all the pairs of variables. Each statistically significant causality is associated with a 
directed link between two nodes representing the two tested variables. One obtains a Granger 
causality network, whose topology gives important information on the existence of ‘causal hubs’, i.e., 
16 
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variables which cause the behavior of many others and the presence of causality loops which can 
amplify disturbances. We believe that understanding causality networks is critical to test the degree 
of interconnection and the tightness of the ATM system. In this Deliverable we provide a concrete 
empirical example by considering the propagation of delays between airports, with the aim of 
measuring whether the fact that a certain airport is congested causes other airports to be congested. 
Such metrics will therefore help evaluate if innovations are successful in decoupling the system 
elements, reducing the propagation of delay. 

Both for centrality and for causality, we first review existing metrics and highlight their limits in view 
of this project’s scope. This is clearly shown by considering as an important case study the delays in 
the airport network, backing up our conclusions with specific applications to air traffic data. Then, 
new metrics are proposed to overcome the identified limits and validated on historical data. 

2.2.1 Centrality metrics 

2.2.1.1 Existing centrality metrics 
 

Centrality is a measure of the importance of a node in a network. While several different definitions 
of centrality exist, all centrality metrics are based on some concept of connectivity of a node in terms 
of links, paths or walks joining it to the other nodes of the network. For example, the larger the 
centrality of an airport is, the higher is the potential to move through the network passing through 
that node. As a consequence, the loss of centrality of an airport, between the scheduled and the 
actual network, signals a diminished potential of moving through the network passing through that 
node, which means, from both the passenger and the airline point of view, a diminished 
performance of the network. In the light of Domino's scope, this loss of centrality should reflect not 
only the missing links due to cancellations but also the disrupted paths due to delays, since 
innovations mainly aim at reducing such disruptions. Provided a centrality metrics satisfying these 
requirements, comparing the loss of centrality between the actual and the scheduled flight network 
among case studies implementing different mechanisms would allow us to assess the impact of 
innovations on the network performance. In particular, an innovation diminishing the centrality 
losses between the scheduled and actual network represents an improvement both from the 
passenger point of view and from the airline point of view, as it means that less itineraries were 
disrupted by delays, implying less inconveniences for the passengers and smaller costs for the 
airlines. 

A network is a set of nodes and links. A link between two nodes is said to be directed if it has a 
defined direction. A link can also be weighted, when it is associated to a number describing its 
properties. For example, the network of airports and flights is a directed network, where a flight from 
airport i to airport j is represented by a link going from node i to node j. While centrality metrics can 
be applied to any network, here we will introduce them focusing for clarity on this specific network. 

As we will explain in more detail in the following, the most general representation of such network is 
dynamic in time, as links appear and disappear according to the schedule. Moreover, it might have a 
multi-layer (or multiplex) structure, where each layer contains a certain type of links between nodes. 
For example, in the case of the network of flights and airports, each layer contains the links 
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corresponding to flights of a different company or alliance, and inter-layer links connect nodes 
corresponding to the same airport. 

However, commonly used centrality metrics apply to single-layer static networks. To review existing 
metrics, therefore, we start by neglecting the temporal and multiplex structure. In our example, this 
corresponds to considering the network of flights and airports aggregated across layers, i.e., across 
airlines, and across time frames, i.e., where all flights operated on the day chosen for the analysis are 
present at the same time regardless of their schedule. In this network, an edge is present from i to j if 
at least one flight connects them. A weight k is assigned to the edge, where k is the number of flights 
going from i to j. 

Let A be the weighted adjacency matrix of the network, such that 𝐴𝐴𝑖𝑖𝑖𝑖 =k if there are k links going 
from i to j, and Ã be the non-weighted adjacency matrix, such that Ã𝑖𝑖𝑖𝑖 = 1 if there is at least one link 
going from i to j, and zero otherwise. Here, we consider some among the most common and well 
known centrality metrics: degree, strength, Katz, PageRank, closeness and betweenness centralities. 
When the network is directed, a distinction should be made between incoming and outgoing 
centrality.1 

The incoming (outgoing) degree centrality of a node i is given by the number of incoming (outgoing) 
edges, 𝑑𝑑𝑖𝑖

𝐼𝐼𝐼𝐼 = ∑ Ã𝑖𝑖𝑖𝑖𝑖𝑖  (and 𝑑𝑑𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂 = ∑ Ã𝑖𝑖𝑖𝑖𝑖𝑖  ), where the index j runs on all nodes. This centrality 

measure determines from how many nodes node i can be reached (respectively, how many 
destinations can be reached from node i) with one link. The incoming (outgoing) strength of a node i, 
instead, is given by the total weight of incoming (outgoing) edges, 𝑠𝑠𝑖𝑖𝐼𝐼𝐼𝐼 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖  (and 𝑠𝑠𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂 =
∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 ). It measures with how many links node i can be reached (respectively, how many links depart 
from node i). However, an important feature for network connectivity are paths which make use of 
two or more links. A commonly used metric which considers a node's centrality to depend on the 
walks of any length arriving to (or departing from) that node is Katz centrality [7] [8]. The incoming 
Katz centrality of node i is 

𝑘𝑘𝑖𝑖
𝐼𝐼𝐼𝐼 = ∑ (𝕀𝕀 − 𝛼𝛼𝐴𝐴)−1𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ ∑ 𝛼𝛼𝑛𝑛(𝐴𝐴𝑛𝑛)𝑖𝑖𝑖𝑖∞

𝑛𝑛=0𝑖𝑖 , 

that is, each walk of length n from any node j of the network to i contributes 𝛼𝛼𝑛𝑛 to the centrality of i. 
Note that, by using the weighted adjacency matrix in this calculation, for each different link present 
between two nodes a different walk is counted. Since 𝛼𝛼 < 1, longer walks contribute less and its 
value determines the relative importance of walks of different length2. The coefficient α must be 
smaller than the inverse of the largest eigenvalue of A for the expression to converge [8]. 
Correspondingly, the outgoing Katz centrality of node i is 

𝑘𝑘𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂 = ∑ (𝕀𝕀 − 𝛼𝛼𝐴𝐴)−1𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ ∑ 𝛼𝛼𝑛𝑛(𝐴𝐴𝑛𝑛)𝑖𝑖𝑖𝑖∞

𝑛𝑛=0𝑖𝑖 , 

PageRank is a generalisation of Katz centrality, developed by Google, that introduces an additional 
weight to the paths, depending on the in- (or out-) degree of the nodes they cross. Specifically, 

1 Note that this is not a complete review of centrality metrics.  
2 Specifically, 1/α walks of length n-1 are needed to give the same contribution to centrality as a single walk of 
length n. 
18 
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𝑝𝑝𝑟𝑟𝑖𝑖𝐼𝐼𝐼𝐼 = �(𝕀𝕀 − 𝛼𝛼𝐷𝐷−1𝐴𝐴)−1𝑖𝑖𝑖𝑖,
𝑖𝑖

 

where 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂, so that a link from j to k is weighted by the inverse of the out-degree of j, 

1/𝑑𝑑𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂. In terms of airports and flights, the meaning of this generalization is that an airport with an 

inbound flight coming from a large airport, with a large out-degree, will inherit a fraction of its 
centrality proportional to the inverse of such out-degree. In other words, the more outbound flights 
an airport has, the less of its centrality the destination airports inherit. 

Betweenness centrality, instead, measures how often a node is used in the shortest paths joining any 
two nodes. The shortest path between two nodes is the path using the smaller number of links. The 
betweenness centrality of node i is computed as 

 

𝑏𝑏𝑖𝑖 = ∑ 𝜎𝜎𝑖𝑖𝑗𝑗𝑗𝑗
𝜎𝜎𝑗𝑗𝑗𝑗𝑖𝑖,𝑘𝑘≠𝑖𝑖 , 

where 𝜎𝜎𝑖𝑖𝑘𝑘is the number of shortest paths between the nodes j and k, and 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘is the number of such 
paths which pass by i.  

Finally, closeness centrality measures how close a node is, on average, to the other network nodes. 
Calling 𝑑𝑑𝑖𝑖𝑖𝑖the distance between node i and node j (the length of the shortest path between them), 
the closeness centrality of node i is obtained as the inverse of the average distance of node i from 
other network nodes: 

𝑐𝑐𝑖𝑖 = 𝑛𝑛−1
∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖

. 

Therefore, the higher the closeness centrality of a node is, the closer it is to other nodes. However, if 
the network is formed by more than one component, the distance 𝑑𝑑𝑖𝑖𝑖𝑖 is infinite when the nodes i and 
j fall in two different components. Therefore, for network with more than one component, 𝑐𝑐𝑖𝑖 = 0 for 
all nodes. To overcome this issue, closeness centrality can be defined using inverse distances: 

𝑐𝑐𝑖𝑖 = ∑ 1
𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖≠𝑖𝑖 . 

These existing centrality metrics neglect the dynamic structure of the network and its multiplex 
structure. As we will show in Section 3.3, for the case of the network of airports and flights, this 
means that the centrality metrics are not able to characterize the effects of the delays on the 
network connectivity. This result makes clear that these metrics are not suitable to evaluate the 
effect of the innovations addressed by Domino on the network performance, as they would not be 
able tell apart a situation where delays disrupt connections to one where they do not. In any network 
where links evolve in time, to discern these situations, a node centrality should reflect its 
participation to walks that can actually be travelled, i.e., respecting the schedule, so that disrupted 
connections imply a centrality drop. This, in turn, requires accounting for the temporal structure of 
the network. Katz and PageRank centrality, in our specific case, count walks on the network which 
are not time ordered and therefore have no relationship with the trajectories that passengers could 
travel. As a consequence, these metrics cannot reflect the effect of delays on the network's 
connectivity. An additional limitation of Katz and PageRank centrality is that the weight assigned to 
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each walk does not consider to which airline each flight composing the walk belongs, therefore a 
walk using only flights of one airline has the same weight of a walk of the same length using several 
airlines. However, a more realistic assumption would be that the latter contributes less to centrality, 
or not at all, as it is travelled with a smaller probability. Accounting for this requires considering the 
multiplex structure of the network. 

2.2.1.2 Proposed centrality metrics 
 
In order to formulate a centrality metric quantifying the loss of connectivity of a node due to changes 
in the link dynamics (for example, delays in the actual network of airports and flights), the temporal 
and multiplex structure of such network must be considered. A short introduction to temporal 
metrics and to multiplex, sufficient for the understanding of the following analyses, is presented in 
the next section. While metrics applying to temporal network and metrics for multiplexes have been 
proposed (see e.g., [9], [10], [11], [12]), and will be succinctly reviewed in the following, to the best 
of our knowledge no metrics have been formulated which account for the time-ordering of 
scheduled links nor for the different meaning of inter- and intra-layer walks. None of the existing 
metrics, therefore, is appropriate for our scope. This is the reason why we introduce a set of new 
centrality metrics which answer to the needs of the project. 

Temporal network 

A temporal network is a network where links are dynamic, i.e., they appear and disappear depending 
on the time at which the network is observed. The network will therefore look different at different 
times (see Figure 1). In the case of the network of airports and flights, the presence or absence of a 
link is determined by the schedule of the corresponding flight. In general, a link in a temporal 
network is defined by the time 𝑡𝑡∗ at which it appears and by its duration 𝛥𝛥𝑡𝑡∗, which can be zero if the 
contact is instantaneous. A way to work out a graph representation which allows us to easily 
generalise standard results of network theory consists in defining a time resolution 𝛥𝛥𝑡𝑡 and building a 
time-labeled adjacency matrix 𝐴𝐴[𝑡𝑡] containing all links such that at least one of the following 
conditions is satisfied: 

𝑡𝑡 ≤ 𝑡𝑡∗ < 𝑡𝑡 + 𝛥𝛥𝑡𝑡 

𝑡𝑡 ≤ 𝑡𝑡∗ + 𝛥𝛥𝑡𝑡∗ < 𝑡𝑡 + 𝛥𝛥𝑡𝑡 

𝑡𝑡∗ < 𝑡𝑡 and  𝑡𝑡∗ + 𝛥𝛥𝑡𝑡∗ ≥ 𝑡𝑡 + 𝛥𝛥𝑡𝑡 

i.e., all links such that either the link appears in the interval [𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) , or it disappears in that 
interval, or it is present during the entire interval. With this representation, the temporal network is 
defined by a time series of adjacency matrices {𝐴𝐴[𝑡𝑡]}𝑡𝑡−1,...,𝑂𝑂. 

In a temporal network, walks and paths are time-oriented. A temporal walk from node i to node j is 
defined as a sequence of M edges {𝑖𝑖,𝑘𝑘}𝑡𝑡1 , {𝑘𝑘, 𝑙𝑙}𝑡𝑡2 , . . . . {𝑚𝑚, 𝑗𝑗}𝑡𝑡𝑀𝑀 where the times 𝑡𝑡1, . . . , 𝑡𝑡𝑀𝑀 are 
increasing, i.e., 𝑡𝑡1 < 𝑡𝑡2 < . . . < 𝑡𝑡𝑀𝑀. A temporal path is a walk for which each node is visited at most 
once. 
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Figure 1. Example of temporal network .The network is represented at three subsequent time-
steps of the discretized timeline. A time-ordered walk from node j to i, then k, and finally back to j 

is highlighted in green. 

Multiplex 

A multiplex is a network which consists of many layers, on each of which the same set of nodes are 
present (see Figure 2). A multiplex has two types of links, intra-layer links and inter-layer links. An 
intra-layer link joins two nodes of the same layer, while an inter-layer link joins two copies of the 
same node on two different layers. In the case of the network of airport and flights, one layer is 
present for each airline (or each alliance, as motivated in the following), and directed intra-layer links 
on the layer 𝜆𝜆 represent the flights of airline 𝜆𝜆. Non-directed inter-layer links connecting each airport 
to all its ‘copies’ in another layer allows us to have walks which use more than one layer, i.e., flights 
of several airlines. When considering walks on a multiplex, we call intra-layer walk a walk that 
consists of only intra-layer links, while we call inter-layer walk a walk that includes at least one inter-
layer link. In the example of Figure 2, node i can be reached by node k either by an intra-layer walk 
on layer 𝜆𝜆 , or by an inter-layer walk using the link 𝑘𝑘 → 𝑗𝑗 on layer 𝜇𝜇 , then passing to layer 𝜆𝜆 with the 
inter-layers link joining the two copies of node j and finally using the link 𝑗𝑗 → 𝑖𝑖 on layer𝜆𝜆. 
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Figure 2. Example of multiplex network with two layers. Inter-layer links are represented by solid 
lines, intra-layer links by dashed lines. An intra-layer walk is highlighted in green, and in inter-layer 

one in blue. 

Metrics on temporal network and on multiplexes 

This subsection contains a review of existing metrics on temporal networks and on multiplexes.  

In a temporal network [13], as we have seen, walks and paths are time oriented. In addition to the 
standard notion of distance between two nodes, given by the number of links used by the shortest 
path joining them, it is possible to define also the temporal distance 𝑑𝑑𝑖𝑖𝑖𝑖between two nodes as the 
temporal length of the shortest path between them, where now the shortest path is the shortest in 
terms of duration. The time-diameter of the network is, then, the largest time distance between two 
nodes of the network. The characteristic temporal path length is the average time distance between 
two nodes in the network. However, in the network of airports and flights for a given day, there are 
certainly couples of airports that are not linked by a time-ordered path, therefore many of these 
temporal distances are infinite. Therefore, it is useful to introduce the temporal global efficiency, 
which is the average of the inverse of the time distances for all couples of flights. The largest the 
efficiency, the shortest time it takes on average to go from one node to another.  

Centrality metrics have also been proposed for temporal networks. In an analogy with the standard 
betweenness centrality, a betweenness centrality for temporal network can be defined as  

𝑏𝑏𝑖𝑖 = ∑ 𝜎𝜎𝑖𝑖𝑗𝑗𝑗𝑗
𝜎𝜎𝑗𝑗𝑗𝑗𝑖𝑖,𝑘𝑘≠𝑖𝑖 , 

where 𝜎𝜎𝑖𝑖𝑘𝑘is the number of shortest paths between the nodes j and k, and 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘is the number of such 
paths which pass by i. Closeness centrality can be extended to temporal networks as well, but 
recalling that in the network of airports and flights many temporal distances are infinite, it is 
convenient to define it using inverse distances: 
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𝑐𝑐𝑖𝑖 = ∑ 1
𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖≠𝑖𝑖 . 

Finally, in [10] a generalization of Katz centrality for temporal networks is suggested, such that the 
incoming and outgoing Katz centrality of node i are 𝑘𝑘𝑖𝑖

𝑖𝑖𝑛𝑛 = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑘𝑘𝑖𝑖
𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 , where the 

matrix Q is defined as 

𝑄𝑄 = (1 − 𝛼𝛼𝐴𝐴[0])−1 ⋅. . .⋅ (1 − 𝛼𝛼𝐴𝐴[𝑂𝑂])−1. 

The matrix Q contains all products of the form 𝛼𝛼𝑙𝑙𝐴𝐴[𝑡𝑡1] ⋅. . .⋅ 𝐴𝐴[𝑡𝑡𝑙𝑙], where 𝑡𝑡1 ≤ 𝑡𝑡2 ≤. . .≤ 𝑡𝑡𝑙𝑙 . However, 
this way of counting walks still does not fully account for the scheduled nature of the network. For 
example, if a flight from i to j departs at 𝑡𝑡0 and lands at 𝑡𝑡2and a flight from j to k departs at 𝑡𝑡1 such 
that 𝑡𝑡0 < 𝑡𝑡1 < 𝑡𝑡2, the path from i to k will be counted even if it cannot be actually traveled, as at 
time 𝑡𝑡1both links are present. This problem is solved by the generalization of Katz centrality which we 
present in the following. 

Regarding multiplex network, [11] propose several generalizations of standard network metrics. A 
vectorial degree can be defined as 𝑑𝑑𝚤𝚤� = (𝒅𝒅𝒊𝒊

[𝟏𝟏], . . . ,𝒅𝒅𝒊𝒊
[𝑴𝑴]), where 𝒅𝒅𝒊𝒊

[𝜇𝜇]is the degree of node i on 
layer𝜇𝜇and M is the number of layers. In order to rank nodes, a single overlapping degree 𝑜𝑜𝑖𝑖 can be 
obtained for node i by summing its degree on all layers. However, the overlapping degree would not 
distinguish a node which is a hub on a certain layer but has few links on the others (i.e., an airport 
which is a hub only for a particular airline) from a node that has similar degrees on all layers. To 
distinguish these situations, the multiplex participation coefficient is introduced: 

𝑝𝑝𝑖𝑖 = 𝑀𝑀
𝑀𝑀−1

[1 − ∑ (𝑘𝑘𝑖𝑖
[𝜇𝜇]/𝑜𝑜𝑖𝑖)2𝑄𝑄𝑗𝑗𝑖𝑖 ]. 

This coefficient is maximum if the degree of i is the same for all layers, and it is 0 if the node has link 
on only one of the layers.  

In order to define distance on a multiplex network, it should be decided whether inter-layer links 
count and, if they do, how much. In the case of the network of airports and flights, for example, a 
path using two flights of the same airline or alliance could be considered shorter than a path using 
two flights of two airlines not belonging to the same alliance. Therefore, the length of a path made of 
n links could be computed as 𝑙𝑙 = 𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖, where 𝛽𝛽 > 0and 𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖is the number of inter-layer 
links used in the path. Once it has been decided how to measure distances, all metrics related to 
distances and shortest paths can be applied (network diameter, characteristic path length, efficiency, 
betweenness centrality, closeness centrality). Additionally, to measure to what extent the 
interconnection of different layers affects the connectivity of the network, the notion of node 
interdependence is introduced: 

𝜒𝜒𝑖𝑖 = ∑ 𝛹𝛹𝑖𝑖𝑗𝑗

𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖≠𝑖𝑖 , 

where 𝜎𝜎𝑖𝑖𝑖𝑖is the number of shortest paths between i and j, and 𝛹𝛹𝑖𝑖𝑖𝑖is the number of those shortest 
paths which use inter-layer connections. The network level indicator is obtained averaging 𝜒𝜒 on all 
nodes.  

In [11] several ways to compute centrality metrics in multiplexes are also suggested, focusing on 
eigenvector centrality (although the same considerations apply to Katz or PageRank centrality). The 
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first possible generalization is to compute centralities separately for each of the M layers, so that for 
each airport we have a vector of centralities 𝑐𝑐𝑖𝑖 = (𝑐𝑐𝑖𝑖[1], . . . 𝑐𝑐𝑖𝑖[𝑀𝑀}). Then, a scalar centrality measure 
can be defined as the sum of the 𝑐𝑐𝑖𝑖[𝜇𝜇] or as their maximum, in order to rank the airports. This 
generalization considers only intra-layer connections to determine the centralities. Another possible 
generalization is that of computing the centralities on the superposition network, i.e., the network 
obtained by aggregating all the links present on every layer on a single one. This is equivalent to 
using the matrix 𝐴𝐴𝑠𝑠𝑜𝑜𝑠𝑠 = ∑ 𝐴𝐴[𝜇𝜇]𝑀𝑀

𝜇𝜇=1  to compute the centralities. In this case, no difference is made 
between inter- and intra-layer walks in computing the centralities. These two choices represent two 
particular cases of the generalization that we propose in the following (however, our generalization 
adds the temporal structure as well).  

Finally, it could be interesting to know if nodes tend to have the same role in all layers or not, e.g., if 
an airport which is a hub on one layer tends to be a hub on the others as well. This can be assessed, 
for example, by computing the Pearson correlation coefficient of the airports’ degrees on the 
different layers, or by computing the Kendall or Spearman correlation coefficient between the 
rankings obtained according to the degree (or any other centrality measure) in the different layers. 

Temporal generalization of Katz centrality and PageRank 

Katz centrality sums the contribution of walks outgoing from or incoming to a node, weighting them 
according to their length. In the case of the static network considered in Section 2.2.1.1, where the 
weighted adjacency matrix A contains all links present at any time, the number of paths of length n 
outgoing from node i are given by ∑ (𝐴𝐴𝑛𝑛)𝑖𝑖𝑖𝑖𝑖𝑖 , where the index j runs on all 𝑁𝑁𝐴𝐴nodes of the network, 
and contribute 𝛼𝛼𝑛𝑛 ∑ (𝐴𝐴𝑛𝑛)𝑖𝑖𝑖𝑖𝑖𝑖  to the outgoing centrality of node i. Summing then the contribution of 
walk of any length, the outgoing centrality of node i is obtained as 

𝑘𝑘𝑖𝑖
𝑜𝑜𝑜𝑜𝑡𝑡 = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛 ∑ (𝐴𝐴𝑛𝑛)𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ (∑ 𝛼𝛼𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛 )𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ ((𝕀𝕀 − 𝛼𝛼𝐴𝐴)−1)𝑖𝑖𝑖𝑖𝑖𝑖 . 

Calling 𝑘𝑘�⃗ 𝑜𝑜𝑜𝑜𝑡𝑡 the vector of outgoing centralities,𝑘𝑘�⃗ 𝑜𝑜𝑜𝑜𝑡𝑡 = (𝕀𝕀 − 𝛼𝛼𝐴𝐴)−1𝟙𝟙- , where 𝟙𝟙 is a vector of all ones. 
A similar derivation holds for the incoming case. 

Here, we want to introduce a generalization of this centrality such that (i) passing from one node to 
another though an active link takes a non-zero time and (ii) only time-oriented walks are counted. 
For example, in the case of the airports and flights network, an itinerary 𝑖𝑖 → 𝑗𝑗 → 𝑘𝑘 is only counted if 
the flight from j to k departs after the landing of the flight from i to j. To do this, first we discretise 
the observation window in time frames of length 𝛥𝛥𝑡𝑡. Then, to overcome the limit of the temporal 
generalization introduced in [10], explained in the previous subsection, we introduce a set of 
secondary nodes, one for each of the 𝑁𝑁𝐹𝐹 links (flights of the day) (see Figure 3). For each time frame 
[𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) we define an adjacency matrix 𝐴𝐴[𝑡𝑡]of size (𝑁𝑁𝐴𝐴 + 𝑁𝑁𝐹𝐹) × (𝑁𝑁𝐴𝐴 + 𝑁𝑁𝐹𝐹) such that 𝐴𝐴𝑖𝑖𝑖𝑖[𝑡𝑡] = 1 
either if a link outgoing from node i starts to exist during that time frame, and j is the secondary node 
associated to that link, or if a link incoming to node j stops to exist during that time step, and i is the 
secondary node associated to that link. In other words, in our specific example, for each flight a 
directed link between the origin airport and its secondary node is present in the time frame in which 
the flight’s departure time falls, while a directed link between its secondary node and the destination 
airport is present in the time frame in which the arrival time falls. The introduction of these 
secondary nodes is necessary to correctly account for the time-ordering of walks. In fact, a walk 
joining airports i, j and k should not exist if the flight from i to j lands later than the departure of the 
one from j to k. This is ensured by introducing secondary nodes and by adding the rule that a walk 
24 
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should not make more than one jump in each time frame. Note that the idea of secondary nodes to 
describe scheduled temporal networks had already been introduced previously [14] [15], but never 
applied to the computation of centrality metrics.  

The length 𝛥𝛥𝑡𝑡 of one time frame must be shorter than the duration of the shortest link. For example, 
for a flight of length larger than 𝛥𝛥𝑡𝑡, the departing and landing links will appear in two different time 
frames and can be both used in a walk, while for a flight of length smaller or equal to 𝛥𝛥𝑡𝑡 both links 
appear in the same time frame, therefore a walk will remain stuck in the secondary node. With this 
definition of the time series of adjacency matrices, the contribution of time-ordered walks of length 
n outgoing from node i to the centrality of node i is obtained as the sum of all the contributions of 
the form 

𝛼𝛼𝑛𝑛� (𝐴𝐴[𝑡𝑡1]𝐴𝐴[𝑡𝑡2]. . .𝐴𝐴[𝑡𝑡𝑛𝑛])𝑖𝑖𝑖𝑖
𝑖𝑖

 

where 𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛 are successive time frames, 𝑡𝑡1 < 𝑡𝑡2 <. . . < 𝑡𝑡𝑛𝑛 (with no repetition, so that a walk can 
use, at most, one link per time-frame), for all possible choices of 𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛 . The sum of all 
contributions of this form, for n that goes from 1 to infinity, is obtained as the product 

� [(𝕀𝕀 + 𝛼𝛼𝐴𝐴[1])(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]) − 𝕀𝕀]𝑖𝑖𝑖𝑖
𝑖𝑖

 

Then, the vector of temporally generalized outgoing Katz centralities, termed Single-Layer Trip 
outgoing centrality, is 

𝑡𝑡𝑠𝑠
𝑜𝑜𝑜𝑜𝑡𝑡 = [(𝕀𝕀 + 𝛼𝛼𝐴𝐴[1])(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]) − 𝕀𝕀]𝟙𝟙. 

With a similar derivation, for the incoming centralities we have 

𝑡𝑡𝑠𝑠
𝑖𝑖𝑛𝑛 = 𝟙𝟙𝑂𝑂[(𝕀𝕀 + 𝛼𝛼𝐴𝐴[1])(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]) − 𝕀𝕀].   

The generalization of PageRank centrality, here termed Single-Layer TripRank, is obtained 
analogously as 

𝑡𝑡𝑟𝑟���⃗ 𝑠𝑠
𝑜𝑜𝑜𝑜𝑡𝑡 = [(𝕀𝕀 + 𝛼𝛼𝐴𝐴[1]𝐷𝐷𝑖𝑖𝑛𝑛−1)(𝕀𝕀+ 𝛼𝛼𝐴𝐴[2]𝐷𝐷𝑖𝑖𝑛𝑛−1). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]𝐷𝐷𝑖𝑖𝑛𝑛−1)− 𝕀𝕀]]𝟙𝟙 

and 

𝑡𝑡𝑟𝑟���⃗ 𝑠𝑠
𝑖𝑖𝑛𝑛 = 𝟙𝟙 𝑂𝑂[(𝕀𝕀 + 𝛼𝛼𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡−1𝐴𝐴[1])(𝕀𝕀+ 𝛼𝛼𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡−1𝐴𝐴[2]). . . (𝕀𝕀 + 𝛼𝛼𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡−1𝐴𝐴[𝑂𝑂]) − 𝕀𝕀] 

where 𝐷𝐷𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 are the usual diagonal matrix such that 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖
𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑡𝑡 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖

𝑜𝑜𝑜𝑜𝑡𝑡, 
with 𝛿𝛿𝑖𝑖𝑖𝑖  the Kronecker delta and 𝑑𝑑𝑖𝑖  the degree of node i. Note that, on the temporal network, we 
define incoming (outgoing) degree of a node the number of incoming (outgoing) links that it has 
during the observation window. This corresponds to its strength in the static network. 

Note that, differently from the static case, there is no upper bound on the parameter, as the sum is 
always bounded. In fact, there are no walks longer than the number of time-frames.    
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Figure 3. Illustration of the introduction of secondary links needed for the temporal generalization 
of Katz and PageRank centrality in the case of airports and flights. A) Network where two airports 

(black dots) are joined by a direct link if there is at least one flight between them; B) Network 
where each flight is a link, therefore multiple link are present between each airports; C) One 

secondary link (red dot) is introduced for each flight, so that each flight is represented by two links, 
one from the origin airport to its secondary link, and one from the secondary link to the 

destination airport. 

Multiplex generalization of Katz centrality and PageRank 

Let us now add the multiplex structure to the temporal network. We consider one layer for each type 
of link existing in the network. For example, in the case of the airports and flights network, each layer 
corresponds to an alliance or a single airline not part of any alliance. The scope of this further 
generalization is to distinguish the walks made of links of the same type from those made of links of 
different types, which might give a different contribution to the centrality (length being equal). For 
example, flights of the same airline or alliance, which are preferentially used by passengers, should 
give a larger contribution to centrality with respect to the ones using flights of different airlines 
which do not belong to the same alliance. As the multiplex has a copy of each node on each layer, 
the adjacency matrix A is of size (𝑁𝑁𝐴𝐴𝑁𝑁𝐿𝐿 + 𝑁𝑁𝐹𝐹) × (𝑁𝑁𝐴𝐴𝑁𝑁𝐿𝐿 + 𝑁𝑁𝐹𝐹), where 𝑁𝑁𝐿𝐿  is the number of layers. 
Now, for each link of type 𝜆𝜆 a directed link is present, in the time frame corresponding to appearance 
(departure), between the copy of the origin node on layer 𝜆𝜆 and its secondary node. A directed link 
between its secondary node and the copy of the destination node on layer 𝜆𝜆 is present in the time 
frame corresponding to its disappearance (landing). 

Let us introduce the parameter 𝜀𝜀 ≤ 1, such that the contribution to Katz centrality of a walk of length 
n using m intra-layer links is 𝜀𝜀𝑚𝑚𝛼𝛼𝑛𝑛. The effect of this parameter is that, the more changes of layer a 
walk has, the less is it contribution to centrality. Let us then introduce the matrix K, of the same size 
of A, as the matrix with elements 𝐾𝐾𝑖𝑖𝑖𝑖 = 1 and 𝐾𝐾𝑖𝑖𝑖𝑖 = 𝜀𝜀 if i and j are two copies of the same nodes on 
different layers. Now, the products of the form 𝐴𝐴[𝑡𝑡1]𝐾𝐾𝐴𝐴[𝑡𝑡2]𝐾𝐾𝐴𝐴[𝑡𝑡3]. .. count walks by introducing a 
factor 𝜀𝜀 every time that there is a change of layer. Therefore, the outgoing and incoming Trip 
centrality on the temporal multiplex are written as 

𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 = [(𝕀𝕀 + 𝛼𝛼𝐴𝐴[1]𝐾𝐾)(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]𝐾𝐾). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]𝐾𝐾) − 𝕀𝕀]𝐾𝐾−1𝟙𝟙 

𝑡𝑡𝑖𝑖𝑛𝑛 = 𝟙𝟙𝑂𝑂[(𝕀𝕀+ 𝛼𝛼𝐴𝐴[1]𝐾𝐾)(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]𝐾𝐾). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]𝐾𝐾) − 𝕀𝕀]𝐾𝐾−1 
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TripRank centrality can be generalized analogously as 

𝑡𝑡𝑟𝑟���⃗ 𝑜𝑜𝑜𝑜𝑡𝑡 = [(𝕀𝕀 + 𝛼𝛼𝐴𝐴[1]𝐷𝐷𝑖𝑖𝑛𝑛−1𝐾𝐾)(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]𝐷𝐷𝑖𝑖𝑛𝑛−1𝐾𝐾). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]𝐷𝐷𝑖𝑖𝑛𝑛−1𝐾𝐾) − 𝕀𝕀]𝐾𝐾−1𝟙𝟙 

and 

𝑡𝑡𝑟𝑟���⃗ 𝑖𝑖𝑛𝑛 = 𝟙𝟙𝑂𝑂[(𝕀𝕀+ 𝛼𝛼𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡−1𝐴𝐴[1]𝐾𝐾)(𝕀𝕀 + 𝛼𝛼𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡−1𝐴𝐴[2]𝐾𝐾). . . (𝕀𝕀 + 𝛼𝛼𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡−1𝐴𝐴[𝑂𝑂]𝐾𝐾) − 𝕀𝕀]𝐾𝐾−1 

where 𝐷𝐷𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 are the diagonal matrix such that 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖
𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑡𝑡 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖

𝑜𝑜𝑜𝑜𝑡𝑡, with 
𝛿𝛿𝑖𝑖𝑖𝑖  the Kronecker delta and 𝑑𝑑𝑖𝑖  the degree of node i. Note that now the degree of a node is given only 
by the links incoming to or outgoing from that node on that layer, and not by the one belonging to its 
copies on other layers. Note that the matrix K is invertible for all 𝜀𝜀 ≠ 1. 

With this procedure, we obtain a centrality measure for each copy of each node, summing the 
contributions of walks outgoing from (or incoming to) that node with a specific type of link. In our 
example, such specific information is interesting if we want to measure the importance of an airport 
for a particular airline or alliance. However, if we are interested in the role of the airport for the 
entire network, an aggregated measure is needed. The aggregated centrality of a node is obtained by 
summing the centralities of all its copies. In fact, this will give the contribution of all walks outgoing 
from (or incoming to) any copy of that node.  

Additionally, the centrality of a secondary node can be thought of as the centrality of the link 
corresponding to that secondary node. For example, the outgoing centrality of a flight could be a tool 
for airlines to decide which flights to prioritize. This centrality can be easily computed from the above 
formulas, however in this deliverable we will not show the empirical results, which might be 
investigated in future deliverables.  

The parameter 𝜀𝜀 determines how much inter-layer walks are penalized. In particular, the case 𝜀𝜀 = 0 
corresponds to not allowing inter-layer walks. In this case, the layer-specific centralities are those 
that consider only the links of one type. The aggregated centralities consider links of all layers, but 
only intra-layer walks contribute. When instead = 1 , inter-layer walk gives the same contribution of 
intra-layer walks. For 0 < 𝜀𝜀 < 1, inter-layer walks are considered, but contribute less than an intra-
layer walk of the same length. 

Note that, when 𝜀𝜀=1, the matrix K is not invertible. In this case, it is not possible to multiply by 𝐾𝐾−1in 
the computation of centralities. However, neglecting this multiplication only changes the aggregated 
centralities by a multiplicative factor, therefore it does not influence the ranking of nodes according 
to the aggregated centralities. 

In our example, given that passengers tend to follow itineraries composed of flights of the same 
airline or alliance, the case 𝜀𝜀=0 is probably the most realistic in evaluating the network functioning 
from the passengers’ point of view. However, in the empirical part we will compare also results 
obtained with 𝜀𝜀 > 0, to show how the network functioning changes when inter-layer walks are 
permitted. 

In conclusion, we obtained two original centrality metrics generalizing Katz centrality and PageRank 
centrality to the case where links on the network are dynamic and have a non-zero duration and the 
network has a multiplex structure. These new metrics are tailored for the ATM case or for other 
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transportation networks, as they focus on counting only walks that can actually be traveled by 
passengers. 

Comparing the scheduled and the actual network 

In many situations, especially in transportation, there exists a scheduled and an actual network. The 
Trip centrality that we introduced is able to quantify the loss of connectivity of a node (or of a link) 
due to the difference in the temporal link structure of the two networks. 

Centrality metrics can be applied both to the scheduled network and to the actual (‘real’) one, by 
changing the adjacency matrices from {𝐴𝐴[𝑡𝑡]

𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑑𝑑}𝑡𝑡=1,...,𝑂𝑂, which are calculated according to the 
former, to {𝐴𝐴[𝑡𝑡]

𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙}𝑡𝑡=1,...,𝑂𝑂, which are calculated according to the latter. In the actual network, in 
fact, the timing of links is changed due to delays, therefore some of the time-oriented walks that 
existed in the scheduled network will not be present anymore, causing losses of centralities and 
changes in the ranking of nodes with respect to the scheduled network. 

Such losses of centrality or rank, in absolute or percentage terms, can be used to assess to what 
extent the network, or a particular node, link or layer is affected by delays in a certain scenario. 

Note that, in principle, delays could also create new walks, by allowing connections that were 
impossible in the scheduled network. However, in our specific example, these walks would only be 
used by passengers in cases of rerouting (e.g., after a missed connection). Therefore, they currently 
give no contribution to an airport’s connectivity and should be excluded from the computation of 
centrality3. The new walks can be opened in two cases. The first case is when a negative arrival delay 
(early arrival) allows a connection with a departing flight. In this case, the problem is solved by 
setting the negative arrival delay to zero, i.e., setting the arrival time equal to the scheduled arrival 
time. The second case is when the delay of a departing flight allows the connection with an incoming 
flight, which was originally landing too late to make the connection. A partial solution to this can be 
implemented, and is explained in Annex 2.  

2-legs Trip centrality 

The parameter 𝛼𝛼 determines the weight of a walk made of n jumps (i.e., n/2 jumps between primary 
nodes, such as airports; recall that a single flight comprises 2 links, as per Figure 3). By choosing a 
sufficiently small 𝛼𝛼, we can give less importance to long walks relatively to short ones. Specifically, in 
our example, if we express the parameter 𝛼𝛼 in an exponential form, in terms of a new parameter L, 
as 𝛼𝛼 = 𝑒𝑒−1/(2𝐿𝐿), we can see that the weight of a walk made of 𝑙𝑙 < 𝐿𝐿 flights is very small with respect 
to walks made of one flight. However, longer walks are still considered and have a role in 
determining the centralities. As passengers mainly travel one- and two-legs itineraries, it is 
interesting to compare the results with a centrality measure that only considers walks of one or two 
legs, which we will call 2-legs Trip centrality. As these walks are a small number (the number of 
flights plus the number of connections), the computation of centrality can be done simply by 
summing the contribution of each walk, without the need of a matrix formulation. The outgoing and 
incoming centralities of airport i are obtained respectively as 

3 In other applications, however, it could be important to consider these new walks, e.g., in the bus or metro 
network. 
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𝑡𝑡[2],𝑖𝑖
𝑜𝑜𝑜𝑜𝑡𝑡 = 𝛼𝛼𝑑𝑑𝑖𝑖

𝑜𝑜𝑜𝑜𝑡𝑡 + 𝛼𝛼2𝑐𝑐𝑖𝑖𝑜𝑜𝑜𝑜𝑡𝑡 

and 

𝑡𝑡[2],𝑖𝑖
𝑖𝑖𝑛𝑛 = 𝛼𝛼𝑑𝑑𝑖𝑖

𝑖𝑖𝑛𝑛 + 𝛼𝛼2𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛 

where 𝑑𝑑𝑖𝑖
𝑜𝑜𝑜𝑜𝑡𝑡 and 𝑑𝑑𝑖𝑖

𝑖𝑖𝑛𝑛are the number of outgoing and incoming flights and 𝑐𝑐𝑖𝑖𝑜𝑜𝑜𝑜𝑡𝑡 and 𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛are the 
number of incoming an outgoing two-legs itineraries. It is possible to count, or not, two-legs 
itineraries made by flights belonging to different airlines or alliances. The weights can be adapted 
according to the nodes degree to mimic PageRank. An additional advantage of this two-legs 
centrality is that we can choose to consider only two-legs itineraries with a connecting time which 
does not exceed a threshold. In the following, the results of this two-legs centrality will be compared 
with the results of Trip centrality. 

2.2.2 Causality metrics   

Causality is what connects one process, i.e., the cause, with another process or state, i.e., the effect, 
where the first is partially responsible for the second, and the second is partially dependent on the 
first. In the ATM case, the cause and effect processes could be, for example, the state of delay of two 
different airports, where the state of delay quantifies the amount of delays at that particular airport. 
A causality relationship between these two processes could arise, for instance, when a flight 
departing with a delay from the first airport arrives at destination with a primary delay which induce 
delays in other flights because of rotational effects. Thus, the state of delay at the destination airport 
partially depends on that of the origin airport. This represents a process of delay propagation 
between two airports mediated by a one-leg effect, i.e., one flight connecting the two airports. 
However, a causality relationship might be mediated by more than one leg.  

In scientific investigations of causality, cause and effect can be conceived as time processes whose 
realisations represent their state at a given time. In the example given above, the realization at time t 
of the state of delay of an airport reflects the delays in that airport at time t, as will be better 
specified in the following. In general, in a complex system which is formed by several subsystems 
interacting with each other, we can quantify at any time the state of subparts of the system as a time 
series and causality metrics allow to infer the causality structure among these subparts, starting from 
the observations of their states. The main idea behind the causality metrics introduced below lies in 
assessing whether the information about an element, the ‘causer’, is statistically useful in forecasting 
the state of another element. 

The ATM system includes several subsystems, ranging from flights to the airline companies, the 
Network Manager, the Departure and Arrival Managers, airports and, last but not least, passengers. 
All subsystems interact with each other during both the strategic and the tactical phases in order to 
plan the operations and work to fulfil the program, respectively. Causality inference can be used to 
identify interactions among subsystems monitored with time series. In the following, as a case study, 
we consider the ATM system aggregated at the airport level, i.e., the network of airports and flights. 
Nevertheless, future applications will refer to the interactions of other subsystems, in line with 
Domino’s scope, and the causality metrics presented here can be applied broadly to the outputs of 
both the toy model and the full ABM model, where several subsystems are modelled. Signals, such as 
delays and costs, propagate through the ATM network due to the stochastic interactions of the 
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elements. Detecting the channels of propagation and quantifying the tightness of interactions is 
fundamental to assess the system performance and, in the light of Domino's scope, the impact of 
innovations, i.e., whether or not the novel mechanisms make the ATM system more interdependent. 

The detected causality relationships between a large set of elements form a second network, named 
causality network, where directed links are the causal relationships themselves. In view of Domino's 
goals, the study of causality networks, whose topology may change depending on implemented 
scenarios, allows to investigate the impact of innovations at the micro level on the delay and cost 
dynamics and propagation. For example, the detection of a smaller number of causal links and causal 
feedbacks loops can be seen as an improvement of the system, as it signals a diminished coupling of 
the systems’ elements and therefore a reduced risk of systemic spreading events. For this purpose, in 
the next deliverables, the causality metrics presented here will be applied on both the outputs of the 
agent-based model and the toy model under different innovation scenarios.  

A method to detect causality in time series analysis was introduced for the first time by Granger in 
his pioneering paper [16]. His original approach has then been generalized and applied in diverse 
fields. In finance, for example, causality metrics have been successfully applied to define instability 
indicators which can identify periods of turbulence in the market and determine what the channels 
of propagation of systemic risk are. This has been done, for example, by considering measures of 
connectedness for the causality network built by means of the Granger causality tests [17], [18]. 
Recently, the standard Granger causality test has been applied to investigate delay propagation in 
the Chinese ATM system [19] in order to identify which airports have a more important role in the 
process. The Granger causality measure has also been applied to the European ATM system with a 
particular focus on the passenger perspective, by studying the propagation of both flight and 
passenger delay in a network simulation model [20], [21]. More recently, several studies have been 
devoted to the detection of causality for extreme events and Hong et al. proposed to use an 
extension of the Granger causality test, namely: ‘Granger causality in tail’ [22]. With the same aim, 
other measures of causality for extreme events have been introduced [23] and considered for a first 
application in the ATM system [24], opening novel research questions regarding the propagation of 
extreme delays. 

2.2.2.1 Causality metrics: methods 
In the following, we review the existing methods to assess causality between two elements of a 
system, which are represented by two time processes described by two discrete time series. As a 
specific example, the two elements could be two airports described by the time series of their state 
of delays. 

First, we review the most commonly adopted causality measure, i.e., Granger Causality (GC) in mean 
test. One of the limits of the Granger causality in mean metrics lies in the assumption of linearity for 
the dynamics of time processes. Hence, some complex behaviours might not be fully captured by 
linear models. For example, in the case of airports and flights, departing delays which are small with 
respect to flight time are probably not relevant for delay propagation, as they are easily absorbed in 
the en-route phase or by buffers. These small delays are, nevertheless, considered by the Granger 
causality test. For this reason, we propose to use the extension of [22] for a novel application to the 
ATM system, which we review. 
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Granger causality in mean 

The original method proposed in [16] to test whether there is a causal relationship between two time 
series is based on the idea that, if the knowledge of past observations of one time series allows us to 
forecast future observations of the other time series better than without considering them, then 
there exists a directional causal relationship. We refer to this metric as Granger causality in mean. 

Let 𝑋𝑋 and 𝑌𝑌 be two time processes, which might represent, e.g., the state of delay of two airports, 
having realisations 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡at time t. The time process 𝑌𝑌 = {𝑦𝑦𝑡𝑡}𝑡𝑡=1,...,𝑂𝑂 is said to Granger-cause 𝑋𝑋 =
{𝑥𝑥𝑡𝑡}𝑡𝑡=1,...,𝑂𝑂 if we reject the null hypothesis that the past values of 𝑌𝑌 do not provide statistically 
significant information about future values of 𝑋𝑋 by assuming VAR(p) as the predictive model [25], i.e. 

𝑥𝑥𝑡𝑡 = 𝜙𝜙01 + �𝜙𝜙𝑖𝑖11𝑥𝑥𝑡𝑡−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ �𝜙𝜙𝑖𝑖12𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡1
𝑠𝑠

𝑖𝑖=1

 

𝑦𝑦𝑡𝑡 = 𝜙𝜙02 + �𝜙𝜙𝑖𝑖21𝑥𝑥𝑡𝑡−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ �𝜙𝜙𝑖𝑖22𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡2
𝑠𝑠

𝑖𝑖=1

 

where 𝜀𝜀𝑡𝑡1, 𝜀𝜀𝑡𝑡2 are taken to be two uncorrelated white-noise series. The goal of the Granger test is to 
assess the statistical significance of {𝜙𝜙𝑖𝑖12}𝑖𝑖=1,...,𝑠𝑠 by considering as null hypothesis that they are zero, 
i.e., 𝐻𝐻0𝑚𝑚𝑖𝑖𝑟𝑟𝑛𝑛: {𝜙𝜙𝑖𝑖12 = 0}𝑖𝑖=1,...,𝑠𝑠 . The null hypothesis 𝐻𝐻0𝑚𝑚𝑖𝑖𝑟𝑟𝑛𝑛 is equivalent to considering that 𝑥𝑥𝑡𝑡 
evolves according to a AR(p) process, i.e., 

𝑥𝑥𝑡𝑡 = 𝜑𝜑01 +∑ 𝜑𝜑𝑖𝑖11𝑥𝑥𝑡𝑡−𝑖𝑖
𝑠𝑠
𝑖𝑖=1 + 𝜀𝜀𝑡𝑡. 

After estimating both VAR(p) and AR(p) models, an F-test is applied in order to test if VAR(p) 
outperforms statistically AR(p) in fitting the observations {𝑥𝑥𝑡𝑡} [26]. If it does, 𝐻𝐻0𝑚𝑚𝑖𝑖𝑟𝑟𝑛𝑛is rejected, 
meaning that 𝑌𝑌 ‘Granger-causes (in mean)’ 𝑋𝑋.  

The parameter p, the order of the autoregressive process, represents the number of past 
observations considered for the forecasting. This can be interpreted as the system’s ‘memory’. In 
order to identify the optimal value of p for a specific problem, the Granger test is performed for 
different values of p and the optimal one is then selected according to the Bayesian information 
criterion (BIC)4 [25].  

In the case of airports and flights, a directional causal relationship between two airports exists when 
the state of delay of an airport 𝑋𝑋 has a significant statistical dependence on the past states of delay 
of another airport 𝑌𝑌. The optimal value of p represents the time scale of the detected causal 
relationships. In principle, this depends on the types of effects which mediate the propagation, e.g., 
one-leg or two-legs effects.  

4 The Bayesian Information Criterion (BIC) is a criterion for model selection among a finite set of models, but 
considering that it is possible to increase the likelihood of a model by adding parameters. In the case of 
bivariate VAR(p) models, we introduce four new parameters any time p is increased by one. BIC selects the 
model which provides the best fit of the data but penalizing for the number of parameters. 
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Finally, from a theoretical point of view, the statistical test weights equally the prediction 
performance on both large and small values of the time series. However, when events with an 
extremely large value have a particular importance, as e.g., in the case of delays, it would be 
preferable to consider an extension of the Granger causality test, namely Granger causality in tail 
[22], which only considers extreme events. This extension is reviewed in the following section. 

Granger causality in tail  

With the same spirit of the original test, ‘Granger causality in tail’ aims to evaluate whether extreme 
events of a time process cause (in the sense of Granger, i.e., help to predict) extreme events for 
another element of the system [22]. For example, the state of an airport is now described by a binary 
variable, the state of congestion, which is one if its state of delay is extreme, zero otherwise. The 
state of delay is extreme if it falls in the tail of the distribution. The causality test is then applied to 
the binary time series describing the states of ‘distress’ of airports5.  

In detail, the Granger causality in tail test works as follows. Assume to know at time t the probability 
density function of the state 𝑋𝑋 conditional on past values {𝑥𝑥𝑠𝑠}𝑠𝑠=1,...,𝑡𝑡−1 and let us define 𝑉𝑉𝑡𝑡 =
 𝑉𝑉(𝑥𝑥1, . . . , 𝑥𝑥𝑡𝑡−1,𝛽𝛽) as the (1 − 𝛽𝛽)-quantile of the conditional probability distribution of 𝑋𝑋, i.e., 𝑃𝑃(𝑋𝑋 >
𝑉𝑉𝑡𝑡|𝑥𝑥1,. . . , 𝑥𝑥𝑡𝑡−1) = 1 − 𝛽𝛽 almost surely with 𝛽𝛽 ∈ (0,1) defines 𝑉𝑉𝑡𝑡 implicitly. The null hypothesis 
𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙of the test is that predicting an extreme event of 𝑋𝑋 with or without the past information on 𝑌𝑌 
is statistically equivalent, i.e.𝑃𝑃(𝑋𝑋 > 𝑉𝑉𝑡𝑡|{𝑥𝑥𝑠𝑠}𝑠𝑠=1,...,𝑡𝑡−1) = 𝑃𝑃(𝑋𝑋 > 𝑉𝑉𝑡𝑡|{𝑥𝑥𝑠𝑠}𝑠𝑠=1,...,𝑡𝑡−1, {𝑦𝑦𝑠𝑠}𝑠𝑠=1,...,𝑡𝑡−1) 𝑎𝑎. 𝑠𝑠. 

A rejection of the null hypothesis 𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙 means that 𝑌𝑌 ‘Granger causes in tail’𝑋𝑋at level 𝛽𝛽. 

𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙 can be formulated in a similar fashion to 𝐻𝐻0𝑚𝑚𝑖𝑖𝑟𝑟𝑛𝑛 , after a proper transformation of the 
continuous state variables {𝑋𝑋,𝑌𝑌} to the binary state variables {𝑋𝑋�,𝑌𝑌�} by means of the indicator 
function, i.e. 

𝑥𝑥𝑡𝑡� = 𝐼𝐼𝑥𝑥𝑡𝑡>𝑉𝑉𝑡𝑡  ,𝑦𝑦�𝑡𝑡 = 𝐼𝐼𝑦𝑦𝑡𝑡>𝑄𝑄𝑡𝑡  

where 𝑉𝑉𝑡𝑡 and 𝑄𝑄𝑡𝑡 are the (1 − 𝛽𝛽)-quantile of the conditional probability distribution of 𝑋𝑋 and 𝑌𝑌, 
respectively. The indicator function takes value 1 when the observation 𝑥𝑥𝑡𝑡 exceeds the quantile, i.e., 
it falls on the right tail, and takes value 0 otherwise. In the case of airports, {𝑋𝑋�,𝑌𝑌�}describes thus the 
states of distress. Then, the null hypothesis 𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙can be stated as 

𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙: 𝐸𝐸(𝑥𝑥�𝑡𝑡| {𝑥𝑥𝑠𝑠}𝑠𝑠=1...,𝑡𝑡−1) =  𝐸𝐸(𝑥𝑥�𝑡𝑡| {𝑥𝑥𝑠𝑠}𝑠𝑠=1...,𝑡𝑡−1, {𝑦𝑦𝑠𝑠}𝑠𝑠=1,...,𝑡𝑡−1)  𝑎𝑎. 𝑠𝑠. 

Thus, one would want to test Granger causality in tail between 𝑋𝑋 and 𝑌𝑌 as Granger causality in mean 
between 𝑋𝑋� and 𝑌𝑌� . However, the standard regression-based test proposed by Granger can not be 
used here, because the quantiles have to be estimated, and the quantile estimation uncertainty has a 
nontrivial impact that should be taken care of properly. Furthemore, the regression analysis of the 
Granger in mean causality test cannot be applied straightforwardly to the case of binary random 
variables 𝑋𝑋� and 𝑌𝑌�. To overcome this problem, the use of the cross-spectrum of {𝑋𝑋�,𝑌𝑌�} is suggested in 
[22]. Indeed, under 𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙, 𝜌𝜌(𝑗𝑗) = 0 for all 𝑗𝑗 > 0 where 𝜚𝜚(𝑗𝑗) = 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟(𝑥𝑥�𝑡𝑡 ,𝑦𝑦�𝑡𝑡−𝑖𝑖) is the lagged cross 

5This definition of ‘distress’ aims to highlight the difference between normal operations at the airport and 
occurrence of ‘extreme’ delays, which is not necessarily related to congestion, according to the standard 
definition. 
32 
 

© – 2018 – University of Westminster, EUROCONTROL, Università degli studi di 
Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the SESAR 
Joint Undertaking under conditions.  

 
 

                                                           



D5.1 METRICS AND ANALYSIS APPROACH 

 

  

 

 

 

© – 2018 – University of Westminster, EUROCONTROL, Università degli studi 
di Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the 

SESAR Joint Undertaking under conditions. 

33 
 

 
 

correlation. For further information on how to make testable this last version of the hypothesis 
𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙 by means of spectral methods see [22]. 

Finally, there are many methods to estimate the quantiles from empirical observations of a time 
series, ranging from historical simulation methods, autoregressive conditional density model [27] to 
conditional autoregressive VaR (CAViaR) models [28]. Here, we adopt the autoregressive conditional 
density model in [27]. Specifically, we assume a AR(p) model for 𝑋𝑋 with independent and identically 
distributed Gaussian innovations 𝜀𝜀𝑡𝑡 and, once the autoregressive process has been estimated on 
{𝑥𝑥𝑠𝑠}𝑠𝑠=1,...,𝑂𝑂, we project at each time 𝑡𝑡 the Gaussian density conditional on past observations of 𝑋𝑋 to 
obtain the time series of 𝑋𝑋�. When 𝐻𝐻0𝑡𝑡𝑟𝑟𝑖𝑖𝑙𝑙is rejected, we say that 𝑌𝑌 ‘Granger-causes in tail’ 𝑋𝑋. 

Causality networks and correction for multiple hypothesis testing 

Having established how to detect a causal relationship between two elements of the system, we 
consider the network of causal relationships where a link 𝑖𝑖 → 𝑗𝑗is present if 𝑖𝑖 ‘Granger causes’ 𝑗𝑗. This 
approach has already been considered in ATM by Zanin et al. [19]. Given N time series, representing 
the states of the subsystems, a Granger causality test is performed on all the possible M=N(N-1) pairs 
and the network of direction causal relationships is obtained. Then, the Granger causality network is 
described by an adjacency matrix whose generic entry is one if there exists a directional causal 
relationship from node i to node j, zero otherwise. The number of links incident to a node 
determines its degree. The adjacency matrix is not symmetric because a causal relationship from 𝑖𝑖 to 
𝑗𝑗 does not imply a causal relationship from 𝑗𝑗 to 𝑖𝑖. Thus, a node’s in- and out-degree might differ.  

Since to build the causality network we perform M=N(N-1) tests we must take into account that, in 
multiple hypothesis testing, even if the null hypothesis is correct, a fraction 𝛼𝛼 of tests will be rejected 
at a significance level 𝛼𝛼. For this reason, the statistical literature has proposed several methods to 
correct the significance level by taking into account the fact that multiple tests are performed. The 
choice of the correction is still matter of debate and depends on the fraction of false positives (i.e., 
test rejections when the null hypothesis is correct) one is willing to accept.  

In this Deliverable we use a very restrictive correction, named Bonferroni correction [29] (see also 
[30] for the application to networks): when one tests simultaneously M hypotheses, in order to 
achieve a significance level 𝛼𝛼, a significance level of 𝛼𝛼′ = 𝛼𝛼/𝑀𝑀should be apply to each test. This 
correction decreases dramatically the number of false positives, even if it might increase the number 
of false negatives, i.e., some test can be erroneously not rejected. In our context, this means that the 
observed causality relationships are very likely present, while there might be other undetected 
causality relations. For this reason, in the near future we plan to apply less restrictive multiple 
hypothesis test corrections, such as the False Discovery Rate. 
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3 Evaluation of metrics 

We here apply the centrality and causality metrics described in the previous section to an important 
case study, that of the network of airports and flights. The empirical analysis is performed on two 
datasets containing, respectively, the scheduled and actual flights of the ECAC and the US airspaces. 
The ECAC dataset will be used in the calibration of the ABM.  

In Section 3.1, we describe the two datasets. In Section 3.2 we present some baseline statistics 
related to delays and missed connections in the two datasets, with the aim of characterizing the 
considered days in terms of their delays, allowing us to better interpret the results that we will 
obtain from the applications of the network metrics. We underline that the aim of such simple 
analysis is not a comparison of the two ATM systems. In Section 3.3 we apply the existing and the 
new centrality metrics to the two datasets. In Section 3.4 we consider the causality metrics for the 
US dataset.6  

3.1 Data 

Two different datasets are used for the evaluation of existing metrics and the validation of the new 
proposed ones. 

The first dataset contains all flights passing through ECAC airspace on 1 September 2017, therefore 
both within-ECAC flights and flights which only cross the ECAC air space for part of their route. For 
this day, IFPS and DDR data are available. The former contains the m0 flight plans, while the latter 
contains the m1, m2 and m3 flight plans. The m0 are all the submitted flight plans prior the last one 
submitted to the Network Manager. The m1 is the final submitted flight plan. If an ATFM regulation 
has been applied to a flight, then a trajectory shifted in time by the amount of delay assigned is 
stored in the m2 flight plan. Finally, m3 contains the flight plan which has actually been flown. If a 
flight plan is submitted for a flight which is subsequently cancelled, m3 does not exist. If only one 
flight plan was submitted to the Network Manager, it is contained in the m1 (and the m0 will be 
empty) [31].  

Since scheduled departure and arrival times are not available, in this deliverable, scheduled 
departure is estimated as the earliest time between the earliest off block time of m0 flight plans and 
the actual off block time (from m3). (It might happen that the actual off block time is earlier than the 
earliest m0 off block time if the first flight plan submitted was already delayed with respect to the 
schedule). The scheduled arrival time is then obtained adding to the scheduled departure time the 

6 In this deliverable we are not applying the causality metrics to the ECAC airspace, as the currently available 
data cover a time window too short to assess causality relationships with enough statistical significance. We 
plan to perform such an analysis when the data will be available. 
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flight plan duration according to the flight plan (m0 or m1, if m0 is not present) plus an estimation of 
the taxi in times and a buffer of 10 minutes (see [5]). Figure 4 shows the different segments of a flight 
and the buffers defined strategically. This ensures that schedules times used in this deliverable are 
realistic instead of considering the landing time as the schedule inbound time. 

 

Figure 4. Schedules and buffers for a flight [5] 

The list of available information for each flight in the dataset is shown in Table 3. All times are 
expressed in UTC. The dataset contains 41 656 flights, of which 29 939 are scheduled flights (72%) 
while the rest are non-scheduled flights (this includes charter flights but also military, helicopter, 
search and rescue, etc.). 28 221 of all the flights are within-ECAC flights, of which 83% are scheduled 
(23 489 flights). The remaining 13 435 flights are either overflying ECAC or flights with origin or 
destination outside ECAC. In the following, this dataset is termed “ECAC”. The intra-day pattern of 
the number of departing flights, in 5A), shows that most flights are operated between 5AM and 9PM 
UTC.  

Additionally, we consider a second dataset, obtained from the US Department of Transportation's 
(DOT) Bureau of Transportation Statistics, containing flights operated in 2015 by 14 major US airlines. 
The reason to consider this additional dataset is two-fold. First, it covers an entire year, making it 
possible to compare network metrics applied to different days, with different delay conditions, and 
to perform the causality analysis, which needs a time-window of several days. For the ECAC dataset, 
at the moment, only one day was available. Secondly, ATM in the US differs from ATM in the ECAC 
making for an interesting comparison between the two. For example, in Europe the number of Level 
2 and Level 3 slot coordinated airports is much higher than in the US, in Europe congestion is usually 
experience in the airspace while in the US is more common at airport level, etc. [32]. 

The information available for each flight in the US dataset is reported in Table 4. All times are 
converted from local time to Eastern Standard Time (EST). In the following, this dataset is termed 
“US”. The intra-day pattern of the number of departing flights, in Figure 5.B), shows that most flights 
are operated between 6AM and 12PM EST. The slightly longer time window of activity in the US with 
respect to Europe is due to the presence of time zones differing up to 5 hours.  

Table 6 lists the 14 airlines present in the dataset with the corresponding number of flights in the 
period from January to March 2015, which give an idea of the size of each airline.  

For the analyses presented in the following, different subsets of the ECAC and US datasets are used 
in different cases. All the used sub-datasets are described in Table 5. Additionally, for some centrality 
analyses, airlines are grouped by alliances. The alliance considered are Star Alliance, SkyTeam and 
Oneworld. Airlines that do not belong to any alliance are considered singularly in these analyses.  
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Table 3. Information available for each flight in the ECAC dataset 

Field of dataset What it contains 

Date  Day, month, year of the scheduled departure time 

Flight number Unique flight id 

Tail number Registration number of the aircraft 

Flight type "S" for Scheduled Air Service, "N" for Non-scheduled Air Transport 
Operation, "G" for General Aviation, "M" for Military and "X" for 
everything else 

Origin airport ICAO code of origin airport from DDR 

Destination airport ICAO code of destination airport from DDR 

Scheduled off block time Estimated as explained in the text 

Actual off block time Actual off block time from m3 

Scheduled in block time Estimated as explained in the text 

Actual in block time Actual in block time from m3 

Airline ICAO code of airline operating the flight 

Alliance If the airline belongs to an alliance, it is specified 

Cancellation 1 if the flight was cancelled, 0 otherwise 

 

Table 4. Information available for each flight in the US dataset 

Field of dataset What it contains 

Date Day, month, year of the scheduled departure time 

Flight number Unique flight id 

Tail number Registration number of the aircraft 

Origin airport IATA code of origin airport from schedule 

Destination airport IATA code of destination airport from schedule 

Scheduled off block time Scheduled off block time 

Actual off block time Actual off block time from m3 
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Scheduled in block time Scheduled off block time 

Actual in block time Actual in block time from m3 

Airline Scheduled off block time 

Cancellation 1 if the flight was cancelled, 0 otherwise 

Diverted 1 if the flight was diverted, 0 otherwise 

Weather delay Minutes of delay due to weather 

 

 

Figure 5. Intra-day pattern of departing flights. A) Number of flights departing per hour in the 
ECAC1 dataset; B) Average number of flights departing per hour in the US_April dataset. 
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Table 5. Description of sub-datasets of the ECAC and US dataset used in the analysis. 

Dataset 
name 

Description Number flights Number 
airports 

Number 
airlines 

ECAC1 Within-ECAC, scheduled, passenger 23 365 523 183 

ECAC2 Subset of ECAC1, obtained by keeping 
only airlines which number of flights 
and number of destinations are above 
the average, or which are part of an 
alliance7 

19 648 435 55 

US_April Subset of US dataset containing only 
the month of April (30 days) 8 

16 042 
(per day on 

average) 

322 14 

US_JM Subset of US dataset containing the 
months of January, February and 
March 

1 403 471 
(in total) 
15 594 

(per day on 
average) 

315 14 

 

Table 6. List of airlines in the US dataset, with their IATA code and the number of flights operated 
in the period from January to March 2015. 

Airline IATA code Number flights 

Southwest Airlines WN 299 459 

Delta Air Lines DL 199 471 

ExpressJet Airlines EV 149 253 

SkyWest Airlines OO 142 181 

American Airlines AA 129 860 

United Airlines UA 118 233 

US Airways US 98 158 

Envoy Air MQ 84 986 

JetBlue Airways B6 63 964 

7 The list of airlines in the ECAC2 dataset is in Annex 1.  
8 Note that days are considered to start at 4AM EST, as this is the time of minimum traffic across the entire US. 
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Alaska Airlines AS 39 727 

Spirit Airlines NK 26 232 

Frontiers Airlines F9 19 588 

Hawaiian Airlines HA 18 532 

Virgin America VX 13 827 

 

3.2 Data description analysis 

In this Section we present a simple analysis of the two datasets, considering delay statistics, potential 
reductions of connections and simple delay metrics scaled up to the network level. 

3.2.1 Flight-centric delay statistics 

Here, we present some simple delay statistics computed on the European and North American 
datasets described in Section 3.1. The computations have been done on the ECAC1, US_April and 
US_JM datasets. The aim of this analysis is, first, to show an example of how, when analysing delay, 
not only average values are relevant to characterize different ATM networks, but also their 
distribution and how they are generated. Secondly, these baseline statistics will provide us with a 
general idea of the delay situation of the datasets which we will use in the following analyses. 

Figure 6 shows some statistics for the month of April in the US dataset, namely the histograms of the 
fraction of cancelled flights, the average delay, the average delay of delayed flights and the fraction 
of delayed flights. Such histograms show that the considered month includes a heterogeneity of ATM 
situations, ranging from days with many delays to days with few delays. 
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Figure 6. Delay and cancellation statistics for the US_April dataset; “Counts” = days. A) Histogram 
of the fraction of cancelled flights; B) histogram of the average departure delay; C) histogram of 
the average departure delay of delayed flights; D) histogram of the fraction of delayed flights. 

Table 7 reports some statistics related to delays and cancellations. For the US_April dataset, statistics 
are averaged over all the days in the considered period. For each flight, the departure delay is 
obtained as the difference between the departure time and the scheduled departure, the arrival 
delay as the difference between the arrival time and the scheduled arrival, and the gate-to-gate 
delay as the difference between the arrival delay and the departure delay. The statistics have 
meaningful differences between the two cases. 

In the European dataset, departure delay affects most flights, however less than half have an arrival 
delay at the gate with respect to their scheduled arrival time. The average arrival delay is smaller 
than the average departure delay. This is due to the fact that delays are absorbed thanks to the 
buffers. Also, note that we have defined the scheduled departure time as the earliest scheduled 
departure time from all the m0 and m1 flight plans, which might have an impact on the amount of 
flight that are counted as delayed at off-block time. 

In the US data, the percentage of flights with departure delay and arrival delay is similar, and so are 
also the average departure and arrival delays. Additionally, the percentage of flights having extra 
delay between departure and arrival is higher than in the European dataset. 

Departure delays, therefore, tend not to be recovered in the US, contrary to Europe. However, in 
terms of average arrival delays the results are similar. As mentioned before, we must note that the 
average gate-to-gate delay in the European dataset is affected by the choice of adding 10 minutes of 
buffer when estimating the scheduled inbound time, since real schedules were not available. 
However, independently of the choice of buffers, it remains that the US dataset has a much smaller 
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percentage of departure delays, which is in line with the fact that, in US tactical management of 
delay during the airborne phase is more common than in Europe. See [32] for more information on 
these. 

Table 7. Statistics related to delays and cancellations in the two datasets. 

 ECAC1 US_April 

Percentage of cancelled flights 1.75 % 0.9% 

Percentage of diverted flights NA 0.3% 

Percentage of flights with departure delay 71% 34% 

Average departure delay 17 mins 8 mins 

Average departure delay of delayed flights 24 mins 30 mins 

Percentage of flights with arrival delay 43 % 35% 

Average arrival delay 6 mins 3 mins 

Average arrival delay of delayed flights 26 mins 29 mins 

Percentage of flights with gate-to-gate 
delay 

6 % 28% 

Average gate-to-gate delay -11 mins -5 mins 

Average gate-to-gate delay of delayed 
flights 

6 mins 10 mins 

 

The histograms of departure, arrival and gate-to-gate delays are reported in Figure 7. For the US 
dataset, histograms for all 30 days are shown. In the ECAC case, departure delays, in black, are 
always positive and peaked at zero. On the contrary, arrival delays (in red) and en-route delays (in 
blue) peak at a negative value. While the distribution of gate-to-gate delay is symmetrical, arrival 
delay has a right-skewed distribution. Note that in general departure delays with respect to the 
scheduled departure can also be negative, as they are in the US case. However, in the ECAC dataset, 
the estimation of the scheduled departure, which is not available, from the m1 makes all negative 
departure delay appear as zeros. Figure 8 shows the distribution of departure delays for a day of 
2014, in Europe, for which schedules are available, and in this case the distribution is similar to the 
US one. Table 8 presents some descriptive statistics of the delay distributions. 
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Figure 7. Histograms of delays for ECAC and US_April datasets. Departure (black), arrival (red) and 
en-route (blue) delays.ECAC1 dataset in panel A and US_April dataset in panel B. For the latter, 

histograms for each of the 30 days are shown. 

 

 

Figure 8. Histograms of departure delays for a day of 2014 in Europe. 
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Table 8. Descriptive statistics relative to the distributions delays: departure, arrival and en-route 
delays in the two datasets. For the US_April dataset, the reported values are obtained as the 
average of the corresponding statistics over the 30 days contained in the dataset, associated to its 
standard deviation. 

 ECAC1 US_April 

 Departure 
delay 

Arrival delay Gate-to-
gate delay 

Departure delay Arrival delay Gate-to-
gate delay 

Mean 17 6 -11 8 ± 5 3 ± 6 -5 ± 2 

Median 7 -2 -11 -2 ± 1 -5± 3 -5 ± 1 

Mode 0 -8 -11 -4 ± 1 -9 ± 2 -6 ±1 

Max 1 229 1 223 139 883 ± 248 884 ± 244 120 ± 34 

Min 0 -116 -186 -31 ± 9 -63 ± 8 -63 ± 13 

Stand. 
Dev. 

31 32 8 33 ± 8 35 ± 8 13 ± 1 

 

3.2.2 Reduction of potential passenger connections 

In this Section an analysis of potential passenger connections at airports and how these get reduced 
when delay arises is performed. 

As a first approximation, it is considered that there is a potential passenger connection between two 
flights f1 and f2, if the destination of f1 is the origin of f2 and the scheduled arrival time of f1 is 
earlier than the departure of f2. Note that we are assuming a minimum connecting time of zero as 
this computation is done just to show how the potential connections are affected by delay. Also, in 
order to reduce the number of connections to feasible selected ones by passengers, we consider that 
if the connecting time between two flights is too large, that itinerary will not be selected. I.e., the 
time between the scheduled arrival of f1 and the scheduled departure of f2 should be smaller than n 
hours, and for testing purposes n varies from 1 to 5 hours. 

Again, simplifying for now, a potential connection is broken when the delay of flights produce that f1 
arrives to the airport later than the departure time of f2. 

Finally, two case studies are computed, one where connections are possible between flights of the 
same airline or alliance (within-airline potential connections) and one considering any two flights 
(any-airlines potential connections). 

Table 9 reports the number and percentage of broken potential connections for n=5 for both 
datasets. Figure 9 shows how the percentage of the two types of broken potential connections 
changes with n. In both datasets, for maximum connecting times n≤2 hours the percentage of within-
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airline broken potential connections is significantly lower (1 to 3 percentage points) that the 
percentage of any-airlines case. This might be due to two factors. First, part of the within-airline 
connections use the same aircraft, therefore their connection can never be disrupted, because if the 
incoming flight is late so will be the outgoing one. Secondly, this difference might depend on an 
additional effort of airlines to preserve within-airline connections, for example by organising a wave 
structure at a hub. This difference becomes small, however, for n≥3. This is probably due to the fact 
that delays as large as to cause the disruption of a connection with connecting time larger than 3 
hours are difficult to recover, therefore for these connections the additional effort to preserve 
within-airline connections has no effect. Additionally, there are probably very few within-airline 
connections using the same aircraft which have a waiting time n≥3, therefore this factor pays a 
smaller role. Note that in the dataset that will be actually used in Domino, information on minimum 
connecting time will be used along with specific passenger itineraries allowing a more detail analysis 
of connections. 

 

Figure 9. Percentage of broken potential connections in function of the connecting time between 
the two flights used to define a connection for the ECAC1 dataset (panel A) and the US_April 
dataset (panel B). Black circles represent connections between flights of the same airline or 

alliance, red dots represent connections between flights of any two airlines 

 
Table 9. Statistics related to missed connections for the two datasets. 

 ECAC1 US_April 

Any-airlines missed connections (n=5) 29 442 38 861 

Percentage of any-airlines connection missed (n=5) 2.7% 2.9% 

Within-airline missed connections (n=5) 8 486 10 474 

Percentage of within-airline connections missed (n=5) 2.6% 2.4% 
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3.2.3 Other delay statistic examples 

Delays can be characterized geographically by identifying airports which were particularly affected by 
delays on the analysed day. Let us call an airport ‘distressed’ when the fraction of flights having a 
departure delay larger than the average delay of delayed flights for that day is greater than the mean 
fraction of delayed flights in an airport (averaged over all airports in the network). Note that the 
presence of many strongly delayed departing flights might be due to congestion in the arrival airports 
or in the airspace, and not necessarily in the departing airport. However, an airport in such a 
condition can be considered as distressed because of the large differences between the scheduled 
and the actual departing queue. 

Figure 10 shows the position of the distressed airports for the day of the ECAC dataset. The map 
shows that delays are concentrated in central and southern Europe, particularly in Italy. Figure 11 
displays the same for 4 days of the US dataset chosen among the ones with a particularly high 
number of distressed airports. The colour of the circles represents the fraction of delays due to the 
weather. The figure shows that on distressed days the geographical pattern of delays varies. Often 
distress is focused in a particular area (e.g., in the examples in the figure, East Coast, Chicago area or 
Dallas area), but in some cases it is more distributed.  

 

Figure 10. Geographical characterization of delays in the ECAC1 dataset. Red circles represent 
airports where more than 25% of flights have a departure delay larger than 24 minutes, which is 

the average delay of delayed flights in the dataset. The size of the circle is proportional to the 
logarithm of the total number of flights departing from the airport. 

Geographical clustering of distressed airports might be due to a localized weather disturbance or to a 
localized over-occupation of the airspace, but might also be due to the tight interconnection of 
airports in the same geographical area, connected by many flights. For example, in panel C, the large 
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number of flights delayed due to weather in Dallas probably induced delays in the smaller 
neighbouring airports. In general, it might be interesting to know if distressed airports tend to be 
linked by flights, i.e., if they tend to cluster in the network of airports and flights. To answer this 
question, we replicate the analysis done in [33] on the period from January 1st 2015 to March 31st 
2015 of the US_JM dataset. For each of the considered days, we determine the airports which are 
distressed according to the definition given above, and then we consider the network formed by 
these airports plus all the links between them on that day (i.e., a link is present if there is at least one 
flight connecting the two airports on that day). The results are shown in the top panels of Figure 12 
for the days February 24th and 26th 2015. On a total of 315 airports, on day February 24th there are 
43 distressed airports and none of these have been connected by a flight during the day, while on 
day February 26th we observe a smaller number of distressed airports, i.e., 11, but for about the 80% 
of these there was at least one flight connecting them. Note that the distressed airports are not 
necessarily the airports with the largest traffic. 

 

 

Figure 11. Geographical characterization of delay for four particularly distressed days in the 
US_April dataset. Circles represent airports where more than 25% of flights have a departure delay 
larger than 30 minutes, which is the average departure delay of delayed flights in the dataset. The 
circle color indicates the fraction of delays which are due to the weather (red= none, yellow= all). 
The circle size is proportional to the logarithm of the total number of flights departing from the 

airport. 

The fact that, for instance on day February 26th 2015, distressed airports tend to be linked seems to 
suggest that flights are a channel of delay propagation. Nevertheless, there may exist other kinds of 
channels, e.g., two-legs effects which are described by paths of two flights with intermediary 

46 
 

© – 2018 – University of Westminster, EUROCONTROL, Università degli studi di 
Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the SESAR 
Joint Undertaking under conditions.  

 
 



D5.1 METRICS AND ANALYSIS APPROACH 

 

  

 

 

 

© – 2018 – University of Westminster, EUROCONTROL, Università degli studi 
di Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the 

SESAR Joint Undertaking under conditions. 

47 
 

 
 

airports, as the network of distressed airports on day February 24th 2015 suggests. An overall picture 
of this behaviour for all days can be captured looking at both the number of distressed airports, see 
the left bottom panel of Figure 12, and the relative size of the connected component, i.e., the 
fraction of connected nodes among distressed airports, see right bottom panel of Figure 12. 

However, note that whether distressed airports tend to cluster or not, it is a sign of spatio-temporal 
correlation of distress but not necessarily of a cause-effect relationship. In fact, the process of delay 
propagation between two airports is not trivially related to the presence of a flight connecting them 
at any time, for two reasons. Firstly, for a flight to be a possible channel of delay propagation, its 
schedule must agree with the dynamics of delay propagation, i.e., the origin airport must be 
distressed before the flight departure and the destination airport must become distressed after the 
flight landing. Secondly, the presence of one flight might be a primary channel of delay propagation, 
but other mechanisms are possible, e.g., two-legs effects. We will delve further into these issues in 
Section 3.4, where we will apply the methods proposed in Section 2.2.1.2 to identify the channels of 
delay propagation taking into account these remarks. 

 

Figure 12. Network of distressed airports and daily number of distressed airports. Top panels: 
Networks of distressed airports for the days February 24th 2015 (left top panel) and day 26th 

February 2015 (right top panel). A link is present between two distressed airports if at least one 
flight connects them during that day. Bottom panels: Daily number of distressed airports (left 
bottom panel) and the fraction of connected nodes among them (right bottom panel) on the 

period from January 1st 2015 to March 31st 2015. 

3.3 Centrality metrics analysis 

In this Section, we first apply the existing centrality metrics presented in Section 2.2.1.1 to the two 
datasets. We show that these metrics are not able to identify changes of centrality resulting from 
delays. As we discussed, this is due to the fact that such metrics are static and do not consider the 
time ordering of walks. Therefore, we proceed by applying the new Trip centrality metrics, showing 
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that they succeed in identifying those airports that experience a large loss of centrality (or of 
centrality ranking) as a consequence of delays. To perform comparisons between rankings of airports 
according to different metrics or computed on different networks (e.g., scheduled and actual), we 
use the Kendall rank correlation coefficient τ, which measures the similarity of two ranked sequences 
of data. The coefficient takes values in [-1,1], with the value 1 corresponding to two identical 
sequences and the value -1 to two sequences that are one the inverse of the other. 

3.3.1 Baseline centrality metrics 

For Katz centrality, we choose α = 0.004 for the ECAC dataset and α = 0.003 for the US dataset, the 
largest values which assures the convergence of the metric. Note that these small values of α 
penalise strongly long walks. We use the same value of α for PageRank, to allow comparison, 
although a large value of α would have still assured convergence. 

By applying the four metrics to the two datasets, we find that for each metric the rankings according 
to the outgoing metric and to the incoming metric are very similar. In the ECAC dataset, they display 
values of τ respectively of 0.96, 0.98, 0.96, 0.90 on the scheduled network and 0.97, 0.97, 0.96, 0.90 
on the actual one. For the US dataset the correlation coefficients, averaged over all days, are 
respectively 0.98, 0.99, 0.99, 0.99 on the scheduled network and 0.97, 0.98, 0.97, 0.95 on the actual 
one. 

The ranking produced by the different centrality metrics are correlated but not identical. A visual 
comparison of the rankings on the scheduled network in the incoming case is shown in Figure 13 for 
the ECAC dataset, and in Figure 14 for one specific day of the US dataset. On the scheduled network 
the rankings according to incoming degree centrality and incoming strength centrality have a 
correlation coefficient τ=0.83 (ECAC) and τ=0.84 (US, average value), those according to incoming 
degree centrality and incoming Katz centrality have τ=0.74 (ECAC) and τ=0.76 (US, average value), 
those according to incoming strength centrality and incoming Katz centrality τ=0.85 (ECAC) and 
τ=0.89 (US, average value) and those according to incoming Katz centrality and incoming PageRank 
centrality τ=0.59 (ECAC) and τ=0.67 (US, average value). Results are similar in the outgoing case and 
in the actual network. These differences highlight the fact that different centrality metrics describe 
different aspects of the network structure, and care should be taken in their comparison. For 
example, degree and strength consider only direct links, therefore they are appropriate if we are 
interested in assessing the potentiality of an airport to provide direct connections to other airports of 
the network but are not able to evaluate the role of flight connections. Additionally, an airport with 
many different destinations might be very central according to degree centrality, but according to 
strength it might be surpassed by one with less destinations, but more flights directed to each of 
these destinations. Katz centrality and PageRank, instead, take into account also walks of any length 
on the network. While walks on the aggregated, static network do not correspond to real itineraries 
that can be followed, accounting for longer walks means attributing centrality to an airport if it is 
connected to other central airports. Therefore, these two metrics are more appropriate when we 
want to assess the potentiality of an airport to provide connections to other airports of the network 
with walks of any length. As a consequence of the different ways of weighting walks in the two 
metrics, Katz centrality favours airports linked to large airports (with many links), as they will have 
many walks departing or arriving, while PageRank rather tends to favour airports with more links to 
smaller sized airports. Table 10 and Table 11 compare the top ten airports according to the different 
centralities in the two datasets. Note that the dataset ECAC1 on which the metrics were applied 
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contains only intra-ECAC flights, which explains why airports as, e.g., the Manchester airport enter 
the top ten. 

 

 

Figure 13. ECAC dataset, comparison of airports' rankings according to different incoming centrality 
metrics on the scheduled network.A) Degree versus strength; B) Degree versus Katz; C) Strength 
versus Katz; D) Degree versus PageRank; E) Strength versus PageRank; F) Katz versus PageRank. 
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Figure 14. US dataset, comparison of airports' rankings according to different incoming centrality 
metrics on the scheduled network. A) Degree versus strength; B) Degree versus Katz; C) Strength 
versus Katz; D) Degree versus PageRank; E) Strength versus PageRank; F) Katz versus PageRank. 

  

50 
 

© – 2018 – University of Westminster, EUROCONTROL, Università degli studi di 
Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the SESAR 
Joint Undertaking under conditions.  

 
 



D5.1 METRICS AND ANALYSIS APPROACH 

 

  

 

 

 

© – 2018 – University of Westminster, EUROCONTROL, Università degli studi 
di Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the 

SESAR Joint Undertaking under conditions. 

51 
 

 
 

Table 10. Top-ten airports in the ECAC1 dataset according to the four metrics. 

Degree Strength Katz PageRank 

Amsterdam Airport 
Schiphol 

London Stansted 
Airport 

Barcelona 
International Airport 

Atatürk International 
Airport 

London Gatwick 
Airport 

Munich Airport 

Adolfo Suárez Madrid–
Barajas Airport 

Charles de Gaulle 
International Airport 

Manchester Airport 

Frankfurt am Main 
Airport 

Amsterdam Airport 
Schiphol 

Frankfurt am Main 
Airport 

Munich Airport 

Adolfo Suárez Madrid–
Barajas Airport 

Barcelona 
International Airport 

Charles de Gaulle 
International Airport 

London Heathrow 
Airport 

Leonardo da Vinci–
Fiumicino Airport 

London Gatwick 
Airport 

Oslo Gardermoen 
Airport 

Amsterdam Airport 
Schiphol 

London Heathrow 
Airport 

Frankfurt am Main 
Airport 

Munich Airport 

Barcelona 
International Airport 

Charles de Gaulle 
International Airport 

Adolfo Suárez Madrid–
Barajas Airport 

Leonardo da Vinci–
Fiumicino Airport 

Copenhagen Kastrup 
Airport 

Zürich Airport 

Stockholm-Arlanda 
Airport 

Helsinki Vantaa Airport 

Atatürk International 
Airport 

Eleftherios Venizelos 
International Airport 

Oslo Gardermoen 
Airport 

Paris-Orly Airport 

Sabiha Gökçen 
International Airport 

Amsterdam Airport 
Schiphol 

Adolfo Suárez Madrid–
Barajas Airport 

London Stansted 
Airport 

 

  



EDITION 01.00.00 
 

Table 11. Top-ten airports in the US_April dataset according to the four metrics. 

Degree Strength Katz PageRank 

Hartsfield-Jackson 
Atlanta International 
Airport 
Chicago O'Hare 
International Airport 
Dallas/Fort Worth 
International Airport 
Denver International 
Airport 
George Bush 
Intercontinental 
Airport 
Minneapolis-Saint Paul 
International Airport 
Detroit Metropolitan 
Airport 
Salt Lake City 
International Airport 
McCarran 
International Airport 
Phoenix Sky Harbor 
International Airport 

Hartsfield-Jackson 
Atlanta International 
Airport 
Chicago O'Hare 
International Airport 
Dallas/Fort Worth 
International Airport 
Los Angeles 
International Airport 
Denver International 
Airport 
George Bush 
Intercontinental 
Airport 
San Francisco 
International Airport 
Phoenix Sky Harbor 
International Airport 
McCarran 
International Airport 
Detroit Metropolitan 
Airport 

Hartsfield-Jackson 
Atlanta International 
Airport 
Chicago O'Hare 
International Airport 
Los Angeles 
International Airport 
Dallas/Fort Worth 
International Airport 
Denver International 
Airport 
San Francisco 
International Airport 
McCarran 
International Airport 
Phoenix Sky Harbor 
International Airport 
Gen. Edward Lawrence 
Logan International 
Airport 
LaGuardia Airport 
(Marine Air Terminal) 

Hartsfield-Jackson 
Atlanta International 
Airport 
Dallas/Fort Worth 
International Airport 
Chicago O'Hare 
International Airport 
Denver International 
Airport 
George Bush 
Intercontinental 
Airport 
Salt Lake City 
International Airport 
Detroit Metropolitan 
Airport 
Minneapolis-Saint Paul 
International Airport 
Phoenix Sky Harbor 
International Airport 
San Francisco 
International Airport 

 

Most importantly, for all four metrics the ranking of airports in the scheduled network is extremely 
similar to the ranking in the actual network. For the three incoming metrics, τ is, respectively, 0.996, 
0.991, 0.985 and 0.990 for the ECAC data set and 0.994, 0.980, 0.986, 0.986 for the US dataset. 
Similar results hold for the outgoing metrics. The reason of this similarity is that the metrics neglect 
the dynamic structure of the network, therefore the presence of delays changing the links’ schedule 
does not have any effect on the rankings. The only differences between the scheduled network and 
the actual one which these metrics capture are the cancelled flights.  

This result makes clear that these metrics are not suitable to evaluate the effect of the innovations 
addressed by Domino on the network performance, as they would not be able tell apart a situation 
where delays disrupt connections to one where they do not. To discern these situations, an airport's 
centrality should reflect its participation to walks that can actually be travelled, i.e., respecting the 
schedule, so that disrupted connections imply a centrality drop. This, in turn, requires accounting for 
the temporal structure of the network. Katz and PageRank centrality, in particular, count walks on 
the network which are not time ordered and therefore have no relationship with the trajectories that 
passengers could travel. As a consequence, these metrics cannot reflect the effect of delays on the 
network’s connectivity. 
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An additional limitation of Katz and PageRank centrality is that the weight assigned to each walk does 
not consider to which airline each flight composing the walk belongs, therefore a walk using only 
flights of one airline has the same weight of a walk of the same length using several airlines. 
However, a more realistic assumption would be that the latter contributes less to centrality, or not at 
all, as it is travelled with a smaller probability. Accounting for this requires considering the multiplex 
structure of the network. 

3.3.2 Trip centrality metrics 

The Trip Centrality, TripRank and 2-legs Trip Centrality metrics are applied to both the ECAC2 and the 
US_April dataset. The choice to use the reduced dataset for the European case is due to the fact that, 
for each additional layer, adjacency matrices increase their size considerably. Including all the 183 
airlines present in the ECAC1 dataset would be computationally very heavy. The length 𝛥𝛥𝑡𝑡 of a time 
frame is chosen as a rounded number of minutes, corresponding to the shortest flight in the dataset, 
that is, 15 minutes for the ECAC2 dataset and 20 minutes for the US_April dataset. In future 
iterations, extreme outliers such as these may be removed, and a percentile cut-off used. Each airline 
constitutes one layer, except for airlines belonging to the same alliance, which are aggregated in a 
single layer. This choice produces 32 layers for the ECAC2 dataset and 14 for the US dataset. Table 12 
summarizes this information and reports how many airports and flights each dataset has. 

Table 12. Summary of the two datasets ECAC2 and US_April. 

 ECAC2 US_April 

Number of flights 19 648 16 042 (on average) 

Number of layers 32 14 

Number of airports 435 322 

𝛥𝛥𝑡𝑡(min) 15 20 

 

The parameter 𝛼𝛼 was chosen to be = 𝑒𝑒−1/4 , so as to assign a negligible weight to paths composed of 
more than 2 flights (4 links, counting the jumps to the secondary nodes). In fact, with this choice, a 
path of k legs, with k>2, has a weight 𝑒𝑒−2𝑘𝑘/4 ≪ 1. This choice is motivated by data on passenger 
itineraries for September 1st, 2014, containing the number of passengers following one, two or three 
legs itineraries (with the same airline). A total of 1 272 477 passengers follow a one leg itinerary, 227 
445 follow a two-legs itinerary and 10 429 a three-legs one. We can estimate the maximum number 
of legs L for which we should assign a non-negligible weight by assuming that the number of 
passengers following an itinerary with i legs, ni, decreases exponentially when i increases, i.e., 𝑛𝑛𝑖𝑖 =
𝑛𝑛0𝑒𝑒−𝑖𝑖/𝐿𝐿 , where L is therefore interpreted as the maximum number of legs of itineraries with a non-
negligible number of passengers. We therefore have 𝑛𝑛𝑖𝑖+1/𝑛𝑛𝑖𝑖 = 𝑒𝑒−1/𝐿𝐿. Subtituting 𝑛𝑛1 = 1 758 655 
and 𝑛𝑛2 = 227 445we obtain an estimate L=1.35, while substituting 𝑛𝑛2 = 227 445 and 𝑛𝑛3 = 10 429 
we obtain L=0.74. However, these calculations underestimate the real L, because we are only 
considering itineraries within the same airlines or alliance, while two- and three- legs itinerary could 
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also be formed by flights of different airlines, which do not belong to the same alliance. Therefore, 
we take the rounded up estimate L=2 as our estimate of the maximum number of legs to consider. 

For the parameter 𝜀𝜀 , instead, we compare the results relative to the value𝜀𝜀 = 0, 𝑒𝑒−1, 𝑒𝑒−1/2, 𝑒𝑒−1/3, 1, 
describing respectively a situation where inter-layer jumps are forbidden ( 𝜀𝜀 = 0 ), where paths with 
up to 1, 2 or 3 inter-layer jumps give a non-negligible contribution to centrality and where there is no 
difference between inter-layer and intra-layer jumps (𝜀𝜀 = 1 ). 

In the following we compare the results of the different metrics on the two datasets. Unless explicitly 
stated, we refer to the aggregated centralities (and not to the layer-specific ones). 

3.3.2.1 Change of airports’ ranking for different values of 𝜺𝜺 
Figure 15 and Figure 16 show the evolution of the airports’ ranking according to their incoming and 
outgoing Trip centrality on the scheduled network and to incoming and outgoing TripRank when ε 
changes from 0 to 1, for the ECAC2 dataset. Figure 17 and Figure 18 show the same for one day (April 
9th) of the US_April dataset. It appears clear that major changes in the ranking occur when passing 
from 𝜀𝜀 = 0 to = 𝑒𝑒−1 , while further increases of the parameter do not introduce large changes. To 
quantify this observation, in the ECAC2 dataset, the correlation coefficient between the ranking 
induced by incoming Trip centrality with 𝜀𝜀 = 0 and that with 𝜀𝜀 = 𝑒𝑒−1 is 𝜏𝜏 = 0.73, while that 
between 𝜀𝜀 = 𝑒𝑒−1 and 𝜀𝜀 = 𝑒𝑒−1/2 is already 0.95. For the US dataset, the two correlations coefficients 
are, respectively, 0.82 and 0.95 (average on all days). Similar results hold for the outgoing case. For 
TripRank, in the incoming case the correlation coefficients are respectively 0.90 and 0.96 for the 
ECAC dataset, and 0.88 and 0.96 for the US one (average over all days), and similar results hold for 
the outgoing case. The presence of major ranking changes when passing from 𝜀𝜀 = 0 to 𝜀𝜀 = 𝑒𝑒−1 
means that the possibility of using across-layer paths influences strongly the connectivity of the 
network, increasing the centrality of a good number of airports, which therefore climb the ranks. 
However, the smaller changes with further increases of ε mean that the weight given to an inter-
layer jump does greatly influence the ranking, meaning that paths with one inter-layer jumps are the 
most important for the connectivity increase. With TripRank, the ranking change when passing from 
𝜀𝜀 = 0 to 𝜀𝜀 = 𝑒𝑒−1 is smaller than with Trip centrality, signifying that many of the newly allowed inter-
layer paths pass from large hubs, having a large number of outgoing/incoming flights, and are 
therefore given a small weight by TripRank. The results are very similar for the actual network, 
meaning that such conclusions are quite robust. In the following, unless explicitly specified we 
consider the case 𝜀𝜀 = 0. In some cases, we will compare the results with the ones obtained with 𝜀𝜀 =
𝑒𝑒−1/2, as a representative instance of the cases where inter-layer walks are permitted. 
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Figure 15. Trip centrality evolution of airports’ ranking in ECAC2 dataset. Evolution as a function of 
parameter ε from 0 to 1.Shown are the ranking according to incoming Trip centrality (A) and 

outgoing Trip centrality (B). Each line represents one airport. 
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Figure 16. TripRank evolution of airports' ranking in ECAC2 dataset. Evolution as a function of 
parameter ε from 0 to 1. Shown are the ranking according to incoming TripRank (A) and outgoing 

TripRank (B). Each line represents one airport. 
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Figure 17. Trip centrality evolution of airports’ ranking in US_April dataset. Evolution as a function 
of parameter ε from 0 to 1.Shown are the ranking according to incoming Trip centrality (A), 

outgoing Trip centrality (B). Each line represents one airport. 
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Figure 18. TripRank evolution of airports' ranking in US_April dataset. Evolution as a function of 
parameter ε from 0 to 1.Shown are the ranking according to incoming TripRank (C) and outgoing 

TripRank (D). 

3.3.2.2 Comparison between incoming and outgoing centrality 
Differently from the centrality metrics on the time-aggregated network, on the temporal network 
there is a noticeable difference between the ranking according to incoming centrality and that 
according to outgoing centrality. In the ECAC2 dataset, the Kendall correlation coefficient between 
the two is 0.77 with Trip centrality, and 0.89 with TripRank, both on the scheduled and on the actual 
network. The rankings are compared visually in Figure 19. This difference between the incoming and 
outgoing centrality of airports is due to the fact that we are accounting for flights schedules. In fact, 
although the number of incoming and outgoing flights from an airport are very similar (as we have 
seen in Section 3.3.1), the incoming and outgoing connections can differ. For example, imagine that 
an airport A has one incoming flight and one outgoing flight. If both flights depart early in the 
morning, the outgoing flight will have more available outgoing connections than the incoming 
connections of the incoming flight, due to its early time of departure. Therefore, this couple of flights 
will provide to A more outgoing centrality than incoming one. This is just one example of how this 
asymmetry emerges. In Figure 20 each airport is coloured according to its change of rank from the 
incoming to the outgoing case. In the case of Trip centrality (panel A), there is a noticeable 
geographical dependence of the rank change, with south eastern airports typically gaining ranks and 
western airport typically losing ranks. Such geographical asymmetry is not evident in the TripRank 
case (panel B). 
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Figure 19. Comparison of incoming and outgoing airports' rankings in the ECA2 dataset. A) Trip 
centrality on scheduled network; B) Trip centrality on actual network, C) TripRank centrality on 

scheduled network; D) TripRank centrality on actual network. Red lines are 1:1 lines. 

 

 

Figure 20. Comparison of ranking according to incoming and outcoming Trip centrality for ECAC 
dataset (panel A) and TripRank (panel B). The airports' colour corresponds to the difference of rank 
between incoming and outgoing centrality: an airport is coloured in red if its outgoing centrality is 
more than 10% larger than its incoming one, in blue if it is more than 10% smaller. Airports with 

smaller rank differences are not plotted.  
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Figure 21. Comparison of ranking according to incoming and outcoming Trip centrality for US 

dataset (panel A) and TripRank (panel B). The airports' colour corresponds to the difference of rank 
between incoming and outgoing centrality: an airport is coloured in red if its outgoing centrality is 
more than 10% larger than its incoming one, in blue if it is more than 10% smaller. Airports with 

smaller rank differences are not plotted.  

The geographical asymmetry between incoming and outgoing centrality is even more evident in the 
US_April dataset, as shown by Figure 21, relative to April 9th. On average, for the schedule network, 
the Kendall correlation coefficient between the two is 0.81 with Trip centrality, and 0.89 with 
TripRank, for both the scheduled and the actual network. The reason for this geographical 
asymmetry is that the time difference between the East Coast and the West Coast is such that the 
first flights of the day on the East Coast precede of roughly 3 hours the first flights on the West Coast, 
therefore producing higher outgoing centralities on the East Coast. On the contrary, incoming 
centralities are higher on the West Coast, where the last flights of the day land roughly 3 hours later 
than on the East Coast. A similar reasoning explains the asymmetry in the European case. 

3.3.2.3 Comparison between Trip centrality and TripRank 
The ranking produced by Trip centrality and by TripRank centrality are correlated but quite different, 
as is shown Figure 22 for the ECAC2 dataset. For the scheduled incoming case, the correlation 
coefficient is 𝜏𝜏 = 0.43 when 𝜀𝜀 = 0 and 0.64 when = 𝑒𝑒−1/2 , therefore increasing ε makes the two 
metrics more similar. Similarly, for the US case, on average the two correlation coefficients are 0.64 
and 0.68. Table 13 and Table 14 compare the top ten airports according to the two centralities, in the 
scheduled incoming case, respectively for the ECAC2 dataset and for April 9th of the US_April 
dataset. Results are similar for the scheduled outgoing case and for the actual network. The 
difference between the two metrics is to be expected due to the different weights given to walks. In 
particular, an airport which is well connected to an airport with large degree will have a large Trip 
centrality, but its TripRank centrality will be much smaller. 
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Figure 22. Comparison between rankings for Trip centrality and TripRank in ECAC2. A) According to 
incoming, for the scheduled network with ε=0. B) According to outgoing, for the scheduled 

network with ε=0. Red lines are 1:1 lines.  

 

Table 13. Top-ten airports in the ECAC2 dataset according to incoming Trip centrality and TripRank 
for the scheduled network with ε=0. 

Trip centrality TripRank 

Atatürk International Airport 

Copenhagen Kastrup Airport 

Stockholm-Arlanda Airport 

Henri Coandă International Airport 

Munich Airport 

Geneva Cointrin International Airport 

Oslo Gardermoen Airport 

Graz Airport9 

Brussels Airport 

Vienna International Airport 

London Gatwick Airport 

Amsterdam Airport Schiphol 

Barcelona International Airport 

Adolfo Suárez Madrid–Barajas Airport 

Sabiha Gökçen International Airport 

Dublin Airport 

Düsseldorf Airport 

Oslo Gardermoen Airport 

London Heathrow Airport 

Palma De Mallorca Airport 

  

9 The high centrality of Graz Airport is potentially explained by incoming flights from large airports (Munich, 
Vienna, Dusseldorf and Stuttgart) in the last part of the day, bringing large contributions to centrality.  
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Table 14. Top-ten airports for the day April 9th of the US_April dataset according to incoming Trip 
centrality and TripRank for the scheduled network with ε=0. 

Trip centrality TripRank 

McCarran International Airport 

Phoenix Sky Harbor International Airport 

Oakland International Airport 

Los Angeles International Airport 

San Diego International Airport (Lindbergh Field) 

Sacramento International Airport 

Ontario International Airport 

Norman Y. Mineta San José International Airport 

Denver International Airport 

San Francisco International Airport 

Hartsfield-Jackson Atlanta International Airport 

Chicago O'Hare International Airport 

Dallas/Fort Worth International Airport 

Denver International Airport 

George Bush Intercontinental Airport 

Seattle-Tacoma International Airport 

Los Angeles International Airport 

Minneapolis-Saint Paul International Airport 

Phoenix Sky Harbor International Airport 

Detroit Metropolitan Airport 

 

3.3.2.4 Comparison between standard metrics and Trip centrality metrics 
Figure 23, panels A to D, shows a comparison of the rankings produced by the standard Katz and 
PageRank centralities presented in Section 3.3.1 and their ‘Trip’ counterparts introduced here, for 
the ECAC2 dataset. As expected, the rankings are very different. When = 0 , on the scheduled 
network, the correlation coefficient between the rankings according to incoming Katz and Trip 
centrality is 𝜏𝜏 = 0.59, while for incoming PageRank and TripRank it is 𝜏𝜏 = 0.77. A comparison 
between the top ten airports according to the standard and Trip metrics can be done comparing 
Table 10 and Table 13. Similar results hold for the outgoing case and on the actual network. When 
𝜀𝜀 = 𝑒𝑒−1/2, the rankings according to incoming Katz and Trip centrality become more similar (𝜏𝜏 =
0.67), while those according to incoming PageRank and TripRank become less similar (𝜏𝜏 = 0.67).  

This difference between the standard and the Trip metrics is to be expected, as the standard metrics 
consider many more walks, most of which are not time-ordered and use flights of different alliances 
or airlines.   

3.3.2.5 Comparison between Trip centrality and 2-legs Trip centrality 
Here we compare the ranking produced by Trip centrality with 𝜀𝜀 = 0 and 2-legs Trip centrality where 
only connections between flights of the same alliance (or airline, in case the airline does not belong 
to an alliance) are counted and where no threshold on connecting time is imposed. The only 
difference between the two compared metrics is that the former considers also walks of more than 
two-legs, while the latter does not. A notable difference is found in the rankings, as shown in Figure 
23, panels E and F, for the ECAC2 dataset. The correlation coefficients are 𝜏𝜏 = 0.62 in the incoming 
case and 𝜏𝜏 = 0.59 in the outgoing case. Table 15 compares the top ten airports according to the two 
centralities, in the scheduled incoming case. This difference proves that walks longer than two legs 
have an important role in determining the ranking according to Trip centrality. Reducing the value of 
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𝛼𝛼 makes the two metrics more and more similar, since longer walks are counted less and less by Trip 
centrality. 

Table 15. Top-ten airports for the ECAC dataset according to incoming Trip centrality with ε=0 and 
incoming 2-legs centrality for the scheduled network. 

Trip centrality TripRank 

Atatürk International Airport 

Copenhagen Kastrup Airport 

Stockholm-Arlanda Airport 

Henri Coandă International Airport 

Munich Airport 

Geneva Cointrin International Airport 

Oslo Gardermoen Airport 

Graz Airport9 

Brussels Airport 

Vienna International Airport 

London Heathrow Airport 

Amsterdam Airport Schiphol 

Munich Airport 

Barcelona International Airport 

Frankfurt am Main Airport 

Adolfo Suárez Madrid–Barajas Airport 

Charles de Gaulle International Airport 

Copenhagen Kastrup Airport 

Leonardo da Vinci–Fiumicino Airport 

London Gatwick Airport 
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Figure 23. Airport ranking and centrality for ECAC2. Panels A-D: Comparison of the airports' ranking 
according to standard and “Trip” metrics for the scheduled network in the ECAC2 dataset, 𝜀𝜀=0, A) 
incoming Trip centrality; B) outgoing Trip centrality; C) incoming TripRank; D) outgoing TripRank; 

Panels E and F: comparison between Trip centrality with 𝜀𝜀=0 and 2-legs Trip centrality for the 
scheduled network in the ECAC2 dataset, E) incoming, F) outgoing.  
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3.3.2.6 Comparison between centralities on the scheduled and on the actual 
network 

Centralities are always lower in the actual network with respect to the scheduled network, due to 
cancelled flights and disrupted connections. A decrease of centrality, however, does not always imply 
a change of rank of the airport. In fact, overall the ranking in the scheduled and in the actual network 
are very similar, according to all metrics. 

Let us first consider the ECAC2 dataset. Figure 24 compares the rankings obtained with each metric 
in the actual and scheduled network. The red dots represent distressed airports. Specifically, airports 
where the fraction of departing flights with departure delay larger than the average is, itself, larger 
than the average fraction of delayed flights. In Figure 25, instead, the percentage centrality loss for 
each airport between the scheduled and the actual network is plotted against the centrality of the 
airport in the scheduled network. In each plot, red and gray lines are curves obtained by local 
smoothing (i.e., LOWESS: locally weighted scatterplot smoothing) of, respectively, the red and black 
dots, and show the trend of the loss of centrality for distressed and not distressed airports. 

From the figures, we see that not all distressed airports lose rank or a large percentage of centrality, 
not all airports lose rank nor is a large percentage of centrality associated with distress. This means 
that comparing centralities in the scheduled and actual networks provides different information than 
that provided by delay statistics. In fact, the incoming centrality of an airport is not directly linked to 
the delays of flight departing from (or arriving to) that airport, but rather to those of flights coming 
from other airports, which are part of incoming walks. Therefore, the loss of incoming centrality (or 
of the corresponding rank) of an airport informs us of the impact of delays in the entire network on 
that particular airport. In the case of outgoing centrality, departing delays of flight departing from an 
airport do have a primary role in determining the disruption of outgoing connections, and therefore 
the decrease of outgoing centrality. In fact, in the outgoing case, we remark that airports losing rank 
are more often distressed ones, i.e., dots under the diagonal are often red, and that distressed 
airports tend to lose a larger percentage of outgoing centrality than non-distressed one, i.e., the red 
curves in Figure 25 B), D) and F) are above the grey curves. In particular, the average percentage of 
lost outgoing centrality for distressed airport is 25% according to Trip Centrality, 11% according to 2-
legs Trip centrality and 5% according to TripRank, while for non-distressed airports the percentages 
are, respectively, 16%, 4% and 2%. This effect is maintained also if we consider the absolute loss of 
centrality, instead of the percentage loss. However, small delays can also cause the disruption of 
connections, which explains why non-distressed airports can have a rank loss or a large percentage 
centrality loss. Similarly, large delays can have no impact on centrality if they happen on walks with a 
large connecting time, which explain why not all distressed airports lose rank.  

Although the rankings remain very similar in the scheduled and in the actual network, some airports 
lose large percentages of their centrality, meaning that many connections are lost. The percentage of 
lost centrality, averaged on all airports, is a measure of the impact of delays on the overall 
connectivity of the network. It can be used to compare the performances of different scenarios at a 
whole network level. The percentage of lost centrality of a particular airport can also be used to 
compare the effects of different scenarios on that airport. If the layer-specific centrality is used for 
the comparison, it informs on the effects of delay on that layer (i.e., that airline or alliance). 
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Figure 24. Comparison airport rankings on the scheduled and on the actual networks, for ECAC2 
dataset.A) Incoming Trip centrality; B) Outgoing Trip centrality; C) Incoming 2-legs Trip centrality; 
D) Outgoing 2-legs Trip centrality; E) Incoming TripRank; F) Outgoing TripRank. Red dots represent 

distressed airports (see text for definition of distress). Red lines are 1:1 lines.  
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Figure 25. Centrality in the scheduled network versus percentage loss of centrality between the 
scheduled and the actual network, computed as Δc=(c_sched-c_real)/c_sched, for the ECAC2 

dataset. A) Incoming Trip centrality; B) Outgoing Trip centrality; C) Incoming 2-legs Trip centrality; 
D) Outgoing 2-legs Trip centrality; E) Incoming TripRank; F) Outgoing TripRank. Red dots represent 
distressed airports (see text for definition of distress). Red and gray lines are obtained by a locally 

weighted smoothing (LOWESS) of, respectively, the red and black dots.  

The same analysis is performed on each day of the US_April dataset. In this case, to relate centrality 
losses to the delay situation of each day, we characterize days by the average delay of flights on that 
day, by the average fraction of delayed flights in an airport on that day, and by the number of 
airports that were congested on that day. For each day, we compute the correlation coefficient 
between the ranking of airports on the scheduled network and that on the actual network according 
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to incoming and outgoing Trip centrality and TripRank, the average percentage centrality loss of all 
airports, that of distressed airports and that of non-distressed ones.  

According to all metrics considered, the average percentage centrality loss has a clear tendency to 
increase with all three delay statistics considered, as shown in Figure 26, while the correlation 
coefficient tends to decrease, as shown in Figure 27. Figure 28, instead, shows separately the trends 
for distressed and non-distressed airports, confirming the observation made in the ECAC dataset that 
the loss of outgoing centrality is noticeably larger in distressed airports, while a small difference is 
seen for incoming centrality. This confirms that the delays of flights in an airport have little power in 
explaining its loss incoming centrality.  

These results prove that the generalized metrics which we have introduced are able to tell apart 
different delay conditions, differently from the existing centrality metrics, and therefore they 
represent a suitable tool to compare the different scenarios simulated by the ABM in terms of 
disruptions caused by delays. Additionally, as explained above, the loss of centrality provides more 
specific information with respect to delay statistics, as it measures the real impact of delays in terms 
of missed connections, a central point to assess because it entails the highest costs for airlines and 
disutility for passengers.  

 

Figure 26. Average percentage centrality loss in the days of the US_April dataset, computed as 
Δc=(c_sched-c_real)/c_sched, according to incoming Trip centrality (red), outgoing Trip centrality 
(orange), incoming TripRank (blue) and outgoing TripRank (light blue), plotted against three delay 

statistics: A) average departure delay; B) average fraction of flights with departure delay in one 
airport; C) number of distressed airport (see text for definition of distress). Each point corresponds 

to one day of the dataset. Lines are obtained by a locally weighted smoothing (LOWESS) of the 
dots of the correspondent color. 
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Figure 27. Correlation coefficient between the ranking of airports on the scheduled network and 
that on the actual network in the days of the US_April dataset according to incoming Trip centrality 

(red), outgoing Trip centrality (orange), incoming TripRank (blue) and outgoing TripRank (light 
blue), plotted against three delay statistics: A) average departure delay; B) average fraction of 

flights with departure delay in one airport; C) number of distressed airport (see text for definition 
of distress). Each point represents a day of the dataset. Lines are obtained by a locally weighted 

smoothing (LOWESS) of the dots of the correspondent color. 
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Figure 28. Average percentage centrality loss of airports for the days of the US_April dataset 
plotted against the average fraction of flights with departure delay in an airport on that day. 

Distressed airports (red dots) and non-distressed ones (black dots). A) Incoming Trip centrality; B) 
Outgoing Trip centrality; C) Incoming TripRank; D) Outgoing TripRank. Each point represents a day 

of the dataset. Lines are obtained by a locally weighted smoothing (LOWESS) of the dots of the 
correspondent color. 

3.4 Causality metrics analysis 

In this Section we consider an application of the causality metrics to the network of airports and 
flights, and in particular we study the problem of delay propagation from one airport to another. We 
quantify the state of delay of an airport as the average delay of flights taking off from that airport. If 
we consider the average over all flights, independently from the airlines operating them, we study 
the airport network at the maximum level of aggregation. However, the network has a multi-layer 
structure, where each layer contains the flights of a different airline. Hence, by defining an airline-
specific state of delay, obtained by averaging only over its flights, we can assess the causality 
structure of delay propagation among different airlines at different airports. In the following, we 
consider both aggregated and multi-layers structures of the network of airports: 

1. The causality network obtained from the detection of causal relationships between the time 
series of the state of delay of airports, where no distinction is made between different 
airlines (i.e., the state of delay is obtained as the average departure delay of all flights which 
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take off from the airport). In this network, we consider the aggregated information on flights 
and a direct link represents a directional channel for the propagation of delays; 

2. The multi-layer causality network obtained from the detection of causal relationships 
between the airline-specific time series of the state of delay of airports. In this case, the 
network has as many layers as the number of airlines, and each airport is present in each 
layer. An airport is characterized by a different state of delay in each different layer, obtained 
averaging the departure delays of flights operated by the corresponding airline. Causality 
links can then be either intra-layer or inter-layers. Even if the process of delay propagation 
among airports cannot be decoupled per airline, studying the causality links within a single 
layer tends to capture how flights of a particular airline interact each other at different 
airports, thus revealing the channels of delay propagation within a single airline. On the 
other hand, the analysis of the inter-layer connections between two layers describes how the 
delayed flights of an airline affect the flights of another airline, thus quantifying the level of 
interaction between the two companies. 

This application is considered for validation purposes and to give an example of how causality 
metrics can be successfully applied to the ATM system. 

As an empirical case, we study the US dataset for the period from January 1st 2015 to March 31st 
2015 and we consider the Granger causality tests, both ‘in mean’ and ‘in tail’, to build the causality 
network of airports. Specifically, the nodes of the causality network are the US airports and a 
directional link 𝑖𝑖 → 𝑗𝑗 represents a causal relationship, i.e., airport 𝑖𝑖 ‘Granger-causes’ airport 𝑗𝑗. Each 
airport is described by its state of delay and observed states of delay at different times define the 
time series of the airport state, as described in the next section. 

3.4.1 State of delay of the airport 

 

Figure 29. State of delay for Atlanta (ATL) airport in the month of January 2015. 

The state of delay at time t for each airport is given by the average departure delay of the flights 
taking off from that airport during time window of one hour duration starting at t. An example of 
time series of states of delay for the US airport of Atlanta (ATL) is shown for the month of January 
2015 in Figure 29. Note that the time series is characterised by peaks appearing with a daily 
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frequency. This is mainly due to the non-stationarity of delays, whose expected value is higher at the 
end of the afternoon, and lower during the first hours of the day. As suggested in [19], in order to 
reduce the non-stationarity of the time series caused by daily seasonality, which may result in a 
biased evaluation of the Granger causality metric, we can apply a Z-Score detrending procedure. The 
standardized time series of airport 𝑖𝑖 is calculated as  

𝑥𝑥𝑖𝑖,𝑡𝑡 =
𝑥𝑥𝑖𝑖,𝑡𝑡−< 𝑥𝑥𝑖𝑖,𝑡𝑡 >

𝜎𝜎𝑖𝑖𝑡𝑡
 

 where < 𝑥𝑥𝑖𝑖,𝑡𝑡 > and 𝜎𝜎𝑖𝑖𝑡𝑡 are the mean and the standard deviation of the delay states of airport 𝑖𝑖 
recorded at hour 𝑡𝑡 across all available days. Thus, the resulting time series has zero mean by 
construction and it is standardised to be considered as input for the statistical test in order to 
prevent the detection of spurious causal relationships as a consequence of daily patterns. 

Finally, especially for small airports, periods of the day with zero activity are observed frequently in 
the data when no flights take off from the airport. In this case, we define the state of delay of the 
airport as equal to zero. However, zeros may correlate because they occur in the same periods of the 
day, e.g., during night, and result in spurious causality detections. In order to quantify the 
importance of this effect, we compare the causality detections obtained on the original dataset with 
those obtained on a randomized dataset where each time series is shuffled keeping the positions of 
the zeros fixed. If a non-negligible number of causality relationships are detected in the randomized 
dataset, they are due to the zeros. We apply this procedure on the US dataset for the period from 
January 1st 2015 to March 31st 2015 (see below) and we conclude that the presence of zeros does 
not affect crucially the causality analysis. In fact, the link density10 of the Granger causality network 
built with the original dataset is 0.045, whereas for the randomized data is 0.003. In conclusion, our 
choice of defining the state of delay as equal to zero when zero activity is observed at the airport in a 
given hour does not introduce spurious correlations. 

3.4.2 Causality metrics: results 

In this Section we present the results of the analysis of causal relationships in the US ATM system 
obtained applying the methods presented in Section 2.2.2 to the US_JM dataset, containing the days 
from the three months of January, February and March 2015. In the following, we first show the 
results of Granger causality networks, focused on the detection of channels of delay propagation in 
the whole ATM system by using aggregated information on flights, then we present some insights 
into the interdependence structure among airlines which use the same airspace, obtained by looking 
at the multi-layer causality networks.  

3.4.2.1 Granger causality networks for the US ATM system 
The Granger causality in mean network is created by applying the pairwise Granger causality tests to 
the detrended time series which describe the states of delay of the N=315 airports in the period from 
January 1st 2015 to March 31st 2015. For each pair of time series, we assume a vector 
autoregressive model VAR(p) to describe their evolution. The Granger causality test is performed for 
different values of the parameter p, ranging from 1 to 6. The maximum lag is chosen equal to 6 

10 Link density is defined as the ratio between the number of observed links and the number of all possible 
links, i.e., M=N(N-1) in the case of directed networks without self-loops. 
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because the empirical partial autocorrelation function becomes statistically zero after the sixth lag 
for the time series of any airport. The partial autocorrelation function of a time series identifies the 
appropriate lag of an autoregressive model, since the partial autocorrelation of an AR(p) process is 
zero for lag p+1 and greater. Then, in case of rejection of 𝐻𝐻0𝑚𝑚𝑖𝑖𝑟𝑟𝑛𝑛, the best p is selected according to 
the Bayesian Information Criterion. Best p values are distributed mainly around 1 and 2. Since the 
observed states of delay are built within time windows of one hour duration, these small values of p 
highlight that delay propagation captured by the Granger causality in mean test occurs for short 
timescales. The distribution of inferred p is shown in Figure 30. 

 

Figure 30. Histogram of inferred p for the VAR(p) model in the Granger causality in mean test 
applied to the US dataset from January 1st 2015 to March 31st 2015.  

The Granger causality in tail network is created by applying the Granger causality in tail tests to the 
same time series. Similarly to Granger causality in mean, an autoregressive process AR(p) is assumed 
to describe the time evolution of the state of delay with p=6. Thus, the forecasting of density 
distribution uses the p past steps and extreme events are defined as the observations which fall on 
the right tail above the 95th percentile11. Hence, the memory of the autoregressive process 
describing the state of delay of an airport is six hours, as before. Then, we move from the description 
in terms of states of delay to the definition of the state of distress of an airport, namely the binary 
variable which takes value equal to one if an extreme event for the delay occurs, zero otherwise.  

However, differently from Granger causality in mean, the Granger causality in tail test is performed 
by checking for non-zero correlations for the states of congestion of airports at any lag, because of 
the definition of the null hypothesis to be tested. This means that delay propagation for extreme 
events is checked at any time scale, from the shortest to the largest. Describing the process of 
propagation of distress at any time scale may be useful in capturing effects of two- (or more) legs, 
especially in an ATM system like the US where some flight have very long durations. 

11 Once the density distribution is estimated, the q-quantile of the probability distribution specifies the value of 
the random variable, i.e., the state of delay, such that the probability of the variable is less than or equal to q. 
Thus, the 95th percentile is the quantile associated with a probability equal to 0.95. 
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For both the in mean and in tail cases, we set the significance level for the overall tests as equal to 
𝜉𝜉 = 5%, and, as a consequence, the significance level of each test is 𝜉𝜉′ = 0.05

𝐼𝐼(𝐼𝐼−1)
 where N=315 is the 

number of airports and N(N-1) represents the number of all possible pairs of airports tested for 
causality. It is important to comment on the role of the multiple hypothesis correction in the 
construction of the Granger causality network. To the best of our knowledge multiple hypothesis test 
correction has not been applied before to Granger networks in ATM, but it has a large impact on the 
inferred causality networks. For example, in the case of Granger causality (in mean) network built for 
the US dataset for the period from January 1st 2015 to March 31st 2015, the link density for the 
Bonferroni corrected network is 0.05, whereas without the correction we obtain 0.45, a much larger 
value. Therefore, neglecting to introduce a correction means considering a large number of non-
significant causal links. 

The two Granger causality networks built with the US traffic data from January 1st 2015 to March 
31st 2015 differ greatly. The Jaccard index is a statistic used for comparing the similarity of two 
sample sets, in this case the two graphs described by their own adjacency matrix. It is defined as the 
size of the intersection divided by the size of the union, i.e., the number of links in common divided 
by the total number of links, and varies between zero and one. In this case, the Jaccard index is 0.12, 
a very small value suggesting that the two networks considerably differ. In the following, we consider 
several network statistics which explain this difference and describe what kinds of phenomena the 
two Granger causality tests tend to capture. 

A network system can be studied according the usual methods adopted in complex network analysis 
to highlight the main characteristics and to obtain a global description of the system. The standard 
topological network metrics considered here (and defined below) are: link density, diameter, average 
path length, clustering coefficient, reciprocity, one particular kind of motifs, namely feedback 
triplets, and (PageRank) centrality of nodes. These standard statistics for the two causality networks 
are reported in Table 16. 
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Table 16. Network statistics for the Granger causality networks compared with both Erdos-Renyi 
and fitness models. 

 Granger in 
mean 

Erdos-
Renyi 
(w.r.t. GC 
in mean) 

Fitness 
model 
(w.r.t. GC 
in mean) 

Granger in 
tail 

Erdos-
Renyi for 
(w.r.t. GC 
in tail) 

Fitness 
model 
(w.r.t. GC 
in tail) 

Link density 0.045 0.045 
±0.001 

0.045 
±0.001 

0.152 0.152 
±0.001 

0.152 
±0.001 

Diameter 8 4.0 ±0.1 5.4 ±0.5 5 3.0 ±0.1 4.0 ±0.1 

Average path 
length  

3.07 2.46 ±0.01 2.47 ±0.02 1.95 1.84 ±0.01 1.90 ±0.01 

Clustering 
coefficient 

0.27 0.077 
±0.001 

0.280 
±0.006 

0.26 0.161 
±0.001 

0.251 
±0.008 

Feedback triplets 14 856 908 ±46 7 656 
±352 

71 127 3 631 
±871 

64 136 
±1415 

Reciprocity 0.20 0.022 
±0.002 

0.094 
±0.004 

0.14 0.076 
±0.002 

0.112 
±0.002 

 

We compare these statistics with the corresponding values obtained for two random graph models: 
(i) the Erdos-Renyi model which describes a random graph with the same number of links of the 
causality network but uniform link probability for each couple of nodes and (ii) the fitness model 
[34]. The latter model describes an ensemble of random graphs with the property that the average 
(over the ensemble) in- or out-degree of a node is equal to the one of the real data. The node’s in- 
(out-) fitness represents the likelihood that the node has an incoming (outgoing) link and it is 
correlated with the in (out) degree. These models represent a method alternative to randomization 
algorithms and have the advantage of a better control on the network statistics we aim to preserve, 
i.e., link density for the former and degree sequence for the latter. 

The obtained Granger causality in mean network has L=4 401 Granger causal links, i.e., link density 
equal to 0.045, while for the Granger causality in tail we observe L=15 027, i.e., link density equal to 
0.152. Since the two statistical tests are applied to the same data with the same confidence level, 
this result suggests that the airport system is more interconnected by the extreme (delay) events 
than by the average (delay) behavior. This is because the Granger causality in mean test weights 
equally the forecasting errors of both extreme and average events. The latter may represent random 
fluctuations which have no impact on delay propagation. In fact, small delays at the origin airport can 
be easily absorbed in the en-route phase, having no influence on the state of delay of the destination 
airport. On the contrary, it is unlikely that rare events corresponding to large delays have no common 
causes and interdependencies. Hence, selecting information about extreme events tends to keep 
random fluctuations out of the analysis. Moreover, our result shows that extreme events yield 
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predictive signals on the occurrence of extreme events in other airports, much more strongly than 
when considering average events. 

The diameters of the Granger networks, i.e., the longest path connecting two nodes, are equal to 8 
and 5, respectively for in mean and in tail cases, while for the corresponding Erdos-Renyi networks 
are 4 and 3, thus suggesting the presence of outlying nodes less connected with the central core. This 
is (partially) confirmed by the average path length, equal to 3.05 for the Granger in mean network 
and 1.95 for the Granger in tail network. These values are slightly larger than 2.46 and 1.84 when 
compared with the Erdos-Renyi case. However, the difference becomes smaller in the case of the 
fitness model, thus highlighting that the average path length can be explained in terms of degree 
distributions of the nodes and the existence of few peripheral nodes may be responsible of the larger 
diameter. 

The clustering coefficient of a graph is a measure of the likelihood that nodes cluster together, 
specifically it is the number of closed triangles, i.e., subgraphs of three nodes connected each other 
by links having any direction, divided by the number of potential triangles. For the causality 
networks, the clustering coefficient is much larger than the corresponding Erdos-Renyi networks, a 
difference explained by the different degree of nodes. In fact, the fitness model has a clustering 
coefficient in line with the Granger networks. Among all possible triplets, the clockwise or 
anticlockwise triangles are of great importance in the case of the ATM system. Indeed, they 
represent potentially unstable feedback subsystems for delay propagation. When we restrict to the 
feedback triplets, we can notice that the Granger networks are characterized by much larger values 
than the corresponding random cases. Hence, in the case of ATM systems, an interesting clustering 
measure is the one which considers feedback and any innovation which aims to increase the 
robustness and resilience of the system, should reduce it. 

Finally, reciprocity is a measure of the likelihood that nodes in a directed network are mutually 
linked, i.e., the ratio of the number of links pointing in both directions to the total number of links. In 
ATM systems, we expect that reciprocity in the Granger network is higher than in the random case, 
since return trips, common in the flight network, are expected to induce a mutual causality link. The 
results confirm this behaviour, especially for Granger causality in mean. Mutual causality links are 
more often detected for short flights because there are likely more return trips during the day. This is 
confirmed in Figure 31, where we show the fraction of mutual links in the Granger causality networks 
classified according to the mean duration of flights connecting the two node-airports incident to the 
link. 
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Figure 31. Fraction of mutual links in the Granger causality networks, both in mean (blue dots) and 
in tail (red dots), as a function of the flight duration between the two node-airports incident to the 

link in the Granger network. At each bin, each point is the number of detected mutual links 
normalized by the number of airports whose mean flight distance falls inside the time window. 

Each bin is identified in the figure by the value corresponding to its upper bound.  

To summarize the conclusions of our causality analysis, two specific features of the causality network 
emerged: the overexpression of feedback triangles and of mutual linkages with respect to the 
randomized graphs. The interpretation of this result is that delay tends to propagate in both 
directions between a couple of airports and in triangle loops. Both these patterns tend to amplify 
delays in the system, and therefore innovations should aim at their reduction. Hence, we conclude 
that these two metrics, i.e., feedback triangles and mutual linkages in the Granger causality 
networks, are two important metrics to assess the impact of innovations on the system’s 
performance.  

For completeness, in Figure 32, we show the degree distribution of both Granger causality networks. 
Networks shows no evidence in favour of scale-free distribution for the degree according to the test 
for power-law distributions [35]. 
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Figure 32. Complementary cumulative distribution function for the degree of the Granger causality 
networks built with the US dataset from January 1st 2015 to March 31st 2015, both for outgoing 

and incoming links. 

We now compare the Granger causality networks with the physical networks of airports and flights 
used to build them. We investigate whether the properties of the former networks can be explained 
by some characteristics of the latter, for example whether high degree airports in the causality 
networks are typically the major hubs or the smaller/regional airports (as suggested in the empirical 
analysis of the Chinese airspace in [19]). 

We find a positive Kendall rank correlation (0.47 for out-degree and 0.46 for in-degree, see the left 
panel of Figure 33) between airport traffic size, measured as the average number of flights per day, 
and node degree in the Granger causality in mean network, meaning that airports having many 
flights tend to have also many causal relations, both incoming and outgoing. For Granger causality in 
tail, instead, the Kendall rank correlation is much smaller (0.14 for out-degree and 0.16 for in-
degree), see the right panel in Figure 33, i.e., the number of causal relationships is much less 
correlated to the traffic size. Therefore, small and medium airports may be more central for the 
process of propagation of extreme delay events and information on their states more important for 
the prediction of congestions in the system.  
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Figure 33. Node degree of both the Granger causality as a function of the traffic size of airports, in 
mean (left) and in tail (right), i.e., the average number of flights per day. Black dots represent the 

out-degree of nodes while blue dots the in-degree.  

A more specific tool to compare the Granger causality network with the network of airports and 
flights is degree overlap. Let G and A be, respectively, the adjacency matrices of the two networks. A 
has an entry equal to one if there exists at least one flight connecting the two corresponding airports 
in the entire period considered, zero otherwise. The degree overlap is defined as 

𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 =
𝛴𝛴𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖
𝛴𝛴𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖

, 𝑜𝑜𝑖𝑖𝑛𝑛 =
𝛴𝛴𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖
𝛴𝛴𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖

 

for the out-degree and in-degree, respectively. The degree overlap between the Granger causality 
network and the aggregated network of airports and flights measures how often two airports that 
are linked in the causality network are also linked in the other. A large degree overlap, therefore, 
means that a causality link between two airports is often present when the two airports are linked by 
direct flights. On the contrary, a small degree overlap means that causal relationships are often 
present even in the absence of a direct flight. Hence, the degree overlap can be interpreted as an 
indirect measure of the fraction of one-leg effects as channels of delay propagation. 

It is interesting to note, in Figure 34, that the degree overlap increases with the airport size. In both 
Granger in mean and Granger in tail cases, we find a positive rank (Kendall) correlation, 0.62 and 0.56 
respectively. In particular, note that the overlap for large airports is very high and tends to be close 
to one for increasing sizes. This is a signal that the primary channels of delay propagation for large 
airports are the one-leg effects, i.e., direct flights connecting the airport to other nodes of the 
network. On the contrary, especially for the Granger causality in tail, the overlap for small and 
medium airports is small or very close to zero, suggesting that the mechanisms of delay propagation 
are represented by two or more legs effects. In other words, a channel of delay propagation from a 
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small airport to another node of the network occurs by means of two or more flights which create a 
path connecting them by involving other airports in between12. 

 

Figure 34. Degree overlap between the Granger causality networks, for both causality in mean 
(left) and in tail (right), and the network of airports and flights described by the adjacency matrix 
having enty equal to one if there exist flights connecting two airports, zero otherwise. Each point 

represents the degree overlap averaged over the out-degree and the in-degree of the node  

The centrality of a node in a Granger causality network is a measure of its importance in the process 
of delay propagation. Here, we adopt the standard PageRank centrality measure to classify the 
airports. A graphical visualization of the result is shown in Figure 35 for both Granger networks. 
PageRank centrality reveals a clear split between the two macro geographical regions of the US, i.e., 
East and West. Figure 35 shows the ranking of nodes according to PageRank centrality for the 
Granger causality network. The geographical disequilibrium is related to the fact that flights depart 
earlier (in the EST reference frame) in the East with respect to the West, thus it is more likely that a 
delay starts propagating in the system from the East, making the eastern airports more central in the 
Granger network. Table 17 shows the top ten US airports according to PageRank centrality in both 
cases. 

 

12 In principle, other exogenous sources may be responsible for the presence of a causal relationship, e.g. 
weather may create a correlation between the states of delay of two airports that are geographically close. 
Thus, a dependence between two states of delay might also not be due to flights. 
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Figure 35. PageRank node centrality for the Granger causality in mean network (blue dots) and the 
Granger causality in tail network (red dots). Increasing dot size and brighter colour represent a 

rank increase. 

Table 17. Top-ten of US airports according to PageRank centrality for Granger causality networks, 
both in mean and in tail. We show the average number of flights per day as measure of the 
airport’s traffic size. 

PageRank: Granger causality in mean network Page Rank: Granger causality in tail network 

MCO (Orlando) - traffic size = 340 SDF (Louisville) - traffic size = 32 

ATL (Atlanta) - traffic size = 996 TYS (Knoxville) - traffic size = 20 

IND (Indianapolis) - traffic size =71 CHS (Charleston) - traffic size = 31 

CLT (Charlotte) - traffic size = 300 SAV (Savannah) - traffic size = 21 

FLL (Miami) - traffic size = 241 CAK (Akron-Canton) - traffic size = 20 

RSW (Southwest Florida) - traffic size = 114 BNA (Nashville) - traffic size = 136 

TPA (Tampa) - traffic size = 203 LIT (Little Rock) - traffic size = 31 

BWI (Washington) - traffic size = 232 MEM (Memphis) - traffic size = 41 

EWR (New Jersey) - traffic size = 293 CHA (Chattanooga) - traffic size = 12 

RDU (Raleigh-Durham) - traffic size = 90 PNS (Pensacola) - traffic size = 21 

 

We remark that the more central airports in the first case are characterized by high traffic, whereas, 
in the second case, the top-ten ranking is formed by small and medium airports. This is supported by 
the values of linear correlation between airport sizes and PageRank centralities: 0.63 for Granger 
causality in mean and 0.14, a much smaller value, for Granger causality in tail. The results obtained 
here for the US ATM system by Granger causality in mean analysis contrast with those in [19] for the 
Chinese ATM system. In fact, here we find that larger airports tend to have higher degree in the 
Granger in mean network (Figure 33), and larger degree overlap (Figure 34), resulting in higher 
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centrality, while in [19] small airports have the largest degrees, indicating that delays are mostly 
propagated from small and regional airports. According to our results, large airports are more 
informative regarding the prediction of the state of delay of the whole system and more central for 
the process of delay propagation. However, when the focus is on extreme events, i.e., the states of 
distress of airports, information on small and medium airports is central for predictions and the 
characteristics of the corresponding causality network are not strongly correlated with traffic.  

Finally, we want to stress the fact that Granger causality networks help to capture the dependence 
structure of delay propagation, which is related to how the ATM system performed in a given period, 
in particular when macroscopic variables, e.g., total traffic, do not change significantly. Hence, we 
repeat the pairwise Granger causality in mean analysis for a time window of one month, starting 
from January, and rolling the window week-by-week, up to the end of March, see Figure 36. The 
result suggests that link density, i.e., a measure of how much interconnected the system is, does not 
depend trivially on both the total traffic and the active air routes connecting airports. In fact, these 
global variables are quite constant in the considered time windows. For example, we observe the 
largest number of links (January) when traffic is smaller than its maximum (March), thus suggesting a 
complex dynamics of delay propagation. This analysis reveals that the dependence structure of 
causal relationships arises in a non-trivial manner from the dynamics of delay propagation. This 
quantitative argument supports the relevance of causality metrics in analyzing the outcomes of both 
the toy model and the full ABM model, where we aim to assess the performance of the modelled 
ATM system as a function of the Domino mechanisms once all the other conditions have been fixed. 

 

Figure 36. Link density of the Granger causality networks, both in mean (blue dots) and in tail (red 
dots),for different 30-days periods (indicated by the last day) and compared with traffic (purple 

dots) measured as the total number of flights within the considered 30 days (rescaled by a factor 
4.5×10^6) and with density of active air routes in the aggregated network of airports and flights 

(green dots). 
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3.4.2.2 Multi-layers causality networks for the US ATM system 
The main goal in Domino is to characterize how different subsystems interact and to quantify the 
dependence structure of the interactions, and especially to understand whether they become 
stronger or weaker with the implementation of ATM innovations. In order to study the dependence 
structure among airlines, considered as interacting subsystems, the causality analysis presented 
before can be generalized to multi-layers Granger causality networks, where each layer identifies an 
airline (or alliance). In each layer, nodes represent the airports served by that airline. Different copies 
of the same airport are present in different layers, if that airport is served by several airlines. Then, 
each node-airport on each layer is described by its state of delay obtained by averaging over the 
departure delays of flights operated by the corresponding airline. A directional link between any two 
nodes of the multi-layer Granger causality network, either in mean or in tail, represents the rejection 
of the null hypothesis of no causality from one node to the other, as before. Finally, the single-layer 
causality network is described by a unipartite graph, with a square adjacency matrix, as in the 
aggregated network considered before. However, the inter-layers links from one layer to another 
determine a bipartite graph whose adjacency matrix is rectangular because, in general, there is a 
different number of nodes in each layer. Thus, depending on the direction of links, we obtain two 
different bipartite causality networks for each pair of layers, where, on a case-by-case basis, one 
airline functions as the ‘causer’, and vice versa. 

 

 

Figure 37. Scheme of interactions in the multi-layers Granger causality network. Red and blue 
nodes in the green and yellow layers, respectively, represent airports served by two different 

airlines. Empty circles represent airports served by one airline but not by the other one. Red links 
represent causal relationships from airline μ to itself (intra-layer links, e.g., link 1), blue links 

represent causal relationships from airline λ to itself (intra-layer links, e.g., link 5), and black links 
represent causal inter-layer links between the two airlines, including the case of different airports 

(e.g., links 3 and 4) and copies of the same airport in different layers (e.g., link 2). 
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The kind of causal interaction depends on whether the link lies on a single layer or connects two 
different layers. In Figure 37 we show all possible interactions in the multi-layers Granger causality 
networks, i.e. 

1. A link lying on a single layer captures a causal relationship of delay propagation between 
two airports served by the airline: see links 1 and 5 in Figure 37; 

2. A link between two copies of the same airport on different layers describes a local 
causality interaction between two airlines, meaning that the delays of one airline at that 
airport cause delays in the flights of the other airline at the same airport. This might be 
due, e.g, to non-rotational effects of reactionary delays at the airport13: see link 2 in 
Figure 37; 

3. An inter-layer link connecting an airport on the first layer to another airport, on the 
second layer, which is served by the first airline, represents a channel of delay 
propagation mediated by flights of the first airline: see link 3 in Figure 37; 

4. An inter-layer link pointing to an airport not served by the first airline represents a 
second-order effect of delay propagation, which can be mediated by two- or more- legs 
effects because no flights of that airline may propagate delays in that airport: see link 4 
in Figure 37. 

  

13 The primary delay of a flight tends to create reactionary delays for other flights departing from the same 
airport. 
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Figure 38. Link density in the multi-layers Granger Causality in mean network by considering all 
kinds of causal links (top left) or distinguishing according to interactions of type 2 (top right), type 3 

(bottom left) and type 4 (bottom right). In the top left panel, diagonal elements represent link 
density in each layer, whereas off-diagonal elements describe density of inter-layers links. 
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Figure 39. Link density in the multi-layers Granger Causality in tail network by considering all kinds 
of causal links (top left) or distinguishing according to interactions of type 2 (top right), type 3 
(bottom left) and type 4 (bottom right). In the top left panel, diagonal elements represent link 

density in each layer, whereas off-diagonal elements describe density of inter-layers links. 

We apply the multi-layers causality analysis to the US_JM dataset, containing information on flights 
of the 14 airlines. As preliminary result, we show in Figure 38 and Figure 39 the link densities of the 
subgraphs obtained according to the four types of interactions described above for both Granger 
causality in mean (Figure 38) and in tail (Figure 39). In each panel of the figures, airlines are ordered 
according to ascending size, measured as the total number of flights, thus the smallest airline (Virgin 
America (VX)) is found at the bottom left of the panel while the largest (Southwest Airlines (WN)) at 
the top right. The color of each pixel represents the density of causal links where the airline on the x-
axis is the ‘causer’ and the one on the y-axis is caused. For instance, in the bottom left panel of Figure 
38 the yellow pixel is the density of causal links in the bipartite graph which describes how Envoy Air 
(MQ) ‘causes’ Virgin America (VX). Finally, in both figures: (i) the top left panel shows link densities 
for both single-layer causality networks (on the diagonal) and bipartite causality networks (off-
diagonal), by averaging over all three types of inter-layers interactions; (ii) the top right panel shows 
link density for the interaction of type 2, i.e., the number of links between copies of the same 
airports divided by the number of airports in common between the two airlines; (iii) the bottom left 
panel shows link density for the two-layers causality network by accounting only for interactions of 
type 3, i.e., causal links among different airports but in common to the two airlines14, while (iv) the 

14 This is a subgraph whose square adjacency matrix has dimension equal to the number n of airports in 
common to the two airlines. Thus, link density is the ratio between the number of causal links and the number 
of all possible links, i.e., n(n-1). 
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bottom right panel displays the case of second-order effects (interactions of type 4), i.e., when the 
‘causer’ has no flights at the airport in the other layer15. 

According to Granger causality in mean, we notice that each airline tends to interact more with itself 
than with other airlines, see top left panel of Figure 38. This behaviour is more evident for small size 
airlines. Even if at the moment we do not have a definite explanation between the size of the airline 
and the strength of the causal interactions, we conjecture that this can be due to the fact that in an 
airline with few flights during the day, reactionary delays associated with the same aircraft 
connecting different airports might have a larger impact on the states of delay of those airports. 
Moreover, the organization of the flights in a hub-and-spoke or point-to-point scheme might explain 
this correlation. Further analyses are needed to better elucidate this point. 

However, in the bottom right region of the top left panel of Figure 38, we can notice that medium 
and large airlines influence the small companies slightly more than the average level of causality. By 
looking at the other panels of Figure 38, this effect can be explained in terms of both local 
interactions at the same airport (interactions of type 2) and second-order effects (interactions of 
type 4), thus delay propagation occurs mainly because airlines share the same resources and/or the 
high traffic, due to the large number of flights, impacts the system by means of two-legs effects as 
well. 

When we consider delay propagation of extreme events by means of Granger causality in tail test, we 
note that the results of the multi-layers analysis display an average level of causality larger than the 
previous case (in agreement with the results for the aggregated network). However, distribution of 
causal links is more heterogeneous, and no clear patterns appear in terms of airlines’ size, see Figure 
39. Further investigations and a better characterization of multi-layers Granger causality networks 
are left for future outlooks. 

3.5 Conclusions on metrics 

In this Section we proposed several new network metrics and methods to assess centrality and 
causality in the ATM system. We plan to use these metrics (together with basic, classical measures) 
to compare simulations of the ATM system obtained from the Domino ABM under different 
innovation scenarios. Summarizing:  

Considering centrality 

• The difference between scheduled and actual centrality using Trip Centrality and 
TripRank gives an indication of the loss of centrality of airports and of flights. When 
aggregated across the different elements of the system (e.g., airports), the difference 
measures the loss of performance of the whole ATM. When considering single airports or 
flights, this study could highlight the effect of innovation implementation on the 
airlines/airports adopting them and on those sharing the same resources (airports, 
airspace, etc.). 

15 This is a bipartite subgraph whose rectangular adjacency matrix has dimension q×p. Thus, link density is the 
ratio between the number of causal links and the number of all possible links, i.e., q×p. 
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• In the case of the simulations of the model with 4D Trajectory Adjustment16, we could 
verify whether actual and scheduled centrality of the airline implementing it (i.e., of its 
flights and of the copy of the airports where it is active) become more similar. Moreover, 
the change in centrality of airlines sharing the same resources of the one implementing 
DCI could give indications of positive or negative externality of the innovation.  

Considering causality: 

• The density of the Granger causality network is a measure of interconnection and 
tightness of the system (or of a part of it). Therefore, it is interesting to investigate 
whether the introduction of innovations modifies the causality network making it less 
dense and/or more modular. 

• Similarly, the number of reciprocated causal links and feedback triangles is a simple 
measure of causal feedbacks in the system, and its monitoring under different 
innovations can provide insights into their effects on the stability of the ATM system. 

• The multilayer causality network, and specifically the density and level of reciprocity of 
its components, give indications of the tightness of its elements and their mutual 
interconnection. 

Whilst in this Section we have considered the empirical application of the proposed metrics to the 
network of flights and airports, they can be applied much more generally, especially in other parts of 
ATM that can be mapped by a network or monitored with multivariate time series. Domino’s ABM 
will provide many different types of data (often not available for real systems) that we will analyze 
with the considered metrics. For example, we could consider as nodes the DMAN and AMAN at the 
different airports and their queue size as the variables describing their state. Finally, we plan to 
extend the existing metrics by weighting the links by considering (i) the number of passengers 
traveling in the flight represented by the link or in the considered walk and (ii) the cost of delay to 
study how the network structure affects the propagation of cost and to identify the most central 
nodes (flights or airports) in terms of airline cost. 

 

 

16 See Section 4 for an explanation of how this mechanism is implemented in the toy model. 
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4 Toy model 

This Section of the deliverable is dedicated to the detailed description of a simple, yet controllable 
model of the interactions between airlines, the agents of the model, and other elements of the ATM 
system, such as Departure and Arrival managers and passengers. This model, referred to as the ‘toy 
model’, is much simpler with respect to the ABM model, as it contains less details on the processes 
and considers only one type of agent, the airline. While it is certainly less realistic than the ABM 
model, the small number of parameters and of mechanisms in the toy model makes it easier to 
interpret its results. Therefore, the outcomes of the toy model in different scenarios, analysed by 
means of the metrics presented in the previous sections, will provide us with a first understanding of 
what changes each may innovation bring and what are the mechanisms that cause these changes. 
Additionally, this model, which takes less computing effort to simulate with respect to the ABM, will 
be used to explore the effect of local implementations of innovation as well as of disturbances (e.g., 
delays) to the system. 

As in the ABM case, we model the pre-tactical and tactical phase. Each airline takes decisions on its 
flight based on a cost function, possibly exploiting the innovations implemented in Domino. In 
Section 4.1 we present the general modeling framework, while in Section 4.2 we describe a baseline 
implementation of the model. Finally, in Section 4.3 we show some preliminary results of this 
baseline version of the toy model for validation purposes. 

4.1 Toy model design 

4.1.1 Introduction 

We model a day of ATM operations for the ECAC airspace as a chain of events, each event 
representing a flight, which take place on the network of airports and air routes connecting the 
airports. The airline decision making process is only modeled for flights departing from ECAC airports. 
However, flights departing outside the ECAC space but landing in an ECAC airport are considered in 
the slot assignment, in order to correctly account for the amount of traffic at each airport. Both 
commercial and non-commercial flights are taken into account to reproduce as closely as possible 
the occupation of the airports’ slots. However, particular attention is reserved to commercial flights, 
with a detailed study of the cost function of airline companies. 

In the implementation of the toy model, we consider three levels in the description of mechanisms 
that the Domino project aims to model: 

• level 0 aims to represent current operations; 
• level 1 implies some further capabilities from technological and operational 

improvements; 
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• level 2 is the most advanced case which might require further research and it is, by 
definition, more prospective. 

For a detailed description of the three levels of implementation of the Domino mechanisms see 
Deliverable 3.1 (Architecture Definition). In the context of the toy model, in particular, we aim to 
model 4D trajectory adjustment (limited to tactical dynamic cost indexing and wait for passengers for 
simplicity) and flight prioritisation mechanisms. 

The baseline level of the toy model aims to describe the current state of the ATM system, with no 
(further) innovation, and interactions among airlines arise because of the competition for the same 
resources, specifically, tactical slots. The implementation of the Domino mechanisms at both level 1 
and level 2 will give rise to a strong interdependence due to the increasing complexity of interactions 
(see Section 4.1.6). 

Since mechanisms studied in Domino work in the tactical phase, the strategic phase is assumed to be 
given as initial input for the toy model. Hence, we describe how the ATM system evolves during the 
day of operations. 

The subsections are organised as follows: (i) we introduce the considered subsystems and who are 
the agents, i.e., the airlines, of the toy model; (ii) we describe briefly the strategic phase that 
represents the input of the toy model; (iii) we describe the framework and the chain of events; (iv) 
we describe how airlines take decisions in terms of cost functions and (v) how Domino innovations 
work at the three different levels of implementation; (vi) finally, we present the scenarios we will 
analyse and the proposed case studies for investigation. 

4.1.2 Agents and subsystems 

Domino is interested in the macro-effects arising in the ATM system during the tactical phase from 
the interactions of the agents active in the different subsystems.  

Agents in the toy model represent airlines which take decisions about their own flights during the 
tactical phase. According to the implemented scenario, the optimisation problem to be solved may 
regard a single flight or, in the case of connections, more than one. This last aspect is relevant, in 
particular, when applying 4D Trajectory adjustments and in particular dynamic cost indexing at the 
network level. In the decisional process, airlines interact with other subsystems, such as the DMAN, 
AMAN, and passengers. 

In the toy model, each aircraft is identified by its tail number, and each flight by a flight number. 
Flights are also characterized by their departure and arrival times and by their departure and arrival 
airports. Decisions regarding a flight come from a complex process involving the flight operation 
centre (FOC), i.e., the airline, which supplies different information and directives, and the possible 
use of dynamic cost indexing (DCI), i.e., adjusting the cost index based on updated delay and cost 
information. As a consequence, according to the considered scenario decisions can be more or less 
scaled up to the network level, and rich in detail.  

An airport is a node of the studied network and is identified by its ICAO code. An airport is a complex 
entity which includes terminal(s), departure (DMAN) and arrival (AMAN) managers and runways. In 
the context of the toy model, we reduce all these entities to a single unit, i.e., the airport, which 
interacts with flights according to pre-ordered schemes and rules. We assume that an airport has 
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time slots for departures and for arrivals, which represent the airport’s resources used by airlines for 
the take-off and the landing of flights.  

Other relevant subsystems are the Network Manager (NM) and the flight prioritisation processor, if 
implemented. In the real world, each flight interacts with NM to get the ATFM slot if required, by 
providing a flight plan (including departure time, route and possibly a trajectory). In the presence of 
the flight prioritisation processor, airlines can further request the swap of the departure of two 
flights, in order to recover delay for the flight with higher priority (c.f. UDPP). Thus, the NM and flight 
prioritisation processor handle the request and accept or reject it after some checks about airspace 
traffic, sector capacities and security. However, the modelling of sectors and 4D air routes is out of 
the scope of the toy model. Hence, the Network Manager is taken into account by using information 
about the last accepted plan (m1 files) of flights in the pre-tactical phase, while the flight 
prioritisation processor is modelled as further rules that work as constraints for the optimisation 
problem faced by airlines in allocating their own flights during the tactical phase. 

Passengers are passively aggregated subsystems which take flights and move from one flight to 
another in the case of connecting flights. Passengers are relevant to establish the costs due to missed 
connections, inter alia. Consequently, they have to be considered by the airlines in the decision 
process during the tactical phase.  

4.1.3 Strategic phase: input of the toy model 

The Domino model aims to assess several characteristics of the ATM system during the tactical 
phase, such as the propagation of delay and the cost of the elements in the system, the identification 
of critical nodes in terms of delay and cost propagation, and to quantify what is the impact of 
innovations on the considered characteristics. The toy model is inspired by the same aim, but in a 
simpler and controllable framework. Then, in both cases, the strategic phase, such as flight planning, 
number and itineraries of passengers, are assumed to be known and this information is taken from 
data. More specifically, an example of input data for the toy model is summarised in Table 18 and 
Table 19. 

Table 18. Example of input information for toy model implementation (1) 

Flight number Tail number Airline Origin Destination Scheduled 
departure 

Scheduled 
arrival 

BAW605 GEUXM BAW LIRP EGLL 12-Sep-2014 
11:15:00 

12-Sep-2014 
13:30:00 
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Table 19. Example of input information for toy model implementation (2) 

Last off 
block time  
(m1 file) 

Last landing 
time 
(m1 file) 

Taxi-out Taxi-in Number of 
passengers 

Inbound 
connecting 
passengers 

Outbound 
connecting 
passengers 

12-Sep-
2014 
11:17:00 

12-Sep-
2014 
13:28:00 

10 min 10 min 104 (0,0,…0) (0,0,2,3,…,0) 

 

Scheduled times (the time shown on the ticket of passengers) describe the strategic phase planned 
by airlines months before the day of operations. Scheduled times will be used to estimate the cost of 
compensation and care of passengers in case of delay. We are also interested in the last-filed flight 
plan, contained in the m1 files, as they determine the slots initially assigned to each flight at the 
departure airport. Finally, the planned landing time in the last-filed flight plan is used for simulating 
the time elapsed from the departure to the landing (see Baseline implementation Section). 

Information about the number and the fraction of passengers on connecting flights are of 
fundamental importance for the implementation of dynamic cost indexing and Flight Prioritization in 
order to generalise the cost function by accounting for real time-lag effects arising from connections. 
This information is contained, for each flight, in the last two columns of Table 19. They have the form 
of two vectors, where entry i is the number of passengers connecting from or to the present flight 
and flight i. 

The number of available time slots at an airport is estimated by considering the maximum capacity of 
the airport by looking at the traffic data for the day of operations. For instance, if we observe one 
departing flight per minute in the moment of highest traffic, we set the time slot for the departure 
equal to 1 minute for that airport. In the case of small airports, we fix the lower bound for the 
duration of the time slot as equal to 15 minutes. This is a simplifying assumption which makes the toy 
model more tractable and, at the same time, it permits us to reproduce properly what we observe in 
reality.  

Finally, we also use taxi-in and taxi-out durations for each airport. These durations, contained in the 
dataset, are used to properly assess the different kinds of delay costs, e.g., the en-route delay has 
great impact on the cost of fuel, whereas the delay at-gate concerns mostly passengers and crew 
costs. 

4.1.4 Chain of events 

Each flight is associated with an event, represented by an 18-tuple 

(𝑓𝑓, 𝜏𝜏,𝑎𝑎, 𝑖𝑖, 𝑗𝑗, 𝑡𝑡𝑑𝑑0, 𝑡𝑡𝑑𝑑1, 𝑟𝑟, 𝛿𝛿𝑔𝑔 ,𝑃𝑃,𝜋𝜋𝑖𝑖,𝜋𝜋𝑜𝑜, 𝑡𝑡𝑑𝑑 ,𝑣𝑣, 𝑡𝑡𝑙𝑙0, 𝑡𝑡𝑙𝑙1, 𝑡𝑡𝑙𝑙 ,𝑥𝑥) 

where: 

1. flight number 𝑓𝑓 
2. tail number 𝜏𝜏 
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3. airline ICAO code 𝑎𝑎 
4. origin airport 𝑖𝑖 
5. destination airport 𝑗𝑗 
6. scheduled departure time 𝑡𝑡𝑑𝑑0 
7. off block time 𝑡𝑡𝑑𝑑1 of the last-filed flight plan 
8. reactionary delay 𝑟𝑟 
9. delays at-gate 𝛿𝛿𝑔𝑔, different from the reactionary delay (e.g., administrative delay, airport 

congestion, etc.) 
10. number of passengers 𝑃𝑃 
11. a vector variable 𝜋𝜋𝑖𝑖 describing the number of incoming passengers from connecting 

flights 
12. a vector variable 𝜋𝜋𝑜𝑜 describing the number of outgoing passengers to other connecting 

flights 
13. departing time 𝑡𝑡𝑑𝑑 
14. average (cruise) speed 𝑣𝑣from origin to destination 
15. scheduled arrival time 𝑡𝑡𝑙𝑙0 
16. landing time 𝑡𝑡𝑙𝑙1of the last-filed flight plan 
17. arrival time 𝑡𝑡𝑙𝑙 
18. cancellation index 𝑥𝑥. 

 

Some entries of the 18-tuple are fixed by the input data described before, specifically both flight and 
tail numbers, the airline ICAO code, both origin and destination airports, passenger information and, 
more importantly, both scheduled departure and arrival times and last-filed flight plan with 
departing and landing times.  

We differentiate reactionary delay from other possible delays at gate: 

1. reactionary delay is caused by the late arrival of aircraft from a previous journey. It 
occurs when the arrival delay cannot be recovered by the buffer planned in the strategic 
phase. In the toy model, we define the reactionary delay as the difference between the 
actual off-block time and the scheduled departure time. At that time, the airline will 
request a departing slot starting from the moment the aircraft will be ready; 

2. 𝛿𝛿𝑔𝑔accounts for other possible delays at-gate, such as aircraft technical delay and state of 
congestion of the airport (e.g., as a consequence of weather). Airlines can consider UDPP 
innovation to recover 𝛿𝛿𝑔𝑔for flights with high priority by requesting the swapping of 
flights. We do not consider delays at-gate other than reactionary in the baseline version 
of the toy model, while we aim to consider stress test scenarios with non-zero 𝛿𝛿𝑔𝑔 in 
future developments. 

The variables of the toy model which might be affected by the agents’ decisions are the departure 
time, the speed of flight, and the arrival time: 

1. airlines take decisions about the departure time of their own flights by trying to minimise 
their own cost function (see below). Late departure time of a flight, e.g., because of wait-
for-passengers strategy, is determined depending on airport traffic capacity and time 
slots availability; 
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2. the process of making decisions concerns also the average speed of flights, e.g., because 
airlines could decide to recover en-route some delay. Here, we consider the average 
cruise speed from origin to destination, without modelling explicitly both climb and 
descent phases; 

3. arrival time is a stochastic variable which is the sum of the departing time and the flight 
time. The modelling of the flight time from origin to destination is explained below in the 
Baseline implementation Section. 

 

The cancellation index is a binary variable describing whether the flight is cancelled.  

Once we have defined a single event as described above, we can form the chain of events which 
describes the day of operations. The main constraint in forming the chain is the consistency in the 
succession of events, i.e., we can admit only time sequences which respect aircraft itineraries. For 
this purpose, the simplest option is to sort the events according to scheduled departure times, 
adjusted according to the observed reactionary delays. In the process of requesting time slots to NM 
and DMAN, at each run of the model we locally randomise the chain within short time windows. This 
randomisation takes place over disjoint time windows shorter than the minimum flight time, 
preventing in this way impossible occurrences, e.g., an aircraft which departs before arriving at the 
airport.  

In the running of the toy model, we simulate events following their order in the chain. When 
simulating an event, departure time and speed of the flight are obtained by solving an optimization 
problem which accounts for the cost of delay, detailed in the following section. In absence of any 
delay previously assigned to the corresponding flight and when no wait-for-passengers strategy is 
applied, the departure time coincides with the scheduled one. When the departure time is delayed, 
the solution of the optimization problem must take in consideration the availability of time slots at 
the departure airport. Then, the arrival time is obtained by summing to the departure time the flight 
time, simulated as explained in Section 4.2.2. If the flight has an arrival delay which prevents the 
aircraft from being on time for the next departure, a reactionary delay is assigned to the next flight 
operated by that aircraft. Hence, the next event of the chain is considered. 

4.1.5 Cost functions for airlines 

Delays cause airlines to incur (high) costs. Although delays cause costs to other subsystems, such as 
airport authorities, air traffic control and, not least, passengers, the focus here is on airlines because 
the interest is on the process of decision-making in the tactical allocation of flights. The cost of delay 
can be differentiated in strategic delays (those accounted for in advance in the strategic phase) and 
tactical delays (those incurred on the day of operations and not accounted for in advance). Airlines 
mitigate the occurrence of the strategic costs by adding buffers to the flight schedules. However, in 
the toy model the strategic phase is an input, thus, we consider only the impact of tactical delays. In 
assessing these costs, we refer mainly to the report in [3] where authors have estimated on historical 
data the different components which sum to the total cost of delay. 

Tactical costs of delay can be differentiated in four contributions: at-gate (engine off), taxi, en-route, 
and arrival management. The cost of fuel mainly affects the last three phases. In the context of the 
toy model, we model a composite gate-to-gate delay, without accounting separately for the four 
different contributions. We separate primary costs from reactionary costs. 
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Primary costs 

The different primary components which sum to the total cost of primary delays are: 

1. the cost of fuel is related to the fuel consumption which depends on the mean speed. The 
flight (or the airline FOC) may decide to speed up in order to recover some delay. Hence, we 
consider the excess cost of fuel arising from the choice of increasing the speed of the flight. 
By assuming a possible range of values for the speed, ranging from the velocity characterized 
by the lowest cost to the maximum velocity permitted by physical constraints17, the excess 
cost of fuel can be described as 

2. 𝐶𝐶𝑖𝑖𝑥𝑥𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑓𝑓𝑜𝑜𝑖𝑖𝑙𝑙 = 𝜑𝜑𝑇𝑇𝑖𝑖𝑖𝑖(𝑣𝑣 − 1) 
a. where 𝜑𝜑 is a normalisation parameter, 𝑇𝑇𝑖𝑖𝑖𝑖 is the expected flight time and the unit 

value represents the adopted mean speed by the typical aircraft. Based on 
EUROCONTROL’s ‘Base of Aircraft Data’ (‘BADA’) [36]. In [37] it is shown that a 
maximal (positive) speed variance is equal to 7.5% (in the following, the curves of 
cost are obtained by considering the mean speed for each aircraft); Note that when 
the Cost Index is changed, not only the cruising speed is modified but the whole 
trajectory, particularly the climb and descent phases which can account for 
significant amount of delay recovery. However, for simplicity, in the toy model, only 
the flight speed is considered. 

3. maintenance costs incurred by delayed aircraft relate to factors such as the (mechanical) 
attrition of aircraft waiting at gates; 

4. crew costs are based on the cost of crewing for additional minutes over and above those 
planned at the strategic phase; 

5. passenger costs are the costs related to any possible consequence of delay regarding 
passengers. Costs of passenger delay may be classified as either a ‘hard’ or ‘soft’ cost (see [3] 
for further details): 

• hard costs arise from passenger rebooking, compensation and care; 
• soft costs represent the cost paid in the future by an airline as a results of 

passenger dissatisfaction; these kinds of costs are difficult to estimate because of 
unknown utility function of passengers, although they have been estimated from 
the literature and surveys. 

For a single flight in a normal day of operations, the cost function for primary delays, both at-gate 
and en-route, aggregated for all considered components is reported in Figure 40 where the data are 
taken from [3]. 

17 In principle, the theoretical range of values of possible speeds is characterized by a left bound smaller than 
the observed one. In practice, indeed, very low values of speed are avoided, due to negligible differences in 
fuel consumption for non-negligible flight time increases [41], [42]. 
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Figure 40. Costs of primary delay for both delays at-gate (left) and delays en-route (right), by 
considering two commonly used twin engines, mid-range twin aircraft 1 (black curve) and mid-

range twin aircraft 2 (blue curve). 

Black and blue curves represent the cost function for two commonly used twin engines. In this case, 
as suggested in [3], the curves can be fitted by a power function to make calculations more tractable. 
The smoothed cost profiles describe the cost functions adopted in the implementation at level 0 of 
the toy model. 

Reactionary costs 

Tactical costs discussed before described the cost of the delay of a single flight, assuming that such 
delay has no impact on other flights. However, on the day of operations, primary delays caused by 
one aircraft cause ‘knock-on’ effects in the rest of the network, known as ‘secondary’ or ‘reactionary’ 
effects. Primary delays do not only affect the initially delayed aircraft on subsequent legs, i.e., 
rotational reactionary effect, but also other aircraft, i.e., non-rotational reactionary effect. Hence, 
primary tactical costs need to be scaled up to the network level.  

First, the ‘knock-on’ effects have impact on the cost of subsequent legs because of maintenance and 
crew costs. Since the average impact of these components is known per single flight (see left panel of 
Figure 40), reactionary costs can be scaled up to the network level once: (i) we have estimated the 
expected reactionary delays, considering both rotational and non-rotational effects, on subsequent 
flights18; (ii) we have complete information on the network of the scheduled flights of each airline19. 

Second and more importantly, the ‘knock-on’ effects have impact on passenger costs because of 
compensation, care and rebooking of delayed passengers. The cost of rebooking is considered as 
reactionary because it follows from a missed connection caused by a primary delay. 

18 See, e.g., [3] where the curve for the reactionary delay as a function of the primary delay is obtained by 
statistical methods applied to historical observations. 
19 See Data Section. 
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Figure 41. A sketch of the cost model to be implemented in the toy model. 

Figure 41 shows the cost model we will use in the implementation of the dynamic cost indexing. The 
cost structure of a flight is typically not linear due to the presence of different milestones and time 
constraints for each flight, such as crew out-of-hours constraints, maintenance slot requirements, 
passenger missed-connection costs, or a missed airport curfew, etc. For instance, when arrival delay 
is larger than 180 minutes passengers are entitled to compensation, which results in a jump in the 
cost profile at 180 minutes [38]. 

In the context of the toy model, we focus on the estimation of passenger cost of reactionary delay at 
two different levels, representing level 1 and level 2 of dynamic cost indexing: (i) a heuristic 
estimation which is not specific for the single flight and its connections; (ii) a precise flight-specific 
estimation which takes into account real-time network effects of connecting flights as well as the 
current number of passengers. More specifically, 

● at level 1, the cost profile is calibrated on historical observations of the cost impact of 
reactionary delays. Specifically, it does not model explicitly passengers’ itineraries and 
connections, but it considers the average number of passengers per flight and itinerary. The 
presence of jumps in the cost function refers to margins of manoeuvre which are known by 
airlines, e.g., information on buffers introduced in the strategic phase to preserve 
connections and delay threshold above which airlines face costs of compensation; 

● at level 2, we aim to describe the cost model in Figure 42Figure 41 by accounting explicitly 
for passengers’ itineraries as well as the current states of connecting flights, e.g., by 
considering the presence of delays during the day of operations. As in level 1, the cost of 
compensation is introduced as the presence of a jump at the delay threshold for 
compensations, but it is calibrated over the current number of passengers on the aircraft. 
We model the reactionary costs of missed connections as the sum of rebooking, 
compensation and care of passengers (‘hard’ components), expressed by the following 
equation 

𝐶𝐶𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑠𝑠
𝑓𝑓 = � (𝛾𝛾𝑖𝑖𝑓𝑓 𝜋𝜋𝑖𝑖𝑏𝑏𝑓𝑓𝐼𝐼𝑡𝑡𝑙𝑙𝑏𝑏+𝛥𝛥𝑗𝑗−𝑡𝑡𝑑𝑑𝑓𝑓>0 + 𝛾𝛾𝑜𝑜𝑓𝑓 𝜋𝜋𝑜𝑜𝑓𝑓𝑏𝑏𝐼𝐼𝑡𝑡𝑙𝑙𝑓𝑓+𝛥𝛥𝑗𝑗−𝑡𝑡𝑑𝑑𝑏𝑏>0)

𝑏𝑏
 

where the first term accounts for incoming connecting passengers and the second term for 
the outgoing ones. Specifically, 𝛾𝛾𝑖𝑖𝑓𝑓 and 𝛾𝛾𝑜𝑜𝑓𝑓 represent respectively the cost of missed 
connections per passenger for inbound and outbound connections  𝜋𝜋𝑖𝑖𝑏𝑏𝑓𝑓 and 𝜋𝜋𝑜𝑜𝑓𝑓𝑏𝑏 are 
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respectively the number of inbound and outbound connecting passengers for the flight f, 𝐼𝐼(..) 
is the indicator function which takes value equal to one in the case of missed connection, 
zero otherwise. We consider a simple rule for identifying missed connections, namely when 
the arrival time of the incoming flight, plus the time 𝛥𝛥𝑖𝑖 necessary to move passengers from 
one aircraft to the other one at airport 𝑗𝑗, is later than the departure time of the outgoing 
flight. The sum is over all flights connected to flight f, considering both inbound and 
outbound connecting flights. The advantage of the explicit description of ‘hard’ reactionary 
costs of passengers in connecting flights is that we evaluate when the wait-for-passengers 
strategy is appropriate for airlines by considering the network effects in real time and not 
only by means of historical evaluations. 

4.1.6 Domino mechanisms 

In the toy model, we consider two Domino mechanisms for implementation and assessment of their 
impact on the ATM system, namely 4D trajectory adjustment and flight prioritisation. Regarding 4D 
trajectory adjustment, we model the delays management strategies from the airline point of view by 
including dynamic cost indexing and hub management (e.g., waiting for connecting passengers). 
flight prioritisation refers instead to centralised decisions by airlines in reordering and swapping their 
own flights in order to minimise their expected costs. Both mechanisms are implemented at the 
three levels considered in Domino. For further information, see Deliverable D3.1 [39]. 

In the toy model, we specify the three different levels of implementation as follows. For the 4D 
trajectory adjustment mechanism: 

• level 0 tries to replicate the current practices used by airlines to manage their own flights. 
This consists in adopting the standard Cost Index (CI), which takes into account both the cost 
of delay and the cost of fuel deriving from the excess expense of using more fuel to increase 
the speed of the flight. We use the primary cost function (which does not include reactionary 
costs (Figure 40); 

• level 1 implementation considers the use of dynamic cost indexing for flights, but with a cost 
estimation based on heuristics. In this case we consider a cost model which includes 
reactionary costs (estimated statistically) and implement a naive wait-for-passengers 
strategy which may be adopted by airlines to reduce the impact of reactionary costs; 

• level 2 implementation considers an advanced estimation of expected costs due to delayed 
flights by including the network effects of passengers in connecting flights. In particular, the 
cost function is scaled up to the network level as in level 1, but the estimation of costs takes 
into account the current number of passengers as well as the current state of the system. 
Wait-for-passengers strategy is thus implemented with detailed information about the 
connecting flights. 

Regarding the flight prioritisation mechanism: 

• level 0 does not consider any input of prioritisation from the airlines. Slots are assigned to 
flights following a First Planned First Served (FPFS) protocol; 
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• level 1 implementation considers the application of UDPP principles, i.e., when there is a 
mismatch between capacity and demand, UDPP could be set, allowing airlines to reorder and 
protect their delayed flights. We consider two protocols in the implementation of UDPP, i.e., 
FDR (Fleet Delay Reordering) which allows the swapping of slots in order to reduce the delay 
of flights with high priority, and SFP (Selective Flight Protection) which suspends the planned 
departure of a flight with low priority to push the other flights one slot forward in the queue. 
The implementation of UDPP principles requires centralised decisions by the airline FOC; 

• level 2 extends level 1 with the possibility to exchange slots between airlines. In this case, a 
credit system needs to be implemented and the cost function for airlines needs to be 
generalised to account for the benefit of exchanging slots with other airlines. However, it is 
out of scope of Domino to implement a market-like platform for slot exchange. The toy 
model aims to explore the potential consequences of possibility of exchanging slots between 
airlines. 

4.1.7 Decision-making process 

Depending on the level of implementation, airlines face a different optimization problem in the 
process of decisions making about their own flights during the tactical phase. In the simplest setting 
we do not take into account current information about the network and the decision process only 
concerns the single flight. For instance, let us assume a cost model as in Figure 41 but with 
historically based margins of manoeuvre. When a flight is delayed at departure with a delay slightly 
larger than the first max delay target (see Figure 41), the airline could decide to increase the speed of 
flight to recover en-route the delay difference (w.r.t. the target), not paying for passenger 
compensation at the expense of an extra cost of fuel. In the context of the toy model, this represents 
a possible event at level 1 of implementation of dynamic cost indexing. 

When we introduce explicit estimations of costs based on current information about the network 
effects, we move to describing airline decisions as a centralised process which consider more than 
one flight at once. Explicit modelling of costs, in particular regarding the passenger cost of delay for 
the airline, leads to a more complex decision problem, especially in the case of airline hubs where 
passengers and flights traffic is more concentrated. However, informed decision-making scaled up to 
the network level with explicit information about passengers and flights could reduce considerably 
the costs faced by airlines. In mathematical terms, the solution of the global minimisation problem 
for airline decisions is always better than finding local minima for the decision variables. In practice, if 
one incoming flight has been delayed, the airline might decide to actively delay outbound flights to 
wait for inbound connecting passengers. In some cases (depending on explicit estimation of costs), 
e.g., for the last flights of the day where passengers missing their connection need to be rebooked on 
next day flights, leading to significant costs of care, the wait-for-passengers strategy may reduce the 
passengers cost for the airline. 

On a case-by-case basis, we aim to consider the different levels of implementation for the cost 
function, ranging from level 0 to level 2. Furthermore, we aim to introduce also the UDPP principles 
in the decision-making process, allowing airlines to re-order their own flights. Thus, the considered 
optimization problem for airline decisions describes, from time to time, the Domino mechanisms of 
which we aim to assess the macro effects on the ATM system.  
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4.1.8  Scenarios and case studies 

Several research questions arise when we consider implementation at both level 1 and level 2 of the 
innovations studied in Domino. Among others, we aim to answer the following: 

1. implementation of 4D trajectory adjustment through dynamic cost indexing and other 
advanced estimations of the impact of delays require the creation of complex structures to 
support the decision process of airlines. In reality, this process of innovation is usually very 
expensive. Hence, at least at the beginning, only the largest companies will implement. Then, 
it is important to assess the impact of the 4D trajectory adjustment mechanism only when 
implemented by a subset of airlines, in order to evaluate their performances and those of the 
other airlines. Finally, this scenario will be compared to the one when all airlines implement 
the innovation; 

2. the most important distinction among airports refers to the traffic size. Congestion events 
concern mainly the major airports where a large number of flights compete for the same 
resources, and slot allocation enhanced by the flight prioritisation mechanism aim to reduce, 
among other aspects, the probability of congestion. Hence, it is important to assess the 
impact of this innovation on the whole system by considering from time to time a different 
number of airports where the innovation is implemented. By ordering the airports according 
to traffic sizes and implementing the innovation starting from the major airports, we expect 
that there should exist a threshold for the number of airports above which any index of 
system performance would not change by increasing further this number. This should select 
those airports where the flight prioritisation mechanism would have an effective impact on 
the whole system. 

4.2 Baseline implementation 

In this Section, we detail the baseline implementation of the toy model representing level 0 of 
innovation, as described above. For this purpose, we need to specify: (i) the decision-making process 
faced by airlines, (ii) how simulations of flight times are performed, (iii) what happens to the chain of 
events when a primary delay prevents the aircraft to be on time for the next flight, and finally (iv) 
model calibration. 

4.2.1 Optimization problem for airline decisions 

In making decisions, airlines try to minimise their own cost functions. In the baseline toy model, we 
assume decentralised decisions by airlines, meaning that decision on one flight is independent from 
the presence of other flights, either arriving at or departing from the airport. Furthermore, we do not 
consider any wait-for-passenger strategy. Hence, the flight-specific cost function in the process of 
decision making is 

𝐶𝐶𝑓𝑓(𝑡𝑡𝑑𝑑 ,𝑣𝑣) = 𝐶𝐶𝑑𝑑𝑖𝑖𝑙𝑙𝑟𝑟𝑦𝑦(𝑡𝑡𝑑𝑑) + 𝐶𝐶𝑖𝑖𝑥𝑥𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑓𝑓𝑜𝑜𝑖𝑖𝑙𝑙(𝑣𝑣) 

where the first component is the cost of primary delay as described by the cost profile in the left plot 
in Figure 40, while the second component is the excess cost of fuel which depends on the speed of 
flight 𝑣𝑣. The cost of delay depends on the departure time 𝑡𝑡𝑑𝑑 of flight and the flight delay is computed 
with respect to the scheduled departure time. In Figure 40 we have shown the cost functions for two 
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commonly used twin engines. However, for the sake of simplicity, we assume that all airlines use the 
same type of aircraft. The cost curve for this typical aircraft is thus obtained by averaging the cost 
functions of Figure 40 at each time point. Then, we smooth the cost curve by using polynomial 
kernels in order to achieve flexibility in computing the cost of delay for a generic delay. 

Hence, the problem for the airline is minimising the cost function of flight f 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡𝑑𝑑,𝑣𝑣) 𝐶𝐶𝑓𝑓(𝑡𝑡𝑑𝑑 ,𝑣𝑣)    𝑠𝑠. 𝑡𝑡.    (𝑣𝑣 − 1)2 < 7.5%, (𝑡𝑡𝑑𝑑 − 𝑡𝑡𝑑𝑑0) < 300 𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑡𝑡𝑒𝑒𝑠𝑠 

where some constraints are imposed, specifically the variance of speed has to be smaller than 7.5% 
according to [37] and we assume a maximum delay of 300 minutes, otherwise the flight is cancelled. 

In the context of Flight Management System (FMS), the Cost Index (CI) is defined as the ratio 
between the cost of delay and the cost of fuel and it is used by airlines to optimize the aircraft’s 
trajectory including their speed. The solution of the described optimization problem defines the 
optimal value for CI, thus linking the adopted approach to the standard practice in FMS. 

At the baseline level of implementation, the decision process takes place before the departure of 
flights, without considering dynamic decisions about speed during the en-route phase, as the cost 
impact of reactionary delays. Hence, the cost of delay refers to the primary delay at-gate. 

4.2.2 Implementation details 

The simulation of the flight times in the toy model is stochastic. The expected gate-to-gate duration 
is taken from m1 files. The simulated gate-to-gate duration is obtained by summing a stochastic flight 
time estimated by looking at the actual flight time in m3 files and a term that depends on the 
availability of an arrival slot.  

To compute the first term, we proceed as follows. Since the variance for the actual gate-to-gate 
duration depends on the duration of the specific flight trajectory, we consider the coefficient of 
variation of the gate-to-gate duration, i.e., the ratio between the standard deviation and the mean of 
the gate-to-gate durations. 
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Figure 42. Distribution of the coefficient of variation for observed flight times (m3 files) at the day 
of operations September 12nd 2014. 

In Figure 42, we show the empirical distribution of the coefficient of variation by considering all 
flights crossing the European ECAC airspace during 12 September 2014 (see Data Section below). 
Since this distribution is very peaked and the correlation between observed flight times and the 
corresponding variations is statistically equal to zero, we assume the coefficient of variation as 
independent from the distance between the two airports. Thus, the first term of the gate-to-gate 
delay is obtained by sampling the coefficient of variation for that flight from the empirical 
distribution. Then a normally distributed random variable with standard deviation equal to the 
sampled coefficient times the expected flight time is sampled. Finally, the second term, 
corresponding to the arrival phase is added.  

In the case of a primary delay for a flight which prevents the aircraft to be on time for the next flight, 
the previously booked departure slot is cancelled, and the airline has to take new decisions about the 
departing time according to the available departure slots. In the baseline implementation, the new 
departure time is the solution of the optimisation problem which minimises the cost function for the 
flight but considering available time slots for departures. 

In the simulation of the model, reactionary delays are determined by using the tail number of flights. 
The chain of flights for an aircraft is obtained by concatenating the events with the same tail number 
and reactionary delays are determined step by step by accounting for arrival delays and the 
turnaround time at the airport. 

The turnaround time is assumed to be equal to 30 minutes for each airport. This homogeneity 
assumption is taken to reduce the complexity of the toy model. The maximum departure delay of a 
flight is considered equal to 300 minutes, otherwise the flight is cancelled in simulations. In the case 
of cancellation, all subsequent flights with the same tail number are cancelled. 
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Regarding the costs faced by airlines, we use the information present in [3] and the cost functions 
are obtained as explained before. At the baseline level, the challenging issue refers to calibrate the 
parameter 𝜑𝜑 of the cost of fuel. At the present moment, this is out of the scope of this Deliverable. In 
fact, the implementation of the baseline (level 0) does not involve the parameter 𝜑𝜑. Indeed, it can be 
proved that the solution of the optimization problem for level 0 has the unit value as optimal choice 
for the speed of the flight, whatever the value of 𝜑𝜑 is. This is due to the fact that the function 
describing the cost of delay is convex, see the left plot of Figure 40. Hence, the calibration of 
𝜑𝜑together with the parameters involved in the explicit estimation of passenger cost of delay are left 
for future implementations of the model.  

4.2.3 Data 

For the implementation and calibration of the toy model, we use two datasets describing air traffic 
and passengers’ itineraries for 12 September 2014, namely EUROCONTROL's DDR_1409 which 
contains all flight information on the day of operations, and pax_itineraries which is based on 
previous datasets developed by the University of Westminster and allows us to align passenger 
information with flight data and, more importantly for the current implementation of the model, it 
contains the scheduled departure and arrival times. The available information is summarized in Table 
20. 

Table 20. Information available for each flight by crossing information of DDR_14_09 and 
pax_itineraries databases. 

Field What it contains 

Date Day, month, year of the scheduled departure time 

Flight number Unique flight id 

Tail number Registration number of the aircraft 

Origin airport ICAO code of origin airport from DDR 

Destination airport ICAO code of destination airport from DDR 

taxi-out average duration of the taxi-out phase for origin airport 

taxi-in average estimated duration of the taxi-in phase for the 
destination airport 

Scheduled departure time the expected departure time on the tickets of passengers 

Actual departure time Actual off block time from m3 

Actual take-off time Actual take-off time (Actual departure time + taxi-out) 

Expected departure time Expected off block time from m1 
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Scheduled arrival time the expected arrival time on the tickets of passengers 

Actual arrival time Actual in block time from m3 

Expected landing time Expected landing time from m1 

Airline ICAO code of airline operating the flight 

Cancellation 1 if the flight was cancelled, 0 otherwise 

ddr number id to cross data with pax_itineraries dataset 

 

4.3 Preliminary results 

In this Subsection we describe some preliminary results from the baseline implementation of the toy 
model for validation purposes. The goal is to show that the proposed toy model is able to describe 
the main characteristics of the ECAC ATM system on the day (September 12nd 2014) of operations 
when no Domino innovations were implemented. Starting from this benchmark, the future 
developments of this work will consider the implementation of the full mechanisms in order to 
evaluate their impact on air traffic dynamics. 

For this purpose, we apply the baseline metrics introduced in Section 3.2 to the outputs of the toy 
model for a comparison with the observations of the day of operations for 12 September 2014. 

 

Figure 43. Delay on data and toy model comparison. Top panels: distribution of departure delays 
for delayed flights for the day of operations (12 September 2014) (left) and toy model simulations 

(right). Bottom panels: distribution of arrival delays of flights for the day of operations (12 
September 2014) (left) and toy model simulations (right). 
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In Figure 43 we show the distributions of both departure and arrival delays of flights by comparing 
observed data (left) with the result of simulations. Note that for departure delays we observe a 
larger density at the first bin for the toy model outcomes with respect to data. This is due to the fact 
that we consider as different from zero also delays smaller than one minute. In Table 21 standard 
statistics of these distributions are shown to verify the consistency of the toy model outputs with 
respect to the real observations. 

Table 21. Standard statistics of flight delay for the baseline implementation of the toy model 

 Departure delay of 
delayed flights 
(data) – (min) 

Departure delay of 
delayed flights (toy 
model) – (min) 

Arrival delay (data) 
– (min) 

Arrival delay (toy 
model) – (min) 

Mean 19.6 20.9 11.1 12.9 

Standard 
deviation 

30.2 36.3 27.4 38.1 

Interquartile 
range 

18 17.9 17 23 

Max 398 299 294 298 

Min 0.5 1.0 -45.7 -47.5 

 

In Table 21, we compare the departure delays of delayed flights because, as highlighted in Section 
3.2, some negative departure delays may occur in reality when the aircraft boarding phase has been 
completed in advance with respect to the scheduled time. In these cases, the departure time may be 
anticipated, whereas the toy model does not consider this possibility, by design. The statistics 
obtained with the outputs of the toy model are consistent with the real data, thus indicating that the 
toy model is able to reproduce the characteristics of the system at the largest level of aggregation. 

On 12 September 2014, there were no cancelled flights that can be identified from the available 
data. However, the simulations of the toy model give as output an average percentage of 
cancellations equal to 0.7%, that is a value close to the percentages observed in the datasets used in 
Section 3.2, i.e., 1.75% for ECAC_1 and 0.9% for US_april. 

Let us consider also the intraday profile of mean departure delay for delayed flights (see the left 
panel of Figure 42). The toy model reproduces the well-known behaviour of increasing delays during 
the day, because of reactionary delay propagation by means of rotational and non-rotational effects. 
The model output reproduces quite well the real observations, except in the last part of the day 
when the mean delay is further increasing according to the toy model, while it remains quite 
constant when we look at real data. There are different reasons to explain this discrepancy. We 
exclude that it is due to the flight buffers. In fact, buffers concern the strategic phase that is used as 
input for the toy model. It could, instead, be related to the mechanism of delay recovery during the 
en-route phase by means of deviations from the planned trajectory which shorten the distance from 
the destination airport (sometimes called direct). The relevance of this effect in the ECAC airspace 



EDITION 01.00.00 
 

and its frequency as a function of the time of the day has been elucidated, for example, in [40], see 
the right panel of Figure 44. It might also be due to other actions that airlines undertake to maintain 
delays low, which are not included in the model, especially as they get nearer towards curfew times 
at the end of the operational day. However, more research is called for the reconstruction of the 
intra-day patterns in the context of the toy model, when complete data for different days will be 
available. In Figure 45, we show the fraction of delayed flights at each hour of the day and we 
compare the results of the toy model with real observations for both departure and arrival delays. 
The two patterns are in good agreement. 

 

Figure 44. Departure delay and flight plan length variation as a function of time of the day. Left 
panel: mean departure delay for delayed flights at each hour for 12 September 2014. Right panel: 

probability density function of the relative difference between the length of the planned and 
actual trajectory of flights in the German airspace during the 334 AIRAC from 9pm to 6am, taken 

from [40]. 

 

 

Figure 45. Fraction of delayed flights at each hour for 12 September 2014 by considering both 
departure and arrival delays. 
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Figure 46. Geographical characterization of delays for 12 September 2014 according to the 
definition of distressed airports, i.e., red dots represent airports where more than 25% of flights 

have a departure delay larger than the average departure delay of delayed flights. Two node-
airports are connected by a weighted link according to the number of flights connecting them at 

the day of operations: the darker is the colour, the larger is the number of flights. We compare the 
real case (left plot) with the outputs of the toy model (right panel). In both cases, 25% is the overall 

average fraction of delayed flights with a departure delay larger than the mean.  

Finally, according to the definition of distress given in Section 3.2, we show in Figure 46 the European 
network of distressed airports for 12 September 2014 and compare it with the same network built 
with simulated data. In order to quantify the degree of overlap between the two networks, we adopt 
the error matrix which allows us to classify how much we learn from simulations about the distress 
state of the system by reporting the number of false positives, false negatives, true positives, and 
true negatives, see Table 22. The diagonal terms are quite high, showing a good classification ability. 
However, the number of false positive, i.e., the airports that the model wrongly classifies as 
distressed, is significant, indicating the need of refining further the toy model. 

Table 22. Error matrix for the measure of distress applied to the outcome of the baseline 
implementation of the toy model with respect to real observations  

  

True positive (%) 
0.7407 

False positive (%) 
0.2963 

False negative (%) 
0.0155 

True negative (%) 
0.9823 
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5 Next steps and look ahead 

In parallel to the analysis of metrics presented in this deliverable, the ABM model of Domino is being 
developed. The outputs of this model applied to different scenarios considering different levels of 
implementation of the mechanisms will be analysed using both classical and network metrics, as 
described in this deliverable. The results obtained from these analyses will be presented to 
stakeholders in a dedicated workshop. The feedback from the workshop will help to validate the 
utility of the metrics and help us defining the adaptive case studies. The results of these first results 
on the investigative case studies and of the workshop will be reported in D5.2 – Investigative case 
studies results and in D6.3 – Workshop results summary respectively. Both deliverables are planned 
for April 2019. 

The toy model will be further developed to continue with the testing of the different metrics under 
different simplified scenarios. 

Note that when using the full Domino ABM model, explicit passengers’ itineraries and connections 
will be modelled. As described previously, in Domino, we expect to see how passengers and their 
behaviour in the system (e.g., being rebooked when missing connections) contribute to the networks 
metrics, affecting for example centrality metrics.  

Finally, as the ABM model will consider the different systems in the ATM besides airports, the metrics 
will be applied/modified to capture the interaction between the ATM systems and not remain only at 
flights and airports level. 
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7 Acronyms 

ABM: Agent-based model 

ACI EUROPE: Airport Council International Europe 

AIRAC: Aeronautical Information Regulation and Control 

ANSP: Air Navigation Service Provider 

ATC: Air Traffic Control 

ATFM: Air Traffic Flow Management 

ATM: Air traffic management 

AU: Airspace user 

BADA: Base of Aircraft Data 

DCI: Dynamic cost indexing 

DDR2: Demand Data Repository 

IFPS: Integrated Initial Flight Plan Processing System 

NM: Network Manager  

UDPP: User Driven Prioritisation Process 
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1 Annex – List of airlines in ECAC2 dataset 

All airlines in the SkyTeam Alliance 
All airlines in the One World Alliance 
All airlines in the Star Alliance 
Air Baltic 
Air Berlin 
Aer Lingus 
Air Nostrum 
Blue Air 
EasyJet (DS) 
easyJet 
European Air Transport 
Eurowings 
Flybe 
Germanwings 
Hop 
Jet2.com 
Monarch Airlines 
Niki 
Norwegian Air International (D8) 
Norwegian Air Shuttle 
Olympic Airlines 
Pegasus Airlines 
Ryanair 
SunExpress 
Thomas Cook Airlines 
Thomsonfly 
Transavia Holland 
Ukraine International Airlines 
Vueling Airlines 
VOLOTEA Airways 
Widerøe 
Wizz Air 
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2 Annex – Walks appearing in actual network 

In this annex, we show how to partially solve the issue of new walks appearing in the actual network 
due to delays, which should not be counted by our centrality measures. Let us consider Trip 
centrality, and let 𝑄𝑄 = (𝕀𝕀 + 𝛼𝛼𝐴𝐴[1]𝐾𝐾). . . (𝕀𝕀 + 𝛼𝛼𝐴𝐴[𝑂𝑂]𝐾𝐾). With this definition, 

𝑘𝑘�⃗ 𝑡𝑡𝑚𝑚
𝑖𝑖𝑛𝑛

= [𝑄𝑄 − 𝕀𝕀]𝐾𝐾−1 𝟙𝟙 

𝑘𝑘�⃗ 𝑡𝑡𝑚𝑚
𝑜𝑜𝑜𝑜𝑡𝑡

= 𝟙𝟙 𝑂𝑂[𝑄𝑄 − 𝕀𝕀]𝐾𝐾−1. 

The element 𝑄𝑄𝑖𝑖𝑘𝑘  contains the contribution to the outgoing centrality of i given by walks from i to j (or 
equivalently the contribution to the incoming centrality of j given by walks from i to j ). We call 
𝑄𝑄𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑑𝑑 the matrix computed with 𝐴𝐴𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑑𝑑, and 𝑄𝑄𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙  the matrix computed with 𝐴𝐴𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙  . Now, let us 
compute the matrix Q one time frame at a time. 𝑄𝑄1 = (𝕀𝕀 + 𝛼𝛼𝐴𝐴[1]𝐾𝐾) only counts the walks during the 
first time frame, 𝑄𝑄2 = (𝕀𝕀 + 𝛼𝛼𝐴𝐴[1]𝐾𝐾)(𝕀𝕀 + 𝛼𝛼𝐴𝐴[2]𝐾𝐾) counts the walks up to the second time frame, and 
so on. At each time step, if an element of 𝑄𝑄𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙  is larger than the corresponding element of 𝑄𝑄𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑑𝑑, it 
is because of a new walk opened up by a delay. In fact, in the real network departure and landings 
take place either at the same time or later than in the scheduled network (having put all negative 
delays to zero), therefore all new acceptable contributions to centrality are added to 𝑄𝑄𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙  either at 
the same time as in 𝑄𝑄𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑑𝑑, or later. Therefore, at each step we pose 𝑄𝑄𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙 = 𝑚𝑚𝑖𝑖𝑛𝑛{𝑄𝑄𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑑𝑑,𝑄𝑄𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙}. 
This eliminates most spurious walks. The correction procedure is analogous for TripRank, with the 
appropriate definition of Q. We remark that there are still some spurious walk that remain, even 
after this correction 
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